1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, 621 SDValue Val, const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 unsigned PartNumElts = PartVT.getVectorNumElements(); 627 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 628 if (PartNumElts > ValueNumElts && 629 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 637 Ops.push_back(EltUndef); 638 639 // FIXME: Use CONCAT for 2x -> 4x. 640 return DAG.getBuildVector(PartVT, DL, Ops); 641 } 642 643 return SDValue(); 644 } 645 646 /// getCopyToPartsVector - Create a series of nodes that contain the specified 647 /// value split into legal parts. 648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 649 SDValue Val, SDValue *Parts, unsigned NumParts, 650 MVT PartVT, const Value *V, 651 Optional<CallingConv::ID> CallConv) { 652 EVT ValueVT = Val.getValueType(); 653 assert(ValueVT.isVector() && "Not a vector"); 654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 655 const bool IsABIRegCopy = CallConv.hasValue(); 656 657 if (NumParts == 1) { 658 EVT PartEVT = PartVT; 659 if (PartEVT == ValueVT) { 660 // Nothing to do. 661 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 662 // Bitconvert vector->vector case. 663 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 664 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 665 Val = Widened; 666 } else if (PartVT.isVector() && 667 PartEVT.getVectorElementType().bitsGE( 668 ValueVT.getVectorElementType()) && 669 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorNumElements() == 1) { 675 Val = DAG.getNode( 676 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 677 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 678 } else { 679 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = 682 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 683 Val = DAG.getBitcast(IntermediateType, Val); 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } 686 } 687 688 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 689 Parts[0] = Val; 690 return; 691 } 692 693 // Handle a multi-element vector. 694 EVT IntermediateVT; 695 MVT RegisterVT; 696 unsigned NumIntermediates; 697 unsigned NumRegs; 698 if (IsABIRegCopy) { 699 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 700 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 701 NumIntermediates, RegisterVT); 702 } else { 703 NumRegs = 704 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 705 NumIntermediates, RegisterVT); 706 } 707 708 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 709 NumParts = NumRegs; // Silence a compiler warning. 710 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 711 712 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 713 IntermediateVT.getVectorNumElements() : 1; 714 715 // Convert the vector to the appropiate type if necessary. 716 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 717 718 EVT BuiltVectorTy = EVT::getVectorVT( 719 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 720 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 721 if (ValueVT != BuiltVectorTy) { 722 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 723 Val = Widened; 724 725 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 726 } 727 728 // Split the vector into intermediate operands. 729 SmallVector<SDValue, 8> Ops(NumIntermediates); 730 for (unsigned i = 0; i != NumIntermediates; ++i) { 731 if (IntermediateVT.isVector()) { 732 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 734 } else { 735 Ops[i] = DAG.getNode( 736 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 737 DAG.getConstant(i, DL, IdxVT)); 738 } 739 } 740 741 // Split the intermediate operands into legal parts. 742 if (NumParts == NumIntermediates) { 743 // If the register was not expanded, promote or copy the value, 744 // as appropriate. 745 for (unsigned i = 0; i != NumParts; ++i) 746 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 747 } else if (NumParts > 0) { 748 // If the intermediate type was expanded, split each the value into 749 // legal parts. 750 assert(NumIntermediates != 0 && "division by zero"); 751 assert(NumParts % NumIntermediates == 0 && 752 "Must expand into a divisible number of parts!"); 753 unsigned Factor = NumParts / NumIntermediates; 754 for (unsigned i = 0; i != NumIntermediates; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 756 CallConv); 757 } 758 } 759 760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 761 EVT valuevt, Optional<CallingConv::ID> CC) 762 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 763 RegCount(1, regs.size()), CallConv(CC) {} 764 765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 766 const DataLayout &DL, unsigned Reg, Type *Ty, 767 Optional<CallingConv::ID> CC) { 768 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 769 770 CallConv = CC; 771 772 for (EVT ValueVT : ValueVTs) { 773 unsigned NumRegs = 774 isABIMangled() 775 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 776 : TLI.getNumRegisters(Context, ValueVT); 777 MVT RegisterVT = 778 isABIMangled() 779 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 780 : TLI.getRegisterType(Context, ValueVT); 781 for (unsigned i = 0; i != NumRegs; ++i) 782 Regs.push_back(Reg + i); 783 RegVTs.push_back(RegisterVT); 784 RegCount.push_back(NumRegs); 785 Reg += NumRegs; 786 } 787 } 788 789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 790 FunctionLoweringInfo &FuncInfo, 791 const SDLoc &dl, SDValue &Chain, 792 SDValue *Flag, const Value *V) const { 793 // A Value with type {} or [0 x %t] needs no registers. 794 if (ValueVTs.empty()) 795 return SDValue(); 796 797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 798 799 // Assemble the legal parts into the final values. 800 SmallVector<SDValue, 4> Values(ValueVTs.size()); 801 SmallVector<SDValue, 8> Parts; 802 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 // Copy the legal parts from the registers. 804 EVT ValueVT = ValueVTs[Value]; 805 unsigned NumRegs = RegCount[Value]; 806 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 807 *DAG.getContext(), 808 CallConv.getValue(), RegVTs[Value]) 809 : RegVTs[Value]; 810 811 Parts.resize(NumRegs); 812 for (unsigned i = 0; i != NumRegs; ++i) { 813 SDValue P; 814 if (!Flag) { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 816 } else { 817 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 818 *Flag = P.getValue(2); 819 } 820 821 Chain = P.getValue(1); 822 Parts[i] = P; 823 824 // If the source register was virtual and if we know something about it, 825 // add an assert node. 826 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 827 !RegisterVT.isInteger()) 828 continue; 829 830 const FunctionLoweringInfo::LiveOutInfo *LOI = 831 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 832 if (!LOI) 833 continue; 834 835 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 836 unsigned NumSignBits = LOI->NumSignBits; 837 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 838 839 if (NumZeroBits == RegSize) { 840 // The current value is a zero. 841 // Explicitly express that as it would be easier for 842 // optimizations to kick in. 843 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 844 continue; 845 } 846 847 // FIXME: We capture more information than the dag can represent. For 848 // now, just use the tightest assertzext/assertsext possible. 849 bool isSExt; 850 EVT FromVT(MVT::Other); 851 if (NumZeroBits) { 852 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 853 isSExt = false; 854 } else if (NumSignBits > 1) { 855 FromVT = 856 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 857 isSExt = true; 858 } else { 859 continue; 860 } 861 // Add an assertion node. 862 assert(FromVT != MVT::Other); 863 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 864 RegisterVT, P, DAG.getValueType(FromVT)); 865 } 866 867 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 868 RegisterVT, ValueVT, V, CallConv); 869 Part += NumRegs; 870 Parts.clear(); 871 } 872 873 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 874 } 875 876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 877 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 878 const Value *V, 879 ISD::NodeType PreferredExtendType) const { 880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 881 ISD::NodeType ExtendKind = PreferredExtendType; 882 883 // Get the list of the values's legal parts. 884 unsigned NumRegs = Regs.size(); 885 SmallVector<SDValue, 8> Parts(NumRegs); 886 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumParts = RegCount[Value]; 888 889 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 890 *DAG.getContext(), 891 CallConv.getValue(), RegVTs[Value]) 892 : RegVTs[Value]; 893 894 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 895 ExtendKind = ISD::ZERO_EXTEND; 896 897 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 898 NumParts, RegisterVT, V, CallConv, ExtendKind); 899 Part += NumParts; 900 } 901 902 // Copy the parts into the registers. 903 SmallVector<SDValue, 8> Chains(NumRegs); 904 for (unsigned i = 0; i != NumRegs; ++i) { 905 SDValue Part; 906 if (!Flag) { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 908 } else { 909 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 910 *Flag = Part.getValue(1); 911 } 912 913 Chains[i] = Part.getValue(0); 914 } 915 916 if (NumRegs == 1 || Flag) 917 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 918 // flagged to it. That is the CopyToReg nodes and the user are considered 919 // a single scheduling unit. If we create a TokenFactor and return it as 920 // chain, then the TokenFactor is both a predecessor (operand) of the 921 // user as well as a successor (the TF operands are flagged to the user). 922 // c1, f1 = CopyToReg 923 // c2, f2 = CopyToReg 924 // c3 = TokenFactor c1, c2 925 // ... 926 // = op c3, ..., f2 927 Chain = Chains[NumRegs-1]; 928 else 929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 930 } 931 932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 933 unsigned MatchingIdx, const SDLoc &dl, 934 SelectionDAG &DAG, 935 std::vector<SDValue> &Ops) const { 936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 937 938 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 939 if (HasMatching) 940 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 941 else if (!Regs.empty() && 942 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 943 // Put the register class of the virtual registers in the flag word. That 944 // way, later passes can recompute register class constraints for inline 945 // assembly as well as normal instructions. 946 // Don't do this for tied operands that can use the regclass information 947 // from the def. 948 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 949 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 950 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 951 } 952 953 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 954 Ops.push_back(Res); 955 956 if (Code == InlineAsm::Kind_Clobber) { 957 // Clobbers should always have a 1:1 mapping with registers, and may 958 // reference registers that have illegal (e.g. vector) types. Hence, we 959 // shouldn't try to apply any sort of splitting logic to them. 960 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 961 "No 1:1 mapping from clobbers to regs?"); 962 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 963 (void)SP; 964 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 965 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 966 assert( 967 (Regs[I] != SP || 968 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 969 "If we clobbered the stack pointer, MFI should know about it."); 970 } 971 return; 972 } 973 974 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 976 MVT RegisterVT = RegVTs[Value]; 977 for (unsigned i = 0; i != NumRegs; ++i) { 978 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 979 unsigned TheReg = Regs[Reg++]; 980 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 981 } 982 } 983 } 984 985 SmallVector<std::pair<unsigned, unsigned>, 4> 986 RegsForValue::getRegsAndSizes() const { 987 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 988 unsigned I = 0; 989 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 990 unsigned RegCount = std::get<0>(CountAndVT); 991 MVT RegisterVT = std::get<1>(CountAndVT); 992 unsigned RegisterSize = RegisterVT.getSizeInBits(); 993 for (unsigned E = I + RegCount; I != E; ++I) 994 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 995 } 996 return OutVec; 997 } 998 999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1000 const TargetLibraryInfo *li) { 1001 AA = aa; 1002 GFI = gfi; 1003 LibInfo = li; 1004 DL = &DAG.getDataLayout(); 1005 Context = DAG.getContext(); 1006 LPadToCallSiteMap.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clear() { 1010 NodeMap.clear(); 1011 UnusedArgNodeMap.clear(); 1012 PendingLoads.clear(); 1013 PendingExports.clear(); 1014 CurInst = nullptr; 1015 HasTailCall = false; 1016 SDNodeOrder = LowestSDNodeOrder; 1017 StatepointLowering.clear(); 1018 } 1019 1020 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1021 DanglingDebugInfoMap.clear(); 1022 } 1023 1024 SDValue SelectionDAGBuilder::getRoot() { 1025 if (PendingLoads.empty()) 1026 return DAG.getRoot(); 1027 1028 if (PendingLoads.size() == 1) { 1029 SDValue Root = PendingLoads[0]; 1030 DAG.setRoot(Root); 1031 PendingLoads.clear(); 1032 return Root; 1033 } 1034 1035 // Otherwise, we have to make a token factor node. 1036 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1037 PendingLoads.clear(); 1038 DAG.setRoot(Root); 1039 return Root; 1040 } 1041 1042 SDValue SelectionDAGBuilder::getControlRoot() { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (PendingExports.empty()) 1046 return Root; 1047 1048 // Turn all of the CopyToReg chains into one factored node. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = PendingExports.size(); 1051 for (; i != e; ++i) { 1052 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1053 if (PendingExports[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 PendingExports.push_back(Root); 1059 } 1060 1061 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1062 PendingExports); 1063 PendingExports.clear(); 1064 DAG.setRoot(Root); 1065 return Root; 1066 } 1067 1068 void SelectionDAGBuilder::visit(const Instruction &I) { 1069 // Set up outgoing PHI node register values before emitting the terminator. 1070 if (I.isTerminator()) { 1071 HandlePHINodesInSuccessorBlocks(I.getParent()); 1072 } 1073 1074 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1075 if (!isa<DbgInfoIntrinsic>(I)) 1076 ++SDNodeOrder; 1077 1078 CurInst = &I; 1079 1080 visit(I.getOpcode(), I); 1081 1082 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1083 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1084 // maps to this instruction. 1085 // TODO: We could handle all flags (nsw, etc) here. 1086 // TODO: If an IR instruction maps to >1 node, only the final node will have 1087 // flags set. 1088 if (SDNode *Node = getNodeForIRValue(&I)) { 1089 SDNodeFlags IncomingFlags; 1090 IncomingFlags.copyFMF(*FPMO); 1091 if (!Node->getFlags().isDefined()) 1092 Node->setFlags(IncomingFlags); 1093 else 1094 Node->intersectFlagsWith(IncomingFlags); 1095 } 1096 } 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isStatepoint(&I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.getSecond()) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 unsigned InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 // Return true if SDValue exists for the given Value 1400 bool SelectionDAGBuilder::findValue(const Value *V) const { 1401 return (NodeMap.find(V) != NodeMap.end()) || 1402 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1403 } 1404 1405 /// getNonRegisterValue - Return an SDValue for the given Value, but 1406 /// don't look in FuncInfo.ValueMap for a virtual register. 1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1408 // If we already have an SDValue for this value, use it. 1409 SDValue &N = NodeMap[V]; 1410 if (N.getNode()) { 1411 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1412 // Remove the debug location from the node as the node is about to be used 1413 // in a location which may differ from the original debug location. This 1414 // is relevant to Constant and ConstantFP nodes because they can appear 1415 // as constant expressions inside PHI nodes. 1416 N->setDebugLoc(DebugLoc()); 1417 } 1418 return N; 1419 } 1420 1421 // Otherwise create a new SDValue and remember it. 1422 SDValue Val = getValueImpl(V); 1423 NodeMap[V] = Val; 1424 resolveDanglingDebugInfo(V, Val); 1425 return Val; 1426 } 1427 1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1429 /// Create an SDValue for the given value. 1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1432 1433 if (const Constant *C = dyn_cast<Constant>(V)) { 1434 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1437 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1438 1439 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1440 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1441 1442 if (isa<ConstantPointerNull>(C)) { 1443 unsigned AS = V->getType()->getPointerAddressSpace(); 1444 return DAG.getConstant(0, getCurSDLoc(), 1445 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1446 } 1447 1448 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1449 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1450 1451 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1452 return DAG.getUNDEF(VT); 1453 1454 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1455 visit(CE->getOpcode(), *CE); 1456 SDValue N1 = NodeMap[V]; 1457 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1458 return N1; 1459 } 1460 1461 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1462 SmallVector<SDValue, 4> Constants; 1463 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1464 OI != OE; ++OI) { 1465 SDNode *Val = getValue(*OI).getNode(); 1466 // If the operand is an empty aggregate, there are no values. 1467 if (!Val) continue; 1468 // Add each leaf value from the operand to the Constants list 1469 // to form a flattened list of all the values. 1470 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1471 Constants.push_back(SDValue(Val, i)); 1472 } 1473 1474 return DAG.getMergeValues(Constants, getCurSDLoc()); 1475 } 1476 1477 if (const ConstantDataSequential *CDS = 1478 dyn_cast<ConstantDataSequential>(C)) { 1479 SmallVector<SDValue, 4> Ops; 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Ops.push_back(SDValue(Val, i)); 1486 } 1487 1488 if (isa<ArrayType>(CDS->getType())) 1489 return DAG.getMergeValues(Ops, getCurSDLoc()); 1490 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1491 } 1492 1493 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1494 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1495 "Unknown struct or array constant!"); 1496 1497 SmallVector<EVT, 4> ValueVTs; 1498 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1499 unsigned NumElts = ValueVTs.size(); 1500 if (NumElts == 0) 1501 return SDValue(); // empty struct 1502 SmallVector<SDValue, 4> Constants(NumElts); 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 EVT EltVT = ValueVTs[i]; 1505 if (isa<UndefValue>(C)) 1506 Constants[i] = DAG.getUNDEF(EltVT); 1507 else if (EltVT.isFloatingPoint()) 1508 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1509 else 1510 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1511 } 1512 1513 return DAG.getMergeValues(Constants, getCurSDLoc()); 1514 } 1515 1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1517 return DAG.getBlockAddress(BA, VT); 1518 1519 VectorType *VecTy = cast<VectorType>(V->getType()); 1520 unsigned NumElements = VecTy->getNumElements(); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 SmallVector<SDValue, 16> Ops; 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 for (unsigned i = 0; i != NumElements; ++i) 1527 Ops.push_back(getValue(CV->getOperand(i))); 1528 } else { 1529 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1530 EVT EltVT = 1531 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1532 1533 SDValue Op; 1534 if (EltVT.isFloatingPoint()) 1535 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1536 else 1537 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1538 Ops.assign(NumElements, Op); 1539 } 1540 1541 // Create a BUILD_VECTOR node. 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 1545 // If this is a static alloca, generate it as the frameindex instead of 1546 // computation. 1547 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1548 DenseMap<const AllocaInst*, int>::iterator SI = 1549 FuncInfo.StaticAllocaMap.find(AI); 1550 if (SI != FuncInfo.StaticAllocaMap.end()) 1551 return DAG.getFrameIndex(SI->second, 1552 TLI.getFrameIndexTy(DAG.getDataLayout())); 1553 } 1554 1555 // If this is an instruction which fast-isel has deferred, select it now. 1556 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1557 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1558 1559 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1560 Inst->getType(), getABIRegCopyCC(V)); 1561 SDValue Chain = DAG.getEntryNode(); 1562 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1563 } 1564 1565 llvm_unreachable("Can't get register for value!"); 1566 } 1567 1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1569 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1570 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1571 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1572 bool IsSEH = isAsynchronousEHPersonality(Pers); 1573 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1574 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1575 if (!IsSEH) 1576 CatchPadMBB->setIsEHScopeEntry(); 1577 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1578 if (IsMSVCCXX || IsCoreCLR) 1579 CatchPadMBB->setIsEHFuncletEntry(); 1580 // Wasm does not need catchpads anymore 1581 if (!IsWasmCXX) 1582 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1583 getControlRoot())); 1584 } 1585 1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1587 // Update machine-CFG edge. 1588 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1589 FuncInfo.MBB->addSuccessor(TargetMBB); 1590 1591 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1592 bool IsSEH = isAsynchronousEHPersonality(Pers); 1593 if (IsSEH) { 1594 // If this is not a fall-through branch or optimizations are switched off, 1595 // emit the branch. 1596 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1597 TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1599 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1600 return; 1601 } 1602 1603 // Figure out the funclet membership for the catchret's successor. 1604 // This will be used by the FuncletLayout pass to determine how to order the 1605 // BB's. 1606 // A 'catchret' returns to the outer scope's color. 1607 Value *ParentPad = I.getCatchSwitchParentPad(); 1608 const BasicBlock *SuccessorColor; 1609 if (isa<ConstantTokenNone>(ParentPad)) 1610 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1611 else 1612 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1613 assert(SuccessorColor && "No parent funclet for catchret!"); 1614 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1615 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1616 1617 // Create the terminator node. 1618 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1619 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1620 DAG.getBasicBlock(SuccessorColorMBB)); 1621 DAG.setRoot(Ret); 1622 } 1623 1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1625 // Don't emit any special code for the cleanuppad instruction. It just marks 1626 // the start of an EH scope/funclet. 1627 FuncInfo.MBB->setIsEHScopeEntry(); 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 if (Pers != EHPersonality::Wasm_CXX) { 1630 FuncInfo.MBB->setIsEHFuncletEntry(); 1631 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1632 } 1633 } 1634 1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1636 // the control flow always stops at the single catch pad, as it does for a 1637 // cleanup pad. In case the exception caught is not of the types the catch pad 1638 // catches, it will be rethrown by a rethrow. 1639 static void findWasmUnwindDestinations( 1640 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1641 BranchProbability Prob, 1642 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1643 &UnwindDests) { 1644 while (EHPadBB) { 1645 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1646 if (isa<CleanupPadInst>(Pad)) { 1647 // Stop on cleanup pads. 1648 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1649 UnwindDests.back().first->setIsEHScopeEntry(); 1650 break; 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1652 // Add the catchpad handlers to the possible destinations. We don't 1653 // continue to the unwind destination of the catchswitch for wasm. 1654 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1655 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1656 UnwindDests.back().first->setIsEHScopeEntry(); 1657 } 1658 break; 1659 } else { 1660 continue; 1661 } 1662 } 1663 } 1664 1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1666 /// many places it could ultimately go. In the IR, we have a single unwind 1667 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1668 /// This function skips over imaginary basic blocks that hold catchswitch 1669 /// instructions, and finds all the "real" machine 1670 /// basic block destinations. As those destinations may not be successors of 1671 /// EHPadBB, here we also calculate the edge probability to those destinations. 1672 /// The passed-in Prob is the edge probability to EHPadBB. 1673 static void findUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 EHPersonality Personality = 1679 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1680 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1681 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1682 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1683 bool IsSEH = isAsynchronousEHPersonality(Personality); 1684 1685 if (IsWasmCXX) { 1686 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1687 assert(UnwindDests.size() <= 1 && 1688 "There should be at most one unwind destination for wasm"); 1689 return; 1690 } 1691 1692 while (EHPadBB) { 1693 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1694 BasicBlock *NewEHPadBB = nullptr; 1695 if (isa<LandingPadInst>(Pad)) { 1696 // Stop on landingpads. They are not funclets. 1697 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1698 break; 1699 } else if (isa<CleanupPadInst>(Pad)) { 1700 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1701 // personalities. 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 UnwindDests.back().first->setIsEHFuncletEntry(); 1705 break; 1706 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1707 // Add the catchpad handlers to the possible destinations. 1708 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1709 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1710 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1711 if (IsMSVCCXX || IsCoreCLR) 1712 UnwindDests.back().first->setIsEHFuncletEntry(); 1713 if (!IsSEH) 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 } 1716 NewEHPadBB = CatchSwitch->getUnwindDest(); 1717 } else { 1718 continue; 1719 } 1720 1721 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1722 if (BPI && NewEHPadBB) 1723 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1724 EHPadBB = NewEHPadBB; 1725 } 1726 } 1727 1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1729 // Update successor info. 1730 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1731 auto UnwindDest = I.getUnwindDest(); 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 BranchProbability UnwindDestProb = 1734 (BPI && UnwindDest) 1735 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1736 : BranchProbability::getZero(); 1737 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1738 for (auto &UnwindDest : UnwindDests) { 1739 UnwindDest.first->setIsEHPad(); 1740 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1741 } 1742 FuncInfo.MBB->normalizeSuccProbs(); 1743 1744 // Create the terminator node. 1745 SDValue Ret = 1746 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1751 report_fatal_error("visitCatchSwitch not yet implemented!"); 1752 } 1753 1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1756 auto &DL = DAG.getDataLayout(); 1757 SDValue Chain = getControlRoot(); 1758 SmallVector<ISD::OutputArg, 8> Outs; 1759 SmallVector<SDValue, 8> OutVals; 1760 1761 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1762 // lower 1763 // 1764 // %val = call <ty> @llvm.experimental.deoptimize() 1765 // ret <ty> %val 1766 // 1767 // differently. 1768 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1769 LowerDeoptimizingReturn(); 1770 return; 1771 } 1772 1773 if (!FuncInfo.CanLowerReturn) { 1774 unsigned DemoteReg = FuncInfo.DemoteRegister; 1775 const Function *F = I.getParent()->getParent(); 1776 1777 // Emit a store of the return value through the virtual register. 1778 // Leave Outs empty so that LowerReturn won't try to load return 1779 // registers the usual way. 1780 SmallVector<EVT, 1> PtrValueVTs; 1781 ComputeValueVTs(TLI, DL, 1782 F->getReturnType()->getPointerTo( 1783 DAG.getDataLayout().getAllocaAddrSpace()), 1784 PtrValueVTs); 1785 1786 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1787 DemoteReg, PtrValueVTs[0]); 1788 SDValue RetOp = getValue(I.getOperand(0)); 1789 1790 SmallVector<EVT, 4> ValueVTs; 1791 SmallVector<uint64_t, 4> Offsets; 1792 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1793 unsigned NumValues = ValueVTs.size(); 1794 1795 SmallVector<SDValue, 4> Chains(NumValues); 1796 for (unsigned i = 0; i != NumValues; ++i) { 1797 // An aggregate return value cannot wrap around the address space, so 1798 // offsets to its parts don't wrap either. 1799 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1800 Chains[i] = DAG.getStore( 1801 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1802 // FIXME: better loc info would be nice. 1803 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1804 } 1805 1806 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1807 MVT::Other, Chains); 1808 } else if (I.getNumOperands() != 0) { 1809 SmallVector<EVT, 4> ValueVTs; 1810 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1811 unsigned NumValues = ValueVTs.size(); 1812 if (NumValues) { 1813 SDValue RetOp = getValue(I.getOperand(0)); 1814 1815 const Function *F = I.getParent()->getParent(); 1816 1817 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1818 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1819 Attribute::SExt)) 1820 ExtendKind = ISD::SIGN_EXTEND; 1821 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1822 Attribute::ZExt)) 1823 ExtendKind = ISD::ZERO_EXTEND; 1824 1825 LLVMContext &Context = F->getContext(); 1826 bool RetInReg = F->getAttributes().hasAttribute( 1827 AttributeList::ReturnIndex, Attribute::InReg); 1828 1829 for (unsigned j = 0; j != NumValues; ++j) { 1830 EVT VT = ValueVTs[j]; 1831 1832 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1833 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1834 1835 CallingConv::ID CC = F->getCallingConv(); 1836 1837 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1838 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1839 SmallVector<SDValue, 4> Parts(NumParts); 1840 getCopyToParts(DAG, getCurSDLoc(), 1841 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1842 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1843 1844 // 'inreg' on function refers to return value 1845 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1846 if (RetInReg) 1847 Flags.setInReg(); 1848 1849 // Propagate extension type if any 1850 if (ExtendKind == ISD::SIGN_EXTEND) 1851 Flags.setSExt(); 1852 else if (ExtendKind == ISD::ZERO_EXTEND) 1853 Flags.setZExt(); 1854 1855 for (unsigned i = 0; i < NumParts; ++i) { 1856 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1857 VT, /*isfixed=*/true, 0, 0)); 1858 OutVals.push_back(Parts[i]); 1859 } 1860 } 1861 } 1862 } 1863 1864 // Push in swifterror virtual register as the last element of Outs. This makes 1865 // sure swifterror virtual register will be returned in the swifterror 1866 // physical register. 1867 const Function *F = I.getParent()->getParent(); 1868 if (TLI.supportSwiftError() && 1869 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1870 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1871 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1872 Flags.setSwiftError(); 1873 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1874 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1875 true /*isfixed*/, 1 /*origidx*/, 1876 0 /*partOffs*/)); 1877 // Create SDNode for the swifterror virtual register. 1878 OutVals.push_back( 1879 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1880 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1881 EVT(TLI.getPointerTy(DL)))); 1882 } 1883 1884 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1885 CallingConv::ID CallConv = 1886 DAG.getMachineFunction().getFunction().getCallingConv(); 1887 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1888 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1889 1890 // Verify that the target's LowerReturn behaved as expected. 1891 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1892 "LowerReturn didn't return a valid chain!"); 1893 1894 // Update the DAG with the new chain value resulting from return lowering. 1895 DAG.setRoot(Chain); 1896 } 1897 1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1899 /// created for it, emit nodes to copy the value into the virtual 1900 /// registers. 1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1902 // Skip empty types 1903 if (V->getType()->isEmptyTy()) 1904 return; 1905 1906 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1907 if (VMI != FuncInfo.ValueMap.end()) { 1908 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1909 CopyValueToVirtualRegister(V, VMI->second); 1910 } 1911 } 1912 1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1914 /// the current basic block, add it to ValueMap now so that we'll get a 1915 /// CopyTo/FromReg. 1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1917 // No need to export constants. 1918 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1919 1920 // Already exported? 1921 if (FuncInfo.isExportedInst(V)) return; 1922 1923 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1924 CopyValueToVirtualRegister(V, Reg); 1925 } 1926 1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1928 const BasicBlock *FromBB) { 1929 // The operands of the setcc have to be in this block. We don't know 1930 // how to export them from some other block. 1931 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1932 // Can export from current BB. 1933 if (VI->getParent() == FromBB) 1934 return true; 1935 1936 // Is already exported, noop. 1937 return FuncInfo.isExportedInst(V); 1938 } 1939 1940 // If this is an argument, we can export it if the BB is the entry block or 1941 // if it is already exported. 1942 if (isa<Argument>(V)) { 1943 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1944 return true; 1945 1946 // Otherwise, can only export this if it is already exported. 1947 return FuncInfo.isExportedInst(V); 1948 } 1949 1950 // Otherwise, constants can always be exported. 1951 return true; 1952 } 1953 1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1955 BranchProbability 1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1957 const MachineBasicBlock *Dst) const { 1958 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1959 const BasicBlock *SrcBB = Src->getBasicBlock(); 1960 const BasicBlock *DstBB = Dst->getBasicBlock(); 1961 if (!BPI) { 1962 // If BPI is not available, set the default probability as 1 / N, where N is 1963 // the number of successors. 1964 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1965 return BranchProbability(1, SuccSize); 1966 } 1967 return BPI->getEdgeProbability(SrcBB, DstBB); 1968 } 1969 1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1971 MachineBasicBlock *Dst, 1972 BranchProbability Prob) { 1973 if (!FuncInfo.BPI) 1974 Src->addSuccessorWithoutProb(Dst); 1975 else { 1976 if (Prob.isUnknown()) 1977 Prob = getEdgeProbability(Src, Dst); 1978 Src->addSuccessor(Dst, Prob); 1979 } 1980 } 1981 1982 static bool InBlock(const Value *V, const BasicBlock *BB) { 1983 if (const Instruction *I = dyn_cast<Instruction>(V)) 1984 return I->getParent() == BB; 1985 return true; 1986 } 1987 1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1989 /// This function emits a branch and is used at the leaves of an OR or an 1990 /// AND operator tree. 1991 void 1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1993 MachineBasicBlock *TBB, 1994 MachineBasicBlock *FBB, 1995 MachineBasicBlock *CurBB, 1996 MachineBasicBlock *SwitchBB, 1997 BranchProbability TProb, 1998 BranchProbability FProb, 1999 bool InvertCond) { 2000 const BasicBlock *BB = CurBB->getBasicBlock(); 2001 2002 // If the leaf of the tree is a comparison, merge the condition into 2003 // the caseblock. 2004 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2005 // The operands of the cmp have to be in this block. We don't know 2006 // how to export them from some other block. If this is the first block 2007 // of the sequence, no exporting is needed. 2008 if (CurBB == SwitchBB || 2009 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2010 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2011 ISD::CondCode Condition; 2012 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2013 ICmpInst::Predicate Pred = 2014 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2015 Condition = getICmpCondCode(Pred); 2016 } else { 2017 const FCmpInst *FC = cast<FCmpInst>(Cond); 2018 FCmpInst::Predicate Pred = 2019 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2020 Condition = getFCmpCondCode(Pred); 2021 if (TM.Options.NoNaNsFPMath) 2022 Condition = getFCmpCodeWithoutNaN(Condition); 2023 } 2024 2025 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2026 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2027 SwitchCases.push_back(CB); 2028 return; 2029 } 2030 } 2031 2032 // Create a CaseBlock record representing this branch. 2033 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2034 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2035 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2036 SwitchCases.push_back(CB); 2037 } 2038 2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2040 MachineBasicBlock *TBB, 2041 MachineBasicBlock *FBB, 2042 MachineBasicBlock *CurBB, 2043 MachineBasicBlock *SwitchBB, 2044 Instruction::BinaryOps Opc, 2045 BranchProbability TProb, 2046 BranchProbability FProb, 2047 bool InvertCond) { 2048 // Skip over not part of the tree and remember to invert op and operands at 2049 // next level. 2050 Value *NotCond; 2051 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2052 InBlock(NotCond, CurBB->getBasicBlock())) { 2053 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2054 !InvertCond); 2055 return; 2056 } 2057 2058 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2059 // Compute the effective opcode for Cond, taking into account whether it needs 2060 // to be inverted, e.g. 2061 // and (not (or A, B)), C 2062 // gets lowered as 2063 // and (and (not A, not B), C) 2064 unsigned BOpc = 0; 2065 if (BOp) { 2066 BOpc = BOp->getOpcode(); 2067 if (InvertCond) { 2068 if (BOpc == Instruction::And) 2069 BOpc = Instruction::Or; 2070 else if (BOpc == Instruction::Or) 2071 BOpc = Instruction::And; 2072 } 2073 } 2074 2075 // If this node is not part of the or/and tree, emit it as a branch. 2076 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2077 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2078 BOp->getParent() != CurBB->getBasicBlock() || 2079 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2080 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2081 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2082 TProb, FProb, InvertCond); 2083 return; 2084 } 2085 2086 // Create TmpBB after CurBB. 2087 MachineFunction::iterator BBI(CurBB); 2088 MachineFunction &MF = DAG.getMachineFunction(); 2089 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2090 CurBB->getParent()->insert(++BBI, TmpBB); 2091 2092 if (Opc == Instruction::Or) { 2093 // Codegen X | Y as: 2094 // BB1: 2095 // jmp_if_X TBB 2096 // jmp TmpBB 2097 // TmpBB: 2098 // jmp_if_Y TBB 2099 // jmp FBB 2100 // 2101 2102 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2103 // The requirement is that 2104 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2105 // = TrueProb for original BB. 2106 // Assuming the original probabilities are A and B, one choice is to set 2107 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2108 // A/(1+B) and 2B/(1+B). This choice assumes that 2109 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2110 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2111 // TmpBB, but the math is more complicated. 2112 2113 auto NewTrueProb = TProb / 2; 2114 auto NewFalseProb = TProb / 2 + FProb; 2115 // Emit the LHS condition. 2116 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2117 NewTrueProb, NewFalseProb, InvertCond); 2118 2119 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2120 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2121 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2122 // Emit the RHS condition into TmpBB. 2123 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2124 Probs[0], Probs[1], InvertCond); 2125 } else { 2126 assert(Opc == Instruction::And && "Unknown merge op!"); 2127 // Codegen X & Y as: 2128 // BB1: 2129 // jmp_if_X TmpBB 2130 // jmp FBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 // This requires creation of TmpBB after CurBB. 2136 2137 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2138 // The requirement is that 2139 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2140 // = FalseProb for original BB. 2141 // Assuming the original probabilities are A and B, one choice is to set 2142 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2143 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2144 // TrueProb for BB1 * FalseProb for TmpBB. 2145 2146 auto NewTrueProb = TProb + FProb / 2; 2147 auto NewFalseProb = FProb / 2; 2148 // Emit the LHS condition. 2149 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2150 NewTrueProb, NewFalseProb, InvertCond); 2151 2152 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2153 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2154 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2155 // Emit the RHS condition into TmpBB. 2156 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2157 Probs[0], Probs[1], InvertCond); 2158 } 2159 } 2160 2161 /// If the set of cases should be emitted as a series of branches, return true. 2162 /// If we should emit this as a bunch of and/or'd together conditions, return 2163 /// false. 2164 bool 2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2166 if (Cases.size() != 2) return true; 2167 2168 // If this is two comparisons of the same values or'd or and'd together, they 2169 // will get folded into a single comparison, so don't emit two blocks. 2170 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2171 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2172 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2173 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2174 return false; 2175 } 2176 2177 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2178 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2179 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2180 Cases[0].CC == Cases[1].CC && 2181 isa<Constant>(Cases[0].CmpRHS) && 2182 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2183 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2184 return false; 2185 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2186 return false; 2187 } 2188 2189 return true; 2190 } 2191 2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2193 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2194 2195 // Update machine-CFG edges. 2196 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2197 2198 if (I.isUnconditional()) { 2199 // Update machine-CFG edges. 2200 BrMBB->addSuccessor(Succ0MBB); 2201 2202 // If this is not a fall-through branch or optimizations are switched off, 2203 // emit the branch. 2204 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2205 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2206 MVT::Other, getControlRoot(), 2207 DAG.getBasicBlock(Succ0MBB))); 2208 2209 return; 2210 } 2211 2212 // If this condition is one of the special cases we handle, do special stuff 2213 // now. 2214 const Value *CondVal = I.getCondition(); 2215 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2216 2217 // If this is a series of conditions that are or'd or and'd together, emit 2218 // this as a sequence of branches instead of setcc's with and/or operations. 