xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 66ce419468ced9196d9e6586eea6522744ae184d)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
577 
578     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
579                    CallConv);
580 
581     if (DAG.getDataLayout().isBigEndian())
582       // The odd parts were reversed by getCopyToParts - unreverse them.
583       std::reverse(Parts + RoundParts, Parts + NumParts);
584 
585     NumParts = RoundParts;
586     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
588   }
589 
590   // The number of parts is a power of 2.  Repeatedly bisect the value using
591   // EXTRACT_ELEMENT.
592   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
593                          EVT::getIntegerVT(*DAG.getContext(),
594                                            ValueVT.getSizeInBits()),
595                          Val);
596 
597   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
598     for (unsigned i = 0; i < NumParts; i += StepSize) {
599       unsigned ThisBits = StepSize * PartBits / 2;
600       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
601       SDValue &Part0 = Parts[i];
602       SDValue &Part1 = Parts[i+StepSize/2];
603 
604       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
606       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
607                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 
609       if (ThisBits == PartBits && ThisVT != PartVT) {
610         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
611         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
612       }
613     }
614   }
615 
616   if (DAG.getDataLayout().isBigEndian())
617     std::reverse(Parts, Parts + OrigNumParts);
618 }
619 
620 static SDValue widenVectorToPartType(SelectionDAG &DAG,
621                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
622   if (!PartVT.isVector())
623     return SDValue();
624 
625   EVT ValueVT = Val.getValueType();
626   unsigned PartNumElts = PartVT.getVectorNumElements();
627   unsigned ValueNumElts = ValueVT.getVectorNumElements();
628   if (PartNumElts > ValueNumElts &&
629       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
630     EVT ElementVT = PartVT.getVectorElementType();
631     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632     // undef elements.
633     SmallVector<SDValue, 16> Ops;
634     DAG.ExtractVectorElements(Val, Ops);
635     SDValue EltUndef = DAG.getUNDEF(ElementVT);
636     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
637       Ops.push_back(EltUndef);
638 
639     // FIXME: Use CONCAT for 2x -> 4x.
640     return DAG.getBuildVector(PartVT, DL, Ops);
641   }
642 
643   return SDValue();
644 }
645 
646 /// getCopyToPartsVector - Create a series of nodes that contain the specified
647 /// value split into legal parts.
648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
649                                  SDValue Val, SDValue *Parts, unsigned NumParts,
650                                  MVT PartVT, const Value *V,
651                                  Optional<CallingConv::ID> CallConv) {
652   EVT ValueVT = Val.getValueType();
653   assert(ValueVT.isVector() && "Not a vector");
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655   const bool IsABIRegCopy = CallConv.hasValue();
656 
657   if (NumParts == 1) {
658     EVT PartEVT = PartVT;
659     if (PartEVT == ValueVT) {
660       // Nothing to do.
661     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
662       // Bitconvert vector->vector case.
663       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
664     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
665       Val = Widened;
666     } else if (PartVT.isVector() &&
667                PartEVT.getVectorElementType().bitsGE(
668                  ValueVT.getVectorElementType()) &&
669                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorNumElements() == 1) {
675         Val = DAG.getNode(
676             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
677             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
678       } else {
679         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType =
682             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
683         Val = DAG.getBitcast(IntermediateType, Val);
684         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685       }
686     }
687 
688     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
689     Parts[0] = Val;
690     return;
691   }
692 
693   // Handle a multi-element vector.
694   EVT IntermediateVT;
695   MVT RegisterVT;
696   unsigned NumIntermediates;
697   unsigned NumRegs;
698   if (IsABIRegCopy) {
699     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
700         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
701         NumIntermediates, RegisterVT);
702   } else {
703     NumRegs =
704         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
705                                    NumIntermediates, RegisterVT);
706   }
707 
708   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
709   NumParts = NumRegs; // Silence a compiler warning.
710   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 
712   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
713     IntermediateVT.getVectorNumElements() : 1;
714 
715   // Convert the vector to the appropiate type if necessary.
716   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 
718   EVT BuiltVectorTy = EVT::getVectorVT(
719       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
720   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
721   if (ValueVT != BuiltVectorTy) {
722     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
723       Val = Widened;
724 
725     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
726   }
727 
728   // Split the vector into intermediate operands.
729   SmallVector<SDValue, 8> Ops(NumIntermediates);
730   for (unsigned i = 0; i != NumIntermediates; ++i) {
731     if (IntermediateVT.isVector()) {
732       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
734     } else {
735       Ops[i] = DAG.getNode(
736           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
737           DAG.getConstant(i, DL, IdxVT));
738     }
739   }
740 
741   // Split the intermediate operands into legal parts.
742   if (NumParts == NumIntermediates) {
743     // If the register was not expanded, promote or copy the value,
744     // as appropriate.
745     for (unsigned i = 0; i != NumParts; ++i)
746       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
747   } else if (NumParts > 0) {
748     // If the intermediate type was expanded, split each the value into
749     // legal parts.
750     assert(NumIntermediates != 0 && "division by zero");
751     assert(NumParts % NumIntermediates == 0 &&
752            "Must expand into a divisible number of parts!");
753     unsigned Factor = NumParts / NumIntermediates;
754     for (unsigned i = 0; i != NumIntermediates; ++i)
755       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
756                      CallConv);
757   }
758 }
759 
760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
761                            EVT valuevt, Optional<CallingConv::ID> CC)
762     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
763       RegCount(1, regs.size()), CallConv(CC) {}
764 
765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
766                            const DataLayout &DL, unsigned Reg, Type *Ty,
767                            Optional<CallingConv::ID> CC) {
768   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 
770   CallConv = CC;
771 
772   for (EVT ValueVT : ValueVTs) {
773     unsigned NumRegs =
774         isABIMangled()
775             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
776             : TLI.getNumRegisters(Context, ValueVT);
777     MVT RegisterVT =
778         isABIMangled()
779             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
780             : TLI.getRegisterType(Context, ValueVT);
781     for (unsigned i = 0; i != NumRegs; ++i)
782       Regs.push_back(Reg + i);
783     RegVTs.push_back(RegisterVT);
784     RegCount.push_back(NumRegs);
785     Reg += NumRegs;
786   }
787 }
788 
789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
790                                       FunctionLoweringInfo &FuncInfo,
791                                       const SDLoc &dl, SDValue &Chain,
792                                       SDValue *Flag, const Value *V) const {
793   // A Value with type {} or [0 x %t] needs no registers.
794   if (ValueVTs.empty())
795     return SDValue();
796 
797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 
799   // Assemble the legal parts into the final values.
800   SmallVector<SDValue, 4> Values(ValueVTs.size());
801   SmallVector<SDValue, 8> Parts;
802   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     // Copy the legal parts from the registers.
804     EVT ValueVT = ValueVTs[Value];
805     unsigned NumRegs = RegCount[Value];
806     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
807                                           *DAG.getContext(),
808                                           CallConv.getValue(), RegVTs[Value])
809                                     : RegVTs[Value];
810 
811     Parts.resize(NumRegs);
812     for (unsigned i = 0; i != NumRegs; ++i) {
813       SDValue P;
814       if (!Flag) {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
816       } else {
817         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
818         *Flag = P.getValue(2);
819       }
820 
821       Chain = P.getValue(1);
822       Parts[i] = P;
823 
824       // If the source register was virtual and if we know something about it,
825       // add an assert node.
826       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
827           !RegisterVT.isInteger())
828         continue;
829 
830       const FunctionLoweringInfo::LiveOutInfo *LOI =
831         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
832       if (!LOI)
833         continue;
834 
835       unsigned RegSize = RegisterVT.getScalarSizeInBits();
836       unsigned NumSignBits = LOI->NumSignBits;
837       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 
839       if (NumZeroBits == RegSize) {
840         // The current value is a zero.
841         // Explicitly express that as it would be easier for
842         // optimizations to kick in.
843         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
844         continue;
845       }
846 
847       // FIXME: We capture more information than the dag can represent.  For
848       // now, just use the tightest assertzext/assertsext possible.
849       bool isSExt;
850       EVT FromVT(MVT::Other);
851       if (NumZeroBits) {
852         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
853         isSExt = false;
854       } else if (NumSignBits > 1) {
855         FromVT =
856             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
857         isSExt = true;
858       } else {
859         continue;
860       }
861       // Add an assertion node.
862       assert(FromVT != MVT::Other);
863       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
864                              RegisterVT, P, DAG.getValueType(FromVT));
865     }
866 
867     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
868                                      RegisterVT, ValueVT, V, CallConv);
869     Part += NumRegs;
870     Parts.clear();
871   }
872 
873   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
874 }
875 
876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
877                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
878                                  const Value *V,
879                                  ISD::NodeType PreferredExtendType) const {
880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
881   ISD::NodeType ExtendKind = PreferredExtendType;
882 
883   // Get the list of the values's legal parts.
884   unsigned NumRegs = Regs.size();
885   SmallVector<SDValue, 8> Parts(NumRegs);
886   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
887     unsigned NumParts = RegCount[Value];
888 
889     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
890                                           *DAG.getContext(),
891                                           CallConv.getValue(), RegVTs[Value])
892                                     : RegVTs[Value];
893 
894     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
895       ExtendKind = ISD::ZERO_EXTEND;
896 
897     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
898                    NumParts, RegisterVT, V, CallConv, ExtendKind);
899     Part += NumParts;
900   }
901 
902   // Copy the parts into the registers.
903   SmallVector<SDValue, 8> Chains(NumRegs);
904   for (unsigned i = 0; i != NumRegs; ++i) {
905     SDValue Part;
906     if (!Flag) {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
908     } else {
909       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
910       *Flag = Part.getValue(1);
911     }
912 
913     Chains[i] = Part.getValue(0);
914   }
915 
916   if (NumRegs == 1 || Flag)
917     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
918     // flagged to it. That is the CopyToReg nodes and the user are considered
919     // a single scheduling unit. If we create a TokenFactor and return it as
920     // chain, then the TokenFactor is both a predecessor (operand) of the
921     // user as well as a successor (the TF operands are flagged to the user).
922     // c1, f1 = CopyToReg
923     // c2, f2 = CopyToReg
924     // c3     = TokenFactor c1, c2
925     // ...
926     //        = op c3, ..., f2
927     Chain = Chains[NumRegs-1];
928   else
929     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
930 }
931 
932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
933                                         unsigned MatchingIdx, const SDLoc &dl,
934                                         SelectionDAG &DAG,
935                                         std::vector<SDValue> &Ops) const {
936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 
938   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
939   if (HasMatching)
940     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
941   else if (!Regs.empty() &&
942            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
943     // Put the register class of the virtual registers in the flag word.  That
944     // way, later passes can recompute register class constraints for inline
945     // assembly as well as normal instructions.
946     // Don't do this for tied operands that can use the regclass information
947     // from the def.
948     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
949     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
950     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951   }
952 
953   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
954   Ops.push_back(Res);
955 
956   if (Code == InlineAsm::Kind_Clobber) {
957     // Clobbers should always have a 1:1 mapping with registers, and may
958     // reference registers that have illegal (e.g. vector) types. Hence, we
959     // shouldn't try to apply any sort of splitting logic to them.
960     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
961            "No 1:1 mapping from clobbers to regs?");
962     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
963     (void)SP;
964     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
965       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
966       assert(
967           (Regs[I] != SP ||
968            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
969           "If we clobbered the stack pointer, MFI should know about it.");
970     }
971     return;
972   }
973 
974   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
976     MVT RegisterVT = RegVTs[Value];
977     for (unsigned i = 0; i != NumRegs; ++i) {
978       assert(Reg < Regs.size() && "Mismatch in # registers expected");
979       unsigned TheReg = Regs[Reg++];
980       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
981     }
982   }
983 }
984 
985 SmallVector<std::pair<unsigned, unsigned>, 4>
986 RegsForValue::getRegsAndSizes() const {
987   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
988   unsigned I = 0;
989   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
990     unsigned RegCount = std::get<0>(CountAndVT);
991     MVT RegisterVT = std::get<1>(CountAndVT);
992     unsigned RegisterSize = RegisterVT.getSizeInBits();
993     for (unsigned E = I + RegCount; I != E; ++I)
994       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995   }
996   return OutVec;
997 }
998 
999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1000                                const TargetLibraryInfo *li) {
1001   AA = aa;
1002   GFI = gfi;
1003   LibInfo = li;
1004   DL = &DAG.getDataLayout();
1005   Context = DAG.getContext();
1006   LPadToCallSiteMap.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clear() {
1010   NodeMap.clear();
1011   UnusedArgNodeMap.clear();
1012   PendingLoads.clear();
1013   PendingExports.clear();
1014   CurInst = nullptr;
1015   HasTailCall = false;
1016   SDNodeOrder = LowestSDNodeOrder;
1017   StatepointLowering.clear();
1018 }
1019 
1020 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1021   DanglingDebugInfoMap.clear();
1022 }
1023 
1024 SDValue SelectionDAGBuilder::getRoot() {
1025   if (PendingLoads.empty())
1026     return DAG.getRoot();
1027 
1028   if (PendingLoads.size() == 1) {
1029     SDValue Root = PendingLoads[0];
1030     DAG.setRoot(Root);
1031     PendingLoads.clear();
1032     return Root;
1033   }
1034 
1035   // Otherwise, we have to make a token factor node.
1036   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 
1137     // If debug info is to be dropped, run it through final checks to see
1138     // whether it can be salvaged.
1139     for (auto &DDI : DDIV)
1140       if (isMatchingDbgValue(DDI))
1141         salvageUnresolvedDbgValue(DDI);
1142 
1143     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1144   }
1145 }
1146 
1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1148 // generate the debug data structures now that we've seen its definition.
1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1150                                                    SDValue Val) {
1151   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1152   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1153     return;
1154 
1155   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1156   for (auto &DDI : DDIV) {
1157     const DbgValueInst *DI = DDI.getDI();
1158     assert(DI && "Ill-formed DanglingDebugInfo");
1159     DebugLoc dl = DDI.getdl();
1160     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1161     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1162     DILocalVariable *Variable = DI->getVariable();
1163     DIExpression *Expr = DI->getExpression();
1164     assert(Variable->isValidLocationForIntrinsic(dl) &&
1165            "Expected inlined-at fields to agree");
1166     SDDbgValue *SDV;
1167     if (Val.getNode()) {
1168       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1169       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1170       // we couldn't resolve it directly when examining the DbgValue intrinsic
1171       // in the first place we should not be more successful here). Unless we
1172       // have some test case that prove this to be correct we should avoid
1173       // calling EmitFuncArgumentDbgValue here.
1174       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1175         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1176                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1177         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1178         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1179         // inserted after the definition of Val when emitting the instructions
1180         // after ISel. An alternative could be to teach
1181         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1182         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1183                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1184                    << ValSDNodeOrder << "\n");
1185         SDV = getDbgValue(Val, Variable, Expr, dl,
1186                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1187         DAG.AddDbgValue(SDV, Val.getNode(), false);
1188       } else
1189         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1190                           << "in EmitFuncArgumentDbgValue\n");
1191     } else {
1192       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1193       auto Undef =
1194           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1195       auto SDV =
1196           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1197       DAG.AddDbgValue(SDV, nullptr, false);
1198     }
1199   }
1200   DDIV.clear();
1201 }
1202 
1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1204   Value *V = DDI.getDI()->getValue();
1205   DILocalVariable *Var = DDI.getDI()->getVariable();
1206   DIExpression *Expr = DDI.getDI()->getExpression();
1207   DebugLoc DL = DDI.getdl();
1208   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1209   unsigned SDOrder = DDI.getSDNodeOrder();
1210 
1211   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1212   // that DW_OP_stack_value is desired.
1213   assert(isa<DbgValueInst>(DDI.getDI()));
1214   bool StackValue = true;
1215 
1216   // Can this Value can be encoded without any further work?
1217   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1218     return;
1219 
1220   // Attempt to salvage back through as many instructions as possible. Bail if
1221   // a non-instruction is seen, such as a constant expression or global
1222   // variable. FIXME: Further work could recover those too.
1223   while (isa<Instruction>(V)) {
1224     Instruction &VAsInst = *cast<Instruction>(V);
1225     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 
1227     // If we cannot salvage any further, and haven't yet found a suitable debug
1228     // expression, bail out.
1229     if (!NewExpr)
1230       break;
1231 
1232     // New value and expr now represent this debuginfo.
1233     V = VAsInst.getOperand(0);
1234     Expr = NewExpr;
1235 
1236     // Some kind of simplification occurred: check whether the operand of the
1237     // salvaged debug expression can be encoded in this DAG.
1238     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1239       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1240                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1241       return;
1242     }
1243   }
1244 
1245   // This was the final opportunity to salvage this debug information, and it
1246   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1247   // any earlier variable location.
1248   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1249   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1250   DAG.AddDbgValue(SDV, nullptr, false);
1251 
1252   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1253                     << "\n");
1254   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1255                     << "\n");
1256 }
1257 
1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1259                                            DIExpression *Expr, DebugLoc dl,
1260                                            DebugLoc InstDL, unsigned Order) {
1261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1262   SDDbgValue *SDV;
1263   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1264       isa<ConstantPointerNull>(V)) {
1265     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1266     DAG.AddDbgValue(SDV, nullptr, false);
1267     return true;
1268   }
1269 
1270   // If the Value is a frame index, we can create a FrameIndex debug value
1271   // without relying on the DAG at all.
1272   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1273     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1274     if (SI != FuncInfo.StaticAllocaMap.end()) {
1275       auto SDV =
1276           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1277                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1278       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1279       // is still available even if the SDNode gets optimized out.
1280       DAG.AddDbgValue(SDV, nullptr, false);
1281       return true;
1282     }
1283   }
1284 
1285   // Do not use getValue() in here; we don't want to generate code at
1286   // this point if it hasn't been done yet.
1287   SDValue N = NodeMap[V];
1288   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1289     N = UnusedArgNodeMap[V];
1290   if (N.getNode()) {
1291     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1292       return true;
1293     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1294     DAG.AddDbgValue(SDV, N.getNode(), false);
1295     return true;
1296   }
1297 
1298   // Special rules apply for the first dbg.values of parameter variables in a
1299   // function. Identify them by the fact they reference Argument Values, that
1300   // they're parameters, and they are parameters of the current function. We
1301   // need to let them dangle until they get an SDNode.
1302   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1303                        !InstDL.getInlinedAt();
1304   if (!IsParamOfFunc) {
1305     // The value is not used in this block yet (or it would have an SDNode).
1306     // We still want the value to appear for the user if possible -- if it has
1307     // an associated VReg, we can refer to that instead.
1308     auto VMI = FuncInfo.ValueMap.find(V);
1309     if (VMI != FuncInfo.ValueMap.end()) {
1310       unsigned Reg = VMI->second;
1311       // If this is a PHI node, it may be split up into several MI PHI nodes
1312       // (in FunctionLoweringInfo::set).
1313       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1314                        V->getType(), None);
1315       if (RFV.occupiesMultipleRegs()) {
1316         unsigned Offset = 0;
1317         unsigned BitsToDescribe = 0;
1318         if (auto VarSize = Var->getSizeInBits())
1319           BitsToDescribe = *VarSize;
1320         if (auto Fragment = Expr->getFragmentInfo())
1321           BitsToDescribe = Fragment->SizeInBits;
1322         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1323           unsigned RegisterSize = RegAndSize.second;
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1328               ? BitsToDescribe - Offset
1329               : RegisterSize;
1330           auto FragmentExpr = DIExpression::createFragmentExpression(
1331               Expr, Offset, FragmentSize);
1332           if (!FragmentExpr)
1333               continue;
1334           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1335                                     false, dl, SDNodeOrder);
1336           DAG.AddDbgValue(SDV, nullptr, false);
1337           Offset += RegisterSize;
1338         }
1339       } else {
1340         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1341         DAG.AddDbgValue(SDV, nullptr, false);
1342       }
1343       return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1351   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1352   for (auto &Pair : DanglingDebugInfoMap)
1353     for (auto &DDI : Pair.getSecond())
1354       salvageUnresolvedDbgValue(DDI);
1355   clearDanglingDebugInfo();
1356 }
1357 
1358 /// getCopyFromRegs - If there was virtual register allocated for the value V
1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1361   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1362   SDValue Result;
1363 
1364   if (It != FuncInfo.ValueMap.end()) {
1365     unsigned InReg = It->second;
1366 
1367     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1368                      DAG.getDataLayout(), InReg, Ty,
1369                      None); // This is not an ABI copy.
1370     SDValue Chain = DAG.getEntryNode();
1371     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372                                  V);
1373     resolveDanglingDebugInfo(V, Result);
1374   }
1375 
1376   return Result;
1377 }
1378 
1379 /// getValue - Return an SDValue for the given Value.
1380 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1381   // If we already have an SDValue for this value, use it. It's important
1382   // to do this first, so that we don't create a CopyFromReg if we already
1383   // have a regular SDValue.
1384   SDValue &N = NodeMap[V];
1385   if (N.getNode()) return N;
1386 
1387   // If there's a virtual register allocated and initialized for this
1388   // value, use it.
1389   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1390     return copyFromReg;
1391 
1392   // Otherwise create a new SDValue and remember it.
1393   SDValue Val = getValueImpl(V);
1394   NodeMap[V] = Val;
1395   resolveDanglingDebugInfo(V, Val);
1396   return Val;
1397 }
1398 
1399 // Return true if SDValue exists for the given Value
1400 bool SelectionDAGBuilder::findValue(const Value *V) const {
1401   return (NodeMap.find(V) != NodeMap.end()) ||
1402     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1403 }
1404 
1405 /// getNonRegisterValue - Return an SDValue for the given Value, but
1406 /// don't look in FuncInfo.ValueMap for a virtual register.
1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it.
1409   SDValue &N = NodeMap[V];
1410   if (N.getNode()) {
1411     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1412       // Remove the debug location from the node as the node is about to be used
1413       // in a location which may differ from the original debug location.  This
1414       // is relevant to Constant and ConstantFP nodes because they can appear
1415       // as constant expressions inside PHI nodes.
1416       N->setDebugLoc(DebugLoc());
1417     }
1418     return N;
1419   }
1420 
1421   // Otherwise create a new SDValue and remember it.
1422   SDValue Val = getValueImpl(V);
1423   NodeMap[V] = Val;
1424   resolveDanglingDebugInfo(V, Val);
1425   return Val;
1426 }
1427 
1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1429 /// Create an SDValue for the given value.
1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 
1433   if (const Constant *C = dyn_cast<Constant>(V)) {
1434     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 
1436     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1437       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 
1439     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1440       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 
1442     if (isa<ConstantPointerNull>(C)) {
1443       unsigned AS = V->getType()->getPointerAddressSpace();
1444       return DAG.getConstant(0, getCurSDLoc(),
1445                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1446     }
1447 
1448     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1449       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 
1451     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1452       return DAG.getUNDEF(VT);
1453 
1454     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1455       visit(CE->getOpcode(), *CE);
1456       SDValue N1 = NodeMap[V];
1457       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1458       return N1;
1459     }
1460 
1461     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1462       SmallVector<SDValue, 4> Constants;
1463       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1464            OI != OE; ++OI) {
1465         SDNode *Val = getValue(*OI).getNode();
1466         // If the operand is an empty aggregate, there are no values.
1467         if (!Val) continue;
1468         // Add each leaf value from the operand to the Constants list
1469         // to form a flattened list of all the values.
1470         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1471           Constants.push_back(SDValue(Val, i));
1472       }
1473 
1474       return DAG.getMergeValues(Constants, getCurSDLoc());
1475     }
1476 
1477     if (const ConstantDataSequential *CDS =
1478           dyn_cast<ConstantDataSequential>(C)) {
1479       SmallVector<SDValue, 4> Ops;
1480       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1481         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Ops.push_back(SDValue(Val, i));
1486       }
1487 
1488       if (isa<ArrayType>(CDS->getType()))
1489         return DAG.getMergeValues(Ops, getCurSDLoc());
1490       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491     }
1492 
1493     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1494       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1495              "Unknown struct or array constant!");
1496 
1497       SmallVector<EVT, 4> ValueVTs;
1498       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1499       unsigned NumElts = ValueVTs.size();
1500       if (NumElts == 0)
1501         return SDValue(); // empty struct
1502       SmallVector<SDValue, 4> Constants(NumElts);
1503       for (unsigned i = 0; i != NumElts; ++i) {
1504         EVT EltVT = ValueVTs[i];
1505         if (isa<UndefValue>(C))
1506           Constants[i] = DAG.getUNDEF(EltVT);
1507         else if (EltVT.isFloatingPoint())
1508           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1509         else
1510           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511       }
1512 
1513       return DAG.getMergeValues(Constants, getCurSDLoc());
1514     }
1515 
1516     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1517       return DAG.getBlockAddress(BA, VT);
1518 
1519     VectorType *VecTy = cast<VectorType>(V->getType());
1520     unsigned NumElements = VecTy->getNumElements();
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     SmallVector<SDValue, 16> Ops;
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       for (unsigned i = 0; i != NumElements; ++i)
1527         Ops.push_back(getValue(CV->getOperand(i)));
1528     } else {
1529       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1530       EVT EltVT =
1531           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 
1533       SDValue Op;
1534       if (EltVT.isFloatingPoint())
1535         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1536       else
1537         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1538       Ops.assign(NumElements, Op);
1539     }
1540 
1541     // Create a BUILD_VECTOR node.
1542     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1543   }
1544 
1545   // If this is a static alloca, generate it as the frameindex instead of
1546   // computation.
1547   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1548     DenseMap<const AllocaInst*, int>::iterator SI =
1549       FuncInfo.StaticAllocaMap.find(AI);
1550     if (SI != FuncInfo.StaticAllocaMap.end())
1551       return DAG.getFrameIndex(SI->second,
1552                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1553   }
1554 
1555   // If this is an instruction which fast-isel has deferred, select it now.
1556   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1557     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 
1559     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1560                      Inst->getType(), getABIRegCopyCC(V));
1561     SDValue Chain = DAG.getEntryNode();
1562     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1563   }
1564 
1565   llvm_unreachable("Can't get register for value!");
1566 }
1567 
1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1569   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1570   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1571   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1572   bool IsSEH = isAsynchronousEHPersonality(Pers);
1573   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1574   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1575   if (!IsSEH)
1576     CatchPadMBB->setIsEHScopeEntry();
1577   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1578   if (IsMSVCCXX || IsCoreCLR)
1579     CatchPadMBB->setIsEHFuncletEntry();
1580   // Wasm does not need catchpads anymore
1581   if (!IsWasmCXX)
1582     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1583                             getControlRoot()));
1584 }
1585 
1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1587   // Update machine-CFG edge.
1588   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1589   FuncInfo.MBB->addSuccessor(TargetMBB);
1590 
1591   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1592   bool IsSEH = isAsynchronousEHPersonality(Pers);
1593   if (IsSEH) {
1594     // If this is not a fall-through branch or optimizations are switched off,
1595     // emit the branch.
1596     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1597         TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1599                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1600     return;
1601   }
1602 
1603   // Figure out the funclet membership for the catchret's successor.
1604   // This will be used by the FuncletLayout pass to determine how to order the
1605   // BB's.
1606   // A 'catchret' returns to the outer scope's color.
1607   Value *ParentPad = I.getCatchSwitchParentPad();
1608   const BasicBlock *SuccessorColor;
1609   if (isa<ConstantTokenNone>(ParentPad))
1610     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1611   else
1612     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1613   assert(SuccessorColor && "No parent funclet for catchret!");
1614   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1615   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 
1617   // Create the terminator node.
1618   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1619                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1620                             DAG.getBasicBlock(SuccessorColorMBB));
1621   DAG.setRoot(Ret);
1622 }
1623 
1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1625   // Don't emit any special code for the cleanuppad instruction. It just marks
1626   // the start of an EH scope/funclet.
1627   FuncInfo.MBB->setIsEHScopeEntry();
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   if (Pers != EHPersonality::Wasm_CXX) {
1630     FuncInfo.MBB->setIsEHFuncletEntry();
1631     FuncInfo.MBB->setIsCleanupFuncletEntry();
1632   }
1633 }
1634 
1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1636 // the control flow always stops at the single catch pad, as it does for a
1637 // cleanup pad. In case the exception caught is not of the types the catch pad
1638 // catches, it will be rethrown by a rethrow.
1639 static void findWasmUnwindDestinations(
1640     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1641     BranchProbability Prob,
1642     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1643         &UnwindDests) {
1644   while (EHPadBB) {
1645     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1646     if (isa<CleanupPadInst>(Pad)) {
1647       // Stop on cleanup pads.
1648       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1649       UnwindDests.back().first->setIsEHScopeEntry();
1650       break;
1651     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1652       // Add the catchpad handlers to the possible destinations. We don't
1653       // continue to the unwind destination of the catchswitch for wasm.
1654       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1655         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1656         UnwindDests.back().first->setIsEHScopeEntry();
1657       }
1658       break;
1659     } else {
1660       continue;
1661     }
1662   }
1663 }
1664 
1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1666 /// many places it could ultimately go. In the IR, we have a single unwind
1667 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1668 /// This function skips over imaginary basic blocks that hold catchswitch
1669 /// instructions, and finds all the "real" machine
1670 /// basic block destinations. As those destinations may not be successors of
1671 /// EHPadBB, here we also calculate the edge probability to those destinations.
1672 /// The passed-in Prob is the edge probability to EHPadBB.
1673 static void findUnwindDestinations(
1674     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1675     BranchProbability Prob,
1676     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1677         &UnwindDests) {
1678   EHPersonality Personality =
1679     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1680   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1681   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1682   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1683   bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 
1685   if (IsWasmCXX) {
1686     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1687     assert(UnwindDests.size() <= 1 &&
1688            "There should be at most one unwind destination for wasm");
1689     return;
1690   }
1691 
1692   while (EHPadBB) {
1693     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1694     BasicBlock *NewEHPadBB = nullptr;
1695     if (isa<LandingPadInst>(Pad)) {
1696       // Stop on landingpads. They are not funclets.
1697       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1698       break;
1699     } else if (isa<CleanupPadInst>(Pad)) {
1700       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1701       // personalities.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       UnwindDests.back().first->setIsEHScopeEntry();
1704       UnwindDests.back().first->setIsEHFuncletEntry();
1705       break;
1706     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1707       // Add the catchpad handlers to the possible destinations.
1708       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1709         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1710         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1711         if (IsMSVCCXX || IsCoreCLR)
1712           UnwindDests.back().first->setIsEHFuncletEntry();
1713         if (!IsSEH)
1714           UnwindDests.back().first->setIsEHScopeEntry();
1715       }
1716       NewEHPadBB = CatchSwitch->getUnwindDest();
1717     } else {
1718       continue;
1719     }
1720 
1721     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1722     if (BPI && NewEHPadBB)
1723       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1724     EHPadBB = NewEHPadBB;
1725   }
1726 }
1727 
1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1729   // Update successor info.
1730   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1731   auto UnwindDest = I.getUnwindDest();
1732   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1733   BranchProbability UnwindDestProb =
1734       (BPI && UnwindDest)
1735           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1736           : BranchProbability::getZero();
1737   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1738   for (auto &UnwindDest : UnwindDests) {
1739     UnwindDest.first->setIsEHPad();
1740     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1741   }
1742   FuncInfo.MBB->normalizeSuccProbs();
1743 
1744   // Create the terminator node.
1745   SDValue Ret =
1746       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1751   report_fatal_error("visitCatchSwitch not yet implemented!");
1752 }
1753 
1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1756   auto &DL = DAG.getDataLayout();
1757   SDValue Chain = getControlRoot();
1758   SmallVector<ISD::OutputArg, 8> Outs;
1759   SmallVector<SDValue, 8> OutVals;
1760 
1761   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1762   // lower
1763   //
1764   //   %val = call <ty> @llvm.experimental.deoptimize()
1765   //   ret <ty> %val
1766   //
1767   // differently.
1768   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1769     LowerDeoptimizingReturn();
1770     return;
1771   }
1772 
1773   if (!FuncInfo.CanLowerReturn) {
1774     unsigned DemoteReg = FuncInfo.DemoteRegister;
1775     const Function *F = I.getParent()->getParent();
1776 
1777     // Emit a store of the return value through the virtual register.
1778     // Leave Outs empty so that LowerReturn won't try to load return
1779     // registers the usual way.
1780     SmallVector<EVT, 1> PtrValueVTs;
1781     ComputeValueVTs(TLI, DL,
1782                     F->getReturnType()->getPointerTo(
1783                         DAG.getDataLayout().getAllocaAddrSpace()),
1784                     PtrValueVTs);
1785 
1786     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1787                                         DemoteReg, PtrValueVTs[0]);
1788     SDValue RetOp = getValue(I.getOperand(0));
1789 
1790     SmallVector<EVT, 4> ValueVTs;
1791     SmallVector<uint64_t, 4> Offsets;
1792     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1793     unsigned NumValues = ValueVTs.size();
1794 
1795     SmallVector<SDValue, 4> Chains(NumValues);
1796     for (unsigned i = 0; i != NumValues; ++i) {
1797       // An aggregate return value cannot wrap around the address space, so
1798       // offsets to its parts don't wrap either.
1799       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1800       Chains[i] = DAG.getStore(
1801           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1802           // FIXME: better loc info would be nice.
1803           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1804     }
1805 
1806     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1807                         MVT::Other, Chains);
1808   } else if (I.getNumOperands() != 0) {
1809     SmallVector<EVT, 4> ValueVTs;
1810     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1811     unsigned NumValues = ValueVTs.size();
1812     if (NumValues) {
1813       SDValue RetOp = getValue(I.getOperand(0));
1814 
1815       const Function *F = I.getParent()->getParent();
1816 
1817       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1818       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1819                                           Attribute::SExt))
1820         ExtendKind = ISD::SIGN_EXTEND;
1821       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1822                                                Attribute::ZExt))
1823         ExtendKind = ISD::ZERO_EXTEND;
1824 
1825       LLVMContext &Context = F->getContext();
1826       bool RetInReg = F->getAttributes().hasAttribute(
1827           AttributeList::ReturnIndex, Attribute::InReg);
1828 
1829       for (unsigned j = 0; j != NumValues; ++j) {
1830         EVT VT = ValueVTs[j];
1831 
1832         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1833           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1834 
1835         CallingConv::ID CC = F->getCallingConv();
1836 
1837         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1838         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1839         SmallVector<SDValue, 4> Parts(NumParts);
1840         getCopyToParts(DAG, getCurSDLoc(),
1841                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1842                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1843 
1844         // 'inreg' on function refers to return value
1845         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1846         if (RetInReg)
1847           Flags.setInReg();
1848 
1849         // Propagate extension type if any
1850         if (ExtendKind == ISD::SIGN_EXTEND)
1851           Flags.setSExt();
1852         else if (ExtendKind == ISD::ZERO_EXTEND)
1853           Flags.setZExt();
1854 
1855         for (unsigned i = 0; i < NumParts; ++i) {
1856           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1857                                         VT, /*isfixed=*/true, 0, 0));
1858           OutVals.push_back(Parts[i]);
1859         }
1860       }
1861     }
1862   }
1863 
1864   // Push in swifterror virtual register as the last element of Outs. This makes
1865   // sure swifterror virtual register will be returned in the swifterror
1866   // physical register.
1867   const Function *F = I.getParent()->getParent();
1868   if (TLI.supportSwiftError() &&
1869       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1870     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1871     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1872     Flags.setSwiftError();
1873     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1874                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1875                                   true /*isfixed*/, 1 /*origidx*/,
1876                                   0 /*partOffs*/));
1877     // Create SDNode for the swifterror virtual register.
1878     OutVals.push_back(
1879         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1880                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1881                         EVT(TLI.getPointerTy(DL))));
1882   }
1883 
1884   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1885   CallingConv::ID CallConv =
1886     DAG.getMachineFunction().getFunction().getCallingConv();
1887   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1888       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1889 
1890   // Verify that the target's LowerReturn behaved as expected.
1891   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1892          "LowerReturn didn't return a valid chain!");
1893 
1894   // Update the DAG with the new chain value resulting from return lowering.
1895   DAG.setRoot(Chain);
1896 }
1897 
1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1899 /// created for it, emit nodes to copy the value into the virtual
1900 /// registers.
1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1902   // Skip empty types
1903   if (V->getType()->isEmptyTy())
1904     return;
1905 
1906   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1907   if (VMI != FuncInfo.ValueMap.end()) {
1908     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1909     CopyValueToVirtualRegister(V, VMI->second);
1910   }
1911 }
1912 
1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1914 /// the current basic block, add it to ValueMap now so that we'll get a
1915 /// CopyTo/FromReg.
1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1917   // No need to export constants.
1918   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1919 
1920   // Already exported?
1921   if (FuncInfo.isExportedInst(V)) return;
1922 
1923   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1924   CopyValueToVirtualRegister(V, Reg);
1925 }
1926 
1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1928                                                      const BasicBlock *FromBB) {
1929   // The operands of the setcc have to be in this block.  We don't know
1930   // how to export them from some other block.
1931   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1932     // Can export from current BB.
1933     if (VI->getParent() == FromBB)
1934       return true;
1935 
1936     // Is already exported, noop.
1937     return FuncInfo.isExportedInst(V);
1938   }
1939 
1940   // If this is an argument, we can export it if the BB is the entry block or
1941   // if it is already exported.
1942   if (isa<Argument>(V)) {
1943     if (FromBB == &FromBB->getParent()->getEntryBlock())
1944       return true;
1945 
1946     // Otherwise, can only export this if it is already exported.
1947     return FuncInfo.isExportedInst(V);
1948   }
1949 
1950   // Otherwise, constants can always be exported.
1951   return true;
1952 }
1953 
1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1955 BranchProbability
1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1957                                         const MachineBasicBlock *Dst) const {
1958   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1959   const BasicBlock *SrcBB = Src->getBasicBlock();
1960   const BasicBlock *DstBB = Dst->getBasicBlock();
1961   if (!BPI) {
1962     // If BPI is not available, set the default probability as 1 / N, where N is
1963     // the number of successors.
1964     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1965     return BranchProbability(1, SuccSize);
1966   }
1967   return BPI->getEdgeProbability(SrcBB, DstBB);
1968 }
1969 
1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1971                                                MachineBasicBlock *Dst,
1972                                                BranchProbability Prob) {
1973   if (!FuncInfo.BPI)
1974     Src->addSuccessorWithoutProb(Dst);
1975   else {
1976     if (Prob.isUnknown())
1977       Prob = getEdgeProbability(Src, Dst);
1978     Src->addSuccessor(Dst, Prob);
1979   }
1980 }
1981 
1982 static bool InBlock(const Value *V, const BasicBlock *BB) {
1983   if (const Instruction *I = dyn_cast<Instruction>(V))
1984     return I->getParent() == BB;
1985   return true;
1986 }
1987 
1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1989 /// This function emits a branch and is used at the leaves of an OR or an
1990 /// AND operator tree.
1991 void
1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1993                                                   MachineBasicBlock *TBB,
1994                                                   MachineBasicBlock *FBB,
1995                                                   MachineBasicBlock *CurBB,
1996                                                   MachineBasicBlock *SwitchBB,
1997                                                   BranchProbability TProb,
1998                                                   BranchProbability FProb,
1999                                                   bool InvertCond) {
2000   const BasicBlock *BB = CurBB->getBasicBlock();
2001 
2002   // If the leaf of the tree is a comparison, merge the condition into
2003   // the caseblock.
2004   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2005     // The operands of the cmp have to be in this block.  We don't know
2006     // how to export them from some other block.  If this is the first block
2007     // of the sequence, no exporting is needed.
