xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 667598d84b16d1789ce90b231565e9e7bfdbe77d)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <deque>
108 #include <iterator>
109 #include <limits>
110 #include <optional>
111 #include <tuple>
112 
113 using namespace llvm;
114 using namespace PatternMatch;
115 using namespace SwitchCG;
116 
117 #define DEBUG_TYPE "isel"
118 
119 /// LimitFloatPrecision - Generate low-precision inline sequences for
120 /// some float libcalls (6, 8 or 12 bits).
121 static unsigned LimitFloatPrecision;
122 
123 static cl::opt<bool>
124     InsertAssertAlign("insert-assert-align", cl::init(true),
125                       cl::desc("Insert the experimental `assertalign` node."),
126                       cl::ReallyHidden);
127 
128 static cl::opt<unsigned, true>
129     LimitFPPrecision("limit-float-precision",
130                      cl::desc("Generate low-precision inline sequences "
131                               "for some float libcalls"),
132                      cl::location(LimitFloatPrecision), cl::Hidden,
133                      cl::init(0));
134 
135 static cl::opt<unsigned> SwitchPeelThreshold(
136     "switch-peel-threshold", cl::Hidden, cl::init(66),
137     cl::desc("Set the case probability threshold for peeling the case from a "
138              "switch statement. A value greater than 100 will void this "
139              "optimization"));
140 
141 // Limit the width of DAG chains. This is important in general to prevent
142 // DAG-based analysis from blowing up. For example, alias analysis and
143 // load clustering may not complete in reasonable time. It is difficult to
144 // recognize and avoid this situation within each individual analysis, and
145 // future analyses are likely to have the same behavior. Limiting DAG width is
146 // the safe approach and will be especially important with global DAGs.
147 //
148 // MaxParallelChains default is arbitrarily high to avoid affecting
149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
150 // sequence over this should have been converted to llvm.memcpy by the
151 // frontend. It is easy to induce this behavior with .ll code such as:
152 // %buffer = alloca [4096 x i8]
153 // %data = load [4096 x i8]* %argPtr
154 // store [4096 x i8] %data, [4096 x i8]* %buffer
155 static const unsigned MaxParallelChains = 64;
156 
157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
158                                       const SDValue *Parts, unsigned NumParts,
159                                       MVT PartVT, EVT ValueVT, const Value *V,
160                                       SDValue InChain,
161                                       std::optional<CallingConv::ID> CC);
162 
163 /// getCopyFromParts - Create a value that contains the specified legal parts
164 /// combined into the value they represent.  If the parts combine to a type
165 /// larger than ValueVT then AssertOp can be used to specify whether the extra
166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
167 /// (ISD::AssertSext).
168 static SDValue
169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
170                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
171                  SDValue InChain,
172                  std::optional<CallingConv::ID> CC = std::nullopt,
173                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
174   // Let the target assemble the parts if it wants to
175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
176   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
177                                                    PartVT, ValueVT, CC))
178     return Val;
179 
180   if (ValueVT.isVector())
181     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
182                                   InChain, CC);
183 
184   assert(NumParts > 0 && "No parts to assemble!");
185   SDValue Val = Parts[0];
186 
187   if (NumParts > 1) {
188     // Assemble the value from multiple parts.
189     if (ValueVT.isInteger()) {
190       unsigned PartBits = PartVT.getSizeInBits();
191       unsigned ValueBits = ValueVT.getSizeInBits();
192 
193       // Assemble the power of 2 part.
194       unsigned RoundParts = llvm::bit_floor(NumParts);
195       unsigned RoundBits = PartBits * RoundParts;
196       EVT RoundVT = RoundBits == ValueBits ?
197         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
198       SDValue Lo, Hi;
199 
200       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
201 
202       if (RoundParts > 2) {
203         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
204                               InChain);
205         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
206                               PartVT, HalfVT, V, InChain);
207       } else {
208         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
209         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
210       }
211 
212       if (DAG.getDataLayout().isBigEndian())
213         std::swap(Lo, Hi);
214 
215       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
216 
217       if (RoundParts < NumParts) {
218         // Assemble the trailing non-power-of-2 part.
219         unsigned OddParts = NumParts - RoundParts;
220         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
221         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
222                               OddVT, V, InChain, CC);
223 
224         // Combine the round and odd parts.
225         Lo = Val;
226         if (DAG.getDataLayout().isBigEndian())
227           std::swap(Lo, Hi);
228         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
229         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
230         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
231                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
232                                          TLI.getShiftAmountTy(
233                                              TotalVT, DAG.getDataLayout())));
234         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
235         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
236       }
237     } else if (PartVT.isFloatingPoint()) {
238       // FP split into multiple FP parts (for ppcf128)
239       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
240              "Unexpected split");
241       SDValue Lo, Hi;
242       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
243       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
244       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
245         std::swap(Lo, Hi);
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
247     } else {
248       // FP split into integer parts (soft fp)
249       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
250              !PartVT.isVector() && "Unexpected split");
251       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
252       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
253                              InChain, CC);
254     }
255   }
256 
257   // There is now one part, held in Val.  Correct it to match ValueVT.
258   // PartEVT is the type of the register class that holds the value.
259   // ValueVT is the type of the inline asm operation.
260   EVT PartEVT = Val.getValueType();
261 
262   if (PartEVT == ValueVT)
263     return Val;
264 
265   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
266       ValueVT.bitsLT(PartEVT)) {
267     // For an FP value in an integer part, we need to truncate to the right
268     // width first.
269     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
270     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
271   }
272 
273   // Handle types that have the same size.