2219 // As long as jumps are not expensive, this should improve performance. 2220 // For example, instead of something like: 2221 // cmp A, B 2222 // C = seteq 2223 // cmp D, E 2224 // F = setle 2225 // or C, F 2226 // jnz foo 2227 // Emit: 2228 // cmp A, B 2229 // je foo 2230 // cmp D, E 2231 // jle foo 2232 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2233 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2234 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2235 !I.getMetadata(LLVMContext::MD_unpredictable) && 2236 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2237 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2238 Opcode, 2239 getEdgeProbability(BrMBB, Succ0MBB), 2240 getEdgeProbability(BrMBB, Succ1MBB), 2241 /*InvertCond=*/false); 2242 // If the compares in later blocks need to use values not currently 2243 // exported from this block, export them now. This block should always 2244 // be the first entry. 2245 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2246 2247 // Allow some cases to be rejected. 2248 if (ShouldEmitAsBranches(SwitchCases)) { 2249 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2250 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2251 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2252 } 2253 2254 // Emit the branch for this block. 2255 visitSwitchCase(SwitchCases[0], BrMBB); 2256 SwitchCases.erase(SwitchCases.begin()); 2257 return; 2258 } 2259 2260 // Okay, we decided not to do this, remove any inserted MBB's and clear 2261 // SwitchCases. 2262 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2263 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2264 2265 SwitchCases.clear(); 2266 } 2267 } 2268 2269 // Create a CaseBlock record representing this branch. 2270 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2271 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2272 2273 // Use visitSwitchCase to actually insert the fast branch sequence for this 2274 // cond branch. 2275 visitSwitchCase(CB, BrMBB); 2276 } 2277 2278 /// visitSwitchCase - Emits the necessary code to represent a single node in 2279 /// the binary search tree resulting from lowering a switch instruction. 2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2281 MachineBasicBlock *SwitchBB) { 2282 SDValue Cond; 2283 SDValue CondLHS = getValue(CB.CmpLHS); 2284 SDLoc dl = CB.DL; 2285 2286 // Build the setcc now. 2287 if (!CB.CmpMHS) { 2288 // Fold "(X == true)" to X and "(X == false)" to !X to 2289 // handle common cases produced by branch lowering. 2290 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2291 CB.CC == ISD::SETEQ) 2292 Cond = CondLHS; 2293 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2294 CB.CC == ISD::SETEQ) { 2295 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2296 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2297 } else 2298 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2299 } else { 2300 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2301 2302 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2303 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2304 2305 SDValue CmpOp = getValue(CB.CmpMHS); 2306 EVT VT = CmpOp.getValueType(); 2307 2308 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2309 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2310 ISD::SETLE); 2311 } else { 2312 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2313 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2314 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2315 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2316 } 2317 } 2318 2319 // Update successor info 2320 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2321 // TrueBB and FalseBB are always different unless the incoming IR is 2322 // degenerate. This only happens when running llc on weird IR. 2323 if (CB.TrueBB != CB.FalseBB) 2324 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2325 SwitchBB->normalizeSuccProbs(); 2326 2327 // If the lhs block is the next block, invert the condition so that we can 2328 // fall through to the lhs instead of the rhs block. 2329 if (CB.TrueBB == NextBlock(SwitchBB)) { 2330 std::swap(CB.TrueBB, CB.FalseBB); 2331 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2332 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2333 } 2334 2335 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2336 MVT::Other, getControlRoot(), Cond, 2337 DAG.getBasicBlock(CB.TrueBB)); 2338 2339 // Insert the false branch. Do this even if it's a fall through branch, 2340 // this makes it easier to do DAG optimizations which require inverting 2341 // the branch condition. 2342 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2343 DAG.getBasicBlock(CB.FalseBB)); 2344 2345 DAG.setRoot(BrCond); 2346 } 2347 2348 /// visitJumpTable - Emit JumpTable node in the current MBB 2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2350 // Emit the code for the jump table 2351 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2352 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2353 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2354 JT.Reg, PTy); 2355 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2356 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2357 MVT::Other, Index.getValue(1), 2358 Table, Index); 2359 DAG.setRoot(BrJumpTable); 2360 } 2361 2362 /// visitJumpTableHeader - This function emits necessary code to produce index 2363 /// in the JumpTable from switch case. 2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2365 JumpTableHeader &JTH, 2366 MachineBasicBlock *SwitchBB) { 2367 SDLoc dl = getCurSDLoc(); 2368 2369 // Subtract the lowest switch case value from the value being switched on and 2370 // conditional branch to default mbb if the result is greater than the 2371 // difference between smallest and largest cases. 2372 SDValue SwitchOp = getValue(JTH.SValue); 2373 EVT VT = SwitchOp.getValueType(); 2374 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2375 DAG.getConstant(JTH.First, dl, VT)); 2376 2377 // The SDNode we just created, which holds the value being switched on minus 2378 // the smallest case value, needs to be copied to a virtual register so it 2379 // can be used as an index into the jump table in a subsequent basic block. 2380 // This value may be smaller or larger than the target's pointer type, and 2381 // therefore require extension or truncating. 2382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2383 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2384 2385 unsigned JumpTableReg = 2386 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2387 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2388 JumpTableReg, SwitchOp); 2389 JT.Reg = JumpTableReg; 2390 2391 // Emit the range check for the jump table, and branch to the default block 2392 // for the switch statement if the value being switched on exceeds the largest 2393 // case in the switch. 2394 SDValue CMP = DAG.getSetCC( 2395 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2396 Sub.getValueType()), 2397 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2398 2399 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2400 MVT::Other, CopyTo, CMP, 2401 DAG.getBasicBlock(JT.Default)); 2402 2403 // Avoid emitting unnecessary branches to the next block. 2404 if (JT.MBB != NextBlock(SwitchBB)) 2405 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2406 DAG.getBasicBlock(JT.MBB)); 2407 2408 DAG.setRoot(BrCond); 2409 } 2410 2411 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2412 /// variable if there exists one. 2413 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2414 SDValue &Chain) { 2415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2416 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2417 MachineFunction &MF = DAG.getMachineFunction(); 2418 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2419 MachineSDNode *Node = 2420 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2421 if (Global) { 2422 MachinePointerInfo MPInfo(Global); 2423 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2424 MachineMemOperand::MODereferenceable; 2425 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2426 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2427 DAG.setNodeMemRefs(Node, {MemRef}); 2428 } 2429 return SDValue(Node, 0); 2430 } 2431 2432 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2433 /// tail spliced into a stack protector check success bb. 2434 /// 2435 /// For a high level explanation of how this fits into the stack protector 2436 /// generation see the comment on the declaration of class 2437 /// StackProtectorDescriptor. 2438 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2439 MachineBasicBlock *ParentBB) { 2440 2441 // First create the loads to the guard/stack slot for the comparison. 2442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2443 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2444 2445 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2446 int FI = MFI.getStackProtectorIndex(); 2447 2448 SDValue Guard; 2449 SDLoc dl = getCurSDLoc(); 2450 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2451 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2452 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2453 2454 // Generate code to load the content of the guard slot. 2455 SDValue GuardVal = DAG.getLoad( 2456 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2457 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2458 MachineMemOperand::MOVolatile); 2459 2460 if (TLI.useStackGuardXorFP()) 2461 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2462 2463 // Retrieve guard check function, nullptr if instrumentation is inlined. 2464 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2465 // The target provides a guard check function to validate the guard value. 2466 // Generate a call to that function with the content of the guard slot as 2467 // argument. 2468 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2469 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2470 2471 TargetLowering::ArgListTy Args; 2472 TargetLowering::ArgListEntry Entry; 2473 Entry.Node = GuardVal; 2474 Entry.Ty = FnTy->getParamType(0); 2475 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2476 Entry.IsInReg = true; 2477 Args.push_back(Entry); 2478 2479 TargetLowering::CallLoweringInfo CLI(DAG); 2480 CLI.setDebugLoc(getCurSDLoc()) 2481 .setChain(DAG.getEntryNode()) 2482 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2483 getValue(GuardCheckFn), std::move(Args)); 2484 2485 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2486 DAG.setRoot(Result.second); 2487 return; 2488 } 2489 2490 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2491 // Otherwise, emit a volatile load to retrieve the stack guard value. 2492 SDValue Chain = DAG.getEntryNode(); 2493 if (TLI.useLoadStackGuardNode()) { 2494 Guard = getLoadStackGuard(DAG, dl, Chain); 2495 } else { 2496 const Value *IRGuard = TLI.getSDagStackGuard(M); 2497 SDValue GuardPtr = getValue(IRGuard); 2498 2499 Guard = 2500 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2501 Align, MachineMemOperand::MOVolatile); 2502 } 2503 2504 // Perform the comparison via a subtract/getsetcc. 2505 EVT VT = Guard.getValueType(); 2506 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2507 2508 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2509 *DAG.getContext(), 2510 Sub.getValueType()), 2511 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2512 2513 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2514 // branch to failure MBB. 2515 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2516 MVT::Other, GuardVal.getOperand(0), 2517 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2518 // Otherwise branch to success MBB. 2519 SDValue Br = DAG.getNode(ISD::BR, dl, 2520 MVT::Other, BrCond, 2521 DAG.getBasicBlock(SPD.getSuccessMBB())); 2522 2523 DAG.setRoot(Br); 2524 } 2525 2526 /// Codegen the failure basic block for a stack protector check. 2527 /// 2528 /// A failure stack protector machine basic block consists simply of a call to 2529 /// __stack_chk_fail(). 2530 /// 2531 /// For a high level explanation of how this fits into the stack protector 2532 /// generation see the comment on the declaration of class 2533 /// StackProtectorDescriptor. 2534 void 2535 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 SDValue Chain = 2538 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2539 None, false, getCurSDLoc(), false, false).second; 2540 // On PS4, the "return address" must still be within the calling function, 2541 // even if it's at the very end, so emit an explicit TRAP here. 2542 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2543 if (TM.getTargetTriple().isPS4CPU()) 2544 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2545 2546 DAG.setRoot(Chain); 2547 } 2548 2549 /// visitBitTestHeader - This function emits necessary code to produce value 2550 /// suitable for "bit tests" 2551 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2552 MachineBasicBlock *SwitchBB) { 2553 SDLoc dl = getCurSDLoc(); 2554 2555 // Subtract the minimum value 2556 SDValue SwitchOp = getValue(B.SValue); 2557 EVT VT = SwitchOp.getValueType(); 2558 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2559 DAG.getConstant(B.First, dl, VT)); 2560 2561 // Check range 2562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2563 SDValue RangeCmp = DAG.getSetCC( 2564 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2565 Sub.getValueType()), 2566 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2567 2568 // Determine the type of the test operands. 2569 bool UsePtrType = false; 2570 if (!TLI.isTypeLegal(VT)) 2571 UsePtrType = true; 2572 else { 2573 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2574 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2575 // Switch table case range are encoded into series of masks. 2576 // Just use pointer type, it's guaranteed to fit. 2577 UsePtrType = true; 2578 break; 2579 } 2580 } 2581 if (UsePtrType) { 2582 VT = TLI.getPointerTy(DAG.getDataLayout()); 2583 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2584 } 2585 2586 B.RegVT = VT.getSimpleVT(); 2587 B.Reg = FuncInfo.CreateReg(B.RegVT); 2588 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2589 2590 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2591 2592 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2593 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2594 SwitchBB->normalizeSuccProbs(); 2595 2596 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2597 MVT::Other, CopyTo, RangeCmp, 2598 DAG.getBasicBlock(B.Default)); 2599 2600 // Avoid emitting unnecessary branches to the next block. 2601 if (MBB != NextBlock(SwitchBB)) 2602 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2603 DAG.getBasicBlock(MBB)); 2604 2605 DAG.setRoot(BrRange); 2606 } 2607 2608 /// visitBitTestCase - this function produces one "bit test" 2609 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2610 MachineBasicBlock* NextMBB, 2611 BranchProbability BranchProbToNext, 2612 unsigned Reg, 2613 BitTestCase &B, 2614 MachineBasicBlock *SwitchBB) { 2615 SDLoc dl = getCurSDLoc(); 2616 MVT VT = BB.RegVT; 2617 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2618 SDValue Cmp; 2619 unsigned PopCount = countPopulation(B.Mask); 2620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2621 if (PopCount == 1) { 2622 // Testing for a single bit; just compare the shift count with what it 2623 // would need to be to shift a 1 bit in that position. 2624 Cmp = DAG.getSetCC( 2625 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2626 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2627 ISD::SETEQ); 2628 } else if (PopCount == BB.Range) { 2629 // There is only one zero bit in the range, test for it directly. 2630 Cmp = DAG.getSetCC( 2631 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2632 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2633 ISD::SETNE); 2634 } else { 2635 // Make desired shift 2636 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2637 DAG.getConstant(1, dl, VT), ShiftOp); 2638 2639 // Emit bit tests and jumps 2640 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2641 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2642 Cmp = DAG.getSetCC( 2643 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2644 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2645 } 2646 2647 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2648 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2649 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2650 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2651 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2652 // one as they are relative probabilities (and thus work more like weights), 2653 // and hence we need to normalize them to let the sum of them become one. 2654 SwitchBB->normalizeSuccProbs(); 2655 2656 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2657 MVT::Other, getControlRoot(), 2658 Cmp, DAG.getBasicBlock(B.TargetBB)); 2659 2660 // Avoid emitting unnecessary branches to the next block. 2661 if (NextMBB != NextBlock(SwitchBB)) 2662 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2663 DAG.getBasicBlock(NextMBB)); 2664 2665 DAG.setRoot(BrAnd); 2666 } 2667 2668 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2669 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2670 2671 // Retrieve successors. Look through artificial IR level blocks like 2672 // catchswitch for successors. 2673 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2674 const BasicBlock *EHPadBB = I.getSuccessor(1); 2675 2676 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2677 // have to do anything here to lower funclet bundles. 2678 assert(!I.hasOperandBundlesOtherThan( 2679 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2680 "Cannot lower invokes with arbitrary operand bundles yet!"); 2681 2682 const Value *Callee(I.getCalledValue()); 2683 const Function *Fn = dyn_cast<Function>(Callee); 2684 if (isa<InlineAsm>(Callee)) 2685 visitInlineAsm(&I); 2686 else if (Fn && Fn->isIntrinsic()) { 2687 switch (Fn->getIntrinsicID()) { 2688 default: 2689 llvm_unreachable("Cannot invoke this intrinsic"); 2690 case Intrinsic::donothing: 2691 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2692 break; 2693 case Intrinsic::experimental_patchpoint_void: 2694 case Intrinsic::experimental_patchpoint_i64: 2695 visitPatchpoint(&I, EHPadBB); 2696 break; 2697 case Intrinsic::experimental_gc_statepoint: 2698 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2699 break; 2700 case Intrinsic::wasm_rethrow_in_catch: { 2701 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2702 // special because it can be invoked, so we manually lower it to a DAG 2703 // node here. 2704 SmallVector<SDValue, 8> Ops; 2705 Ops.push_back(getRoot()); // inchain 2706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2707 Ops.push_back( 2708 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2709 TLI.getPointerTy(DAG.getDataLayout()))); 2710 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2711 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2712 break; 2713 } 2714 } 2715 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2716 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2717 // Eventually we will support lowering the @llvm.experimental.deoptimize 2718 // intrinsic, and right now there are no plans to support other intrinsics 2719 // with deopt state. 2720 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2721 } else { 2722 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2723 } 2724 2725 // If the value of the invoke is used outside of its defining block, make it 2726 // available as a virtual register. 2727 // We already took care of the exported value for the statepoint instruction 2728 // during call to the LowerStatepoint. 2729 if (!isStatepoint(I)) { 2730 CopyToExportRegsIfNeeded(&I); 2731 } 2732 2733 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2734 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2735 BranchProbability EHPadBBProb = 2736 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2737 : BranchProbability::getZero(); 2738 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2739 2740 // Update successor info. 2741 addSuccessorWithProb(InvokeMBB, Return); 2742 for (auto &UnwindDest : UnwindDests) { 2743 UnwindDest.first->setIsEHPad(); 2744 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2745 } 2746 InvokeMBB->normalizeSuccProbs(); 2747 2748 // Drop into normal successor. 2749 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2750 DAG.getBasicBlock(Return))); 2751 } 2752 2753 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2754 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2755 2756 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2757 // have to do anything here to lower funclet bundles. 2758 assert(!I.hasOperandBundlesOtherThan( 2759 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2760 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2761 2762 assert(isa<InlineAsm>(I.getCalledValue()) && 2763 "Only know how to handle inlineasm callbr"); 2764 visitInlineAsm(&I); 2765 2766 // Retrieve successors. 2767 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2768 2769 // Update successor info. 2770 addSuccessorWithProb(CallBrMBB, Return); 2771 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2772 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2773 addSuccessorWithProb(CallBrMBB, Target); 2774 } 2775 CallBrMBB->normalizeSuccProbs(); 2776 2777 // Drop into default successor. 2778 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2779 MVT::Other, getControlRoot(), 2780 DAG.getBasicBlock(Return))); 2781 } 2782 2783 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2784 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2785 } 2786 2787 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2788 assert(FuncInfo.MBB->isEHPad() && 2789 "Call to landingpad not in landing pad!"); 2790 2791 // If there aren't registers to copy the values into (e.g., during SjLj 2792 // exceptions), then don't bother to create these DAG nodes. 2793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2794 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2795 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2796 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2797 return; 2798 2799 // If landingpad's return type is token type, we don't create DAG nodes 2800 // for its exception pointer and selector value. The extraction of exception 2801 // pointer or selector value from token type landingpads is not currently 2802 // supported. 2803 if (LP.getType()->isTokenTy()) 2804 return; 2805 2806 SmallVector<EVT, 2> ValueVTs; 2807 SDLoc dl = getCurSDLoc(); 2808 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2809 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2810 2811 // Get the two live-in registers as SDValues. The physregs have already been 2812 // copied into virtual registers. 2813 SDValue Ops[2]; 2814 if (FuncInfo.ExceptionPointerVirtReg) { 2815 Ops[0] = DAG.getZExtOrTrunc( 2816 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2817 FuncInfo.ExceptionPointerVirtReg, 2818 TLI.getPointerTy(DAG.getDataLayout())), 2819 dl, ValueVTs[0]); 2820 } else { 2821 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2822 } 2823 Ops[1] = DAG.getZExtOrTrunc( 2824 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2825 FuncInfo.ExceptionSelectorVirtReg, 2826 TLI.getPointerTy(DAG.getDataLayout())), 2827 dl, ValueVTs[1]); 2828 2829 // Merge into one. 2830 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2831 DAG.getVTList(ValueVTs), Ops); 2832 setValue(&LP, Res); 2833 } 2834 2835 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2836 #ifndef NDEBUG 2837 for (const CaseCluster &CC : Clusters) 2838 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2839 #endif 2840 2841 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2842 return a.Low->getValue().slt(b.Low->getValue()); 2843 }); 2844 2845 // Merge adjacent clusters with the same destination. 2846 const unsigned N = Clusters.size(); 2847 unsigned DstIndex = 0; 2848 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2849 CaseCluster &CC = Clusters[SrcIndex]; 2850 const ConstantInt *CaseVal = CC.Low; 2851 MachineBasicBlock *Succ = CC.MBB; 2852 2853 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2854 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2855 // If this case has the same successor and is a neighbour, merge it into 2856 // the previous cluster. 2857 Clusters[DstIndex - 1].High = CaseVal; 2858 Clusters[DstIndex - 1].Prob += CC.Prob; 2859 } else { 2860 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2861 sizeof(Clusters[SrcIndex])); 2862 } 2863 } 2864 Clusters.resize(DstIndex); 2865 } 2866 2867 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2868 MachineBasicBlock *Last) { 2869 // Update JTCases. 2870 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2871 if (JTCases[i].first.HeaderBB == First) 2872 JTCases[i].first.HeaderBB = Last; 2873 2874 // Update BitTestCases. 2875 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2876 if (BitTestCases[i].Parent == First) 2877 BitTestCases[i].Parent = Last; 2878 } 2879 2880 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2881 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2882 2883 // Update machine-CFG edges with unique successors. 2884 SmallSet<BasicBlock*, 32> Done; 2885 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2886 BasicBlock *BB = I.getSuccessor(i); 2887 bool Inserted = Done.insert(BB).second; 2888 if (!Inserted) 2889 continue; 2890 2891 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2892 addSuccessorWithProb(IndirectBrMBB, Succ); 2893 } 2894 IndirectBrMBB->normalizeSuccProbs(); 2895 2896 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2897 MVT::Other, getControlRoot(), 2898 getValue(I.getAddress()))); 2899 } 2900 2901 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2902 if (!DAG.getTarget().Options.TrapUnreachable) 2903 return; 2904 2905 // We may be able to ignore unreachable behind a noreturn call. 2906 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2907 const BasicBlock &BB = *I.getParent(); 2908 if (&I != &BB.front()) { 2909 BasicBlock::const_iterator PredI = 2910 std::prev(BasicBlock::const_iterator(&I)); 2911 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2912 if (Call->doesNotReturn()) 2913 return; 2914 } 2915 } 2916 } 2917 2918 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2919 } 2920 2921 void SelectionDAGBuilder::visitFSub(const User &I) { 2922 // -0.0 - X --> fneg 2923 Type *Ty = I.getType(); 2924 if (isa<Constant>(I.getOperand(0)) && 2925 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2926 SDValue Op2 = getValue(I.getOperand(1)); 2927 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2928 Op2.getValueType(), Op2)); 2929 return; 2930 } 2931 2932 visitBinary(I, ISD::FSUB); 2933 } 2934 2935 /// Checks if the given instruction performs a vector reduction, in which case 2936 /// we have the freedom to alter the elements in the result as long as the 2937 /// reduction of them stays unchanged. 2938 static bool isVectorReductionOp(const User *I) { 2939 const Instruction *Inst = dyn_cast<Instruction>(I); 2940 if (!Inst || !Inst->getType()->isVectorTy()) 2941 return false; 2942 2943 auto OpCode = Inst->getOpcode(); 2944 switch (OpCode) { 2945 case Instruction::Add: 2946 case Instruction::Mul: 2947 case Instruction::And: 2948 case Instruction::Or: 2949 case Instruction::Xor: 2950 break; 2951 case Instruction::FAdd: 2952 case Instruction::FMul: 2953 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2954 if (FPOp->getFastMathFlags().isFast()) 2955 break; 2956 LLVM_FALLTHROUGH; 2957 default: 2958 return false; 2959 } 2960 2961 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2962 // Ensure the reduction size is a power of 2. 2963 if (!isPowerOf2_32(ElemNum)) 2964 return false; 2965 2966 unsigned ElemNumToReduce = ElemNum; 2967 2968 // Do DFS search on the def-use chain from the given instruction. We only 2969 // allow four kinds of operations during the search until we reach the 2970 // instruction that extracts the first element from the vector: 2971 // 2972 // 1. The reduction operation of the same opcode as the given instruction. 2973 // 2974 // 2. PHI node. 2975 // 2976 // 3. ShuffleVector instruction together with a reduction operation that 2977 // does a partial reduction. 2978 // 2979 // 4. ExtractElement that extracts the first element from the vector, and we 2980 // stop searching the def-use chain here. 2981 // 2982 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2983 // from 1-3 to the stack to continue the DFS. The given instruction is not 2984 // a reduction operation if we meet any other instructions other than those 2985 // listed above. 2986 2987 SmallVector<const User *, 16> UsersToVisit{Inst}; 2988 SmallPtrSet<const User *, 16> Visited; 2989 bool ReduxExtracted = false; 2990 2991 while (!UsersToVisit.empty()) { 2992 auto User = UsersToVisit.back(); 2993 UsersToVisit.pop_back(); 2994 if (!Visited.insert(User).second) 2995 continue; 2996 2997 for (const auto &U : User->users()) { 2998 auto Inst = dyn_cast<Instruction>(U); 2999 if (!Inst) 3000 return false; 3001 3002 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3003 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3004 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3005 return false; 3006 UsersToVisit.push_back(U); 3007 } else if (const ShuffleVectorInst *ShufInst = 3008 dyn_cast<ShuffleVectorInst>(U)) { 3009 // Detect the following pattern: A ShuffleVector instruction together 3010 // with a reduction that do partial reduction on the first and second 3011 // ElemNumToReduce / 2 elements, and store the result in 3012 // ElemNumToReduce / 2 elements in another vector. 3013 3014 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3015 if (ResultElements < ElemNum) 3016 return false; 3017 3018 if (ElemNumToReduce == 1) 3019 return false; 3020 if (!isa<UndefValue>(U->getOperand(1))) 3021 return false; 3022 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3023 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3024 return false; 3025 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3026 if (ShufInst->getMaskValue(i) != -1) 3027 return false; 3028 3029 // There is only one user of this ShuffleVector instruction, which 3030 // must be a reduction operation. 3031 if (!U->hasOneUse()) 3032 return false; 3033 3034 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3035 if (!U2 || U2->getOpcode() != OpCode) 3036 return false; 3037 3038 // Check operands of the reduction operation. 3039 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3040 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3041 UsersToVisit.push_back(U2); 3042 ElemNumToReduce /= 2; 3043 } else 3044 return false; 3045 } else if (isa<ExtractElementInst>(U)) { 3046 // At this moment we should have reduced all elements in the vector. 3047 if (ElemNumToReduce != 1) 3048 return false; 3049 3050 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3051 if (!Val || !Val->isZero()) 3052 return false; 3053 3054 ReduxExtracted = true; 3055 } else 3056 return false; 3057 } 3058 } 3059 return ReduxExtracted; 3060 } 3061 3062 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3063 SDNodeFlags Flags; 3064 3065 SDValue Op = getValue(I.getOperand(0)); 3066 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3067 Op, Flags); 3068 setValue(&I, UnNodeValue); 3069 } 3070 3071 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3072 SDNodeFlags Flags; 3073 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3074 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3075 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3076 } 3077 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3078 Flags.setExact(ExactOp->isExact()); 3079 } 3080 if (isVectorReductionOp(&I)) { 3081 Flags.setVectorReduction(true); 3082 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3083 } 3084 3085 SDValue Op1 = getValue(I.getOperand(0)); 3086 SDValue Op2 = getValue(I.getOperand(1)); 3087 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3088 Op1, Op2, Flags); 3089 setValue(&I, BinNodeValue); 3090 } 3091 3092 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3093 SDValue Op1 = getValue(I.getOperand(0)); 3094 SDValue Op2 = getValue(I.getOperand(1)); 3095 3096 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3097 Op1.getValueType(), DAG.getDataLayout()); 3098 3099 // Coerce the shift amount to the right type if we can. 3100 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3101 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3102 unsigned Op2Size = Op2.getValueSizeInBits(); 3103 SDLoc DL = getCurSDLoc(); 3104 3105 // If the operand is smaller than the shift count type, promote it. 3106 if (ShiftSize > Op2Size) 3107 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3108 3109 // If the operand is larger than the shift count type but the shift 3110 // count type has enough bits to represent any shift value, truncate 3111 // it now. This is a common case and it exposes the truncate to 3112 // optimization early. 3113 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3114 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3115 // Otherwise we'll need to temporarily settle for some other convenient 3116 // type. Type legalization will make adjustments once the shiftee is split. 3117 else 3118 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3119 } 3120 3121 bool nuw = false; 3122 bool nsw = false; 3123 bool exact = false; 3124 3125 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3126 3127 if (const OverflowingBinaryOperator *OFBinOp = 3128 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3129 nuw = OFBinOp->hasNoUnsignedWrap(); 3130 nsw = OFBinOp->hasNoSignedWrap(); 3131 } 3132 if (const PossiblyExactOperator *ExactOp = 3133 dyn_cast<const PossiblyExactOperator>(&I)) 3134 exact = ExactOp->isExact(); 3135 } 3136 SDNodeFlags Flags; 3137 Flags.setExact(exact); 3138 Flags.setNoSignedWrap(nsw); 3139 Flags.setNoUnsignedWrap(nuw); 3140 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3141 Flags); 3142 setValue(&I, Res); 3143 } 3144 3145 void SelectionDAGBuilder::visitSDiv(const User &I) { 3146 SDValue Op1 = getValue(I.getOperand(0)); 3147 SDValue Op2 = getValue(I.getOperand(1)); 3148 3149 SDNodeFlags Flags; 3150 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3151 cast<PossiblyExactOperator>(&I)->isExact()); 3152 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3153 Op2, Flags)); 3154 } 3155 3156 void SelectionDAGBuilder::visitICmp(const User &I) { 3157 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3158 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3159 predicate = IC->getPredicate(); 3160 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3161 predicate = ICmpInst::Predicate(IC->getPredicate()); 3162 SDValue Op1 = getValue(I.getOperand(0)); 3163 SDValue Op2 = getValue(I.getOperand(1)); 3164 ISD::CondCode Opcode = getICmpCondCode(predicate); 3165 3166 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3167 I.getType()); 3168 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3169 } 3170 3171 void SelectionDAGBuilder::visitFCmp(const User &I) { 3172 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3173 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3174 predicate = FC->getPredicate(); 3175 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3176 predicate = FCmpInst::Predicate(FC->getPredicate()); 3177 SDValue Op1 = getValue(I.getOperand(0)); 3178 SDValue Op2 = getValue(I.getOperand(1)); 3179 3180 ISD::CondCode Condition = getFCmpCondCode(predicate); 3181 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3182 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3183 Condition = getFCmpCodeWithoutNaN(Condition); 3184 3185 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3186 I.getType()); 3187 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3188 } 3189 3190 // Check if the condition of the select has one use or two users that are both 3191 // selects with the same condition. 3192 static bool hasOnlySelectUsers(const Value *Cond) { 3193 return llvm::all_of(Cond->users(), [](const Value *V) { 3194 return isa<SelectInst>(V); 3195 }); 3196 } 3197 3198 void SelectionDAGBuilder::visitSelect(const User &I) { 3199 SmallVector<EVT, 4> ValueVTs; 3200 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3201 ValueVTs); 3202 unsigned NumValues = ValueVTs.size(); 3203 if (NumValues == 0) return; 3204 3205 SmallVector<SDValue, 4> Values(NumValues); 3206 SDValue Cond = getValue(I.getOperand(0)); 3207 SDValue LHSVal = getValue(I.getOperand(1)); 3208 SDValue RHSVal = getValue(I.getOperand(2)); 3209 auto BaseOps = {Cond}; 3210 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3211 ISD::VSELECT : ISD::SELECT; 3212 3213 // Min/max matching is only viable if all output VTs are the same. 3214 if (is_splat(ValueVTs)) { 3215 EVT VT = ValueVTs[0]; 3216 LLVMContext &Ctx = *DAG.getContext(); 3217 auto &TLI = DAG.getTargetLoweringInfo(); 3218 3219 // We care about the legality of the operation after it has been type 3220 // legalized. 3221 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3222 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3223 VT = TLI.getTypeToTransformTo(Ctx, VT); 3224 3225 // If the vselect is legal, assume we want to leave this as a vector setcc + 3226 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3227 // min/max is legal on the scalar type. 3228 bool UseScalarMinMax = VT.isVector() && 3229 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3230 3231 Value *LHS, *RHS; 3232 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3233 ISD::NodeType Opc = ISD::DELETED_NODE; 3234 switch (SPR.Flavor) { 3235 case SPF_UMAX: Opc = ISD::UMAX; break; 3236 case SPF_UMIN: Opc = ISD::UMIN; break; 3237 case SPF_SMAX: Opc = ISD::SMAX; break; 3238 case SPF_SMIN: Opc = ISD::SMIN; break; 3239 case SPF_FMINNUM: 3240 switch (SPR.NaNBehavior) { 3241 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3242 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3243 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3244 case SPNB_RETURNS_ANY: { 3245 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3246 Opc = ISD::FMINNUM; 3247 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3248 Opc = ISD::FMINIMUM; 3249 else if (UseScalarMinMax) 3250 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3251 ISD::FMINNUM : ISD::FMINIMUM; 3252 break; 3253 } 3254 } 3255 break; 3256 case SPF_FMAXNUM: 3257 switch (SPR.NaNBehavior) { 3258 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3259 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3260 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3261 case SPNB_RETURNS_ANY: 3262 3263 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3264 Opc = ISD::FMAXNUM; 3265 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3266 Opc = ISD::FMAXIMUM; 3267 else if (UseScalarMinMax) 3268 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3269 ISD::FMAXNUM : ISD::FMAXIMUM; 3270 break; 3271 } 3272 break; 3273 default: break; 3274 } 3275 3276 if (Opc != ISD::DELETED_NODE && 3277 (TLI.isOperationLegalOrCustom(Opc, VT) || 3278 (UseScalarMinMax && 3279 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3280 // If the underlying comparison instruction is used by any other 3281 // instruction, the consumed instructions won't be destroyed, so it is 3282 // not profitable to convert to a min/max. 3283 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3284 OpCode = Opc; 3285 LHSVal = getValue(LHS); 3286 RHSVal = getValue(RHS); 3287 BaseOps = {}; 3288 } 3289 } 3290 3291 for (unsigned i = 0; i != NumValues; ++i) { 3292 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3293 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3294 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3295 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3296 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3297 Ops); 3298 } 3299 3300 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3301 DAG.getVTList(ValueVTs), Values)); 3302 } 3303 3304 void SelectionDAGBuilder::visitTrunc(const User &I) { 3305 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3306 SDValue N = getValue(I.getOperand(0)); 3307 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3308 I.getType()); 3309 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3310 } 3311 3312 void SelectionDAGBuilder::visitZExt(const User &I) { 3313 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3314 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3315 SDValue N = getValue(I.getOperand(0)); 3316 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3317 I.getType()); 3318 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3319 } 3320 3321 void SelectionDAGBuilder::visitSExt(const User &I) { 3322 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3323 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3324 SDValue N = getValue(I.getOperand(0)); 3325 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3326 I.getType()); 3327 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3328 } 3329 3330 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3331 // FPTrunc is never a no-op cast, no need to check 3332 SDValue N = getValue(I.getOperand(0)); 3333 SDLoc dl = getCurSDLoc(); 3334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3335 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3336 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3337 DAG.getTargetConstant( 3338 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3339 } 3340 3341 void SelectionDAGBuilder::visitFPExt(const User &I) { 3342 // FPExt is never a no-op cast, no need to check 3343 SDValue N = getValue(I.getOperand(0)); 3344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3345 I.getType()); 3346 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3347 } 3348 3349 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3350 // FPToUI is never a no-op cast, no need to check 3351 SDValue N = getValue(I.getOperand(0)); 3352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3353 I.getType()); 3354 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3355 } 3356 3357 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3358 // FPToSI is never a no-op cast, no need to check 3359 SDValue N = getValue(I.getOperand(0)); 3360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3361 I.getType()); 3362 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3363 } 3364 3365 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3366 // UIToFP is never a no-op cast, no need to check 3367 SDValue N = getValue(I.getOperand(0)); 3368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3369 I.getType()); 3370 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3371 } 3372 3373 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3374 // SIToFP is never a no-op cast, no need to check 3375 SDValue N = getValue(I.getOperand(0)); 3376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3377 I.getType()); 3378 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3379 } 3380 3381 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3382 // What to do depends on the size of the integer and the size of the pointer. 3383 // We can either truncate, zero extend, or no-op, accordingly. 3384 SDValue N = getValue(I.getOperand(0)); 3385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3386 I.getType()); 3387 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3388 } 3389 3390 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3391 // What to do depends on the size of the integer and the size of the pointer. 3392 // We can either truncate, zero extend, or no-op, accordingly. 3393 SDValue N = getValue(I.getOperand(0)); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3397 } 3398 3399 void SelectionDAGBuilder::visitBitCast(const User &I) { 3400 SDValue N = getValue(I.getOperand(0)); 3401 SDLoc dl = getCurSDLoc(); 3402 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3403 I.getType()); 3404 3405 // BitCast assures us that source and destination are the same size so this is 3406 // either a BITCAST or a no-op. 3407 if (DestVT != N.getValueType()) 3408 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3409 DestVT, N)); // convert types. 3410 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3411 // might fold any kind of constant expression to an integer constant and that 3412 // is not what we are looking for. Only recognize a bitcast of a genuine 3413 // constant integer as an opaque constant. 