2008     if (CurBB == SwitchBB ||
2009         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2010          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2011       ISD::CondCode Condition;
2012       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2013         ICmpInst::Predicate Pred =
2014             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2015         Condition = getICmpCondCode(Pred);
2016       } else {
2017         const FCmpInst *FC = cast<FCmpInst>(Cond);
2018         FCmpInst::Predicate Pred =
2019             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2020         Condition = getFCmpCondCode(Pred);
2021         if (TM.Options.NoNaNsFPMath)
2022           Condition = getFCmpCodeWithoutNaN(Condition);
2023       }
2024 
2025       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2026                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2027       SwitchCases.push_back(CB);
2028       return;
2029     }
2030   }
2031 
2032   // Create a CaseBlock record representing this branch.
2033   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2034   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2035                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2036   SwitchCases.push_back(CB);
2037 }
2038 
2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2040                                                MachineBasicBlock *TBB,
2041                                                MachineBasicBlock *FBB,
2042                                                MachineBasicBlock *CurBB,
2043                                                MachineBasicBlock *SwitchBB,
2044                                                Instruction::BinaryOps Opc,
2045                                                BranchProbability TProb,
2046                                                BranchProbability FProb,
2047                                                bool InvertCond) {
2048   // Skip over not part of the tree and remember to invert op and operands at
2049   // next level.
2050   Value *NotCond;
2051   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2052       InBlock(NotCond, CurBB->getBasicBlock())) {
2053     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2054                          !InvertCond);
2055     return;
2056   }
2057 
2058   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2059   // Compute the effective opcode for Cond, taking into account whether it needs
2060   // to be inverted, e.g.
2061   //   and (not (or A, B)), C
2062   // gets lowered as
2063   //   and (and (not A, not B), C)
2064   unsigned BOpc = 0;
2065   if (BOp) {
2066     BOpc = BOp->getOpcode();
2067     if (InvertCond) {
2068       if (BOpc == Instruction::And)
2069         BOpc = Instruction::Or;
2070       else if (BOpc == Instruction::Or)
2071         BOpc = Instruction::And;
2072     }
2073   }
2074 
2075   // If this node is not part of the or/and tree, emit it as a branch.
2076   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2077       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2078       BOp->getParent() != CurBB->getBasicBlock() ||
2079       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2080       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2081     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2082                                  TProb, FProb, InvertCond);
2083     return;
2084   }
2085 
2086   //  Create TmpBB after CurBB.
2087   MachineFunction::iterator BBI(CurBB);
2088   MachineFunction &MF = DAG.getMachineFunction();
2089   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2090   CurBB->getParent()->insert(++BBI, TmpBB);
2091 
2092   if (Opc == Instruction::Or) {
2093     // Codegen X | Y as:
2094     // BB1:
2095     //   jmp_if_X TBB
2096     //   jmp TmpBB
2097     // TmpBB:
2098     //   jmp_if_Y TBB
2099     //   jmp FBB
2100     //
2101 
2102     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2103     // The requirement is that
2104     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2105     //     = TrueProb for original BB.
2106     // Assuming the original probabilities are A and B, one choice is to set
2107     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2108     // A/(1+B) and 2B/(1+B). This choice assumes that
2109     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2110     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2111     // TmpBB, but the math is more complicated.
2112 
2113     auto NewTrueProb = TProb / 2;
2114     auto NewFalseProb = TProb / 2 + FProb;
2115     // Emit the LHS condition.
2116     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2117                          NewTrueProb, NewFalseProb, InvertCond);
2118 
2119     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2120     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2121     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2122     // Emit the RHS condition into TmpBB.
2123     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2124                          Probs[0], Probs[1], InvertCond);
2125   } else {
2126     assert(Opc == Instruction::And && "Unknown merge op!");
2127     // Codegen X & Y as:
2128     // BB1:
2129     //   jmp_if_X TmpBB
2130     //   jmp FBB
2131     // TmpBB:
2132     //   jmp_if_Y TBB
2133     //   jmp FBB
2134     //
2135     //  This requires creation of TmpBB after CurBB.
2136 
2137     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2138     // The requirement is that
2139     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2140     //     = FalseProb for original BB.
2141     // Assuming the original probabilities are A and B, one choice is to set
2142     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2143     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2144     // TrueProb for BB1 * FalseProb for TmpBB.
2145 
2146     auto NewTrueProb = TProb + FProb / 2;
2147     auto NewFalseProb = FProb / 2;
2148     // Emit the LHS condition.
2149     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2150                          NewTrueProb, NewFalseProb, InvertCond);
2151 
2152     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2153     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2154     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2155     // Emit the RHS condition into TmpBB.
2156     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2157                          Probs[0], Probs[1], InvertCond);
2158   }
2159 }
2160 
2161 /// If the set of cases should be emitted as a series of branches, return true.
2162 /// If we should emit this as a bunch of and/or'd together conditions, return
2163 /// false.
2164 bool
2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2166   if (Cases.size() != 2) return true;
2167 
2168   // If this is two comparisons of the same values or'd or and'd together, they
2169   // will get folded into a single comparison, so don't emit two blocks.
2170   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2171        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2172       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2173        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2174     return false;
2175   }
2176 
2177   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2178   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2179   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2180       Cases[0].CC == Cases[1].CC &&
2181       isa<Constant>(Cases[0].CmpRHS) &&
2182       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2183     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2184       return false;
2185     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2186       return false;
2187   }
2188 
2189   return true;
2190 }
2191 
2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2193   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2194 
2195   // Update machine-CFG edges.
2196   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2197 
2198   if (I.isUnconditional()) {
2199     // Update machine-CFG edges.
2200     BrMBB->addSuccessor(Succ0MBB);
2201 
2202     // If this is not a fall-through branch or optimizations are switched off,
2203     // emit the branch.
2204     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2205       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2206                               MVT::Other, getControlRoot(),
2207                               DAG.getBasicBlock(Succ0MBB)));
2208 
2209     return;
2210   }
2211 
2212   // If this condition is one of the special cases we handle, do special stuff
2213   // now.
2214   const Value *CondVal = I.getCondition();
2215   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2216 
2217   // If this is a series of conditions that are or'd or and'd together, emit
2218   // this as a sequence of branches instead of setcc's with and/or operations.
2219   // As long as jumps are not expensive, this should improve performance.
2220   // For example, instead of something like:
2221   //     cmp A, B
2222   //     C = seteq
2223   //     cmp D, E
2224   //     F = setle
2225   //     or C, F
2226   //     jnz foo
2227   // Emit:
2228   //     cmp A, B
2229   //     je foo
2230   //     cmp D, E
2231   //     jle foo
2232   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2233     Instruction::BinaryOps Opcode = BOp->getOpcode();
2234     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2235         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2236         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2237       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2238                            Opcode,
2239                            getEdgeProbability(BrMBB, Succ0MBB),
2240                            getEdgeProbability(BrMBB, Succ1MBB),
2241                            /*InvertCond=*/false);
2242       // If the compares in later blocks need to use values not currently
2243       // exported from this block, export them now.  This block should always
2244       // be the first entry.
2245       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2246 
2247       // Allow some cases to be rejected.
2248       if (ShouldEmitAsBranches(SwitchCases)) {
2249         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2250           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2251           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2252         }
2253 
2254         // Emit the branch for this block.
2255         visitSwitchCase(SwitchCases[0], BrMBB);
2256         SwitchCases.erase(SwitchCases.begin());
2257         return;
2258       }
2259 
2260       // Okay, we decided not to do this, remove any inserted MBB's and clear
2261       // SwitchCases.
2262       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2263         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2264 
2265       SwitchCases.clear();
2266     }
2267   }
2268 
2269   // Create a CaseBlock record representing this branch.
2270   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2271                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2272 
2273   // Use visitSwitchCase to actually insert the fast branch sequence for this
2274   // cond branch.
2275   visitSwitchCase(CB, BrMBB);
2276 }
2277 
2278 /// visitSwitchCase - Emits the necessary code to represent a single node in
2279 /// the binary search tree resulting from lowering a switch instruction.
2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2281                                           MachineBasicBlock *SwitchBB) {
2282   SDValue Cond;
2283   SDValue CondLHS = getValue(CB.CmpLHS);
2284   SDLoc dl = CB.DL;
2285 
2286   // Build the setcc now.
2287   if (!CB.CmpMHS) {
2288     // Fold "(X == true)" to X and "(X == false)" to !X to
2289     // handle common cases produced by branch lowering.
2290     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2291         CB.CC == ISD::SETEQ)
2292       Cond = CondLHS;
2293     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2294              CB.CC == ISD::SETEQ) {
2295       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2296       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2297     } else
2298       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2299   } else {
2300     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2301 
2302     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2303     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2304 
2305     SDValue CmpOp = getValue(CB.CmpMHS);
2306     EVT VT = CmpOp.getValueType();
2307 
2308     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2309       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2310                           ISD::SETLE);
2311     } else {
2312       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2313                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2314       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2315                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2316     }
2317   }
2318 
2319   // Update successor info
2320   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2321   // TrueBB and FalseBB are always different unless the incoming IR is
2322   // degenerate. This only happens when running llc on weird IR.
2323   if (CB.TrueBB != CB.FalseBB)
2324     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2325   SwitchBB->normalizeSuccProbs();
2326 
2327   // If the lhs block is the next block, invert the condition so that we can
2328   // fall through to the lhs instead of the rhs block.
2329   if (CB.TrueBB == NextBlock(SwitchBB)) {
2330     std::swap(CB.TrueBB, CB.FalseBB);
2331     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2332     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2333   }
2334 
2335   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2336                                MVT::Other, getControlRoot(), Cond,
2337                                DAG.getBasicBlock(CB.TrueBB));
2338 
2339   // Insert the false branch. Do this even if it's a fall through branch,
2340   // this makes it easier to do DAG optimizations which require inverting
2341   // the branch condition.
2342   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2343                        DAG.getBasicBlock(CB.FalseBB));
2344 
2345   DAG.setRoot(BrCond);
2346 }
2347 
2348 /// visitJumpTable - Emit JumpTable node in the current MBB
2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2350   // Emit the code for the jump table
2351   assert(JT.Reg != -1U && "Should lower JT Header first!");
2352   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2353   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2354                                      JT.Reg, PTy);
2355   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2356   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2357                                     MVT::Other, Index.getValue(1),
2358                                     Table, Index);
2359   DAG.setRoot(BrJumpTable);
2360 }
2361 
2362 /// visitJumpTableHeader - This function emits necessary code to produce index
2363 /// in the JumpTable from switch case.
2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2365                                                JumpTableHeader &JTH,
2366                                                MachineBasicBlock *SwitchBB) {
2367   SDLoc dl = getCurSDLoc();
2368 
2369   // Subtract the lowest switch case value from the value being switched on and
2370   // conditional branch to default mbb if the result is greater than the
2371   // difference between smallest and largest cases.
2372   SDValue SwitchOp = getValue(JTH.SValue);
2373   EVT VT = SwitchOp.getValueType();
2374   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2375                             DAG.getConstant(JTH.First, dl, VT));
2376 
2377   // The SDNode we just created, which holds the value being switched on minus
2378   // the smallest case value, needs to be copied to a virtual register so it
2379   // can be used as an index into the jump table in a subsequent basic block.
2380   // This value may be smaller or larger than the target's pointer type, and
2381   // therefore require extension or truncating.
2382   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2383   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2384 
2385   unsigned JumpTableReg =
2386       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2387   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2388                                     JumpTableReg, SwitchOp);
2389   JT.Reg = JumpTableReg;
2390 
2391   // Emit the range check for the jump table, and branch to the default block
2392   // for the switch statement if the value being switched on exceeds the largest
2393   // case in the switch.
2394   SDValue CMP = DAG.getSetCC(
2395       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2396                                  Sub.getValueType()),
2397       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2398 
2399   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2400                                MVT::Other, CopyTo, CMP,
2401                                DAG.getBasicBlock(JT.Default));
2402 
2403   // Avoid emitting unnecessary branches to the next block.
2404   if (JT.MBB != NextBlock(SwitchBB))
2405     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2406                          DAG.getBasicBlock(JT.MBB));
2407 
2408   DAG.setRoot(BrCond);
2409 }
2410 
2411 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2412 /// variable if there exists one.
2413 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2414                                  SDValue &Chain) {
2415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2416   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2417   MachineFunction &MF = DAG.getMachineFunction();
2418   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2419   MachineSDNode *Node =
2420       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2421   if (Global) {
2422     MachinePointerInfo MPInfo(Global);
2423     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2424                  MachineMemOperand::MODereferenceable;
2425     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2426         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2427     DAG.setNodeMemRefs(Node, {MemRef});
2428   }
2429   return SDValue(Node, 0);
2430 }
2431 
2432 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2433 /// tail spliced into a stack protector check success bb.
2434 ///
2435 /// For a high level explanation of how this fits into the stack protector
2436 /// generation see the comment on the declaration of class
2437 /// StackProtectorDescriptor.
2438 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2439                                                   MachineBasicBlock *ParentBB) {
2440 
2441   // First create the loads to the guard/stack slot for the comparison.
2442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2443   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2444 
2445   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2446   int FI = MFI.getStackProtectorIndex();
2447 
2448   SDValue Guard;
2449   SDLoc dl = getCurSDLoc();
2450   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2451   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2452   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2453 
2454   // Generate code to load the content of the guard slot.
2455   SDValue GuardVal = DAG.getLoad(
2456       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2457       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2458       MachineMemOperand::MOVolatile);
2459 
2460   if (TLI.useStackGuardXorFP())
2461     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2462 
2463   // Retrieve guard check function, nullptr if instrumentation is inlined.
2464   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2465     // The target provides a guard check function to validate the guard value.
2466     // Generate a call to that function with the content of the guard slot as
2467     // argument.
2468     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2469     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2470 
2471     TargetLowering::ArgListTy Args;
2472     TargetLowering::ArgListEntry Entry;
2473     Entry.Node = GuardVal;
2474     Entry.Ty = FnTy->getParamType(0);
2475     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2476       Entry.IsInReg = true;
2477     Args.push_back(Entry);
2478 
2479     TargetLowering::CallLoweringInfo CLI(DAG);
2480     CLI.setDebugLoc(getCurSDLoc())
2481         .setChain(DAG.getEntryNode())
2482         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2483                    getValue(GuardCheckFn), std::move(Args));
2484 
2485     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2486     DAG.setRoot(Result.second);
2487     return;
2488   }
2489 
2490   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2491   // Otherwise, emit a volatile load to retrieve the stack guard value.
2492   SDValue Chain = DAG.getEntryNode();
2493   if (TLI.useLoadStackGuardNode()) {
2494     Guard = getLoadStackGuard(DAG, dl, Chain);
2495   } else {
2496     const Value *IRGuard = TLI.getSDagStackGuard(M);
2497     SDValue GuardPtr = getValue(IRGuard);
2498 
2499     Guard =
2500         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2501                     Align, MachineMemOperand::MOVolatile);
2502   }
2503 
2504   // Perform the comparison via a subtract/getsetcc.
2505   EVT VT = Guard.getValueType();
2506   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2507 
2508   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2509                                                         *DAG.getContext(),
2510                                                         Sub.getValueType()),
2511                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2512 
2513   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2514   // branch to failure MBB.
2515   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2516                                MVT::Other, GuardVal.getOperand(0),
2517                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2518   // Otherwise branch to success MBB.
2519   SDValue Br = DAG.getNode(ISD::BR, dl,
2520                            MVT::Other, BrCond,
2521                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2522 
2523   DAG.setRoot(Br);
2524 }
2525 
2526 /// Codegen the failure basic block for a stack protector check.
2527 ///
2528 /// A failure stack protector machine basic block consists simply of a call to
2529 /// __stack_chk_fail().
2530 ///
2531 /// For a high level explanation of how this fits into the stack protector
2532 /// generation see the comment on the declaration of class
2533 /// StackProtectorDescriptor.
2534 void
2535 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2537   SDValue Chain =
2538       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2539                       None, false, getCurSDLoc(), false, false).second;
2540   // On PS4, the "return address" must still be within the calling function,
2541   // even if it's at the very end, so emit an explicit TRAP here.
2542   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2543   if (TM.getTargetTriple().isPS4CPU())
2544     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2545 
2546   DAG.setRoot(Chain);
2547 }
2548 
2549 /// visitBitTestHeader - This function emits necessary code to produce value
2550 /// suitable for "bit tests"
2551 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2552                                              MachineBasicBlock *SwitchBB) {
2553   SDLoc dl = getCurSDLoc();
2554 
2555   // Subtract the minimum value
2556   SDValue SwitchOp = getValue(B.SValue);
2557   EVT VT = SwitchOp.getValueType();
2558   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2559                             DAG.getConstant(B.First, dl, VT));
2560 
2561   // Check range
2562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2563   SDValue RangeCmp = DAG.getSetCC(
2564       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2565                                  Sub.getValueType()),
2566       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2567 
2568   // Determine the type of the test operands.
2569   bool UsePtrType = false;
2570   if (!TLI.isTypeLegal(VT))
2571     UsePtrType = true;
2572   else {
2573     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2574       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2575         // Switch table case range are encoded into series of masks.
2576         // Just use pointer type, it's guaranteed to fit.
2577         UsePtrType = true;
2578         break;
2579       }
2580   }
2581   if (UsePtrType) {
2582     VT = TLI.getPointerTy(DAG.getDataLayout());
2583     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2584   }
2585 
2586   B.RegVT = VT.getSimpleVT();
2587   B.Reg = FuncInfo.CreateReg(B.RegVT);
2588   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2589 
2590   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2591 
2592   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2593   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2594   SwitchBB->normalizeSuccProbs();
2595 
2596   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2597                                 MVT::Other, CopyTo, RangeCmp,
2598                                 DAG.getBasicBlock(B.Default));
2599 
2600   // Avoid emitting unnecessary branches to the next block.
2601   if (MBB != NextBlock(SwitchBB))
2602     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2603                           DAG.getBasicBlock(MBB));
2604 
2605   DAG.setRoot(BrRange);
2606 }
2607 
2608 /// visitBitTestCase - this function produces one "bit test"
2609 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2610                                            MachineBasicBlock* NextMBB,
2611                                            BranchProbability BranchProbToNext,
2612                                            unsigned Reg,
2613                                            BitTestCase &B,
2614                                            MachineBasicBlock *SwitchBB) {
2615   SDLoc dl = getCurSDLoc();
2616   MVT VT = BB.RegVT;
2617   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2618   SDValue Cmp;
2619   unsigned PopCount = countPopulation(B.Mask);
2620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2621   if (PopCount == 1) {
2622     // Testing for a single bit; just compare the shift count with what it
2623     // would need to be to shift a 1 bit in that position.
2624     Cmp = DAG.getSetCC(
2625         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2626         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2627         ISD::SETEQ);
2628   } else if (PopCount == BB.Range) {
2629     // There is only one zero bit in the range, test for it directly.
2630     Cmp = DAG.getSetCC(
2631         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2632         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2633         ISD::SETNE);
2634   } else {
2635     // Make desired shift
2636     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2637                                     DAG.getConstant(1, dl, VT), ShiftOp);
2638 
2639     // Emit bit tests and jumps
2640     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2641                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2642     Cmp = DAG.getSetCC(
2643         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2644         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2645   }
2646 
2647   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2648   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2649   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2650   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2651   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2652   // one as they are relative probabilities (and thus work more like weights),
2653   // and hence we need to normalize them to let the sum of them become one.
2654   SwitchBB->normalizeSuccProbs();
2655 
2656   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2657                               MVT::Other, getControlRoot(),
2658                               Cmp, DAG.getBasicBlock(B.TargetBB));
2659 
2660   // Avoid emitting unnecessary branches to the next block.
2661   if (NextMBB != NextBlock(SwitchBB))
2662     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2663                         DAG.getBasicBlock(NextMBB));
2664 
2665   DAG.setRoot(BrAnd);
2666 }
2667 
2668 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2669   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2670 
2671   // Retrieve successors. Look through artificial IR level blocks like
2672   // catchswitch for successors.
2673   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2674   const BasicBlock *EHPadBB = I.getSuccessor(1);
2675 
2676   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2677   // have to do anything here to lower funclet bundles.
2678   assert(!I.hasOperandBundlesOtherThan(
2679              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2680          "Cannot lower invokes with arbitrary operand bundles yet!");
2681 
2682   const Value *Callee(I.getCalledValue());
2683   const Function *Fn = dyn_cast<Function>(Callee);
2684   if (isa<InlineAsm>(Callee))
2685     visitInlineAsm(&I);
2686   else if (Fn && Fn->isIntrinsic()) {
2687     switch (Fn->getIntrinsicID()) {
2688     default:
2689       llvm_unreachable("Cannot invoke this intrinsic");
2690     case Intrinsic::donothing:
2691       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2692       break;
2693     case Intrinsic::experimental_patchpoint_void:
2694     case Intrinsic::experimental_patchpoint_i64:
2695       visitPatchpoint(&I, EHPadBB);
2696       break;
2697     case Intrinsic::experimental_gc_statepoint:
2698       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2699       break;
2700     case Intrinsic::wasm_rethrow_in_catch: {
2701       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2702       // special because it can be invoked, so we manually lower it to a DAG
2703       // node here.
2704       SmallVector<SDValue, 8> Ops;
2705       Ops.push_back(getRoot()); // inchain
2706       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2707       Ops.push_back(
2708           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2709                                 TLI.getPointerTy(DAG.getDataLayout())));
2710       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2711       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2712       break;
2713     }
2714     }
2715   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2716     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2717     // Eventually we will support lowering the @llvm.experimental.deoptimize
2718     // intrinsic, and right now there are no plans to support other intrinsics
2719     // with deopt state.
2720     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2721   } else {
2722     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2723   }
2724 
2725   // If the value of the invoke is used outside of its defining block, make it
2726   // available as a virtual register.
2727   // We already took care of the exported value for the statepoint instruction
2728   // during call to the LowerStatepoint.
2729   if (!isStatepoint(I)) {
2730     CopyToExportRegsIfNeeded(&I);
2731   }
2732 
2733   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2734   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2735   BranchProbability EHPadBBProb =
2736       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2737           : BranchProbability::getZero();
2738   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2739 
2740   // Update successor info.
2741   addSuccessorWithProb(InvokeMBB, Return);
2742   for (auto &UnwindDest : UnwindDests) {
2743     UnwindDest.first->setIsEHPad();
2744     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2745   }
2746   InvokeMBB->normalizeSuccProbs();
2747 
2748   // Drop into normal successor.
2749   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2750                           DAG.getBasicBlock(Return)));
2751 }
2752 
2753 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2754   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2755 
2756   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2757   // have to do anything here to lower funclet bundles.
2758   assert(!I.hasOperandBundlesOtherThan(
2759              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2760          "Cannot lower callbrs with arbitrary operand bundles yet!");
2761 
2762   assert(isa<InlineAsm>(I.getCalledValue()) &&
2763          "Only know how to handle inlineasm callbr");
2764   visitInlineAsm(&I);
2765 
2766   // Retrieve successors.
2767   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2768 
2769   // Update successor info.
2770   addSuccessorWithProb(CallBrMBB, Return);
2771   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2772     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2773     addSuccessorWithProb(CallBrMBB, Target);
2774   }
2775   CallBrMBB->normalizeSuccProbs();
2776 
2777   // Drop into default successor.
2778   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2779                           MVT::Other, getControlRoot(),
2780                           DAG.getBasicBlock(Return)));
2781 }
2782 
2783 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2784   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2785 }
2786 
2787 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2788   assert(FuncInfo.MBB->isEHPad() &&
2789          "Call to landingpad not in landing pad!");
2790 
2791   // If there aren't registers to copy the values into (e.g., during SjLj
2792   // exceptions), then don't bother to create these DAG nodes.
2793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2794   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2795   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2796       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2797     return;
2798 
2799   // If landingpad's return type is token type, we don't create DAG nodes
2800   // for its exception pointer and selector value. The extraction of exception
2801   // pointer or selector value from token type landingpads is not currently
2802   // supported.
2803   if (LP.getType()->isTokenTy())
2804     return;
2805 
2806   SmallVector<EVT, 2> ValueVTs;
2807   SDLoc dl = getCurSDLoc();
2808   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2809   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2810 
2811   // Get the two live-in registers as SDValues. The physregs have already been
2812   // copied into virtual registers.
2813   SDValue Ops[2];
2814   if (FuncInfo.ExceptionPointerVirtReg) {
2815     Ops[0] = DAG.getZExtOrTrunc(
2816         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2817                            FuncInfo.ExceptionPointerVirtReg,
2818                            TLI.getPointerTy(DAG.getDataLayout())),
2819         dl, ValueVTs[0]);
2820   } else {
2821     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2822   }
2823   Ops[1] = DAG.getZExtOrTrunc(
2824       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2825                          FuncInfo.ExceptionSelectorVirtReg,
2826                          TLI.getPointerTy(DAG.getDataLayout())),
2827       dl, ValueVTs[1]);
2828 
2829   // Merge into one.
2830   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2831                             DAG.getVTList(ValueVTs), Ops);
2832   setValue(&LP, Res);
2833 }
2834 
2835 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2836 #ifndef NDEBUG
2837   for (const CaseCluster &CC : Clusters)
2838     assert(CC.Low == CC.High && "Input clusters must be single-case");
2839 #endif
2840 
2841   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2842     return a.Low->getValue().slt(b.Low->getValue());
2843   });
2844 
2845   // Merge adjacent clusters with the same destination.
2846   const unsigned N = Clusters.size();
2847   unsigned DstIndex = 0;
2848   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2849     CaseCluster &CC = Clusters[SrcIndex];
2850     const ConstantInt *CaseVal = CC.Low;
2851     MachineBasicBlock *Succ = CC.MBB;
2852 
2853     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2854         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2855       // If this case has the same successor and is a neighbour, merge it into
2856       // the previous cluster.
2857       Clusters[DstIndex - 1].High = CaseVal;
2858       Clusters[DstIndex - 1].Prob += CC.Prob;
2859     } else {
2860       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2861                    sizeof(Clusters[SrcIndex]));
2862     }
2863   }
2864   Clusters.resize(DstIndex);
2865 }
2866 
2867 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2868                                            MachineBasicBlock *Last) {
2869   // Update JTCases.
2870   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2871     if (JTCases[i].first.HeaderBB == First)
2872       JTCases[i].first.HeaderBB = Last;
2873 
2874   // Update BitTestCases.
2875   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2876     if (BitTestCases[i].Parent == First)
2877       BitTestCases[i].Parent = Last;
2878 }
2879 
2880 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2881   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2882 
2883   // Update machine-CFG edges with unique successors.
2884   SmallSet<BasicBlock*, 32> Done;
2885   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2886     BasicBlock *BB = I.getSuccessor(i);
2887     bool Inserted = Done.insert(BB).second;
2888     if (!Inserted)
2889         continue;
2890 
2891     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2892     addSuccessorWithProb(IndirectBrMBB, Succ);
2893   }
2894   IndirectBrMBB->normalizeSuccProbs();
2895 
2896   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2897                           MVT::Other, getControlRoot(),
2898                           getValue(I.getAddress())));
2899 }
2900 
2901 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2902   if (!DAG.getTarget().Options.TrapUnreachable)
2903     return;
2904 
2905   // We may be able to ignore unreachable behind a noreturn call.
2906   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2907     const BasicBlock &BB = *I.getParent();
2908     if (&I != &BB.front()) {
2909       BasicBlock::const_iterator PredI =
2910         std::prev(BasicBlock::const_iterator(&I));
2911       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2912         if (Call->doesNotReturn())
2913           return;
2914       }
2915     }
2916   }
2917 
2918   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2919 }
2920 
2921 void SelectionDAGBuilder::visitFSub(const User &I) {
2922   // -0.0 - X --> fneg
2923   Type *Ty = I.getType();
2924   if (isa<Constant>(I.getOperand(0)) &&
2925       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2926     SDValue Op2 = getValue(I.getOperand(1));
2927     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2928                              Op2.getValueType(), Op2));
2929     return;
2930   }
2931 
2932   visitBinary(I, ISD::FSUB);
2933 }
2934 
2935 /// Checks if the given instruction performs a vector reduction, in which case
2936 /// we have the freedom to alter the elements in the result as long as the
2937 /// reduction of them stays unchanged.
2938 static bool isVectorReductionOp(const User *I) {
2939   const Instruction *Inst = dyn_cast<Instruction>(I);
2940   if (!Inst || !Inst->getType()->isVectorTy())
2941     return false;
2942 
2943   auto OpCode = Inst->getOpcode();
2944   switch (OpCode) {
2945   case Instruction::Add:
2946   case Instruction::Mul:
2947   case Instruction::And:
2948   case Instruction::Or:
2949   case Instruction::Xor:
2950     break;
2951   case Instruction::FAdd:
2952   case Instruction::FMul:
2953     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2954       if (FPOp->getFastMathFlags().isFast())
2955         break;
2956     LLVM_FALLTHROUGH;
2957   default:
2958     return false;
2959   }
2960 
2961   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2962   // Ensure the reduction size is a power of 2.
2963   if (!isPowerOf2_32(ElemNum))
2964     return false;
2965 
2966   unsigned ElemNumToReduce = ElemNum;
2967 
2968   // Do DFS search on the def-use chain from the given instruction. We only
2969   // allow four kinds of operations during the search until we reach the
2970   // instruction that extracts the first element from the vector:
2971   //
2972   //   1. The reduction operation of the same opcode as the given instruction.
2973   //
2974   //   2. PHI node.
2975   //
2976   //   3. ShuffleVector instruction together with a reduction operation that
2977   //      does a partial reduction.
2978   //
2979   //   4. ExtractElement that extracts the first element from the vector, and we
2980   //      stop searching the def-use chain here.
2981   //
2982   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2983   // from 1-3 to the stack to continue the DFS. The given instruction is not
2984   // a reduction operation if we meet any other instructions other than those
2985   // listed above.
2986 
2987   SmallVector<const User *, 16> UsersToVisit{Inst};
2988   SmallPtrSet<const User *, 16> Visited;
2989   bool ReduxExtracted = false;
2990 
2991   while (!UsersToVisit.empty()) {
2992     auto User = UsersToVisit.back();
2993     UsersToVisit.pop_back();
2994     if (!Visited.insert(User).second)
2995       continue;
2996 
2997     for (const auto &U : User->users()) {
2998       auto Inst = dyn_cast<Instruction>(U);
2999       if (!Inst)
3000         return false;
3001 
3002       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3003         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3004           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3005             return false;
3006         UsersToVisit.push_back(U);
3007       } else if (const ShuffleVectorInst *ShufInst =
3008                      dyn_cast<ShuffleVectorInst>(U)) {
3009         // Detect the following pattern: A ShuffleVector instruction together
3010         // with a reduction that do partial reduction on the first and second
3011         // ElemNumToReduce / 2 elements, and store the result in
3012         // ElemNumToReduce / 2 elements in another vector.
3013 
3014         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3015         if (ResultElements < ElemNum)
3016           return false;
3017 
3018         if (ElemNumToReduce == 1)
3019           return false;
3020         if (!isa<UndefValue>(U->getOperand(1)))
3021           return false;
3022         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3023           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3024             return false;
3025         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3026           if (ShufInst->getMaskValue(i) != -1)
3027             return false;
3028 
3029         // There is only one user of this ShuffleVector instruction, which
3030         // must be a reduction operation.
3031         if (!U->hasOneUse())
3032           return false;
3033 
3034         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3035         if (!U2 || U2->getOpcode() != OpCode)
3036           return false;
3037 
3038         // Check operands of the reduction operation.
3039         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3040             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3041           UsersToVisit.push_back(U2);
3042           ElemNumToReduce /= 2;
3043         } else
3044           return false;
3045       } else if (isa<ExtractElementInst>(U)) {
3046         // At this moment we should have reduced all elements in the vector.
3047         if (ElemNumToReduce != 1)
3048           return false;
3049 
3050         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3051         if (!Val || !Val->isZero())
3052           return false;
3053 
3054         ReduxExtracted = true;
3055       } else
3056         return false;
3057     }
3058   }
3059   return ReduxExtracted;
3060 }
3061 
3062 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3063   SDNodeFlags Flags;
3064 
3065   SDValue Op = getValue(I.getOperand(0));
3066   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3067                                     Op, Flags);
3068   setValue(&I, UnNodeValue);
3069 }
3070 
3071 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3072   SDNodeFlags Flags;
3073   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3074     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3075     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3076   }
3077   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3078     Flags.setExact(ExactOp->isExact());
3079   }
3080   if (isVectorReductionOp(&I)) {
3081     Flags.setVectorReduction(true);
3082     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3083   }
3084 
3085   SDValue Op1 = getValue(I.getOperand(0));
3086   SDValue Op2 = getValue(I.getOperand(1));
3087   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3088                                      Op1, Op2, Flags);
3089   setValue(&I, BinNodeValue);
3090 }
3091 
3092 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3093   SDValue Op1 = getValue(I.getOperand(0));
3094   SDValue Op2 = getValue(I.getOperand(1));
3095 
3096   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3097       Op1.getValueType(), DAG.getDataLayout());
3098 
3099   // Coerce the shift amount to the right type if we can.
3100   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3101     unsigned ShiftSize = ShiftTy.getSizeInBits();
3102     unsigned Op2Size = Op2.getValueSizeInBits();
3103     SDLoc DL = getCurSDLoc();
3104 
3105     // If the operand is smaller than the shift count type, promote it.
3106     if (ShiftSize > Op2Size)
3107       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3108 
3109     // If the operand is larger than the shift count type but the shift
3110     // count type has enough bits to represent any shift value, truncate
3111     // it now. This is a common case and it exposes the truncate to
3112     // optimization early.
3113     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3114       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3115     // Otherwise we'll need to temporarily settle for some other convenient
3116     // type.  Type legalization will make adjustments once the shiftee is split.
3117     else
3118       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3119   }
3120 
3121   bool nuw = false;
3122   bool nsw = false;
3123   bool exact = false;
3124 
3125   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3126 
3127     if (const OverflowingBinaryOperator *OFBinOp =
3128             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3129       nuw = OFBinOp->hasNoUnsignedWrap();
3130       nsw = OFBinOp->hasNoSignedWrap();
3131     }
3132     if (const PossiblyExactOperator *ExactOp =
3133             dyn_cast<const PossiblyExactOperator>(&I))
3134       exact = ExactOp->isExact();
3135   }
3136   SDNodeFlags Flags;
3137   Flags.setExact(exact);
3138   Flags.setNoSignedWrap(nsw);
3139   Flags.setNoUnsignedWrap(nuw);
3140   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3141                             Flags);
3142   setValue(&I, Res);
3143 }
3144 
3145 void SelectionDAGBuilder::visitSDiv(const User &I) {
3146   SDValue Op1 = getValue(I.getOperand(0));
3147   SDValue Op2 = getValue(I.getOperand(1));
3148 
3149   SDNodeFlags Flags;
3150   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3151                  cast<PossiblyExactOperator>(&I)->isExact());
3152   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3153                            Op2, Flags));
3154 }
3155 
3156 void SelectionDAGBuilder::visitICmp(const User &I) {
3157   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3158   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3159     predicate = IC->getPredicate();
3160   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3161     predicate = ICmpInst::Predicate(IC->getPredicate());
3162   SDValue Op1 = getValue(I.getOperand(0));
3163   SDValue Op2 = getValue(I.getOperand(1));
3164   ISD::CondCode Opcode = getICmpCondCode(predicate);
3165 
3166   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3167                                                         I.getType());
3168   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3169 }
3170 
3171 void SelectionDAGBuilder::visitFCmp(const User &I) {
3172   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3173   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3174     predicate = FC->getPredicate();
3175   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3176     predicate = FCmpInst::Predicate(FC->getPredicate());
3177   SDValue Op1 = getValue(I.getOperand(0));
3178   SDValue Op2 = getValue(I.getOperand(1));
3179 
3180   ISD::CondCode Condition = getFCmpCondCode(predicate);
3181   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3182   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3183     Condition = getFCmpCodeWithoutNaN(Condition);
3184 
3185   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3186                                                         I.getType());
3187   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3188 }
3189 
3190 // Check if the condition of the select has one use or two users that are both
3191 // selects with the same condition.
3192 static bool hasOnlySelectUsers(const Value *Cond) {
3193   return llvm::all_of(Cond->users(), [](const Value *V) {
3194     return isa<SelectInst>(V);
3195   });
3196 }
3197 
3198 void SelectionDAGBuilder::visitSelect(const User &I) {
3199   SmallVector<EVT, 4> ValueVTs;
3200   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3201                   ValueVTs);
3202   unsigned NumValues = ValueVTs.size();
3203   if (NumValues == 0) return;
3204 
3205   SmallVector<SDValue, 4> Values(NumValues);
3206   SDValue Cond     = getValue(I.getOperand(0));
3207   SDValue LHSVal   = getValue(I.getOperand(1));
3208   SDValue RHSVal   = getValue(I.getOperand(2));
3209   auto BaseOps = {Cond};
3210   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3211     ISD::VSELECT : ISD::SELECT;
3212 
3213   // Min/max matching is only viable if all output VTs are the same.
3214   if (is_splat(ValueVTs)) {
3215     EVT VT = ValueVTs[0];
3216     LLVMContext &Ctx = *DAG.getContext();
3217     auto &TLI = DAG.getTargetLoweringInfo();
3218 
3219     // We care about the legality of the operation after it has been type
3220     // legalized.
3221     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3222            VT != TLI.getTypeToTransformTo(Ctx, VT))
3223       VT = TLI.getTypeToTransformTo(Ctx, VT);
3224 
3225     // If the vselect is legal, assume we want to leave this as a vector setcc +
3226     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3227     // min/max is legal on the scalar type.
3228     bool UseScalarMinMax = VT.isVector() &&
3229       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3230 
3231     Value *LHS, *RHS;
3232     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3233     ISD::NodeType Opc = ISD::DELETED_NODE;
3234     switch (SPR.Flavor) {
3235     case SPF_UMAX:    Opc = ISD::UMAX; break;
3236     case SPF_UMIN:    Opc = ISD::UMIN; break;
3237     case SPF_SMAX:    Opc = ISD::SMAX; break;
3238     case SPF_SMIN:    Opc = ISD::SMIN; break;
3239     case SPF_FMINNUM:
3240       switch (SPR.NaNBehavior) {
3241       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3242       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3243       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3244       case SPNB_RETURNS_ANY: {
3245         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3246           Opc = ISD::FMINNUM;
3247         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3248           Opc = ISD::FMINIMUM;
3249         else if (UseScalarMinMax)
3250           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3251             ISD::FMINNUM : ISD::FMINIMUM;
3252         break;
3253       }
3254       }
3255       break;
3256     case SPF_FMAXNUM:
3257       switch (SPR.NaNBehavior) {
3258       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3259       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3260       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3261       case SPNB_RETURNS_ANY:
3262 
3263         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3264           Opc = ISD::FMAXNUM;
3265         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3266           Opc = ISD::FMAXIMUM;
3267         else if (UseScalarMinMax)
3268           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3269             ISD::FMAXNUM : ISD::FMAXIMUM;
3270         break;
3271       }
3272       break;
3273     default: break;
3274     }
3275 
3276     if (Opc != ISD::DELETED_NODE &&
3277         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3278          (UseScalarMinMax &&
3279           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3280         // If the underlying comparison instruction is used by any other
3281         // instruction, the consumed instructions won't be destroyed, so it is
3282         // not profitable to convert to a min/max.
3283         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3284       OpCode = Opc;
3285       LHSVal = getValue(LHS);
3286       RHSVal = getValue(RHS);
3287       BaseOps = {};
3288     }
3289   }
3290 
3291   for (unsigned i = 0; i != NumValues; ++i) {
3292     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3293     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3294     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3295     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3296                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3297                             Ops);
3298   }
3299 
3300   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3301                            DAG.getVTList(ValueVTs), Values));
3302 }
3303 
3304 void SelectionDAGBuilder::visitTrunc(const User &I) {
3305   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3306   SDValue N = getValue(I.getOperand(0));
3307   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3308                                                         I.getType());
3309   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3310 }
3311 
3312 void SelectionDAGBuilder::visitZExt(const User &I) {
3313   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3314   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3315   SDValue N = getValue(I.getOperand(0));
3316   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3317                                                         I.getType());
3318   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3319 }
3320 
3321 void SelectionDAGBuilder::visitSExt(const User &I) {
3322   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3323   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3324   SDValue N = getValue(I.getOperand(0));
3325   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3326                                                         I.getType());
3327   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3328 }
3329 
3330 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3331   // FPTrunc is never a no-op cast, no need to check
3332   SDValue N = getValue(I.getOperand(0));
3333   SDLoc dl = getCurSDLoc();
3334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3335   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3336   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3337                            DAG.getTargetConstant(
3338                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3339 }
3340 
3341 void SelectionDAGBuilder::visitFPExt(const User &I) {
3342   // FPExt is never a no-op cast, no need to check
3343   SDValue N = getValue(I.getOperand(0));
3344   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3345                                                         I.getType());
3346   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3347 }
3348 
3349 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3350   // FPToUI is never a no-op cast, no need to check
3351   SDValue N = getValue(I.getOperand(0));
3352   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3353                                                         I.getType());
3354   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3355 }
3356 
3357 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3358   // FPToSI is never a no-op cast, no need to check
3359   SDValue N = getValue(I.getOperand(0));
3360   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3361                                                         I.getType());
3362   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3363 }
3364 
3365 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3366   // UIToFP is never a no-op cast, no need to check
3367   SDValue N = getValue(I.getOperand(0));
3368   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3369                                                         I.getType());
3370   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3371 }
3372 
3373 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3374   // SIToFP is never a no-op cast, no need to check
3375   SDValue N = getValue(I.getOperand(0));
3376   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3377                                                         I.getType());
3378   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3379 }
3380 
3381 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3382   // What to do depends on the size of the integer and the size of the pointer.
3383   // We can either truncate, zero extend, or no-op, accordingly.
3384   SDValue N = getValue(I.getOperand(0));
3385   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3386                                                         I.getType());
3387   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3388 }
3389 
3390 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3391   // What to do depends on the size of the integer and the size of the pointer.
3392   // We can either truncate, zero extend, or no-op, accordingly.
3393   SDValue N = getValue(I.getOperand(0));
3394   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3395                                                         I.getType());
3396   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3397 }
3398 
3399 void SelectionDAGBuilder::visitBitCast(const User &I) {
3400   SDValue N = getValue(I.getOperand(0));
3401   SDLoc dl = getCurSDLoc();
3402   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3403                                                         I.getType());
3404 
3405   // BitCast assures us that source and destination are the same size so this is
3406   // either a BITCAST or a no-op.
3407   if (DestVT != N.getValueType())
3408     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3409                              DestVT, N)); // convert types.
3410   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3411   // might fold any kind of constant expression to an integer constant and that
3412   // is not what we are looking for. Only recognize a bitcast of a genuine
3413   // constant integer as an opaque constant.
3414   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3415     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3416                                  /*isOpaque*/true));
3417   else
3418     setValue(&I, N);            // noop cast.
3419 }
3420 
3421 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3423   const Value *SV = I.getOperand(0);
3424   SDValue N = getValue(SV);
3425   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3426 
3427   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3428   unsigned DestAS = I.getType()->getPointerAddressSpace();
3429 
3430   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3431     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3432 
3433   setValue(&I, N);
3434 }
3435 
3436 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3437   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3438   SDValue InVec = getValue(I.getOperand(0));
3439   SDValue InVal = getValue(I.getOperand(1));
3440   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3441                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3442   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3443                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3444                            InVec, InVal, InIdx));
3445 }
3446 
3447 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3448   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3449   SDValue InVec = getValue(I.getOperand(0));
3450   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3451                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3452   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3453                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3454                            InVec, InIdx));
3455 }
3456 
3457 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3458   SDValue Src1 = getValue(I.getOperand(0));
3459   SDValue Src2 = getValue(I.getOperand(1));
3460   SDLoc DL = getCurSDLoc();
3461 
3462   SmallVector<int, 8> Mask;
3463   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3464   unsigned MaskNumElts = Mask.size();
3465 
3466   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3467   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3468   EVT SrcVT = Src1.getValueType();
3469   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3470 
3471   if (SrcNumElts == MaskNumElts) {
3472     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3473     return;
3474   }
3475 
3476   // Normalize the shuffle vector since mask and vector length don't match.
3477   if (SrcNumElts < MaskNumElts) {
3478     // Mask is longer than the source vectors. We can use concatenate vector to
3479     // make the mask and vectors lengths match.
3480 
3481     if (MaskNumElts % SrcNumElts == 0) {
3482       // Mask length is a multiple of the source vector length.
3483       // Check if the shuffle is some kind of concatenation of the input
3484       // vectors.
3485       unsigned NumConcat = MaskNumElts / SrcNumElts;
3486       bool IsConcat = true;
3487       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3488       for (unsigned i = 0; i != MaskNumElts; ++i) {
3489         int Idx = Mask[i];
3490         if (Idx < 0)
3491           continue;
3492         // Ensure the indices in each SrcVT sized piece are sequential and that
3493         // the same source is used for the whole piece.
3494         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3495             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3496              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3497           IsConcat = false;
3498           break;
3499         }
3500         // Remember which source this index came from.
3501         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3502       }
3503 
3504       // The shuffle is concatenating multiple vectors together. Just emit
3505       // a CONCAT_VECTORS operation.
3506       if (IsConcat) {
3507         SmallVector<SDValue, 8> ConcatOps;
3508         for (auto Src : ConcatSrcs) {
3509           if (Src < 0)
3510             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3511           else if (Src == 0)
3512             ConcatOps.push_back(Src1);
3513           else
3514             ConcatOps.push_back(Src2);
3515         }
3516         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3517         return;
3518       }
3519     }
3520 
3521     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3522     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3523     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3524                                     PaddedMaskNumElts);
3525 
3526     // Pad both vectors with undefs to make them the same length as the mask.
3527     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3528 
3529     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3530     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3531     MOps1[0] = Src1;
3532     MOps2[0] = Src2;
3533 
3534     Src1 = Src1.isUndef()
3535                ? DAG.getUNDEF(PaddedVT)
3536                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3537     Src2 = Src2.isUndef()
3538                ? DAG.getUNDEF(PaddedVT)
3539                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3540 
3541     // Readjust mask for new input vector length.
3542     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3543     for (unsigned i = 0; i != MaskNumElts; ++i) {
3544       int Idx = Mask[i];
3545       if (Idx >= (int)SrcNumElts)
3546         Idx -= SrcNumElts - PaddedMaskNumElts;
3547       MappedOps[i] = Idx;
3548     }
3549 
3550     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3551 
3552     // If the concatenated vector was padded, extract a subvector with the
3553     // correct number of elements.
3554     if (MaskNumElts != PaddedMaskNumElts)
3555       Result = DAG.getNode(
3556           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3557           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3558 
3559     setValue(&I, Result);
3560     return;
3561   }
3562 
3563   if (SrcNumElts > MaskNumElts) {
3564     // Analyze the access pattern of the vector to see if we can extract
3565     // two subvectors and do the shuffle.
3566     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3567     bool CanExtract = true;
3568     for (int Idx : Mask) {
3569       unsigned Input = 0;
3570       if (Idx < 0)
3571         continue;
3572 
3573       if (Idx >= (int)SrcNumElts) {
3574         Input = 1;
3575         Idx -= SrcNumElts;
3576       }
3577 
3578       // If all the indices come from the same MaskNumElts sized portion of
3579       // the sources we can use extract. Also make sure the extract wouldn't
3580       // extract past the end of the source.
3581       int NewStartIdx = alignDown(Idx, MaskNumElts);
3582       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3583           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3584         CanExtract = false;
3585       // Make sure we always update StartIdx as we use it to track if all
3586       // elements are undef.
3587       StartIdx[Input] = NewStartIdx;
3588     }
3589 
3590     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3591       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3592       return;
3593     }
3594     if (CanExtract) {
3595       // Extract appropriate subvector and generate a vector shuffle
3596       for (unsigned Input = 0; Input < 2; ++Input) {
3597         SDValue &Src = Input == 0 ? Src1 : Src2;
3598         if (StartIdx[Input] < 0)
3599           Src = DAG.getUNDEF(VT);
3600         else {
3601           Src = DAG.getNode(
3602               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3603               DAG.getConstant(StartIdx[Input], DL,
3604                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3605         }
3606       }
3607 
3608       // Calculate new mask.
3609       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3610       for (int &Idx : MappedOps) {
3611         if (Idx >= (int)SrcNumElts)
3612           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3613         else if (Idx >= 0)
3614           Idx -= StartIdx[0];
3615       }
3616 
3617       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3618       return;
3619     }
3620   }
3621 
3622   // We can't use either concat vectors or extract subvectors so fall back to
3623   // replacing the shuffle with extract and build vector.
3624   // to insert and build vector.
3625   EVT EltVT = VT.getVectorElementType();
3626   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3627   SmallVector<SDValue,8> Ops;
3628   for (int Idx : Mask) {
3629     SDValue Res;
3630 
3631     if (Idx < 0) {
3632       Res = DAG.getUNDEF(EltVT);
3633     } else {
3634       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3635       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3636 
3637       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3638                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3639     }
3640 
3641     Ops.push_back(Res);
3642   }
3643 
3644   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3645 }
3646 
3647 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3648   ArrayRef<unsigned> Indices;
3649   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3650     Indices = IV->getIndices();
3651   else
3652     Indices = cast<ConstantExpr>(&I)->getIndices();
3653 
3654   const Value *Op0 = I.getOperand(0);
3655   const Value *Op1 = I.getOperand(1);
3656   Type *AggTy = I.getType();
3657   Type *ValTy = Op1->getType();
3658   bool IntoUndef = isa<UndefValue>(Op0);
3659   bool FromUndef = isa<UndefValue>(Op1);
3660 
3661   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3662 
3663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3664   SmallVector<EVT, 4> AggValueVTs;
3665   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3666   SmallVector<EVT, 4> ValValueVTs;
3667   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3668 
3669   unsigned NumAggValues = AggValueVTs.size();
3670   unsigned NumValValues = ValValueVTs.size();
3671   SmallVector<SDValue, 4> Values(NumAggValues);
3672 
3673   // Ignore an insertvalue that produces an empty object
3674   if (!NumAggValues) {
3675     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3676     return;
3677   }
3678 
3679   SDValue Agg = getValue(Op0);
3680   unsigned i = 0;
3681   // Copy the beginning value(s) from the original aggregate.
3682   for (; i != LinearIndex; ++i)
3683     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3684                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3685   // Copy values from the inserted value(s).
3686   if (NumValValues) {
3687     SDValue Val = getValue(Op1);
3688     for (; i != LinearIndex + NumValValues; ++i)
3689       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3690                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3691   }
3692   // Copy remaining value(s) from the original aggregate.
3693   for (; i != NumAggValues; ++i)
3694     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3695                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3696 
3697   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3698                            DAG.getVTList(AggValueVTs), Values));
3699 }
3700 
3701 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3702   ArrayRef<unsigned> Indices;
3703   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3704     Indices = EV->getIndices();
3705   else
3706     Indices = cast<ConstantExpr>(&I)->getIndices();
3707 
3708   const Value *Op0 = I.getOperand(0);
3709   Type *AggTy = Op0->getType();
3710   Type *ValTy = I.getType();
3711   bool OutOfUndef = isa<UndefValue>(Op0);
3712 
3713   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3714 
3715   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3716   SmallVector<EVT, 4> ValValueVTs;
3717   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3718 
3719   unsigned NumValValues = ValValueVTs.size();
3720 
3721   // Ignore a extractvalue that produces an empty object
3722   if (!NumValValues) {
3723     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3724     return;
3725   }
3726 
3727   SmallVector<SDValue, 4> Values(NumValValues);
3728 
3729   SDValue Agg = getValue(Op0);
3730   // Copy out the selected value(s).
3731   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3732     Values[i - LinearIndex] =
3733       OutOfUndef ?
3734         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3735         SDValue(Agg.getNode(), Agg.getResNo() + i);
3736 
3737   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3738                            DAG.getVTList(ValValueVTs), Values));
3739 }
3740 
3741 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3742   Value *Op0 = I.getOperand(0);
3743   // Note that the pointer operand may be a vector of pointers. Take the scalar
3744   // element which holds a pointer.
3745   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3746   SDValue N = getValue(Op0);
3747   SDLoc dl = getCurSDLoc();
3748 
3749   // Normalize Vector GEP - all scalar operands should be converted to the
3750   // splat vector.
3751   unsigned VectorWidth = I.getType()->isVectorTy() ?
3752     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3753 
3754   if (VectorWidth && !N.getValueType().isVector()) {
3755     LLVMContext &Context = *DAG.getContext();
3756     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3757     N = DAG.getSplatBuildVector(VT, dl, N);
3758   }
3759 
3760   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3761        GTI != E; ++GTI) {
3762     const Value *Idx = GTI.getOperand();
3763     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3764       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3765       if (Field) {
3766         // N = N + Offset
3767         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3768 
3769         // In an inbounds GEP with an offset that is nonnegative even when
3770         // interpreted as signed, assume there is no unsigned overflow.
3771         SDNodeFlags Flags;
3772         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3773           Flags.setNoUnsignedWrap(true);
3774 
3775         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3776                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3777       }
3778     } else {
3779       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3780       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3781       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3782 
3783       // If this is a scalar constant or a splat vector of constants,
3784       // handle it quickly.
3785       const auto *CI = dyn_cast<ConstantInt>(Idx);
3786       if (!CI && isa<ConstantDataVector>(Idx) &&
3787           cast<ConstantDataVector>(Idx)->getSplatValue())
3788         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3789 
3790       if (CI) {
3791         if (CI->isZero())
3792           continue;
3793         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3794         LLVMContext &Context = *DAG.getContext();
3795         SDValue OffsVal = VectorWidth ?
3796           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3797           DAG.getConstant(Offs, dl, IdxTy);
3798 
3799         // In an inbouds GEP with an offset that is nonnegative even when
3800         // interpreted as signed, assume there is no unsigned overflow.
3801         SDNodeFlags Flags;
3802         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3803           Flags.setNoUnsignedWrap(true);
3804 
3805         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3806         continue;
3807       }
3808 
3809       // N = N + Idx * ElementSize;
3810       SDValue IdxN = getValue(Idx);
3811 
3812       if (!IdxN.getValueType().isVector() && VectorWidth) {
3813         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3814         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3815       }
3816 
3817       // If the index is smaller or larger than intptr_t, truncate or extend
3818       // it.
3819       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3820 
3821       // If this is a multiply by a power of two, turn it into a shl
3822       // immediately.  This is a very common case.
3823       if (ElementSize != 1) {
3824         if (ElementSize.isPowerOf2()) {
3825           unsigned Amt = ElementSize.logBase2();
3826           IdxN = DAG.getNode(ISD::SHL, dl,
3827                              N.getValueType(), IdxN,
3828                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3829         } else {
3830           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3831           IdxN = DAG.getNode(ISD::MUL, dl,
3832                              N.getValueType(), IdxN, Scale);
3833         }
3834       }
3835 
3836       N = DAG.getNode(ISD::ADD, dl,
3837                       N.getValueType(), N, IdxN);
3838     }
3839   }
3840 
3841   setValue(&I, N);
3842 }
3843 
3844 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3845   // If this is a fixed sized alloca in the entry block of the function,
3846   // allocate it statically on the stack.
3847   if (FuncInfo.StaticAllocaMap.count(&I))
3848     return;   // getValue will auto-populate this.
3849 
3850   SDLoc dl = getCurSDLoc();
3851   Type *Ty = I.getAllocatedType();
3852   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3853   auto &DL = DAG.getDataLayout();
3854   uint64_t TySize = DL.getTypeAllocSize(Ty);
3855   unsigned Align =
3856       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3857 
3858   SDValue AllocSize = getValue(I.getArraySize());
3859 
3860   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3861   if (AllocSize.getValueType() != IntPtr)
3862     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3863 
3864   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3865                           AllocSize,
3866                           DAG.getConstant(TySize, dl, IntPtr));
3867 
3868   // Handle alignment.  If the requested alignment is less than or equal to
3869   // the stack alignment, ignore it.  If the size is greater than or equal to
3870   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3871   unsigned StackAlign =
3872       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3873   if (Align <= StackAlign)
3874     Align = 0;
3875 
3876   // Round the size of the allocation up to the stack alignment size
3877   // by add SA-1 to the size. This doesn't overflow because we're computing
3878   // an address inside an alloca.
3879   SDNodeFlags Flags;
3880   Flags.setNoUnsignedWrap(true);
3881   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3882                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3883 
3884   // Mask out the low bits for alignment purposes.
3885   AllocSize =
3886       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3887                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3888 
3889   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3890   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3891   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3892   setValue(&I, DSA);
3893   DAG.setRoot(DSA.getValue(1));
3894 
3895   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3896 }
3897 
3898 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3899   if (I.isAtomic())
3900     return visitAtomicLoad(I);
3901 
3902   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3903   const Value *SV = I.getOperand(0);
3904   if (TLI.supportSwiftError()) {
3905     // Swifterror values can come from either a function parameter with
3906     // swifterror attribute or an alloca with swifterror attribute.
3907     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3908       if (Arg->hasSwiftErrorAttr())
3909         return visitLoadFromSwiftError(I);
3910     }
3911 
3912     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3913       if (Alloca->isSwiftError())
3914         return visitLoadFromSwiftError(I);
3915     }
3916   }
3917 
3918   SDValue Ptr = getValue(SV);
3919 
3920   Type *Ty = I.getType();
3921 
3922   bool isVolatile = I.isVolatile();
3923   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3924   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3925   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3926   unsigned Alignment = I.getAlignment();
3927 
3928   AAMDNodes AAInfo;
3929   I.getAAMetadata(AAInfo);
3930   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3931 
3932   SmallVector<EVT, 4> ValueVTs;
3933   SmallVector<uint64_t, 4> Offsets;
3934   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3935   unsigned NumValues = ValueVTs.size();
3936   if (NumValues == 0)
3937     return;
3938 
3939   SDValue Root;
3940   bool ConstantMemory = false;
3941   if (isVolatile || NumValues > MaxParallelChains)
3942     // Serialize volatile loads with other side effects.
3943     Root = getRoot();
3944   else if (AA &&
3945            AA->pointsToConstantMemory(MemoryLocation(
3946                SV,
3947                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3948                AAInfo))) {
3949     // Do not serialize (non-volatile) loads of constant memory with anything.
3950     Root = DAG.getEntryNode();
3951     ConstantMemory = true;
3952   } else {
3953     // Do not serialize non-volatile loads against each other.
3954     Root = DAG.getRoot();
3955   }
3956 
3957   SDLoc dl = getCurSDLoc();
3958 
3959   if (isVolatile)
3960     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3961 
3962   // An aggregate load cannot wrap around the address space, so offsets to its
3963   // parts don't wrap either.
3964   SDNodeFlags Flags;
3965   Flags.setNoUnsignedWrap(true);
3966 
3967   SmallVector<SDValue, 4> Values(NumValues);
3968   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3969   EVT PtrVT = Ptr.getValueType();
3970   unsigned ChainI = 0;
3971   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3972     // Serializing loads here may result in excessive register pressure, and
3973     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3974     // could recover a bit by hoisting nodes upward in the chain by recognizing
3975     // they are side-effect free or do not alias. The optimizer should really
3976     // avoid this case by converting large object/array copies to llvm.memcpy
3977     // (MaxParallelChains should always remain as failsafe).
3978     if (ChainI == MaxParallelChains) {
3979       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3980       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3981                                   makeArrayRef(Chains.data(), ChainI));
3982       Root = Chain;
3983       ChainI = 0;
3984     }
3985     SDValue A = DAG.getNode(ISD::ADD, dl,
3986                             PtrVT, Ptr,
3987                             DAG.getConstant(Offsets[i], dl, PtrVT),
3988                             Flags);
3989     auto MMOFlags = MachineMemOperand::MONone;
3990     if (isVolatile)
3991       MMOFlags |= MachineMemOperand::MOVolatile;
3992     if (isNonTemporal)
3993       MMOFlags |= MachineMemOperand::MONonTemporal;
3994     if (isInvariant)
3995       MMOFlags |= MachineMemOperand::MOInvariant;
3996     if (isDereferenceable)
3997       MMOFlags |= MachineMemOperand::MODereferenceable;
3998     MMOFlags |= TLI.getMMOFlags(I);
3999 
4000     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
4001                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4002                             MMOFlags, AAInfo, Ranges);
4003 
4004     Values[i] = L;
4005     Chains[ChainI] = L.getValue(1);
4006   }
4007 
4008   if (!ConstantMemory) {
4009     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4010                                 makeArrayRef(Chains.data(), ChainI));
4011     if (isVolatile)
4012       DAG.setRoot(Chain);
4013     else
4014       PendingLoads.push_back(Chain);
4015   }
4016 
4017   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4018                            DAG.getVTList(ValueVTs), Values));
4019 }
4020 
4021 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4022   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4023          "call visitStoreToSwiftError when backend supports swifterror");
4024 
4025   SmallVector<EVT, 4> ValueVTs;
4026   SmallVector<uint64_t, 4> Offsets;
4027   const Value *SrcV = I.getOperand(0);
4028   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4029                   SrcV->getType(), ValueVTs, &Offsets);
4030   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4031          "expect a single EVT for swifterror");
4032 
4033   SDValue Src = getValue(SrcV);
4034   // Create a virtual register, then update the virtual register.
4035   unsigned VReg; bool CreatedVReg;
4036   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4037   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4038   // Chain can be getRoot or getControlRoot.
4039   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4040                                       SDValue(Src.getNode(), Src.getResNo()));
4041   DAG.setRoot(CopyNode);
4042   if (CreatedVReg)
4043     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4044 }
4045 
4046 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4047   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4048          "call visitLoadFromSwiftError when backend supports swifterror");
4049 
4050   assert(!I.isVolatile() &&
4051          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4052          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4053          "Support volatile, non temporal, invariant for load_from_swift_error");
4054 
4055   const Value *SV = I.getOperand(0);
4056   Type *Ty = I.getType();
4057   AAMDNodes AAInfo;
4058   I.getAAMetadata(AAInfo);
4059   assert(
4060       (!AA ||
4061        !AA->pointsToConstantMemory(MemoryLocation(
4062            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4063            AAInfo))) &&
4064       "load_from_swift_error should not be constant memory");
4065 
4066   SmallVector<EVT, 4> ValueVTs;
4067   SmallVector<uint64_t, 4> Offsets;
4068   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4069                   ValueVTs, &Offsets);
4070   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4071          "expect a single EVT for swifterror");
4072 
4073   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4074   SDValue L = DAG.getCopyFromReg(
4075       getRoot(), getCurSDLoc(),
4076       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4077       ValueVTs[0]);
4078 
4079   setValue(&I, L);
4080 }
4081 
4082 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4083   if (I.isAtomic())
4084     return visitAtomicStore(I);
4085 
4086   const Value *SrcV = I.getOperand(0);
4087   const Value *PtrV = I.getOperand(1);
4088 
4089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4090   if (TLI.supportSwiftError()) {
4091     // Swifterror values can come from either a function parameter with
4092     // swifterror attribute or an alloca with swifterror attribute.
4093     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4094       if (Arg->hasSwiftErrorAttr())
4095         return visitStoreToSwiftError(I);
4096     }
4097 
4098     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4099       if (Alloca->isSwiftError())
4100         return visitStoreToSwiftError(I);
4101     }
4102   }
4103 
4104   SmallVector<EVT, 4> ValueVTs;
4105   SmallVector<uint64_t, 4> Offsets;
4106   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4107                   SrcV->getType(), ValueVTs, &Offsets);
4108   unsigned NumValues = ValueVTs.size();
4109   if (NumValues == 0)
4110     return;
4111 
4112   // Get the lowered operands. Note that we do this after
4113   // checking if NumResults is zero, because with zero results
4114   // the operands won't have values in the map.
4115   SDValue Src = getValue(SrcV);
4116   SDValue Ptr = getValue(PtrV);
4117 
4118   SDValue Root = getRoot();
4119   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4120   SDLoc dl = getCurSDLoc();
4121   EVT PtrVT = Ptr.getValueType();
4122   unsigned Alignment = I.getAlignment();
4123   AAMDNodes AAInfo;
4124   I.getAAMetadata(AAInfo);
4125 
4126   auto MMOFlags = MachineMemOperand::MONone;
4127   if (I.isVolatile())
4128     MMOFlags |= MachineMemOperand::MOVolatile;
4129   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4130     MMOFlags |= MachineMemOperand::MONonTemporal;
4131   MMOFlags |= TLI.getMMOFlags(I);
4132 
4133   // An aggregate load cannot wrap around the address space, so offsets to its
4134   // parts don't wrap either.
4135   SDNodeFlags Flags;
4136   Flags.setNoUnsignedWrap(true);
4137 
4138   unsigned ChainI = 0;
4139   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4140     // See visitLoad comments.
4141     if (ChainI == MaxParallelChains) {
4142       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4143                                   makeArrayRef(Chains.data(), ChainI));
4144       Root = Chain;
4145       ChainI = 0;
4146     }
4147     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4148                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4149     SDValue St = DAG.getStore(
4150         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4151         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4152     Chains[ChainI] = St;
4153   }
4154 
4155   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4156                                   makeArrayRef(Chains.data(), ChainI));
4157   DAG.setRoot(StoreNode);
4158 }
4159 
4160 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4161                                            bool IsCompressing) {
4162   SDLoc sdl = getCurSDLoc();
4163 
4164   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4165                            unsigned& Alignment) {
4166     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4167     Src0 = I.getArgOperand(0);
4168     Ptr = I.getArgOperand(1);
4169     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4170     Mask = I.getArgOperand(3);
4171   };
4172   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4173                            unsigned& Alignment) {
4174     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4175     Src0 = I.getArgOperand(0);
4176     Ptr = I.getArgOperand(1);
4177     Mask = I.getArgOperand(2);
4178     Alignment = 0;
4179   };
4180 
4181   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4182   unsigned Alignment;
4183   if (IsCompressing)
4184     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4185   else
4186     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4187 
4188   SDValue Ptr = getValue(PtrOperand);
4189   SDValue Src0 = getValue(Src0Operand);
4190   SDValue Mask = getValue(MaskOperand);
4191 
4192   EVT VT = Src0.getValueType();
4193   if (!Alignment)
4194     Alignment = DAG.getEVTAlignment(VT);
4195 
4196   AAMDNodes AAInfo;
4197   I.getAAMetadata(AAInfo);
4198 
4199   MachineMemOperand *MMO =
4200     DAG.getMachineFunction().
4201     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4202                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4203                           Alignment, AAInfo);
4204   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4205                                          MMO, false /* Truncating */,
4206                                          IsCompressing);
4207   DAG.setRoot(StoreNode);
4208   setValue(&I, StoreNode);
4209 }
4210 
4211 // Get a uniform base for the Gather/Scatter intrinsic.
4212 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4213 // We try to represent it as a base pointer + vector of indices.
4214 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4215 // The first operand of the GEP may be a single pointer or a vector of pointers
4216 // Example:
4217 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4218 //  or
4219 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4220 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4221 //
4222 // When the first GEP operand is a single pointer - it is the uniform base we
4223 // are looking for. If first operand of the GEP is a splat vector - we
4224 // extract the splat value and use it as a uniform base.
4225 // In all other cases the function returns 'false'.
4226 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4227                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4228   SelectionDAG& DAG = SDB->DAG;
4229   LLVMContext &Context = *DAG.getContext();
4230 
4231   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4232   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4233   if (!GEP)
4234     return false;
4235 
4236   const Value *GEPPtr = GEP->getPointerOperand();
4237   if (!GEPPtr->getType()->isVectorTy())
4238     Ptr = GEPPtr;
4239   else if (!(Ptr = getSplatValue(GEPPtr)))
4240     return false;
4241 
4242   unsigned FinalIndex = GEP->getNumOperands() - 1;
4243   Value *IndexVal = GEP->getOperand(FinalIndex);
4244 
4245   // Ensure all the other indices are 0.
4246   for (unsigned i = 1; i < FinalIndex; ++i) {
4247     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4248     if (!C || !C->isZero())
4249       return false;
4250   }
4251 
4252   // The operands of the GEP may be defined in another basic block.
4253   // In this case we'll not find nodes for the operands.
4254   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4255     return false;
4256 
4257   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4258   const DataLayout &DL = DAG.getDataLayout();
4259   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4260                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4261   Base = SDB->getValue(Ptr);
4262   Index = SDB->getValue(IndexVal);
4263 
4264   if (!Index.getValueType().isVector()) {
4265     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4266     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4267     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4268   }
4269   return true;
4270 }
4271 
4272 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4273   SDLoc sdl = getCurSDLoc();
4274 
4275   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4276   const Value *Ptr = I.getArgOperand(1);
4277   SDValue Src0 = getValue(I.getArgOperand(0));
4278   SDValue Mask = getValue(I.getArgOperand(3));
4279   EVT VT = Src0.getValueType();
4280   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4281   if (!Alignment)
4282     Alignment = DAG.getEVTAlignment(VT);
4283   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4284 
4285   AAMDNodes AAInfo;
4286   I.getAAMetadata(AAInfo);
4287 
4288   SDValue Base;
4289   SDValue Index;
4290   SDValue Scale;
4291   const Value *BasePtr = Ptr;
4292   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4293 
4294   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4295   MachineMemOperand *MMO = DAG.getMachineFunction().
4296     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4297                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4298                          Alignment, AAInfo);
4299   if (!UniformBase) {
4300     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4301     Index = getValue(Ptr);
4302     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4303   }
4304   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4305   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4306                                          Ops, MMO);
4307   DAG.setRoot(Scatter);
4308   setValue(&I, Scatter);
4309 }
4310 
4311 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4312   SDLoc sdl = getCurSDLoc();
4313 
4314   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4315                            unsigned& Alignment) {
4316     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4317     Ptr = I.getArgOperand(0);
4318     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4319     Mask = I.getArgOperand(2);
4320     Src0 = I.getArgOperand(3);
4321   };
4322   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4323                            unsigned& Alignment) {
4324     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4325     Ptr = I.getArgOperand(0);
4326     Alignment = 0;
4327     Mask = I.getArgOperand(1);
4328     Src0 = I.getArgOperand(2);
4329   };
4330 
4331   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4332   unsigned Alignment;
4333   if (IsExpanding)
4334     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4335   else
4336     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4337 
4338   SDValue Ptr = getValue(PtrOperand);
4339   SDValue Src0 = getValue(Src0Operand);
4340   SDValue Mask = getValue(MaskOperand);
4341 
4342   EVT VT = Src0.getValueType();
4343   if (!Alignment)
4344     Alignment = DAG.getEVTAlignment(VT);
4345 
4346   AAMDNodes AAInfo;
4347   I.getAAMetadata(AAInfo);
4348   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4349 
4350   // Do not serialize masked loads of constant memory with anything.
4351   bool AddToChain =
4352       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4353                  PtrOperand,
4354                  LocationSize::precise(
4355                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4356                  AAInfo));
4357   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4358 
4359   MachineMemOperand *MMO =
4360     DAG.getMachineFunction().
4361     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4362                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4363                           Alignment, AAInfo, Ranges);
4364 
4365   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4366                                    ISD::NON_EXTLOAD, IsExpanding);
4367   if (AddToChain)
4368     PendingLoads.push_back(Load.getValue(1));
4369   setValue(&I, Load);
4370 }
4371 
4372 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4373   SDLoc sdl = getCurSDLoc();
4374 
4375   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4376   const Value *Ptr = I.getArgOperand(0);
4377   SDValue Src0 = getValue(I.getArgOperand(3));
4378   SDValue Mask = getValue(I.getArgOperand(2));
4379 
4380   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4381   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4382   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4383   if (!Alignment)
4384     Alignment = DAG.getEVTAlignment(VT);
4385 
4386   AAMDNodes AAInfo;
4387   I.getAAMetadata(AAInfo);
4388   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4389 
4390   SDValue Root = DAG.getRoot();
4391   SDValue Base;
4392   SDValue Index;
4393   SDValue Scale;
4394   const Value *BasePtr = Ptr;
4395   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4396   bool ConstantMemory = false;
4397   if (UniformBase && AA &&
4398       AA->pointsToConstantMemory(
4399           MemoryLocation(BasePtr,
4400                          LocationSize::precise(
4401                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4402                          AAInfo))) {
4403     // Do not serialize (non-volatile) loads of constant memory with anything.
4404     Root = DAG.getEntryNode();
4405     ConstantMemory = true;
4406   }
4407 
4408   MachineMemOperand *MMO =
4409     DAG.getMachineFunction().
4410     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4411                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4412                          Alignment, AAInfo, Ranges);
4413 
4414   if (!UniformBase) {
4415     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4416     Index = getValue(Ptr);
4417     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4418   }
4419   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4420   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4421                                        Ops, MMO);
4422 
4423   SDValue OutChain = Gather.getValue(1);
4424   if (!ConstantMemory)
4425     PendingLoads.push_back(OutChain);
4426   setValue(&I, Gather);
4427 }
4428 
4429 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4430   SDLoc dl = getCurSDLoc();
4431   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4432   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4433   SyncScope::ID SSID = I.getSyncScopeID();
4434 
4435   SDValue InChain = getRoot();
4436 
4437   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4438   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4439 
4440   auto Alignment = DAG.getEVTAlignment(MemVT);
4441 
4442   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4443   if (I.isVolatile())
4444     Flags |= MachineMemOperand::MOVolatile;
4445   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4446 
4447   MachineFunction &MF = DAG.getMachineFunction();
4448   MachineMemOperand *MMO =
4449     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4450                             Flags, MemVT.getStoreSize(), Alignment,
4451                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4452                             FailureOrdering);
4453 
4454   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4455                                    dl, MemVT, VTs, InChain,
4456                                    getValue(I.getPointerOperand()),
4457                                    getValue(I.getCompareOperand()),
4458                                    getValue(I.getNewValOperand()), MMO);
4459 
4460   SDValue OutChain = L.getValue(2);
4461 
4462   setValue(&I, L);
4463   DAG.setRoot(OutChain);
4464 }
4465 
4466 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4467   SDLoc dl = getCurSDLoc();
4468   ISD::NodeType NT;
4469   switch (I.getOperation()) {
4470   default: llvm_unreachable("Unknown atomicrmw operation");
4471   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4472   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4473   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4474   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4475   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4476   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4477   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4478   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4479   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4480   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4481   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4482   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4483   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4484   }
4485   AtomicOrdering Ordering = I.getOrdering();
4486   SyncScope::ID SSID = I.getSyncScopeID();
4487 
4488   SDValue InChain = getRoot();
4489 
4490   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4491   auto Alignment = DAG.getEVTAlignment(MemVT);
4492 
4493   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4494   if (I.isVolatile())
4495     Flags |= MachineMemOperand::MOVolatile;
4496   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4497 
4498   MachineFunction &MF = DAG.getMachineFunction();
4499   MachineMemOperand *MMO =
4500     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4501                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4502                             nullptr, SSID, Ordering);
4503 
4504   SDValue L =
4505     DAG.getAtomic(NT, dl, MemVT, InChain,
4506                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4507                   MMO);
4508 
4509   SDValue OutChain = L.getValue(1);
4510 
4511   setValue(&I, L);
4512   DAG.setRoot(OutChain);
4513 }
4514 
4515 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4516   SDLoc dl = getCurSDLoc();
4517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4518   SDValue Ops[3];
4519   Ops[0] = getRoot();
4520   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4521                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4522   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4523                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4524   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4525 }
4526 
4527 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4528   SDLoc dl = getCurSDLoc();
4529   AtomicOrdering Order = I.getOrdering();
4530   SyncScope::ID SSID = I.getSyncScopeID();
4531 
4532   SDValue InChain = getRoot();
4533 
4534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4535   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4536 
4537   if (!TLI.supportsUnalignedAtomics() &&
4538       I.getAlignment() < VT.getStoreSize())
4539     report_fatal_error("Cannot generate unaligned atomic load");
4540 
4541   auto Flags = MachineMemOperand::MOLoad;
4542   if (I.isVolatile())
4543     Flags |= MachineMemOperand::MOVolatile;
4544   Flags |= TLI.getMMOFlags(I);
4545 
4546   MachineMemOperand *MMO =
4547       DAG.getMachineFunction().
4548       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4549                            Flags, VT.getStoreSize(),
4550                            I.getAlignment() ? I.getAlignment() :
4551                                               DAG.getEVTAlignment(VT),
4552                            AAMDNodes(), nullptr, SSID, Order);
4553 
4554   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4555   SDValue L =
4556       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4557                     getValue(I.getPointerOperand()), MMO);
4558 
4559   SDValue OutChain = L.getValue(1);
4560 
4561   setValue(&I, L);
4562   DAG.setRoot(OutChain);
4563 }
4564 
4565 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4566   SDLoc dl = getCurSDLoc();
4567 
4568   AtomicOrdering Ordering = I.getOrdering();
4569   SyncScope::ID SSID = I.getSyncScopeID();
4570 
4571   SDValue InChain = getRoot();
4572 
4573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4574   EVT VT =
4575       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4576 
4577   if (I.getAlignment() < VT.getStoreSize())
4578     report_fatal_error("Cannot generate unaligned atomic store");
4579 
4580   auto Flags = MachineMemOperand::MOStore;
4581   if (I.isVolatile())
4582     Flags |= MachineMemOperand::MOVolatile;
4583   Flags |= TLI.getMMOFlags(I);
4584 
4585   MachineFunction &MF = DAG.getMachineFunction();
4586   MachineMemOperand *MMO =
4587     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4588                             VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4589                             nullptr, SSID, Ordering);
4590   SDValue OutChain =
4591     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4592               getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4593               MMO);
4594 
4595 
4596   DAG.setRoot(OutChain);
4597 }
4598 
4599 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4600 /// node.
4601 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4602                                                unsigned Intrinsic) {
4603   // Ignore the callsite's attributes. A specific call site may be marked with
4604   // readnone, but the lowering code will expect the chain based on the
4605   // definition.
4606   const Function *F = I.getCalledFunction();
4607   bool HasChain = !F->doesNotAccessMemory();
4608   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4609 
4610   // Build the operand list.
4611   SmallVector<SDValue, 8> Ops;
4612   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4613     if (OnlyLoad) {
4614       // We don't need to serialize loads against other loads.
4615       Ops.push_back(DAG.getRoot());
4616     } else {
4617       Ops.push_back(getRoot());
4618     }
4619   }
4620 
4621   // Info is set by getTgtMemInstrinsic
4622   TargetLowering::IntrinsicInfo Info;
4623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4624   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4625                                                DAG.getMachineFunction(),
4626                                                Intrinsic);
4627 
4628   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4629   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4630       Info.opc == ISD::INTRINSIC_W_CHAIN)
4631     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4632                                         TLI.getPointerTy(DAG.getDataLayout())));
4633 
4634   // Add all operands of the call to the operand list.
4635   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4636     SDValue Op = getValue(I.getArgOperand(i));
4637     Ops.push_back(Op);
4638   }
4639 
4640   SmallVector<EVT, 4> ValueVTs;
4641   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4642 
4643   if (HasChain)
4644     ValueVTs.push_back(MVT::Other);
4645 
4646   SDVTList VTs = DAG.getVTList(ValueVTs);
4647 
4648   // Create the node.