3414 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3415 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3416 /*isOpaque*/true)); 3417 else 3418 setValue(&I, N); // noop cast. 3419 } 3420 3421 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3423 const Value *SV = I.getOperand(0); 3424 SDValue N = getValue(SV); 3425 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3426 3427 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3428 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3429 3430 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3431 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3432 3433 setValue(&I, N); 3434 } 3435 3436 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3438 SDValue InVec = getValue(I.getOperand(0)); 3439 SDValue InVal = getValue(I.getOperand(1)); 3440 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3441 TLI.getVectorIdxTy(DAG.getDataLayout())); 3442 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3443 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3444 InVec, InVal, InIdx)); 3445 } 3446 3447 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3449 SDValue InVec = getValue(I.getOperand(0)); 3450 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3451 TLI.getVectorIdxTy(DAG.getDataLayout())); 3452 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3453 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3454 InVec, InIdx)); 3455 } 3456 3457 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3458 SDValue Src1 = getValue(I.getOperand(0)); 3459 SDValue Src2 = getValue(I.getOperand(1)); 3460 SDLoc DL = getCurSDLoc(); 3461 3462 SmallVector<int, 8> Mask; 3463 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3464 unsigned MaskNumElts = Mask.size(); 3465 3466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3467 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3468 EVT SrcVT = Src1.getValueType(); 3469 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3470 3471 if (SrcNumElts == MaskNumElts) { 3472 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3473 return; 3474 } 3475 3476 // Normalize the shuffle vector since mask and vector length don't match. 3477 if (SrcNumElts < MaskNumElts) { 3478 // Mask is longer than the source vectors. We can use concatenate vector to 3479 // make the mask and vectors lengths match. 3480 3481 if (MaskNumElts % SrcNumElts == 0) { 3482 // Mask length is a multiple of the source vector length. 3483 // Check if the shuffle is some kind of concatenation of the input 3484 // vectors. 3485 unsigned NumConcat = MaskNumElts / SrcNumElts; 3486 bool IsConcat = true; 3487 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3488 for (unsigned i = 0; i != MaskNumElts; ++i) { 3489 int Idx = Mask[i]; 3490 if (Idx < 0) 3491 continue; 3492 // Ensure the indices in each SrcVT sized piece are sequential and that 3493 // the same source is used for the whole piece. 3494 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3495 (ConcatSrcs[i / SrcNumElts] >= 0 && 3496 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3497 IsConcat = false; 3498 break; 3499 } 3500 // Remember which source this index came from. 3501 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3502 } 3503 3504 // The shuffle is concatenating multiple vectors together. Just emit 3505 // a CONCAT_VECTORS operation. 3506 if (IsConcat) { 3507 SmallVector<SDValue, 8> ConcatOps; 3508 for (auto Src : ConcatSrcs) { 3509 if (Src < 0) 3510 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3511 else if (Src == 0) 3512 ConcatOps.push_back(Src1); 3513 else 3514 ConcatOps.push_back(Src2); 3515 } 3516 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3517 return; 3518 } 3519 } 3520 3521 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3522 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3523 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3524 PaddedMaskNumElts); 3525 3526 // Pad both vectors with undefs to make them the same length as the mask. 3527 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3528 3529 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3530 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3531 MOps1[0] = Src1; 3532 MOps2[0] = Src2; 3533 3534 Src1 = Src1.isUndef() 3535 ? DAG.getUNDEF(PaddedVT) 3536 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3537 Src2 = Src2.isUndef() 3538 ? DAG.getUNDEF(PaddedVT) 3539 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3540 3541 // Readjust mask for new input vector length. 3542 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3543 for (unsigned i = 0; i != MaskNumElts; ++i) { 3544 int Idx = Mask[i]; 3545 if (Idx >= (int)SrcNumElts) 3546 Idx -= SrcNumElts - PaddedMaskNumElts; 3547 MappedOps[i] = Idx; 3548 } 3549 3550 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3551 3552 // If the concatenated vector was padded, extract a subvector with the 3553 // correct number of elements. 3554 if (MaskNumElts != PaddedMaskNumElts) 3555 Result = DAG.getNode( 3556 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3557 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3558 3559 setValue(&I, Result); 3560 return; 3561 } 3562 3563 if (SrcNumElts > MaskNumElts) { 3564 // Analyze the access pattern of the vector to see if we can extract 3565 // two subvectors and do the shuffle. 3566 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3567 bool CanExtract = true; 3568 for (int Idx : Mask) { 3569 unsigned Input = 0; 3570 if (Idx < 0) 3571 continue; 3572 3573 if (Idx >= (int)SrcNumElts) { 3574 Input = 1; 3575 Idx -= SrcNumElts; 3576 } 3577 3578 // If all the indices come from the same MaskNumElts sized portion of 3579 // the sources we can use extract. Also make sure the extract wouldn't 3580 // extract past the end of the source. 3581 int NewStartIdx = alignDown(Idx, MaskNumElts); 3582 if (NewStartIdx + MaskNumElts > SrcNumElts || 3583 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3584 CanExtract = false; 3585 // Make sure we always update StartIdx as we use it to track if all 3586 // elements are undef. 3587 StartIdx[Input] = NewStartIdx; 3588 } 3589 3590 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3591 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3592 return; 3593 } 3594 if (CanExtract) { 3595 // Extract appropriate subvector and generate a vector shuffle 3596 for (unsigned Input = 0; Input < 2; ++Input) { 3597 SDValue &Src = Input == 0 ? Src1 : Src2; 3598 if (StartIdx[Input] < 0) 3599 Src = DAG.getUNDEF(VT); 3600 else { 3601 Src = DAG.getNode( 3602 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3603 DAG.getConstant(StartIdx[Input], DL, 3604 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3605 } 3606 } 3607 3608 // Calculate new mask. 3609 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3610 for (int &Idx : MappedOps) { 3611 if (Idx >= (int)SrcNumElts) 3612 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3613 else if (Idx >= 0) 3614 Idx -= StartIdx[0]; 3615 } 3616 3617 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3618 return; 3619 } 3620 } 3621 3622 // We can't use either concat vectors or extract subvectors so fall back to 3623 // replacing the shuffle with extract and build vector. 3624 // to insert and build vector. 3625 EVT EltVT = VT.getVectorElementType(); 3626 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3627 SmallVector<SDValue,8> Ops; 3628 for (int Idx : Mask) { 3629 SDValue Res; 3630 3631 if (Idx < 0) { 3632 Res = DAG.getUNDEF(EltVT); 3633 } else { 3634 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3635 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3636 3637 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3638 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3639 } 3640 3641 Ops.push_back(Res); 3642 } 3643 3644 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3645 } 3646 3647 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3648 ArrayRef<unsigned> Indices; 3649 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3650 Indices = IV->getIndices(); 3651 else 3652 Indices = cast<ConstantExpr>(&I)->getIndices(); 3653 3654 const Value *Op0 = I.getOperand(0); 3655 const Value *Op1 = I.getOperand(1); 3656 Type *AggTy = I.getType(); 3657 Type *ValTy = Op1->getType(); 3658 bool IntoUndef = isa<UndefValue>(Op0); 3659 bool FromUndef = isa<UndefValue>(Op1); 3660 3661 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3662 3663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3664 SmallVector<EVT, 4> AggValueVTs; 3665 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3666 SmallVector<EVT, 4> ValValueVTs; 3667 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3668 3669 unsigned NumAggValues = AggValueVTs.size(); 3670 unsigned NumValValues = ValValueVTs.size(); 3671 SmallVector<SDValue, 4> Values(NumAggValues); 3672 3673 // Ignore an insertvalue that produces an empty object 3674 if (!NumAggValues) { 3675 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3676 return; 3677 } 3678 3679 SDValue Agg = getValue(Op0); 3680 unsigned i = 0; 3681 // Copy the beginning value(s) from the original aggregate. 3682 for (; i != LinearIndex; ++i) 3683 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3684 SDValue(Agg.getNode(), Agg.getResNo() + i); 3685 // Copy values from the inserted value(s). 3686 if (NumValValues) { 3687 SDValue Val = getValue(Op1); 3688 for (; i != LinearIndex + NumValValues; ++i) 3689 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3690 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3691 } 3692 // Copy remaining value(s) from the original aggregate. 3693 for (; i != NumAggValues; ++i) 3694 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3695 SDValue(Agg.getNode(), Agg.getResNo() + i); 3696 3697 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3698 DAG.getVTList(AggValueVTs), Values)); 3699 } 3700 3701 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3702 ArrayRef<unsigned> Indices; 3703 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3704 Indices = EV->getIndices(); 3705 else 3706 Indices = cast<ConstantExpr>(&I)->getIndices(); 3707 3708 const Value *Op0 = I.getOperand(0); 3709 Type *AggTy = Op0->getType(); 3710 Type *ValTy = I.getType(); 3711 bool OutOfUndef = isa<UndefValue>(Op0); 3712 3713 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3714 3715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3716 SmallVector<EVT, 4> ValValueVTs; 3717 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3718 3719 unsigned NumValValues = ValValueVTs.size(); 3720 3721 // Ignore a extractvalue that produces an empty object 3722 if (!NumValValues) { 3723 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3724 return; 3725 } 3726 3727 SmallVector<SDValue, 4> Values(NumValValues); 3728 3729 SDValue Agg = getValue(Op0); 3730 // Copy out the selected value(s). 3731 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3732 Values[i - LinearIndex] = 3733 OutOfUndef ? 3734 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3735 SDValue(Agg.getNode(), Agg.getResNo() + i); 3736 3737 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3738 DAG.getVTList(ValValueVTs), Values)); 3739 } 3740 3741 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3742 Value *Op0 = I.getOperand(0); 3743 // Note that the pointer operand may be a vector of pointers. Take the scalar 3744 // element which holds a pointer. 3745 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3746 SDValue N = getValue(Op0); 3747 SDLoc dl = getCurSDLoc(); 3748 3749 // Normalize Vector GEP - all scalar operands should be converted to the 3750 // splat vector. 3751 unsigned VectorWidth = I.getType()->isVectorTy() ? 3752 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3753 3754 if (VectorWidth && !N.getValueType().isVector()) { 3755 LLVMContext &Context = *DAG.getContext(); 3756 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3757 N = DAG.getSplatBuildVector(VT, dl, N); 3758 } 3759 3760 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3761 GTI != E; ++GTI) { 3762 const Value *Idx = GTI.getOperand(); 3763 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3764 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3765 if (Field) { 3766 // N = N + Offset 3767 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3768 3769 // In an inbounds GEP with an offset that is nonnegative even when 3770 // interpreted as signed, assume there is no unsigned overflow. 3771 SDNodeFlags Flags; 3772 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3773 Flags.setNoUnsignedWrap(true); 3774 3775 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3776 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3777 } 3778 } else { 3779 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3780 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3781 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3782 3783 // If this is a scalar constant or a splat vector of constants, 3784 // handle it quickly. 3785 const auto *CI = dyn_cast<ConstantInt>(Idx); 3786 if (!CI && isa<ConstantDataVector>(Idx) && 3787 cast<ConstantDataVector>(Idx)->getSplatValue()) 3788 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3789 3790 if (CI) { 3791 if (CI->isZero()) 3792 continue; 3793 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3794 LLVMContext &Context = *DAG.getContext(); 3795 SDValue OffsVal = VectorWidth ? 3796 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3797 DAG.getConstant(Offs, dl, IdxTy); 3798 3799 // In an inbouds GEP with an offset that is nonnegative even when 3800 // interpreted as signed, assume there is no unsigned overflow. 3801 SDNodeFlags Flags; 3802 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3803 Flags.setNoUnsignedWrap(true); 3804 3805 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3806 continue; 3807 } 3808 3809 // N = N + Idx * ElementSize; 3810 SDValue IdxN = getValue(Idx); 3811 3812 if (!IdxN.getValueType().isVector() && VectorWidth) { 3813 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3814 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3815 } 3816 3817 // If the index is smaller or larger than intptr_t, truncate or extend 3818 // it. 3819 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3820 3821 // If this is a multiply by a power of two, turn it into a shl 3822 // immediately. This is a very common case. 3823 if (ElementSize != 1) { 3824 if (ElementSize.isPowerOf2()) { 3825 unsigned Amt = ElementSize.logBase2(); 3826 IdxN = DAG.getNode(ISD::SHL, dl, 3827 N.getValueType(), IdxN, 3828 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3829 } else { 3830 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3831 IdxN = DAG.getNode(ISD::MUL, dl, 3832 N.getValueType(), IdxN, Scale); 3833 } 3834 } 3835 3836 N = DAG.getNode(ISD::ADD, dl, 3837 N.getValueType(), N, IdxN); 3838 } 3839 } 3840 3841 setValue(&I, N); 3842 } 3843 3844 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3845 // If this is a fixed sized alloca in the entry block of the function, 3846 // allocate it statically on the stack. 3847 if (FuncInfo.StaticAllocaMap.count(&I)) 3848 return; // getValue will auto-populate this. 3849 3850 SDLoc dl = getCurSDLoc(); 3851 Type *Ty = I.getAllocatedType(); 3852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3853 auto &DL = DAG.getDataLayout(); 3854 uint64_t TySize = DL.getTypeAllocSize(Ty); 3855 unsigned Align = 3856 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3857 3858 SDValue AllocSize = getValue(I.getArraySize()); 3859 3860 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3861 if (AllocSize.getValueType() != IntPtr) 3862 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3863 3864 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3865 AllocSize, 3866 DAG.getConstant(TySize, dl, IntPtr)); 3867 3868 // Handle alignment. If the requested alignment is less than or equal to 3869 // the stack alignment, ignore it. If the size is greater than or equal to 3870 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3871 unsigned StackAlign = 3872 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3873 if (Align <= StackAlign) 3874 Align = 0; 3875 3876 // Round the size of the allocation up to the stack alignment size 3877 // by add SA-1 to the size. This doesn't overflow because we're computing 3878 // an address inside an alloca. 3879 SDNodeFlags Flags; 3880 Flags.setNoUnsignedWrap(true); 3881 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3882 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3883 3884 // Mask out the low bits for alignment purposes. 3885 AllocSize = 3886 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3887 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3888 3889 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3890 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3891 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3892 setValue(&I, DSA); 3893 DAG.setRoot(DSA.getValue(1)); 3894 3895 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3896 } 3897 3898 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3899 if (I.isAtomic()) 3900 return visitAtomicLoad(I); 3901 3902 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3903 const Value *SV = I.getOperand(0); 3904 if (TLI.supportSwiftError()) { 3905 // Swifterror values can come from either a function parameter with 3906 // swifterror attribute or an alloca with swifterror attribute. 3907 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3908 if (Arg->hasSwiftErrorAttr()) 3909 return visitLoadFromSwiftError(I); 3910 } 3911 3912 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3913 if (Alloca->isSwiftError()) 3914 return visitLoadFromSwiftError(I); 3915 } 3916 } 3917 3918 SDValue Ptr = getValue(SV); 3919 3920 Type *Ty = I.getType(); 3921 3922 bool isVolatile = I.isVolatile(); 3923 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3924 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3925 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3926 unsigned Alignment = I.getAlignment(); 3927 3928 AAMDNodes AAInfo; 3929 I.getAAMetadata(AAInfo); 3930 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3931 3932 SmallVector<EVT, 4> ValueVTs; 3933 SmallVector<uint64_t, 4> Offsets; 3934 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3935 unsigned NumValues = ValueVTs.size(); 3936 if (NumValues == 0) 3937 return; 3938 3939 SDValue Root; 3940 bool ConstantMemory = false; 3941 if (isVolatile || NumValues > MaxParallelChains) 3942 // Serialize volatile loads with other side effects. 3943 Root = getRoot(); 3944 else if (AA && 3945 AA->pointsToConstantMemory(MemoryLocation( 3946 SV, 3947 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3948 AAInfo))) { 3949 // Do not serialize (non-volatile) loads of constant memory with anything. 3950 Root = DAG.getEntryNode(); 3951 ConstantMemory = true; 3952 } else { 3953 // Do not serialize non-volatile loads against each other. 3954 Root = DAG.getRoot(); 3955 } 3956 3957 SDLoc dl = getCurSDLoc(); 3958 3959 if (isVolatile) 3960 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3961 3962 // An aggregate load cannot wrap around the address space, so offsets to its 3963 // parts don't wrap either. 3964 SDNodeFlags Flags; 3965 Flags.setNoUnsignedWrap(true); 3966 3967 SmallVector<SDValue, 4> Values(NumValues); 3968 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3969 EVT PtrVT = Ptr.getValueType(); 3970 unsigned ChainI = 0; 3971 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3972 // Serializing loads here may result in excessive register pressure, and 3973 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3974 // could recover a bit by hoisting nodes upward in the chain by recognizing 3975 // they are side-effect free or do not alias. The optimizer should really 3976 // avoid this case by converting large object/array copies to llvm.memcpy 3977 // (MaxParallelChains should always remain as failsafe). 3978 if (ChainI == MaxParallelChains) { 3979 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3980 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3981 makeArrayRef(Chains.data(), ChainI)); 3982 Root = Chain; 3983 ChainI = 0; 3984 } 3985 SDValue A = DAG.getNode(ISD::ADD, dl, 3986 PtrVT, Ptr, 3987 DAG.getConstant(Offsets[i], dl, PtrVT), 3988 Flags); 3989 auto MMOFlags = MachineMemOperand::MONone; 3990 if (isVolatile) 3991 MMOFlags |= MachineMemOperand::MOVolatile; 3992 if (isNonTemporal) 3993 MMOFlags |= MachineMemOperand::MONonTemporal; 3994 if (isInvariant) 3995 MMOFlags |= MachineMemOperand::MOInvariant; 3996 if (isDereferenceable) 3997 MMOFlags |= MachineMemOperand::MODereferenceable; 3998 MMOFlags |= TLI.getMMOFlags(I); 3999 4000 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 4001 MachinePointerInfo(SV, Offsets[i]), Alignment, 4002 MMOFlags, AAInfo, Ranges); 4003 4004 Values[i] = L; 4005 Chains[ChainI] = L.getValue(1); 4006 } 4007 4008 if (!ConstantMemory) { 4009 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4010 makeArrayRef(Chains.data(), ChainI)); 4011 if (isVolatile) 4012 DAG.setRoot(Chain); 4013 else 4014 PendingLoads.push_back(Chain); 4015 } 4016 4017 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4018 DAG.getVTList(ValueVTs), Values)); 4019 } 4020 4021 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4022 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4023 "call visitStoreToSwiftError when backend supports swifterror"); 4024 4025 SmallVector<EVT, 4> ValueVTs; 4026 SmallVector<uint64_t, 4> Offsets; 4027 const Value *SrcV = I.getOperand(0); 4028 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4029 SrcV->getType(), ValueVTs, &Offsets); 4030 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4031 "expect a single EVT for swifterror"); 4032 4033 SDValue Src = getValue(SrcV); 4034 // Create a virtual register, then update the virtual register. 4035 unsigned VReg; bool CreatedVReg; 4036 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4037 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4038 // Chain can be getRoot or getControlRoot. 4039 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4040 SDValue(Src.getNode(), Src.getResNo())); 4041 DAG.setRoot(CopyNode); 4042 if (CreatedVReg) 4043 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4044 } 4045 4046 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4047 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4048 "call visitLoadFromSwiftError when backend supports swifterror"); 4049 4050 assert(!I.isVolatile() && 4051 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4052 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4053 "Support volatile, non temporal, invariant for load_from_swift_error"); 4054 4055 const Value *SV = I.getOperand(0); 4056 Type *Ty = I.getType(); 4057 AAMDNodes AAInfo; 4058 I.getAAMetadata(AAInfo); 4059 assert( 4060 (!AA || 4061 !AA->pointsToConstantMemory(MemoryLocation( 4062 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4063 AAInfo))) && 4064 "load_from_swift_error should not be constant memory"); 4065 4066 SmallVector<EVT, 4> ValueVTs; 4067 SmallVector<uint64_t, 4> Offsets; 4068 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4069 ValueVTs, &Offsets); 4070 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4071 "expect a single EVT for swifterror"); 4072 4073 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4074 SDValue L = DAG.getCopyFromReg( 4075 getRoot(), getCurSDLoc(), 4076 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4077 ValueVTs[0]); 4078 4079 setValue(&I, L); 4080 } 4081 4082 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4083 if (I.isAtomic()) 4084 return visitAtomicStore(I); 4085 4086 const Value *SrcV = I.getOperand(0); 4087 const Value *PtrV = I.getOperand(1); 4088 4089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4090 if (TLI.supportSwiftError()) { 4091 // Swifterror values can come from either a function parameter with 4092 // swifterror attribute or an alloca with swifterror attribute. 4093 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4094 if (Arg->hasSwiftErrorAttr()) 4095 return visitStoreToSwiftError(I); 4096 } 4097 4098 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4099 if (Alloca->isSwiftError()) 4100 return visitStoreToSwiftError(I); 4101 } 4102 } 4103 4104 SmallVector<EVT, 4> ValueVTs; 4105 SmallVector<uint64_t, 4> Offsets; 4106 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4107 SrcV->getType(), ValueVTs, &Offsets); 4108 unsigned NumValues = ValueVTs.size(); 4109 if (NumValues == 0) 4110 return; 4111 4112 // Get the lowered operands. Note that we do this after 4113 // checking if NumResults is zero, because with zero results 4114 // the operands won't have values in the map. 4115 SDValue Src = getValue(SrcV); 4116 SDValue Ptr = getValue(PtrV); 4117 4118 SDValue Root = getRoot(); 4119 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4120 SDLoc dl = getCurSDLoc(); 4121 EVT PtrVT = Ptr.getValueType(); 4122 unsigned Alignment = I.getAlignment(); 4123 AAMDNodes AAInfo; 4124 I.getAAMetadata(AAInfo); 4125 4126 auto MMOFlags = MachineMemOperand::MONone; 4127 if (I.isVolatile()) 4128 MMOFlags |= MachineMemOperand::MOVolatile; 4129 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4130 MMOFlags |= MachineMemOperand::MONonTemporal; 4131 MMOFlags |= TLI.getMMOFlags(I); 4132 4133 // An aggregate load cannot wrap around the address space, so offsets to its 4134 // parts don't wrap either. 4135 SDNodeFlags Flags; 4136 Flags.setNoUnsignedWrap(true); 4137 4138 unsigned ChainI = 0; 4139 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4140 // See visitLoad comments. 4141 if (ChainI == MaxParallelChains) { 4142 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4143 makeArrayRef(Chains.data(), ChainI)); 4144 Root = Chain; 4145 ChainI = 0; 4146 } 4147 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4148 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4149 SDValue St = DAG.getStore( 4150 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 4151 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 4152 Chains[ChainI] = St; 4153 } 4154 4155 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4156 makeArrayRef(Chains.data(), ChainI)); 4157 DAG.setRoot(StoreNode); 4158 } 4159 4160 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4161 bool IsCompressing) { 4162 SDLoc sdl = getCurSDLoc(); 4163 4164 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4165 unsigned& Alignment) { 4166 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4167 Src0 = I.getArgOperand(0); 4168 Ptr = I.getArgOperand(1); 4169 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4170 Mask = I.getArgOperand(3); 4171 }; 4172 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4173 unsigned& Alignment) { 4174 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4175 Src0 = I.getArgOperand(0); 4176 Ptr = I.getArgOperand(1); 4177 Mask = I.getArgOperand(2); 4178 Alignment = 0; 4179 }; 4180 4181 Value *PtrOperand, *MaskOperand, *Src0Operand; 4182 unsigned Alignment; 4183 if (IsCompressing) 4184 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4185 else 4186 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4187 4188 SDValue Ptr = getValue(PtrOperand); 4189 SDValue Src0 = getValue(Src0Operand); 4190 SDValue Mask = getValue(MaskOperand); 4191 4192 EVT VT = Src0.getValueType(); 4193 if (!Alignment) 4194 Alignment = DAG.getEVTAlignment(VT); 4195 4196 AAMDNodes AAInfo; 4197 I.getAAMetadata(AAInfo); 4198 4199 MachineMemOperand *MMO = 4200 DAG.getMachineFunction(). 4201 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4202 MachineMemOperand::MOStore, VT.getStoreSize(), 4203 Alignment, AAInfo); 4204 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4205 MMO, false /* Truncating */, 4206 IsCompressing); 4207 DAG.setRoot(StoreNode); 4208 setValue(&I, StoreNode); 4209 } 4210 4211 // Get a uniform base for the Gather/Scatter intrinsic. 4212 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4213 // We try to represent it as a base pointer + vector of indices. 4214 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4215 // The first operand of the GEP may be a single pointer or a vector of pointers 4216 // Example: 4217 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4218 // or 4219 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4220 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4221 // 4222 // When the first GEP operand is a single pointer - it is the uniform base we 4223 // are looking for. If first operand of the GEP is a splat vector - we 4224 // extract the splat value and use it as a uniform base. 4225 // In all other cases the function returns 'false'. 4226 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4227 SDValue &Scale, SelectionDAGBuilder* SDB) { 4228 SelectionDAG& DAG = SDB->DAG; 4229 LLVMContext &Context = *DAG.getContext(); 4230 4231 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4232 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4233 if (!GEP) 4234 return false; 4235 4236 const Value *GEPPtr = GEP->getPointerOperand(); 4237 if (!GEPPtr->getType()->isVectorTy()) 4238 Ptr = GEPPtr; 4239 else if (!(Ptr = getSplatValue(GEPPtr))) 4240 return false; 4241 4242 unsigned FinalIndex = GEP->getNumOperands() - 1; 4243 Value *IndexVal = GEP->getOperand(FinalIndex); 4244 4245 // Ensure all the other indices are 0. 4246 for (unsigned i = 1; i < FinalIndex; ++i) { 4247 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4248 if (!C || !C->isZero()) 4249 return false; 4250 } 4251 4252 // The operands of the GEP may be defined in another basic block. 4253 // In this case we'll not find nodes for the operands. 4254 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4255 return false; 4256 4257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4258 const DataLayout &DL = DAG.getDataLayout(); 4259 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4260 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4261 Base = SDB->getValue(Ptr); 4262 Index = SDB->getValue(IndexVal); 4263 4264 if (!Index.getValueType().isVector()) { 4265 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4266 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4267 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4268 } 4269 return true; 4270 } 4271 4272 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4273 SDLoc sdl = getCurSDLoc(); 4274 4275 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4276 const Value *Ptr = I.getArgOperand(1); 4277 SDValue Src0 = getValue(I.getArgOperand(0)); 4278 SDValue Mask = getValue(I.getArgOperand(3)); 4279 EVT VT = Src0.getValueType(); 4280 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4281 if (!Alignment) 4282 Alignment = DAG.getEVTAlignment(VT); 4283 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4284 4285 AAMDNodes AAInfo; 4286 I.getAAMetadata(AAInfo); 4287 4288 SDValue Base; 4289 SDValue Index; 4290 SDValue Scale; 4291 const Value *BasePtr = Ptr; 4292 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4293 4294 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4295 MachineMemOperand *MMO = DAG.getMachineFunction(). 4296 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4297 MachineMemOperand::MOStore, VT.getStoreSize(), 4298 Alignment, AAInfo); 4299 if (!UniformBase) { 4300 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4301 Index = getValue(Ptr); 4302 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4303 } 4304 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4305 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4306 Ops, MMO); 4307 DAG.setRoot(Scatter); 4308 setValue(&I, Scatter); 4309 } 4310 4311 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4312 SDLoc sdl = getCurSDLoc(); 4313 4314 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4315 unsigned& Alignment) { 4316 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4317 Ptr = I.getArgOperand(0); 4318 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4319 Mask = I.getArgOperand(2); 4320 Src0 = I.getArgOperand(3); 4321 }; 4322 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4323 unsigned& Alignment) { 4324 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4325 Ptr = I.getArgOperand(0); 4326 Alignment = 0; 4327 Mask = I.getArgOperand(1); 4328 Src0 = I.getArgOperand(2); 4329 }; 4330 4331 Value *PtrOperand, *MaskOperand, *Src0Operand; 4332 unsigned Alignment; 4333 if (IsExpanding) 4334 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4335 else 4336 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4337 4338 SDValue Ptr = getValue(PtrOperand); 4339 SDValue Src0 = getValue(Src0Operand); 4340 SDValue Mask = getValue(MaskOperand); 4341 4342 EVT VT = Src0.getValueType(); 4343 if (!Alignment) 4344 Alignment = DAG.getEVTAlignment(VT); 4345 4346 AAMDNodes AAInfo; 4347 I.getAAMetadata(AAInfo); 4348 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4349 4350 // Do not serialize masked loads of constant memory with anything. 4351 bool AddToChain = 4352 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4353 PtrOperand, 4354 LocationSize::precise( 4355 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4356 AAInfo)); 4357 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4358 4359 MachineMemOperand *MMO = 4360 DAG.getMachineFunction(). 4361 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4362 MachineMemOperand::MOLoad, VT.getStoreSize(), 4363 Alignment, AAInfo, Ranges); 4364 4365 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4366 ISD::NON_EXTLOAD, IsExpanding); 4367 if (AddToChain) 4368 PendingLoads.push_back(Load.getValue(1)); 4369 setValue(&I, Load); 4370 } 4371 4372 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4373 SDLoc sdl = getCurSDLoc(); 4374 4375 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4376 const Value *Ptr = I.getArgOperand(0); 4377 SDValue Src0 = getValue(I.getArgOperand(3)); 4378 SDValue Mask = getValue(I.getArgOperand(2)); 4379 4380 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4381 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4382 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4383 if (!Alignment) 4384 Alignment = DAG.getEVTAlignment(VT); 4385 4386 AAMDNodes AAInfo; 4387 I.getAAMetadata(AAInfo); 4388 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4389 4390 SDValue Root = DAG.getRoot(); 4391 SDValue Base; 4392 SDValue Index; 4393 SDValue Scale; 4394 const Value *BasePtr = Ptr; 4395 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4396 bool ConstantMemory = false; 4397 if (UniformBase && AA && 4398 AA->pointsToConstantMemory( 4399 MemoryLocation(BasePtr, 4400 LocationSize::precise( 4401 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4402 AAInfo))) { 4403 // Do not serialize (non-volatile) loads of constant memory with anything. 4404 Root = DAG.getEntryNode(); 4405 ConstantMemory = true; 4406 } 4407 4408 MachineMemOperand *MMO = 4409 DAG.getMachineFunction(). 4410 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4411 MachineMemOperand::MOLoad, VT.getStoreSize(), 4412 Alignment, AAInfo, Ranges); 4413 4414 if (!UniformBase) { 4415 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4416 Index = getValue(Ptr); 4417 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4418 } 4419 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4420 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4421 Ops, MMO); 4422 4423 SDValue OutChain = Gather.getValue(1); 4424 if (!ConstantMemory) 4425 PendingLoads.push_back(OutChain); 4426 setValue(&I, Gather); 4427 } 4428 4429 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4430 SDLoc dl = getCurSDLoc(); 4431 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4432 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4433 SyncScope::ID SSID = I.getSyncScopeID(); 4434 4435 SDValue InChain = getRoot(); 4436 4437 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4438 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4439 4440 auto Alignment = DAG.getEVTAlignment(MemVT); 4441 4442 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4443 if (I.isVolatile()) 4444 Flags |= MachineMemOperand::MOVolatile; 4445 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4446 4447 MachineFunction &MF = DAG.getMachineFunction(); 4448 MachineMemOperand *MMO = 4449 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4450 Flags, MemVT.getStoreSize(), Alignment, 4451 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4452 FailureOrdering); 4453 4454 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4455 dl, MemVT, VTs, InChain, 4456 getValue(I.getPointerOperand()), 4457 getValue(I.getCompareOperand()), 4458 getValue(I.getNewValOperand()), MMO); 4459 4460 SDValue OutChain = L.getValue(2); 4461 4462 setValue(&I, L); 4463 DAG.setRoot(OutChain); 4464 } 4465 4466 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4467 SDLoc dl = getCurSDLoc(); 4468 ISD::NodeType NT; 4469 switch (I.getOperation()) { 4470 default: llvm_unreachable("Unknown atomicrmw operation"); 4471 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4472 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4473 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4474 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4475 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4476 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4477 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4478 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4479 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4480 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4481 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4482 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4483 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4484 } 4485 AtomicOrdering Ordering = I.getOrdering(); 4486 SyncScope::ID SSID = I.getSyncScopeID(); 4487 4488 SDValue InChain = getRoot(); 4489 4490 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4491 auto Alignment = DAG.getEVTAlignment(MemVT); 4492 4493 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4494 if (I.isVolatile()) 4495 Flags |= MachineMemOperand::MOVolatile; 4496 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4497 4498 MachineFunction &MF = DAG.getMachineFunction(); 4499 MachineMemOperand *MMO = 4500 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4501 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4502 nullptr, SSID, Ordering); 4503 4504 SDValue L = 4505 DAG.getAtomic(NT, dl, MemVT, InChain, 4506 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4507 MMO); 4508 4509 SDValue OutChain = L.getValue(1); 4510 4511 setValue(&I, L); 4512 DAG.setRoot(OutChain); 4513 } 4514 4515 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4516 SDLoc dl = getCurSDLoc(); 4517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4518 SDValue Ops[3]; 4519 Ops[0] = getRoot(); 4520 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4521 TLI.getFenceOperandTy(DAG.getDataLayout())); 4522 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4523 TLI.getFenceOperandTy(DAG.getDataLayout())); 4524 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4525 } 4526 4527 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4528 SDLoc dl = getCurSDLoc(); 4529 AtomicOrdering Order = I.getOrdering(); 4530 SyncScope::ID SSID = I.getSyncScopeID(); 4531 4532 SDValue InChain = getRoot(); 4533 4534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4535 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4536 4537 if (!TLI.supportsUnalignedAtomics() && 4538 I.getAlignment() < VT.getStoreSize()) 4539 report_fatal_error("Cannot generate unaligned atomic load"); 4540 4541 auto Flags = MachineMemOperand::MOLoad; 4542 if (I.isVolatile()) 4543 Flags |= MachineMemOperand::MOVolatile; 4544 Flags |= TLI.getMMOFlags(I); 4545 4546 MachineMemOperand *MMO = 4547 DAG.getMachineFunction(). 4548 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4549 Flags, VT.getStoreSize(), 4550 I.getAlignment() ? I.getAlignment() : 4551 DAG.getEVTAlignment(VT), 4552 AAMDNodes(), nullptr, SSID, Order); 4553 4554 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4555 SDValue L = 4556 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4557 getValue(I.getPointerOperand()), MMO); 4558 4559 SDValue OutChain = L.getValue(1); 4560 4561 setValue(&I, L); 4562 DAG.setRoot(OutChain); 4563 } 4564 4565 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4566 SDLoc dl = getCurSDLoc(); 4567 4568 AtomicOrdering Ordering = I.getOrdering(); 4569 SyncScope::ID SSID = I.getSyncScopeID(); 4570 4571 SDValue InChain = getRoot(); 4572 4573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4574 EVT VT = 4575 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4576 4577 if (I.getAlignment() < VT.getStoreSize()) 4578 report_fatal_error("Cannot generate unaligned atomic store"); 4579 4580 auto Flags = MachineMemOperand::MOStore; 4581 if (I.isVolatile()) 4582 Flags |= MachineMemOperand::MOVolatile; 4583 Flags |= TLI.getMMOFlags(I); 4584 4585 MachineFunction &MF = DAG.getMachineFunction(); 4586 MachineMemOperand *MMO = 4587 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4588 VT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4589 nullptr, SSID, Ordering); 4590 SDValue OutChain = 4591 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain, 4592 getValue(I.getPointerOperand()), getValue(I.getValueOperand()), 4593 MMO); 4594 4595 4596 DAG.setRoot(OutChain); 4597 } 4598 4599 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4600 /// node. 4601 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4602 unsigned Intrinsic) { 4603 // Ignore the callsite's attributes. A specific call site may be marked with 4604 // readnone, but the lowering code will expect the chain based on the 4605 // definition. 4606 const Function *F = I.getCalledFunction(); 4607 bool HasChain = !F->doesNotAccessMemory(); 4608 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4609 4610 // Build the operand list. 4611 SmallVector<SDValue, 8> Ops; 4612 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4613 if (OnlyLoad) { 4614 // We don't need to serialize loads against other loads. 4615 Ops.push_back(DAG.getRoot()); 4616 } else { 4617 Ops.push_back(getRoot()); 4618 } 4619 } 4620 4621 // Info is set by getTgtMemInstrinsic 4622 TargetLowering::IntrinsicInfo Info; 4623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4624 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4625 DAG.getMachineFunction(), 4626 Intrinsic); 4627 4628 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4629 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4630 Info.opc == ISD::INTRINSIC_W_CHAIN) 4631 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4632 TLI.getPointerTy(DAG.getDataLayout()))); 4633 4634 // Add all operands of the call to the operand list. 4635 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4636 SDValue Op = getValue(I.getArgOperand(i)); 4637 Ops.push_back(Op); 4638 } 4639 4640 SmallVector<EVT, 4> ValueVTs; 4641 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4642 4643 if (HasChain) 4644 ValueVTs.push_back(MVT::Other); 4645 4646 SDVTList VTs = DAG.getVTList(ValueVTs); 4647 4648 // Create the node. 4649 SDValue Result; 4650 if (IsTgtIntrinsic) { 4651 // This is target intrinsic that touches memory 4652 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4653 Ops, Info.memVT, 4654 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4655 Info.flags, Info.size); 4656 } else if (!HasChain) { 4657 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4658 } else if (!I.getType()->isVoidTy()) { 4659 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4660 } else { 4661 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4662 } 4663 4664 if (HasChain) { 4665 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4666 if (OnlyLoad) 4667 PendingLoads.push_back(Chain); 4668 else 4669 DAG.setRoot(Chain); 4670 } 4671 4672 if (!I.getType()->isVoidTy()) { 4673 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4674 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4675 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4676 } else 4677 Result = lowerRangeToAssertZExt(DAG, I, Result); 4678 4679 setValue(&I, Result); 4680 } 4681 } 4682 4683 /// GetSignificand - Get the significand and build it into a floating-point 4684 /// number with exponent of 1: 4685 /// 4686 /// Op = (Op & 0x007fffff) | 0x3f800000; 4687 /// 4688 /// where Op is the hexadecimal representation of floating point value. 4689 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4690 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4691 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4692 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4693 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4694 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4695 } 4696 4697 /// GetExponent - Get the exponent: 4698 /// 4699 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4700 /// 4701 /// where Op is the hexadecimal representation of floating point value. 4702 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4703 const TargetLowering &TLI, const SDLoc &dl) { 4704 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4705 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4706 SDValue t1 = DAG.getNode( 4707 ISD::SRL, dl, MVT::i32, t0, 4708 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4709 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4710 DAG.getConstant(127, dl, MVT::i32)); 4711 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4712 } 4713 4714 /// getF32Constant - Get 32-bit floating point constant. 