4649   SDValue Result;
4650   if (IsTgtIntrinsic) {
4651     // This is target intrinsic that touches memory
4652     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4653       Ops, Info.memVT,
4654       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4655       Info.flags, Info.size);
4656   } else if (!HasChain) {
4657     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4658   } else if (!I.getType()->isVoidTy()) {
4659     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4660   } else {
4661     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4662   }
4663 
4664   if (HasChain) {
4665     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4666     if (OnlyLoad)
4667       PendingLoads.push_back(Chain);
4668     else
4669       DAG.setRoot(Chain);
4670   }
4671 
4672   if (!I.getType()->isVoidTy()) {
4673     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4674       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4675       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4676     } else
4677       Result = lowerRangeToAssertZExt(DAG, I, Result);
4678 
4679     setValue(&I, Result);
4680   }
4681 }
4682 
4683 /// GetSignificand - Get the significand and build it into a floating-point
4684 /// number with exponent of 1:
4685 ///
4686 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4687 ///
4688 /// where Op is the hexadecimal representation of floating point value.
4689 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4690   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4691                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4692   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4693                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4694   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4695 }
4696 
4697 /// GetExponent - Get the exponent:
4698 ///
4699 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4700 ///
4701 /// where Op is the hexadecimal representation of floating point value.
4702 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4703                            const TargetLowering &TLI, const SDLoc &dl) {
4704   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4705                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4706   SDValue t1 = DAG.getNode(
4707       ISD::SRL, dl, MVT::i32, t0,
4708       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4709   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4710                            DAG.getConstant(127, dl, MVT::i32));
4711   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4712 }
4713 
4714 /// getF32Constant - Get 32-bit floating point constant.
4715 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4716                               const SDLoc &dl) {
4717   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4718                            MVT::f32);
4719 }
4720 
4721 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4722                                        SelectionDAG &DAG) {
4723   // TODO: What fast-math-flags should be set on the floating-point nodes?
4724 
4725   //   IntegerPartOfX = ((int32_t)(t0);
4726   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4727 
4728   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4729   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4730   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4731 
4732   //   IntegerPartOfX <<= 23;
4733   IntegerPartOfX = DAG.getNode(
4734       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4735       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4736                                   DAG.getDataLayout())));
4737 
4738   SDValue TwoToFractionalPartOfX;
4739   if (LimitFloatPrecision <= 6) {
4740     // For floating-point precision of 6:
4741     //
4742     //   TwoToFractionalPartOfX =
4743     //     0.997535578f +
4744     //       (0.735607626f + 0.252464424f * x) * x;
4745     //
4746     // error 0.0144103317, which is 6 bits
4747     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4748                              getF32Constant(DAG, 0x3e814304, dl));
4749     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4750                              getF32Constant(DAG, 0x3f3c50c8, dl));
4751     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4752     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4753                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4754   } else if (LimitFloatPrecision <= 12) {
4755     // For floating-point precision of 12:
4756     //
4757     //   TwoToFractionalPartOfX =
4758     //     0.999892986f +
4759     //       (0.696457318f +
4760     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4761     //
4762     // error 0.000107046256, which is 13 to 14 bits
4763     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4764                              getF32Constant(DAG, 0x3da235e3, dl));
4765     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4766                              getF32Constant(DAG, 0x3e65b8f3, dl));
4767     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4768     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4769                              getF32Constant(DAG, 0x3f324b07, dl));
4770     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4771     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4772                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4773   } else { // LimitFloatPrecision <= 18
4774     // For floating-point precision of 18:
4775     //
4776     //   TwoToFractionalPartOfX =
4777     //     0.999999982f +
4778     //       (0.693148872f +
4779     //         (0.240227044f +
4780     //           (0.554906021e-1f +
4781     //             (0.961591928e-2f +
4782     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4783     // error 2.47208000*10^(-7), which is better than 18 bits
4784     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4785                              getF32Constant(DAG, 0x3924b03e, dl));
4786     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4787                              getF32Constant(DAG, 0x3ab24b87, dl));
4788     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4789     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4790                              getF32Constant(DAG, 0x3c1d8c17, dl));
4791     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4792     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4793                              getF32Constant(DAG, 0x3d634a1d, dl));
4794     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4795     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4796                              getF32Constant(DAG, 0x3e75fe14, dl));
4797     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4798     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4799                               getF32Constant(DAG, 0x3f317234, dl));
4800     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4801     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4802                                          getF32Constant(DAG, 0x3f800000, dl));
4803   }
4804 
4805   // Add the exponent into the result in integer domain.
4806   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4807   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4808                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4809 }
4810 
4811 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4812 /// limited-precision mode.
4813 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4814                          const TargetLowering &TLI) {
4815   if (Op.getValueType() == MVT::f32 &&
4816       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4817 
4818     // Put the exponent in the right bit position for later addition to the
4819     // final result:
4820     //
4821     //   #define LOG2OFe 1.4426950f
4822     //   t0 = Op * LOG2OFe
4823 
4824     // TODO: What fast-math-flags should be set here?
4825     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4826                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4827     return getLimitedPrecisionExp2(t0, dl, DAG);
4828   }
4829 
4830   // No special expansion.
4831   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4832 }
4833 
4834 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4835 /// limited-precision mode.
4836 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4837                          const TargetLowering &TLI) {
4838   // TODO: What fast-math-flags should be set on the floating-point nodes?
4839 
4840   if (Op.getValueType() == MVT::f32 &&
4841       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4842     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4843 
4844     // Scale the exponent by log(2) [0.69314718f].
4845     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4846     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4847                                         getF32Constant(DAG, 0x3f317218, dl));
4848 
4849     // Get the significand and build it into a floating-point number with
4850     // exponent of 1.
4851     SDValue X = GetSignificand(DAG, Op1, dl);
4852 
4853     SDValue LogOfMantissa;
4854     if (LimitFloatPrecision <= 6) {
4855       // For floating-point precision of 6:
4856       //
4857       //   LogofMantissa =
4858       //     -1.1609546f +
4859       //       (1.4034025f - 0.23903021f * x) * x;
4860       //
4861       // error 0.0034276066, which is better than 8 bits
4862       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4863                                getF32Constant(DAG, 0xbe74c456, dl));
4864       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4865                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4866       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4867       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4868                                   getF32Constant(DAG, 0x3f949a29, dl));
4869     } else if (LimitFloatPrecision <= 12) {
4870       // For floating-point precision of 12:
4871       //
4872       //   LogOfMantissa =
4873       //     -1.7417939f +
4874       //       (2.8212026f +
4875       //         (-1.4699568f +
4876       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4877       //
4878       // error 0.000061011436, which is 14 bits
4879       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4880                                getF32Constant(DAG, 0xbd67b6d6, dl));
4881       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4882                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4883       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4884       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4885                                getF32Constant(DAG, 0x3fbc278b, dl));
4886       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4887       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4888                                getF32Constant(DAG, 0x40348e95, dl));
4889       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4890       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4891                                   getF32Constant(DAG, 0x3fdef31a, dl));
4892     } else { // LimitFloatPrecision <= 18
4893       // For floating-point precision of 18:
4894       //
4895       //   LogOfMantissa =
4896       //     -2.1072184f +
4897       //       (4.2372794f +
4898       //         (-3.7029485f +
4899       //           (2.2781945f +
4900       //             (-0.87823314f +
4901       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4902       //
4903       // error 0.0000023660568, which is better than 18 bits
4904       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4905                                getF32Constant(DAG, 0xbc91e5ac, dl));
4906       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4907                                getF32Constant(DAG, 0x3e4350aa, dl));
4908       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4909       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4910                                getF32Constant(DAG, 0x3f60d3e3, dl));
4911       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4912       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4913                                getF32Constant(DAG, 0x4011cdf0, dl));
4914       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4915       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4916                                getF32Constant(DAG, 0x406cfd1c, dl));
4917       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4918       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4919                                getF32Constant(DAG, 0x408797cb, dl));
4920       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4921       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4922                                   getF32Constant(DAG, 0x4006dcab, dl));
4923     }
4924 
4925     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4926   }
4927 
4928   // No special expansion.
4929   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4930 }
4931 
4932 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4933 /// limited-precision mode.
4934 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4935                           const TargetLowering &TLI) {
4936   // TODO: What fast-math-flags should be set on the floating-point nodes?
4937 
4938   if (Op.getValueType() == MVT::f32 &&
4939       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4940     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4941 
4942     // Get the exponent.
4943     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4944 
4945     // Get the significand and build it into a floating-point number with
4946     // exponent of 1.
4947     SDValue X = GetSignificand(DAG, Op1, dl);
4948 
4949     // Different possible minimax approximations of significand in
4950     // floating-point for various degrees of accuracy over [1,2].
4951     SDValue Log2ofMantissa;
4952     if (LimitFloatPrecision <= 6) {
4953       // For floating-point precision of 6:
4954       //
4955       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4956       //
4957       // error 0.0049451742, which is more than 7 bits
4958       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4959                                getF32Constant(DAG, 0xbeb08fe0, dl));
4960       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4961                                getF32Constant(DAG, 0x40019463, dl));
4962       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4963       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4964                                    getF32Constant(DAG, 0x3fd6633d, dl));
4965     } else if (LimitFloatPrecision <= 12) {
4966       // For floating-point precision of 12:
4967       //
4968       //   Log2ofMantissa =
4969       //     -2.51285454f +
4970       //       (4.07009056f +
4971       //         (-2.12067489f +
4972       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4973       //
4974       // error 0.0000876136000, which is better than 13 bits
4975       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4976                                getF32Constant(DAG, 0xbda7262e, dl));
4977       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4978                                getF32Constant(DAG, 0x3f25280b, dl));
4979       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4980       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4981                                getF32Constant(DAG, 0x4007b923, dl));
4982       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4983       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4984                                getF32Constant(DAG, 0x40823e2f, dl));
4985       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4986       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4987                                    getF32Constant(DAG, 0x4020d29c, dl));
4988     } else { // LimitFloatPrecision <= 18
4989       // For floating-point precision of 18:
4990       //
4991       //   Log2ofMantissa =
4992       //     -3.0400495f +
4993       //       (6.1129976f +
4994       //         (-5.3420409f +
4995       //           (3.2865683f +
4996       //             (-1.2669343f +
4997       //               (0.27515199f -
4998       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4999       //
5000       // error 0.0000018516, which is better than 18 bits
5001       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5002                                getF32Constant(DAG, 0xbcd2769e, dl));
5003       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5004                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5005       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5006       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5007                                getF32Constant(DAG, 0x3fa22ae7, dl));
5008       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5009       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5010                                getF32Constant(DAG, 0x40525723, dl));
5011       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5012       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5013                                getF32Constant(DAG, 0x40aaf200, dl));
5014       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5015       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5016                                getF32Constant(DAG, 0x40c39dad, dl));
5017       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5018       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5019                                    getF32Constant(DAG, 0x4042902c, dl));
5020     }
5021 
5022     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5023   }
5024 
5025   // No special expansion.
5026   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5027 }
5028 
5029 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5030 /// limited-precision mode.
5031 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5032                            const TargetLowering &TLI) {
5033   // TODO: What fast-math-flags should be set on the floating-point nodes?
5034 
5035   if (Op.getValueType() == MVT::f32 &&
5036       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5037     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5038 
5039     // Scale the exponent by log10(2) [0.30102999f].
5040     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5041     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5042                                         getF32Constant(DAG, 0x3e9a209a, dl));
5043 
5044     // Get the significand and build it into a floating-point number with
5045     // exponent of 1.
5046     SDValue X = GetSignificand(DAG, Op1, dl);
5047 
5048     SDValue Log10ofMantissa;
5049     if (LimitFloatPrecision <= 6) {
5050       // For floating-point precision of 6:
5051       //
5052       //   Log10ofMantissa =
5053       //     -0.50419619f +
5054       //       (0.60948995f - 0.10380950f * x) * x;
5055       //
5056       // error 0.0014886165, which is 6 bits
5057       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5058                                getF32Constant(DAG, 0xbdd49a13, dl));
5059       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5060                                getF32Constant(DAG, 0x3f1c0789, dl));
5061       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5062       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5063                                     getF32Constant(DAG, 0x3f011300, dl));
5064     } else if (LimitFloatPrecision <= 12) {
5065       // For floating-point precision of 12:
5066       //
5067       //   Log10ofMantissa =
5068       //     -0.64831180f +
5069       //       (0.91751397f +
5070       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5071       //
5072       // error 0.00019228036, which is better than 12 bits
5073       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5074                                getF32Constant(DAG, 0x3d431f31, dl));
5075       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5076                                getF32Constant(DAG, 0x3ea21fb2, dl));
5077       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5078       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5079                                getF32Constant(DAG, 0x3f6ae232, dl));
5080       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5081       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5082                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5083     } else { // LimitFloatPrecision <= 18
5084       // For floating-point precision of 18:
5085       //
5086       //   Log10ofMantissa =
5087       //     -0.84299375f +
5088       //       (1.5327582f +
5089       //         (-1.0688956f +
5090       //           (0.49102474f +
5091       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5092       //
5093       // error 0.0000037995730, which is better than 18 bits
5094       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5095                                getF32Constant(DAG, 0x3c5d51ce, dl));
5096       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5097                                getF32Constant(DAG, 0x3e00685a, dl));
5098       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5099       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5100                                getF32Constant(DAG, 0x3efb6798, dl));
5101       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5102       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5103                                getF32Constant(DAG, 0x3f88d192, dl));
5104       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5105       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5106                                getF32Constant(DAG, 0x3fc4316c, dl));
5107       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5108       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5109                                     getF32Constant(DAG, 0x3f57ce70, dl));
5110     }
5111 
5112     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5113   }
5114 
5115   // No special expansion.
5116   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5117 }
5118 
5119 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5120 /// limited-precision mode.
5121 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5122                           const TargetLowering &TLI) {
5123   if (Op.getValueType() == MVT::f32 &&
5124       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5125     return getLimitedPrecisionExp2(Op, dl, DAG);
5126 
5127   // No special expansion.
5128   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5129 }
5130 
5131 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5132 /// limited-precision mode with x == 10.0f.
5133 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5134                          SelectionDAG &DAG, const TargetLowering &TLI) {
5135   bool IsExp10 = false;
5136   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5137       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5138     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5139       APFloat Ten(10.0f);
5140       IsExp10 = LHSC->isExactlyValue(Ten);
5141     }
5142   }
5143 
5144   // TODO: What fast-math-flags should be set on the FMUL node?
5145   if (IsExp10) {
5146     // Put the exponent in the right bit position for later addition to the
5147     // final result:
5148     //
5149     //   #define LOG2OF10 3.3219281f
5150     //   t0 = Op * LOG2OF10;
5151     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5152                              getF32Constant(DAG, 0x40549a78, dl));
5153     return getLimitedPrecisionExp2(t0, dl, DAG);
5154   }
5155 
5156   // No special expansion.
5157   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5158 }
5159 
5160 /// ExpandPowI - Expand a llvm.powi intrinsic.
5161 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5162                           SelectionDAG &DAG) {
5163   // If RHS is a constant, we can expand this out to a multiplication tree,
5164   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5165   // optimizing for size, we only want to do this if the expansion would produce
5166   // a small number of multiplies, otherwise we do the full expansion.
5167   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5168     // Get the exponent as a positive value.
5169     unsigned Val = RHSC->getSExtValue();
5170     if ((int)Val < 0) Val = -Val;
5171 
5172     // powi(x, 0) -> 1.0
5173     if (Val == 0)
5174       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5175 
5176     const Function &F = DAG.getMachineFunction().getFunction();
5177     if (!F.optForSize() ||
5178         // If optimizing for size, don't insert too many multiplies.
5179         // This inserts up to 5 multiplies.
5180         countPopulation(Val) + Log2_32(Val) < 7) {
5181       // We use the simple binary decomposition method to generate the multiply
5182       // sequence.  There are more optimal ways to do this (for example,
5183       // powi(x,15) generates one more multiply than it should), but this has
5184       // the benefit of being both really simple and much better than a libcall.
5185       SDValue Res;  // Logically starts equal to 1.0
5186       SDValue CurSquare = LHS;
5187       // TODO: Intrinsics should have fast-math-flags that propagate to these
5188       // nodes.
5189       while (Val) {
5190         if (Val & 1) {
5191           if (Res.getNode())
5192             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5193           else
5194             Res = CurSquare;  // 1.0*CurSquare.
5195         }
5196 
5197         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5198                                 CurSquare, CurSquare);
5199         Val >>= 1;
5200       }
5201 
5202       // If the original was negative, invert the result, producing 1/(x*x*x).
5203       if (RHSC->getSExtValue() < 0)
5204         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5205                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5206       return Res;
5207     }
5208   }
5209 
5210   // Otherwise, expand to a libcall.
5211   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5212 }
5213 
5214 // getUnderlyingArgReg - Find underlying register used for a truncated or
5215 // bitcasted argument.
5216 static unsigned getUnderlyingArgReg(const SDValue &N) {
5217   switch (N.getOpcode()) {
5218   case ISD::CopyFromReg:
5219     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5220   case ISD::BITCAST:
5221   case ISD::AssertZext:
5222   case ISD::AssertSext:
5223   case ISD::TRUNCATE:
5224     return getUnderlyingArgReg(N.getOperand(0));
5225   default:
5226     return 0;
5227   }
5228 }
5229 
5230 /// If the DbgValueInst is a dbg_value of a function argument, create the
5231 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5232 /// instruction selection, they will be inserted to the entry BB.
5233 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5234     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5235     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5236   const Argument *Arg = dyn_cast<Argument>(V);
5237   if (!Arg)
5238     return false;
5239 
5240   if (!IsDbgDeclare) {
5241     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5242     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5243     // the entry block.
5244     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5245     if (!IsInEntryBlock)
5246       return false;
5247 
5248     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5249     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5250     // variable that also is a param.
5251     //
5252     // Although, if we are at the top of the entry block already, we can still
5253     // emit using ArgDbgValue. This might catch some situations when the
5254     // dbg.value refers to an argument that isn't used in the entry block, so
5255     // any CopyToReg node would be optimized out and the only way to express
5256     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5257     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5258     // we should only emit as ArgDbgValue if the Variable is an argument to the
5259     // current function, and the dbg.value intrinsic is found in the entry
5260     // block.
5261     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5262         !DL->getInlinedAt();
5263     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5264     if (!IsInPrologue && !VariableIsFunctionInputArg)
5265       return false;
5266 
5267     // Here we assume that a function argument on IR level only can be used to
5268     // describe one input parameter on source level. If we for example have
5269     // source code like this
5270     //
5271     //    struct A { long x, y; };
5272     //    void foo(struct A a, long b) {
5273     //      ...
5274     //      b = a.x;
5275     //      ...
5276     //    }
5277     //
5278     // and IR like this
5279     //
5280     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5281     //  entry:
5282     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5283     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5284     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5285     //    ...
5286     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5287     //    ...
5288     //
5289     // then the last dbg.value is describing a parameter "b" using a value that
5290     // is an argument. But since we already has used %a1 to describe a parameter
5291     // we should not handle that last dbg.value here (that would result in an
5292     // incorrect hoisting of the DBG_VALUE to the function entry).
5293     // Notice that we allow one dbg.value per IR level argument, to accomodate
5294     // for the situation with fragments above.
5295     if (VariableIsFunctionInputArg) {
5296       unsigned ArgNo = Arg->getArgNo();
5297       if (ArgNo >= FuncInfo.DescribedArgs.size())
5298         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5299       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5300         return false;
5301       FuncInfo.DescribedArgs.set(ArgNo);
5302     }
5303   }
5304 
5305   MachineFunction &MF = DAG.getMachineFunction();
5306   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5307 
5308   bool IsIndirect = false;
5309   Optional<MachineOperand> Op;
5310   // Some arguments' frame index is recorded during argument lowering.
5311   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5312   if (FI != std::numeric_limits<int>::max())
5313     Op = MachineOperand::CreateFI(FI);
5314 
5315   if (!Op && N.getNode()) {
5316     unsigned Reg = getUnderlyingArgReg(N);
5317     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5318       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5319       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5320       if (PR)
5321         Reg = PR;
5322     }
5323     if (Reg) {
5324       Op = MachineOperand::CreateReg(Reg, false);
5325       IsIndirect = IsDbgDeclare;
5326     }
5327   }
5328 
5329   if (!Op && N.getNode())
5330     // Check if frame index is available.
5331     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
5332       if (FrameIndexSDNode *FINode =
5333           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5334         Op = MachineOperand::CreateFI(FINode->getIndex());
5335 
5336   if (!Op) {
5337     // Check if ValueMap has reg number.
5338     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5339     if (VMI != FuncInfo.ValueMap.end()) {
5340       const auto &TLI = DAG.getTargetLoweringInfo();
5341       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5342                        V->getType(), getABIRegCopyCC(V));
5343       if (RFV.occupiesMultipleRegs()) {
5344         unsigned Offset = 0;
5345         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5346           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5347           auto FragmentExpr = DIExpression::createFragmentExpression(
5348               Expr, Offset, RegAndSize.second);
5349           if (!FragmentExpr)
5350             continue;
5351           FuncInfo.ArgDbgValues.push_back(
5352               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5353                       Op->getReg(), Variable, *FragmentExpr));
5354           Offset += RegAndSize.second;
5355         }
5356         return true;
5357       }
5358       Op = MachineOperand::CreateReg(VMI->second, false);
5359       IsIndirect = IsDbgDeclare;
5360     }
5361   }
5362 
5363   if (!Op)
5364     return false;
5365 
5366   assert(Variable->isValidLocationForIntrinsic(DL) &&
5367          "Expected inlined-at fields to agree");
5368   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5369   FuncInfo.ArgDbgValues.push_back(
5370       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5371               *Op, Variable, Expr));
5372 
5373   return true;
5374 }
5375 
5376 /// Return the appropriate SDDbgValue based on N.
5377 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5378                                              DILocalVariable *Variable,
5379                                              DIExpression *Expr,
5380                                              const DebugLoc &dl,
5381                                              unsigned DbgSDNodeOrder) {
5382   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5383     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5384     // stack slot locations.
5385     //
5386     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5387     // debug values here after optimization:
5388     //
5389     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5390     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5391     //
5392     // Both describe the direct values of their associated variables.
5393     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5394                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5395   }
5396   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5397                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5398 }
5399 
5400 // VisualStudio defines setjmp as _setjmp
5401 #if defined(_MSC_VER) && defined(setjmp) && \
5402                          !defined(setjmp_undefined_for_msvc)
5403 #  pragma push_macro("setjmp")
5404 #  undef setjmp
5405 #  define setjmp_undefined_for_msvc
5406 #endif
5407 
5408 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5409   switch (Intrinsic) {
5410   case Intrinsic::smul_fix:
5411     return ISD::SMULFIX;
5412   case Intrinsic::umul_fix:
5413     return ISD::UMULFIX;
5414   default:
5415     llvm_unreachable("Unhandled fixed point intrinsic");
5416   }
5417 }
5418 
5419 /// Lower the call to the specified intrinsic function. If we want to emit this
5420 /// as a call to a named external function, return the name. Otherwise, lower it
5421 /// and return null.
5422 const char *
5423 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5425   SDLoc sdl = getCurSDLoc();
5426   DebugLoc dl = getCurDebugLoc();
5427   SDValue Res;
5428 
5429   switch (Intrinsic) {
5430   default:
5431     // By default, turn this into a target intrinsic node.
5432     visitTargetIntrinsic(I, Intrinsic);
5433     return nullptr;
5434   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5435   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5436   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5437   case Intrinsic::returnaddress:
5438     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5439                              TLI.getPointerTy(DAG.getDataLayout()),
5440                              getValue(I.getArgOperand(0))));
5441     return nullptr;
5442   case Intrinsic::addressofreturnaddress:
5443     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5444                              TLI.getPointerTy(DAG.getDataLayout())));
5445     return nullptr;
5446   case Intrinsic::sponentry:
5447     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5448                              TLI.getPointerTy(DAG.getDataLayout())));
5449     return nullptr;
5450   case Intrinsic::frameaddress:
5451     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5452                              TLI.getPointerTy(DAG.getDataLayout()),
5453                              getValue(I.getArgOperand(0))));
5454     return nullptr;
5455   case Intrinsic::read_register: {
5456     Value *Reg = I.getArgOperand(0);
5457     SDValue Chain = getRoot();
5458     SDValue RegName =
5459         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5460     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5461     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5462       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5463     setValue(&I, Res);
5464     DAG.setRoot(Res.getValue(1));
5465     return nullptr;
5466   }
5467   case Intrinsic::write_register: {
5468     Value *Reg = I.getArgOperand(0);
5469     Value *RegValue = I.getArgOperand(1);
5470     SDValue Chain = getRoot();
5471     SDValue RegName =
5472         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5473     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5474                             RegName, getValue(RegValue)));
5475     return nullptr;
5476   }
5477   case Intrinsic::setjmp:
5478     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5479   case Intrinsic::longjmp:
5480     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5481   case Intrinsic::memcpy: {
5482     const auto &MCI = cast<MemCpyInst>(I);
5483     SDValue Op1 = getValue(I.getArgOperand(0));
5484     SDValue Op2 = getValue(I.getArgOperand(1));
5485     SDValue Op3 = getValue(I.getArgOperand(2));
5486     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5487     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5488     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5489     unsigned Align = MinAlign(DstAlign, SrcAlign);
5490     bool isVol = MCI.isVolatile();
5491     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5492     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5493     // node.
5494     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5495                                false, isTC,
5496                                MachinePointerInfo(I.getArgOperand(0)),
5497                                MachinePointerInfo(I.getArgOperand(1)));
5498     updateDAGForMaybeTailCall(MC);
5499     return nullptr;
5500   }
5501   case Intrinsic::memset: {
5502     const auto &MSI = cast<MemSetInst>(I);
5503     SDValue Op1 = getValue(I.getArgOperand(0));
5504     SDValue Op2 = getValue(I.getArgOperand(1));
5505     SDValue Op3 = getValue(I.getArgOperand(2));
5506     // @llvm.memset defines 0 and 1 to both mean no alignment.
5507     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5508     bool isVol = MSI.isVolatile();
5509     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5510     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5511                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5512     updateDAGForMaybeTailCall(MS);
5513     return nullptr;
5514   }
5515   case Intrinsic::memmove: {
5516     const auto &MMI = cast<MemMoveInst>(I);
5517     SDValue Op1 = getValue(I.getArgOperand(0));
5518     SDValue Op2 = getValue(I.getArgOperand(1));
5519     SDValue Op3 = getValue(I.getArgOperand(2));
5520     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5521     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5522     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5523     unsigned Align = MinAlign(DstAlign, SrcAlign);
5524     bool isVol = MMI.isVolatile();
5525     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5526     // FIXME: Support passing different dest/src alignments to the memmove DAG
5527     // node.
5528     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5529                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5530                                 MachinePointerInfo(I.getArgOperand(1)));
5531     updateDAGForMaybeTailCall(MM);
5532     return nullptr;
5533   }
5534   case Intrinsic::memcpy_element_unordered_atomic: {
5535     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5536     SDValue Dst = getValue(MI.getRawDest());
5537     SDValue Src = getValue(MI.getRawSource());
5538     SDValue Length = getValue(MI.getLength());
5539 
5540     unsigned DstAlign = MI.getDestAlignment();
5541     unsigned SrcAlign = MI.getSourceAlignment();
5542     Type *LengthTy = MI.getLength()->getType();
5543     unsigned ElemSz = MI.getElementSizeInBytes();
5544     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5545     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5546                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5547                                      MachinePointerInfo(MI.getRawDest()),
5548                                      MachinePointerInfo(MI.getRawSource()));
5549     updateDAGForMaybeTailCall(MC);
5550     return nullptr;
5551   }
5552   case Intrinsic::memmove_element_unordered_atomic: {
5553     auto &MI = cast<AtomicMemMoveInst>(I);
5554     SDValue Dst = getValue(MI.getRawDest());
5555     SDValue Src = getValue(MI.getRawSource());
5556     SDValue Length = getValue(MI.getLength());
5557 
5558     unsigned DstAlign = MI.getDestAlignment();
5559     unsigned SrcAlign = MI.getSourceAlignment();
5560     Type *LengthTy = MI.getLength()->getType();
5561     unsigned ElemSz = MI.getElementSizeInBytes();
5562     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5563     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5564                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5565                                       MachinePointerInfo(MI.getRawDest()),
5566                                       MachinePointerInfo(MI.getRawSource()));
5567     updateDAGForMaybeTailCall(MC);
5568     return nullptr;
5569   }
5570   case Intrinsic::memset_element_unordered_atomic: {
5571     auto &MI = cast<AtomicMemSetInst>(I);
5572     SDValue Dst = getValue(MI.getRawDest());
5573     SDValue Val = getValue(MI.getValue());
5574     SDValue Length = getValue(MI.getLength());
5575 
5576     unsigned DstAlign = MI.getDestAlignment();
5577     Type *LengthTy = MI.getLength()->getType();
5578     unsigned ElemSz = MI.getElementSizeInBytes();
5579     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5580     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5581                                      LengthTy, ElemSz, isTC,
5582                                      MachinePointerInfo(MI.getRawDest()));
5583     updateDAGForMaybeTailCall(MC);
5584     return nullptr;
5585   }
5586   case Intrinsic::dbg_addr:
5587   case Intrinsic::dbg_declare: {
5588     const auto &DI = cast<DbgVariableIntrinsic>(I);
5589     DILocalVariable *Variable = DI.getVariable();
5590     DIExpression *Expression = DI.getExpression();
5591     dropDanglingDebugInfo(Variable, Expression);
5592     assert(Variable && "Missing variable");
5593 
5594     // Check if address has undef value.
5595     const Value *Address = DI.getVariableLocation();
5596     if (!Address || isa<UndefValue>(Address) ||
5597         (Address->use_empty() && !isa<Argument>(Address))) {
5598       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5599       return nullptr;
5600     }
5601 
5602     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5603 
5604     // Check if this variable can be described by a frame index, typically
5605     // either as a static alloca or a byval parameter.
5606     int FI = std::numeric_limits<int>::max();
5607     if (const auto *AI =
5608             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5609       if (AI->isStaticAlloca()) {
5610         auto I = FuncInfo.StaticAllocaMap.find(AI);
5611         if (I != FuncInfo.StaticAllocaMap.end())
5612           FI = I->second;
5613       }
5614     } else if (const auto *Arg = dyn_cast<Argument>(
5615                    Address->stripInBoundsConstantOffsets())) {
5616       FI = FuncInfo.getArgumentFrameIndex(Arg);
5617     }
5618 
5619     // llvm.dbg.addr is control dependent and always generates indirect
5620     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5621     // the MachineFunction variable table.
5622     if (FI != std::numeric_limits<int>::max()) {
5623       if (Intrinsic == Intrinsic::dbg_addr) {
5624         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5625             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5626         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5627       }
5628       return nullptr;
5629     }
5630 
5631     SDValue &N = NodeMap[Address];
5632     if (!N.getNode() && isa<Argument>(Address))
5633       // Check unused arguments map.
5634       N = UnusedArgNodeMap[Address];
5635     SDDbgValue *SDV;
5636     if (N.getNode()) {
5637       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5638         Address = BCI->getOperand(0);
5639       // Parameters are handled specially.
5640       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5641       if (isParameter && FINode) {
5642         // Byval parameter. We have a frame index at this point.
5643         SDV =
5644             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5645                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5646       } else if (isa<Argument>(Address)) {
5647         // Address is an argument, so try to emit its dbg value using
5648         // virtual register info from the FuncInfo.ValueMap.
5649         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5650         return nullptr;
5651       } else {
5652         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5653                               true, dl, SDNodeOrder);
5654       }
5655       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5656     } else {
5657       // If Address is an argument then try to emit its dbg value using
5658       // virtual register info from the FuncInfo.ValueMap.
5659       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5660                                     N)) {
5661         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5662       }
5663     }
5664     return nullptr;
5665   }
5666   case Intrinsic::dbg_label: {
5667     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5668     DILabel *Label = DI.getLabel();
5669     assert(Label && "Missing label");
5670 
5671     SDDbgLabel *SDV;
5672     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5673     DAG.AddDbgLabel(SDV);
5674     return nullptr;
5675   }
5676   case Intrinsic::dbg_value: {
5677     const DbgValueInst &DI = cast<DbgValueInst>(I);
5678     assert(DI.getVariable() && "Missing variable");
5679 
5680     DILocalVariable *Variable = DI.getVariable();
5681     DIExpression *Expression = DI.getExpression();
5682     dropDanglingDebugInfo(Variable, Expression);
5683     const Value *V = DI.getValue();
5684     if (!V)
5685       return nullptr;
5686 
5687     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5688         SDNodeOrder))
5689       return nullptr;
5690 
5691     // TODO: Dangling debug info will eventually either be resolved or produce
5692     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5693     // between the original dbg.value location and its resolved DBG_VALUE, which
5694     // we should ideally fill with an extra Undef DBG_VALUE.
5695 
5696     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5697     return nullptr;
5698   }
5699 
5700   case Intrinsic::eh_typeid_for: {
5701     // Find the type id for the given typeinfo.
5702     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5703     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5704     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5705     setValue(&I, Res);
5706     return nullptr;
5707   }
5708 
5709   case Intrinsic::eh_return_i32:
5710   case Intrinsic::eh_return_i64:
5711     DAG.getMachineFunction().setCallsEHReturn(true);
5712     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5713                             MVT::Other,
5714                             getControlRoot(),
5715                             getValue(I.getArgOperand(0)),
5716                             getValue(I.getArgOperand(1))));
5717     return nullptr;
5718   case Intrinsic::eh_unwind_init:
5719     DAG.getMachineFunction().setCallsUnwindInit(true);
5720     return nullptr;
5721   case Intrinsic::eh_dwarf_cfa:
5722     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5723                              TLI.getPointerTy(DAG.getDataLayout()),
5724                              getValue(I.getArgOperand(0))));
5725     return nullptr;
5726   case Intrinsic::eh_sjlj_callsite: {
5727     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5728     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5729     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5730     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5731 
5732     MMI.setCurrentCallSite(CI->getZExtValue());
5733     return nullptr;
5734   }
5735   case Intrinsic::eh_sjlj_functioncontext: {
5736     // Get and store the index of the function context.
5737     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5738     AllocaInst *FnCtx =
5739       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5740     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5741     MFI.setFunctionContextIndex(FI);
5742     return nullptr;
5743   }
5744   case Intrinsic::eh_sjlj_setjmp: {
5745     SDValue Ops[2];
5746     Ops[0] = getRoot();
5747     Ops[1] = getValue(I.getArgOperand(0));
5748     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5749                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5750     setValue(&I, Op.getValue(0));
5751     DAG.setRoot(Op.getValue(1));
5752     return nullptr;
5753   }
5754   case Intrinsic::eh_sjlj_longjmp:
5755     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5756                             getRoot(), getValue(I.getArgOperand(0))));
5757     return nullptr;
5758   case Intrinsic::eh_sjlj_setup_dispatch:
5759     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5760                             getRoot()));
5761     return nullptr;
5762   case Intrinsic::masked_gather:
5763     visitMaskedGather(I);
5764     return nullptr;
5765   case Intrinsic::masked_load:
5766     visitMaskedLoad(I);
5767     return nullptr;
5768   case Intrinsic::masked_scatter:
5769     visitMaskedScatter(I);
5770     return nullptr;
5771   case Intrinsic::masked_store:
5772     visitMaskedStore(I);
5773     return nullptr;
5774   case Intrinsic::masked_expandload:
5775     visitMaskedLoad(I, true /* IsExpanding */);
5776     return nullptr;
5777   case Intrinsic::masked_compressstore:
5778     visitMaskedStore(I, true /* IsCompressing */);
5779     return nullptr;
5780   case Intrinsic::x86_mmx_pslli_w:
5781   case Intrinsic::x86_mmx_pslli_d:
5782   case Intrinsic::x86_mmx_pslli_q:
5783   case Intrinsic::x86_mmx_psrli_w:
5784   case Intrinsic::x86_mmx_psrli_d:
5785   case Intrinsic::x86_mmx_psrli_q:
5786   case Intrinsic::x86_mmx_psrai_w:
5787   case Intrinsic::x86_mmx_psrai_d: {
5788     SDValue ShAmt = getValue(I.getArgOperand(1));
5789     if (isa<ConstantSDNode>(ShAmt)) {
5790       visitTargetIntrinsic(I, Intrinsic);
5791       return nullptr;
5792     }
5793     unsigned NewIntrinsic = 0;
5794     EVT ShAmtVT = MVT::v2i32;
5795     switch (Intrinsic) {
5796     case Intrinsic::x86_mmx_pslli_w:
5797       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5798       break;
5799     case Intrinsic::x86_mmx_pslli_d:
5800       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5801       break;
5802     case Intrinsic::x86_mmx_pslli_q:
5803       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5804       break;
5805     case Intrinsic::x86_mmx_psrli_w:
5806       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5807       break;
5808     case Intrinsic::x86_mmx_psrli_d:
5809       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5810       break;
5811     case Intrinsic::x86_mmx_psrli_q:
5812       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5813       break;
5814     case Intrinsic::x86_mmx_psrai_w:
5815       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5816       break;
5817     case Intrinsic::x86_mmx_psrai_d:
5818       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5819       break;
5820     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5821     }
5822 
5823     // The vector shift intrinsics with scalars uses 32b shift amounts but
5824     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5825     // to be zero.
5826     // We must do this early because v2i32 is not a legal type.