4715 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4716 const SDLoc &dl) { 4717 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4718 MVT::f32); 4719 } 4720 4721 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4722 SelectionDAG &DAG) { 4723 // TODO: What fast-math-flags should be set on the floating-point nodes? 4724 4725 // IntegerPartOfX = ((int32_t)(t0); 4726 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4727 4728 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4729 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4730 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4731 4732 // IntegerPartOfX <<= 23; 4733 IntegerPartOfX = DAG.getNode( 4734 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4735 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4736 DAG.getDataLayout()))); 4737 4738 SDValue TwoToFractionalPartOfX; 4739 if (LimitFloatPrecision <= 6) { 4740 // For floating-point precision of 6: 4741 // 4742 // TwoToFractionalPartOfX = 4743 // 0.997535578f + 4744 // (0.735607626f + 0.252464424f * x) * x; 4745 // 4746 // error 0.0144103317, which is 6 bits 4747 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4748 getF32Constant(DAG, 0x3e814304, dl)); 4749 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4750 getF32Constant(DAG, 0x3f3c50c8, dl)); 4751 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4752 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4753 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4754 } else if (LimitFloatPrecision <= 12) { 4755 // For floating-point precision of 12: 4756 // 4757 // TwoToFractionalPartOfX = 4758 // 0.999892986f + 4759 // (0.696457318f + 4760 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4761 // 4762 // error 0.000107046256, which is 13 to 14 bits 4763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4764 getF32Constant(DAG, 0x3da235e3, dl)); 4765 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4766 getF32Constant(DAG, 0x3e65b8f3, dl)); 4767 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4768 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4769 getF32Constant(DAG, 0x3f324b07, dl)); 4770 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4771 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4772 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4773 } else { // LimitFloatPrecision <= 18 4774 // For floating-point precision of 18: 4775 // 4776 // TwoToFractionalPartOfX = 4777 // 0.999999982f + 4778 // (0.693148872f + 4779 // (0.240227044f + 4780 // (0.554906021e-1f + 4781 // (0.961591928e-2f + 4782 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4783 // error 2.47208000*10^(-7), which is better than 18 bits 4784 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4785 getF32Constant(DAG, 0x3924b03e, dl)); 4786 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4787 getF32Constant(DAG, 0x3ab24b87, dl)); 4788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4789 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4790 getF32Constant(DAG, 0x3c1d8c17, dl)); 4791 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4792 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4793 getF32Constant(DAG, 0x3d634a1d, dl)); 4794 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4795 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4796 getF32Constant(DAG, 0x3e75fe14, dl)); 4797 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4798 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4799 getF32Constant(DAG, 0x3f317234, dl)); 4800 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4801 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4802 getF32Constant(DAG, 0x3f800000, dl)); 4803 } 4804 4805 // Add the exponent into the result in integer domain. 4806 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4807 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4808 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4809 } 4810 4811 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4812 /// limited-precision mode. 4813 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4814 const TargetLowering &TLI) { 4815 if (Op.getValueType() == MVT::f32 && 4816 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4817 4818 // Put the exponent in the right bit position for later addition to the 4819 // final result: 4820 // 4821 // #define LOG2OFe 1.4426950f 4822 // t0 = Op * LOG2OFe 4823 4824 // TODO: What fast-math-flags should be set here? 4825 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4826 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4827 return getLimitedPrecisionExp2(t0, dl, DAG); 4828 } 4829 4830 // No special expansion. 4831 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4832 } 4833 4834 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4835 /// limited-precision mode. 4836 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4837 const TargetLowering &TLI) { 4838 // TODO: What fast-math-flags should be set on the floating-point nodes? 4839 4840 if (Op.getValueType() == MVT::f32 && 4841 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4842 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4843 4844 // Scale the exponent by log(2) [0.69314718f]. 4845 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4846 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4847 getF32Constant(DAG, 0x3f317218, dl)); 4848 4849 // Get the significand and build it into a floating-point number with 4850 // exponent of 1. 4851 SDValue X = GetSignificand(DAG, Op1, dl); 4852 4853 SDValue LogOfMantissa; 4854 if (LimitFloatPrecision <= 6) { 4855 // For floating-point precision of 6: 4856 // 4857 // LogofMantissa = 4858 // -1.1609546f + 4859 // (1.4034025f - 0.23903021f * x) * x; 4860 // 4861 // error 0.0034276066, which is better than 8 bits 4862 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4863 getF32Constant(DAG, 0xbe74c456, dl)); 4864 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4865 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4866 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4867 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4868 getF32Constant(DAG, 0x3f949a29, dl)); 4869 } else if (LimitFloatPrecision <= 12) { 4870 // For floating-point precision of 12: 4871 // 4872 // LogOfMantissa = 4873 // -1.7417939f + 4874 // (2.8212026f + 4875 // (-1.4699568f + 4876 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4877 // 4878 // error 0.000061011436, which is 14 bits 4879 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4880 getF32Constant(DAG, 0xbd67b6d6, dl)); 4881 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4882 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4883 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4884 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4885 getF32Constant(DAG, 0x3fbc278b, dl)); 4886 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4887 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4888 getF32Constant(DAG, 0x40348e95, dl)); 4889 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4890 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4891 getF32Constant(DAG, 0x3fdef31a, dl)); 4892 } else { // LimitFloatPrecision <= 18 4893 // For floating-point precision of 18: 4894 // 4895 // LogOfMantissa = 4896 // -2.1072184f + 4897 // (4.2372794f + 4898 // (-3.7029485f + 4899 // (2.2781945f + 4900 // (-0.87823314f + 4901 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4902 // 4903 // error 0.0000023660568, which is better than 18 bits 4904 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4905 getF32Constant(DAG, 0xbc91e5ac, dl)); 4906 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4907 getF32Constant(DAG, 0x3e4350aa, dl)); 4908 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4909 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4910 getF32Constant(DAG, 0x3f60d3e3, dl)); 4911 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4912 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4913 getF32Constant(DAG, 0x4011cdf0, dl)); 4914 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4915 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4916 getF32Constant(DAG, 0x406cfd1c, dl)); 4917 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4918 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4919 getF32Constant(DAG, 0x408797cb, dl)); 4920 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4921 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4922 getF32Constant(DAG, 0x4006dcab, dl)); 4923 } 4924 4925 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4926 } 4927 4928 // No special expansion. 4929 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4930 } 4931 4932 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4933 /// limited-precision mode. 4934 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4935 const TargetLowering &TLI) { 4936 // TODO: What fast-math-flags should be set on the floating-point nodes? 4937 4938 if (Op.getValueType() == MVT::f32 && 4939 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4940 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4941 4942 // Get the exponent. 4943 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4944 4945 // Get the significand and build it into a floating-point number with 4946 // exponent of 1. 4947 SDValue X = GetSignificand(DAG, Op1, dl); 4948 4949 // Different possible minimax approximations of significand in 4950 // floating-point for various degrees of accuracy over [1,2]. 4951 SDValue Log2ofMantissa; 4952 if (LimitFloatPrecision <= 6) { 4953 // For floating-point precision of 6: 4954 // 4955 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4956 // 4957 // error 0.0049451742, which is more than 7 bits 4958 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4959 getF32Constant(DAG, 0xbeb08fe0, dl)); 4960 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4961 getF32Constant(DAG, 0x40019463, dl)); 4962 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4963 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4964 getF32Constant(DAG, 0x3fd6633d, dl)); 4965 } else if (LimitFloatPrecision <= 12) { 4966 // For floating-point precision of 12: 4967 // 4968 // Log2ofMantissa = 4969 // -2.51285454f + 4970 // (4.07009056f + 4971 // (-2.12067489f + 4972 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4973 // 4974 // error 0.0000876136000, which is better than 13 bits 4975 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4976 getF32Constant(DAG, 0xbda7262e, dl)); 4977 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4978 getF32Constant(DAG, 0x3f25280b, dl)); 4979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4980 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4981 getF32Constant(DAG, 0x4007b923, dl)); 4982 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4983 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4984 getF32Constant(DAG, 0x40823e2f, dl)); 4985 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4986 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4987 getF32Constant(DAG, 0x4020d29c, dl)); 4988 } else { // LimitFloatPrecision <= 18 4989 // For floating-point precision of 18: 4990 // 4991 // Log2ofMantissa = 4992 // -3.0400495f + 4993 // (6.1129976f + 4994 // (-5.3420409f + 4995 // (3.2865683f + 4996 // (-1.2669343f + 4997 // (0.27515199f - 4998 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4999 // 5000 // error 0.0000018516, which is better than 18 bits 5001 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5002 getF32Constant(DAG, 0xbcd2769e, dl)); 5003 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5004 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5005 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5006 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5007 getF32Constant(DAG, 0x3fa22ae7, dl)); 5008 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5009 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5010 getF32Constant(DAG, 0x40525723, dl)); 5011 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5012 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5013 getF32Constant(DAG, 0x40aaf200, dl)); 5014 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5015 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5016 getF32Constant(DAG, 0x40c39dad, dl)); 5017 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5018 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5019 getF32Constant(DAG, 0x4042902c, dl)); 5020 } 5021 5022 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5023 } 5024 5025 // No special expansion. 5026 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5027 } 5028 5029 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5030 /// limited-precision mode. 5031 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5032 const TargetLowering &TLI) { 5033 // TODO: What fast-math-flags should be set on the floating-point nodes? 5034 5035 if (Op.getValueType() == MVT::f32 && 5036 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5037 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5038 5039 // Scale the exponent by log10(2) [0.30102999f]. 5040 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5041 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5042 getF32Constant(DAG, 0x3e9a209a, dl)); 5043 5044 // Get the significand and build it into a floating-point number with 5045 // exponent of 1. 5046 SDValue X = GetSignificand(DAG, Op1, dl); 5047 5048 SDValue Log10ofMantissa; 5049 if (LimitFloatPrecision <= 6) { 5050 // For floating-point precision of 6: 5051 // 5052 // Log10ofMantissa = 5053 // -0.50419619f + 5054 // (0.60948995f - 0.10380950f * x) * x; 5055 // 5056 // error 0.0014886165, which is 6 bits 5057 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5058 getF32Constant(DAG, 0xbdd49a13, dl)); 5059 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5060 getF32Constant(DAG, 0x3f1c0789, dl)); 5061 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5062 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5063 getF32Constant(DAG, 0x3f011300, dl)); 5064 } else if (LimitFloatPrecision <= 12) { 5065 // For floating-point precision of 12: 5066 // 5067 // Log10ofMantissa = 5068 // -0.64831180f + 5069 // (0.91751397f + 5070 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5071 // 5072 // error 0.00019228036, which is better than 12 bits 5073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5074 getF32Constant(DAG, 0x3d431f31, dl)); 5075 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5076 getF32Constant(DAG, 0x3ea21fb2, dl)); 5077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5078 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5079 getF32Constant(DAG, 0x3f6ae232, dl)); 5080 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5081 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5082 getF32Constant(DAG, 0x3f25f7c3, dl)); 5083 } else { // LimitFloatPrecision <= 18 5084 // For floating-point precision of 18: 5085 // 5086 // Log10ofMantissa = 5087 // -0.84299375f + 5088 // (1.5327582f + 5089 // (-1.0688956f + 5090 // (0.49102474f + 5091 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5092 // 5093 // error 0.0000037995730, which is better than 18 bits 5094 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5095 getF32Constant(DAG, 0x3c5d51ce, dl)); 5096 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5097 getF32Constant(DAG, 0x3e00685a, dl)); 5098 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5099 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5100 getF32Constant(DAG, 0x3efb6798, dl)); 5101 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5102 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5103 getF32Constant(DAG, 0x3f88d192, dl)); 5104 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5105 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5106 getF32Constant(DAG, 0x3fc4316c, dl)); 5107 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5108 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5109 getF32Constant(DAG, 0x3f57ce70, dl)); 5110 } 5111 5112 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5113 } 5114 5115 // No special expansion. 5116 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5117 } 5118 5119 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5120 /// limited-precision mode. 5121 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5122 const TargetLowering &TLI) { 5123 if (Op.getValueType() == MVT::f32 && 5124 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5125 return getLimitedPrecisionExp2(Op, dl, DAG); 5126 5127 // No special expansion. 5128 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5129 } 5130 5131 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5132 /// limited-precision mode with x == 10.0f. 5133 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5134 SelectionDAG &DAG, const TargetLowering &TLI) { 5135 bool IsExp10 = false; 5136 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5137 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5138 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5139 APFloat Ten(10.0f); 5140 IsExp10 = LHSC->isExactlyValue(Ten); 5141 } 5142 } 5143 5144 // TODO: What fast-math-flags should be set on the FMUL node? 5145 if (IsExp10) { 5146 // Put the exponent in the right bit position for later addition to the 5147 // final result: 5148 // 5149 // #define LOG2OF10 3.3219281f 5150 // t0 = Op * LOG2OF10; 5151 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5152 getF32Constant(DAG, 0x40549a78, dl)); 5153 return getLimitedPrecisionExp2(t0, dl, DAG); 5154 } 5155 5156 // No special expansion. 5157 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5158 } 5159 5160 /// ExpandPowI - Expand a llvm.powi intrinsic. 5161 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5162 SelectionDAG &DAG) { 5163 // If RHS is a constant, we can expand this out to a multiplication tree, 5164 // otherwise we end up lowering to a call to __powidf2 (for example). When 5165 // optimizing for size, we only want to do this if the expansion would produce 5166 // a small number of multiplies, otherwise we do the full expansion. 5167 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5168 // Get the exponent as a positive value. 5169 unsigned Val = RHSC->getSExtValue(); 5170 if ((int)Val < 0) Val = -Val; 5171 5172 // powi(x, 0) -> 1.0 5173 if (Val == 0) 5174 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5175 5176 const Function &F = DAG.getMachineFunction().getFunction(); 5177 if (!F.optForSize() || 5178 // If optimizing for size, don't insert too many multiplies. 5179 // This inserts up to 5 multiplies. 5180 countPopulation(Val) + Log2_32(Val) < 7) { 5181 // We use the simple binary decomposition method to generate the multiply 5182 // sequence. There are more optimal ways to do this (for example, 5183 // powi(x,15) generates one more multiply than it should), but this has 5184 // the benefit of being both really simple and much better than a libcall. 5185 SDValue Res; // Logically starts equal to 1.0 5186 SDValue CurSquare = LHS; 5187 // TODO: Intrinsics should have fast-math-flags that propagate to these 5188 // nodes. 5189 while (Val) { 5190 if (Val & 1) { 5191 if (Res.getNode()) 5192 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5193 else 5194 Res = CurSquare; // 1.0*CurSquare. 5195 } 5196 5197 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5198 CurSquare, CurSquare); 5199 Val >>= 1; 5200 } 5201 5202 // If the original was negative, invert the result, producing 1/(x*x*x). 5203 if (RHSC->getSExtValue() < 0) 5204 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5205 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5206 return Res; 5207 } 5208 } 5209 5210 // Otherwise, expand to a libcall. 5211 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5212 } 5213 5214 // getUnderlyingArgReg - Find underlying register used for a truncated or 5215 // bitcasted argument. 5216 static unsigned getUnderlyingArgReg(const SDValue &N) { 5217 switch (N.getOpcode()) { 5218 case ISD::CopyFromReg: 5219 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5220 case ISD::BITCAST: 5221 case ISD::AssertZext: 5222 case ISD::AssertSext: 5223 case ISD::TRUNCATE: 5224 return getUnderlyingArgReg(N.getOperand(0)); 5225 default: 5226 return 0; 5227 } 5228 } 5229 5230 /// If the DbgValueInst is a dbg_value of a function argument, create the 5231 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5232 /// instruction selection, they will be inserted to the entry BB. 5233 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5234 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5235 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5236 const Argument *Arg = dyn_cast<Argument>(V); 5237 if (!Arg) 5238 return false; 5239 5240 if (!IsDbgDeclare) { 5241 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5242 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5243 // the entry block. 5244 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5245 if (!IsInEntryBlock) 5246 return false; 5247 5248 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5249 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5250 // variable that also is a param. 5251 // 5252 // Although, if we are at the top of the entry block already, we can still 5253 // emit using ArgDbgValue. This might catch some situations when the 5254 // dbg.value refers to an argument that isn't used in the entry block, so 5255 // any CopyToReg node would be optimized out and the only way to express 5256 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5257 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5258 // we should only emit as ArgDbgValue if the Variable is an argument to the 5259 // current function, and the dbg.value intrinsic is found in the entry 5260 // block. 5261 bool VariableIsFunctionInputArg = Variable->isParameter() && 5262 !DL->getInlinedAt(); 5263 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5264 if (!IsInPrologue && !VariableIsFunctionInputArg) 5265 return false; 5266 5267 // Here we assume that a function argument on IR level only can be used to 5268 // describe one input parameter on source level. If we for example have 5269 // source code like this 5270 // 5271 // struct A { long x, y; }; 5272 // void foo(struct A a, long b) { 5273 // ... 5274 // b = a.x; 5275 // ... 5276 // } 5277 // 5278 // and IR like this 5279 // 5280 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5281 // entry: 5282 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5283 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5284 // call void @llvm.dbg.value(metadata i32 %b, "b", 5285 // ... 5286 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5287 // ... 5288 // 5289 // then the last dbg.value is describing a parameter "b" using a value that 5290 // is an argument. But since we already has used %a1 to describe a parameter 5291 // we should not handle that last dbg.value here (that would result in an 5292 // incorrect hoisting of the DBG_VALUE to the function entry). 5293 // Notice that we allow one dbg.value per IR level argument, to accomodate 5294 // for the situation with fragments above. 5295 if (VariableIsFunctionInputArg) { 5296 unsigned ArgNo = Arg->getArgNo(); 5297 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5298 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5299 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5300 return false; 5301 FuncInfo.DescribedArgs.set(ArgNo); 5302 } 5303 } 5304 5305 MachineFunction &MF = DAG.getMachineFunction(); 5306 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5307 5308 bool IsIndirect = false; 5309 Optional<MachineOperand> Op; 5310 // Some arguments' frame index is recorded during argument lowering. 5311 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5312 if (FI != std::numeric_limits<int>::max()) 5313 Op = MachineOperand::CreateFI(FI); 5314 5315 if (!Op && N.getNode()) { 5316 unsigned Reg = getUnderlyingArgReg(N); 5317 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5318 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5319 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5320 if (PR) 5321 Reg = PR; 5322 } 5323 if (Reg) { 5324 Op = MachineOperand::CreateReg(Reg, false); 5325 IsIndirect = IsDbgDeclare; 5326 } 5327 } 5328 5329 if (!Op && N.getNode()) 5330 // Check if frame index is available. 5331 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 5332 if (FrameIndexSDNode *FINode = 5333 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5334 Op = MachineOperand::CreateFI(FINode->getIndex()); 5335 5336 if (!Op) { 5337 // Check if ValueMap has reg number. 5338 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5339 if (VMI != FuncInfo.ValueMap.end()) { 5340 const auto &TLI = DAG.getTargetLoweringInfo(); 5341 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5342 V->getType(), getABIRegCopyCC(V)); 5343 if (RFV.occupiesMultipleRegs()) { 5344 unsigned Offset = 0; 5345 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5346 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5347 auto FragmentExpr = DIExpression::createFragmentExpression( 5348 Expr, Offset, RegAndSize.second); 5349 if (!FragmentExpr) 5350 continue; 5351 FuncInfo.ArgDbgValues.push_back( 5352 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5353 Op->getReg(), Variable, *FragmentExpr)); 5354 Offset += RegAndSize.second; 5355 } 5356 return true; 5357 } 5358 Op = MachineOperand::CreateReg(VMI->second, false); 5359 IsIndirect = IsDbgDeclare; 5360 } 5361 } 5362 5363 if (!Op) 5364 return false; 5365 5366 assert(Variable->isValidLocationForIntrinsic(DL) && 5367 "Expected inlined-at fields to agree"); 5368 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5369 FuncInfo.ArgDbgValues.push_back( 5370 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5371 *Op, Variable, Expr)); 5372 5373 return true; 5374 } 5375 5376 /// Return the appropriate SDDbgValue based on N. 5377 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5378 DILocalVariable *Variable, 5379 DIExpression *Expr, 5380 const DebugLoc &dl, 5381 unsigned DbgSDNodeOrder) { 5382 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5383 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5384 // stack slot locations. 5385 // 5386 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5387 // debug values here after optimization: 5388 // 5389 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5390 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5391 // 5392 // Both describe the direct values of their associated variables. 5393 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5394 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5395 } 5396 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5397 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5398 } 5399 5400 // VisualStudio defines setjmp as _setjmp 5401 #if defined(_MSC_VER) && defined(setjmp) && \ 5402 !defined(setjmp_undefined_for_msvc) 5403 # pragma push_macro("setjmp") 5404 # undef setjmp 5405 # define setjmp_undefined_for_msvc 5406 #endif 5407 5408 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5409 switch (Intrinsic) { 5410 case Intrinsic::smul_fix: 5411 return ISD::SMULFIX; 5412 case Intrinsic::umul_fix: 5413 return ISD::UMULFIX; 5414 default: 5415 llvm_unreachable("Unhandled fixed point intrinsic"); 5416 } 5417 } 5418 5419 /// Lower the call to the specified intrinsic function. If we want to emit this 5420 /// as a call to a named external function, return the name. Otherwise, lower it 5421 /// and return null. 5422 const char * 5423 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5425 SDLoc sdl = getCurSDLoc(); 5426 DebugLoc dl = getCurDebugLoc(); 5427 SDValue Res; 5428 5429 switch (Intrinsic) { 5430 default: 5431 // By default, turn this into a target intrinsic node. 5432 visitTargetIntrinsic(I, Intrinsic); 5433 return nullptr; 5434 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5435 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5436 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5437 case Intrinsic::returnaddress: 5438 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5439 TLI.getPointerTy(DAG.getDataLayout()), 5440 getValue(I.getArgOperand(0)))); 5441 return nullptr; 5442 case Intrinsic::addressofreturnaddress: 5443 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5444 TLI.getPointerTy(DAG.getDataLayout()))); 5445 return nullptr; 5446 case Intrinsic::sponentry: 5447 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5448 TLI.getPointerTy(DAG.getDataLayout()))); 5449 return nullptr; 5450 case Intrinsic::frameaddress: 5451 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5452 TLI.getPointerTy(DAG.getDataLayout()), 5453 getValue(I.getArgOperand(0)))); 5454 return nullptr; 5455 case Intrinsic::read_register: { 5456 Value *Reg = I.getArgOperand(0); 5457 SDValue Chain = getRoot(); 5458 SDValue RegName = 5459 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5460 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5461 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5462 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5463 setValue(&I, Res); 5464 DAG.setRoot(Res.getValue(1)); 5465 return nullptr; 5466 } 5467 case Intrinsic::write_register: { 5468 Value *Reg = I.getArgOperand(0); 5469 Value *RegValue = I.getArgOperand(1); 5470 SDValue Chain = getRoot(); 5471 SDValue RegName = 5472 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5473 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5474 RegName, getValue(RegValue))); 5475 return nullptr; 5476 } 5477 case Intrinsic::setjmp: 5478 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5479 case Intrinsic::longjmp: 5480 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5481 case Intrinsic::memcpy: { 5482 const auto &MCI = cast<MemCpyInst>(I); 5483 SDValue Op1 = getValue(I.getArgOperand(0)); 5484 SDValue Op2 = getValue(I.getArgOperand(1)); 5485 SDValue Op3 = getValue(I.getArgOperand(2)); 5486 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5487 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5488 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5489 unsigned Align = MinAlign(DstAlign, SrcAlign); 5490 bool isVol = MCI.isVolatile(); 5491 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5492 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5493 // node. 5494 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5495 false, isTC, 5496 MachinePointerInfo(I.getArgOperand(0)), 5497 MachinePointerInfo(I.getArgOperand(1))); 5498 updateDAGForMaybeTailCall(MC); 5499 return nullptr; 5500 } 5501 case Intrinsic::memset: { 5502 const auto &MSI = cast<MemSetInst>(I); 5503 SDValue Op1 = getValue(I.getArgOperand(0)); 5504 SDValue Op2 = getValue(I.getArgOperand(1)); 5505 SDValue Op3 = getValue(I.getArgOperand(2)); 5506 // @llvm.memset defines 0 and 1 to both mean no alignment. 5507 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5508 bool isVol = MSI.isVolatile(); 5509 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5510 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5511 isTC, MachinePointerInfo(I.getArgOperand(0))); 5512 updateDAGForMaybeTailCall(MS); 5513 return nullptr; 5514 } 5515 case Intrinsic::memmove: { 5516 const auto &MMI = cast<MemMoveInst>(I); 5517 SDValue Op1 = getValue(I.getArgOperand(0)); 5518 SDValue Op2 = getValue(I.getArgOperand(1)); 5519 SDValue Op3 = getValue(I.getArgOperand(2)); 5520 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5521 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5522 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5523 unsigned Align = MinAlign(DstAlign, SrcAlign); 5524 bool isVol = MMI.isVolatile(); 5525 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5526 // FIXME: Support passing different dest/src alignments to the memmove DAG 5527 // node. 5528 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5529 isTC, MachinePointerInfo(I.getArgOperand(0)), 5530 MachinePointerInfo(I.getArgOperand(1))); 5531 updateDAGForMaybeTailCall(MM); 5532 return nullptr; 5533 } 5534 case Intrinsic::memcpy_element_unordered_atomic: { 5535 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5536 SDValue Dst = getValue(MI.getRawDest()); 5537 SDValue Src = getValue(MI.getRawSource()); 5538 SDValue Length = getValue(MI.getLength()); 5539 5540 unsigned DstAlign = MI.getDestAlignment(); 5541 unsigned SrcAlign = MI.getSourceAlignment(); 5542 Type *LengthTy = MI.getLength()->getType(); 5543 unsigned ElemSz = MI.getElementSizeInBytes(); 5544 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5545 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5546 SrcAlign, Length, LengthTy, ElemSz, isTC, 5547 MachinePointerInfo(MI.getRawDest()), 5548 MachinePointerInfo(MI.getRawSource())); 5549 updateDAGForMaybeTailCall(MC); 5550 return nullptr; 5551 } 5552 case Intrinsic::memmove_element_unordered_atomic: { 5553 auto &MI = cast<AtomicMemMoveInst>(I); 5554 SDValue Dst = getValue(MI.getRawDest()); 5555 SDValue Src = getValue(MI.getRawSource()); 5556 SDValue Length = getValue(MI.getLength()); 5557 5558 unsigned DstAlign = MI.getDestAlignment(); 5559 unsigned SrcAlign = MI.getSourceAlignment(); 5560 Type *LengthTy = MI.getLength()->getType(); 5561 unsigned ElemSz = MI.getElementSizeInBytes(); 5562 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5563 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5564 SrcAlign, Length, LengthTy, ElemSz, isTC, 5565 MachinePointerInfo(MI.getRawDest()), 5566 MachinePointerInfo(MI.getRawSource())); 5567 updateDAGForMaybeTailCall(MC); 5568 return nullptr; 5569 } 5570 case Intrinsic::memset_element_unordered_atomic: { 5571 auto &MI = cast<AtomicMemSetInst>(I); 5572 SDValue Dst = getValue(MI.getRawDest()); 5573 SDValue Val = getValue(MI.getValue()); 5574 SDValue Length = getValue(MI.getLength()); 5575 5576 unsigned DstAlign = MI.getDestAlignment(); 5577 Type *LengthTy = MI.getLength()->getType(); 5578 unsigned ElemSz = MI.getElementSizeInBytes(); 5579 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5580 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5581 LengthTy, ElemSz, isTC, 5582 MachinePointerInfo(MI.getRawDest())); 5583 updateDAGForMaybeTailCall(MC); 5584 return nullptr; 5585 } 5586 case Intrinsic::dbg_addr: 5587 case Intrinsic::dbg_declare: { 5588 const auto &DI = cast<DbgVariableIntrinsic>(I); 5589 DILocalVariable *Variable = DI.getVariable(); 5590 DIExpression *Expression = DI.getExpression(); 5591 dropDanglingDebugInfo(Variable, Expression); 5592 assert(Variable && "Missing variable"); 5593 5594 // Check if address has undef value. 5595 const Value *Address = DI.getVariableLocation(); 5596 if (!Address || isa<UndefValue>(Address) || 5597 (Address->use_empty() && !isa<Argument>(Address))) { 5598 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5599 return nullptr; 5600 } 5601 5602 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5603 5604 // Check if this variable can be described by a frame index, typically 5605 // either as a static alloca or a byval parameter. 5606 int FI = std::numeric_limits<int>::max(); 5607 if (const auto *AI = 5608 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5609 if (AI->isStaticAlloca()) { 5610 auto I = FuncInfo.StaticAllocaMap.find(AI); 5611 if (I != FuncInfo.StaticAllocaMap.end()) 5612 FI = I->second; 5613 } 5614 } else if (const auto *Arg = dyn_cast<Argument>( 5615 Address->stripInBoundsConstantOffsets())) { 5616 FI = FuncInfo.getArgumentFrameIndex(Arg); 5617 } 5618 5619 // llvm.dbg.addr is control dependent and always generates indirect 5620 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5621 // the MachineFunction variable table. 5622 if (FI != std::numeric_limits<int>::max()) { 5623 if (Intrinsic == Intrinsic::dbg_addr) { 5624 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5625 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5626 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5627 } 5628 return nullptr; 5629 } 5630 5631 SDValue &N = NodeMap[Address]; 5632 if (!N.getNode() && isa<Argument>(Address)) 5633 // Check unused arguments map. 5634 N = UnusedArgNodeMap[Address]; 5635 SDDbgValue *SDV; 5636 if (N.getNode()) { 5637 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5638 Address = BCI->getOperand(0); 5639 // Parameters are handled specially. 5640 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5641 if (isParameter && FINode) { 5642 // Byval parameter. We have a frame index at this point. 5643 SDV = 5644 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5645 /*IsIndirect*/ true, dl, SDNodeOrder); 5646 } else if (isa<Argument>(Address)) { 5647 // Address is an argument, so try to emit its dbg value using 5648 // virtual register info from the FuncInfo.ValueMap. 5649 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5650 return nullptr; 5651 } else { 5652 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5653 true, dl, SDNodeOrder); 5654 } 5655 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5656 } else { 5657 // If Address is an argument then try to emit its dbg value using 5658 // virtual register info from the FuncInfo.ValueMap. 5659 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5660 N)) { 5661 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5662 } 5663 } 5664 return nullptr; 5665 } 5666 case Intrinsic::dbg_label: { 5667 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5668 DILabel *Label = DI.getLabel(); 5669 assert(Label && "Missing label"); 5670 5671 SDDbgLabel *SDV; 5672 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5673 DAG.AddDbgLabel(SDV); 5674 return nullptr; 5675 } 5676 case Intrinsic::dbg_value: { 5677 const DbgValueInst &DI = cast<DbgValueInst>(I); 5678 assert(DI.getVariable() && "Missing variable"); 5679 5680 DILocalVariable *Variable = DI.getVariable(); 5681 DIExpression *Expression = DI.getExpression(); 5682 dropDanglingDebugInfo(Variable, Expression); 5683 const Value *V = DI.getValue(); 5684 if (!V) 5685 return nullptr; 5686 5687 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5688 SDNodeOrder)) 5689 return nullptr; 5690 5691 // TODO: Dangling debug info will eventually either be resolved or produce 5692 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5693 // between the original dbg.value location and its resolved DBG_VALUE, which 5694 // we should ideally fill with an extra Undef DBG_VALUE. 5695 5696 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5697 return nullptr; 5698 } 5699 5700 case Intrinsic::eh_typeid_for: { 5701 // Find the type id for the given typeinfo. 5702 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5703 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5704 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5705 setValue(&I, Res); 5706 return nullptr; 5707 } 5708 5709 case Intrinsic::eh_return_i32: 5710 case Intrinsic::eh_return_i64: 5711 DAG.getMachineFunction().setCallsEHReturn(true); 5712 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5713 MVT::Other, 5714 getControlRoot(), 5715 getValue(I.getArgOperand(0)), 5716 getValue(I.getArgOperand(1)))); 5717 return nullptr; 5718 case Intrinsic::eh_unwind_init: 5719 DAG.getMachineFunction().setCallsUnwindInit(true); 5720 return nullptr; 5721 case Intrinsic::eh_dwarf_cfa: 5722 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5723 TLI.getPointerTy(DAG.getDataLayout()), 5724 getValue(I.getArgOperand(0)))); 5725 return nullptr; 5726 case Intrinsic::eh_sjlj_callsite: { 5727 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5728 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5729 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5730 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5731 5732 MMI.setCurrentCallSite(CI->getZExtValue()); 5733 return nullptr; 5734 } 5735 case Intrinsic::eh_sjlj_functioncontext: { 5736 // Get and store the index of the function context. 5737 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5738 AllocaInst *FnCtx = 5739 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5740 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5741 MFI.setFunctionContextIndex(FI); 5742 return nullptr; 5743 } 5744 case Intrinsic::eh_sjlj_setjmp: { 5745 SDValue Ops[2]; 5746 Ops[0] = getRoot(); 5747 Ops[1] = getValue(I.getArgOperand(0)); 5748 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5749 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5750 setValue(&I, Op.getValue(0)); 5751 DAG.setRoot(Op.getValue(1)); 5752 return nullptr; 5753 } 5754 case Intrinsic::eh_sjlj_longjmp: 5755 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5756 getRoot(), getValue(I.getArgOperand(0)))); 5757 return nullptr; 5758 case Intrinsic::eh_sjlj_setup_dispatch: 5759 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5760 getRoot())); 5761 return nullptr; 5762 case Intrinsic::masked_gather: 5763 visitMaskedGather(I); 5764 return nullptr; 5765 case Intrinsic::masked_load: 5766 visitMaskedLoad(I); 5767 return nullptr; 5768 case Intrinsic::masked_scatter: 5769 visitMaskedScatter(I); 5770 return nullptr; 5771 case Intrinsic::masked_store: 5772 visitMaskedStore(I); 5773 return nullptr; 5774 case Intrinsic::masked_expandload: 5775 visitMaskedLoad(I, true /* IsExpanding */); 5776 return nullptr; 5777 case Intrinsic::masked_compressstore: 5778 visitMaskedStore(I, true /* IsCompressing */); 5779 return nullptr; 5780 case Intrinsic::x86_mmx_pslli_w: 5781 case Intrinsic::x86_mmx_pslli_d: 5782 case Intrinsic::x86_mmx_pslli_q: 5783 case Intrinsic::x86_mmx_psrli_w: 5784 case Intrinsic::x86_mmx_psrli_d: 5785 case Intrinsic::x86_mmx_psrli_q: 5786 case Intrinsic::x86_mmx_psrai_w: 5787 case Intrinsic::x86_mmx_psrai_d: { 5788 SDValue ShAmt = getValue(I.getArgOperand(1)); 5789 if (isa<ConstantSDNode>(ShAmt)) { 5790 visitTargetIntrinsic(I, Intrinsic); 5791 return nullptr; 5792 } 5793 unsigned NewIntrinsic = 0; 5794 EVT ShAmtVT = MVT::v2i32; 5795 switch (Intrinsic) { 5796 case Intrinsic::x86_mmx_pslli_w: 5797 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5798 break; 5799 case Intrinsic::x86_mmx_pslli_d: 5800 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5801 break; 5802 case Intrinsic::x86_mmx_pslli_q: 5803 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5804 break; 5805 case Intrinsic::x86_mmx_psrli_w: 5806 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5807 break; 5808 case Intrinsic::x86_mmx_psrli_d: 5809 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5810 break; 5811 case Intrinsic::x86_mmx_psrli_q: 5812 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5813 break; 5814 case Intrinsic::x86_mmx_psrai_w: 5815 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5816 break; 5817 case Intrinsic::x86_mmx_psrai_d: 5818 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5819 break; 5820 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5821 } 5822 5823 // The vector shift intrinsics with scalars uses 32b shift amounts but 5824 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5825 // to be zero. 5826 // We must do this early because v2i32 is not a legal type. 5827 SDValue ShOps[2]; 5828 ShOps[0] = ShAmt; 5829 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5830 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5831 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5832 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5833 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5834 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5835 getValue(I.getArgOperand(0)), ShAmt); 5836 setValue(&I, Res); 5837 return nullptr; 5838 } 5839 case Intrinsic::powi: 5840 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5841 getValue(I.getArgOperand(1)), DAG)); 5842 return nullptr; 5843 case Intrinsic::log: 5844 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5845 return nullptr; 5846 case Intrinsic::log2: 5847 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5848 return nullptr; 5849 case Intrinsic::log10: 5850 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5851 return nullptr; 5852 case Intrinsic::exp: 5853 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5854 return nullptr; 5855 case Intrinsic::exp2: 5856 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5857 return nullptr; 5858 case Intrinsic::pow: 5859 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5860 getValue(I.getArgOperand(1)), DAG, TLI)); 5861 return nullptr; 5862 case Intrinsic::sqrt: 5863 case Intrinsic::fabs: 5864 case Intrinsic::sin: 5865 case Intrinsic::cos: 5866 case Intrinsic::floor: 5867 case Intrinsic::ceil: 5868 case Intrinsic::trunc: 5869 case Intrinsic::rint: 5870 case Intrinsic::nearbyint: 5871 case Intrinsic::round: 5872 case Intrinsic::canonicalize: { 5873 unsigned Opcode; 5874 switch (Intrinsic) { 5875 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5876 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5877 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5878 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5879 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5880 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5881 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5882 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5883 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5884 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5885 case Intrinsic::round: Opcode = ISD::FROUND; break; 5886 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5887 } 5888 5889 setValue(&I, DAG.getNode(Opcode, sdl, 5890 getValue(I.getArgOperand(0)).getValueType(), 5891 getValue(I.getArgOperand(0)))); 5892 return nullptr; 5893 } 5894 case Intrinsic::minnum: { 5895 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5896 unsigned Opc = 5897 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5898 ? ISD::FMINIMUM 5899 : ISD::FMINNUM; 5900 setValue(&I, DAG.getNode(Opc, sdl, VT, 5901 getValue(I.getArgOperand(0)), 5902 getValue(I.getArgOperand(1)))); 5903 return nullptr; 5904 } 5905 case Intrinsic::maxnum: { 5906 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5907 unsigned Opc = 5908 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5909 ? ISD::FMAXIMUM 5910 : ISD::FMAXNUM; 5911 setValue(&I, DAG.getNode(Opc, sdl, VT, 5912 getValue(I.getArgOperand(0)), 5913 getValue(I.getArgOperand(1)))); 5914 return nullptr; 5915 } 5916 case Intrinsic::minimum: 5917 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5918 getValue(I.getArgOperand(0)).getValueType(), 5919 getValue(I.getArgOperand(0)), 5920 getValue(I.getArgOperand(1)))); 5921 return nullptr; 5922 case Intrinsic::maximum: 5923 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5924 getValue(I.getArgOperand(0)).getValueType(), 5925 getValue(I.getArgOperand(0)), 5926 getValue(I.getArgOperand(1)))); 5927 return nullptr; 5928 case Intrinsic::copysign: 5929 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5930 getValue(I.getArgOperand(0)).getValueType(), 5931 getValue(I.getArgOperand(0)), 5932 getValue(I.getArgOperand(1)))); 5933 return nullptr; 5934 case Intrinsic::fma: 5935 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5936 getValue(I.getArgOperand(0)).getValueType(), 5937 getValue(I.getArgOperand(0)), 5938 getValue(I.getArgOperand(1)), 5939 getValue(I.getArgOperand(2)))); 5940 return nullptr; 5941 case Intrinsic::experimental_constrained_fadd: 5942 case Intrinsic::experimental_constrained_fsub: 5943 case Intrinsic::experimental_constrained_fmul: 5944 case Intrinsic::experimental_constrained_fdiv: 5945 case Intrinsic::experimental_constrained_frem: 5946 case Intrinsic::experimental_constrained_fma: 5947 case Intrinsic::experimental_constrained_sqrt: 5948 case Intrinsic::experimental_constrained_pow: 5949 case Intrinsic::experimental_constrained_powi: 5950 case Intrinsic::experimental_constrained_sin: 5951 case Intrinsic::experimental_constrained_cos: 5952 case Intrinsic::experimental_constrained_exp: 5953 case Intrinsic::experimental_constrained_exp2: 5954 case Intrinsic::experimental_constrained_log: 5955 case Intrinsic::experimental_constrained_log10: 5956 case Intrinsic::experimental_constrained_log2: 5957 case Intrinsic::experimental_constrained_rint: 5958 case Intrinsic::experimental_constrained_nearbyint: 5959 case Intrinsic::experimental_constrained_maxnum: 5960 case Intrinsic::experimental_constrained_minnum: 5961 case Intrinsic::experimental_constrained_ceil: 5962 case Intrinsic::experimental_constrained_floor: 5963 case Intrinsic::experimental_constrained_round: 5964 case Intrinsic::experimental_constrained_trunc: 5965 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5966 return nullptr; 5967 case Intrinsic::fmuladd: { 5968 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5969 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5970 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5971 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5972 getValue(I.getArgOperand(0)).getValueType(), 5973 getValue(I.getArgOperand(0)), 5974 getValue(I.getArgOperand(1)), 5975 getValue(I.getArgOperand(2)))); 5976 } else { 5977 // TODO: Intrinsic calls should have fast-math-flags. 5978 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5979 getValue(I.getArgOperand(0)).getValueType(), 5980 getValue(I.getArgOperand(0)), 5981 getValue(I.getArgOperand(1))); 5982 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5983 getValue(I.getArgOperand(0)).getValueType(), 5984 Mul, 5985 getValue(I.getArgOperand(2))); 5986 setValue(&I, Add); 5987 } 5988 return nullptr; 5989 } 5990 case Intrinsic::convert_to_fp16: 5991 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5992 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5993 getValue(I.getArgOperand(0)), 5994 DAG.getTargetConstant(0, sdl, 5995 MVT::i32)))); 5996 return nullptr; 5997 case Intrinsic::convert_from_fp16: 5998 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5999 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6000 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6001 getValue(I.getArgOperand(0))))); 6002 return nullptr; 6003 case Intrinsic::pcmarker: { 6004 SDValue Tmp = getValue(I.getArgOperand(0)); 6005 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6006 return nullptr; 6007 } 6008 case Intrinsic::readcyclecounter: { 6009 SDValue Op = getRoot(); 6010 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6011 DAG.getVTList(MVT::i64, MVT::Other), Op); 6012 setValue(&I, Res); 6013 DAG.setRoot(Res.getValue(1)); 6014 return nullptr; 6015 } 6016 case Intrinsic::bitreverse: 6017 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6018 getValue(I.getArgOperand(0)).getValueType(), 6019 getValue(I.getArgOperand(0)))); 6020 return nullptr; 6021 case Intrinsic::bswap: 6022 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6023 getValue(I.getArgOperand(0)).getValueType(), 6024 getValue(I.getArgOperand(0)))); 6025 return nullptr; 6026 case Intrinsic::cttz: { 6027 SDValue Arg = getValue(I.getArgOperand(0)); 6028 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6029 EVT Ty = Arg.getValueType(); 6030 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6031 sdl, Ty, Arg)); 6032 return nullptr; 6033 } 6034 case Intrinsic::ctlz: { 6035 SDValue Arg = getValue(I.getArgOperand(0)); 6036 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6037 EVT Ty = Arg.getValueType(); 6038 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6039 sdl, Ty, Arg)); 6040 return nullptr; 6041 } 6042 case Intrinsic::ctpop: { 6043 SDValue Arg = getValue(I.getArgOperand(0)); 6044 EVT Ty = Arg.getValueType(); 6045 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6046 return nullptr; 6047 } 6048 case Intrinsic::fshl: 6049 case Intrinsic::fshr: { 6050 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6051 SDValue X = getValue(I.getArgOperand(0)); 6052 SDValue Y = getValue(I.getArgOperand(1)); 6053 SDValue Z = getValue(I.getArgOperand(2)); 6054 EVT VT = X.getValueType(); 6055 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6056 SDValue Zero = DAG.getConstant(0, sdl, VT); 6057 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6058 6059 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6060 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6061 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6062 return nullptr; 6063 } 6064 6065 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6066 // avoid the select that is necessary in the general case to filter out 6067 // the 0-shift possibility that leads to UB. 6068 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6069 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6070 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6071 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6072 return nullptr; 6073 } 6074 6075 // Some targets only rotate one way. Try the opposite direction. 6076 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6077 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6078 // Negate the shift amount because it is safe to ignore the high bits. 6079 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6080 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6081 return nullptr; 6082 } 6083 6084 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6085 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6086 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6087 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6088 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6089 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6090 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6091 return nullptr; 6092 } 6093 6094 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6095 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6096 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6097 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6098 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6099 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6100 6101 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6102 // and that is undefined. We must compare and select to avoid UB. 6103 EVT CCVT = MVT::i1; 6104 if (VT.isVector()) 6105 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6106 6107 // For fshl, 0-shift returns the 1st arg (X). 6108 // For fshr, 0-shift returns the 2nd arg (Y). 6109 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6110 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6111 return nullptr; 6112 } 6113 case Intrinsic::sadd_sat: { 6114 SDValue Op1 = getValue(I.getArgOperand(0)); 6115 SDValue Op2 = getValue(I.getArgOperand(1)); 6116 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6117 return nullptr; 6118 } 6119 case Intrinsic::uadd_sat: { 6120 SDValue Op1 = getValue(I.getArgOperand(0)); 6121 SDValue Op2 = getValue(I.getArgOperand(1)); 6122 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6123 return nullptr; 6124 } 6125 case Intrinsic::ssub_sat: { 6126 SDValue Op1 = getValue(I.getArgOperand(0)); 6127 SDValue Op2 = getValue(I.getArgOperand(1)); 6128 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6129 return nullptr; 6130 } 6131 case Intrinsic::usub_sat: { 6132 SDValue Op1 = getValue(I.getArgOperand(0)); 6133 SDValue Op2 = getValue(I.getArgOperand(1)); 6134 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6135 return nullptr; 6136 } 6137 case Intrinsic::smul_fix: 6138 case Intrinsic::umul_fix: { 6139 SDValue Op1 = getValue(I.getArgOperand(0)); 6140 SDValue Op2 = getValue(I.getArgOperand(1)); 6141 SDValue Op3 = getValue(I.getArgOperand(2)); 6142 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6143 Op1.getValueType(), Op1, Op2, Op3)); 6144 return nullptr; 6145 } 6146 case Intrinsic::stacksave: { 6147 SDValue Op = getRoot(); 6148 Res = DAG.getNode( 6149 ISD::STACKSAVE, sdl, 6150 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6151 setValue(&I, Res); 6152 DAG.setRoot(Res.getValue(1)); 6153 return nullptr; 6154 } 6155 case Intrinsic::stackrestore: 6156 Res = getValue(I.getArgOperand(0)); 6157 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6158 return nullptr; 6159 case Intrinsic::get_dynamic_area_offset: { 6160 SDValue Op = getRoot(); 6161 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6162 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6163 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6164 // target. 6165 if (PtrTy != ResTy) 6166 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6167 " intrinsic!"); 6168 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6169 Op); 6170 DAG.setRoot(Op); 6171 setValue(&I, Res); 6172 return nullptr; 6173 } 6174 case Intrinsic::stackguard: { 6175 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6176 MachineFunction &MF = DAG.getMachineFunction(); 6177 const Module &M = *MF.getFunction().getParent(); 6178 SDValue Chain = getRoot(); 6179 if (TLI.useLoadStackGuardNode()) { 6180 Res = getLoadStackGuard(DAG, sdl, Chain); 6181 } else { 6182 const Value *Global = TLI.getSDagStackGuard(M); 6183 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6184 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6185 MachinePointerInfo(Global, 0), Align, 6186 MachineMemOperand::MOVolatile); 6187 } 6188 if (TLI.useStackGuardXorFP()) 6189 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6190 DAG.setRoot(Chain); 6191 setValue(&I, Res); 6192 return nullptr; 6193 } 6194 case Intrinsic::stackprotector: { 6195 // Emit code into the DAG to store the stack guard onto the stack. 6196 MachineFunction &MF = DAG.getMachineFunction(); 6197 MachineFrameInfo &MFI = MF.getFrameInfo(); 6198 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6199 SDValue Src, Chain = getRoot(); 6200 6201 if (TLI.useLoadStackGuardNode()) 6202 Src = getLoadStackGuard(DAG, sdl, Chain); 6203 else 6204 Src = getValue(I.getArgOperand(0)); // The guard's value. 6205 6206 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6207 6208 int FI = FuncInfo.StaticAllocaMap[Slot]; 6209 MFI.setStackProtectorIndex(FI); 6210 6211 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6212 6213 // Store the stack protector onto the stack. 6214 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6215 DAG.getMachineFunction(), FI), 6216 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6217 setValue(&I, Res); 6218 DAG.setRoot(Res); 6219 return nullptr; 6220 } 6221 case Intrinsic::objectsize: { 6222 // If we don't know by now, we're never going to know. 6223 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6224 6225 assert(CI && "Non-constant type in __builtin_object_size?"); 6226 6227 SDValue Arg = getValue(I.getCalledValue()); 6228 EVT Ty = Arg.getValueType(); 6229 6230 if (CI->isZero()) 6231 Res = DAG.getConstant(-1ULL, sdl, Ty); 6232 else 6233 Res = DAG.getConstant(0, sdl, Ty); 6234 6235 setValue(&I, Res); 6236 return nullptr; 6237 } 6238 6239 case Intrinsic::is_constant: 6240 // If this wasn't constant-folded away by now, then it's not a 6241 // constant. 6242 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6243 return nullptr; 6244 6245 case Intrinsic::annotation: 6246 case Intrinsic::ptr_annotation: 6247 case Intrinsic::launder_invariant_group: 6248 case Intrinsic::strip_invariant_group: 6249 // Drop the intrinsic, but forward the value 6250 setValue(&I, getValue(I.getOperand(0))); 6251 return nullptr; 6252 case Intrinsic::assume: 6253 case Intrinsic::var_annotation: 6254 case Intrinsic::sideeffect: 6255 // Discard annotate attributes, assumptions, and artificial side-effects. 6256 return nullptr; 6257 6258 case Intrinsic::codeview_annotation: { 6259 // Emit a label associated with this metadata. 6260 MachineFunction &MF = DAG.getMachineFunction(); 6261 MCSymbol *Label = 6262 MF.getMMI().getContext().createTempSymbol("annotation", true); 6263 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6264 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6265 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6266 DAG.setRoot(Res); 6267 return nullptr; 6268 } 6269 6270 case Intrinsic::init_trampoline: { 6271 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6272 6273 SDValue Ops[6]; 6274 Ops[0] = getRoot(); 6275 Ops[1] = getValue(I.getArgOperand(0)); 6276 Ops[2] = getValue(I.getArgOperand(1)); 6277 Ops[3] = getValue(I.getArgOperand(2)); 6278 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6279 Ops[5] = DAG.getSrcValue(F); 6280 6281 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6282 6283 DAG.setRoot(Res); 6284 return nullptr; 6285 } 6286 case Intrinsic::adjust_trampoline: 6287 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6288 TLI.getPointerTy(DAG.getDataLayout()), 6289 getValue(I.getArgOperand(0)))); 6290 return nullptr; 6291 case Intrinsic::gcroot: { 6292 assert(DAG.getMachineFunction().getFunction().hasGC() && 6293 "only valid in functions with gc specified, enforced by Verifier"); 6294 assert(GFI && "implied by previous"); 6295 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6296 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6297 6298 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6299 GFI->addStackRoot(FI->getIndex(), TypeMap); 6300 return nullptr; 6301 } 6302 case Intrinsic::gcread: 6303 case Intrinsic::gcwrite: 6304 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6305 case Intrinsic::flt_rounds: 6306 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6307 return nullptr; 6308 6309 case Intrinsic::expect: 6310 // Just replace __builtin_expect(exp, c) with EXP. 6311 setValue(&I, getValue(I.getArgOperand(0))); 6312 return nullptr; 6313 6314 case Intrinsic::debugtrap: 6315 case Intrinsic::trap: { 6316 StringRef TrapFuncName = 6317 I.getAttributes() 6318 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6319 .getValueAsString(); 6320 if (TrapFuncName.empty()) { 6321 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6322 ISD::TRAP : ISD::DEBUGTRAP; 6323 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6324 return nullptr; 6325 } 6326 TargetLowering::ArgListTy Args; 6327 6328 TargetLowering::CallLoweringInfo CLI(DAG); 6329 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6330 CallingConv::C, I.getType(), 6331 DAG.getExternalSymbol(TrapFuncName.data(), 6332 TLI.getPointerTy(DAG.getDataLayout())), 6333 std::move(Args)); 6334 6335 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6336 DAG.setRoot(Result.second); 6337 return nullptr; 6338 } 6339 6340 case Intrinsic::uadd_with_overflow: 6341 case Intrinsic::sadd_with_overflow: 6342 case Intrinsic::usub_with_overflow: 6343 case Intrinsic::ssub_with_overflow: 6344 case Intrinsic::umul_with_overflow: 6345 case Intrinsic::smul_with_overflow: { 6346 ISD::NodeType Op; 6347 switch (Intrinsic) { 6348 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6349 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6350 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6351 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6352 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6353 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6354 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6355 } 6356 SDValue Op1 = getValue(I.getArgOperand(0)); 6357 SDValue Op2 = getValue(I.getArgOperand(1)); 6358 6359 EVT ResultVT = Op1.getValueType(); 6360 EVT OverflowVT = MVT::i1; 6361 if (ResultVT.isVector()) 6362 OverflowVT = EVT::getVectorVT( 6363 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6364 6365 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6366 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6367 return nullptr; 6368 } 6369 case Intrinsic::prefetch: { 6370 SDValue Ops[5]; 6371 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6372 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6373 Ops[0] = DAG.getRoot(); 6374 Ops[1] = getValue(I.getArgOperand(0)); 6375 Ops[2] = getValue(I.getArgOperand(1)); 6376 Ops[3] = getValue(I.getArgOperand(2)); 6377 Ops[4] = getValue(I.getArgOperand(3)); 6378 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6379 DAG.getVTList(MVT::Other), Ops, 6380 EVT::getIntegerVT(*Context, 8), 6381 MachinePointerInfo(I.getArgOperand(0)), 6382 0, /* align */ 6383 Flags); 6384 6385 // Chain the prefetch in parallell with any pending loads, to stay out of 6386 // the way of later optimizations. 6387 PendingLoads.push_back(Result); 6388 Result = getRoot(); 6389 DAG.setRoot(Result); 6390 return nullptr; 6391 } 6392 case Intrinsic::lifetime_start: 6393 case Intrinsic::lifetime_end: { 6394 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6395 // Stack coloring is not enabled in O0, discard region information. 6396 if (TM.getOptLevel() == CodeGenOpt::None) 6397 return nullptr; 6398 6399 const int64_t ObjectSize = 6400 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6401 Value *const ObjectPtr = I.getArgOperand(1); 6402 SmallVector<Value *, 4> Allocas; 6403 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6404 6405 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6406 E = Allocas.end(); Object != E; ++Object) { 6407 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6408 6409 // Could not find an Alloca. 6410 if (!LifetimeObject) 6411 continue; 6412 6413 // First check that the Alloca is static, otherwise it won't have a 6414 // valid frame index. 6415 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6416 if (SI == FuncInfo.StaticAllocaMap.end()) 6417 return nullptr; 6418 6419 const int FrameIndex = SI->second; 6420 int64_t Offset; 6421 if (GetPointerBaseWithConstantOffset( 6422 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6423 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6424 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6425 Offset); 6426 DAG.setRoot(Res); 6427 } 6428 return nullptr; 6429 } 6430 case Intrinsic::invariant_start: 6431 // Discard region information. 6432 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6433 return nullptr; 6434 case Intrinsic::invariant_end: 6435 // Discard region information. 6436 return nullptr; 6437 case Intrinsic::clear_cache: 6438 return TLI.getClearCacheBuiltinName(); 6439 case Intrinsic::donothing: 6440 // ignore 6441 return nullptr; 6442 case Intrinsic::experimental_stackmap: 6443 visitStackmap(I); 6444 return nullptr; 6445 case Intrinsic::experimental_patchpoint_void: 6446 case Intrinsic::experimental_patchpoint_i64: 6447 visitPatchpoint(&I); 6448 return nullptr; 6449 case Intrinsic::experimental_gc_statepoint: 6450 LowerStatepoint(ImmutableStatepoint(&I)); 6451 return nullptr; 6452 case Intrinsic::experimental_gc_result: 6453 visitGCResult(cast<GCResultInst>(I)); 6454 return nullptr; 6455 case Intrinsic::experimental_gc_relocate: 6456 visitGCRelocate(cast<GCRelocateInst>(I)); 6457 return nullptr; 6458 case Intrinsic::instrprof_increment: 6459 llvm_unreachable("instrprof failed to lower an increment"); 6460 case Intrinsic::instrprof_value_profile: 6461 llvm_unreachable("instrprof failed to lower a value profiling call"); 6462 case Intrinsic::localescape: { 6463 MachineFunction &MF = DAG.getMachineFunction(); 6464 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6465 6466 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6467 // is the same on all targets. 6468 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6469 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6470 if (isa<ConstantPointerNull>(Arg)) 6471 continue; // Skip null pointers. They represent a hole in index space. 6472 AllocaInst *Slot = cast<AllocaInst>(Arg); 6473 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6474 "can only escape static allocas"); 6475 int FI = FuncInfo.StaticAllocaMap[Slot]; 6476 MCSymbol *FrameAllocSym = 6477 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6478 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6479 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6480 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6481 .addSym(FrameAllocSym) 6482 .addFrameIndex(FI); 6483 } 6484 6485 return nullptr; 6486 } 6487 6488 case Intrinsic::localrecover: { 6489 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6490 MachineFunction &MF = DAG.getMachineFunction(); 6491 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6492 6493 // Get the symbol that defines the frame offset. 6494 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6495 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6496 unsigned IdxVal = 6497 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6498 MCSymbol *FrameAllocSym = 6499 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6500 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6501 6502 // Create a MCSymbol for the label to avoid any target lowering 6503 // that would make this PC relative. 6504 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6505 SDValue OffsetVal = 6506 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6507 6508 // Add the offset to the FP. 6509 Value *FP = I.getArgOperand(1); 6510 SDValue FPVal = getValue(FP); 6511 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6512 setValue(&I, Add); 6513 6514 return nullptr; 6515 } 6516 6517 case Intrinsic::eh_exceptionpointer: 6518 case Intrinsic::eh_exceptioncode: { 6519 // Get the exception pointer vreg, copy from it, and resize it to fit. 6520 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6521 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6522 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6523 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6524 SDValue N = 6525 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6526 if (Intrinsic == Intrinsic::eh_exceptioncode) 6527 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6528 setValue(&I, N); 6529 return nullptr; 6530 } 6531 case Intrinsic::xray_customevent: { 6532 // Here we want to make sure that the intrinsic behaves as if it has a 6533 // specific calling convention, and only for x86_64. 6534 // FIXME: Support other platforms later. 6535 const auto &Triple = DAG.getTarget().getTargetTriple(); 6536 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6537 return nullptr; 6538 6539 SDLoc DL = getCurSDLoc(); 6540 SmallVector<SDValue, 8> Ops; 6541 6542 // We want to say that we always want the arguments in registers. 6543 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6544 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6545 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6546 SDValue Chain = getRoot(); 6547 Ops.push_back(LogEntryVal); 6548 Ops.push_back(StrSizeVal); 6549 Ops.push_back(Chain); 6550 6551 // We need to enforce the calling convention for the callsite, so that 6552 // argument ordering is enforced correctly, and that register allocation can 6553 // see that some registers may be assumed clobbered and have to preserve 6554 // them across calls to the intrinsic. 6555 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6556 DL, NodeTys, Ops); 6557 SDValue patchableNode = SDValue(MN, 0); 6558 DAG.setRoot(patchableNode); 6559 setValue(&I, patchableNode); 6560 return nullptr; 6561 } 6562 case Intrinsic::xray_typedevent: { 6563 // Here we want to make sure that the intrinsic behaves as if it has a 6564 // specific calling convention, and only for x86_64. 6565 // FIXME: Support other platforms later. 6566 const auto &Triple = DAG.getTarget().getTargetTriple(); 6567 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6568 return nullptr; 6569 6570 SDLoc DL = getCurSDLoc(); 6571 SmallVector<SDValue, 8> Ops; 6572 6573 // We want to say that we always want the arguments in registers. 6574 // It's unclear to me how manipulating the selection DAG here forces callers 6575 // to provide arguments in registers instead of on the stack. 6576 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6577 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6578 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6579 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6580 SDValue Chain = getRoot(); 6581 Ops.push_back(LogTypeId); 6582 Ops.push_back(LogEntryVal); 6583 Ops.push_back(StrSizeVal); 6584 Ops.push_back(Chain); 6585 6586 // We need to enforce the calling convention for the callsite, so that 6587 // argument ordering is enforced correctly, and that register allocation can 6588 // see that some registers may be assumed clobbered and have to preserve 6589 // them across calls to the intrinsic. 6590 MachineSDNode *MN = DAG.getMachineNode( 6591 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6592 SDValue patchableNode = SDValue(MN, 0); 6593 DAG.setRoot(patchableNode); 6594 setValue(&I, patchableNode); 6595 return nullptr; 6596 } 6597 case Intrinsic::experimental_deoptimize: 6598 LowerDeoptimizeCall(&I); 6599 return nullptr; 6600 6601 case Intrinsic::experimental_vector_reduce_fadd: 6602 case Intrinsic::experimental_vector_reduce_fmul: 6603 case Intrinsic::experimental_vector_reduce_add: 6604 case Intrinsic::experimental_vector_reduce_mul: 6605 case Intrinsic::experimental_vector_reduce_and: 6606 case Intrinsic::experimental_vector_reduce_or: 6607 case Intrinsic::experimental_vector_reduce_xor: 6608 case Intrinsic::experimental_vector_reduce_smax: 6609 case Intrinsic::experimental_vector_reduce_smin: 6610 case Intrinsic::experimental_vector_reduce_umax: 6611 case Intrinsic::experimental_vector_reduce_umin: 6612 case Intrinsic::experimental_vector_reduce_fmax: 6613 case Intrinsic::experimental_vector_reduce_fmin: 6614 visitVectorReduce(I, Intrinsic); 6615 return nullptr; 6616 6617 case Intrinsic::icall_branch_funnel: { 6618 SmallVector<SDValue, 16> Ops; 6619 Ops.push_back(DAG.getRoot()); 6620 Ops.push_back(getValue(I.getArgOperand(0))); 6621 6622 int64_t Offset; 6623 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6624 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6625 if (!Base) 6626 report_fatal_error( 6627 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6628 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6629 6630 struct BranchFunnelTarget { 6631 int64_t Offset; 6632 SDValue Target; 6633 }; 6634 SmallVector<BranchFunnelTarget, 8> Targets; 6635 6636 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6637 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6638 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6639 if (ElemBase != Base) 6640 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6641 "to the same GlobalValue"); 6642 6643 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6644 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6645 if (!GA) 6646 report_fatal_error( 6647 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6648 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6649 GA->getGlobal(), getCurSDLoc(), 6650 Val.getValueType(), GA->getOffset())}); 6651 } 6652 llvm::sort(Targets, 6653 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6654 return T1.Offset < T2.Offset; 6655 }); 6656 6657 for (auto &T : Targets) { 6658 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6659 Ops.push_back(T.Target); 6660 } 6661 6662 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6663 getCurSDLoc(), MVT::Other, Ops), 6664 0); 6665 DAG.setRoot(N); 6666 setValue(&I, N); 6667 HasTailCall = true; 6668 return nullptr; 6669 } 6670 6671 case Intrinsic::wasm_landingpad_index: 6672 // Information this intrinsic contained has been transferred to 6673 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6674 // delete it now. 6675 return nullptr; 6676 } 6677 } 6678 6679 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6680 const ConstrainedFPIntrinsic &FPI) { 6681 SDLoc sdl = getCurSDLoc(); 6682 unsigned Opcode; 6683 switch (FPI.getIntrinsicID()) { 6684 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6685 case Intrinsic::experimental_constrained_fadd: 6686 Opcode = ISD::STRICT_FADD; 6687 break; 6688 case Intrinsic::experimental_constrained_fsub: 6689 Opcode = ISD::STRICT_FSUB; 6690 break; 6691 case Intrinsic::experimental_constrained_fmul: 6692 Opcode = ISD::STRICT_FMUL; 6693 break; 6694 case Intrinsic::experimental_constrained_fdiv: 6695 Opcode = ISD::STRICT_FDIV; 6696 break; 6697 case Intrinsic::experimental_constrained_frem: 6698 Opcode = ISD::STRICT_FREM; 6699 break; 6700 case Intrinsic::experimental_constrained_fma: 6701 Opcode = ISD::STRICT_FMA; 6702 break; 6703 case Intrinsic::experimental_constrained_sqrt: 6704 Opcode = ISD::STRICT_FSQRT; 6705 break; 6706 case Intrinsic::experimental_constrained_pow: 6707 Opcode = ISD::STRICT_FPOW; 6708 break; 6709 case Intrinsic::experimental_constrained_powi: 6710 Opcode = ISD::STRICT_FPOWI; 6711 break; 6712 case Intrinsic::experimental_constrained_sin: 6713 Opcode = ISD::STRICT_FSIN; 6714 break; 6715 case Intrinsic::experimental_constrained_cos: 6716 Opcode = ISD::STRICT_FCOS; 6717 break; 6718 case Intrinsic::experimental_constrained_exp: 6719 Opcode = ISD::STRICT_FEXP; 6720 break; 6721 case Intrinsic::experimental_constrained_exp2: 6722 Opcode = ISD::STRICT_FEXP2; 6723 break; 6724 case Intrinsic::experimental_constrained_log: 6725 Opcode = ISD::STRICT_FLOG; 6726 break; 6727 case Intrinsic::experimental_constrained_log10: 6728 Opcode = ISD::STRICT_FLOG10; 6729 break; 6730 case Intrinsic::experimental_constrained_log2: 6731 Opcode = ISD::STRICT_FLOG2; 6732 break; 6733 case Intrinsic::experimental_constrained_rint: 6734 Opcode = ISD::STRICT_FRINT; 6735 break; 6736 case Intrinsic::experimental_constrained_nearbyint: 6737 Opcode = ISD::STRICT_FNEARBYINT; 6738 break; 6739 case Intrinsic::experimental_constrained_maxnum: 6740 Opcode = ISD::STRICT_FMAXNUM; 6741 break; 6742 case Intrinsic::experimental_constrained_minnum: 6743 Opcode = ISD::STRICT_FMINNUM; 6744 break; 6745 case Intrinsic::experimental_constrained_ceil: 6746 Opcode = ISD::STRICT_FCEIL; 6747 break; 6748 case Intrinsic::experimental_constrained_floor: 6749 Opcode = ISD::STRICT_FFLOOR; 6750 break; 6751 case Intrinsic::experimental_constrained_round: 6752 Opcode = ISD::STRICT_FROUND; 6753 break; 6754 case Intrinsic::experimental_constrained_trunc: 6755 Opcode = ISD::STRICT_FTRUNC; 6756 break; 6757 } 6758 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6759 SDValue Chain = getRoot(); 6760 SmallVector<EVT, 4> ValueVTs; 6761 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6762 ValueVTs.push_back(MVT::Other); // Out chain 6763 6764 SDVTList VTs = DAG.getVTList(ValueVTs); 6765 SDValue Result; 6766 if (FPI.isUnaryOp()) 6767 Result = DAG.getNode(Opcode, sdl, VTs, 6768 { Chain, getValue(FPI.getArgOperand(0)) }); 6769 else if (FPI.isTernaryOp()) 6770 Result = DAG.getNode(Opcode, sdl, VTs, 6771 { Chain, getValue(FPI.getArgOperand(0)), 6772 getValue(FPI.getArgOperand(1)), 6773 getValue(FPI.getArgOperand(2)) }); 6774 else 6775 Result = DAG.getNode(Opcode, sdl, VTs, 6776 { Chain, getValue(FPI.getArgOperand(0)), 6777 getValue(FPI.getArgOperand(1)) }); 6778 6779 assert(Result.getNode()->getNumValues() == 2); 6780 SDValue OutChain = Result.getValue(1); 6781 DAG.setRoot(OutChain); 6782 SDValue FPResult = Result.getValue(0); 6783 setValue(&FPI, FPResult); 6784 } 6785 6786 std::pair<SDValue, SDValue> 6787 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6788 const BasicBlock *EHPadBB) { 6789 MachineFunction &MF = DAG.getMachineFunction(); 6790 MachineModuleInfo &MMI = MF.getMMI(); 6791 MCSymbol *BeginLabel = nullptr; 6792 6793 if (EHPadBB) { 6794 // Insert a label before the invoke call to mark the try range. This can be 6795 // used to detect deletion of the invoke via the MachineModuleInfo. 6796 BeginLabel = MMI.getContext().createTempSymbol(); 6797 6798 // For SjLj, keep track of which landing pads go with which invokes 6799 // so as to maintain the ordering of pads in the LSDA. 6800 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6801 if (CallSiteIndex) { 6802 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6803 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6804 6805 // Now that the call site is handled, stop tracking it. 6806 MMI.setCurrentCallSite(0); 6807 } 6808 6809 // Both PendingLoads and PendingExports must be flushed here; 6810 // this call might not return. 6811 (void)getRoot(); 6812 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6813 6814 CLI.setChain(getRoot()); 6815 } 6816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6817 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6818 6819 assert((CLI.IsTailCall || Result.second.getNode()) && 6820 "Non-null chain expected with non-tail call!"); 6821 assert((Result.second.getNode() || !Result.first.getNode()) && 6822 "Null value expected with tail call!"); 6823 6824 if (!Result.second.getNode()) { 6825 // As a special case, a null chain means that a tail call has been emitted 6826 // and the DAG root is already updated. 6827 HasTailCall = true; 6828 6829 // Since there's no actual continuation from this block, nothing can be 6830 // relying on us setting vregs for them. 6831 PendingExports.clear(); 6832 } else { 6833 DAG.setRoot(Result.second); 6834 } 6835 6836 if (EHPadBB) { 6837 // Insert a label at the end of the invoke call to mark the try range. This 6838 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6839 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6840 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6841 6842 // Inform MachineModuleInfo of range. 6843 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6844 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6845 // actually use outlined funclets and their LSDA info style. 6846 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6847 assert(CLI.CS); 6848 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6849 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6850 BeginLabel, EndLabel); 6851 } else if (!isScopedEHPersonality(Pers)) { 6852 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6853 } 6854 } 6855 6856 return Result; 6857 } 6858 6859 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6860 bool isTailCall, 6861 const BasicBlock *EHPadBB) { 6862 auto &DL = DAG.getDataLayout(); 6863 FunctionType *FTy = CS.getFunctionType(); 6864 Type *RetTy = CS.getType(); 6865 6866 TargetLowering::ArgListTy Args; 6867 Args.reserve(CS.arg_size()); 6868 6869 const Value *SwiftErrorVal = nullptr; 6870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6871 6872 // We can't tail call inside a function with a swifterror argument. Lowering 6873 // does not support this yet. It would have to move into the swifterror 6874 // register before the call. 6875 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6876 if (TLI.supportSwiftError() && 6877 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6878 isTailCall = false; 6879 6880 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6881 i != e; ++i) { 6882 TargetLowering::ArgListEntry Entry; 6883 const Value *V = *i; 6884 6885 // Skip empty types 6886 if (V->getType()->isEmptyTy()) 6887 continue; 6888 6889 SDValue ArgNode = getValue(V); 6890 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6891 6892 Entry.setAttributes(&CS, i - CS.arg_begin()); 6893 6894 // Use swifterror virtual register as input to the call. 6895 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6896 SwiftErrorVal = V; 6897 // We find the virtual register for the actual swifterror argument. 6898 // Instead of using the Value, we use the virtual register instead. 6899 Entry.Node = DAG.getRegister(FuncInfo 6900 .getOrCreateSwiftErrorVRegUseAt( 6901 CS.getInstruction(), FuncInfo.MBB, V) 6902 .first, 6903 EVT(TLI.getPointerTy(DL))); 6904 } 6905 6906 Args.push_back(Entry); 6907 6908 // If we have an explicit sret argument that is an Instruction, (i.e., it 6909 // might point to function-local memory), we can't meaningfully tail-call. 6910 if (Entry.IsSRet && isa<Instruction>(V)) 6911 isTailCall = false; 6912 } 6913 6914 // Check if target-independent constraints permit a tail call here. 6915 // Target-dependent constraints are checked within TLI->LowerCallTo. 6916 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6917 isTailCall = false; 6918 6919 // Disable tail calls if there is an swifterror argument. Targets have not 6920 // been updated to support tail calls. 6921 if (TLI.supportSwiftError() && SwiftErrorVal) 6922 isTailCall = false; 6923 6924 TargetLowering::CallLoweringInfo CLI(DAG); 6925 CLI.setDebugLoc(getCurSDLoc()) 6926 .setChain(getRoot()) 6927 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6928 .setTailCall(isTailCall) 6929 .setConvergent(CS.isConvergent()); 6930 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6931 6932 if (Result.first.getNode()) { 6933 const Instruction *Inst = CS.getInstruction(); 6934 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6935 setValue(Inst, Result.first); 6936 } 6937 6938 // The last element of CLI.InVals has the SDValue for swifterror return. 6939 // Here we copy it to a virtual register and update SwiftErrorMap for 6940 // book-keeping. 6941 if (SwiftErrorVal && TLI.supportSwiftError()) { 6942 // Get the last element of InVals. 6943 SDValue Src = CLI.InVals.back(); 6944 unsigned VReg; bool CreatedVReg; 6945 std::tie(VReg, CreatedVReg) = 6946 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6947 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6948 // We update the virtual register for the actual swifterror argument. 6949 if (CreatedVReg) 6950 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6951 DAG.setRoot(CopyNode); 6952 } 6953 } 6954 6955 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6956 SelectionDAGBuilder &Builder) { 6957 // Check to see if this load can be trivially constant folded, e.g. if the 6958 // input is from a string literal. 6959 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6960 // Cast pointer to the type we really want to load. 6961 Type *LoadTy = 6962 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6963 if (LoadVT.isVector()) 6964 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6965 6966 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6967 PointerType::getUnqual(LoadTy)); 6968 6969 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6970 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6971 return Builder.getValue(LoadCst); 6972 } 6973 6974 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6975 // still constant memory, the input chain can be the entry node. 6976 SDValue Root; 6977 bool ConstantMemory = false; 6978 6979 // Do not serialize (non-volatile) loads of constant memory with anything. 6980 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6981 Root = Builder.DAG.getEntryNode(); 6982 ConstantMemory = true; 6983 } else { 6984 // Do not serialize non-volatile loads against each other. 6985 Root = Builder.DAG.getRoot(); 6986 } 6987 6988 SDValue Ptr = Builder.getValue(PtrVal); 6989 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6990 Ptr, MachinePointerInfo(PtrVal), 6991 /* Alignment = */ 1); 6992 6993 if (!ConstantMemory) 6994 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6995 return LoadVal; 6996 } 6997 6998 /// Record the value for an instruction that produces an integer result, 6999 /// converting the type where necessary. 7000 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7001 SDValue Value, 7002 bool IsSigned) { 7003 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7004 I.getType(), true); 7005 if (IsSigned) 7006 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7007 else 7008 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7009 setValue(&I, Value); 7010 } 7011 7012 /// See if we can lower a memcmp call into an optimized form. If so, return 7013 /// true and lower it. Otherwise return false, and it will be lowered like a 7014 /// normal call. 7015 /// The caller already checked that \p I calls the appropriate LibFunc with a 7016 /// correct prototype. 7017 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7018 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7019 const Value *Size = I.getArgOperand(2); 7020 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7021 if (CSize && CSize->getZExtValue() == 0) { 7022 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7023 I.getType(), true); 7024 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7025 return true; 7026 } 7027 7028 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7029 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7030 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7031 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7032 if (Res.first.getNode()) { 7033 processIntegerCallValue(I, Res.first, true); 7034 PendingLoads.push_back(Res.second); 7035 return true; 7036 } 7037 7038 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7039 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7040 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7041 return false; 7042 7043 // If the target has a fast compare for the given size, it will return a 7044 // preferred load type for that size. Require that the load VT is legal and 7045 // that the target supports unaligned loads of that type. Otherwise, return 7046 // INVALID. 7047 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7049 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7050 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7051 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7052 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7053 // TODO: Check alignment of src and dest ptrs. 7054 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7055 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7056 if (!TLI.isTypeLegal(LVT) || 7057 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7058 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7059 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7060 } 7061 7062 return LVT; 7063 }; 7064 7065 // This turns into unaligned loads. We only do this if the target natively 7066 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7067 // we'll only produce a small number of byte loads. 7068 MVT LoadVT; 7069 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7070 switch (NumBitsToCompare) { 7071 default: 7072 return false; 7073 case 16: 7074 LoadVT = MVT::i16; 7075 break; 7076 case 32: 7077 LoadVT = MVT::i32; 7078 break; 7079 case 64: 7080 case 128: 7081 case 256: 7082 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7083 break; 7084 } 7085 7086 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7087 return false; 7088 7089 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7090 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7091 7092 // Bitcast to a wide integer type if the loads are vectors. 