5827     SDValue ShOps[2];
5828     ShOps[0] = ShAmt;
5829     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5830     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5831     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5832     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5833     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5834                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5835                        getValue(I.getArgOperand(0)), ShAmt);
5836     setValue(&I, Res);
5837     return nullptr;
5838   }
5839   case Intrinsic::powi:
5840     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5841                             getValue(I.getArgOperand(1)), DAG));
5842     return nullptr;
5843   case Intrinsic::log:
5844     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5845     return nullptr;
5846   case Intrinsic::log2:
5847     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5848     return nullptr;
5849   case Intrinsic::log10:
5850     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5851     return nullptr;
5852   case Intrinsic::exp:
5853     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5854     return nullptr;
5855   case Intrinsic::exp2:
5856     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5857     return nullptr;
5858   case Intrinsic::pow:
5859     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5860                            getValue(I.getArgOperand(1)), DAG, TLI));
5861     return nullptr;
5862   case Intrinsic::sqrt:
5863   case Intrinsic::fabs:
5864   case Intrinsic::sin:
5865   case Intrinsic::cos:
5866   case Intrinsic::floor:
5867   case Intrinsic::ceil:
5868   case Intrinsic::trunc:
5869   case Intrinsic::rint:
5870   case Intrinsic::nearbyint:
5871   case Intrinsic::round:
5872   case Intrinsic::canonicalize: {
5873     unsigned Opcode;
5874     switch (Intrinsic) {
5875     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5876     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5877     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5878     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5879     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5880     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5881     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5882     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5883     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5884     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5885     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5886     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5887     }
5888 
5889     setValue(&I, DAG.getNode(Opcode, sdl,
5890                              getValue(I.getArgOperand(0)).getValueType(),
5891                              getValue(I.getArgOperand(0))));
5892     return nullptr;
5893   }
5894   case Intrinsic::minnum: {
5895     auto VT = getValue(I.getArgOperand(0)).getValueType();
5896     unsigned Opc =
5897         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5898             ? ISD::FMINIMUM
5899             : ISD::FMINNUM;
5900     setValue(&I, DAG.getNode(Opc, sdl, VT,
5901                              getValue(I.getArgOperand(0)),
5902                              getValue(I.getArgOperand(1))));
5903     return nullptr;
5904   }
5905   case Intrinsic::maxnum: {
5906     auto VT = getValue(I.getArgOperand(0)).getValueType();
5907     unsigned Opc =
5908         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5909             ? ISD::FMAXIMUM
5910             : ISD::FMAXNUM;
5911     setValue(&I, DAG.getNode(Opc, sdl, VT,
5912                              getValue(I.getArgOperand(0)),
5913                              getValue(I.getArgOperand(1))));
5914     return nullptr;
5915   }
5916   case Intrinsic::minimum:
5917     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5918                              getValue(I.getArgOperand(0)).getValueType(),
5919                              getValue(I.getArgOperand(0)),
5920                              getValue(I.getArgOperand(1))));
5921     return nullptr;
5922   case Intrinsic::maximum:
5923     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5924                              getValue(I.getArgOperand(0)).getValueType(),
5925                              getValue(I.getArgOperand(0)),
5926                              getValue(I.getArgOperand(1))));
5927     return nullptr;
5928   case Intrinsic::copysign:
5929     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5930                              getValue(I.getArgOperand(0)).getValueType(),
5931                              getValue(I.getArgOperand(0)),
5932                              getValue(I.getArgOperand(1))));
5933     return nullptr;
5934   case Intrinsic::fma:
5935     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5936                              getValue(I.getArgOperand(0)).getValueType(),
5937                              getValue(I.getArgOperand(0)),
5938                              getValue(I.getArgOperand(1)),
5939                              getValue(I.getArgOperand(2))));
5940     return nullptr;
5941   case Intrinsic::experimental_constrained_fadd:
5942   case Intrinsic::experimental_constrained_fsub:
5943   case Intrinsic::experimental_constrained_fmul:
5944   case Intrinsic::experimental_constrained_fdiv:
5945   case Intrinsic::experimental_constrained_frem:
5946   case Intrinsic::experimental_constrained_fma:
5947   case Intrinsic::experimental_constrained_sqrt:
5948   case Intrinsic::experimental_constrained_pow:
5949   case Intrinsic::experimental_constrained_powi:
5950   case Intrinsic::experimental_constrained_sin:
5951   case Intrinsic::experimental_constrained_cos:
5952   case Intrinsic::experimental_constrained_exp:
5953   case Intrinsic::experimental_constrained_exp2:
5954   case Intrinsic::experimental_constrained_log:
5955   case Intrinsic::experimental_constrained_log10:
5956   case Intrinsic::experimental_constrained_log2:
5957   case Intrinsic::experimental_constrained_rint:
5958   case Intrinsic::experimental_constrained_nearbyint:
5959   case Intrinsic::experimental_constrained_maxnum:
5960   case Intrinsic::experimental_constrained_minnum:
5961   case Intrinsic::experimental_constrained_ceil:
5962   case Intrinsic::experimental_constrained_floor:
5963   case Intrinsic::experimental_constrained_round:
5964   case Intrinsic::experimental_constrained_trunc:
5965     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5966     return nullptr;
5967   case Intrinsic::fmuladd: {
5968     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5969     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5970         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5971       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5972                                getValue(I.getArgOperand(0)).getValueType(),
5973                                getValue(I.getArgOperand(0)),
5974                                getValue(I.getArgOperand(1)),
5975                                getValue(I.getArgOperand(2))));
5976     } else {
5977       // TODO: Intrinsic calls should have fast-math-flags.
5978       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5979                                 getValue(I.getArgOperand(0)).getValueType(),
5980                                 getValue(I.getArgOperand(0)),
5981                                 getValue(I.getArgOperand(1)));
5982       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5983                                 getValue(I.getArgOperand(0)).getValueType(),
5984                                 Mul,
5985                                 getValue(I.getArgOperand(2)));
5986       setValue(&I, Add);
5987     }
5988     return nullptr;
5989   }
5990   case Intrinsic::convert_to_fp16:
5991     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5992                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5993                                          getValue(I.getArgOperand(0)),
5994                                          DAG.getTargetConstant(0, sdl,
5995                                                                MVT::i32))));
5996     return nullptr;
5997   case Intrinsic::convert_from_fp16:
5998     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5999                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6000                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6001                                          getValue(I.getArgOperand(0)))));
6002     return nullptr;
6003   case Intrinsic::pcmarker: {
6004     SDValue Tmp = getValue(I.getArgOperand(0));
6005     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6006     return nullptr;
6007   }
6008   case Intrinsic::readcyclecounter: {
6009     SDValue Op = getRoot();
6010     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6011                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6012     setValue(&I, Res);
6013     DAG.setRoot(Res.getValue(1));
6014     return nullptr;
6015   }
6016   case Intrinsic::bitreverse:
6017     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6018                              getValue(I.getArgOperand(0)).getValueType(),
6019                              getValue(I.getArgOperand(0))));
6020     return nullptr;
6021   case Intrinsic::bswap:
6022     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6023                              getValue(I.getArgOperand(0)).getValueType(),
6024                              getValue(I.getArgOperand(0))));
6025     return nullptr;
6026   case Intrinsic::cttz: {
6027     SDValue Arg = getValue(I.getArgOperand(0));
6028     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6029     EVT Ty = Arg.getValueType();
6030     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6031                              sdl, Ty, Arg));
6032     return nullptr;
6033   }
6034   case Intrinsic::ctlz: {
6035     SDValue Arg = getValue(I.getArgOperand(0));
6036     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6037     EVT Ty = Arg.getValueType();
6038     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6039                              sdl, Ty, Arg));
6040     return nullptr;
6041   }
6042   case Intrinsic::ctpop: {
6043     SDValue Arg = getValue(I.getArgOperand(0));
6044     EVT Ty = Arg.getValueType();
6045     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6046     return nullptr;
6047   }
6048   case Intrinsic::fshl:
6049   case Intrinsic::fshr: {
6050     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6051     SDValue X = getValue(I.getArgOperand(0));
6052     SDValue Y = getValue(I.getArgOperand(1));
6053     SDValue Z = getValue(I.getArgOperand(2));
6054     EVT VT = X.getValueType();
6055     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6056     SDValue Zero = DAG.getConstant(0, sdl, VT);
6057     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6058 
6059     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6060     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6061       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6062       return nullptr;
6063     }
6064 
6065     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6066     // avoid the select that is necessary in the general case to filter out
6067     // the 0-shift possibility that leads to UB.
6068     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6069       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6070       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6071         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6072         return nullptr;
6073       }
6074 
6075       // Some targets only rotate one way. Try the opposite direction.
6076       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6077       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6078         // Negate the shift amount because it is safe to ignore the high bits.
6079         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6080         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6081         return nullptr;
6082       }
6083 
6084       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6085       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6086       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6087       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6088       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6089       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6090       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6091       return nullptr;
6092     }
6093 
6094     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6095     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6096     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6097     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6098     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6099     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6100 
6101     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6102     // and that is undefined. We must compare and select to avoid UB.
6103     EVT CCVT = MVT::i1;
6104     if (VT.isVector())
6105       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6106 
6107     // For fshl, 0-shift returns the 1st arg (X).
6108     // For fshr, 0-shift returns the 2nd arg (Y).
6109     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6110     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6111     return nullptr;
6112   }
6113   case Intrinsic::sadd_sat: {
6114     SDValue Op1 = getValue(I.getArgOperand(0));
6115     SDValue Op2 = getValue(I.getArgOperand(1));
6116     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6117     return nullptr;
6118   }
6119   case Intrinsic::uadd_sat: {
6120     SDValue Op1 = getValue(I.getArgOperand(0));
6121     SDValue Op2 = getValue(I.getArgOperand(1));
6122     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6123     return nullptr;
6124   }
6125   case Intrinsic::ssub_sat: {
6126     SDValue Op1 = getValue(I.getArgOperand(0));
6127     SDValue Op2 = getValue(I.getArgOperand(1));
6128     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6129     return nullptr;
6130   }
6131   case Intrinsic::usub_sat: {
6132     SDValue Op1 = getValue(I.getArgOperand(0));
6133     SDValue Op2 = getValue(I.getArgOperand(1));
6134     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6135     return nullptr;
6136   }
6137   case Intrinsic::smul_fix:
6138   case Intrinsic::umul_fix: {
6139     SDValue Op1 = getValue(I.getArgOperand(0));
6140     SDValue Op2 = getValue(I.getArgOperand(1));
6141     SDValue Op3 = getValue(I.getArgOperand(2));
6142     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6143                              Op1.getValueType(), Op1, Op2, Op3));
6144     return nullptr;
6145   }
6146   case Intrinsic::stacksave: {
6147     SDValue Op = getRoot();
6148     Res = DAG.getNode(
6149         ISD::STACKSAVE, sdl,
6150         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6151     setValue(&I, Res);
6152     DAG.setRoot(Res.getValue(1));
6153     return nullptr;
6154   }
6155   case Intrinsic::stackrestore:
6156     Res = getValue(I.getArgOperand(0));
6157     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6158     return nullptr;
6159   case Intrinsic::get_dynamic_area_offset: {
6160     SDValue Op = getRoot();
6161     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6162     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6163     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6164     // target.
6165     if (PtrTy != ResTy)
6166       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6167                          " intrinsic!");
6168     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6169                       Op);
6170     DAG.setRoot(Op);
6171     setValue(&I, Res);
6172     return nullptr;
6173   }
6174   case Intrinsic::stackguard: {
6175     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6176     MachineFunction &MF = DAG.getMachineFunction();
6177     const Module &M = *MF.getFunction().getParent();
6178     SDValue Chain = getRoot();
6179     if (TLI.useLoadStackGuardNode()) {
6180       Res = getLoadStackGuard(DAG, sdl, Chain);
6181     } else {
6182       const Value *Global = TLI.getSDagStackGuard(M);
6183       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6184       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6185                         MachinePointerInfo(Global, 0), Align,
6186                         MachineMemOperand::MOVolatile);
6187     }
6188     if (TLI.useStackGuardXorFP())
6189       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6190     DAG.setRoot(Chain);
6191     setValue(&I, Res);
6192     return nullptr;
6193   }
6194   case Intrinsic::stackprotector: {
6195     // Emit code into the DAG to store the stack guard onto the stack.
6196     MachineFunction &MF = DAG.getMachineFunction();
6197     MachineFrameInfo &MFI = MF.getFrameInfo();
6198     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6199     SDValue Src, Chain = getRoot();
6200 
6201     if (TLI.useLoadStackGuardNode())
6202       Src = getLoadStackGuard(DAG, sdl, Chain);
6203     else
6204       Src = getValue(I.getArgOperand(0));   // The guard's value.
6205 
6206     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6207 
6208     int FI = FuncInfo.StaticAllocaMap[Slot];
6209     MFI.setStackProtectorIndex(FI);
6210 
6211     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6212 
6213     // Store the stack protector onto the stack.
6214     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6215                                                  DAG.getMachineFunction(), FI),
6216                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6217     setValue(&I, Res);
6218     DAG.setRoot(Res);
6219     return nullptr;
6220   }
6221   case Intrinsic::objectsize: {
6222     // If we don't know by now, we're never going to know.
6223     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6224 
6225     assert(CI && "Non-constant type in __builtin_object_size?");
6226 
6227     SDValue Arg = getValue(I.getCalledValue());
6228     EVT Ty = Arg.getValueType();
6229 
6230     if (CI->isZero())
6231       Res = DAG.getConstant(-1ULL, sdl, Ty);
6232     else
6233       Res = DAG.getConstant(0, sdl, Ty);
6234 
6235     setValue(&I, Res);
6236     return nullptr;
6237   }
6238 
6239   case Intrinsic::is_constant:
6240     // If this wasn't constant-folded away by now, then it's not a
6241     // constant.
6242     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6243     return nullptr;
6244 
6245   case Intrinsic::annotation:
6246   case Intrinsic::ptr_annotation:
6247   case Intrinsic::launder_invariant_group:
6248   case Intrinsic::strip_invariant_group:
6249     // Drop the intrinsic, but forward the value
6250     setValue(&I, getValue(I.getOperand(0)));
6251     return nullptr;
6252   case Intrinsic::assume:
6253   case Intrinsic::var_annotation:
6254   case Intrinsic::sideeffect:
6255     // Discard annotate attributes, assumptions, and artificial side-effects.
6256     return nullptr;
6257 
6258   case Intrinsic::codeview_annotation: {
6259     // Emit a label associated with this metadata.
6260     MachineFunction &MF = DAG.getMachineFunction();
6261     MCSymbol *Label =
6262         MF.getMMI().getContext().createTempSymbol("annotation", true);
6263     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6264     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6265     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6266     DAG.setRoot(Res);
6267     return nullptr;
6268   }
6269 
6270   case Intrinsic::init_trampoline: {
6271     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6272 
6273     SDValue Ops[6];
6274     Ops[0] = getRoot();
6275     Ops[1] = getValue(I.getArgOperand(0));
6276     Ops[2] = getValue(I.getArgOperand(1));
6277     Ops[3] = getValue(I.getArgOperand(2));
6278     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6279     Ops[5] = DAG.getSrcValue(F);
6280 
6281     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6282 
6283     DAG.setRoot(Res);
6284     return nullptr;
6285   }
6286   case Intrinsic::adjust_trampoline:
6287     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6288                              TLI.getPointerTy(DAG.getDataLayout()),
6289                              getValue(I.getArgOperand(0))));
6290     return nullptr;
6291   case Intrinsic::gcroot: {
6292     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6293            "only valid in functions with gc specified, enforced by Verifier");
6294     assert(GFI && "implied by previous");
6295     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6296     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6297 
6298     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6299     GFI->addStackRoot(FI->getIndex(), TypeMap);
6300     return nullptr;
6301   }
6302   case Intrinsic::gcread:
6303   case Intrinsic::gcwrite:
6304     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6305   case Intrinsic::flt_rounds:
6306     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6307     return nullptr;
6308 
6309   case Intrinsic::expect:
6310     // Just replace __builtin_expect(exp, c) with EXP.
6311     setValue(&I, getValue(I.getArgOperand(0)));
6312     return nullptr;
6313 
6314   case Intrinsic::debugtrap:
6315   case Intrinsic::trap: {
6316     StringRef TrapFuncName =
6317         I.getAttributes()
6318             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6319             .getValueAsString();
6320     if (TrapFuncName.empty()) {
6321       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6322         ISD::TRAP : ISD::DEBUGTRAP;
6323       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6324       return nullptr;
6325     }
6326     TargetLowering::ArgListTy Args;
6327 
6328     TargetLowering::CallLoweringInfo CLI(DAG);
6329     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6330         CallingConv::C, I.getType(),
6331         DAG.getExternalSymbol(TrapFuncName.data(),
6332                               TLI.getPointerTy(DAG.getDataLayout())),
6333         std::move(Args));
6334 
6335     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6336     DAG.setRoot(Result.second);
6337     return nullptr;
6338   }
6339 
6340   case Intrinsic::uadd_with_overflow:
6341   case Intrinsic::sadd_with_overflow:
6342   case Intrinsic::usub_with_overflow:
6343   case Intrinsic::ssub_with_overflow:
6344   case Intrinsic::umul_with_overflow:
6345   case Intrinsic::smul_with_overflow: {
6346     ISD::NodeType Op;
6347     switch (Intrinsic) {
6348     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6349     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6350     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6351     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6352     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6353     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6354     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6355     }
6356     SDValue Op1 = getValue(I.getArgOperand(0));
6357     SDValue Op2 = getValue(I.getArgOperand(1));
6358 
6359     EVT ResultVT = Op1.getValueType();
6360     EVT OverflowVT = MVT::i1;
6361     if (ResultVT.isVector())
6362       OverflowVT = EVT::getVectorVT(
6363           *Context, OverflowVT, ResultVT.getVectorNumElements());
6364 
6365     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6366     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6367     return nullptr;
6368   }
6369   case Intrinsic::prefetch: {
6370     SDValue Ops[5];
6371     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6372     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6373     Ops[0] = DAG.getRoot();
6374     Ops[1] = getValue(I.getArgOperand(0));
6375     Ops[2] = getValue(I.getArgOperand(1));
6376     Ops[3] = getValue(I.getArgOperand(2));
6377     Ops[4] = getValue(I.getArgOperand(3));
6378     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6379                                              DAG.getVTList(MVT::Other), Ops,
6380                                              EVT::getIntegerVT(*Context, 8),
6381                                              MachinePointerInfo(I.getArgOperand(0)),
6382                                              0, /* align */
6383                                              Flags);
6384 
6385     // Chain the prefetch in parallell with any pending loads, to stay out of
6386     // the way of later optimizations.
6387     PendingLoads.push_back(Result);
6388     Result = getRoot();
6389     DAG.setRoot(Result);
6390     return nullptr;
6391   }
6392   case Intrinsic::lifetime_start:
6393   case Intrinsic::lifetime_end: {
6394     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6395     // Stack coloring is not enabled in O0, discard region information.
6396     if (TM.getOptLevel() == CodeGenOpt::None)
6397       return nullptr;
6398 
6399     const int64_t ObjectSize =
6400         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6401     Value *const ObjectPtr = I.getArgOperand(1);
6402     SmallVector<Value *, 4> Allocas;
6403     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6404 
6405     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6406            E = Allocas.end(); Object != E; ++Object) {
6407       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6408 
6409       // Could not find an Alloca.
6410       if (!LifetimeObject)
6411         continue;
6412 
6413       // First check that the Alloca is static, otherwise it won't have a
6414       // valid frame index.
6415       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6416       if (SI == FuncInfo.StaticAllocaMap.end())
6417         return nullptr;
6418 
6419       const int FrameIndex = SI->second;
6420       int64_t Offset;
6421       if (GetPointerBaseWithConstantOffset(
6422               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6423         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6424       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6425                                 Offset);
6426       DAG.setRoot(Res);
6427     }
6428     return nullptr;
6429   }
6430   case Intrinsic::invariant_start:
6431     // Discard region information.
6432     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6433     return nullptr;
6434   case Intrinsic::invariant_end:
6435     // Discard region information.
6436     return nullptr;
6437   case Intrinsic::clear_cache:
6438     return TLI.getClearCacheBuiltinName();
6439   case Intrinsic::donothing:
6440     // ignore
6441     return nullptr;
6442   case Intrinsic::experimental_stackmap:
6443     visitStackmap(I);
6444     return nullptr;
6445   case Intrinsic::experimental_patchpoint_void:
6446   case Intrinsic::experimental_patchpoint_i64:
6447     visitPatchpoint(&I);
6448     return nullptr;
6449   case Intrinsic::experimental_gc_statepoint:
6450     LowerStatepoint(ImmutableStatepoint(&I));
6451     return nullptr;
6452   case Intrinsic::experimental_gc_result:
6453     visitGCResult(cast<GCResultInst>(I));
6454     return nullptr;
6455   case Intrinsic::experimental_gc_relocate:
6456     visitGCRelocate(cast<GCRelocateInst>(I));
6457     return nullptr;
6458   case Intrinsic::instrprof_increment:
6459     llvm_unreachable("instrprof failed to lower an increment");
6460   case Intrinsic::instrprof_value_profile:
6461     llvm_unreachable("instrprof failed to lower a value profiling call");
6462   case Intrinsic::localescape: {
6463     MachineFunction &MF = DAG.getMachineFunction();
6464     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6465 
6466     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6467     // is the same on all targets.
6468     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6469       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6470       if (isa<ConstantPointerNull>(Arg))
6471         continue; // Skip null pointers. They represent a hole in index space.
6472       AllocaInst *Slot = cast<AllocaInst>(Arg);
6473       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6474              "can only escape static allocas");
6475       int FI = FuncInfo.StaticAllocaMap[Slot];
6476       MCSymbol *FrameAllocSym =
6477           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6478               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6479       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6480               TII->get(TargetOpcode::LOCAL_ESCAPE))
6481           .addSym(FrameAllocSym)
6482           .addFrameIndex(FI);
6483     }
6484 
6485     return nullptr;
6486   }
6487 
6488   case Intrinsic::localrecover: {
6489     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6490     MachineFunction &MF = DAG.getMachineFunction();
6491     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6492 
6493     // Get the symbol that defines the frame offset.
6494     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6495     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6496     unsigned IdxVal =
6497         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6498     MCSymbol *FrameAllocSym =
6499         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6500             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6501 
6502     // Create a MCSymbol for the label to avoid any target lowering
6503     // that would make this PC relative.
6504     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6505     SDValue OffsetVal =
6506         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6507 
6508     // Add the offset to the FP.
6509     Value *FP = I.getArgOperand(1);
6510     SDValue FPVal = getValue(FP);
6511     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6512     setValue(&I, Add);
6513 
6514     return nullptr;
6515   }
6516 
6517   case Intrinsic::eh_exceptionpointer:
6518   case Intrinsic::eh_exceptioncode: {
6519     // Get the exception pointer vreg, copy from it, and resize it to fit.
6520     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6521     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6522     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6523     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6524     SDValue N =
6525         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6526     if (Intrinsic == Intrinsic::eh_exceptioncode)
6527       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6528     setValue(&I, N);
6529     return nullptr;
6530   }
6531   case Intrinsic::xray_customevent: {
6532     // Here we want to make sure that the intrinsic behaves as if it has a
6533     // specific calling convention, and only for x86_64.
6534     // FIXME: Support other platforms later.
6535     const auto &Triple = DAG.getTarget().getTargetTriple();
6536     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6537       return nullptr;
6538 
6539     SDLoc DL = getCurSDLoc();
6540     SmallVector<SDValue, 8> Ops;
6541 
6542     // We want to say that we always want the arguments in registers.
6543     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6544     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6545     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6546     SDValue Chain = getRoot();
6547     Ops.push_back(LogEntryVal);
6548     Ops.push_back(StrSizeVal);
6549     Ops.push_back(Chain);
6550 
6551     // We need to enforce the calling convention for the callsite, so that
6552     // argument ordering is enforced correctly, and that register allocation can
6553     // see that some registers may be assumed clobbered and have to preserve
6554     // them across calls to the intrinsic.
6555     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6556                                            DL, NodeTys, Ops);
6557     SDValue patchableNode = SDValue(MN, 0);
6558     DAG.setRoot(patchableNode);
6559     setValue(&I, patchableNode);
6560     return nullptr;
6561   }
6562   case Intrinsic::xray_typedevent: {
6563     // Here we want to make sure that the intrinsic behaves as if it has a
6564     // specific calling convention, and only for x86_64.
6565     // FIXME: Support other platforms later.
6566     const auto &Triple = DAG.getTarget().getTargetTriple();
6567     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6568       return nullptr;
6569 
6570     SDLoc DL = getCurSDLoc();
6571     SmallVector<SDValue, 8> Ops;
6572 
6573     // We want to say that we always want the arguments in registers.
6574     // It's unclear to me how manipulating the selection DAG here forces callers
6575     // to provide arguments in registers instead of on the stack.
6576     SDValue LogTypeId = getValue(I.getArgOperand(0));
6577     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6578     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6579     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6580     SDValue Chain = getRoot();
6581     Ops.push_back(LogTypeId);
6582     Ops.push_back(LogEntryVal);
6583     Ops.push_back(StrSizeVal);
6584     Ops.push_back(Chain);
6585 
6586     // We need to enforce the calling convention for the callsite, so that
6587     // argument ordering is enforced correctly, and that register allocation can
6588     // see that some registers may be assumed clobbered and have to preserve
6589     // them across calls to the intrinsic.
6590     MachineSDNode *MN = DAG.getMachineNode(
6591         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6592     SDValue patchableNode = SDValue(MN, 0);
6593     DAG.setRoot(patchableNode);
6594     setValue(&I, patchableNode);
6595     return nullptr;
6596   }
6597   case Intrinsic::experimental_deoptimize:
6598     LowerDeoptimizeCall(&I);
6599     return nullptr;
6600 
6601   case Intrinsic::experimental_vector_reduce_fadd:
6602   case Intrinsic::experimental_vector_reduce_fmul:
6603   case Intrinsic::experimental_vector_reduce_add:
6604   case Intrinsic::experimental_vector_reduce_mul:
6605   case Intrinsic::experimental_vector_reduce_and:
6606   case Intrinsic::experimental_vector_reduce_or:
6607   case Intrinsic::experimental_vector_reduce_xor:
6608   case Intrinsic::experimental_vector_reduce_smax:
6609   case Intrinsic::experimental_vector_reduce_smin:
6610   case Intrinsic::experimental_vector_reduce_umax:
6611   case Intrinsic::experimental_vector_reduce_umin:
6612   case Intrinsic::experimental_vector_reduce_fmax:
6613   case Intrinsic::experimental_vector_reduce_fmin:
6614     visitVectorReduce(I, Intrinsic);
6615     return nullptr;
6616 
6617   case Intrinsic::icall_branch_funnel: {
6618     SmallVector<SDValue, 16> Ops;
6619     Ops.push_back(DAG.getRoot());
6620     Ops.push_back(getValue(I.getArgOperand(0)));
6621 
6622     int64_t Offset;
6623     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6624         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6625     if (!Base)
6626       report_fatal_error(
6627           "llvm.icall.branch.funnel operand must be a GlobalValue");
6628     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6629 
6630     struct BranchFunnelTarget {
6631       int64_t Offset;
6632       SDValue Target;
6633     };
6634     SmallVector<BranchFunnelTarget, 8> Targets;
6635 
6636     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6637       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6638           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6639       if (ElemBase != Base)
6640         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6641                            "to the same GlobalValue");
6642 
6643       SDValue Val = getValue(I.getArgOperand(Op + 1));
6644       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6645       if (!GA)
6646         report_fatal_error(
6647             "llvm.icall.branch.funnel operand must be a GlobalValue");
6648       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6649                                      GA->getGlobal(), getCurSDLoc(),
6650                                      Val.getValueType(), GA->getOffset())});
6651     }
6652     llvm::sort(Targets,
6653                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6654                  return T1.Offset < T2.Offset;
6655                });
6656 
6657     for (auto &T : Targets) {
6658       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6659       Ops.push_back(T.Target);
6660     }
6661 
6662     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6663                                  getCurSDLoc(), MVT::Other, Ops),
6664               0);
6665     DAG.setRoot(N);
6666     setValue(&I, N);
6667     HasTailCall = true;
6668     return nullptr;
6669   }
6670 
6671   case Intrinsic::wasm_landingpad_index:
6672     // Information this intrinsic contained has been transferred to
6673     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6674     // delete it now.
6675     return nullptr;
6676   }
6677 }
6678 
6679 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6680     const ConstrainedFPIntrinsic &FPI) {
6681   SDLoc sdl = getCurSDLoc();
6682   unsigned Opcode;
6683   switch (FPI.getIntrinsicID()) {
6684   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6685   case Intrinsic::experimental_constrained_fadd:
6686     Opcode = ISD::STRICT_FADD;
6687     break;
6688   case Intrinsic::experimental_constrained_fsub:
6689     Opcode = ISD::STRICT_FSUB;
6690     break;
6691   case Intrinsic::experimental_constrained_fmul:
6692     Opcode = ISD::STRICT_FMUL;
6693     break;
6694   case Intrinsic::experimental_constrained_fdiv:
6695     Opcode = ISD::STRICT_FDIV;
6696     break;
6697   case Intrinsic::experimental_constrained_frem:
6698     Opcode = ISD::STRICT_FREM;
6699     break;
6700   case Intrinsic::experimental_constrained_fma:
6701     Opcode = ISD::STRICT_FMA;
6702     break;
6703   case Intrinsic::experimental_constrained_sqrt:
6704     Opcode = ISD::STRICT_FSQRT;
6705     break;
6706   case Intrinsic::experimental_constrained_pow:
6707     Opcode = ISD::STRICT_FPOW;
6708     break;
6709   case Intrinsic::experimental_constrained_powi:
6710     Opcode = ISD::STRICT_FPOWI;
6711     break;
6712   case Intrinsic::experimental_constrained_sin:
6713     Opcode = ISD::STRICT_FSIN;
6714     break;
6715   case Intrinsic::experimental_constrained_cos:
6716     Opcode = ISD::STRICT_FCOS;
6717     break;
6718   case Intrinsic::experimental_constrained_exp:
6719     Opcode = ISD::STRICT_FEXP;
6720     break;
6721   case Intrinsic::experimental_constrained_exp2:
6722     Opcode = ISD::STRICT_FEXP2;
6723     break;
6724   case Intrinsic::experimental_constrained_log:
6725     Opcode = ISD::STRICT_FLOG;
6726     break;
6727   case Intrinsic::experimental_constrained_log10:
6728     Opcode = ISD::STRICT_FLOG10;
6729     break;
6730   case Intrinsic::experimental_constrained_log2:
6731     Opcode = ISD::STRICT_FLOG2;
6732     break;
6733   case Intrinsic::experimental_constrained_rint:
6734     Opcode = ISD::STRICT_FRINT;
6735     break;
6736   case Intrinsic::experimental_constrained_nearbyint:
6737     Opcode = ISD::STRICT_FNEARBYINT;
6738     break;
6739   case Intrinsic::experimental_constrained_maxnum:
6740     Opcode = ISD::STRICT_FMAXNUM;
6741     break;
6742   case Intrinsic::experimental_constrained_minnum:
6743     Opcode = ISD::STRICT_FMINNUM;
6744     break;
6745   case Intrinsic::experimental_constrained_ceil:
6746     Opcode = ISD::STRICT_FCEIL;
6747     break;
6748   case Intrinsic::experimental_constrained_floor:
6749     Opcode = ISD::STRICT_FFLOOR;
6750     break;
6751   case Intrinsic::experimental_constrained_round:
6752     Opcode = ISD::STRICT_FROUND;
6753     break;
6754   case Intrinsic::experimental_constrained_trunc:
6755     Opcode = ISD::STRICT_FTRUNC;
6756     break;
6757   }
6758   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6759   SDValue Chain = getRoot();
6760   SmallVector<EVT, 4> ValueVTs;
6761   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6762   ValueVTs.push_back(MVT::Other); // Out chain
6763 
6764   SDVTList VTs = DAG.getVTList(ValueVTs);
6765   SDValue Result;
6766   if (FPI.isUnaryOp())
6767     Result = DAG.getNode(Opcode, sdl, VTs,
6768                          { Chain, getValue(FPI.getArgOperand(0)) });
6769   else if (FPI.isTernaryOp())
6770     Result = DAG.getNode(Opcode, sdl, VTs,
6771                          { Chain, getValue(FPI.getArgOperand(0)),
6772                                   getValue(FPI.getArgOperand(1)),
6773                                   getValue(FPI.getArgOperand(2)) });
6774   else
6775     Result = DAG.getNode(Opcode, sdl, VTs,
6776                          { Chain, getValue(FPI.getArgOperand(0)),
6777                            getValue(FPI.getArgOperand(1))  });
6778 
6779   assert(Result.getNode()->getNumValues() == 2);
6780   SDValue OutChain = Result.getValue(1);
6781   DAG.setRoot(OutChain);
6782   SDValue FPResult = Result.getValue(0);
6783   setValue(&FPI, FPResult);
6784 }
6785 
6786 std::pair<SDValue, SDValue>
6787 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6788                                     const BasicBlock *EHPadBB) {
6789   MachineFunction &MF = DAG.getMachineFunction();
6790   MachineModuleInfo &MMI = MF.getMMI();
6791   MCSymbol *BeginLabel = nullptr;
6792 
6793   if (EHPadBB) {
6794     // Insert a label before the invoke call to mark the try range.  This can be
6795     // used to detect deletion of the invoke via the MachineModuleInfo.
6796     BeginLabel = MMI.getContext().createTempSymbol();
6797 
6798     // For SjLj, keep track of which landing pads go with which invokes
6799     // so as to maintain the ordering of pads in the LSDA.
6800     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6801     if (CallSiteIndex) {
6802       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6803       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6804 
6805       // Now that the call site is handled, stop tracking it.
6806       MMI.setCurrentCallSite(0);
6807     }
6808 
6809     // Both PendingLoads and PendingExports must be flushed here;
6810     // this call might not return.
6811     (void)getRoot();
6812     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6813 
6814     CLI.setChain(getRoot());
6815   }
6816   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6817   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6818 
6819   assert((CLI.IsTailCall || Result.second.getNode()) &&
6820          "Non-null chain expected with non-tail call!");
6821   assert((Result.second.getNode() || !Result.first.getNode()) &&
6822          "Null value expected with tail call!");
6823 
6824   if (!Result.second.getNode()) {
6825     // As a special case, a null chain means that a tail call has been emitted
6826     // and the DAG root is already updated.
6827     HasTailCall = true;
6828 
6829     // Since there's no actual continuation from this block, nothing can be
6830     // relying on us setting vregs for them.
6831     PendingExports.clear();
6832   } else {
6833     DAG.setRoot(Result.second);
6834   }
6835 
6836   if (EHPadBB) {
6837     // Insert a label at the end of the invoke call to mark the try range.  This
6838     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6839     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6840     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6841 
6842     // Inform MachineModuleInfo of range.
6843     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6844     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6845     // actually use outlined funclets and their LSDA info style.
6846     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6847       assert(CLI.CS);
6848       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6849       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6850                                 BeginLabel, EndLabel);
6851     } else if (!isScopedEHPersonality(Pers)) {
6852       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6853     }
6854   }
6855 
6856   return Result;
6857 }
6858 
6859 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6860                                       bool isTailCall,
6861                                       const BasicBlock *EHPadBB) {
6862   auto &DL = DAG.getDataLayout();
6863   FunctionType *FTy = CS.getFunctionType();
6864   Type *RetTy = CS.getType();
6865 
6866   TargetLowering::ArgListTy Args;
6867   Args.reserve(CS.arg_size());
6868 
6869   const Value *SwiftErrorVal = nullptr;
6870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6871 
6872   // We can't tail call inside a function with a swifterror argument. Lowering
6873   // does not support this yet. It would have to move into the swifterror
6874   // register before the call.
6875   auto *Caller = CS.getInstruction()->getParent()->getParent();
6876   if (TLI.supportSwiftError() &&
6877       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6878     isTailCall = false;
6879 
6880   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6881        i != e; ++i) {
6882     TargetLowering::ArgListEntry Entry;
6883     const Value *V = *i;
6884 
6885     // Skip empty types
6886     if (V->getType()->isEmptyTy())
6887       continue;
6888 
6889     SDValue ArgNode = getValue(V);
6890     Entry.Node = ArgNode; Entry.Ty = V->getType();
6891 
6892     Entry.setAttributes(&CS, i - CS.arg_begin());
6893 
6894     // Use swifterror virtual register as input to the call.
6895     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6896       SwiftErrorVal = V;
6897       // We find the virtual register for the actual swifterror argument.
6898       // Instead of using the Value, we use the virtual register instead.
6899       Entry.Node = DAG.getRegister(FuncInfo
6900                                        .getOrCreateSwiftErrorVRegUseAt(
6901                                            CS.getInstruction(), FuncInfo.MBB, V)
6902                                        .first,
6903                                    EVT(TLI.getPointerTy(DL)));
6904     }
6905 
6906     Args.push_back(Entry);
6907 
6908     // If we have an explicit sret argument that is an Instruction, (i.e., it
6909     // might point to function-local memory), we can't meaningfully tail-call.
6910     if (Entry.IsSRet && isa<Instruction>(V))
6911       isTailCall = false;
6912   }
6913 
6914   // Check if target-independent constraints permit a tail call here.
6915   // Target-dependent constraints are checked within TLI->LowerCallTo.
6916   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6917     isTailCall = false;
6918 
6919   // Disable tail calls if there is an swifterror argument. Targets have not
6920   // been updated to support tail calls.
6921   if (TLI.supportSwiftError() && SwiftErrorVal)
6922     isTailCall = false;
6923 
6924   TargetLowering::CallLoweringInfo CLI(DAG);
6925   CLI.setDebugLoc(getCurSDLoc())
6926       .setChain(getRoot())
6927       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6928       .setTailCall(isTailCall)
6929       .setConvergent(CS.isConvergent());
6930   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6931 
6932   if (Result.first.getNode()) {
6933     const Instruction *Inst = CS.getInstruction();
6934     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6935     setValue(Inst, Result.first);
6936   }
6937 
6938   // The last element of CLI.InVals has the SDValue for swifterror return.
6939   // Here we copy it to a virtual register and update SwiftErrorMap for
6940   // book-keeping.
6941   if (SwiftErrorVal && TLI.supportSwiftError()) {
6942     // Get the last element of InVals.
6943     SDValue Src = CLI.InVals.back();
6944     unsigned VReg; bool CreatedVReg;
6945     std::tie(VReg, CreatedVReg) =
6946         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6947     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6948     // We update the virtual register for the actual swifterror argument.
6949     if (CreatedVReg)
6950       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6951     DAG.setRoot(CopyNode);
6952   }
6953 }
6954 
6955 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6956                              SelectionDAGBuilder &Builder) {
6957   // Check to see if this load can be trivially constant folded, e.g. if the
6958   // input is from a string literal.
6959   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6960     // Cast pointer to the type we really want to load.
6961     Type *LoadTy =
6962         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6963     if (LoadVT.isVector())
6964       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6965 
6966     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6967                                          PointerType::getUnqual(LoadTy));
6968 
6969     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6970             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6971       return Builder.getValue(LoadCst);
6972   }
6973 
6974   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6975   // still constant memory, the input chain can be the entry node.
6976   SDValue Root;
6977   bool ConstantMemory = false;
6978 
6979   // Do not serialize (non-volatile) loads of constant memory with anything.
6980   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6981     Root = Builder.DAG.getEntryNode();
6982     ConstantMemory = true;
6983   } else {
6984     // Do not serialize non-volatile loads against each other.
6985     Root = Builder.DAG.getRoot();
6986   }
6987 
6988   SDValue Ptr = Builder.getValue(PtrVal);
6989   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6990                                         Ptr, MachinePointerInfo(PtrVal),
6991                                         /* Alignment = */ 1);
6992 
6993   if (!ConstantMemory)
6994     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6995   return LoadVal;
6996 }
6997 
6998 /// Record the value for an instruction that produces an integer result,
6999 /// converting the type where necessary.
7000 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7001                                                   SDValue Value,
7002                                                   bool IsSigned) {
7003   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7004                                                     I.getType(), true);
7005   if (IsSigned)
7006     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7007   else
7008     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7009   setValue(&I, Value);
7010 }
7011 
7012 /// See if we can lower a memcmp call into an optimized form. If so, return
7013 /// true and lower it. Otherwise return false, and it will be lowered like a
7014 /// normal call.
7015 /// The caller already checked that \p I calls the appropriate LibFunc with a
7016 /// correct prototype.
7017 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7018   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7019   const Value *Size = I.getArgOperand(2);
7020   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7021   if (CSize && CSize->getZExtValue() == 0) {
7022     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7023                                                           I.getType(), true);
7024     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7025     return true;
7026   }
7027 
7028   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7029   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7030       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7031       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7032   if (Res.first.getNode()) {
7033     processIntegerCallValue(I, Res.first, true);
7034     PendingLoads.push_back(Res.second);
7035     return true;
7036   }
7037 
7038   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7039   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7040   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7041     return false;
7042 
7043   // If the target has a fast compare for the given size, it will return a
7044   // preferred load type for that size. Require that the load VT is legal and
7045   // that the target supports unaligned loads of that type. Otherwise, return
7046   // INVALID.
7047   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7048     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7049     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7050     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7051       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7052       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7053       // TODO: Check alignment of src and dest ptrs.
7054       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7055       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7056       if (!TLI.isTypeLegal(LVT) ||
7057           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7058           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7059         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7060     }
7061 
7062     return LVT;
7063   };
7064 
7065   // This turns into unaligned loads. We only do this if the target natively
7066   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7067   // we'll only produce a small number of byte loads.
7068   MVT LoadVT;
7069   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7070   switch (NumBitsToCompare) {
7071   default:
7072     return false;
7073   case 16:
7074     LoadVT = MVT::i16;
7075     break;
7076   case 32:
7077     LoadVT = MVT::i32;
7078     break;
7079   case 64:
7080   case 128:
7081   case 256:
7082     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7083     break;
7084   }
7085 
7086   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7087     return false;
7088 
7089   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7090   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7091 
7092   // Bitcast to a wide integer type if the loads are vectors.