7093 if (LoadVT.isVector()) { 7094 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7095 LoadL = DAG.getBitcast(CmpVT, LoadL); 7096 LoadR = DAG.getBitcast(CmpVT, LoadR); 7097 } 7098 7099 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7100 processIntegerCallValue(I, Cmp, false); 7101 return true; 7102 } 7103 7104 /// See if we can lower a memchr call into an optimized form. If so, return 7105 /// true and lower it. Otherwise return false, and it will be lowered like a 7106 /// normal call. 7107 /// The caller already checked that \p I calls the appropriate LibFunc with a 7108 /// correct prototype. 7109 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7110 const Value *Src = I.getArgOperand(0); 7111 const Value *Char = I.getArgOperand(1); 7112 const Value *Length = I.getArgOperand(2); 7113 7114 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7115 std::pair<SDValue, SDValue> Res = 7116 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7117 getValue(Src), getValue(Char), getValue(Length), 7118 MachinePointerInfo(Src)); 7119 if (Res.first.getNode()) { 7120 setValue(&I, Res.first); 7121 PendingLoads.push_back(Res.second); 7122 return true; 7123 } 7124 7125 return false; 7126 } 7127 7128 /// See if we can lower a mempcpy call into an optimized form. If so, return 7129 /// true and lower it. Otherwise return false, and it will be lowered like a 7130 /// normal call. 7131 /// The caller already checked that \p I calls the appropriate LibFunc with a 7132 /// correct prototype. 7133 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7134 SDValue Dst = getValue(I.getArgOperand(0)); 7135 SDValue Src = getValue(I.getArgOperand(1)); 7136 SDValue Size = getValue(I.getArgOperand(2)); 7137 7138 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7139 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7140 unsigned Align = std::min(DstAlign, SrcAlign); 7141 if (Align == 0) // Alignment of one or both could not be inferred. 7142 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7143 7144 bool isVol = false; 7145 SDLoc sdl = getCurSDLoc(); 7146 7147 // In the mempcpy context we need to pass in a false value for isTailCall 7148 // because the return pointer needs to be adjusted by the size of 7149 // the copied memory. 7150 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7151 false, /*isTailCall=*/false, 7152 MachinePointerInfo(I.getArgOperand(0)), 7153 MachinePointerInfo(I.getArgOperand(1))); 7154 assert(MC.getNode() != nullptr && 7155 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7156 DAG.setRoot(MC); 7157 7158 // Check if Size needs to be truncated or extended. 7159 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7160 7161 // Adjust return pointer to point just past the last dst byte. 7162 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7163 Dst, Size); 7164 setValue(&I, DstPlusSize); 7165 return true; 7166 } 7167 7168 /// See if we can lower a strcpy call into an optimized form. If so, return 7169 /// true and lower it, otherwise return false and it will be lowered like a 7170 /// normal call. 7171 /// The caller already checked that \p I calls the appropriate LibFunc with a 7172 /// correct prototype. 7173 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7174 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7175 7176 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7177 std::pair<SDValue, SDValue> Res = 7178 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7179 getValue(Arg0), getValue(Arg1), 7180 MachinePointerInfo(Arg0), 7181 MachinePointerInfo(Arg1), isStpcpy); 7182 if (Res.first.getNode()) { 7183 setValue(&I, Res.first); 7184 DAG.setRoot(Res.second); 7185 return true; 7186 } 7187 7188 return false; 7189 } 7190 7191 /// See if we can lower a strcmp call into an optimized form. If so, return 7192 /// true and lower it, otherwise return false and it will be lowered like a 7193 /// normal call. 7194 /// The caller already checked that \p I calls the appropriate LibFunc with a 7195 /// correct prototype. 7196 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7197 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7198 7199 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7200 std::pair<SDValue, SDValue> Res = 7201 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7202 getValue(Arg0), getValue(Arg1), 7203 MachinePointerInfo(Arg0), 7204 MachinePointerInfo(Arg1)); 7205 if (Res.first.getNode()) { 7206 processIntegerCallValue(I, Res.first, true); 7207 PendingLoads.push_back(Res.second); 7208 return true; 7209 } 7210 7211 return false; 7212 } 7213 7214 /// See if we can lower a strlen call into an optimized form. If so, return 7215 /// true and lower it, otherwise return false and it will be lowered like a 7216 /// normal call. 7217 /// The caller already checked that \p I calls the appropriate LibFunc with a 7218 /// correct prototype. 7219 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7220 const Value *Arg0 = I.getArgOperand(0); 7221 7222 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7223 std::pair<SDValue, SDValue> Res = 7224 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7225 getValue(Arg0), MachinePointerInfo(Arg0)); 7226 if (Res.first.getNode()) { 7227 processIntegerCallValue(I, Res.first, false); 7228 PendingLoads.push_back(Res.second); 7229 return true; 7230 } 7231 7232 return false; 7233 } 7234 7235 /// See if we can lower a strnlen call into an optimized form. If so, return 7236 /// true and lower it, otherwise return false and it will be lowered like a 7237 /// normal call. 7238 /// The caller already checked that \p I calls the appropriate LibFunc with a 7239 /// correct prototype. 7240 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7241 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7242 7243 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7244 std::pair<SDValue, SDValue> Res = 7245 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7246 getValue(Arg0), getValue(Arg1), 7247 MachinePointerInfo(Arg0)); 7248 if (Res.first.getNode()) { 7249 processIntegerCallValue(I, Res.first, false); 7250 PendingLoads.push_back(Res.second); 7251 return true; 7252 } 7253 7254 return false; 7255 } 7256 7257 /// See if we can lower a unary floating-point operation into an SDNode with 7258 /// the specified Opcode. If so, return true and lower it, otherwise return 7259 /// false and it will be lowered like a normal call. 7260 /// The caller already checked that \p I calls the appropriate LibFunc with a 7261 /// correct prototype. 7262 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7263 unsigned Opcode) { 7264 // We already checked this call's prototype; verify it doesn't modify errno. 7265 if (!I.onlyReadsMemory()) 7266 return false; 7267 7268 SDValue Tmp = getValue(I.getArgOperand(0)); 7269 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7270 return true; 7271 } 7272 7273 /// See if we can lower a binary floating-point operation into an SDNode with 7274 /// the specified Opcode. If so, return true and lower it. Otherwise return 7275 /// false, and it will be lowered like a normal call. 7276 /// The caller already checked that \p I calls the appropriate LibFunc with a 7277 /// correct prototype. 7278 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7279 unsigned Opcode) { 7280 // We already checked this call's prototype; verify it doesn't modify errno. 7281 if (!I.onlyReadsMemory()) 7282 return false; 7283 7284 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7285 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7286 EVT VT = Tmp0.getValueType(); 7287 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7288 return true; 7289 } 7290 7291 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7292 // Handle inline assembly differently. 7293 if (isa<InlineAsm>(I.getCalledValue())) { 7294 visitInlineAsm(&I); 7295 return; 7296 } 7297 7298 const char *RenameFn = nullptr; 7299 if (Function *F = I.getCalledFunction()) { 7300 if (F->isDeclaration()) { 7301 // Is this an LLVM intrinsic or a target-specific intrinsic? 7302 unsigned IID = F->getIntrinsicID(); 7303 if (!IID) 7304 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7305 IID = II->getIntrinsicID(F); 7306 7307 if (IID) { 7308 RenameFn = visitIntrinsicCall(I, IID); 7309 if (!RenameFn) 7310 return; 7311 } 7312 } 7313 7314 // Check for well-known libc/libm calls. If the function is internal, it 7315 // can't be a library call. Don't do the check if marked as nobuiltin for 7316 // some reason or the call site requires strict floating point semantics. 7317 LibFunc Func; 7318 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7319 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7320 LibInfo->hasOptimizedCodeGen(Func)) { 7321 switch (Func) { 7322 default: break; 7323 case LibFunc_copysign: 7324 case LibFunc_copysignf: 7325 case LibFunc_copysignl: 7326 // We already checked this call's prototype; verify it doesn't modify 7327 // errno. 7328 if (I.onlyReadsMemory()) { 7329 SDValue LHS = getValue(I.getArgOperand(0)); 7330 SDValue RHS = getValue(I.getArgOperand(1)); 7331 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7332 LHS.getValueType(), LHS, RHS)); 7333 return; 7334 } 7335 break; 7336 case LibFunc_fabs: 7337 case LibFunc_fabsf: 7338 case LibFunc_fabsl: 7339 if (visitUnaryFloatCall(I, ISD::FABS)) 7340 return; 7341 break; 7342 case LibFunc_fmin: 7343 case LibFunc_fminf: 7344 case LibFunc_fminl: 7345 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7346 return; 7347 break; 7348 case LibFunc_fmax: 7349 case LibFunc_fmaxf: 7350 case LibFunc_fmaxl: 7351 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7352 return; 7353 break; 7354 case LibFunc_sin: 7355 case LibFunc_sinf: 7356 case LibFunc_sinl: 7357 if (visitUnaryFloatCall(I, ISD::FSIN)) 7358 return; 7359 break; 7360 case LibFunc_cos: 7361 case LibFunc_cosf: 7362 case LibFunc_cosl: 7363 if (visitUnaryFloatCall(I, ISD::FCOS)) 7364 return; 7365 break; 7366 case LibFunc_sqrt: 7367 case LibFunc_sqrtf: 7368 case LibFunc_sqrtl: 7369 case LibFunc_sqrt_finite: 7370 case LibFunc_sqrtf_finite: 7371 case LibFunc_sqrtl_finite: 7372 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7373 return; 7374 break; 7375 case LibFunc_floor: 7376 case LibFunc_floorf: 7377 case LibFunc_floorl: 7378 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7379 return; 7380 break; 7381 case LibFunc_nearbyint: 7382 case LibFunc_nearbyintf: 7383 case LibFunc_nearbyintl: 7384 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7385 return; 7386 break; 7387 case LibFunc_ceil: 7388 case LibFunc_ceilf: 7389 case LibFunc_ceill: 7390 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7391 return; 7392 break; 7393 case LibFunc_rint: 7394 case LibFunc_rintf: 7395 case LibFunc_rintl: 7396 if (visitUnaryFloatCall(I, ISD::FRINT)) 7397 return; 7398 break; 7399 case LibFunc_round: 7400 case LibFunc_roundf: 7401 case LibFunc_roundl: 7402 if (visitUnaryFloatCall(I, ISD::FROUND)) 7403 return; 7404 break; 7405 case LibFunc_trunc: 7406 case LibFunc_truncf: 7407 case LibFunc_truncl: 7408 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7409 return; 7410 break; 7411 case LibFunc_log2: 7412 case LibFunc_log2f: 7413 case LibFunc_log2l: 7414 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7415 return; 7416 break; 7417 case LibFunc_exp2: 7418 case LibFunc_exp2f: 7419 case LibFunc_exp2l: 7420 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7421 return; 7422 break; 7423 case LibFunc_memcmp: 7424 if (visitMemCmpCall(I)) 7425 return; 7426 break; 7427 case LibFunc_mempcpy: 7428 if (visitMemPCpyCall(I)) 7429 return; 7430 break; 7431 case LibFunc_memchr: 7432 if (visitMemChrCall(I)) 7433 return; 7434 break; 7435 case LibFunc_strcpy: 7436 if (visitStrCpyCall(I, false)) 7437 return; 7438 break; 7439 case LibFunc_stpcpy: 7440 if (visitStrCpyCall(I, true)) 7441 return; 7442 break; 7443 case LibFunc_strcmp: 7444 if (visitStrCmpCall(I)) 7445 return; 7446 break; 7447 case LibFunc_strlen: 7448 if (visitStrLenCall(I)) 7449 return; 7450 break; 7451 case LibFunc_strnlen: 7452 if (visitStrNLenCall(I)) 7453 return; 7454 break; 7455 } 7456 } 7457 } 7458 7459 SDValue Callee; 7460 if (!RenameFn) 7461 Callee = getValue(I.getCalledValue()); 7462 else 7463 Callee = DAG.getExternalSymbol( 7464 RenameFn, 7465 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7466 7467 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7468 // have to do anything here to lower funclet bundles. 7469 assert(!I.hasOperandBundlesOtherThan( 7470 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7471 "Cannot lower calls with arbitrary operand bundles!"); 7472 7473 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7474 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7475 else 7476 // Check if we can potentially perform a tail call. More detailed checking 7477 // is be done within LowerCallTo, after more information about the call is 7478 // known. 7479 LowerCallTo(&I, Callee, I.isTailCall()); 7480 } 7481 7482 namespace { 7483 7484 /// AsmOperandInfo - This contains information for each constraint that we are 7485 /// lowering. 7486 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7487 public: 7488 /// CallOperand - If this is the result output operand or a clobber 7489 /// this is null, otherwise it is the incoming operand to the CallInst. 7490 /// This gets modified as the asm is processed. 7491 SDValue CallOperand; 7492 7493 /// AssignedRegs - If this is a register or register class operand, this 7494 /// contains the set of register corresponding to the operand. 7495 RegsForValue AssignedRegs; 7496 7497 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7498 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7499 } 7500 7501 /// Whether or not this operand accesses memory 7502 bool hasMemory(const TargetLowering &TLI) const { 7503 // Indirect operand accesses access memory. 7504 if (isIndirect) 7505 return true; 7506 7507 for (const auto &Code : Codes) 7508 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7509 return true; 7510 7511 return false; 7512 } 7513 7514 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7515 /// corresponds to. If there is no Value* for this operand, it returns 7516 /// MVT::Other. 7517 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7518 const DataLayout &DL) const { 7519 if (!CallOperandVal) return MVT::Other; 7520 7521 if (isa<BasicBlock>(CallOperandVal)) 7522 return TLI.getPointerTy(DL); 7523 7524 llvm::Type *OpTy = CallOperandVal->getType(); 7525 7526 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7527 // If this is an indirect operand, the operand is a pointer to the 7528 // accessed type. 7529 if (isIndirect) { 7530 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7531 if (!PtrTy) 7532 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7533 OpTy = PtrTy->getElementType(); 7534 } 7535 7536 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7537 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7538 if (STy->getNumElements() == 1) 7539 OpTy = STy->getElementType(0); 7540 7541 // If OpTy is not a single value, it may be a struct/union that we 7542 // can tile with integers. 7543 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7544 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7545 switch (BitSize) { 7546 default: break; 7547 case 1: 7548 case 8: 7549 case 16: 7550 case 32: 7551 case 64: 7552 case 128: 7553 OpTy = IntegerType::get(Context, BitSize); 7554 break; 7555 } 7556 } 7557 7558 return TLI.getValueType(DL, OpTy, true); 7559 } 7560 }; 7561 7562 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7563 7564 } // end anonymous namespace 7565 7566 /// Make sure that the output operand \p OpInfo and its corresponding input 7567 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7568 /// out). 7569 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7570 SDISelAsmOperandInfo &MatchingOpInfo, 7571 SelectionDAG &DAG) { 7572 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7573 return; 7574 7575 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7576 const auto &TLI = DAG.getTargetLoweringInfo(); 7577 7578 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7579 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7580 OpInfo.ConstraintVT); 7581 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7582 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7583 MatchingOpInfo.ConstraintVT); 7584 if ((OpInfo.ConstraintVT.isInteger() != 7585 MatchingOpInfo.ConstraintVT.isInteger()) || 7586 (MatchRC.second != InputRC.second)) { 7587 // FIXME: error out in a more elegant fashion 7588 report_fatal_error("Unsupported asm: input constraint" 7589 " with a matching output constraint of" 7590 " incompatible type!"); 7591 } 7592 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7593 } 7594 7595 /// Get a direct memory input to behave well as an indirect operand. 7596 /// This may introduce stores, hence the need for a \p Chain. 7597 /// \return The (possibly updated) chain. 7598 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7599 SDISelAsmOperandInfo &OpInfo, 7600 SelectionDAG &DAG) { 7601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7602 7603 // If we don't have an indirect input, put it in the constpool if we can, 7604 // otherwise spill it to a stack slot. 7605 // TODO: This isn't quite right. We need to handle these according to 7606 // the addressing mode that the constraint wants. Also, this may take 7607 // an additional register for the computation and we don't want that 7608 // either. 7609 7610 // If the operand is a float, integer, or vector constant, spill to a 7611 // constant pool entry to get its address. 7612 const Value *OpVal = OpInfo.CallOperandVal; 7613 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7614 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7615 OpInfo.CallOperand = DAG.getConstantPool( 7616 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7617 return Chain; 7618 } 7619 7620 // Otherwise, create a stack slot and emit a store to it before the asm. 7621 Type *Ty = OpVal->getType(); 7622 auto &DL = DAG.getDataLayout(); 7623 uint64_t TySize = DL.getTypeAllocSize(Ty); 7624 unsigned Align = DL.getPrefTypeAlignment(Ty); 7625 MachineFunction &MF = DAG.getMachineFunction(); 7626 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7627 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7628 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7629 MachinePointerInfo::getFixedStack(MF, SSFI)); 7630 OpInfo.CallOperand = StackSlot; 7631 7632 return Chain; 7633 } 7634 7635 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7636 /// specified operand. We prefer to assign virtual registers, to allow the 7637 /// register allocator to handle the assignment process. However, if the asm 7638 /// uses features that we can't model on machineinstrs, we have SDISel do the 7639 /// allocation. This produces generally horrible, but correct, code. 7640 /// 7641 /// OpInfo describes the operand 7642 /// RefOpInfo describes the matching operand if any, the operand otherwise 7643 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7644 SDISelAsmOperandInfo &OpInfo, 7645 SDISelAsmOperandInfo &RefOpInfo) { 7646 LLVMContext &Context = *DAG.getContext(); 7647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7648 7649 MachineFunction &MF = DAG.getMachineFunction(); 7650 SmallVector<unsigned, 4> Regs; 7651 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7652 7653 // No work to do for memory operations. 7654 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7655 return; 7656 7657 // If this is a constraint for a single physreg, or a constraint for a 7658 // register class, find it. 7659 unsigned AssignedReg; 7660 const TargetRegisterClass *RC; 7661 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7662 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7663 // RC is unset only on failure. Return immediately. 7664 if (!RC) 7665 return; 7666 7667 // Get the actual register value type. This is important, because the user 7668 // may have asked for (e.g.) the AX register in i32 type. We need to 7669 // remember that AX is actually i16 to get the right extension. 7670 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7671 7672 if (OpInfo.ConstraintVT != MVT::Other) { 7673 // If this is an FP operand in an integer register (or visa versa), or more 7674 // generally if the operand value disagrees with the register class we plan 7675 // to stick it in, fix the operand type. 7676 // 7677 // If this is an input value, the bitcast to the new type is done now. 7678 // Bitcast for output value is done at the end of visitInlineAsm(). 7679 if ((OpInfo.Type == InlineAsm::isOutput || 7680 OpInfo.Type == InlineAsm::isInput) && 7681 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7682 // Try to convert to the first EVT that the reg class contains. If the 7683 // types are identical size, use a bitcast to convert (e.g. two differing 7684 // vector types). Note: output bitcast is done at the end of 7685 // visitInlineAsm(). 7686 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7687 // Exclude indirect inputs while they are unsupported because the code 7688 // to perform the load is missing and thus OpInfo.CallOperand still 7689 // refers to the input address rather than the pointed-to value. 7690 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7691 OpInfo.CallOperand = 7692 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7693 OpInfo.ConstraintVT = RegVT; 7694 // If the operand is an FP value and we want it in integer registers, 7695 // use the corresponding integer type. This turns an f64 value into 7696 // i64, which can be passed with two i32 values on a 32-bit machine. 7697 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7698 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7699 if (OpInfo.Type == InlineAsm::isInput) 7700 OpInfo.CallOperand = 7701 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7702 OpInfo.ConstraintVT = VT; 7703 } 7704 } 7705 } 7706 7707 // No need to allocate a matching input constraint since the constraint it's 7708 // matching to has already been allocated. 7709 if (OpInfo.isMatchingInputConstraint()) 7710 return; 7711 7712 EVT ValueVT = OpInfo.ConstraintVT; 7713 if (OpInfo.ConstraintVT == MVT::Other) 7714 ValueVT = RegVT; 7715 7716 // Initialize NumRegs. 7717 unsigned NumRegs = 1; 7718 if (OpInfo.ConstraintVT != MVT::Other) 7719 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7720 7721 // If this is a constraint for a specific physical register, like {r17}, 7722 // assign it now. 7723 7724 // If this associated to a specific register, initialize iterator to correct 7725 // place. If virtual, make sure we have enough registers 7726 7727 // Initialize iterator if necessary 7728 TargetRegisterClass::iterator I = RC->begin(); 7729 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7730 7731 // Do not check for single registers. 7732 if (AssignedReg) { 7733 for (; *I != AssignedReg; ++I) 7734 assert(I != RC->end() && "AssignedReg should be member of RC"); 7735 } 7736 7737 for (; NumRegs; --NumRegs, ++I) { 7738 assert(I != RC->end() && "Ran out of registers to allocate!"); 7739 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7740 Regs.push_back(R); 7741 } 7742 7743 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7744 } 7745 7746 static unsigned 7747 findMatchingInlineAsmOperand(unsigned OperandNo, 7748 const std::vector<SDValue> &AsmNodeOperands) { 7749 // Scan until we find the definition we already emitted of this operand. 7750 unsigned CurOp = InlineAsm::Op_FirstOperand; 7751 for (; OperandNo; --OperandNo) { 7752 // Advance to the next operand. 7753 unsigned OpFlag = 7754 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7755 assert((InlineAsm::isRegDefKind(OpFlag) || 7756 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7757 InlineAsm::isMemKind(OpFlag)) && 7758 "Skipped past definitions?"); 7759 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7760 } 7761 return CurOp; 7762 } 7763 7764 namespace { 7765 7766 class ExtraFlags { 7767 unsigned Flags = 0; 7768 7769 public: 7770 explicit ExtraFlags(ImmutableCallSite CS) { 7771 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7772 if (IA->hasSideEffects()) 7773 Flags |= InlineAsm::Extra_HasSideEffects; 7774 if (IA->isAlignStack()) 7775 Flags |= InlineAsm::Extra_IsAlignStack; 7776 if (CS.isConvergent()) 7777 Flags |= InlineAsm::Extra_IsConvergent; 7778 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7779 } 7780 7781 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7782 // Ideally, we would only check against memory constraints. However, the 7783 // meaning of an Other constraint can be target-specific and we can't easily 7784 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7785 // for Other constraints as well. 7786 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7787 OpInfo.ConstraintType == TargetLowering::C_Other) { 7788 if (OpInfo.Type == InlineAsm::isInput) 7789 Flags |= InlineAsm::Extra_MayLoad; 7790 else if (OpInfo.Type == InlineAsm::isOutput) 7791 Flags |= InlineAsm::Extra_MayStore; 7792 else if (OpInfo.Type == InlineAsm::isClobber) 7793 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7794 } 7795 } 7796 7797 unsigned get() const { return Flags; } 7798 }; 7799 7800 } // end anonymous namespace 7801 7802 /// visitInlineAsm - Handle a call to an InlineAsm object. 7803 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7804 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7805 7806 /// ConstraintOperands - Information about all of the constraints. 7807 SDISelAsmOperandInfoVector ConstraintOperands; 7808 7809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7810 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7811 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7812 7813 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7814 // AsmDialect, MayLoad, MayStore). 7815 bool HasSideEffect = IA->hasSideEffects(); 7816 ExtraFlags ExtraInfo(CS); 7817 7818 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7819 unsigned ResNo = 0; // ResNo - The result number of the next output. 7820 for (auto &T : TargetConstraints) { 7821 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7822 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7823 7824 // Compute the value type for each operand. 7825 if (OpInfo.Type == InlineAsm::isInput || 7826 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7827 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7828 7829 // Process the call argument. BasicBlocks are labels, currently appearing 7830 // only in asm's. 7831 const Instruction *I = CS.getInstruction(); 7832 if (isa<CallBrInst>(I) && 7833 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7834 cast<CallBrInst>(I)->getNumIndirectDests())) { 7835 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7836 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7837 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7838 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7839 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7840 } else { 7841 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7842 } 7843 7844 OpInfo.ConstraintVT = 7845 OpInfo 7846 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7847 .getSimpleVT(); 7848 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7849 // The return value of the call is this value. As such, there is no 7850 // corresponding argument. 7851 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7852 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7853 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7854 DAG.getDataLayout(), STy->getElementType(ResNo)); 7855 } else { 7856 assert(ResNo == 0 && "Asm only has one result!"); 7857 OpInfo.ConstraintVT = 7858 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7859 } 7860 ++ResNo; 7861 } else { 7862 OpInfo.ConstraintVT = MVT::Other; 7863 } 7864 7865 if (!HasSideEffect) 7866 HasSideEffect = OpInfo.hasMemory(TLI); 7867 7868 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7869 // FIXME: Could we compute this on OpInfo rather than T? 7870 7871 // Compute the constraint code and ConstraintType to use. 7872 TLI.ComputeConstraintToUse(T, SDValue()); 7873 7874 ExtraInfo.update(T); 7875 } 7876 7877 // We won't need to flush pending loads if this asm doesn't touch 7878 // memory and is nonvolatile. 7879 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7880 7881 // Second pass over the constraints: compute which constraint option to use. 7882 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7883 // If this is an output operand with a matching input operand, look up the 7884 // matching input. If their types mismatch, e.g. one is an integer, the 7885 // other is floating point, or their sizes are different, flag it as an 7886 // error. 7887 if (OpInfo.hasMatchingInput()) { 7888 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7889 patchMatchingInput(OpInfo, Input, DAG); 7890 } 7891 7892 // Compute the constraint code and ConstraintType to use. 7893 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7894 7895 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7896 OpInfo.Type == InlineAsm::isClobber) 7897 continue; 7898 7899 // If this is a memory input, and if the operand is not indirect, do what we 7900 // need to provide an address for the memory input. 7901 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7902 !OpInfo.isIndirect) { 7903 assert((OpInfo.isMultipleAlternative || 7904 (OpInfo.Type == InlineAsm::isInput)) && 7905 "Can only indirectify direct input operands!"); 7906 7907 // Memory operands really want the address of the value. 7908 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7909 7910 // There is no longer a Value* corresponding to this operand. 7911 OpInfo.CallOperandVal = nullptr; 7912 7913 // It is now an indirect operand. 7914 OpInfo.isIndirect = true; 7915 } 7916 7917 } 7918 7919 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7920 std::vector<SDValue> AsmNodeOperands; 7921 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7922 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7923 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7924 7925 // If we have a !srcloc metadata node associated with it, we want to attach 7926 // this to the ultimately generated inline asm machineinstr. To do this, we 7927 // pass in the third operand as this (potentially null) inline asm MDNode. 7928 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7929 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7930 7931 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7932 // bits as operand 3. 7933 AsmNodeOperands.push_back(DAG.getTargetConstant( 7934 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7935 7936 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7937 // this, assign virtual and physical registers for inputs and otput. 7938 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7939 // Assign Registers. 7940 SDISelAsmOperandInfo &RefOpInfo = 7941 OpInfo.isMatchingInputConstraint() 7942 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7943 : OpInfo; 7944 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7945 7946 switch (OpInfo.Type) { 7947 case InlineAsm::isOutput: 7948 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7949 (OpInfo.ConstraintType == TargetLowering::C_Other && 7950 OpInfo.isIndirect)) { 7951 unsigned ConstraintID = 7952 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7953 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7954 "Failed to convert memory constraint code to constraint id."); 7955 7956 // Add information to the INLINEASM node to know about this output. 7957 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7958 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7959 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7960 MVT::i32)); 7961 AsmNodeOperands.push_back(OpInfo.CallOperand); 7962 break; 7963 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 7964 !OpInfo.isIndirect) || 7965 OpInfo.ConstraintType == TargetLowering::C_Register || 7966 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 7967 // Otherwise, this outputs to a register (directly for C_Register / 7968 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 7969 // register that we can use. 7970 if (OpInfo.AssignedRegs.Regs.empty()) { 7971 emitInlineAsmError( 7972 CS, "couldn't allocate output register for constraint '" + 7973 Twine(OpInfo.ConstraintCode) + "'"); 7974 return; 7975 } 7976 7977 // Add information to the INLINEASM node to know that this register is 7978 // set. 7979 OpInfo.AssignedRegs.AddInlineAsmOperands( 7980 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 7981 : InlineAsm::Kind_RegDef, 7982 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7983 } 7984 break; 7985 7986 case InlineAsm::isInput: { 7987 SDValue InOperandVal = OpInfo.CallOperand; 7988 7989 if (OpInfo.isMatchingInputConstraint()) { 7990 // If this is required to match an output register we have already set, 7991 // just use its register. 7992 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7993 AsmNodeOperands); 7994 unsigned OpFlag = 7995 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7996 if (InlineAsm::isRegDefKind(OpFlag) || 7997 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7998 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7999 if (OpInfo.isIndirect) { 8000 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8001 emitInlineAsmError(CS, "inline asm not supported yet:" 8002 " don't know how to handle tied " 8003 "indirect register inputs"); 8004 return; 8005 } 8006 8007 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8008 SmallVector<unsigned, 4> Regs; 8009 8010 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8011 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8012 MachineRegisterInfo &RegInfo = 8013 DAG.getMachineFunction().getRegInfo(); 8014 for (unsigned i = 0; i != NumRegs; ++i) 8015 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8016 } else { 8017 emitInlineAsmError(CS, "inline asm error: This value type register " 8018 "class is not natively supported!"); 8019 return; 8020 } 8021 8022 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8023 8024 SDLoc dl = getCurSDLoc(); 8025 // Use the produced MatchedRegs object to 8026 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8027 CS.getInstruction()); 8028 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8029 true, OpInfo.getMatchedOperand(), dl, 8030 DAG, AsmNodeOperands); 8031 break; 8032 } 8033 8034 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8035 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8036 "Unexpected number of operands"); 8037 // Add information to the INLINEASM node to know about this input. 8038 // See InlineAsm.h isUseOperandTiedToDef. 8039 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8040 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8041 OpInfo.getMatchedOperand()); 8042 AsmNodeOperands.push_back(DAG.getTargetConstant( 8043 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8044 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8045 break; 8046 } 8047 8048 // Treat indirect 'X' constraint as memory. 8049 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8050 OpInfo.isIndirect) 8051 OpInfo.ConstraintType = TargetLowering::C_Memory; 8052 8053 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8054 std::vector<SDValue> Ops; 8055 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8056 Ops, DAG); 8057 if (Ops.empty()) { 8058 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8059 Twine(OpInfo.ConstraintCode) + "'"); 8060 return; 8061 } 8062 8063 // Add information to the INLINEASM node to know about this input. 8064 unsigned ResOpType = 8065 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8066 AsmNodeOperands.push_back(DAG.getTargetConstant( 8067 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8068 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8069 break; 8070 } 8071 8072 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8073 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8074 assert(InOperandVal.getValueType() == 8075 TLI.getPointerTy(DAG.getDataLayout()) && 8076 "Memory operands expect pointer values"); 8077 8078 unsigned ConstraintID = 8079 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8080 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8081 "Failed to convert memory constraint code to constraint id."); 8082 8083 // Add information to the INLINEASM node to know about this input. 8084 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8085 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8086 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8087 getCurSDLoc(), 8088 MVT::i32)); 8089 AsmNodeOperands.push_back(InOperandVal); 8090 break; 8091 } 8092 8093 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8094 OpInfo.ConstraintType == TargetLowering::C_Register) && 8095 "Unknown constraint type!"); 8096 8097 // TODO: Support this. 8098 if (OpInfo.isIndirect) { 8099 emitInlineAsmError( 8100 CS, "Don't know how to handle indirect register inputs yet " 8101 "for constraint '" + 8102 Twine(OpInfo.ConstraintCode) + "'"); 8103 return; 8104 } 8105 8106 // Copy the input into the appropriate registers. 8107 if (OpInfo.AssignedRegs.Regs.empty()) { 8108 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8109 Twine(OpInfo.ConstraintCode) + "'"); 8110 return; 8111 } 8112 8113 SDLoc dl = getCurSDLoc(); 8114 8115 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8116 Chain, &Flag, CS.getInstruction()); 8117 8118 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8119 dl, DAG, AsmNodeOperands); 8120 break; 8121 } 8122 case InlineAsm::isClobber: 8123 // Add the clobbered value to the operand list, so that the register 8124 // allocator is aware that the physreg got clobbered. 8125 if (!OpInfo.AssignedRegs.Regs.empty()) 8126 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8127 false, 0, getCurSDLoc(), DAG, 8128 AsmNodeOperands); 8129 break; 8130 } 8131 } 8132 8133 // Finish up input operands. Set the input chain and add the flag last. 8134 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8135 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8136 8137 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM; 8138 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8139 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8140 Flag = Chain.getValue(1); 8141 8142 // Do additional work to generate outputs. 8143 8144 SmallVector<EVT, 1> ResultVTs; 8145 SmallVector<SDValue, 1> ResultValues; 8146 SmallVector<SDValue, 8> OutChains; 8147 8148 llvm::Type *CSResultType = CS.getType(); 8149 ArrayRef<Type *> ResultTypes; 8150 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8151 ResultTypes = StructResult->elements(); 8152 else if (!CSResultType->isVoidTy()) 8153 ResultTypes = makeArrayRef(CSResultType); 8154 8155 auto CurResultType = ResultTypes.begin(); 8156 auto handleRegAssign = [&](SDValue V) { 8157 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8158 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8159 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8160 ++CurResultType; 8161 // If the type of the inline asm call site return value is different but has 8162 // same size as the type of the asm output bitcast it. One example of this 8163 // is for vectors with different width / number of elements. This can 8164 // happen for register classes that can contain multiple different value 8165 // types. The preg or vreg allocated may not have the same VT as was 8166 // expected. 8167 // 8168 // This can also happen for a return value that disagrees with the register 8169 // class it is put in, eg. a double in a general-purpose register on a 8170 // 32-bit machine. 8171 if (ResultVT != V.getValueType() && 8172 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8173 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8174 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8175 V.getValueType().isInteger()) { 8176 // If a result value was tied to an input value, the computed result 8177 // may have a wider width than the expected result. Extract the 8178 // relevant portion. 8179 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8180 } 8181 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8182 ResultVTs.push_back(ResultVT); 8183 ResultValues.push_back(V); 8184 }; 8185 8186 // Deal with output operands. 8187 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8188 if (OpInfo.Type == InlineAsm::isOutput) { 8189 SDValue Val; 8190 // Skip trivial output operands. 8191 if (OpInfo.AssignedRegs.Regs.empty()) 8192 continue; 8193 8194 switch (OpInfo.ConstraintType) { 8195 case TargetLowering::C_Register: 8196 case TargetLowering::C_RegisterClass: 8197 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8198 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8199 break; 8200 case TargetLowering::C_Other: 8201 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8202 OpInfo, DAG); 8203 break; 8204 case TargetLowering::C_Memory: 8205 break; // Already handled. 8206 case TargetLowering::C_Unknown: 8207 assert(false && "Unexpected unknown constraint"); 8208 } 8209 8210 // Indirect output manifest as stores. Record output chains. 8211 if (OpInfo.isIndirect) { 8212 const Value *Ptr = OpInfo.CallOperandVal; 8213 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8214 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8215 MachinePointerInfo(Ptr)); 8216 OutChains.push_back(Store); 8217 } else { 8218 // generate CopyFromRegs to associated registers. 8219 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8220 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8221 for (const SDValue &V : Val->op_values()) 8222 handleRegAssign(V); 8223 } else 8224 handleRegAssign(Val); 8225 } 8226 } 8227 } 8228 8229 // Set results. 8230 if (!ResultValues.empty()) { 8231 assert(CurResultType == ResultTypes.end() && 8232 "Mismatch in number of ResultTypes"); 8233 assert(ResultValues.size() == ResultTypes.size() && 8234 "Mismatch in number of output operands in asm result"); 8235 8236 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8237 DAG.getVTList(ResultVTs), ResultValues); 8238 setValue(CS.getInstruction(), V); 8239 } 8240 8241 // Collect store chains. 8242 if (!OutChains.empty()) 8243 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8244 8245 // Only Update Root if inline assembly has a memory effect. 8246 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8247 DAG.setRoot(Chain); 8248 } 8249 8250 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8251 const Twine &Message) { 8252 LLVMContext &Ctx = *DAG.getContext(); 8253 Ctx.emitError(CS.getInstruction(), Message); 8254 8255 // Make sure we leave the DAG in a valid state 8256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8257 SmallVector<EVT, 1> ValueVTs; 8258 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8259 8260 if (ValueVTs.empty()) 8261 return; 8262 8263 SmallVector<SDValue, 1> Ops; 8264 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8265 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8266 8267 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8268 } 8269 8270 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8271 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8272 MVT::Other, getRoot(), 8273 getValue(I.getArgOperand(0)), 8274 DAG.getSrcValue(I.getArgOperand(0)))); 8275 } 8276 8277 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8279 const DataLayout &DL = DAG.getDataLayout(); 8280 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8281 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8282 DAG.getSrcValue(I.getOperand(0)), 8283 DL.getABITypeAlignment(I.getType())); 8284 setValue(&I, V); 8285 DAG.setRoot(V.getValue(1)); 8286 } 8287 8288 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8289 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8290 MVT::Other, getRoot(), 8291 getValue(I.getArgOperand(0)), 8292 DAG.getSrcValue(I.getArgOperand(0)))); 8293 } 8294 8295 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8296 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8297 MVT::Other, getRoot(), 8298 getValue(I.getArgOperand(0)), 8299 getValue(I.getArgOperand(1)), 8300 DAG.getSrcValue(I.getArgOperand(0)), 8301 DAG.getSrcValue(I.getArgOperand(1)))); 8302 } 8303 8304 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8305 const Instruction &I, 8306 SDValue Op) { 8307 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8308 if (!Range) 8309 return Op; 8310 8311 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8312 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8313 return Op; 8314 8315 APInt Lo = CR.getUnsignedMin(); 8316 if (!Lo.isMinValue()) 8317 return Op; 8318 8319 APInt Hi = CR.getUnsignedMax(); 8320 unsigned Bits = std::max(Hi.getActiveBits(), 8321 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8322 8323 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8324 8325 SDLoc SL = getCurSDLoc(); 8326 8327 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8328 DAG.getValueType(SmallVT)); 8329 unsigned NumVals = Op.getNode()->getNumValues(); 8330 if (NumVals == 1) 8331 return ZExt; 8332 8333 SmallVector<SDValue, 4> Ops; 8334 8335 Ops.push_back(ZExt); 8336 for (unsigned I = 1; I != NumVals; ++I) 8337 Ops.push_back(Op.getValue(I)); 8338 8339 return DAG.getMergeValues(Ops, SL); 8340 } 8341 8342 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8343 /// the call being lowered. 8344 /// 8345 /// This is a helper for lowering intrinsics that follow a target calling 8346 /// convention or require stack pointer adjustment. Only a subset of the 8347 /// intrinsic's operands need to participate in the calling convention. 8348 void SelectionDAGBuilder::populateCallLoweringInfo( 8349 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8350 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8351 bool IsPatchPoint) { 8352 TargetLowering::ArgListTy Args; 8353 Args.reserve(NumArgs); 8354 8355 // Populate the argument list. 8356 // Attributes for args start at offset 1, after the return attribute. 8357 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8358 ArgI != ArgE; ++ArgI) { 8359 const Value *V = Call->getOperand(ArgI); 8360 8361 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8362 8363 TargetLowering::ArgListEntry Entry; 8364 Entry.Node = getValue(V); 8365 Entry.Ty = V->getType(); 8366 Entry.setAttributes(Call, ArgI); 8367 Args.push_back(Entry); 8368 } 8369 8370 CLI.setDebugLoc(getCurSDLoc()) 8371 .setChain(getRoot()) 8372 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8373 .setDiscardResult(Call->use_empty()) 8374 .setIsPatchPoint(IsPatchPoint); 8375 } 8376 8377 /// Add a stack map intrinsic call's live variable operands to a stackmap 8378 /// or patchpoint target node's operand list. 8379 /// 8380 /// Constants are converted to TargetConstants purely as an optimization to 8381 /// avoid constant materialization and register allocation. 8382 /// 8383 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8384 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8385 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8386 /// address materialization and register allocation, but may also be required 8387 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8388 /// alloca in the entry block, then the runtime may assume that the alloca's 8389 /// StackMap location can be read immediately after compilation and that the 8390 /// location is valid at any point during execution (this is similar to the 8391 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8392 /// only available in a register, then the runtime would need to trap when 8393 /// execution reaches the StackMap in order to read the alloca's location. 8394 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8395 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8396 SelectionDAGBuilder &Builder) { 8397 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8398 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8399 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8400 Ops.push_back( 8401 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8402 Ops.push_back( 8403 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8404 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8405 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8406 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8407 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8408 } else 8409 Ops.push_back(OpVal); 8410 } 8411 } 8412 8413 /// Lower llvm.experimental.stackmap directly to its target opcode. 8414 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8415 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8416 // [live variables...]) 8417 8418 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8419 8420 SDValue Chain, InFlag, Callee, NullPtr; 8421 SmallVector<SDValue, 32> Ops; 8422 8423 SDLoc DL = getCurSDLoc(); 8424 Callee = getValue(CI.getCalledValue()); 8425 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8426 8427 // The stackmap intrinsic only records the live variables (the arguemnts 8428 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8429 // intrinsic, this won't be lowered to a function call. This means we don't 8430 // have to worry about calling conventions and target specific lowering code. 8431 // Instead we perform the call lowering right here. 8432 // 8433 // chain, flag = CALLSEQ_START(chain, 0, 0) 8434 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8435 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8436 // 8437 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8438 InFlag = Chain.getValue(1); 8439 8440 // Add the <id> and <numBytes> constants. 8441 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8442 Ops.push_back(DAG.getTargetConstant( 8443 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8444 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8445 Ops.push_back(DAG.getTargetConstant( 8446 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8447 MVT::i32)); 8448 8449 // Push live variables for the stack map. 8450 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8451 8452 // We are not pushing any register mask info here on the operands list, 8453 // because the stackmap doesn't clobber anything. 8454 8455 // Push the chain and the glue flag. 8456 Ops.push_back(Chain); 8457 Ops.push_back(InFlag); 8458 8459 // Create the STACKMAP node. 8460 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8461 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8462 Chain = SDValue(SM, 0); 8463 InFlag = Chain.getValue(1); 8464 8465 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8466 8467 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8468 8469 // Set the root to the target-lowered call chain. 8470 DAG.setRoot(Chain); 8471 8472 // Inform the Frame Information that we have a stackmap in this function. 8473 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8474 } 8475 8476 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8477 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8478 const BasicBlock *EHPadBB) { 8479 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8480 // i32 <numBytes>, 8481 // i8* <target>, 8482 // i32 <numArgs>, 8483 // [Args...], 8484 // [live variables...]) 8485 8486 CallingConv::ID CC = CS.getCallingConv(); 8487 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8488 bool HasDef = !CS->getType()->isVoidTy(); 8489 SDLoc dl = getCurSDLoc(); 8490 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8491 8492 // Handle immediate and symbolic callees. 8493 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8494 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8495 /*isTarget=*/true); 8496 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8497 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8498 SDLoc(SymbolicCallee), 8499 SymbolicCallee->getValueType(0)); 8500 8501 // Get the real number of arguments participating in the call <numArgs> 8502 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8503 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8504 8505 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8506 // Intrinsics include all meta-operands up to but not including CC. 8507 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8508 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8509 "Not enough arguments provided to the patchpoint intrinsic"); 8510 8511 // For AnyRegCC the arguments are lowered later on manually. 8512 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8513 Type *ReturnTy = 8514 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8515 8516 TargetLowering::CallLoweringInfo CLI(DAG); 8517 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8518 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8519 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8520 8521 SDNode *CallEnd = Result.second.getNode(); 8522 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8523 CallEnd = CallEnd->getOperand(0).getNode(); 8524 8525 /// Get a call instruction from the call sequence chain. 8526 /// Tail calls are not allowed. 8527 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8528 "Expected a callseq node."); 8529 SDNode *Call = CallEnd->getOperand(0).getNode(); 8530 bool HasGlue = Call->getGluedNode(); 8531 8532 // Replace the target specific call node with the patchable intrinsic. 8533 SmallVector<SDValue, 8> Ops; 8534 8535 // Add the <id> and <numBytes> constants. 8536 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8537 Ops.push_back(DAG.getTargetConstant( 8538 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8539 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8540 Ops.push_back(DAG.getTargetConstant( 8541 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8542 MVT::i32)); 8543 8544 // Add the callee. 8545 Ops.push_back(Callee); 8546 8547 // Adjust <numArgs> to account for any arguments that have been passed on the 8548 // stack instead. 8549 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8550 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8551 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8552 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8553 8554 // Add the calling convention 8555 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8556 8557 // Add the arguments we omitted previously. The register allocator should 8558 // place these in any free register. 8559 if (IsAnyRegCC) 8560 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8561 Ops.push_back(getValue(CS.getArgument(i))); 8562 8563 // Push the arguments from the call instruction up to the register mask. 8564 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8565 Ops.append(Call->op_begin() + 2, e); 8566 8567 // Push live variables for the stack map. 8568 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8569 8570 // Push the register mask info. 8571 if (HasGlue) 8572 Ops.push_back(*(Call->op_end()-2)); 8573 else 8574 Ops.push_back(*(Call->op_end()-1)); 8575 8576 // Push the chain (this is originally the first operand of the call, but 8577 // becomes now the last or second to last operand). 8578 Ops.push_back(*(Call->op_begin())); 8579 8580 // Push the glue flag (last operand). 8581 if (HasGlue) 8582 Ops.push_back(*(Call->op_end()-1)); 8583 8584 SDVTList NodeTys; 8585 if (IsAnyRegCC && HasDef) { 8586 // Create the return types based on the intrinsic definition 8587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8588 SmallVector<EVT, 3> ValueVTs; 8589 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8590 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8591 8592 // There is always a chain and a glue type at the end 8593 ValueVTs.push_back(MVT::Other); 8594 ValueVTs.push_back(MVT::Glue); 8595 NodeTys = DAG.getVTList(ValueVTs); 8596 } else 8597 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8598 8599 // Replace the target specific call node with a PATCHPOINT node. 8600 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8601 dl, NodeTys, Ops); 8602 8603 // Update the NodeMap. 8604 if (HasDef) { 8605 if (IsAnyRegCC) 8606 setValue(CS.getInstruction(), SDValue(MN, 0)); 8607 else 8608 setValue(CS.getInstruction(), Result.first); 8609 } 8610 8611 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8612 // call sequence. Furthermore the location of the chain and glue can change 8613 // when the AnyReg calling convention is used and the intrinsic returns a 8614 // value. 8615 if (IsAnyRegCC && HasDef) { 8616 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8617 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8618 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8619 } else 8620 DAG.ReplaceAllUsesWith(Call, MN); 8621 DAG.DeleteNode(Call); 8622 8623 // Inform the Frame Information that we have a patchpoint in this function. 8624 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8625 } 8626 8627 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8628 unsigned Intrinsic) { 8629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8630 SDValue Op1 = getValue(I.getArgOperand(0)); 8631 SDValue Op2; 8632 if (I.getNumArgOperands() > 1) 8633 Op2 = getValue(I.getArgOperand(1)); 8634 SDLoc dl = getCurSDLoc(); 8635 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8636 SDValue Res; 8637 FastMathFlags FMF; 8638 if (isa<FPMathOperator>(I)) 8639 FMF = I.getFastMathFlags(); 8640 8641 switch (Intrinsic) { 8642 case Intrinsic::experimental_vector_reduce_fadd: 8643 if (FMF.isFast()) 8644 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8645 else 8646 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8647 break; 8648 case Intrinsic::experimental_vector_reduce_fmul: 8649 if (FMF.isFast()) 8650 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8651 else 8652 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8653 break; 8654 case Intrinsic::experimental_vector_reduce_add: 8655 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8656 break; 8657 case Intrinsic::experimental_vector_reduce_mul: 8658 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8659 break; 8660 case Intrinsic::experimental_vector_reduce_and: 8661 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8662 break; 8663 case Intrinsic::experimental_vector_reduce_or: 8664 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8665 break; 8666 case Intrinsic::experimental_vector_reduce_xor: 8667 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8668 break; 8669 case Intrinsic::experimental_vector_reduce_smax: 8670 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8671 break; 8672 case Intrinsic::experimental_vector_reduce_smin: 8673 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8674 break; 8675 case Intrinsic::experimental_vector_reduce_umax: 8676 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8677 break; 8678 case Intrinsic::experimental_vector_reduce_umin: 8679 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8680 break; 8681 case Intrinsic::experimental_vector_reduce_fmax: 8682 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8683 break; 8684 case Intrinsic::experimental_vector_reduce_fmin: 8685 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8686 break; 8687 default: 8688 llvm_unreachable("Unhandled vector reduce intrinsic"); 8689 } 8690 setValue(&I, Res); 8691 } 8692 8693 /// Returns an AttributeList representing the attributes applied to the return 8694 /// value of the given call. 8695 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8696 SmallVector<Attribute::AttrKind, 2> Attrs; 8697 if (CLI.RetSExt) 8698 Attrs.push_back(Attribute::SExt); 8699 if (CLI.RetZExt) 8700 Attrs.push_back(Attribute::ZExt); 8701 if (CLI.IsInReg) 8702 Attrs.push_back(Attribute::InReg); 8703 8704 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8705 Attrs); 8706 } 8707 8708 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8709 /// implementation, which just calls LowerCall. 8710 /// FIXME: When all targets are 8711 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8712 std::pair<SDValue, SDValue> 8713 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8714 // Handle the incoming return values from the call. 8715 CLI.Ins.clear(); 8716 Type *OrigRetTy = CLI.RetTy; 8717 SmallVector<EVT, 4> RetTys; 8718 SmallVector<uint64_t, 4> Offsets; 8719 auto &DL = CLI.DAG.getDataLayout(); 8720 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8721 8722 if (CLI.IsPostTypeLegalization) { 8723 // If we are lowering a libcall after legalization, split the return type. 8724 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8725 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8726 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8727 EVT RetVT = OldRetTys[i]; 8728 uint64_t Offset = OldOffsets[i]; 8729 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8730 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8731 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8732 RetTys.append(NumRegs, RegisterVT); 8733 for (unsigned j = 0; j != NumRegs; ++j) 8734 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8735 } 8736 } 8737 8738 SmallVector<ISD::OutputArg, 4> Outs; 8739 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8740 8741 bool CanLowerReturn = 8742 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8743 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8744 8745 SDValue DemoteStackSlot; 8746 int DemoteStackIdx = -100; 8747 if (!CanLowerReturn) { 8748 // FIXME: equivalent assert? 8749 // assert(!CS.hasInAllocaArgument() && 8750 // "sret demotion is incompatible with inalloca"); 8751 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8752 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8753 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8754 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8755 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8756 DL.getAllocaAddrSpace()); 8757 8758 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8759 ArgListEntry Entry; 8760 Entry.Node = DemoteStackSlot; 8761 Entry.Ty = StackSlotPtrType; 8762 Entry.IsSExt = false; 8763 Entry.IsZExt = false; 8764 Entry.IsInReg = false; 8765 Entry.IsSRet = true; 8766 Entry.IsNest = false; 8767 Entry.IsByVal = false; 8768 Entry.IsReturned = false; 8769 Entry.IsSwiftSelf = false; 8770 Entry.IsSwiftError = false; 8771 Entry.Alignment = Align; 8772 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8773 CLI.NumFixedArgs += 1; 8774 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8775 8776 // sret demotion isn't compatible with tail-calls, since the sret argument 8777 // points into the callers stack frame. 8778 CLI.IsTailCall = false; 8779 } else { 8780 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8781 EVT VT = RetTys[I]; 8782 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8783 CLI.CallConv, VT); 8784 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8785 CLI.CallConv, VT); 8786 for (unsigned i = 0; i != NumRegs; ++i) { 8787 ISD::InputArg MyFlags; 8788 MyFlags.VT = RegisterVT; 8789 MyFlags.ArgVT = VT; 8790 MyFlags.Used = CLI.IsReturnValueUsed; 8791 if (CLI.RetSExt) 8792 MyFlags.Flags.setSExt(); 8793 if (CLI.RetZExt) 8794 MyFlags.Flags.setZExt(); 8795 if (CLI.IsInReg) 8796 MyFlags.Flags.setInReg(); 8797 CLI.Ins.push_back(MyFlags); 8798 } 8799 } 8800 } 8801 8802 // We push in swifterror return as the last element of CLI.Ins. 8803 ArgListTy &Args = CLI.getArgs(); 8804 if (supportSwiftError()) { 8805 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8806 if (Args[i].IsSwiftError) { 8807 ISD::InputArg MyFlags; 8808 MyFlags.VT = getPointerTy(DL); 8809 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8810 MyFlags.Flags.setSwiftError(); 8811 CLI.Ins.push_back(MyFlags); 8812 } 8813 } 8814 } 8815 8816 // Handle all of the outgoing arguments. 8817 CLI.Outs.clear(); 8818 CLI.OutVals.clear(); 8819 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8820 SmallVector<EVT, 4> ValueVTs; 8821 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8822 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8823 Type *FinalType = Args[i].Ty; 8824 if (Args[i].IsByVal) 8825 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8826 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8827 FinalType, CLI.CallConv, CLI.IsVarArg); 8828 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8829 ++Value) { 8830 EVT VT = ValueVTs[Value]; 8831 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8832 SDValue Op = SDValue(Args[i].Node.getNode(), 8833 Args[i].Node.getResNo() + Value); 8834 ISD::ArgFlagsTy Flags; 8835 8836 // Certain targets (such as MIPS), may have a different ABI alignment 8837 // for a type depending on the context. Give the target a chance to 8838 // specify the alignment it wants. 8839 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8840 8841 if (Args[i].IsZExt) 8842 Flags.setZExt(); 8843 if (Args[i].IsSExt) 8844 Flags.setSExt(); 8845 if (Args[i].IsInReg) { 8846 // If we are using vectorcall calling convention, a structure that is 8847 // passed InReg - is surely an HVA 8848 if (CLI.CallConv == CallingConv::X86_VectorCall && 8849 isa<StructType>(FinalType)) { 8850 // The first value of a structure is marked 8851 if (0 == Value) 8852 Flags.setHvaStart(); 8853 Flags.setHva(); 8854 } 8855 // Set InReg Flag 8856 Flags.setInReg(); 8857 } 8858 if (Args[i].IsSRet) 8859 Flags.setSRet(); 8860 if (Args[i].IsSwiftSelf) 8861 Flags.setSwiftSelf(); 8862 if (Args[i].IsSwiftError) 8863 Flags.setSwiftError(); 8864 if (Args[i].IsByVal) 8865 Flags.setByVal(); 8866 if (Args[i].IsInAlloca) { 8867 Flags.setInAlloca(); 8868 // Set the byval flag for CCAssignFn callbacks that don't know about 8869 // inalloca. This way we can know how many bytes we should've allocated 8870 // and how many bytes a callee cleanup function will pop. If we port 8871 // inalloca to more targets, we'll have to add custom inalloca handling 8872 // in the various CC lowering callbacks. 8873 Flags.setByVal(); 8874 } 8875 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8876 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8877 Type *ElementTy = Ty->getElementType(); 8878 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8879 // For ByVal, alignment should come from FE. BE will guess if this 8880 // info is not there but there are cases it cannot get right. 8881 unsigned FrameAlign; 8882 if (Args[i].Alignment) 8883 FrameAlign = Args[i].Alignment; 8884 else 8885 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8886 Flags.setByValAlign(FrameAlign); 8887 } 8888 if (Args[i].IsNest) 8889 Flags.setNest(); 8890 if (NeedsRegBlock) 8891 Flags.setInConsecutiveRegs(); 8892 Flags.setOrigAlign(OriginalAlignment); 8893 8894 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8895 CLI.CallConv, VT); 8896 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8897 CLI.CallConv, VT); 8898 SmallVector<SDValue, 4> Parts(NumParts); 8899 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8900 8901 if (Args[i].IsSExt) 8902 ExtendKind = ISD::SIGN_EXTEND; 8903 else if (Args[i].IsZExt) 8904 ExtendKind = ISD::ZERO_EXTEND; 8905 8906 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8907 // for now. 8908 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8909 CanLowerReturn) { 8910 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8911 "unexpected use of 'returned'"); 8912 // Before passing 'returned' to the target lowering code, ensure that 8913 // either the register MVT and the actual EVT are the same size or that 8914 // the return value and argument are extended in the same way; in these 8915 // cases it's safe to pass the argument register value unchanged as the 8916 // return register value (although it's at the target's option whether 8917 // to do so) 8918 // TODO: allow code generation to take advantage of partially preserved 8919 // registers rather than clobbering the entire register when the 8920 // parameter extension method is not compatible with the return 8921 // extension method 8922 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8923 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8924 CLI.RetZExt == Args[i].IsZExt)) 8925 Flags.setReturned(); 8926 } 8927 8928 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8929 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8930 8931 for (unsigned j = 0; j != NumParts; ++j) { 8932 // if it isn't first piece, alignment must be 1 8933 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8934 i < CLI.NumFixedArgs, 8935 i, j*Parts[j].getValueType().getStoreSize()); 8936 if (NumParts > 1 && j == 0) 8937 MyFlags.Flags.setSplit(); 8938 else if (j != 0) { 8939 MyFlags.Flags.setOrigAlign(1); 8940 if (j == NumParts - 1) 8941 MyFlags.Flags.setSplitEnd(); 8942 } 8943 8944 CLI.Outs.push_back(MyFlags); 8945 CLI.OutVals.push_back(Parts[j]); 8946 } 8947 8948 if (NeedsRegBlock && Value == NumValues - 1) 8949 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8950 } 8951 } 8952 8953 SmallVector<SDValue, 4> InVals; 8954 CLI.Chain = LowerCall(CLI, InVals); 8955 8956 // Update CLI.InVals to use outside of this function. 8957 CLI.InVals = InVals; 8958 8959 // Verify that the target's LowerCall behaved as expected. 8960 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8961 "LowerCall didn't return a valid chain!"); 8962 assert((!CLI.IsTailCall || InVals.empty()) && 8963 "LowerCall emitted a return value for a tail call!"); 8964 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8965 "LowerCall didn't emit the correct number of values!"); 8966 8967 // For a tail call, the return value is merely live-out and there aren't 8968 // any nodes in the DAG representing it. Return a special value to 8969 // indicate that a tail call has been emitted and no more Instructions 8970 // should be processed in the current block. 8971 if (CLI.IsTailCall) { 8972 CLI.DAG.setRoot(CLI.Chain); 8973 return std::make_pair(SDValue(), SDValue()); 8974 } 8975 8976 #ifndef NDEBUG 8977 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8978 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8979 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8980 "LowerCall emitted a value with the wrong type!"); 8981 } 8982 #endif 8983 8984 SmallVector<SDValue, 4> ReturnValues; 8985 if (!CanLowerReturn) { 8986 // The instruction result is the result of loading from the 8987 // hidden sret parameter. 8988 SmallVector<EVT, 1> PVTs; 8989 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8990 8991 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8992 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8993 EVT PtrVT = PVTs[0]; 8994 8995 unsigned NumValues = RetTys.size(); 8996 ReturnValues.resize(NumValues); 8997 SmallVector<SDValue, 4> Chains(NumValues); 8998 8999 // An aggregate return value cannot wrap around the address space, so 9000 // offsets to its parts don't wrap either. 9001 SDNodeFlags Flags; 9002 Flags.setNoUnsignedWrap(true); 9003 9004 for (unsigned i = 0; i < NumValues; ++i) { 9005 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9006 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9007 PtrVT), Flags); 9008 SDValue L = CLI.DAG.getLoad( 9009 RetTys[i], CLI.DL, CLI.Chain, Add, 9010 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9011 DemoteStackIdx, Offsets[i]), 9012 /* Alignment = */ 1); 9013 ReturnValues[i] = L; 9014 Chains[i] = L.getValue(1); 9015 } 9016 9017 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9018 } else { 9019 // Collect the legal value parts into potentially illegal values 9020 // that correspond to the original function's return values. 9021 Optional<ISD::NodeType> AssertOp; 9022 if (CLI.RetSExt) 9023 AssertOp = ISD::AssertSext; 9024 else if (CLI.RetZExt) 9025 AssertOp = ISD::AssertZext; 9026 unsigned CurReg = 0; 9027 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9028 EVT VT = RetTys[I]; 9029 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9030 CLI.CallConv, VT); 9031 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9032 CLI.CallConv, VT); 9033 9034 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9035 NumRegs, RegisterVT, VT, nullptr, 9036 CLI.CallConv, AssertOp)); 9037 CurReg += NumRegs; 9038 } 9039 9040 // For a function returning void, there is no return value. We can't create 9041 // such a node, so we just return a null return value in that case. In 9042 // that case, nothing will actually look at the value. 9043 if (ReturnValues.empty()) 9044 return std::make_pair(SDValue(), CLI.Chain); 9045 } 9046 9047 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9048 CLI.DAG.getVTList(RetTys), ReturnValues); 9049 return std::make_pair(Res, CLI.Chain); 9050 } 9051 9052 void TargetLowering::LowerOperationWrapper(SDNode *N, 9053 SmallVectorImpl<SDValue> &Results, 9054 SelectionDAG &DAG) const { 9055 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9056 Results.push_back(Res); 9057 } 9058 9059 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9060 llvm_unreachable("LowerOperation not implemented for this target!"); 9061 } 9062 9063 void 9064 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9065 SDValue Op = getNonRegisterValue(V); 9066 assert((Op.getOpcode() != ISD::CopyFromReg || 9067 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9068 "Copy from a reg to the same reg!"); 9069 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9070 9071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9072 // If this is an InlineAsm we have to match the registers required, not the 9073 // notional registers required by the type. 9074 9075 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9076 None); // This is not an ABI copy. 9077 SDValue Chain = DAG.getEntryNode(); 9078 9079 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9080 FuncInfo.PreferredExtendType.end()) 9081 ? ISD::ANY_EXTEND 9082 : FuncInfo.PreferredExtendType[V]; 9083 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9084 PendingExports.push_back(Chain); 9085 } 9086 9087 #include "llvm/CodeGen/SelectionDAGISel.h" 9088 9089 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9090 /// entry block, return true. This includes arguments used by switches, since 9091 /// the switch may expand into multiple basic blocks. 9092 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9093 // With FastISel active, we may be splitting blocks, so force creation 9094 // of virtual registers for all non-dead arguments. 9095 if (FastISel) 9096 return A->use_empty(); 9097 9098 const BasicBlock &Entry = A->getParent()->front(); 9099 for (const User *U : A->users()) 9100 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9101 return false; // Use not in entry block. 9102 9103 return true; 9104 } 9105 9106 using ArgCopyElisionMapTy = 9107 DenseMap<const Argument *, 9108 std::pair<const AllocaInst *, const StoreInst *>>; 9109 9110 /// Scan the entry block of the function in FuncInfo for arguments that look 9111 /// like copies into a local alloca. Record any copied arguments in 9112 /// ArgCopyElisionCandidates. 9113 static void 9114 findArgumentCopyElisionCandidates(const DataLayout &DL, 9115 FunctionLoweringInfo *FuncInfo, 9116 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9117 // Record the state of every static alloca used in the entry block. Argument 9118 // allocas are all used in the entry block, so we need approximately as many 9119 // entries as we have arguments. 9120 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9121 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9122 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9123 StaticAllocas.reserve(NumArgs * 2); 9124 9125 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9126 if (!V) 9127 return nullptr; 9128 V = V->stripPointerCasts(); 9129 const auto *AI = dyn_cast<AllocaInst>(V); 9130 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9131 return nullptr; 9132 auto Iter = StaticAllocas.insert({AI, Unknown}); 9133 return &Iter.first->second; 9134 }; 9135 9136 // Look for stores of arguments to static allocas. Look through bitcasts and 9137 // GEPs to handle type coercions, as long as the alloca is fully initialized 9138 // by the store. Any non-store use of an alloca escapes it and any subsequent 9139 // unanalyzed store might write it. 9140 // FIXME: Handle structs initialized with multiple stores. 9141 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9142 // Look for stores, and handle non-store uses conservatively. 9143 const auto *SI = dyn_cast<StoreInst>(&I); 9144 if (!SI) { 9145 // We will look through cast uses, so ignore them completely. 9146 if (I.isCast()) 9147 continue; 9148 // Ignore debug info intrinsics, they don't escape or store to allocas. 9149 if (isa<DbgInfoIntrinsic>(I)) 9150 continue; 9151 // This is an unknown instruction. Assume it escapes or writes to all 9152 // static alloca operands. 9153 for (const Use &U : I.operands()) { 9154 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9155 *Info = StaticAllocaInfo::Clobbered; 9156 } 9157 continue; 9158 } 9159 9160 // If the stored value is a static alloca, mark it as escaped. 9161 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9162 *Info = StaticAllocaInfo::Clobbered; 9163 9164 // Check if the destination is a static alloca. 9165 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9166 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9167 if (!Info) 9168 continue; 9169 const AllocaInst *AI = cast<AllocaInst>(Dst); 9170 9171 // Skip allocas that have been initialized or clobbered. 9172 if (*Info != StaticAllocaInfo::Unknown) 9173 continue; 9174 9175 // Check if the stored value is an argument, and that this store fully 9176 // initializes the alloca. Don't elide copies from the same argument twice. 9177 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9178 const auto *Arg = dyn_cast<Argument>(Val); 9179 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9180 Arg->getType()->isEmptyTy() || 9181 DL.getTypeStoreSize(Arg->getType()) != 9182 DL.getTypeAllocSize(AI->getAllocatedType()) || 9183 ArgCopyElisionCandidates.count(Arg)) { 9184 *Info = StaticAllocaInfo::Clobbered; 9185 continue; 9186 } 9187 9188 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9189 << '\n'); 9190 9191 // Mark this alloca and store for argument copy elision. 9192 *Info = StaticAllocaInfo::Elidable; 9193 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9194 9195 // Stop scanning if we've seen all arguments. This will happen early in -O0 9196 // builds, which is useful, because -O0 builds have large entry blocks and 9197 // many allocas. 9198 if (ArgCopyElisionCandidates.size() == NumArgs) 9199 break; 9200 } 9201 } 9202 9203 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9204 /// ArgVal is a load from a suitable fixed stack object. 9205 static void tryToElideArgumentCopy( 9206 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9207 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9208 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9209 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9210 SDValue ArgVal, bool &ArgHasUses) { 9211 // Check if this is a load from a fixed stack object. 9212 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9213 if (!LNode) 9214 return; 9215 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9216 if (!FINode) 9217 return; 9218 9219 // Check that the fixed stack object is the right size and alignment. 9220 // Look at the alignment that the user wrote on the alloca instead of looking 9221 // at the stack object. 9222 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9223 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9224 const AllocaInst *AI = ArgCopyIter->second.first; 9225 int FixedIndex = FINode->getIndex(); 9226 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9227 int OldIndex = AllocaIndex; 9228 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9229 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9230 LLVM_DEBUG( 9231 dbgs() << " argument copy elision failed due to bad fixed stack " 9232 "object size\n"); 9233 return; 9234 } 9235 unsigned RequiredAlignment = AI->getAlignment(); 9236 if (!RequiredAlignment) { 9237 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9238 AI->getAllocatedType()); 9239 } 9240 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9241 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9242 "greater than stack argument alignment (" 9243 << RequiredAlignment << " vs " 9244 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9245 return; 9246 } 9247 9248 // Perform the elision. Delete the old stack object and replace its only use 9249 // in the variable info map. Mark the stack object as mutable. 9250 LLVM_DEBUG({ 9251 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9252 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9253 << '\n'; 9254 }); 9255 MFI.RemoveStackObject(OldIndex); 9256 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9257 AllocaIndex = FixedIndex; 9258 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9259 Chains.push_back(ArgVal.getValue(1)); 9260 9261 // Avoid emitting code for the store implementing the copy. 9262 const StoreInst *SI = ArgCopyIter->second.second; 9263 ElidedArgCopyInstrs.insert(SI); 9264 9265 // Check for uses of the argument again so that we can avoid exporting ArgVal 9266 // if it is't used by anything other than the store. 9267 for (const Value *U : Arg.users()) { 9268 if (U != SI) { 9269 ArgHasUses = true; 9270 break; 9271 } 9272 } 9273 } 9274 9275 void SelectionDAGISel::LowerArguments(const Function &F) { 9276 SelectionDAG &DAG = SDB->DAG; 9277 SDLoc dl = SDB->getCurSDLoc(); 9278 const DataLayout &DL = DAG.getDataLayout(); 9279 SmallVector<ISD::InputArg, 16> Ins; 9280 9281 if (!FuncInfo->CanLowerReturn) { 9282 // Put in an sret pointer parameter before all the other parameters. 9283 SmallVector<EVT, 1> ValueVTs; 9284 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9285 F.getReturnType()->getPointerTo( 9286 DAG.getDataLayout().getAllocaAddrSpace()), 9287 ValueVTs); 9288 9289 // NOTE: Assuming that a pointer will never break down to more than one VT 9290 // or one register. 9291 ISD::ArgFlagsTy Flags; 9292 Flags.setSRet(); 9293 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9294 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9295 ISD::InputArg::NoArgIndex, 0); 9296 Ins.push_back(RetArg); 9297 } 9298 9299 // Look for stores of arguments to static allocas. Mark such arguments with a 9300 // flag to ask the target to give us the memory location of that argument if 9301 // available. 9302 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9303 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9304 9305 // Set up the incoming argument description vector. 9306 for (const Argument &Arg : F.args()) { 9307 unsigned ArgNo = Arg.getArgNo(); 9308 SmallVector<EVT, 4> ValueVTs; 9309 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9310 bool isArgValueUsed = !Arg.use_empty(); 9311 unsigned PartBase = 0; 9312 Type *FinalType = Arg.getType(); 9313 if (Arg.hasAttribute(Attribute::ByVal)) 9314 FinalType = cast<PointerType>(FinalType)->getElementType(); 9315 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9316 FinalType, F.getCallingConv(), F.isVarArg()); 9317 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9318 Value != NumValues; ++Value) { 9319 EVT VT = ValueVTs[Value]; 9320 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9321 ISD::ArgFlagsTy Flags; 9322 9323 // Certain targets (such as MIPS), may have a different ABI alignment 9324 // for a type depending on the context. Give the target a chance to 9325 // specify the alignment it wants. 9326 unsigned OriginalAlignment = 9327 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9328 9329 if (Arg.hasAttribute(Attribute::ZExt)) 9330 Flags.setZExt(); 9331 if (Arg.hasAttribute(Attribute::SExt)) 9332 Flags.setSExt(); 9333 if (Arg.hasAttribute(Attribute::InReg)) { 9334 // If we are using vectorcall calling convention, a structure that is 9335 // passed InReg - is surely an HVA 9336 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9337 isa<StructType>(Arg.getType())) { 9338 // The first value of a structure is marked 9339 if (0 == Value) 9340 Flags.setHvaStart(); 9341 Flags.setHva(); 9342 } 9343 // Set InReg Flag 9344 Flags.setInReg(); 9345 } 9346 if (Arg.hasAttribute(Attribute::StructRet)) 9347 Flags.setSRet(); 9348 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9349 Flags.setSwiftSelf(); 9350 if (Arg.hasAttribute(Attribute::SwiftError)) 9351 Flags.setSwiftError(); 9352 if (Arg.hasAttribute(Attribute::ByVal)) 9353 Flags.setByVal(); 9354 if (Arg.hasAttribute(Attribute::InAlloca)) { 9355 Flags.setInAlloca(); 9356 // Set the byval flag for CCAssignFn callbacks that don't know about 9357 // inalloca. This way we can know how many bytes we should've allocated 9358 // and how many bytes a callee cleanup function will pop. If we port 9359 // inalloca to more targets, we'll have to add custom inalloca handling 9360 // in the various CC lowering callbacks. 9361 Flags.setByVal(); 9362 } 9363 if (F.getCallingConv() == CallingConv::X86_INTR) { 9364 // IA Interrupt passes frame (1st parameter) by value in the stack. 9365 if (ArgNo == 0) 9366 Flags.setByVal(); 9367 } 9368 if (Flags.isByVal() || Flags.isInAlloca()) { 9369 PointerType *Ty = cast<PointerType>(Arg.getType()); 9370 Type *ElementTy = Ty->getElementType(); 9371 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9372 // For ByVal, alignment should be passed from FE. BE will guess if 9373 // this info is not there but there are cases it cannot get right. 9374 unsigned FrameAlign; 9375 if (Arg.getParamAlignment()) 9376 FrameAlign = Arg.getParamAlignment(); 9377 else 9378 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9379 Flags.setByValAlign(FrameAlign); 9380 } 9381 if (Arg.hasAttribute(Attribute::Nest)) 9382 Flags.setNest(); 9383 if (NeedsRegBlock) 9384 Flags.setInConsecutiveRegs(); 9385 Flags.setOrigAlign(OriginalAlignment); 9386 if (ArgCopyElisionCandidates.count(&Arg)) 9387 Flags.setCopyElisionCandidate(); 9388 9389 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9390 *CurDAG->getContext(), F.getCallingConv(), VT); 9391 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9392 *CurDAG->getContext(), F.getCallingConv(), VT); 9393 for (unsigned i = 0; i != NumRegs; ++i) { 9394 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9395 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9396 if (NumRegs > 1 && i == 0) 9397 MyFlags.Flags.setSplit(); 9398 // if it isn't first piece, alignment must be 1 9399 else if (i > 0) { 9400 MyFlags.Flags.setOrigAlign(1); 9401 if (i == NumRegs - 1) 9402 MyFlags.Flags.setSplitEnd(); 9403 } 9404 Ins.push_back(MyFlags); 9405 } 9406 if (NeedsRegBlock && Value == NumValues - 1) 9407 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9408 PartBase += VT.getStoreSize(); 9409 } 9410 } 9411 9412 // Call the target to set up the argument values. 9413 SmallVector<SDValue, 8> InVals; 9414 SDValue NewRoot = TLI->LowerFormalArguments( 9415 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9416 9417 // Verify that the target's LowerFormalArguments behaved as expected. 9418 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9419 "LowerFormalArguments didn't return a valid chain!"); 9420 assert(InVals.size() == Ins.size() && 9421 "LowerFormalArguments didn't emit the correct number of values!"); 9422 LLVM_DEBUG({ 9423 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9424 assert(InVals[i].getNode() && 9425 "LowerFormalArguments emitted a null value!"); 9426 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9427 "LowerFormalArguments emitted a value with the wrong type!"); 9428 } 9429 }); 9430 9431 // Update the DAG with the new chain value resulting from argument lowering. 9432 DAG.setRoot(NewRoot); 9433 9434 // Set up the argument values. 9435 unsigned i = 0; 9436 if (!FuncInfo->CanLowerReturn) { 9437 // Create a virtual register for the sret pointer, and put in a copy 9438 // from the sret argument into it. 9439 SmallVector<EVT, 1> ValueVTs; 9440 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9441 F.getReturnType()->getPointerTo( 9442 DAG.getDataLayout().getAllocaAddrSpace()), 9443 ValueVTs); 9444 MVT VT = ValueVTs[0].getSimpleVT(); 9445 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9446 Optional<ISD::NodeType> AssertOp = None; 9447 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9448 nullptr, F.getCallingConv(), AssertOp); 9449 9450 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9451 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9452 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9453 FuncInfo->DemoteRegister = SRetReg; 9454 NewRoot = 9455 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9456 DAG.setRoot(NewRoot); 9457 9458 // i indexes lowered arguments. Bump it past the hidden sret argument. 9459 ++i; 9460 } 9461 9462 SmallVector<SDValue, 4> Chains; 9463 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9464 for (const Argument &Arg : F.args()) { 9465 SmallVector<SDValue, 4> ArgValues; 9466 SmallVector<EVT, 4> ValueVTs; 9467 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9468 unsigned NumValues = ValueVTs.size(); 9469 if (NumValues == 0) 9470 continue; 9471 9472 bool ArgHasUses = !Arg.use_empty(); 9473 9474 // Elide the copying store if the target loaded this argument from a 9475 // suitable fixed stack object. 9476 if (Ins[i].Flags.isCopyElisionCandidate()) { 9477 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9478 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9479 InVals[i], ArgHasUses); 9480 } 9481 9482 // If this argument is unused then remember its value. It is used to generate 9483 // debugging information. 9484 bool isSwiftErrorArg = 9485 TLI->supportSwiftError() && 9486 Arg.hasAttribute(Attribute::SwiftError); 9487 if (!ArgHasUses && !isSwiftErrorArg) { 9488 SDB->setUnusedArgValue(&Arg, InVals[i]); 9489 9490 // Also remember any frame index for use in FastISel. 9491 if (FrameIndexSDNode *FI = 9492 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9493 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9494 } 9495 9496 for (unsigned Val = 0; Val != NumValues; ++Val) { 9497 EVT VT = ValueVTs[Val]; 9498 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9499 F.getCallingConv(), VT); 9500 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9501 *CurDAG->getContext(), F.getCallingConv(), VT); 9502 9503 // Even an apparant 'unused' swifterror argument needs to be returned. So 9504 // we do generate a copy for it that can be used on return from the 9505 // function. 