7093   if (LoadVT.isVector()) {
7094     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7095     LoadL = DAG.getBitcast(CmpVT, LoadL);
7096     LoadR = DAG.getBitcast(CmpVT, LoadR);
7097   }
7098 
7099   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7100   processIntegerCallValue(I, Cmp, false);
7101   return true;
7102 }
7103 
7104 /// See if we can lower a memchr call into an optimized form. If so, return
7105 /// true and lower it. Otherwise return false, and it will be lowered like a
7106 /// normal call.
7107 /// The caller already checked that \p I calls the appropriate LibFunc with a
7108 /// correct prototype.
7109 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7110   const Value *Src = I.getArgOperand(0);
7111   const Value *Char = I.getArgOperand(1);
7112   const Value *Length = I.getArgOperand(2);
7113 
7114   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7115   std::pair<SDValue, SDValue> Res =
7116     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7117                                 getValue(Src), getValue(Char), getValue(Length),
7118                                 MachinePointerInfo(Src));
7119   if (Res.first.getNode()) {
7120     setValue(&I, Res.first);
7121     PendingLoads.push_back(Res.second);
7122     return true;
7123   }
7124 
7125   return false;
7126 }
7127 
7128 /// See if we can lower a mempcpy call into an optimized form. If so, return
7129 /// true and lower it. Otherwise return false, and it will be lowered like a
7130 /// normal call.
7131 /// The caller already checked that \p I calls the appropriate LibFunc with a
7132 /// correct prototype.
7133 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7134   SDValue Dst = getValue(I.getArgOperand(0));
7135   SDValue Src = getValue(I.getArgOperand(1));
7136   SDValue Size = getValue(I.getArgOperand(2));
7137 
7138   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7139   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7140   unsigned Align = std::min(DstAlign, SrcAlign);
7141   if (Align == 0) // Alignment of one or both could not be inferred.
7142     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7143 
7144   bool isVol = false;
7145   SDLoc sdl = getCurSDLoc();
7146 
7147   // In the mempcpy context we need to pass in a false value for isTailCall
7148   // because the return pointer needs to be adjusted by the size of
7149   // the copied memory.
7150   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7151                              false, /*isTailCall=*/false,
7152                              MachinePointerInfo(I.getArgOperand(0)),
7153                              MachinePointerInfo(I.getArgOperand(1)));
7154   assert(MC.getNode() != nullptr &&
7155          "** memcpy should not be lowered as TailCall in mempcpy context **");
7156   DAG.setRoot(MC);
7157 
7158   // Check if Size needs to be truncated or extended.
7159   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7160 
7161   // Adjust return pointer to point just past the last dst byte.
7162   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7163                                     Dst, Size);
7164   setValue(&I, DstPlusSize);
7165   return true;
7166 }
7167 
7168 /// See if we can lower a strcpy call into an optimized form.  If so, return
7169 /// true and lower it, otherwise return false and it will be lowered like a
7170 /// normal call.
7171 /// The caller already checked that \p I calls the appropriate LibFunc with a
7172 /// correct prototype.
7173 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7174   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7175 
7176   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7177   std::pair<SDValue, SDValue> Res =
7178     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7179                                 getValue(Arg0), getValue(Arg1),
7180                                 MachinePointerInfo(Arg0),
7181                                 MachinePointerInfo(Arg1), isStpcpy);
7182   if (Res.first.getNode()) {
7183     setValue(&I, Res.first);
7184     DAG.setRoot(Res.second);
7185     return true;
7186   }
7187 
7188   return false;
7189 }
7190 
7191 /// See if we can lower a strcmp call into an optimized form.  If so, return
7192 /// true and lower it, otherwise return false and it will be lowered like a
7193 /// normal call.
7194 /// The caller already checked that \p I calls the appropriate LibFunc with a
7195 /// correct prototype.
7196 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7197   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7198 
7199   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7200   std::pair<SDValue, SDValue> Res =
7201     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7202                                 getValue(Arg0), getValue(Arg1),
7203                                 MachinePointerInfo(Arg0),
7204                                 MachinePointerInfo(Arg1));
7205   if (Res.first.getNode()) {
7206     processIntegerCallValue(I, Res.first, true);
7207     PendingLoads.push_back(Res.second);
7208     return true;
7209   }
7210 
7211   return false;
7212 }
7213 
7214 /// See if we can lower a strlen call into an optimized form.  If so, return
7215 /// true and lower it, otherwise return false and it will be lowered like a
7216 /// normal call.
7217 /// The caller already checked that \p I calls the appropriate LibFunc with a
7218 /// correct prototype.
7219 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7220   const Value *Arg0 = I.getArgOperand(0);
7221 
7222   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7223   std::pair<SDValue, SDValue> Res =
7224     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7225                                 getValue(Arg0), MachinePointerInfo(Arg0));
7226   if (Res.first.getNode()) {
7227     processIntegerCallValue(I, Res.first, false);
7228     PendingLoads.push_back(Res.second);
7229     return true;
7230   }
7231 
7232   return false;
7233 }
7234 
7235 /// See if we can lower a strnlen call into an optimized form.  If so, return
7236 /// true and lower it, otherwise return false and it will be lowered like a
7237 /// normal call.
7238 /// The caller already checked that \p I calls the appropriate LibFunc with a
7239 /// correct prototype.
7240 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7241   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7242 
7243   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7244   std::pair<SDValue, SDValue> Res =
7245     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7246                                  getValue(Arg0), getValue(Arg1),
7247                                  MachinePointerInfo(Arg0));
7248   if (Res.first.getNode()) {
7249     processIntegerCallValue(I, Res.first, false);
7250     PendingLoads.push_back(Res.second);
7251     return true;
7252   }
7253 
7254   return false;
7255 }
7256 
7257 /// See if we can lower a unary floating-point operation into an SDNode with
7258 /// the specified Opcode.  If so, return true and lower it, otherwise return
7259 /// false and it will be lowered like a normal call.
7260 /// The caller already checked that \p I calls the appropriate LibFunc with a
7261 /// correct prototype.
7262 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7263                                               unsigned Opcode) {
7264   // We already checked this call's prototype; verify it doesn't modify errno.
7265   if (!I.onlyReadsMemory())
7266     return false;
7267 
7268   SDValue Tmp = getValue(I.getArgOperand(0));
7269   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7270   return true;
7271 }
7272 
7273 /// See if we can lower a binary floating-point operation into an SDNode with
7274 /// the specified Opcode. If so, return true and lower it. Otherwise return
7275 /// false, and it will be lowered like a normal call.
7276 /// The caller already checked that \p I calls the appropriate LibFunc with a
7277 /// correct prototype.
7278 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7279                                                unsigned Opcode) {
7280   // We already checked this call's prototype; verify it doesn't modify errno.
7281   if (!I.onlyReadsMemory())
7282     return false;
7283 
7284   SDValue Tmp0 = getValue(I.getArgOperand(0));
7285   SDValue Tmp1 = getValue(I.getArgOperand(1));
7286   EVT VT = Tmp0.getValueType();
7287   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7288   return true;
7289 }
7290 
7291 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7292   // Handle inline assembly differently.
7293   if (isa<InlineAsm>(I.getCalledValue())) {
7294     visitInlineAsm(&I);
7295     return;
7296   }
7297 
7298   const char *RenameFn = nullptr;
7299   if (Function *F = I.getCalledFunction()) {
7300     if (F->isDeclaration()) {
7301       // Is this an LLVM intrinsic or a target-specific intrinsic?
7302       unsigned IID = F->getIntrinsicID();
7303       if (!IID)
7304         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7305           IID = II->getIntrinsicID(F);
7306 
7307       if (IID) {
7308         RenameFn = visitIntrinsicCall(I, IID);
7309         if (!RenameFn)
7310           return;
7311       }
7312     }
7313 
7314     // Check for well-known libc/libm calls.  If the function is internal, it
7315     // can't be a library call.  Don't do the check if marked as nobuiltin for
7316     // some reason or the call site requires strict floating point semantics.
7317     LibFunc Func;
7318     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7319         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7320         LibInfo->hasOptimizedCodeGen(Func)) {
7321       switch (Func) {
7322       default: break;
7323       case LibFunc_copysign:
7324       case LibFunc_copysignf:
7325       case LibFunc_copysignl:
7326         // We already checked this call's prototype; verify it doesn't modify
7327         // errno.
7328         if (I.onlyReadsMemory()) {
7329           SDValue LHS = getValue(I.getArgOperand(0));
7330           SDValue RHS = getValue(I.getArgOperand(1));
7331           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7332                                    LHS.getValueType(), LHS, RHS));
7333           return;
7334         }
7335         break;
7336       case LibFunc_fabs:
7337       case LibFunc_fabsf:
7338       case LibFunc_fabsl:
7339         if (visitUnaryFloatCall(I, ISD::FABS))
7340           return;
7341         break;
7342       case LibFunc_fmin:
7343       case LibFunc_fminf:
7344       case LibFunc_fminl:
7345         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7346           return;
7347         break;
7348       case LibFunc_fmax:
7349       case LibFunc_fmaxf:
7350       case LibFunc_fmaxl:
7351         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7352           return;
7353         break;
7354       case LibFunc_sin:
7355       case LibFunc_sinf:
7356       case LibFunc_sinl:
7357         if (visitUnaryFloatCall(I, ISD::FSIN))
7358           return;
7359         break;
7360       case LibFunc_cos:
7361       case LibFunc_cosf:
7362       case LibFunc_cosl:
7363         if (visitUnaryFloatCall(I, ISD::FCOS))
7364           return;
7365         break;
7366       case LibFunc_sqrt:
7367       case LibFunc_sqrtf:
7368       case LibFunc_sqrtl:
7369       case LibFunc_sqrt_finite:
7370       case LibFunc_sqrtf_finite:
7371       case LibFunc_sqrtl_finite:
7372         if (visitUnaryFloatCall(I, ISD::FSQRT))
7373           return;
7374         break;
7375       case LibFunc_floor:
7376       case LibFunc_floorf:
7377       case LibFunc_floorl:
7378         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7379           return;
7380         break;
7381       case LibFunc_nearbyint:
7382       case LibFunc_nearbyintf:
7383       case LibFunc_nearbyintl:
7384         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7385           return;
7386         break;
7387       case LibFunc_ceil:
7388       case LibFunc_ceilf:
7389       case LibFunc_ceill:
7390         if (visitUnaryFloatCall(I, ISD::FCEIL))
7391           return;
7392         break;
7393       case LibFunc_rint:
7394       case LibFunc_rintf:
7395       case LibFunc_rintl:
7396         if (visitUnaryFloatCall(I, ISD::FRINT))
7397           return;
7398         break;
7399       case LibFunc_round:
7400       case LibFunc_roundf:
7401       case LibFunc_roundl:
7402         if (visitUnaryFloatCall(I, ISD::FROUND))
7403           return;
7404         break;
7405       case LibFunc_trunc:
7406       case LibFunc_truncf:
7407       case LibFunc_truncl:
7408         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7409           return;
7410         break;
7411       case LibFunc_log2:
7412       case LibFunc_log2f:
7413       case LibFunc_log2l:
7414         if (visitUnaryFloatCall(I, ISD::FLOG2))
7415           return;
7416         break;
7417       case LibFunc_exp2:
7418       case LibFunc_exp2f:
7419       case LibFunc_exp2l:
7420         if (visitUnaryFloatCall(I, ISD::FEXP2))
7421           return;
7422         break;
7423       case LibFunc_memcmp:
7424         if (visitMemCmpCall(I))
7425           return;
7426         break;
7427       case LibFunc_mempcpy:
7428         if (visitMemPCpyCall(I))
7429           return;
7430         break;
7431       case LibFunc_memchr:
7432         if (visitMemChrCall(I))
7433           return;
7434         break;
7435       case LibFunc_strcpy:
7436         if (visitStrCpyCall(I, false))
7437           return;
7438         break;
7439       case LibFunc_stpcpy:
7440         if (visitStrCpyCall(I, true))
7441           return;
7442         break;
7443       case LibFunc_strcmp:
7444         if (visitStrCmpCall(I))
7445           return;
7446         break;
7447       case LibFunc_strlen:
7448         if (visitStrLenCall(I))
7449           return;
7450         break;
7451       case LibFunc_strnlen:
7452         if (visitStrNLenCall(I))
7453           return;
7454         break;
7455       }
7456     }
7457   }
7458 
7459   SDValue Callee;
7460   if (!RenameFn)
7461     Callee = getValue(I.getCalledValue());
7462   else
7463     Callee = DAG.getExternalSymbol(
7464         RenameFn,
7465         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7466 
7467   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7468   // have to do anything here to lower funclet bundles.
7469   assert(!I.hasOperandBundlesOtherThan(
7470              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7471          "Cannot lower calls with arbitrary operand bundles!");
7472 
7473   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7474     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7475   else
7476     // Check if we can potentially perform a tail call. More detailed checking
7477     // is be done within LowerCallTo, after more information about the call is
7478     // known.
7479     LowerCallTo(&I, Callee, I.isTailCall());
7480 }
7481 
7482 namespace {
7483 
7484 /// AsmOperandInfo - This contains information for each constraint that we are
7485 /// lowering.
7486 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7487 public:
7488   /// CallOperand - If this is the result output operand or a clobber
7489   /// this is null, otherwise it is the incoming operand to the CallInst.
7490   /// This gets modified as the asm is processed.
7491   SDValue CallOperand;
7492 
7493   /// AssignedRegs - If this is a register or register class operand, this
7494   /// contains the set of register corresponding to the operand.
7495   RegsForValue AssignedRegs;
7496 
7497   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7498     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7499   }
7500 
7501   /// Whether or not this operand accesses memory
7502   bool hasMemory(const TargetLowering &TLI) const {
7503     // Indirect operand accesses access memory.
7504     if (isIndirect)
7505       return true;
7506 
7507     for (const auto &Code : Codes)
7508       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7509         return true;
7510 
7511     return false;
7512   }
7513 
7514   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7515   /// corresponds to.  If there is no Value* for this operand, it returns
7516   /// MVT::Other.
7517   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7518                            const DataLayout &DL) const {
7519     if (!CallOperandVal) return MVT::Other;
7520 
7521     if (isa<BasicBlock>(CallOperandVal))
7522       return TLI.getPointerTy(DL);
7523 
7524     llvm::Type *OpTy = CallOperandVal->getType();
7525 
7526     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7527     // If this is an indirect operand, the operand is a pointer to the
7528     // accessed type.
7529     if (isIndirect) {
7530       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7531       if (!PtrTy)
7532         report_fatal_error("Indirect operand for inline asm not a pointer!");
7533       OpTy = PtrTy->getElementType();
7534     }
7535 
7536     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7537     if (StructType *STy = dyn_cast<StructType>(OpTy))
7538       if (STy->getNumElements() == 1)
7539         OpTy = STy->getElementType(0);
7540 
7541     // If OpTy is not a single value, it may be a struct/union that we
7542     // can tile with integers.
7543     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7544       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7545       switch (BitSize) {
7546       default: break;
7547       case 1:
7548       case 8:
7549       case 16:
7550       case 32:
7551       case 64:
7552       case 128:
7553         OpTy = IntegerType::get(Context, BitSize);
7554         break;
7555       }
7556     }
7557 
7558     return TLI.getValueType(DL, OpTy, true);
7559   }
7560 };
7561 
7562 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7563 
7564 } // end anonymous namespace
7565 
7566 /// Make sure that the output operand \p OpInfo and its corresponding input
7567 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7568 /// out).
7569 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7570                                SDISelAsmOperandInfo &MatchingOpInfo,
7571                                SelectionDAG &DAG) {
7572   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7573     return;
7574 
7575   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7576   const auto &TLI = DAG.getTargetLoweringInfo();
7577 
7578   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7579       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7580                                        OpInfo.ConstraintVT);
7581   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7582       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7583                                        MatchingOpInfo.ConstraintVT);
7584   if ((OpInfo.ConstraintVT.isInteger() !=
7585        MatchingOpInfo.ConstraintVT.isInteger()) ||
7586       (MatchRC.second != InputRC.second)) {
7587     // FIXME: error out in a more elegant fashion
7588     report_fatal_error("Unsupported asm: input constraint"
7589                        " with a matching output constraint of"
7590                        " incompatible type!");
7591   }
7592   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7593 }
7594 
7595 /// Get a direct memory input to behave well as an indirect operand.
7596 /// This may introduce stores, hence the need for a \p Chain.
7597 /// \return The (possibly updated) chain.
7598 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7599                                         SDISelAsmOperandInfo &OpInfo,
7600                                         SelectionDAG &DAG) {
7601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7602 
7603   // If we don't have an indirect input, put it in the constpool if we can,
7604   // otherwise spill it to a stack slot.
7605   // TODO: This isn't quite right. We need to handle these according to
7606   // the addressing mode that the constraint wants. Also, this may take
7607   // an additional register for the computation and we don't want that
7608   // either.
7609 
7610   // If the operand is a float, integer, or vector constant, spill to a
7611   // constant pool entry to get its address.
7612   const Value *OpVal = OpInfo.CallOperandVal;
7613   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7614       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7615     OpInfo.CallOperand = DAG.getConstantPool(
7616         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7617     return Chain;
7618   }
7619 
7620   // Otherwise, create a stack slot and emit a store to it before the asm.
7621   Type *Ty = OpVal->getType();
7622   auto &DL = DAG.getDataLayout();
7623   uint64_t TySize = DL.getTypeAllocSize(Ty);
7624   unsigned Align = DL.getPrefTypeAlignment(Ty);
7625   MachineFunction &MF = DAG.getMachineFunction();
7626   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7627   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7628   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7629                        MachinePointerInfo::getFixedStack(MF, SSFI));
7630   OpInfo.CallOperand = StackSlot;
7631 
7632   return Chain;
7633 }
7634 
7635 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7636 /// specified operand.  We prefer to assign virtual registers, to allow the
7637 /// register allocator to handle the assignment process.  However, if the asm
7638 /// uses features that we can't model on machineinstrs, we have SDISel do the
7639 /// allocation.  This produces generally horrible, but correct, code.
7640 ///
7641 ///   OpInfo describes the operand
7642 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7643 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7644                                  SDISelAsmOperandInfo &OpInfo,
7645                                  SDISelAsmOperandInfo &RefOpInfo) {
7646   LLVMContext &Context = *DAG.getContext();
7647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7648 
7649   MachineFunction &MF = DAG.getMachineFunction();
7650   SmallVector<unsigned, 4> Regs;
7651   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7652 
7653   // No work to do for memory operations.
7654   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7655     return;
7656 
7657   // If this is a constraint for a single physreg, or a constraint for a
7658   // register class, find it.
7659   unsigned AssignedReg;
7660   const TargetRegisterClass *RC;
7661   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7662       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7663   // RC is unset only on failure. Return immediately.
7664   if (!RC)
7665     return;
7666 
7667   // Get the actual register value type.  This is important, because the user
7668   // may have asked for (e.g.) the AX register in i32 type.  We need to
7669   // remember that AX is actually i16 to get the right extension.
7670   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7671 
7672   if (OpInfo.ConstraintVT != MVT::Other) {
7673     // If this is an FP operand in an integer register (or visa versa), or more
7674     // generally if the operand value disagrees with the register class we plan
7675     // to stick it in, fix the operand type.
7676     //
7677     // If this is an input value, the bitcast to the new type is done now.
7678     // Bitcast for output value is done at the end of visitInlineAsm().
7679     if ((OpInfo.Type == InlineAsm::isOutput ||
7680          OpInfo.Type == InlineAsm::isInput) &&
7681         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7682       // Try to convert to the first EVT that the reg class contains.  If the
7683       // types are identical size, use a bitcast to convert (e.g. two differing
7684       // vector types).  Note: output bitcast is done at the end of
7685       // visitInlineAsm().
7686       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7687         // Exclude indirect inputs while they are unsupported because the code
7688         // to perform the load is missing and thus OpInfo.CallOperand still
7689         // refers to the input address rather than the pointed-to value.
7690         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7691           OpInfo.CallOperand =
7692               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7693         OpInfo.ConstraintVT = RegVT;
7694         // If the operand is an FP value and we want it in integer registers,
7695         // use the corresponding integer type. This turns an f64 value into
7696         // i64, which can be passed with two i32 values on a 32-bit machine.
7697       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7698         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7699         if (OpInfo.Type == InlineAsm::isInput)
7700           OpInfo.CallOperand =
7701               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7702         OpInfo.ConstraintVT = VT;
7703       }
7704     }
7705   }
7706 
7707   // No need to allocate a matching input constraint since the constraint it's
7708   // matching to has already been allocated.
7709   if (OpInfo.isMatchingInputConstraint())
7710     return;
7711 
7712   EVT ValueVT = OpInfo.ConstraintVT;
7713   if (OpInfo.ConstraintVT == MVT::Other)
7714     ValueVT = RegVT;
7715 
7716   // Initialize NumRegs.
7717   unsigned NumRegs = 1;
7718   if (OpInfo.ConstraintVT != MVT::Other)
7719     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7720 
7721   // If this is a constraint for a specific physical register, like {r17},
7722   // assign it now.
7723 
7724   // If this associated to a specific register, initialize iterator to correct
7725   // place. If virtual, make sure we have enough registers
7726 
7727   // Initialize iterator if necessary
7728   TargetRegisterClass::iterator I = RC->begin();
7729   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7730 
7731   // Do not check for single registers.
7732   if (AssignedReg) {
7733       for (; *I != AssignedReg; ++I)
7734         assert(I != RC->end() && "AssignedReg should be member of RC");
7735   }
7736 
7737   for (; NumRegs; --NumRegs, ++I) {
7738     assert(I != RC->end() && "Ran out of registers to allocate!");
7739     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7740     Regs.push_back(R);
7741   }
7742 
7743   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7744 }
7745 
7746 static unsigned
7747 findMatchingInlineAsmOperand(unsigned OperandNo,
7748                              const std::vector<SDValue> &AsmNodeOperands) {
7749   // Scan until we find the definition we already emitted of this operand.
7750   unsigned CurOp = InlineAsm::Op_FirstOperand;
7751   for (; OperandNo; --OperandNo) {
7752     // Advance to the next operand.
7753     unsigned OpFlag =
7754         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7755     assert((InlineAsm::isRegDefKind(OpFlag) ||
7756             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7757             InlineAsm::isMemKind(OpFlag)) &&
7758            "Skipped past definitions?");
7759     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7760   }
7761   return CurOp;
7762 }
7763 
7764 namespace {
7765 
7766 class ExtraFlags {
7767   unsigned Flags = 0;
7768 
7769 public:
7770   explicit ExtraFlags(ImmutableCallSite CS) {
7771     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7772     if (IA->hasSideEffects())
7773       Flags |= InlineAsm::Extra_HasSideEffects;
7774     if (IA->isAlignStack())
7775       Flags |= InlineAsm::Extra_IsAlignStack;
7776     if (CS.isConvergent())
7777       Flags |= InlineAsm::Extra_IsConvergent;
7778     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7779   }
7780 
7781   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7782     // Ideally, we would only check against memory constraints.  However, the
7783     // meaning of an Other constraint can be target-specific and we can't easily
7784     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7785     // for Other constraints as well.
7786     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7787         OpInfo.ConstraintType == TargetLowering::C_Other) {
7788       if (OpInfo.Type == InlineAsm::isInput)
7789         Flags |= InlineAsm::Extra_MayLoad;
7790       else if (OpInfo.Type == InlineAsm::isOutput)
7791         Flags |= InlineAsm::Extra_MayStore;
7792       else if (OpInfo.Type == InlineAsm::isClobber)
7793         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7794     }
7795   }
7796 
7797   unsigned get() const { return Flags; }
7798 };
7799 
7800 } // end anonymous namespace
7801 
7802 /// visitInlineAsm - Handle a call to an InlineAsm object.
7803 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7804   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7805 
7806   /// ConstraintOperands - Information about all of the constraints.
7807   SDISelAsmOperandInfoVector ConstraintOperands;
7808 
7809   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7810   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7811       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7812 
7813   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7814   // AsmDialect, MayLoad, MayStore).
7815   bool HasSideEffect = IA->hasSideEffects();
7816   ExtraFlags ExtraInfo(CS);
7817 
7818   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7819   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7820   for (auto &T : TargetConstraints) {
7821     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7822     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7823 
7824     // Compute the value type for each operand.
7825     if (OpInfo.Type == InlineAsm::isInput ||
7826         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7827       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7828 
7829       // Process the call argument. BasicBlocks are labels, currently appearing
7830       // only in asm's.
7831       const Instruction *I = CS.getInstruction();
7832       if (isa<CallBrInst>(I) &&
7833           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7834                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7835         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7836         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7837         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7838       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7839         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7840       } else {
7841         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7842       }
7843 
7844       OpInfo.ConstraintVT =
7845           OpInfo
7846               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7847               .getSimpleVT();
7848     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7849       // The return value of the call is this value.  As such, there is no
7850       // corresponding argument.
7851       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7852       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7853         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7854             DAG.getDataLayout(), STy->getElementType(ResNo));
7855       } else {
7856         assert(ResNo == 0 && "Asm only has one result!");
7857         OpInfo.ConstraintVT =
7858             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7859       }
7860       ++ResNo;
7861     } else {
7862       OpInfo.ConstraintVT = MVT::Other;
7863     }
7864 
7865     if (!HasSideEffect)
7866       HasSideEffect = OpInfo.hasMemory(TLI);
7867 
7868     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7869     // FIXME: Could we compute this on OpInfo rather than T?
7870 
7871     // Compute the constraint code and ConstraintType to use.
7872     TLI.ComputeConstraintToUse(T, SDValue());
7873 
7874     ExtraInfo.update(T);
7875   }
7876 
7877   // We won't need to flush pending loads if this asm doesn't touch
7878   // memory and is nonvolatile.
7879   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7880 
7881   // Second pass over the constraints: compute which constraint option to use.
7882   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7883     // If this is an output operand with a matching input operand, look up the
7884     // matching input. If their types mismatch, e.g. one is an integer, the
7885     // other is floating point, or their sizes are different, flag it as an
7886     // error.
7887     if (OpInfo.hasMatchingInput()) {
7888       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7889       patchMatchingInput(OpInfo, Input, DAG);
7890     }
7891 
7892     // Compute the constraint code and ConstraintType to use.
7893     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7894 
7895     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7896         OpInfo.Type == InlineAsm::isClobber)
7897       continue;
7898 
7899     // If this is a memory input, and if the operand is not indirect, do what we
7900     // need to provide an address for the memory input.
7901     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7902         !OpInfo.isIndirect) {
7903       assert((OpInfo.isMultipleAlternative ||
7904               (OpInfo.Type == InlineAsm::isInput)) &&
7905              "Can only indirectify direct input operands!");
7906 
7907       // Memory operands really want the address of the value.
7908       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7909 
7910       // There is no longer a Value* corresponding to this operand.
7911       OpInfo.CallOperandVal = nullptr;
7912 
7913       // It is now an indirect operand.
7914       OpInfo.isIndirect = true;
7915     }
7916 
7917   }
7918 
7919   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7920   std::vector<SDValue> AsmNodeOperands;
7921   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7922   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7923       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7924 
7925   // If we have a !srcloc metadata node associated with it, we want to attach
7926   // this to the ultimately generated inline asm machineinstr.  To do this, we
7927   // pass in the third operand as this (potentially null) inline asm MDNode.
7928   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7929   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7930 
7931   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7932   // bits as operand 3.
7933   AsmNodeOperands.push_back(DAG.getTargetConstant(
7934       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7935 
7936   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7937   // this, assign virtual and physical registers for inputs and otput.
7938   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7939     // Assign Registers.
7940     SDISelAsmOperandInfo &RefOpInfo =
7941         OpInfo.isMatchingInputConstraint()
7942             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7943             : OpInfo;
7944     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7945 
7946     switch (OpInfo.Type) {
7947     case InlineAsm::isOutput:
7948       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7949           (OpInfo.ConstraintType == TargetLowering::C_Other &&
7950            OpInfo.isIndirect)) {
7951         unsigned ConstraintID =
7952             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7953         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7954                "Failed to convert memory constraint code to constraint id.");
7955 
7956         // Add information to the INLINEASM node to know about this output.
7957         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7958         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7959         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7960                                                         MVT::i32));
7961         AsmNodeOperands.push_back(OpInfo.CallOperand);
7962         break;
7963       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
7964                   !OpInfo.isIndirect) ||
7965                  OpInfo.ConstraintType == TargetLowering::C_Register ||
7966                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7967         // Otherwise, this outputs to a register (directly for C_Register /
7968         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
7969         // register that we can use.
7970         if (OpInfo.AssignedRegs.Regs.empty()) {
7971           emitInlineAsmError(
7972               CS, "couldn't allocate output register for constraint '" +
7973                       Twine(OpInfo.ConstraintCode) + "'");
7974           return;
7975         }
7976 
7977         // Add information to the INLINEASM node to know that this register is
7978         // set.
7979         OpInfo.AssignedRegs.AddInlineAsmOperands(
7980             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
7981                                   : InlineAsm::Kind_RegDef,
7982             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7983       }
7984       break;
7985 
7986     case InlineAsm::isInput: {
7987       SDValue InOperandVal = OpInfo.CallOperand;
7988 
7989       if (OpInfo.isMatchingInputConstraint()) {
7990         // If this is required to match an output register we have already set,
7991         // just use its register.
7992         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7993                                                   AsmNodeOperands);
7994         unsigned OpFlag =
7995           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7996         if (InlineAsm::isRegDefKind(OpFlag) ||
7997             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7998           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7999           if (OpInfo.isIndirect) {
8000             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8001             emitInlineAsmError(CS, "inline asm not supported yet:"
8002                                    " don't know how to handle tied "
8003                                    "indirect register inputs");
8004             return;
8005           }
8006 
8007           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8008           SmallVector<unsigned, 4> Regs;
8009 
8010           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8011             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8012             MachineRegisterInfo &RegInfo =
8013                 DAG.getMachineFunction().getRegInfo();
8014             for (unsigned i = 0; i != NumRegs; ++i)
8015               Regs.push_back(RegInfo.createVirtualRegister(RC));
8016           } else {
8017             emitInlineAsmError(CS, "inline asm error: This value type register "
8018                                    "class is not natively supported!");
8019             return;
8020           }
8021 
8022           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8023 
8024           SDLoc dl = getCurSDLoc();
8025           // Use the produced MatchedRegs object to
8026           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8027                                     CS.getInstruction());
8028           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8029                                            true, OpInfo.getMatchedOperand(), dl,
8030                                            DAG, AsmNodeOperands);
8031           break;
8032         }
8033 
8034         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8035         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8036                "Unexpected number of operands");
8037         // Add information to the INLINEASM node to know about this input.
8038         // See InlineAsm.h isUseOperandTiedToDef.
8039         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8040         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8041                                                     OpInfo.getMatchedOperand());
8042         AsmNodeOperands.push_back(DAG.getTargetConstant(
8043             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8044         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8045         break;
8046       }
8047 
8048       // Treat indirect 'X' constraint as memory.
8049       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8050           OpInfo.isIndirect)
8051         OpInfo.ConstraintType = TargetLowering::C_Memory;
8052 
8053       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8054         std::vector<SDValue> Ops;
8055         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8056                                           Ops, DAG);
8057         if (Ops.empty()) {
8058           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8059                                      Twine(OpInfo.ConstraintCode) + "'");
8060           return;
8061         }
8062 
8063         // Add information to the INLINEASM node to know about this input.
8064         unsigned ResOpType =
8065           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8066         AsmNodeOperands.push_back(DAG.getTargetConstant(
8067             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8068         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8069         break;
8070       }
8071 
8072       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8073         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8074         assert(InOperandVal.getValueType() ==
8075                    TLI.getPointerTy(DAG.getDataLayout()) &&
8076                "Memory operands expect pointer values");
8077 
8078         unsigned ConstraintID =
8079             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8080         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8081                "Failed to convert memory constraint code to constraint id.");
8082 
8083         // Add information to the INLINEASM node to know about this input.
8084         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8085         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8086         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8087                                                         getCurSDLoc(),
8088                                                         MVT::i32));
8089         AsmNodeOperands.push_back(InOperandVal);
8090         break;
8091       }
8092 
8093       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8094               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8095              "Unknown constraint type!");
8096 
8097       // TODO: Support this.
8098       if (OpInfo.isIndirect) {
8099         emitInlineAsmError(
8100             CS, "Don't know how to handle indirect register inputs yet "
8101                 "for constraint '" +
8102                     Twine(OpInfo.ConstraintCode) + "'");
8103         return;
8104       }
8105 
8106       // Copy the input into the appropriate registers.
8107       if (OpInfo.AssignedRegs.Regs.empty()) {
8108         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8109                                    Twine(OpInfo.ConstraintCode) + "'");
8110         return;
8111       }
8112 
8113       SDLoc dl = getCurSDLoc();
8114 
8115       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8116                                         Chain, &Flag, CS.getInstruction());
8117 
8118       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8119                                                dl, DAG, AsmNodeOperands);
8120       break;
8121     }
8122     case InlineAsm::isClobber:
8123       // Add the clobbered value to the operand list, so that the register
8124       // allocator is aware that the physreg got clobbered.
8125       if (!OpInfo.AssignedRegs.Regs.empty())
8126         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8127                                                  false, 0, getCurSDLoc(), DAG,
8128                                                  AsmNodeOperands);
8129       break;
8130     }
8131   }
8132 
8133   // Finish up input operands.  Set the input chain and add the flag last.
8134   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8135   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8136 
8137   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM;
8138   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8139                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8140   Flag = Chain.getValue(1);
8141 
8142   // Do additional work to generate outputs.
8143 
8144   SmallVector<EVT, 1> ResultVTs;
8145   SmallVector<SDValue, 1> ResultValues;
8146   SmallVector<SDValue, 8> OutChains;
8147 
8148   llvm::Type *CSResultType = CS.getType();
8149   ArrayRef<Type *> ResultTypes;
8150   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8151     ResultTypes = StructResult->elements();
8152   else if (!CSResultType->isVoidTy())
8153     ResultTypes = makeArrayRef(CSResultType);
8154 
8155   auto CurResultType = ResultTypes.begin();
8156   auto handleRegAssign = [&](SDValue V) {
8157     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8158     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8159     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8160     ++CurResultType;
8161     // If the type of the inline asm call site return value is different but has
8162     // same size as the type of the asm output bitcast it.  One example of this
8163     // is for vectors with different width / number of elements.  This can
8164     // happen for register classes that can contain multiple different value
8165     // types.  The preg or vreg allocated may not have the same VT as was
8166     // expected.
8167     //
8168     // This can also happen for a return value that disagrees with the register
8169     // class it is put in, eg. a double in a general-purpose register on a
8170     // 32-bit machine.
8171     if (ResultVT != V.getValueType() &&
8172         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8173       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8174     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8175              V.getValueType().isInteger()) {
8176       // If a result value was tied to an input value, the computed result
8177       // may have a wider width than the expected result.  Extract the
8178       // relevant portion.
8179       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8180     }
8181     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8182     ResultVTs.push_back(ResultVT);
8183     ResultValues.push_back(V);
8184   };
8185 
8186   // Deal with output operands.
8187   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8188     if (OpInfo.Type == InlineAsm::isOutput) {
8189       SDValue Val;
8190       // Skip trivial output operands.
8191       if (OpInfo.AssignedRegs.Regs.empty())
8192         continue;
8193 
8194       switch (OpInfo.ConstraintType) {
8195       case TargetLowering::C_Register:
8196       case TargetLowering::C_RegisterClass:
8197         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8198             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8199         break;
8200       case TargetLowering::C_Other:
8201         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8202                                               OpInfo, DAG);
8203         break;
8204       case TargetLowering::C_Memory:
8205         break; // Already handled.
8206       case TargetLowering::C_Unknown:
8207         assert(false && "Unexpected unknown constraint");
8208       }
8209 
8210       // Indirect output manifest as stores. Record output chains.
8211       if (OpInfo.isIndirect) {
8212         const Value *Ptr = OpInfo.CallOperandVal;
8213         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8214         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8215                                      MachinePointerInfo(Ptr));
8216         OutChains.push_back(Store);
8217       } else {
8218         // generate CopyFromRegs to associated registers.
8219         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8220         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8221           for (const SDValue &V : Val->op_values())
8222             handleRegAssign(V);
8223         } else
8224           handleRegAssign(Val);
8225       }
8226     }
8227   }
8228 
8229   // Set results.
8230   if (!ResultValues.empty()) {
8231     assert(CurResultType == ResultTypes.end() &&
8232            "Mismatch in number of ResultTypes");
8233     assert(ResultValues.size() == ResultTypes.size() &&
8234            "Mismatch in number of output operands in asm result");
8235 
8236     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8237                             DAG.getVTList(ResultVTs), ResultValues);
8238     setValue(CS.getInstruction(), V);
8239   }
8240 
8241   // Collect store chains.
8242   if (!OutChains.empty())
8243     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8244 
8245   // Only Update Root if inline assembly has a memory effect.
8246   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8247     DAG.setRoot(Chain);
8248 }
8249 
8250 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8251                                              const Twine &Message) {
8252   LLVMContext &Ctx = *DAG.getContext();
8253   Ctx.emitError(CS.getInstruction(), Message);
8254 
8255   // Make sure we leave the DAG in a valid state
8256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8257   SmallVector<EVT, 1> ValueVTs;
8258   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8259 
8260   if (ValueVTs.empty())
8261     return;
8262 
8263   SmallVector<SDValue, 1> Ops;
8264   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8265     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8266 
8267   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8268 }
8269 
8270 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8271   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8272                           MVT::Other, getRoot(),
8273                           getValue(I.getArgOperand(0)),
8274                           DAG.getSrcValue(I.getArgOperand(0))));
8275 }
8276 
8277 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8278   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8279   const DataLayout &DL = DAG.getDataLayout();
8280   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8281                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8282                            DAG.getSrcValue(I.getOperand(0)),
8283                            DL.getABITypeAlignment(I.getType()));
8284   setValue(&I, V);
8285   DAG.setRoot(V.getValue(1));
8286 }
8287 
8288 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8289   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8290                           MVT::Other, getRoot(),
8291                           getValue(I.getArgOperand(0)),
8292                           DAG.getSrcValue(I.getArgOperand(0))));
8293 }
8294 
8295 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8296   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8297                           MVT::Other, getRoot(),
8298                           getValue(I.getArgOperand(0)),
8299                           getValue(I.getArgOperand(1)),
8300                           DAG.getSrcValue(I.getArgOperand(0)),
8301                           DAG.getSrcValue(I.getArgOperand(1))));
8302 }
8303 
8304 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8305                                                     const Instruction &I,
8306                                                     SDValue Op) {
8307   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8308   if (!Range)
8309     return Op;
8310 
8311   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8312   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8313     return Op;
8314 
8315   APInt Lo = CR.getUnsignedMin();
8316   if (!Lo.isMinValue())
8317     return Op;
8318 
8319   APInt Hi = CR.getUnsignedMax();
8320   unsigned Bits = std::max(Hi.getActiveBits(),
8321                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8322 
8323   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8324 
8325   SDLoc SL = getCurSDLoc();
8326 
8327   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8328                              DAG.getValueType(SmallVT));
8329   unsigned NumVals = Op.getNode()->getNumValues();
8330   if (NumVals == 1)
8331     return ZExt;
8332 
8333   SmallVector<SDValue, 4> Ops;
8334 
8335   Ops.push_back(ZExt);
8336   for (unsigned I = 1; I != NumVals; ++I)
8337     Ops.push_back(Op.getValue(I));
8338 
8339   return DAG.getMergeValues(Ops, SL);
8340 }
8341 
8342 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8343 /// the call being lowered.
8344 ///
8345 /// This is a helper for lowering intrinsics that follow a target calling
8346 /// convention or require stack pointer adjustment. Only a subset of the
8347 /// intrinsic's operands need to participate in the calling convention.
8348 void SelectionDAGBuilder::populateCallLoweringInfo(
8349     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8350     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8351     bool IsPatchPoint) {
8352   TargetLowering::ArgListTy Args;
8353   Args.reserve(NumArgs);
8354 
8355   // Populate the argument list.
8356   // Attributes for args start at offset 1, after the return attribute.
8357   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8358        ArgI != ArgE; ++ArgI) {
8359     const Value *V = Call->getOperand(ArgI);
8360 
8361     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8362 
8363     TargetLowering::ArgListEntry Entry;
8364     Entry.Node = getValue(V);
8365     Entry.Ty = V->getType();
8366     Entry.setAttributes(Call, ArgI);
8367     Args.push_back(Entry);
8368   }
8369 
8370   CLI.setDebugLoc(getCurSDLoc())
8371       .setChain(getRoot())
8372       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8373       .setDiscardResult(Call->use_empty())
8374       .setIsPatchPoint(IsPatchPoint);
8375 }
8376 
8377 /// Add a stack map intrinsic call's live variable operands to a stackmap
8378 /// or patchpoint target node's operand list.
8379 ///
8380 /// Constants are converted to TargetConstants purely as an optimization to
8381 /// avoid constant materialization and register allocation.
8382 ///
8383 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8384 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8385 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8386 /// address materialization and register allocation, but may also be required
8387 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8388 /// alloca in the entry block, then the runtime may assume that the alloca's
8389 /// StackMap location can be read immediately after compilation and that the
8390 /// location is valid at any point during execution (this is similar to the
8391 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8392 /// only available in a register, then the runtime would need to trap when
8393 /// execution reaches the StackMap in order to read the alloca's location.
8394 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8395                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8396                                 SelectionDAGBuilder &Builder) {
8397   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8398     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8399     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8400       Ops.push_back(
8401         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8402       Ops.push_back(
8403         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8404     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8405       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8406       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8407           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8408     } else
8409       Ops.push_back(OpVal);
8410   }
8411 }
8412 
8413 /// Lower llvm.experimental.stackmap directly to its target opcode.
8414 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8415   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8416   //                                  [live variables...])
8417 
8418   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8419 
8420   SDValue Chain, InFlag, Callee, NullPtr;
8421   SmallVector<SDValue, 32> Ops;
8422 
8423   SDLoc DL = getCurSDLoc();
8424   Callee = getValue(CI.getCalledValue());
8425   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8426 
8427   // The stackmap intrinsic only records the live variables (the arguemnts
8428   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8429   // intrinsic, this won't be lowered to a function call. This means we don't
8430   // have to worry about calling conventions and target specific lowering code.
8431   // Instead we perform the call lowering right here.
8432   //
8433   // chain, flag = CALLSEQ_START(chain, 0, 0)
8434   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8435   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8436   //
8437   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8438   InFlag = Chain.getValue(1);
8439 
8440   // Add the <id> and <numBytes> constants.
8441   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8442   Ops.push_back(DAG.getTargetConstant(
8443                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8444   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8445   Ops.push_back(DAG.getTargetConstant(
8446                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8447                   MVT::i32));
8448 
8449   // Push live variables for the stack map.
8450   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8451 
8452   // We are not pushing any register mask info here on the operands list,
8453   // because the stackmap doesn't clobber anything.
8454 
8455   // Push the chain and the glue flag.
8456   Ops.push_back(Chain);
8457   Ops.push_back(InFlag);
8458 
8459   // Create the STACKMAP node.
8460   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8461   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8462   Chain = SDValue(SM, 0);
8463   InFlag = Chain.getValue(1);
8464 
8465   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8466 
8467   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8468 
8469   // Set the root to the target-lowered call chain.
8470   DAG.setRoot(Chain);
8471 
8472   // Inform the Frame Information that we have a stackmap in this function.
8473   FuncInfo.MF->getFrameInfo().setHasStackMap();
8474 }
8475 
8476 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8477 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8478                                           const BasicBlock *EHPadBB) {
8479   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8480   //                                                 i32 <numBytes>,
8481   //                                                 i8* <target>,
8482   //                                                 i32 <numArgs>,
8483   //                                                 [Args...],
8484   //                                                 [live variables...])
8485 
8486   CallingConv::ID CC = CS.getCallingConv();
8487   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8488   bool HasDef = !CS->getType()->isVoidTy();
8489   SDLoc dl = getCurSDLoc();
8490   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8491 
8492   // Handle immediate and symbolic callees.
8493   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8494     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8495                                    /*isTarget=*/true);
8496   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8497     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8498                                          SDLoc(SymbolicCallee),
8499                                          SymbolicCallee->getValueType(0));
8500 
8501   // Get the real number of arguments participating in the call <numArgs>
8502   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8503   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8504 
8505   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8506   // Intrinsics include all meta-operands up to but not including CC.
8507   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8508   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8509          "Not enough arguments provided to the patchpoint intrinsic");
8510 
8511   // For AnyRegCC the arguments are lowered later on manually.
8512   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8513   Type *ReturnTy =
8514     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8515 
8516   TargetLowering::CallLoweringInfo CLI(DAG);
8517   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8518                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8519   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8520 
8521   SDNode *CallEnd = Result.second.getNode();
8522   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8523     CallEnd = CallEnd->getOperand(0).getNode();
8524 
8525   /// Get a call instruction from the call sequence chain.
8526   /// Tail calls are not allowed.
8527   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8528          "Expected a callseq node.");
8529   SDNode *Call = CallEnd->getOperand(0).getNode();
8530   bool HasGlue = Call->getGluedNode();
8531 
8532   // Replace the target specific call node with the patchable intrinsic.
8533   SmallVector<SDValue, 8> Ops;
8534 
8535   // Add the <id> and <numBytes> constants.
8536   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8537   Ops.push_back(DAG.getTargetConstant(
8538                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8539   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8540   Ops.push_back(DAG.getTargetConstant(
8541                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8542                   MVT::i32));
8543 
8544   // Add the callee.
8545   Ops.push_back(Callee);
8546 
8547   // Adjust <numArgs> to account for any arguments that have been passed on the
8548   // stack instead.
8549   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8550   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8551   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8552   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8553 
8554   // Add the calling convention
8555   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8556 
8557   // Add the arguments we omitted previously. The register allocator should
8558   // place these in any free register.
8559   if (IsAnyRegCC)
8560     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8561       Ops.push_back(getValue(CS.getArgument(i)));
8562 
8563   // Push the arguments from the call instruction up to the register mask.
8564   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8565   Ops.append(Call->op_begin() + 2, e);
8566 
8567   // Push live variables for the stack map.
8568   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8569 
8570   // Push the register mask info.
8571   if (HasGlue)
8572     Ops.push_back(*(Call->op_end()-2));
8573   else
8574     Ops.push_back(*(Call->op_end()-1));
8575 
8576   // Push the chain (this is originally the first operand of the call, but
8577   // becomes now the last or second to last operand).
8578   Ops.push_back(*(Call->op_begin()));
8579 
8580   // Push the glue flag (last operand).
8581   if (HasGlue)
8582     Ops.push_back(*(Call->op_end()-1));
8583 
8584   SDVTList NodeTys;
8585   if (IsAnyRegCC && HasDef) {
8586     // Create the return types based on the intrinsic definition
8587     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8588     SmallVector<EVT, 3> ValueVTs;
8589     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8590     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8591 
8592     // There is always a chain and a glue type at the end
8593     ValueVTs.push_back(MVT::Other);
8594     ValueVTs.push_back(MVT::Glue);
8595     NodeTys = DAG.getVTList(ValueVTs);
8596   } else
8597     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8598 
8599   // Replace the target specific call node with a PATCHPOINT node.
8600   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8601                                          dl, NodeTys, Ops);
8602 
8603   // Update the NodeMap.
8604   if (HasDef) {
8605     if (IsAnyRegCC)
8606       setValue(CS.getInstruction(), SDValue(MN, 0));
8607     else
8608       setValue(CS.getInstruction(), Result.first);
8609   }
8610 
8611   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8612   // call sequence. Furthermore the location of the chain and glue can change
8613   // when the AnyReg calling convention is used and the intrinsic returns a
8614   // value.
8615   if (IsAnyRegCC && HasDef) {
8616     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8617     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8618     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8619   } else
8620     DAG.ReplaceAllUsesWith(Call, MN);
8621   DAG.DeleteNode(Call);
8622 
8623   // Inform the Frame Information that we have a patchpoint in this function.
8624   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8625 }
8626 
8627 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8628                                             unsigned Intrinsic) {
8629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8630   SDValue Op1 = getValue(I.getArgOperand(0));
8631   SDValue Op2;
8632   if (I.getNumArgOperands() > 1)
8633     Op2 = getValue(I.getArgOperand(1));
8634   SDLoc dl = getCurSDLoc();
8635   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8636   SDValue Res;
8637   FastMathFlags FMF;
8638   if (isa<FPMathOperator>(I))
8639     FMF = I.getFastMathFlags();
8640 
8641   switch (Intrinsic) {
8642   case Intrinsic::experimental_vector_reduce_fadd:
8643     if (FMF.isFast())
8644       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8645     else
8646       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8647     break;
8648   case Intrinsic::experimental_vector_reduce_fmul:
8649     if (FMF.isFast())
8650       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8651     else
8652       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8653     break;
8654   case Intrinsic::experimental_vector_reduce_add:
8655     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8656     break;
8657   case Intrinsic::experimental_vector_reduce_mul:
8658     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8659     break;
8660   case Intrinsic::experimental_vector_reduce_and:
8661     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8662     break;
8663   case Intrinsic::experimental_vector_reduce_or:
8664     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8665     break;
8666   case Intrinsic::experimental_vector_reduce_xor:
8667     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8668     break;
8669   case Intrinsic::experimental_vector_reduce_smax:
8670     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8671     break;
8672   case Intrinsic::experimental_vector_reduce_smin:
8673     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8674     break;
8675   case Intrinsic::experimental_vector_reduce_umax:
8676     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8677     break;
8678   case Intrinsic::experimental_vector_reduce_umin:
8679     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8680     break;
8681   case Intrinsic::experimental_vector_reduce_fmax:
8682     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8683     break;
8684   case Intrinsic::experimental_vector_reduce_fmin:
8685     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8686     break;
8687   default:
8688     llvm_unreachable("Unhandled vector reduce intrinsic");
8689   }
8690   setValue(&I, Res);
8691 }
8692 
8693 /// Returns an AttributeList representing the attributes applied to the return
8694 /// value of the given call.
8695 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8696   SmallVector<Attribute::AttrKind, 2> Attrs;
8697   if (CLI.RetSExt)
8698     Attrs.push_back(Attribute::SExt);
8699   if (CLI.RetZExt)
8700     Attrs.push_back(Attribute::ZExt);
8701   if (CLI.IsInReg)
8702     Attrs.push_back(Attribute::InReg);
8703 
8704   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8705                             Attrs);
8706 }
8707 
8708 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8709 /// implementation, which just calls LowerCall.
8710 /// FIXME: When all targets are
8711 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8712 std::pair<SDValue, SDValue>
8713 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8714   // Handle the incoming return values from the call.
8715   CLI.Ins.clear();
8716   Type *OrigRetTy = CLI.RetTy;
8717   SmallVector<EVT, 4> RetTys;
8718   SmallVector<uint64_t, 4> Offsets;
8719   auto &DL = CLI.DAG.getDataLayout();
8720   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8721 
8722   if (CLI.IsPostTypeLegalization) {
8723     // If we are lowering a libcall after legalization, split the return type.
8724     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8725     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8726     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8727       EVT RetVT = OldRetTys[i];
8728       uint64_t Offset = OldOffsets[i];
8729       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8730       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8731       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8732       RetTys.append(NumRegs, RegisterVT);
8733       for (unsigned j = 0; j != NumRegs; ++j)
8734         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8735     }
8736   }
8737 
8738   SmallVector<ISD::OutputArg, 4> Outs;
8739   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8740 
8741   bool CanLowerReturn =
8742       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8743                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8744 
8745   SDValue DemoteStackSlot;
8746   int DemoteStackIdx = -100;
8747   if (!CanLowerReturn) {
8748     // FIXME: equivalent assert?
8749     // assert(!CS.hasInAllocaArgument() &&
8750     //        "sret demotion is incompatible with inalloca");
8751     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8752     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8753     MachineFunction &MF = CLI.DAG.getMachineFunction();
8754     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8755     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8756                                               DL.getAllocaAddrSpace());
8757 
8758     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8759     ArgListEntry Entry;
8760     Entry.Node = DemoteStackSlot;
8761     Entry.Ty = StackSlotPtrType;
8762     Entry.IsSExt = false;
8763     Entry.IsZExt = false;
8764     Entry.IsInReg = false;
8765     Entry.IsSRet = true;
8766     Entry.IsNest = false;
8767     Entry.IsByVal = false;
8768     Entry.IsReturned = false;
8769     Entry.IsSwiftSelf = false;
8770     Entry.IsSwiftError = false;
8771     Entry.Alignment = Align;
8772     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8773     CLI.NumFixedArgs += 1;
8774     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8775 
8776     // sret demotion isn't compatible with tail-calls, since the sret argument
8777     // points into the callers stack frame.
8778     CLI.IsTailCall = false;
8779   } else {
8780     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8781       EVT VT = RetTys[I];
8782       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8783                                                      CLI.CallConv, VT);
8784       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8785                                                        CLI.CallConv, VT);
8786       for (unsigned i = 0; i != NumRegs; ++i) {
8787         ISD::InputArg MyFlags;
8788         MyFlags.VT = RegisterVT;
8789         MyFlags.ArgVT = VT;
8790         MyFlags.Used = CLI.IsReturnValueUsed;
8791         if (CLI.RetSExt)
8792           MyFlags.Flags.setSExt();
8793         if (CLI.RetZExt)
8794           MyFlags.Flags.setZExt();
8795         if (CLI.IsInReg)
8796           MyFlags.Flags.setInReg();
8797         CLI.Ins.push_back(MyFlags);
8798       }
8799     }
8800   }
8801 
8802   // We push in swifterror return as the last element of CLI.Ins.
8803   ArgListTy &Args = CLI.getArgs();
8804   if (supportSwiftError()) {
8805     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8806       if (Args[i].IsSwiftError) {
8807         ISD::InputArg MyFlags;
8808         MyFlags.VT = getPointerTy(DL);
8809         MyFlags.ArgVT = EVT(getPointerTy(DL));
8810         MyFlags.Flags.setSwiftError();
8811         CLI.Ins.push_back(MyFlags);
8812       }
8813     }
8814   }
8815 
8816   // Handle all of the outgoing arguments.
8817   CLI.Outs.clear();
8818   CLI.OutVals.clear();
8819   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8820     SmallVector<EVT, 4> ValueVTs;
8821     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8822     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8823     Type *FinalType = Args[i].Ty;
8824     if (Args[i].IsByVal)
8825       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8826     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8827         FinalType, CLI.CallConv, CLI.IsVarArg);
8828     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8829          ++Value) {
8830       EVT VT = ValueVTs[Value];
8831       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8832       SDValue Op = SDValue(Args[i].Node.getNode(),
8833                            Args[i].Node.getResNo() + Value);
8834       ISD::ArgFlagsTy Flags;
8835 
8836       // Certain targets (such as MIPS), may have a different ABI alignment
8837       // for a type depending on the context. Give the target a chance to
8838       // specify the alignment it wants.
8839       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8840 
8841       if (Args[i].IsZExt)
8842         Flags.setZExt();
8843       if (Args[i].IsSExt)
8844         Flags.setSExt();
8845       if (Args[i].IsInReg) {
8846         // If we are using vectorcall calling convention, a structure that is
8847         // passed InReg - is surely an HVA
8848         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8849             isa<StructType>(FinalType)) {
8850           // The first value of a structure is marked
8851           if (0 == Value)
8852             Flags.setHvaStart();
8853           Flags.setHva();
8854         }
8855         // Set InReg Flag
8856         Flags.setInReg();
8857       }
8858       if (Args[i].IsSRet)
8859         Flags.setSRet();
8860       if (Args[i].IsSwiftSelf)
8861         Flags.setSwiftSelf();
8862       if (Args[i].IsSwiftError)
8863         Flags.setSwiftError();
8864       if (Args[i].IsByVal)
8865         Flags.setByVal();
8866       if (Args[i].IsInAlloca) {
8867         Flags.setInAlloca();
8868         // Set the byval flag for CCAssignFn callbacks that don't know about
8869         // inalloca.  This way we can know how many bytes we should've allocated
8870         // and how many bytes a callee cleanup function will pop.  If we port
8871         // inalloca to more targets, we'll have to add custom inalloca handling
8872         // in the various CC lowering callbacks.
8873         Flags.setByVal();
8874       }
8875       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8876         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8877         Type *ElementTy = Ty->getElementType();
8878         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8879         // For ByVal, alignment should come from FE.  BE will guess if this
8880         // info is not there but there are cases it cannot get right.
8881         unsigned FrameAlign;
8882         if (Args[i].Alignment)
8883           FrameAlign = Args[i].Alignment;
8884         else
8885           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8886         Flags.setByValAlign(FrameAlign);
8887       }
8888       if (Args[i].IsNest)
8889         Flags.setNest();
8890       if (NeedsRegBlock)
8891         Flags.setInConsecutiveRegs();
8892       Flags.setOrigAlign(OriginalAlignment);
8893 
8894       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8895                                                  CLI.CallConv, VT);
8896       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8897                                                         CLI.CallConv, VT);
8898       SmallVector<SDValue, 4> Parts(NumParts);
8899       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8900 
8901       if (Args[i].IsSExt)
8902         ExtendKind = ISD::SIGN_EXTEND;
8903       else if (Args[i].IsZExt)
8904         ExtendKind = ISD::ZERO_EXTEND;
8905 
8906       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8907       // for now.
8908       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8909           CanLowerReturn) {
8910         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8911                "unexpected use of 'returned'");
8912         // Before passing 'returned' to the target lowering code, ensure that
8913         // either the register MVT and the actual EVT are the same size or that
8914         // the return value and argument are extended in the same way; in these
8915         // cases it's safe to pass the argument register value unchanged as the
8916         // return register value (although it's at the target's option whether
8917         // to do so)
8918         // TODO: allow code generation to take advantage of partially preserved
8919         // registers rather than clobbering the entire register when the
8920         // parameter extension method is not compatible with the return
8921         // extension method
8922         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8923             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8924              CLI.RetZExt == Args[i].IsZExt))
8925           Flags.setReturned();
8926       }
8927 
8928       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8929                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8930 
8931       for (unsigned j = 0; j != NumParts; ++j) {
8932         // if it isn't first piece, alignment must be 1
8933         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8934                                i < CLI.NumFixedArgs,
8935                                i, j*Parts[j].getValueType().getStoreSize());
8936         if (NumParts > 1 && j == 0)
8937           MyFlags.Flags.setSplit();
8938         else if (j != 0) {
8939           MyFlags.Flags.setOrigAlign(1);
8940           if (j == NumParts - 1)
8941             MyFlags.Flags.setSplitEnd();
8942         }
8943 
8944         CLI.Outs.push_back(MyFlags);
8945         CLI.OutVals.push_back(Parts[j]);
8946       }
8947 
8948       if (NeedsRegBlock && Value == NumValues - 1)
8949         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8950     }
8951   }
8952 
8953   SmallVector<SDValue, 4> InVals;
8954   CLI.Chain = LowerCall(CLI, InVals);
8955 
8956   // Update CLI.InVals to use outside of this function.
8957   CLI.InVals = InVals;
8958 
8959   // Verify that the target's LowerCall behaved as expected.
8960   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8961          "LowerCall didn't return a valid chain!");
8962   assert((!CLI.IsTailCall || InVals.empty()) &&
8963          "LowerCall emitted a return value for a tail call!");
8964   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8965          "LowerCall didn't emit the correct number of values!");
8966 
8967   // For a tail call, the return value is merely live-out and there aren't
8968   // any nodes in the DAG representing it. Return a special value to
8969   // indicate that a tail call has been emitted and no more Instructions
8970   // should be processed in the current block.
8971   if (CLI.IsTailCall) {
8972     CLI.DAG.setRoot(CLI.Chain);
8973     return std::make_pair(SDValue(), SDValue());
8974   }
8975 
8976 #ifndef NDEBUG
8977   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8978     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8979     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8980            "LowerCall emitted a value with the wrong type!");
8981   }
8982 #endif
8983 
8984   SmallVector<SDValue, 4> ReturnValues;
8985   if (!CanLowerReturn) {
8986     // The instruction result is the result of loading from the
8987     // hidden sret parameter.
8988     SmallVector<EVT, 1> PVTs;
8989     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8990 
8991     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8992     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8993     EVT PtrVT = PVTs[0];
8994 
8995     unsigned NumValues = RetTys.size();
8996     ReturnValues.resize(NumValues);
8997     SmallVector<SDValue, 4> Chains(NumValues);
8998 
8999     // An aggregate return value cannot wrap around the address space, so
9000     // offsets to its parts don't wrap either.
9001     SDNodeFlags Flags;
9002     Flags.setNoUnsignedWrap(true);
9003 
9004     for (unsigned i = 0; i < NumValues; ++i) {
9005       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9006                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9007                                                         PtrVT), Flags);
9008       SDValue L = CLI.DAG.getLoad(
9009           RetTys[i], CLI.DL, CLI.Chain, Add,
9010           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9011                                             DemoteStackIdx, Offsets[i]),
9012           /* Alignment = */ 1);
9013       ReturnValues[i] = L;
9014       Chains[i] = L.getValue(1);
9015     }
9016 
9017     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9018   } else {
9019     // Collect the legal value parts into potentially illegal values
9020     // that correspond to the original function's return values.
9021     Optional<ISD::NodeType> AssertOp;
9022     if (CLI.RetSExt)
9023       AssertOp = ISD::AssertSext;
9024     else if (CLI.RetZExt)
9025       AssertOp = ISD::AssertZext;
9026     unsigned CurReg = 0;
9027     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9028       EVT VT = RetTys[I];
9029       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9030                                                      CLI.CallConv, VT);
9031       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9032                                                        CLI.CallConv, VT);
9033 
9034       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9035                                               NumRegs, RegisterVT, VT, nullptr,
9036                                               CLI.CallConv, AssertOp));
9037       CurReg += NumRegs;
9038     }
9039 
9040     // For a function returning void, there is no return value. We can't create
9041     // such a node, so we just return a null return value in that case. In
9042     // that case, nothing will actually look at the value.
9043     if (ReturnValues.empty())
9044       return std::make_pair(SDValue(), CLI.Chain);
9045   }
9046 
9047   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9048                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9049   return std::make_pair(Res, CLI.Chain);
9050 }
9051 
9052 void TargetLowering::LowerOperationWrapper(SDNode *N,
9053                                            SmallVectorImpl<SDValue> &Results,
9054                                            SelectionDAG &DAG) const {
9055   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9056     Results.push_back(Res);
9057 }
9058 
9059 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9060   llvm_unreachable("LowerOperation not implemented for this target!");
9061 }
9062 
9063 void
9064 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9065   SDValue Op = getNonRegisterValue(V);
9066   assert((Op.getOpcode() != ISD::CopyFromReg ||
9067           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9068          "Copy from a reg to the same reg!");
9069   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9070 
9071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9072   // If this is an InlineAsm we have to match the registers required, not the
9073   // notional registers required by the type.
9074 
9075   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9076                    None); // This is not an ABI copy.
9077   SDValue Chain = DAG.getEntryNode();
9078 
9079   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9080                               FuncInfo.PreferredExtendType.end())
9081                                  ? ISD::ANY_EXTEND
9082                                  : FuncInfo.PreferredExtendType[V];
9083   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9084   PendingExports.push_back(Chain);
9085 }
9086 
9087 #include "llvm/CodeGen/SelectionDAGISel.h"
9088 
9089 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9090 /// entry block, return true.  This includes arguments used by switches, since
9091 /// the switch may expand into multiple basic blocks.
9092 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9093   // With FastISel active, we may be splitting blocks, so force creation
9094   // of virtual registers for all non-dead arguments.
9095   if (FastISel)
9096     return A->use_empty();
9097 
9098   const BasicBlock &Entry = A->getParent()->front();
9099   for (const User *U : A->users())
9100     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9101       return false;  // Use not in entry block.
9102 
9103   return true;
9104 }
9105 
9106 using ArgCopyElisionMapTy =
9107     DenseMap<const Argument *,
9108              std::pair<const AllocaInst *, const StoreInst *>>;
9109 
9110 /// Scan the entry block of the function in FuncInfo for arguments that look
9111 /// like copies into a local alloca. Record any copied arguments in
9112 /// ArgCopyElisionCandidates.
9113 static void
9114 findArgumentCopyElisionCandidates(const DataLayout &DL,
9115                                   FunctionLoweringInfo *FuncInfo,
9116                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9117   // Record the state of every static alloca used in the entry block. Argument
9118   // allocas are all used in the entry block, so we need approximately as many
9119   // entries as we have arguments.
9120   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9121   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9122   unsigned NumArgs = FuncInfo->Fn->arg_size();
9123   StaticAllocas.reserve(NumArgs * 2);
9124 
9125   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9126     if (!V)
9127       return nullptr;
9128     V = V->stripPointerCasts();
9129     const auto *AI = dyn_cast<AllocaInst>(V);
9130     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9131       return nullptr;
9132     auto Iter = StaticAllocas.insert({AI, Unknown});
9133     return &Iter.first->second;
9134   };
9135 
9136   // Look for stores of arguments to static allocas. Look through bitcasts and
9137   // GEPs to handle type coercions, as long as the alloca is fully initialized
9138   // by the store. Any non-store use of an alloca escapes it and any subsequent
9139   // unanalyzed store might write it.
9140   // FIXME: Handle structs initialized with multiple stores.
9141   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9142     // Look for stores, and handle non-store uses conservatively.
9143     const auto *SI = dyn_cast<StoreInst>(&I);
9144     if (!SI) {
9145       // We will look through cast uses, so ignore them completely.
9146       if (I.isCast())
9147         continue;
9148       // Ignore debug info intrinsics, they don't escape or store to allocas.
9149       if (isa<DbgInfoIntrinsic>(I))
9150         continue;
9151       // This is an unknown instruction. Assume it escapes or writes to all
9152       // static alloca operands.
9153       for (const Use &U : I.operands()) {
9154         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9155           *Info = StaticAllocaInfo::Clobbered;
9156       }
9157       continue;
9158     }
9159 
9160     // If the stored value is a static alloca, mark it as escaped.
9161     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9162       *Info = StaticAllocaInfo::Clobbered;
9163 
9164     // Check if the destination is a static alloca.
9165     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9166     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9167     if (!Info)
9168       continue;
9169     const AllocaInst *AI = cast<AllocaInst>(Dst);
9170 
9171     // Skip allocas that have been initialized or clobbered.
9172     if (*Info != StaticAllocaInfo::Unknown)
9173       continue;
9174 
9175     // Check if the stored value is an argument, and that this store fully
9176     // initializes the alloca. Don't elide copies from the same argument twice.
9177     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9178     const auto *Arg = dyn_cast<Argument>(Val);
9179     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9180         Arg->getType()->isEmptyTy() ||
9181         DL.getTypeStoreSize(Arg->getType()) !=
9182             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9183         ArgCopyElisionCandidates.count(Arg)) {
9184       *Info = StaticAllocaInfo::Clobbered;
9185       continue;
9186     }
9187 
9188     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9189                       << '\n');
9190 
9191     // Mark this alloca and store for argument copy elision.
9192     *Info = StaticAllocaInfo::Elidable;
9193     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9194 
9195     // Stop scanning if we've seen all arguments. This will happen early in -O0
9196     // builds, which is useful, because -O0 builds have large entry blocks and
9197     // many allocas.
9198     if (ArgCopyElisionCandidates.size() == NumArgs)
9199       break;
9200   }
9201 }
9202 
9203 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9204 /// ArgVal is a load from a suitable fixed stack object.
9205 static void tryToElideArgumentCopy(
9206     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9207     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9208     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9209     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9210     SDValue ArgVal, bool &ArgHasUses) {
9211   // Check if this is a load from a fixed stack object.
9212   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9213   if (!LNode)
9214     return;
9215   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9216   if (!FINode)
9217     return;
9218 
9219   // Check that the fixed stack object is the right size and alignment.
9220   // Look at the alignment that the user wrote on the alloca instead of looking
9221   // at the stack object.
9222   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9223   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9224   const AllocaInst *AI = ArgCopyIter->second.first;
9225   int FixedIndex = FINode->getIndex();
9226   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9227   int OldIndex = AllocaIndex;
9228   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9229   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9230     LLVM_DEBUG(
9231         dbgs() << "  argument copy elision failed due to bad fixed stack "
9232                   "object size\n");
9233     return;
9234   }
9235   unsigned RequiredAlignment = AI->getAlignment();
9236   if (!RequiredAlignment) {
9237     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9238         AI->getAllocatedType());
9239   }
9240   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9241     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9242                          "greater than stack argument alignment ("
9243                       << RequiredAlignment << " vs "
9244                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9245     return;
9246   }
9247 
9248   // Perform the elision. Delete the old stack object and replace its only use
9249   // in the variable info map. Mark the stack object as mutable.
9250   LLVM_DEBUG({
9251     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9252            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9253            << '\n';
9254   });
9255   MFI.RemoveStackObject(OldIndex);
9256   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9257   AllocaIndex = FixedIndex;
9258   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9259   Chains.push_back(ArgVal.getValue(1));
9260 
9261   // Avoid emitting code for the store implementing the copy.
9262   const StoreInst *SI = ArgCopyIter->second.second;
9263   ElidedArgCopyInstrs.insert(SI);
9264 
9265   // Check for uses of the argument again so that we can avoid exporting ArgVal
9266   // if it is't used by anything other than the store.
9267   for (const Value *U : Arg.users()) {
9268     if (U != SI) {
9269       ArgHasUses = true;
9270       break;
9271     }
9272   }
9273 }
9274 
9275 void SelectionDAGISel::LowerArguments(const Function &F) {
9276   SelectionDAG &DAG = SDB->DAG;
9277   SDLoc dl = SDB->getCurSDLoc();
9278   const DataLayout &DL = DAG.getDataLayout();
9279   SmallVector<ISD::InputArg, 16> Ins;
9280 
9281   if (!FuncInfo->CanLowerReturn) {
9282     // Put in an sret pointer parameter before all the other parameters.
9283     SmallVector<EVT, 1> ValueVTs;
9284     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9285                     F.getReturnType()->getPointerTo(
9286                         DAG.getDataLayout().getAllocaAddrSpace()),
9287                     ValueVTs);
9288 
9289     // NOTE: Assuming that a pointer will never break down to more than one VT
9290     // or one register.
9291     ISD::ArgFlagsTy Flags;
9292     Flags.setSRet();
9293     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9294     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9295                          ISD::InputArg::NoArgIndex, 0);
9296     Ins.push_back(RetArg);
9297   }
9298 
9299   // Look for stores of arguments to static allocas. Mark such arguments with a
9300   // flag to ask the target to give us the memory location of that argument if
9301   // available.
9302   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9303   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9304 
9305   // Set up the incoming argument description vector.
9306   for (const Argument &Arg : F.args()) {
9307     unsigned ArgNo = Arg.getArgNo();
9308     SmallVector<EVT, 4> ValueVTs;
9309     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9310     bool isArgValueUsed = !Arg.use_empty();
9311     unsigned PartBase = 0;
9312     Type *FinalType = Arg.getType();
9313     if (Arg.hasAttribute(Attribute::ByVal))
9314       FinalType = cast<PointerType>(FinalType)->getElementType();
9315     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9316         FinalType, F.getCallingConv(), F.isVarArg());
9317     for (unsigned Value = 0, NumValues = ValueVTs.size();
9318          Value != NumValues; ++Value) {
9319       EVT VT = ValueVTs[Value];
9320       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9321       ISD::ArgFlagsTy Flags;
9322 
9323       // Certain targets (such as MIPS), may have a different ABI alignment
9324       // for a type depending on the context. Give the target a chance to
9325       // specify the alignment it wants.
9326       unsigned OriginalAlignment =
9327           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9328 
9329       if (Arg.hasAttribute(Attribute::ZExt))
9330         Flags.setZExt();
9331       if (Arg.hasAttribute(Attribute::SExt))
9332         Flags.setSExt();
9333       if (Arg.hasAttribute(Attribute::InReg)) {
9334         // If we are using vectorcall calling convention, a structure that is
9335         // passed InReg - is surely an HVA
9336         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9337             isa<StructType>(Arg.getType())) {
9338           // The first value of a structure is marked
9339           if (0 == Value)
9340             Flags.setHvaStart();
9341           Flags.setHva();
9342         }
9343         // Set InReg Flag
9344         Flags.setInReg();
9345       }
9346       if (Arg.hasAttribute(Attribute::StructRet))
9347         Flags.setSRet();
9348       if (Arg.hasAttribute(Attribute::SwiftSelf))
9349         Flags.setSwiftSelf();
9350       if (Arg.hasAttribute(Attribute::SwiftError))
9351         Flags.setSwiftError();
9352       if (Arg.hasAttribute(Attribute::ByVal))
9353         Flags.setByVal();
9354       if (Arg.hasAttribute(Attribute::InAlloca)) {
9355         Flags.setInAlloca();
9356         // Set the byval flag for CCAssignFn callbacks that don't know about
9357         // inalloca.  This way we can know how many bytes we should've allocated
9358         // and how many bytes a callee cleanup function will pop.  If we port
9359         // inalloca to more targets, we'll have to add custom inalloca handling
9360         // in the various CC lowering callbacks.
9361         Flags.setByVal();
9362       }
9363       if (F.getCallingConv() == CallingConv::X86_INTR) {
9364         // IA Interrupt passes frame (1st parameter) by value in the stack.
9365         if (ArgNo == 0)
9366           Flags.setByVal();
9367       }
9368       if (Flags.isByVal() || Flags.isInAlloca()) {
9369         PointerType *Ty = cast<PointerType>(Arg.getType());
9370         Type *ElementTy = Ty->getElementType();
9371         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9372         // For ByVal, alignment should be passed from FE.  BE will guess if
9373         // this info is not there but there are cases it cannot get right.
9374         unsigned FrameAlign;
9375         if (Arg.getParamAlignment())
9376           FrameAlign = Arg.getParamAlignment();
9377         else
9378           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9379         Flags.setByValAlign(FrameAlign);
9380       }
9381       if (Arg.hasAttribute(Attribute::Nest))
9382         Flags.setNest();
9383       if (NeedsRegBlock)
9384         Flags.setInConsecutiveRegs();
9385       Flags.setOrigAlign(OriginalAlignment);
9386       if (ArgCopyElisionCandidates.count(&Arg))
9387         Flags.setCopyElisionCandidate();
9388 
9389       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9390           *CurDAG->getContext(), F.getCallingConv(), VT);
9391       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9392           *CurDAG->getContext(), F.getCallingConv(), VT);
9393       for (unsigned i = 0; i != NumRegs; ++i) {
9394         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9395                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9396         if (NumRegs > 1 && i == 0)
9397           MyFlags.Flags.setSplit();
9398         // if it isn't first piece, alignment must be 1
9399         else if (i > 0) {
9400           MyFlags.Flags.setOrigAlign(1);
9401           if (i == NumRegs - 1)
9402             MyFlags.Flags.setSplitEnd();
9403         }
9404         Ins.push_back(MyFlags);
9405       }
9406       if (NeedsRegBlock && Value == NumValues - 1)
9407         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9408       PartBase += VT.getStoreSize();
9409     }
9410   }
9411 
9412   // Call the target to set up the argument values.
9413   SmallVector<SDValue, 8> InVals;
9414   SDValue NewRoot = TLI->LowerFormalArguments(
9415       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9416 
9417   // Verify that the target's LowerFormalArguments behaved as expected.
9418   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9419          "LowerFormalArguments didn't return a valid chain!");
9420   assert(InVals.size() == Ins.size() &&
9421          "LowerFormalArguments didn't emit the correct number of values!");
9422   LLVM_DEBUG({
9423     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9424       assert(InVals[i].getNode() &&
9425              "LowerFormalArguments emitted a null value!");
9426       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9427              "LowerFormalArguments emitted a value with the wrong type!");
9428     }
9429   });
9430 
9431   // Update the DAG with the new chain value resulting from argument lowering.
9432   DAG.setRoot(NewRoot);
9433 
9434   // Set up the argument values.
9435   unsigned i = 0;
9436   if (!FuncInfo->CanLowerReturn) {
9437     // Create a virtual register for the sret pointer, and put in a copy
9438     // from the sret argument into it.
9439     SmallVector<EVT, 1> ValueVTs;
9440     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9441                     F.getReturnType()->getPointerTo(
9442                         DAG.getDataLayout().getAllocaAddrSpace()),
9443                     ValueVTs);
9444     MVT VT = ValueVTs[0].getSimpleVT();
9445     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9446     Optional<ISD::NodeType> AssertOp = None;
9447     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9448                                         nullptr, F.getCallingConv(), AssertOp);
9449 
9450     MachineFunction& MF = SDB->DAG.getMachineFunction();
9451     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9452     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9453     FuncInfo->DemoteRegister = SRetReg;
9454     NewRoot =
9455         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9456     DAG.setRoot(NewRoot);
9457 
9458     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9459     ++i;
9460   }
9461 
9462   SmallVector<SDValue, 4> Chains;
9463   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9464   for (const Argument &Arg : F.args()) {
9465     SmallVector<SDValue, 4> ArgValues;
9466     SmallVector<EVT, 4> ValueVTs;
9467     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9468     unsigned NumValues = ValueVTs.size();
9469     if (NumValues == 0)
9470       continue;
9471 
9472     bool ArgHasUses = !Arg.use_empty();
9473 
9474     // Elide the copying store if the target loaded this argument from a
9475     // suitable fixed stack object.
9476     if (Ins[i].Flags.isCopyElisionCandidate()) {
9477       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9478                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9479                              InVals[i], ArgHasUses);
9480     }
9481 
9482     // If this argument is unused then remember its value. It is used to generate
9483     // debugging information.
9484     bool isSwiftErrorArg =
9485         TLI->supportSwiftError() &&
9486         Arg.hasAttribute(Attribute::SwiftError);
9487     if (!ArgHasUses && !isSwiftErrorArg) {
9488       SDB->setUnusedArgValue(&Arg, InVals[i]);
9489 
9490       // Also remember any frame index for use in FastISel.
9491       if (FrameIndexSDNode *FI =
9492           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9493         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9494     }
9495 
9496     for (unsigned Val = 0; Val != NumValues; ++Val) {
9497       EVT VT = ValueVTs[Val];
9498       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9499                                                       F.getCallingConv(), VT);
9500       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9501           *CurDAG->getContext(), F.getCallingConv(), VT);
9502 
9503       // Even an apparant 'unused' swifterror argument needs to be returned. So
9504       // we do generate a copy for it that can be used on return from the
9505       // function.
9506       if (ArgHasUses || isSwiftErrorArg) {
9507         Optional<ISD::NodeType> AssertOp;
9508         if (Arg.hasAttribute(Attribute::SExt))
9509           AssertOp = ISD::AssertSext;
9510         else if (Arg.hasAttribute(Attribute::ZExt))
9511           AssertOp = ISD::AssertZext;
9512 
9513         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9514                                              PartVT, VT, nullptr,
9515                                              F.getCallingConv(), AssertOp));
9516       }
9517 
9518       i += NumParts;
9519     }
9520 
9521     // We don't need to do anything else for unused arguments.