9506 if (ArgHasUses || isSwiftErrorArg) { 9507 Optional<ISD::NodeType> AssertOp; 9508 if (Arg.hasAttribute(Attribute::SExt)) 9509 AssertOp = ISD::AssertSext; 9510 else if (Arg.hasAttribute(Attribute::ZExt)) 9511 AssertOp = ISD::AssertZext; 9512 9513 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9514 PartVT, VT, nullptr, 9515 F.getCallingConv(), AssertOp)); 9516 } 9517 9518 i += NumParts; 9519 } 9520 9521 // We don't need to do anything else for unused arguments. 9522 if (ArgValues.empty()) 9523 continue; 9524 9525 // Note down frame index. 9526 if (FrameIndexSDNode *FI = 9527 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9528 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9529 9530 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9531 SDB->getCurSDLoc()); 9532 9533 SDB->setValue(&Arg, Res); 9534 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9535 // We want to associate the argument with the frame index, among 9536 // involved operands, that correspond to the lowest address. The 9537 // getCopyFromParts function, called earlier, is swapping the order of 9538 // the operands to BUILD_PAIR depending on endianness. The result of 9539 // that swapping is that the least significant bits of the argument will 9540 // be in the first operand of the BUILD_PAIR node, and the most 9541 // significant bits will be in the second operand. 9542 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9543 if (LoadSDNode *LNode = 9544 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9545 if (FrameIndexSDNode *FI = 9546 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9547 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9548 } 9549 9550 // Update the SwiftErrorVRegDefMap. 9551 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9552 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9553 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9554 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9555 FuncInfo->SwiftErrorArg, Reg); 9556 } 9557 9558 // If this argument is live outside of the entry block, insert a copy from 9559 // wherever we got it to the vreg that other BB's will reference it as. 9560 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9561 // If we can, though, try to skip creating an unnecessary vreg. 9562 // FIXME: This isn't very clean... it would be nice to make this more 9563 // general. It's also subtly incompatible with the hacks FastISel 9564 // uses with vregs. 9565 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9566 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9567 FuncInfo->ValueMap[&Arg] = Reg; 9568 continue; 9569 } 9570 } 9571 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9572 FuncInfo->InitializeRegForValue(&Arg); 9573 SDB->CopyToExportRegsIfNeeded(&Arg); 9574 } 9575 } 9576 9577 if (!Chains.empty()) { 9578 Chains.push_back(NewRoot); 9579 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9580 } 9581 9582 DAG.setRoot(NewRoot); 9583 9584 assert(i == InVals.size() && "Argument register count mismatch!"); 9585 9586 // If any argument copy elisions occurred and we have debug info, update the 9587 // stale frame indices used in the dbg.declare variable info table. 9588 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9589 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9590 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9591 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9592 if (I != ArgCopyElisionFrameIndexMap.end()) 9593 VI.Slot = I->second; 9594 } 9595 } 9596 9597 // Finally, if the target has anything special to do, allow it to do so. 9598 EmitFunctionEntryCode(); 9599 } 9600 9601 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9602 /// ensure constants are generated when needed. Remember the virtual registers 9603 /// that need to be added to the Machine PHI nodes as input. We cannot just 9604 /// directly add them, because expansion might result in multiple MBB's for one 9605 /// BB. As such, the start of the BB might correspond to a different MBB than 9606 /// the end. 9607 void 9608 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9609 const Instruction *TI = LLVMBB->getTerminator(); 9610 9611 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9612 9613 // Check PHI nodes in successors that expect a value to be available from this 9614 // block. 9615 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9616 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9617 if (!isa<PHINode>(SuccBB->begin())) continue; 9618 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9619 9620 // If this terminator has multiple identical successors (common for 9621 // switches), only handle each succ once. 9622 if (!SuccsHandled.insert(SuccMBB).second) 9623 continue; 9624 9625 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9626 9627 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9628 // nodes and Machine PHI nodes, but the incoming operands have not been 9629 // emitted yet. 9630 for (const PHINode &PN : SuccBB->phis()) { 9631 // Ignore dead phi's. 9632 if (PN.use_empty()) 9633 continue; 9634 9635 // Skip empty types 9636 if (PN.getType()->isEmptyTy()) 9637 continue; 9638 9639 unsigned Reg; 9640 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9641 9642 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9643 unsigned &RegOut = ConstantsOut[C]; 9644 if (RegOut == 0) { 9645 RegOut = FuncInfo.CreateRegs(C->getType()); 9646 CopyValueToVirtualRegister(C, RegOut); 9647 } 9648 Reg = RegOut; 9649 } else { 9650 DenseMap<const Value *, unsigned>::iterator I = 9651 FuncInfo.ValueMap.find(PHIOp); 9652 if (I != FuncInfo.ValueMap.end()) 9653 Reg = I->second; 9654 else { 9655 assert(isa<AllocaInst>(PHIOp) && 9656 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9657 "Didn't codegen value into a register!??"); 9658 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9659 CopyValueToVirtualRegister(PHIOp, Reg); 9660 } 9661 } 9662 9663 // Remember that this register needs to added to the machine PHI node as 9664 // the input for this MBB. 9665 SmallVector<EVT, 4> ValueVTs; 9666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9667 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9668 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9669 EVT VT = ValueVTs[vti]; 9670 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9671 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9672 FuncInfo.PHINodesToUpdate.push_back( 9673 std::make_pair(&*MBBI++, Reg + i)); 9674 Reg += NumRegisters; 9675 } 9676 } 9677 } 9678 9679 ConstantsOut.clear(); 9680 } 9681 9682 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9683 /// is 0. 9684 MachineBasicBlock * 9685 SelectionDAGBuilder::StackProtectorDescriptor:: 9686 AddSuccessorMBB(const BasicBlock *BB, 9687 MachineBasicBlock *ParentMBB, 9688 bool IsLikely, 9689 MachineBasicBlock *SuccMBB) { 9690 // If SuccBB has not been created yet, create it. 9691 if (!SuccMBB) { 9692 MachineFunction *MF = ParentMBB->getParent(); 9693 MachineFunction::iterator BBI(ParentMBB); 9694 SuccMBB = MF->CreateMachineBasicBlock(BB); 9695 MF->insert(++BBI, SuccMBB); 9696 } 9697 // Add it as a successor of ParentMBB. 9698 ParentMBB->addSuccessor( 9699 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9700 return SuccMBB; 9701 } 9702 9703 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9704 MachineFunction::iterator I(MBB); 9705 if (++I == FuncInfo.MF->end()) 9706 return nullptr; 9707 return &*I; 9708 } 9709 9710 /// During lowering new call nodes can be created (such as memset, etc.). 9711 /// Those will become new roots of the current DAG, but complications arise 9712 /// when they are tail calls. In such cases, the call lowering will update 9713 /// the root, but the builder still needs to know that a tail call has been 9714 /// lowered in order to avoid generating an additional return. 9715 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9716 // If the node is null, we do have a tail call. 9717 if (MaybeTC.getNode() != nullptr) 9718 DAG.setRoot(MaybeTC); 9719 else 9720 HasTailCall = true; 9721 } 9722 9723 uint64_t 9724 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9725 unsigned First, unsigned Last) const { 9726 assert(Last >= First); 9727 const APInt &LowCase = Clusters[First].Low->getValue(); 9728 const APInt &HighCase = Clusters[Last].High->getValue(); 9729 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9730 9731 // FIXME: A range of consecutive cases has 100% density, but only requires one 9732 // comparison to lower. We should discriminate against such consecutive ranges 9733 // in jump tables. 9734 9735 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9736 } 9737 9738 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9739 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9740 unsigned Last) const { 9741 assert(Last >= First); 9742 assert(TotalCases[Last] >= TotalCases[First]); 9743 uint64_t NumCases = 9744 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9745 return NumCases; 9746 } 9747 9748 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9749 unsigned First, unsigned Last, 9750 const SwitchInst *SI, 9751 MachineBasicBlock *DefaultMBB, 9752 CaseCluster &JTCluster) { 9753 assert(First <= Last); 9754 9755 auto Prob = BranchProbability::getZero(); 9756 unsigned NumCmps = 0; 9757 std::vector<MachineBasicBlock*> Table; 9758 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9759 9760 // Initialize probabilities in JTProbs. 9761 for (unsigned I = First; I <= Last; ++I) 9762 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9763 9764 for (unsigned I = First; I <= Last; ++I) { 9765 assert(Clusters[I].Kind == CC_Range); 9766 Prob += Clusters[I].Prob; 9767 const APInt &Low = Clusters[I].Low->getValue(); 9768 const APInt &High = Clusters[I].High->getValue(); 9769 NumCmps += (Low == High) ? 1 : 2; 9770 if (I != First) { 9771 // Fill the gap between this and the previous cluster. 9772 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9773 assert(PreviousHigh.slt(Low)); 9774 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9775 for (uint64_t J = 0; J < Gap; J++) 9776 Table.push_back(DefaultMBB); 9777 } 9778 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9779 for (uint64_t J = 0; J < ClusterSize; ++J) 9780 Table.push_back(Clusters[I].MBB); 9781 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9782 } 9783 9784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9785 unsigned NumDests = JTProbs.size(); 9786 if (TLI.isSuitableForBitTests( 9787 NumDests, NumCmps, Clusters[First].Low->getValue(), 9788 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9789 // Clusters[First..Last] should be lowered as bit tests instead. 9790 return false; 9791 } 9792 9793 // Create the MBB that will load from and jump through the table. 9794 // Note: We create it here, but it's not inserted into the function yet. 9795 MachineFunction *CurMF = FuncInfo.MF; 9796 MachineBasicBlock *JumpTableMBB = 9797 CurMF->CreateMachineBasicBlock(SI->getParent()); 9798 9799 // Add successors. Note: use table order for determinism. 9800 SmallPtrSet<MachineBasicBlock *, 8> Done; 9801 for (MachineBasicBlock *Succ : Table) { 9802 if (Done.count(Succ)) 9803 continue; 9804 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9805 Done.insert(Succ); 9806 } 9807 JumpTableMBB->normalizeSuccProbs(); 9808 9809 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9810 ->createJumpTableIndex(Table); 9811 9812 // Set up the jump table info. 9813 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9814 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9815 Clusters[Last].High->getValue(), SI->getCondition(), 9816 nullptr, false); 9817 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9818 9819 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9820 JTCases.size() - 1, Prob); 9821 return true; 9822 } 9823 9824 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9825 const SwitchInst *SI, 9826 MachineBasicBlock *DefaultMBB) { 9827 #ifndef NDEBUG 9828 // Clusters must be non-empty, sorted, and only contain Range clusters. 9829 assert(!Clusters.empty()); 9830 for (CaseCluster &C : Clusters) 9831 assert(C.Kind == CC_Range); 9832 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9833 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9834 #endif 9835 9836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9837 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9838 return; 9839 9840 const int64_t N = Clusters.size(); 9841 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9842 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9843 9844 if (N < 2 || N < MinJumpTableEntries) 9845 return; 9846 9847 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9848 SmallVector<unsigned, 8> TotalCases(N); 9849 for (unsigned i = 0; i < N; ++i) { 9850 const APInt &Hi = Clusters[i].High->getValue(); 9851 const APInt &Lo = Clusters[i].Low->getValue(); 9852 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9853 if (i != 0) 9854 TotalCases[i] += TotalCases[i - 1]; 9855 } 9856 9857 // Cheap case: the whole range may be suitable for jump table. 9858 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9859 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9860 assert(NumCases < UINT64_MAX / 100); 9861 assert(Range >= NumCases); 9862 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9863 CaseCluster JTCluster; 9864 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9865 Clusters[0] = JTCluster; 9866 Clusters.resize(1); 9867 return; 9868 } 9869 } 9870 9871 // The algorithm below is not suitable for -O0. 9872 if (TM.getOptLevel() == CodeGenOpt::None) 9873 return; 9874 9875 // Split Clusters into minimum number of dense partitions. The algorithm uses 9876 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9877 // for the Case Statement'" (1994), but builds the MinPartitions array in 9878 // reverse order to make it easier to reconstruct the partitions in ascending 9879 // order. In the choice between two optimal partitionings, it picks the one 9880 // which yields more jump tables. 9881 9882 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9883 SmallVector<unsigned, 8> MinPartitions(N); 9884 // LastElement[i] is the last element of the partition starting at i. 9885 SmallVector<unsigned, 8> LastElement(N); 9886 // PartitionsScore[i] is used to break ties when choosing between two 9887 // partitionings resulting in the same number of partitions. 9888 SmallVector<unsigned, 8> PartitionsScore(N); 9889 // For PartitionsScore, a small number of comparisons is considered as good as 9890 // a jump table and a single comparison is considered better than a jump 9891 // table. 9892 enum PartitionScores : unsigned { 9893 NoTable = 0, 9894 Table = 1, 9895 FewCases = 1, 9896 SingleCase = 2 9897 }; 9898 9899 // Base case: There is only one way to partition Clusters[N-1]. 9900 MinPartitions[N - 1] = 1; 9901 LastElement[N - 1] = N - 1; 9902 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9903 9904 // Note: loop indexes are signed to avoid underflow. 9905 for (int64_t i = N - 2; i >= 0; i--) { 9906 // Find optimal partitioning of Clusters[i..N-1]. 9907 // Baseline: Put Clusters[i] into a partition on its own. 9908 MinPartitions[i] = MinPartitions[i + 1] + 1; 9909 LastElement[i] = i; 9910 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9911 9912 // Search for a solution that results in fewer partitions. 9913 for (int64_t j = N - 1; j > i; j--) { 9914 // Try building a partition from Clusters[i..j]. 9915 uint64_t Range = getJumpTableRange(Clusters, i, j); 9916 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9917 assert(NumCases < UINT64_MAX / 100); 9918 assert(Range >= NumCases); 9919 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9920 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9921 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9922 int64_t NumEntries = j - i + 1; 9923 9924 if (NumEntries == 1) 9925 Score += PartitionScores::SingleCase; 9926 else if (NumEntries <= SmallNumberOfEntries) 9927 Score += PartitionScores::FewCases; 9928 else if (NumEntries >= MinJumpTableEntries) 9929 Score += PartitionScores::Table; 9930 9931 // If this leads to fewer partitions, or to the same number of 9932 // partitions with better score, it is a better partitioning. 9933 if (NumPartitions < MinPartitions[i] || 9934 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9935 MinPartitions[i] = NumPartitions; 9936 LastElement[i] = j; 9937 PartitionsScore[i] = Score; 9938 } 9939 } 9940 } 9941 } 9942 9943 // Iterate over the partitions, replacing some with jump tables in-place. 9944 unsigned DstIndex = 0; 9945 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9946 Last = LastElement[First]; 9947 assert(Last >= First); 9948 assert(DstIndex <= First); 9949 unsigned NumClusters = Last - First + 1; 9950 9951 CaseCluster JTCluster; 9952 if (NumClusters >= MinJumpTableEntries && 9953 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9954 Clusters[DstIndex++] = JTCluster; 9955 } else { 9956 for (unsigned I = First; I <= Last; ++I) 9957 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9958 } 9959 } 9960 Clusters.resize(DstIndex); 9961 } 9962 9963 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9964 unsigned First, unsigned Last, 9965 const SwitchInst *SI, 9966 CaseCluster &BTCluster) { 9967 assert(First <= Last); 9968 if (First == Last) 9969 return false; 9970 9971 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9972 unsigned NumCmps = 0; 9973 for (int64_t I = First; I <= Last; ++I) { 9974 assert(Clusters[I].Kind == CC_Range); 9975 Dests.set(Clusters[I].MBB->getNumber()); 9976 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9977 } 9978 unsigned NumDests = Dests.count(); 9979 9980 APInt Low = Clusters[First].Low->getValue(); 9981 APInt High = Clusters[Last].High->getValue(); 9982 assert(Low.slt(High)); 9983 9984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9985 const DataLayout &DL = DAG.getDataLayout(); 9986 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9987 return false; 9988 9989 APInt LowBound; 9990 APInt CmpRange; 9991 9992 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9993 assert(TLI.rangeFitsInWord(Low, High, DL) && 9994 "Case range must fit in bit mask!"); 9995 9996 // Check if the clusters cover a contiguous range such that no value in the 9997 // range will jump to the default statement. 9998 bool ContiguousRange = true; 9999 for (int64_t I = First + 1; I <= Last; ++I) { 10000 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 10001 ContiguousRange = false; 10002 break; 10003 } 10004 } 10005 10006 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 10007 // Optimize the case where all the case values fit in a word without having 10008 // to subtract minValue. In this case, we can optimize away the subtraction. 10009 LowBound = APInt::getNullValue(Low.getBitWidth()); 10010 CmpRange = High; 10011 ContiguousRange = false; 10012 } else { 10013 LowBound = Low; 10014 CmpRange = High - Low; 10015 } 10016 10017 CaseBitsVector CBV; 10018 auto TotalProb = BranchProbability::getZero(); 10019 for (unsigned i = First; i <= Last; ++i) { 10020 // Find the CaseBits for this destination. 10021 unsigned j; 10022 for (j = 0; j < CBV.size(); ++j) 10023 if (CBV[j].BB == Clusters[i].MBB) 10024 break; 10025 if (j == CBV.size()) 10026 CBV.push_back( 10027 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10028 CaseBits *CB = &CBV[j]; 10029 10030 // Update Mask, Bits and ExtraProb. 10031 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10032 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10033 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10034 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10035 CB->Bits += Hi - Lo + 1; 10036 CB->ExtraProb += Clusters[i].Prob; 10037 TotalProb += Clusters[i].Prob; 10038 } 10039 10040 BitTestInfo BTI; 10041 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10042 // Sort by probability first, number of bits second, bit mask third. 10043 if (a.ExtraProb != b.ExtraProb) 10044 return a.ExtraProb > b.ExtraProb; 10045 if (a.Bits != b.Bits) 10046 return a.Bits > b.Bits; 10047 return a.Mask < b.Mask; 10048 }); 10049 10050 for (auto &CB : CBV) { 10051 MachineBasicBlock *BitTestBB = 10052 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10053 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10054 } 10055 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10056 SI->getCondition(), -1U, MVT::Other, false, 10057 ContiguousRange, nullptr, nullptr, std::move(BTI), 10058 TotalProb); 10059 10060 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10061 BitTestCases.size() - 1, TotalProb); 10062 return true; 10063 } 10064 10065 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10066 const SwitchInst *SI) { 10067 // Partition Clusters into as few subsets as possible, where each subset has a 10068 // range that fits in a machine word and has <= 3 unique destinations. 10069 10070 #ifndef NDEBUG 10071 // Clusters must be sorted and contain Range or JumpTable clusters. 10072 assert(!Clusters.empty()); 10073 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10074 for (const CaseCluster &C : Clusters) 10075 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10076 for (unsigned i = 1; i < Clusters.size(); ++i) 10077 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10078 #endif 10079 10080 // The algorithm below is not suitable for -O0. 10081 if (TM.getOptLevel() == CodeGenOpt::None) 10082 return; 10083 10084 // If target does not have legal shift left, do not emit bit tests at all. 10085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10086 const DataLayout &DL = DAG.getDataLayout(); 10087 10088 EVT PTy = TLI.getPointerTy(DL); 10089 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10090 return; 10091 10092 int BitWidth = PTy.getSizeInBits(); 10093 const int64_t N = Clusters.size(); 10094 10095 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10096 SmallVector<unsigned, 8> MinPartitions(N); 10097 // LastElement[i] is the last element of the partition starting at i. 10098 SmallVector<unsigned, 8> LastElement(N); 10099 10100 // FIXME: This might not be the best algorithm for finding bit test clusters. 10101 10102 // Base case: There is only one way to partition Clusters[N-1]. 10103 MinPartitions[N - 1] = 1; 10104 LastElement[N - 1] = N - 1; 10105 10106 // Note: loop indexes are signed to avoid underflow. 10107 for (int64_t i = N - 2; i >= 0; --i) { 10108 // Find optimal partitioning of Clusters[i..N-1]. 10109 // Baseline: Put Clusters[i] into a partition on its own. 10110 MinPartitions[i] = MinPartitions[i + 1] + 1; 10111 LastElement[i] = i; 10112 10113 // Search for a solution that results in fewer partitions. 10114 // Note: the search is limited by BitWidth, reducing time complexity. 10115 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10116 // Try building a partition from Clusters[i..j]. 10117 10118 // Check the range. 10119 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10120 Clusters[j].High->getValue(), DL)) 10121 continue; 10122 10123 // Check nbr of destinations and cluster types. 10124 // FIXME: This works, but doesn't seem very efficient. 10125 bool RangesOnly = true; 10126 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10127 for (int64_t k = i; k <= j; k++) { 10128 if (Clusters[k].Kind != CC_Range) { 10129 RangesOnly = false; 10130 break; 10131 } 10132 Dests.set(Clusters[k].MBB->getNumber()); 10133 } 10134 if (!RangesOnly || Dests.count() > 3) 10135 break; 10136 10137 // Check if it's a better partition. 10138 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10139 if (NumPartitions < MinPartitions[i]) { 10140 // Found a better partition. 10141 MinPartitions[i] = NumPartitions; 10142 LastElement[i] = j; 10143 } 10144 } 10145 } 10146 10147 // Iterate over the partitions, replacing with bit-test clusters in-place. 10148 unsigned DstIndex = 0; 10149 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10150 Last = LastElement[First]; 10151 assert(First <= Last); 10152 assert(DstIndex <= First); 10153 10154 CaseCluster BitTestCluster; 10155 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10156 Clusters[DstIndex++] = BitTestCluster; 10157 } else { 10158 size_t NumClusters = Last - First + 1; 10159 std::memmove(&Clusters[DstIndex], &Clusters[First], 10160 sizeof(Clusters[0]) * NumClusters); 10161 DstIndex += NumClusters; 10162 } 10163 } 10164 Clusters.resize(DstIndex); 10165 } 10166 10167 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10168 MachineBasicBlock *SwitchMBB, 10169 MachineBasicBlock *DefaultMBB) { 10170 MachineFunction *CurMF = FuncInfo.MF; 10171 MachineBasicBlock *NextMBB = nullptr; 10172 MachineFunction::iterator BBI(W.MBB); 10173 if (++BBI != FuncInfo.MF->end()) 10174 NextMBB = &*BBI; 10175 10176 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10177 10178 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10179 10180 if (Size == 2 && W.MBB == SwitchMBB) { 10181 // If any two of the cases has the same destination, and if one value 10182 // is the same as the other, but has one bit unset that the other has set, 10183 // use bit manipulation to do two compares at once. For example: 10184 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10185 // TODO: This could be extended to merge any 2 cases in switches with 3 10186 // cases. 10187 // TODO: Handle cases where W.CaseBB != SwitchBB. 10188 CaseCluster &Small = *W.FirstCluster; 10189 CaseCluster &Big = *W.LastCluster; 10190 10191 if (Small.Low == Small.High && Big.Low == Big.High && 10192 Small.MBB == Big.MBB) { 10193 const APInt &SmallValue = Small.Low->getValue(); 10194 const APInt &BigValue = Big.Low->getValue(); 10195 10196 // Check that there is only one bit different. 10197 APInt CommonBit = BigValue ^ SmallValue; 10198 if (CommonBit.isPowerOf2()) { 10199 SDValue CondLHS = getValue(Cond); 10200 EVT VT = CondLHS.getValueType(); 10201 SDLoc DL = getCurSDLoc(); 10202 10203 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10204 DAG.getConstant(CommonBit, DL, VT)); 10205 SDValue Cond = DAG.getSetCC( 10206 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10207 ISD::SETEQ); 10208 10209 // Update successor info. 10210 // Both Small and Big will jump to Small.BB, so we sum up the 10211 // probabilities. 10212 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10213 if (BPI) 10214 addSuccessorWithProb( 10215 SwitchMBB, DefaultMBB, 10216 // The default destination is the first successor in IR. 10217 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10218 else 10219 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10220 10221 // Insert the true branch. 10222 SDValue BrCond = 10223 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10224 DAG.getBasicBlock(Small.MBB)); 10225 // Insert the false branch. 10226 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10227 DAG.getBasicBlock(DefaultMBB)); 10228 10229 DAG.setRoot(BrCond); 10230 return; 10231 } 10232 } 10233 } 10234 10235 if (TM.getOptLevel() != CodeGenOpt::None) { 10236 // Here, we order cases by probability so the most likely case will be 10237 // checked first. However, two clusters can have the same probability in 10238 // which case their relative ordering is non-deterministic. So we use Low 10239 // as a tie-breaker as clusters are guaranteed to never overlap. 10240 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10241 [](const CaseCluster &a, const CaseCluster &b) { 10242 return a.Prob != b.Prob ? 10243 a.Prob > b.Prob : 10244 a.Low->getValue().slt(b.Low->getValue()); 10245 }); 10246 10247 // Rearrange the case blocks so that the last one falls through if possible 10248 // without changing the order of probabilities. 10249 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10250 --I; 10251 if (I->Prob > W.LastCluster->Prob) 10252 break; 10253 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10254 std::swap(*I, *W.LastCluster); 10255 break; 10256 } 10257 } 10258 } 10259 10260 // Compute total probability. 10261 BranchProbability DefaultProb = W.DefaultProb; 10262 BranchProbability UnhandledProbs = DefaultProb; 10263 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10264 UnhandledProbs += I->Prob; 10265 10266 MachineBasicBlock *CurMBB = W.MBB; 10267 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10268 MachineBasicBlock *Fallthrough; 10269 if (I == W.LastCluster) { 10270 // For the last cluster, fall through to the default destination. 10271 Fallthrough = DefaultMBB; 10272 } else { 10273 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10274 CurMF->insert(BBI, Fallthrough); 10275 // Put Cond in a virtual register to make it available from the new blocks. 10276 ExportFromCurrentBlock(Cond); 10277 } 10278 UnhandledProbs -= I->Prob; 10279 10280 switch (I->Kind) { 10281 case CC_JumpTable: { 10282 // FIXME: Optimize away range check based on pivot comparisons. 10283 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10284 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10285 10286 // The jump block hasn't been inserted yet; insert it here. 10287 MachineBasicBlock *JumpMBB = JT->MBB; 10288 CurMF->insert(BBI, JumpMBB); 10289 10290 auto JumpProb = I->Prob; 10291 auto FallthroughProb = UnhandledProbs; 10292 10293 // If the default statement is a target of the jump table, we evenly 10294 // distribute the default probability to successors of CurMBB. Also 10295 // update the probability on the edge from JumpMBB to Fallthrough. 10296 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10297 SE = JumpMBB->succ_end(); 10298 SI != SE; ++SI) { 10299 if (*SI == DefaultMBB) { 10300 JumpProb += DefaultProb / 2; 10301 FallthroughProb -= DefaultProb / 2; 10302 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10303 JumpMBB->normalizeSuccProbs(); 10304 break; 10305 } 10306 } 10307 10308 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10309 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10310 CurMBB->normalizeSuccProbs(); 10311 10312 // The jump table header will be inserted in our current block, do the 10313 // range check, and fall through to our fallthrough block. 10314 JTH->HeaderBB = CurMBB; 10315 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10316 10317 // If we're in the right place, emit the jump table header right now. 10318 if (CurMBB == SwitchMBB) { 10319 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10320 JTH->Emitted = true; 10321 } 10322 break; 10323 } 10324 case CC_BitTests: { 10325 // FIXME: Optimize away range check based on pivot comparisons. 10326 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10327 10328 // The bit test blocks haven't been inserted yet; insert them here. 10329 for (BitTestCase &BTC : BTB->Cases) 10330 CurMF->insert(BBI, BTC.ThisBB); 10331 10332 // Fill in fields of the BitTestBlock. 10333 BTB->Parent = CurMBB; 10334 BTB->Default = Fallthrough; 10335 10336 BTB->DefaultProb = UnhandledProbs; 10337 // If the cases in bit test don't form a contiguous range, we evenly 10338 // distribute the probability on the edge to Fallthrough to two 10339 // successors of CurMBB. 10340 if (!BTB->ContiguousRange) { 10341 BTB->Prob += DefaultProb / 2; 10342 BTB->DefaultProb -= DefaultProb / 2; 10343 } 10344 10345 // If we're in the right place, emit the bit test header right now. 10346 if (CurMBB == SwitchMBB) { 10347 visitBitTestHeader(*BTB, SwitchMBB); 10348 BTB->Emitted = true; 10349 } 10350 break; 10351 } 10352 case CC_Range: { 10353 const Value *RHS, *LHS, *MHS; 10354 ISD::CondCode CC; 10355 if (I->Low == I->High) { 10356 // Check Cond == I->Low. 10357 CC = ISD::SETEQ; 10358 LHS = Cond; 10359 RHS=I->Low; 10360 MHS = nullptr; 10361 } else { 10362 // Check I->Low <= Cond <= I->High. 10363 CC = ISD::SETLE; 10364 LHS = I->Low; 10365 MHS = Cond; 10366 RHS = I->High; 10367 } 10368 10369 // The false probability is the sum of all unhandled cases. 10370 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10371 getCurSDLoc(), I->Prob, UnhandledProbs); 10372 10373 if (CurMBB == SwitchMBB) 10374 visitSwitchCase(CB, SwitchMBB); 10375 else 10376 SwitchCases.push_back(CB); 10377 10378 break; 10379 } 10380 } 10381 CurMBB = Fallthrough; 10382 } 10383 } 10384 10385 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10386 CaseClusterIt First, 10387 CaseClusterIt Last) { 10388 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10389 if (X.Prob != CC.Prob) 10390 return X.Prob > CC.Prob; 10391 10392 // Ties are broken by comparing the case value. 10393 return X.Low->getValue().slt(CC.Low->getValue()); 10394 }); 10395 } 10396 10397 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10398 const SwitchWorkListItem &W, 10399 Value *Cond, 10400 MachineBasicBlock *SwitchMBB) { 10401 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10402 "Clusters not sorted?"); 10403 10404 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10405 10406 // Balance the tree based on branch probabilities to create a near-optimal (in 10407 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10408 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10409 CaseClusterIt LastLeft = W.FirstCluster; 10410 CaseClusterIt FirstRight = W.LastCluster; 10411 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10412 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10413 10414 // Move LastLeft and FirstRight towards each other from opposite directions to 10415 // find a partitioning of the clusters which balances the probability on both 10416 // sides. If LeftProb and RightProb are equal, alternate which side is 10417 // taken to ensure 0-probability nodes are distributed evenly. 10418 unsigned I = 0; 10419 while (LastLeft + 1 < FirstRight) { 10420 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10421 LeftProb += (++LastLeft)->Prob; 10422 else 10423 RightProb += (--FirstRight)->Prob; 10424 I++; 10425 } 10426 10427 while (true) { 10428 // Our binary search tree differs from a typical BST in that ours can have up 10429 // to three values in each leaf. The pivot selection above doesn't take that 10430 // into account, which means the tree might require more nodes and be less 10431 // efficient. We compensate for this here. 10432 10433 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10434 unsigned NumRight = W.LastCluster - FirstRight + 1; 10435 10436 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10437 // If one side has less than 3 clusters, and the other has more than 3, 10438 // consider taking a cluster from the other side. 10439 10440 if (NumLeft < NumRight) { 10441 // Consider moving the first cluster on the right to the left side. 10442 CaseCluster &CC = *FirstRight; 10443 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10444 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10445 if (LeftSideRank <= RightSideRank) { 10446 // Moving the cluster to the left does not demote it. 10447 ++LastLeft; 10448 ++FirstRight; 10449 continue; 10450 } 10451 } else { 10452 assert(NumRight < NumLeft); 10453 // Consider moving the last element on the left to the right side. 10454 CaseCluster &CC = *LastLeft; 10455 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10456 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10457 if (RightSideRank <= LeftSideRank) { 10458 // Moving the cluster to the right does not demot it. 10459 --LastLeft; 10460 --FirstRight; 10461 continue; 10462 } 10463 } 10464 } 10465 break; 10466 } 10467 10468 assert(LastLeft + 1 == FirstRight); 10469 assert(LastLeft >= W.FirstCluster); 10470 assert(FirstRight <= W.LastCluster); 10471 10472 // Use the first element on the right as pivot since we will make less-than 10473 // comparisons against it. 10474 CaseClusterIt PivotCluster = FirstRight; 10475 assert(PivotCluster > W.FirstCluster); 10476 assert(PivotCluster <= W.LastCluster); 10477 10478 CaseClusterIt FirstLeft = W.FirstCluster; 10479 CaseClusterIt LastRight = W.LastCluster; 10480 10481 const ConstantInt *Pivot = PivotCluster->Low; 10482 10483 // New blocks will be inserted immediately after the current one. 10484 MachineFunction::iterator BBI(W.MBB); 10485 ++BBI; 10486 10487 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10488 // we can branch to its destination directly if it's squeezed exactly in 10489 // between the known lower bound and Pivot - 1. 10490 MachineBasicBlock *LeftMBB; 10491 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10492 FirstLeft->Low == W.GE && 10493 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10494 LeftMBB = FirstLeft->MBB; 10495 } else { 10496 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10497 FuncInfo.MF->insert(BBI, LeftMBB); 10498 WorkList.push_back( 10499 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10500 // Put Cond in a virtual register to make it available from the new blocks. 10501 ExportFromCurrentBlock(Cond); 10502 } 10503 10504 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10505 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10506 // directly if RHS.High equals the current upper bound. 10507 MachineBasicBlock *RightMBB; 10508 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10509 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10510 RightMBB = FirstRight->MBB; 10511 } else { 10512 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10513 FuncInfo.MF->insert(BBI, RightMBB); 10514 WorkList.push_back( 10515 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10516 // Put Cond in a virtual register to make it available from the new blocks. 10517 ExportFromCurrentBlock(Cond); 10518 } 10519 10520 // Create the CaseBlock record that will be used to lower the branch. 10521 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10522 getCurSDLoc(), LeftProb, RightProb); 10523 10524 if (W.MBB == SwitchMBB) 10525 visitSwitchCase(CB, SwitchMBB); 10526 else 10527 SwitchCases.push_back(CB); 10528 } 10529 10530 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10531 // from the swith statement. 10532 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10533 BranchProbability PeeledCaseProb) { 10534 if (PeeledCaseProb == BranchProbability::getOne()) 10535 return BranchProbability::getZero(); 10536 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10537 10538 uint32_t Numerator = CaseProb.getNumerator(); 10539 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10540 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10541 } 10542 10543 // Try to peel the top probability case if it exceeds the threshold. 10544 // Return current MachineBasicBlock for the switch statement if the peeling 10545 // does not occur. 10546 // If the peeling is performed, return the newly created MachineBasicBlock 10547 // for the peeled switch statement. Also update Clusters to remove the peeled 10548 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10549 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10550 const SwitchInst &SI, CaseClusterVector &Clusters, 10551 BranchProbability &PeeledCaseProb) { 10552 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10553 // Don't perform if there is only one cluster or optimizing for size. 10554 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10555 TM.getOptLevel() == CodeGenOpt::None || 10556 SwitchMBB->getParent()->getFunction().optForMinSize()) 10557 return SwitchMBB; 10558 10559 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10560 unsigned PeeledCaseIndex = 0; 10561 bool SwitchPeeled = false; 10562 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10563 CaseCluster &CC = Clusters[Index]; 10564 if (CC.Prob < TopCaseProb) 10565 continue; 10566 TopCaseProb = CC.Prob; 10567 PeeledCaseIndex = Index; 10568 SwitchPeeled = true; 10569 } 10570 if (!SwitchPeeled) 10571 return SwitchMBB; 10572 10573 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10574 << TopCaseProb << "\n"); 10575 10576 // Record the MBB for the peeled switch statement. 10577 MachineFunction::iterator BBI(SwitchMBB); 10578 ++BBI; 10579 MachineBasicBlock *PeeledSwitchMBB = 10580 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10581 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10582 10583 ExportFromCurrentBlock(SI.getCondition()); 10584 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10585 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10586 nullptr, nullptr, TopCaseProb.getCompl()}; 10587 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10588 10589 Clusters.erase(PeeledCaseIt); 10590 for (CaseCluster &CC : Clusters) { 10591 LLVM_DEBUG( 10592 dbgs() << "Scale the probablity for one cluster, before scaling: " 10593 << CC.Prob << "\n"); 10594 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10595 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10596 } 10597 PeeledCaseProb = TopCaseProb; 10598 return PeeledSwitchMBB; 10599 } 10600 10601 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10602 // Extract cases from the switch. 10603 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10604 CaseClusterVector Clusters; 10605 Clusters.reserve(SI.getNumCases()); 10606 for (auto I : SI.cases()) { 10607 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10608 const ConstantInt *CaseVal = I.getCaseValue(); 10609 BranchProbability Prob = 10610 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10611 : BranchProbability(1, SI.getNumCases() + 1); 10612 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10613 } 10614 10615 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10616 10617 // Cluster adjacent cases with the same destination. We do this at all 10618 // optimization levels because it's cheap to do and will make codegen faster 10619 // if there are many clusters. 10620 sortAndRangeify(Clusters); 10621 10622 if (TM.getOptLevel() != CodeGenOpt::None) { 10623 // Replace an unreachable default with the most popular destination. 10624 // FIXME: Exploit unreachable default more aggressively. 10625 bool UnreachableDefault = 10626 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10627 if (UnreachableDefault && !Clusters.empty()) { 10628 DenseMap<const BasicBlock *, unsigned> Popularity; 10629 unsigned MaxPop = 0; 10630 const BasicBlock *MaxBB = nullptr; 10631 for (auto I : SI.cases()) { 10632 const BasicBlock *BB = I.getCaseSuccessor(); 10633 if (++Popularity[BB] > MaxPop) { 10634 MaxPop = Popularity[BB]; 10635 MaxBB = BB; 10636 } 10637 } 10638 // Set new default. 10639 assert(MaxPop > 0 && MaxBB); 10640 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10641 10642 // Remove cases that were pointing to the destination that is now the 10643 // default. 10644 CaseClusterVector New; 10645 New.reserve(Clusters.size()); 10646 for (CaseCluster &CC : Clusters) { 10647 if (CC.MBB != DefaultMBB) 10648 New.push_back(CC); 10649 } 10650 Clusters = std::move(New); 10651 } 10652 } 10653 10654 // The branch probablity of the peeled case. 10655 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10656 MachineBasicBlock *PeeledSwitchMBB = 10657 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10658 10659 // If there is only the default destination, jump there directly. 10660 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10661 if (Clusters.empty()) { 10662 assert(PeeledSwitchMBB == SwitchMBB); 10663 SwitchMBB->addSuccessor(DefaultMBB); 10664 if (DefaultMBB != NextBlock(SwitchMBB)) { 10665 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10666 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10667 } 10668 return; 10669 } 10670 10671 findJumpTables(Clusters, &SI, DefaultMBB); 10672 findBitTestClusters(Clusters, &SI); 10673 10674 LLVM_DEBUG({ 10675 dbgs() << "Case clusters: "; 10676 for (const CaseCluster &C : Clusters) { 10677 if (C.Kind == CC_JumpTable) 10678 dbgs() << "JT:"; 10679 if (C.Kind == CC_BitTests) 10680 dbgs() << "BT:"; 10681 10682 C.Low->getValue().print(dbgs(), true); 10683 if (C.Low != C.High) { 10684 dbgs() << '-'; 10685 C.High->getValue().print(dbgs(), true); 10686 } 10687 dbgs() << ' '; 10688 } 10689 dbgs() << '\n'; 10690 }); 10691 10692 assert(!Clusters.empty()); 10693 SwitchWorkList WorkList; 10694 CaseClusterIt First = Clusters.begin(); 10695 CaseClusterIt Last = Clusters.end() - 1; 10696 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10697 // Scale the branchprobability for DefaultMBB if the peel occurs and 10698 // DefaultMBB is not replaced. 10699 if (PeeledCaseProb != BranchProbability::getZero() && 10700 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10701 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10702 WorkList.push_back( 10703 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10704 10705 while (!WorkList.empty()) { 10706 SwitchWorkListItem W = WorkList.back(); 10707 WorkList.pop_back(); 10708 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10709 10710 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10711 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10712 // For optimized builds, lower large range as a balanced binary tree. 10713 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10714 continue; 10715 } 10716 10717 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10718 } 10719 } 10720