9522     if (ArgValues.empty())
9523       continue;
9524 
9525     // Note down frame index.
9526     if (FrameIndexSDNode *FI =
9527         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9528       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9529 
9530     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9531                                      SDB->getCurSDLoc());
9532 
9533     SDB->setValue(&Arg, Res);
9534     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9535       // We want to associate the argument with the frame index, among
9536       // involved operands, that correspond to the lowest address. The
9537       // getCopyFromParts function, called earlier, is swapping the order of
9538       // the operands to BUILD_PAIR depending on endianness. The result of
9539       // that swapping is that the least significant bits of the argument will
9540       // be in the first operand of the BUILD_PAIR node, and the most
9541       // significant bits will be in the second operand.
9542       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9543       if (LoadSDNode *LNode =
9544           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9545         if (FrameIndexSDNode *FI =
9546             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9547           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9548     }
9549 
9550     // Update the SwiftErrorVRegDefMap.
9551     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9552       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9553       if (TargetRegisterInfo::isVirtualRegister(Reg))
9554         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9555                                            FuncInfo->SwiftErrorArg, Reg);
9556     }
9557 
9558     // If this argument is live outside of the entry block, insert a copy from
9559     // wherever we got it to the vreg that other BB's will reference it as.
9560     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9561       // If we can, though, try to skip creating an unnecessary vreg.
9562       // FIXME: This isn't very clean... it would be nice to make this more
9563       // general.  It's also subtly incompatible with the hacks FastISel
9564       // uses with vregs.
9565       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9566       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9567         FuncInfo->ValueMap[&Arg] = Reg;
9568         continue;
9569       }
9570     }
9571     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9572       FuncInfo->InitializeRegForValue(&Arg);
9573       SDB->CopyToExportRegsIfNeeded(&Arg);
9574     }
9575   }
9576 
9577   if (!Chains.empty()) {
9578     Chains.push_back(NewRoot);
9579     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9580   }
9581 
9582   DAG.setRoot(NewRoot);
9583 
9584   assert(i == InVals.size() && "Argument register count mismatch!");
9585 
9586   // If any argument copy elisions occurred and we have debug info, update the
9587   // stale frame indices used in the dbg.declare variable info table.
9588   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9589   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9590     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9591       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9592       if (I != ArgCopyElisionFrameIndexMap.end())
9593         VI.Slot = I->second;
9594     }
9595   }
9596 
9597   // Finally, if the target has anything special to do, allow it to do so.
9598   EmitFunctionEntryCode();
9599 }
9600 
9601 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9602 /// ensure constants are generated when needed.  Remember the virtual registers
9603 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9604 /// directly add them, because expansion might result in multiple MBB's for one
9605 /// BB.  As such, the start of the BB might correspond to a different MBB than
9606 /// the end.
9607 void
9608 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9609   const Instruction *TI = LLVMBB->getTerminator();
9610 
9611   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9612 
9613   // Check PHI nodes in successors that expect a value to be available from this
9614   // block.
9615   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9616     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9617     if (!isa<PHINode>(SuccBB->begin())) continue;
9618     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9619 
9620     // If this terminator has multiple identical successors (common for
9621     // switches), only handle each succ once.
9622     if (!SuccsHandled.insert(SuccMBB).second)
9623       continue;
9624 
9625     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9626 
9627     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9628     // nodes and Machine PHI nodes, but the incoming operands have not been
9629     // emitted yet.
9630     for (const PHINode &PN : SuccBB->phis()) {
9631       // Ignore dead phi's.
9632       if (PN.use_empty())
9633         continue;
9634 
9635       // Skip empty types
9636       if (PN.getType()->isEmptyTy())
9637         continue;
9638 
9639       unsigned Reg;
9640       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9641 
9642       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9643         unsigned &RegOut = ConstantsOut[C];
9644         if (RegOut == 0) {
9645           RegOut = FuncInfo.CreateRegs(C->getType());
9646           CopyValueToVirtualRegister(C, RegOut);
9647         }
9648         Reg = RegOut;
9649       } else {
9650         DenseMap<const Value *, unsigned>::iterator I =
9651           FuncInfo.ValueMap.find(PHIOp);
9652         if (I != FuncInfo.ValueMap.end())
9653           Reg = I->second;
9654         else {
9655           assert(isa<AllocaInst>(PHIOp) &&
9656                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9657                  "Didn't codegen value into a register!??");
9658           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9659           CopyValueToVirtualRegister(PHIOp, Reg);
9660         }
9661       }
9662 
9663       // Remember that this register needs to added to the machine PHI node as
9664       // the input for this MBB.
9665       SmallVector<EVT, 4> ValueVTs;
9666       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9667       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9668       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9669         EVT VT = ValueVTs[vti];
9670         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9671         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9672           FuncInfo.PHINodesToUpdate.push_back(
9673               std::make_pair(&*MBBI++, Reg + i));
9674         Reg += NumRegisters;
9675       }
9676     }
9677   }
9678 
9679   ConstantsOut.clear();
9680 }
9681 
9682 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9683 /// is 0.
9684 MachineBasicBlock *
9685 SelectionDAGBuilder::StackProtectorDescriptor::
9686 AddSuccessorMBB(const BasicBlock *BB,
9687                 MachineBasicBlock *ParentMBB,
9688                 bool IsLikely,
9689                 MachineBasicBlock *SuccMBB) {
9690   // If SuccBB has not been created yet, create it.
9691   if (!SuccMBB) {
9692     MachineFunction *MF = ParentMBB->getParent();
9693     MachineFunction::iterator BBI(ParentMBB);
9694     SuccMBB = MF->CreateMachineBasicBlock(BB);
9695     MF->insert(++BBI, SuccMBB);
9696   }
9697   // Add it as a successor of ParentMBB.
9698   ParentMBB->addSuccessor(
9699       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9700   return SuccMBB;
9701 }
9702 
9703 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9704   MachineFunction::iterator I(MBB);
9705   if (++I == FuncInfo.MF->end())
9706     return nullptr;
9707   return &*I;
9708 }
9709 
9710 /// During lowering new call nodes can be created (such as memset, etc.).
9711 /// Those will become new roots of the current DAG, but complications arise
9712 /// when they are tail calls. In such cases, the call lowering will update
9713 /// the root, but the builder still needs to know that a tail call has been
9714 /// lowered in order to avoid generating an additional return.
9715 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9716   // If the node is null, we do have a tail call.
9717   if (MaybeTC.getNode() != nullptr)
9718     DAG.setRoot(MaybeTC);
9719   else
9720     HasTailCall = true;
9721 }
9722 
9723 uint64_t
9724 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9725                                        unsigned First, unsigned Last) const {
9726   assert(Last >= First);
9727   const APInt &LowCase = Clusters[First].Low->getValue();
9728   const APInt &HighCase = Clusters[Last].High->getValue();
9729   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9730 
9731   // FIXME: A range of consecutive cases has 100% density, but only requires one
9732   // comparison to lower. We should discriminate against such consecutive ranges
9733   // in jump tables.
9734 
9735   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9736 }
9737 
9738 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9739     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9740     unsigned Last) const {
9741   assert(Last >= First);
9742   assert(TotalCases[Last] >= TotalCases[First]);
9743   uint64_t NumCases =
9744       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9745   return NumCases;
9746 }
9747 
9748 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9749                                          unsigned First, unsigned Last,
9750                                          const SwitchInst *SI,
9751                                          MachineBasicBlock *DefaultMBB,
9752                                          CaseCluster &JTCluster) {
9753   assert(First <= Last);
9754 
9755   auto Prob = BranchProbability::getZero();
9756   unsigned NumCmps = 0;
9757   std::vector<MachineBasicBlock*> Table;
9758   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9759 
9760   // Initialize probabilities in JTProbs.
9761   for (unsigned I = First; I <= Last; ++I)
9762     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9763 
9764   for (unsigned I = First; I <= Last; ++I) {
9765     assert(Clusters[I].Kind == CC_Range);
9766     Prob += Clusters[I].Prob;
9767     const APInt &Low = Clusters[I].Low->getValue();
9768     const APInt &High = Clusters[I].High->getValue();
9769     NumCmps += (Low == High) ? 1 : 2;
9770     if (I != First) {
9771       // Fill the gap between this and the previous cluster.
9772       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9773       assert(PreviousHigh.slt(Low));
9774       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9775       for (uint64_t J = 0; J < Gap; J++)
9776         Table.push_back(DefaultMBB);
9777     }
9778     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9779     for (uint64_t J = 0; J < ClusterSize; ++J)
9780       Table.push_back(Clusters[I].MBB);
9781     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9782   }
9783 
9784   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9785   unsigned NumDests = JTProbs.size();
9786   if (TLI.isSuitableForBitTests(
9787           NumDests, NumCmps, Clusters[First].Low->getValue(),
9788           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9789     // Clusters[First..Last] should be lowered as bit tests instead.
9790     return false;
9791   }
9792 
9793   // Create the MBB that will load from and jump through the table.
9794   // Note: We create it here, but it's not inserted into the function yet.
9795   MachineFunction *CurMF = FuncInfo.MF;
9796   MachineBasicBlock *JumpTableMBB =
9797       CurMF->CreateMachineBasicBlock(SI->getParent());
9798 
9799   // Add successors. Note: use table order for determinism.
9800   SmallPtrSet<MachineBasicBlock *, 8> Done;
9801   for (MachineBasicBlock *Succ : Table) {
9802     if (Done.count(Succ))
9803       continue;
9804     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9805     Done.insert(Succ);
9806   }
9807   JumpTableMBB->normalizeSuccProbs();
9808 
9809   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9810                      ->createJumpTableIndex(Table);
9811 
9812   // Set up the jump table info.
9813   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9814   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9815                       Clusters[Last].High->getValue(), SI->getCondition(),
9816                       nullptr, false);
9817   JTCases.emplace_back(std::move(JTH), std::move(JT));
9818 
9819   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9820                                      JTCases.size() - 1, Prob);
9821   return true;
9822 }
9823 
9824 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9825                                          const SwitchInst *SI,
9826                                          MachineBasicBlock *DefaultMBB) {
9827 #ifndef NDEBUG
9828   // Clusters must be non-empty, sorted, and only contain Range clusters.
9829   assert(!Clusters.empty());
9830   for (CaseCluster &C : Clusters)
9831     assert(C.Kind == CC_Range);
9832   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9833     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9834 #endif
9835 
9836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9837   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9838     return;
9839 
9840   const int64_t N = Clusters.size();
9841   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9842   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9843 
9844   if (N < 2 || N < MinJumpTableEntries)
9845     return;
9846 
9847   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9848   SmallVector<unsigned, 8> TotalCases(N);
9849   for (unsigned i = 0; i < N; ++i) {
9850     const APInt &Hi = Clusters[i].High->getValue();
9851     const APInt &Lo = Clusters[i].Low->getValue();
9852     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9853     if (i != 0)
9854       TotalCases[i] += TotalCases[i - 1];
9855   }
9856 
9857   // Cheap case: the whole range may be suitable for jump table.
9858   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9859   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9860   assert(NumCases < UINT64_MAX / 100);
9861   assert(Range >= NumCases);
9862   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9863     CaseCluster JTCluster;
9864     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9865       Clusters[0] = JTCluster;
9866       Clusters.resize(1);
9867       return;
9868     }
9869   }
9870 
9871   // The algorithm below is not suitable for -O0.
9872   if (TM.getOptLevel() == CodeGenOpt::None)
9873     return;
9874 
9875   // Split Clusters into minimum number of dense partitions. The algorithm uses
9876   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9877   // for the Case Statement'" (1994), but builds the MinPartitions array in
9878   // reverse order to make it easier to reconstruct the partitions in ascending
9879   // order. In the choice between two optimal partitionings, it picks the one
9880   // which yields more jump tables.
9881 
9882   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9883   SmallVector<unsigned, 8> MinPartitions(N);
9884   // LastElement[i] is the last element of the partition starting at i.
9885   SmallVector<unsigned, 8> LastElement(N);
9886   // PartitionsScore[i] is used to break ties when choosing between two
9887   // partitionings resulting in the same number of partitions.
9888   SmallVector<unsigned, 8> PartitionsScore(N);
9889   // For PartitionsScore, a small number of comparisons is considered as good as
9890   // a jump table and a single comparison is considered better than a jump
9891   // table.
9892   enum PartitionScores : unsigned {
9893     NoTable = 0,
9894     Table = 1,
9895     FewCases = 1,
9896     SingleCase = 2
9897   };
9898 
9899   // Base case: There is only one way to partition Clusters[N-1].
9900   MinPartitions[N - 1] = 1;
9901   LastElement[N - 1] = N - 1;
9902   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9903 
9904   // Note: loop indexes are signed to avoid underflow.
9905   for (int64_t i = N - 2; i >= 0; i--) {
9906     // Find optimal partitioning of Clusters[i..N-1].
9907     // Baseline: Put Clusters[i] into a partition on its own.
9908     MinPartitions[i] = MinPartitions[i + 1] + 1;
9909     LastElement[i] = i;
9910     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9911 
9912     // Search for a solution that results in fewer partitions.
9913     for (int64_t j = N - 1; j > i; j--) {
9914       // Try building a partition from Clusters[i..j].
9915       uint64_t Range = getJumpTableRange(Clusters, i, j);
9916       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9917       assert(NumCases < UINT64_MAX / 100);
9918       assert(Range >= NumCases);
9919       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9920         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9921         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9922         int64_t NumEntries = j - i + 1;
9923 
9924         if (NumEntries == 1)
9925           Score += PartitionScores::SingleCase;
9926         else if (NumEntries <= SmallNumberOfEntries)
9927           Score += PartitionScores::FewCases;
9928         else if (NumEntries >= MinJumpTableEntries)
9929           Score += PartitionScores::Table;
9930 
9931         // If this leads to fewer partitions, or to the same number of
9932         // partitions with better score, it is a better partitioning.
9933         if (NumPartitions < MinPartitions[i] ||
9934             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9935           MinPartitions[i] = NumPartitions;
9936           LastElement[i] = j;
9937           PartitionsScore[i] = Score;
9938         }
9939       }
9940     }
9941   }
9942 
9943   // Iterate over the partitions, replacing some with jump tables in-place.
9944   unsigned DstIndex = 0;
9945   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9946     Last = LastElement[First];
9947     assert(Last >= First);
9948     assert(DstIndex <= First);
9949     unsigned NumClusters = Last - First + 1;
9950 
9951     CaseCluster JTCluster;
9952     if (NumClusters >= MinJumpTableEntries &&
9953         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9954       Clusters[DstIndex++] = JTCluster;
9955     } else {
9956       for (unsigned I = First; I <= Last; ++I)
9957         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9958     }
9959   }
9960   Clusters.resize(DstIndex);
9961 }
9962 
9963 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9964                                         unsigned First, unsigned Last,
9965                                         const SwitchInst *SI,
9966                                         CaseCluster &BTCluster) {
9967   assert(First <= Last);
9968   if (First == Last)
9969     return false;
9970 
9971   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9972   unsigned NumCmps = 0;
9973   for (int64_t I = First; I <= Last; ++I) {
9974     assert(Clusters[I].Kind == CC_Range);
9975     Dests.set(Clusters[I].MBB->getNumber());
9976     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9977   }
9978   unsigned NumDests = Dests.count();
9979 
9980   APInt Low = Clusters[First].Low->getValue();
9981   APInt High = Clusters[Last].High->getValue();
9982   assert(Low.slt(High));
9983 
9984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9985   const DataLayout &DL = DAG.getDataLayout();
9986   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9987     return false;
9988 
9989   APInt LowBound;
9990   APInt CmpRange;
9991 
9992   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9993   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9994          "Case range must fit in bit mask!");
9995 
9996   // Check if the clusters cover a contiguous range such that no value in the
9997   // range will jump to the default statement.
9998   bool ContiguousRange = true;
9999   for (int64_t I = First + 1; I <= Last; ++I) {
10000     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10001       ContiguousRange = false;
10002       break;
10003     }
10004   }
10005 
10006   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10007     // Optimize the case where all the case values fit in a word without having
10008     // to subtract minValue. In this case, we can optimize away the subtraction.
10009     LowBound = APInt::getNullValue(Low.getBitWidth());
10010     CmpRange = High;
10011     ContiguousRange = false;
10012   } else {
10013     LowBound = Low;
10014     CmpRange = High - Low;
10015   }
10016 
10017   CaseBitsVector CBV;
10018   auto TotalProb = BranchProbability::getZero();
10019   for (unsigned i = First; i <= Last; ++i) {
10020     // Find the CaseBits for this destination.
10021     unsigned j;
10022     for (j = 0; j < CBV.size(); ++j)
10023       if (CBV[j].BB == Clusters[i].MBB)
10024         break;
10025     if (j == CBV.size())
10026       CBV.push_back(
10027           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10028     CaseBits *CB = &CBV[j];
10029 
10030     // Update Mask, Bits and ExtraProb.
10031     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10032     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10033     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10034     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10035     CB->Bits += Hi - Lo + 1;
10036     CB->ExtraProb += Clusters[i].Prob;
10037     TotalProb += Clusters[i].Prob;
10038   }
10039 
10040   BitTestInfo BTI;
10041   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10042     // Sort by probability first, number of bits second, bit mask third.
10043     if (a.ExtraProb != b.ExtraProb)
10044       return a.ExtraProb > b.ExtraProb;
10045     if (a.Bits != b.Bits)
10046       return a.Bits > b.Bits;
10047     return a.Mask < b.Mask;
10048   });
10049 
10050   for (auto &CB : CBV) {
10051     MachineBasicBlock *BitTestBB =
10052         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10053     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10054   }
10055   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10056                             SI->getCondition(), -1U, MVT::Other, false,
10057                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10058                             TotalProb);
10059 
10060   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10061                                     BitTestCases.size() - 1, TotalProb);
10062   return true;
10063 }
10064 
10065 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10066                                               const SwitchInst *SI) {
10067 // Partition Clusters into as few subsets as possible, where each subset has a
10068 // range that fits in a machine word and has <= 3 unique destinations.
10069 
10070 #ifndef NDEBUG
10071   // Clusters must be sorted and contain Range or JumpTable clusters.
10072   assert(!Clusters.empty());
10073   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10074   for (const CaseCluster &C : Clusters)
10075     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10076   for (unsigned i = 1; i < Clusters.size(); ++i)
10077     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10078 #endif
10079 
10080   // The algorithm below is not suitable for -O0.
10081   if (TM.getOptLevel() == CodeGenOpt::None)
10082     return;
10083 
10084   // If target does not have legal shift left, do not emit bit tests at all.
10085   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10086   const DataLayout &DL = DAG.getDataLayout();
10087 
10088   EVT PTy = TLI.getPointerTy(DL);
10089   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10090     return;
10091 
10092   int BitWidth = PTy.getSizeInBits();
10093   const int64_t N = Clusters.size();
10094 
10095   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10096   SmallVector<unsigned, 8> MinPartitions(N);
10097   // LastElement[i] is the last element of the partition starting at i.
10098   SmallVector<unsigned, 8> LastElement(N);
10099 
10100   // FIXME: This might not be the best algorithm for finding bit test clusters.
10101 
10102   // Base case: There is only one way to partition Clusters[N-1].
10103   MinPartitions[N - 1] = 1;
10104   LastElement[N - 1] = N - 1;
10105 
10106   // Note: loop indexes are signed to avoid underflow.
10107   for (int64_t i = N - 2; i >= 0; --i) {
10108     // Find optimal partitioning of Clusters[i..N-1].
10109     // Baseline: Put Clusters[i] into a partition on its own.
10110     MinPartitions[i] = MinPartitions[i + 1] + 1;
10111     LastElement[i] = i;
10112 
10113     // Search for a solution that results in fewer partitions.
10114     // Note: the search is limited by BitWidth, reducing time complexity.
10115     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10116       // Try building a partition from Clusters[i..j].
10117 
10118       // Check the range.
10119       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10120                                Clusters[j].High->getValue(), DL))
10121         continue;
10122 
10123       // Check nbr of destinations and cluster types.
10124       // FIXME: This works, but doesn't seem very efficient.
10125       bool RangesOnly = true;
10126       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10127       for (int64_t k = i; k <= j; k++) {
10128         if (Clusters[k].Kind != CC_Range) {
10129           RangesOnly = false;
10130           break;
10131         }
10132         Dests.set(Clusters[k].MBB->getNumber());
10133       }
10134       if (!RangesOnly || Dests.count() > 3)
10135         break;
10136 
10137       // Check if it's a better partition.
10138       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10139       if (NumPartitions < MinPartitions[i]) {
10140         // Found a better partition.
10141         MinPartitions[i] = NumPartitions;
10142         LastElement[i] = j;
10143       }
10144     }
10145   }
10146 
10147   // Iterate over the partitions, replacing with bit-test clusters in-place.
10148   unsigned DstIndex = 0;
10149   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10150     Last = LastElement[First];
10151     assert(First <= Last);
10152     assert(DstIndex <= First);
10153 
10154     CaseCluster BitTestCluster;
10155     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10156       Clusters[DstIndex++] = BitTestCluster;
10157     } else {
10158       size_t NumClusters = Last - First + 1;
10159       std::memmove(&Clusters[DstIndex], &Clusters[First],
10160                    sizeof(Clusters[0]) * NumClusters);
10161       DstIndex += NumClusters;
10162     }
10163   }
10164   Clusters.resize(DstIndex);
10165 }
10166 
10167 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10168                                         MachineBasicBlock *SwitchMBB,
10169                                         MachineBasicBlock *DefaultMBB) {
10170   MachineFunction *CurMF = FuncInfo.MF;
10171   MachineBasicBlock *NextMBB = nullptr;
10172   MachineFunction::iterator BBI(W.MBB);
10173   if (++BBI != FuncInfo.MF->end())
10174     NextMBB = &*BBI;
10175 
10176   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10177 
10178   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10179 
10180   if (Size == 2 && W.MBB == SwitchMBB) {
10181     // If any two of the cases has the same destination, and if one value
10182     // is the same as the other, but has one bit unset that the other has set,
10183     // use bit manipulation to do two compares at once.  For example:
10184     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10185     // TODO: This could be extended to merge any 2 cases in switches with 3
10186     // cases.
10187     // TODO: Handle cases where W.CaseBB != SwitchBB.
10188     CaseCluster &Small = *W.FirstCluster;
10189     CaseCluster &Big = *W.LastCluster;
10190 
10191     if (Small.Low == Small.High && Big.Low == Big.High &&
10192         Small.MBB == Big.MBB) {
10193       const APInt &SmallValue = Small.Low->getValue();
10194       const APInt &BigValue = Big.Low->getValue();
10195 
10196       // Check that there is only one bit different.
10197       APInt CommonBit = BigValue ^ SmallValue;
10198       if (CommonBit.isPowerOf2()) {
10199         SDValue CondLHS = getValue(Cond);
10200         EVT VT = CondLHS.getValueType();
10201         SDLoc DL = getCurSDLoc();
10202 
10203         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10204                                  DAG.getConstant(CommonBit, DL, VT));
10205         SDValue Cond = DAG.getSetCC(
10206             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10207             ISD::SETEQ);
10208 
10209         // Update successor info.
10210         // Both Small and Big will jump to Small.BB, so we sum up the
10211         // probabilities.
10212         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10213         if (BPI)
10214           addSuccessorWithProb(
10215               SwitchMBB, DefaultMBB,
10216               // The default destination is the first successor in IR.
10217               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10218         else
10219           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10220 
10221         // Insert the true branch.
10222         SDValue BrCond =
10223             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10224                         DAG.getBasicBlock(Small.MBB));
10225         // Insert the false branch.
10226         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10227                              DAG.getBasicBlock(DefaultMBB));
10228 
10229         DAG.setRoot(BrCond);
10230         return;
10231       }
10232     }
10233   }
10234 
10235   if (TM.getOptLevel() != CodeGenOpt::None) {
10236     // Here, we order cases by probability so the most likely case will be
10237     // checked first. However, two clusters can have the same probability in
10238     // which case their relative ordering is non-deterministic. So we use Low
10239     // as a tie-breaker as clusters are guaranteed to never overlap.
10240     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10241                [](const CaseCluster &a, const CaseCluster &b) {
10242       return a.Prob != b.Prob ?
10243              a.Prob > b.Prob :
10244              a.Low->getValue().slt(b.Low->getValue());
10245     });
10246 
10247     // Rearrange the case blocks so that the last one falls through if possible
10248     // without changing the order of probabilities.
10249     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10250       --I;
10251       if (I->Prob > W.LastCluster->Prob)
10252         break;
10253       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10254         std::swap(*I, *W.LastCluster);
10255         break;
10256       }
10257     }
10258   }
10259 
10260   // Compute total probability.
10261   BranchProbability DefaultProb = W.DefaultProb;
10262   BranchProbability UnhandledProbs = DefaultProb;
10263   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10264     UnhandledProbs += I->Prob;
10265 
10266   MachineBasicBlock *CurMBB = W.MBB;
10267   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10268     MachineBasicBlock *Fallthrough;
10269     if (I == W.LastCluster) {
10270       // For the last cluster, fall through to the default destination.
10271       Fallthrough = DefaultMBB;
10272     } else {
10273       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10274       CurMF->insert(BBI, Fallthrough);
10275       // Put Cond in a virtual register to make it available from the new blocks.
10276       ExportFromCurrentBlock(Cond);
10277     }
10278     UnhandledProbs -= I->Prob;
10279 
10280     switch (I->Kind) {
10281       case CC_JumpTable: {
10282         // FIXME: Optimize away range check based on pivot comparisons.
10283         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10284         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10285 
10286         // The jump block hasn't been inserted yet; insert it here.
10287         MachineBasicBlock *JumpMBB = JT->MBB;
10288         CurMF->insert(BBI, JumpMBB);
10289 
10290         auto JumpProb = I->Prob;
10291         auto FallthroughProb = UnhandledProbs;
10292 
10293         // If the default statement is a target of the jump table, we evenly
10294         // distribute the default probability to successors of CurMBB. Also
10295         // update the probability on the edge from JumpMBB to Fallthrough.
10296         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10297                                               SE = JumpMBB->succ_end();
10298              SI != SE; ++SI) {
10299           if (*SI == DefaultMBB) {
10300             JumpProb += DefaultProb / 2;
10301             FallthroughProb -= DefaultProb / 2;
10302             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10303             JumpMBB->normalizeSuccProbs();
10304             break;
10305           }
10306         }
10307 
10308         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10309         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10310         CurMBB->normalizeSuccProbs();
10311 
10312         // The jump table header will be inserted in our current block, do the
10313         // range check, and fall through to our fallthrough block.
10314         JTH->HeaderBB = CurMBB;
10315         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10316 
10317         // If we're in the right place, emit the jump table header right now.
10318         if (CurMBB == SwitchMBB) {
10319           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10320           JTH->Emitted = true;
10321         }
10322         break;
10323       }
10324       case CC_BitTests: {
10325         // FIXME: Optimize away range check based on pivot comparisons.
10326         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10327 
10328         // The bit test blocks haven't been inserted yet; insert them here.
10329         for (BitTestCase &BTC : BTB->Cases)
10330           CurMF->insert(BBI, BTC.ThisBB);
10331 
10332         // Fill in fields of the BitTestBlock.
10333         BTB->Parent = CurMBB;
10334         BTB->Default = Fallthrough;
10335 
10336         BTB->DefaultProb = UnhandledProbs;
10337         // If the cases in bit test don't form a contiguous range, we evenly
10338         // distribute the probability on the edge to Fallthrough to two
10339         // successors of CurMBB.
10340         if (!BTB->ContiguousRange) {
10341           BTB->Prob += DefaultProb / 2;
10342           BTB->DefaultProb -= DefaultProb / 2;
10343         }
10344 
10345         // If we're in the right place, emit the bit test header right now.
10346         if (CurMBB == SwitchMBB) {
10347           visitBitTestHeader(*BTB, SwitchMBB);
10348           BTB->Emitted = true;
10349         }
10350         break;
10351       }
10352       case CC_Range: {
10353         const Value *RHS, *LHS, *MHS;
10354         ISD::CondCode CC;
10355         if (I->Low == I->High) {
10356           // Check Cond == I->Low.
10357           CC = ISD::SETEQ;
10358           LHS = Cond;
10359           RHS=I->Low;
10360           MHS = nullptr;
10361         } else {
10362           // Check I->Low <= Cond <= I->High.
10363           CC = ISD::SETLE;
10364           LHS = I->Low;
10365           MHS = Cond;
10366           RHS = I->High;
10367         }
10368 
10369         // The false probability is the sum of all unhandled cases.
10370         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10371                      getCurSDLoc(), I->Prob, UnhandledProbs);
10372 
10373         if (CurMBB == SwitchMBB)
10374           visitSwitchCase(CB, SwitchMBB);
10375         else
10376           SwitchCases.push_back(CB);
10377 
10378         break;
10379       }
10380     }
10381     CurMBB = Fallthrough;
10382   }
10383 }
10384 
10385 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10386                                               CaseClusterIt First,
10387                                               CaseClusterIt Last) {
10388   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10389     if (X.Prob != CC.Prob)
10390       return X.Prob > CC.Prob;
10391 
10392     // Ties are broken by comparing the case value.
10393     return X.Low->getValue().slt(CC.Low->getValue());
10394   });
10395 }
10396 
10397 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10398                                         const SwitchWorkListItem &W,
10399                                         Value *Cond,
10400                                         MachineBasicBlock *SwitchMBB) {
10401   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10402          "Clusters not sorted?");
10403 
10404   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10405 
10406   // Balance the tree based on branch probabilities to create a near-optimal (in
10407   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10408   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10409   CaseClusterIt LastLeft = W.FirstCluster;
10410   CaseClusterIt FirstRight = W.LastCluster;
10411   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10412   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10413 
10414   // Move LastLeft and FirstRight towards each other from opposite directions to
10415   // find a partitioning of the clusters which balances the probability on both
10416   // sides. If LeftProb and RightProb are equal, alternate which side is
10417   // taken to ensure 0-probability nodes are distributed evenly.
10418   unsigned I = 0;
10419   while (LastLeft + 1 < FirstRight) {
10420     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10421       LeftProb += (++LastLeft)->Prob;
10422     else
10423       RightProb += (--FirstRight)->Prob;
10424     I++;
10425   }
10426 
10427   while (true) {
10428     // Our binary search tree differs from a typical BST in that ours can have up
10429     // to three values in each leaf. The pivot selection above doesn't take that
10430     // into account, which means the tree might require more nodes and be less
10431     // efficient. We compensate for this here.
10432 
10433     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10434     unsigned NumRight = W.LastCluster - FirstRight + 1;
10435 
10436     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10437       // If one side has less than 3 clusters, and the other has more than 3,
10438       // consider taking a cluster from the other side.
10439 
10440       if (NumLeft < NumRight) {
10441         // Consider moving the first cluster on the right to the left side.
10442         CaseCluster &CC = *FirstRight;
10443         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10444         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10445         if (LeftSideRank <= RightSideRank) {
10446           // Moving the cluster to the left does not demote it.
10447           ++LastLeft;
10448           ++FirstRight;
10449           continue;
10450         }
10451       } else {
10452         assert(NumRight < NumLeft);
10453         // Consider moving the last element on the left to the right side.
10454         CaseCluster &CC = *LastLeft;
10455         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10456         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10457         if (RightSideRank <= LeftSideRank) {
10458           // Moving the cluster to the right does not demot it.
10459           --LastLeft;
10460           --FirstRight;
10461           continue;
10462         }
10463       }
10464     }
10465     break;
10466   }
10467 
10468   assert(LastLeft + 1 == FirstRight);
10469   assert(LastLeft >= W.FirstCluster);
10470   assert(FirstRight <= W.LastCluster);
10471 
10472   // Use the first element on the right as pivot since we will make less-than
10473   // comparisons against it.
10474   CaseClusterIt PivotCluster = FirstRight;
10475   assert(PivotCluster > W.FirstCluster);
10476   assert(PivotCluster <= W.LastCluster);
10477 
10478   CaseClusterIt FirstLeft = W.FirstCluster;
10479   CaseClusterIt LastRight = W.LastCluster;
10480 
10481   const ConstantInt *Pivot = PivotCluster->Low;
10482 
10483   // New blocks will be inserted immediately after the current one.
10484   MachineFunction::iterator BBI(W.MBB);
10485   ++BBI;
10486 
10487   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10488   // we can branch to its destination directly if it's squeezed exactly in
10489   // between the known lower bound and Pivot - 1.
10490   MachineBasicBlock *LeftMBB;
10491   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10492       FirstLeft->Low == W.GE &&
10493       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10494     LeftMBB = FirstLeft->MBB;
10495   } else {
10496     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10497     FuncInfo.MF->insert(BBI, LeftMBB);
10498     WorkList.push_back(
10499         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10500     // Put Cond in a virtual register to make it available from the new blocks.
10501     ExportFromCurrentBlock(Cond);
10502   }
10503 
10504   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10505   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10506   // directly if RHS.High equals the current upper bound.
10507   MachineBasicBlock *RightMBB;
10508   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10509       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10510     RightMBB = FirstRight->MBB;
10511   } else {
10512     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10513     FuncInfo.MF->insert(BBI, RightMBB);
10514     WorkList.push_back(
10515         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10516     // Put Cond in a virtual register to make it available from the new blocks.
10517     ExportFromCurrentBlock(Cond);
10518   }
10519 
10520   // Create the CaseBlock record that will be used to lower the branch.
10521   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10522                getCurSDLoc(), LeftProb, RightProb);
10523 
10524   if (W.MBB == SwitchMBB)
10525     visitSwitchCase(CB, SwitchMBB);
10526   else
10527     SwitchCases.push_back(CB);
10528 }
10529 
10530 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10531 // from the swith statement.
10532 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10533                                             BranchProbability PeeledCaseProb) {
10534   if (PeeledCaseProb == BranchProbability::getOne())
10535     return BranchProbability::getZero();
10536   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10537 
10538   uint32_t Numerator = CaseProb.getNumerator();
10539   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10540   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10541 }
10542 
10543 // Try to peel the top probability case if it exceeds the threshold.
10544 // Return current MachineBasicBlock for the switch statement if the peeling
10545 // does not occur.
10546 // If the peeling is performed, return the newly created MachineBasicBlock
10547 // for the peeled switch statement. Also update Clusters to remove the peeled
10548 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10549 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10550     const SwitchInst &SI, CaseClusterVector &Clusters,
10551     BranchProbability &PeeledCaseProb) {
10552   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10553   // Don't perform if there is only one cluster or optimizing for size.
10554   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10555       TM.getOptLevel() == CodeGenOpt::None ||
10556       SwitchMBB->getParent()->getFunction().optForMinSize())
10557     return SwitchMBB;
10558 
10559   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10560   unsigned PeeledCaseIndex = 0;
10561   bool SwitchPeeled = false;
10562   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10563     CaseCluster &CC = Clusters[Index];
10564     if (CC.Prob < TopCaseProb)
10565       continue;
10566     TopCaseProb = CC.Prob;
10567     PeeledCaseIndex = Index;
10568     SwitchPeeled = true;
10569   }
10570   if (!SwitchPeeled)
10571     return SwitchMBB;
10572 
10573   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10574                     << TopCaseProb << "\n");
10575 
10576   // Record the MBB for the peeled switch statement.
10577   MachineFunction::iterator BBI(SwitchMBB);
10578   ++BBI;
10579   MachineBasicBlock *PeeledSwitchMBB =
10580       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10581   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10582 
10583   ExportFromCurrentBlock(SI.getCondition());
10584   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10585   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10586                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10587   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10588 
10589   Clusters.erase(PeeledCaseIt);
10590   for (CaseCluster &CC : Clusters) {
10591     LLVM_DEBUG(
10592         dbgs() << "Scale the probablity for one cluster, before scaling: "
10593                << CC.Prob << "\n");
10594     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10595     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10596   }
10597   PeeledCaseProb = TopCaseProb;
10598   return PeeledSwitchMBB;
10599 }
10600 
10601 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10602   // Extract cases from the switch.
10603   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10604   CaseClusterVector Clusters;
10605   Clusters.reserve(SI.getNumCases());
10606   for (auto I : SI.cases()) {
10607     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10608     const ConstantInt *CaseVal = I.getCaseValue();
10609     BranchProbability Prob =
10610         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10611             : BranchProbability(1, SI.getNumCases() + 1);
10612     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10613   }
10614 
10615   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10616 
10617   // Cluster adjacent cases with the same destination. We do this at all
10618   // optimization levels because it's cheap to do and will make codegen faster
10619   // if there are many clusters.
10620   sortAndRangeify(Clusters);
10621 
10622   if (TM.getOptLevel() != CodeGenOpt::None) {
10623     // Replace an unreachable default with the most popular destination.
10624     // FIXME: Exploit unreachable default more aggressively.
10625     bool UnreachableDefault =
10626         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10627     if (UnreachableDefault && !Clusters.empty()) {
10628       DenseMap<const BasicBlock *, unsigned> Popularity;
10629       unsigned MaxPop = 0;
10630       const BasicBlock *MaxBB = nullptr;
10631       for (auto I : SI.cases()) {
10632         const BasicBlock *BB = I.getCaseSuccessor();
10633         if (++Popularity[BB] > MaxPop) {
10634           MaxPop = Popularity[BB];
10635           MaxBB = BB;
10636         }
10637       }
10638       // Set new default.
10639       assert(MaxPop > 0 && MaxBB);
10640       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10641 
10642       // Remove cases that were pointing to the destination that is now the
10643       // default.
10644       CaseClusterVector New;
10645       New.reserve(Clusters.size());
10646       for (CaseCluster &CC : Clusters) {
10647         if (CC.MBB != DefaultMBB)
10648           New.push_back(CC);
10649       }
10650       Clusters = std::move(New);
10651     }
10652   }
10653 
10654   // The branch probablity of the peeled case.
10655   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10656   MachineBasicBlock *PeeledSwitchMBB =
10657       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10658 
10659   // If there is only the default destination, jump there directly.
10660   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10661   if (Clusters.empty()) {
10662     assert(PeeledSwitchMBB == SwitchMBB);
10663     SwitchMBB->addSuccessor(DefaultMBB);
10664     if (DefaultMBB != NextBlock(SwitchMBB)) {
10665       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10666                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10667     }
10668     return;
10669   }
10670 
10671   findJumpTables(Clusters, &SI, DefaultMBB);
10672   findBitTestClusters(Clusters, &SI);
10673 
10674   LLVM_DEBUG({
10675     dbgs() << "Case clusters: ";
10676     for (const CaseCluster &C : Clusters) {
10677       if (C.Kind == CC_JumpTable)
10678         dbgs() << "JT:";
10679       if (C.Kind == CC_BitTests)
10680         dbgs() << "BT:";
10681 
10682       C.Low->getValue().print(dbgs(), true);
10683       if (C.Low != C.High) {
10684         dbgs() << '-';
10685         C.High->getValue().print(dbgs(), true);
10686       }
10687       dbgs() << ' ';
10688     }
10689     dbgs() << '\n';
10690   });
10691 
10692   assert(!Clusters.empty());
10693   SwitchWorkList WorkList;
10694   CaseClusterIt First = Clusters.begin();
10695   CaseClusterIt Last = Clusters.end() - 1;
10696   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10697   // Scale the branchprobability for DefaultMBB if the peel occurs and
10698   // DefaultMBB is not replaced.
10699   if (PeeledCaseProb != BranchProbability::getZero() &&
10700       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10701     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10702   WorkList.push_back(
10703       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10704 
10705   while (!WorkList.empty()) {
10706     SwitchWorkListItem W = WorkList.back();
10707     WorkList.pop_back();
10708     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10709 
10710     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10711         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10712       // For optimized builds, lower large range as a balanced binary tree.
10713       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10714       continue;
10715     }
10716 
10717     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10718   }
10719 }
10720