274   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
275     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
276 
277   // Handle types with different sizes.
278   if (PartEVT.isInteger() && ValueVT.isInteger()) {
279     if (ValueVT.bitsLT(PartEVT)) {
280       // For a truncate, see if we have any information to
281       // indicate whether the truncated bits will always be
282       // zero or sign-extension.
283       if (AssertOp)
284         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
285                           DAG.getValueType(ValueVT));
286       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
287     }
288     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
289   }
290 
291   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
292     // FP_ROUND's are always exact here.
293     if (ValueVT.bitsLT(Val.getValueType())) {
294 
295       SDValue NoChange =
296           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
297 
298       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
299               llvm::Attribute::StrictFP)) {
300         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
301                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
302                            NoChange);
303       }
304 
305       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
306     }
307 
308     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
309   }
310 
311   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
312   // then truncating.
313   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
314       ValueVT.bitsLT(PartEVT)) {
315     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
316     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317   }
318 
319   report_fatal_error("Unknown mismatch in getCopyFromParts!");
320 }
321 
322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
323                                               const Twine &ErrMsg) {
324   const Instruction *I = dyn_cast_or_null<Instruction>(V);
325   if (!V)
326     return Ctx.emitError(ErrMsg);
327 
328   const char *AsmError = ", possible invalid constraint for vector type";
329   if (const CallInst *CI = dyn_cast<CallInst>(I))
330     if (CI->isInlineAsm())
331       return Ctx.emitError(I, ErrMsg + AsmError);
332 
333   return Ctx.emitError(I, ErrMsg);
334 }
335 
336 /// getCopyFromPartsVector - Create a value that contains the specified legal
337 /// parts combined into the value they represent.  If the parts combine to a
338 /// type larger than ValueVT then AssertOp can be used to specify whether the
339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
340 /// ValueVT (ISD::AssertSext).
341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
342                                       const SDValue *Parts, unsigned NumParts,
343                                       MVT PartVT, EVT ValueVT, const Value *V,
344                                       SDValue InChain,
345                                       std::optional<CallingConv::ID> CallConv) {
346   assert(ValueVT.isVector() && "Not a vector value");
347   assert(NumParts > 0 && "No parts to assemble!");
348   const bool IsABIRegCopy = CallConv.has_value();
349 
350   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
351   SDValue Val = Parts[0];
352 
353   // Handle a multi-element vector.
354   if (NumParts > 1) {
355     EVT IntermediateVT;
356     MVT RegisterVT;
357     unsigned NumIntermediates;
358     unsigned NumRegs;
359 
360     if (IsABIRegCopy) {
361       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
362           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
363           NumIntermediates, RegisterVT);
364     } else {
365       NumRegs =
366           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
367                                      NumIntermediates, RegisterVT);
368     }
369 
370     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
371     NumParts = NumRegs; // Silence a compiler warning.
372     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
373     assert(RegisterVT.getSizeInBits() ==
374            Parts[0].getSimpleValueType().getSizeInBits() &&
375            "Part type sizes don't match!");
376 
377     // Assemble the parts into intermediate operands.
378     SmallVector<SDValue, 8> Ops(NumIntermediates);
379     if (NumIntermediates == NumParts) {
380       // If the register was not expanded, truncate or copy the value,
381       // as appropriate.
382       for (unsigned i = 0; i != NumParts; ++i)
383         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
384                                   V, InChain, CallConv);
385     } else if (NumParts > 0) {
386       // If the intermediate type was expanded, build the intermediate
387       // operands from the parts.
388       assert(NumParts % NumIntermediates == 0 &&
389              "Must expand into a divisible number of parts!");
390       unsigned Factor = NumParts / NumIntermediates;
391       for (unsigned i = 0; i != NumIntermediates; ++i)
392         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
393                                   IntermediateVT, V, InChain, CallConv);
394     }
395 
396     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
397     // intermediate operands.
398     EVT BuiltVectorTy =
399         IntermediateVT.isVector()
400             ? EVT::getVectorVT(
401                   *DAG.getContext(), IntermediateVT.getScalarType(),
402                   IntermediateVT.getVectorElementCount() * NumParts)
403             : EVT::getVectorVT(*DAG.getContext(),
404                                IntermediateVT.getScalarType(),
405                                NumIntermediates);
406     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407                                                 : ISD::BUILD_VECTOR,
408                       DL, BuiltVectorTy, Ops);
409   }
410 
411   // There is now one part, held in Val.  Correct it to match ValueVT.
412   EVT PartEVT = Val.getValueType();
413 
414   if (PartEVT == ValueVT)
415     return Val;
416 
417   if (PartEVT.isVector()) {
418     // Vector/Vector bitcast.
419     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
420       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422     // If the parts vector has more elements than the value vector, then we
423     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
424     // Extract the elements we want.
425     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
426       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
427               ValueVT.getVectorElementCount().getKnownMinValue()) &&
428              (PartEVT.getVectorElementCount().isScalable() ==
429               ValueVT.getVectorElementCount().isScalable()) &&
430              "Cannot narrow, it would be a lossy transformation");
431       PartEVT =
432           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
433                            ValueVT.getVectorElementCount());
434       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
435                         DAG.getVectorIdxConstant(0, DL));
436       if (PartEVT == ValueVT)
437         return Val;
438       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
439         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440 
441       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
442       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
443         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444     }
445 
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448   }
449 
450   // Trivial bitcast if the types are the same size and the destination
451   // vector type is legal.
452   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
453       TLI.isTypeLegal(ValueVT))
454     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
455 
456   if (ValueVT.getVectorNumElements() != 1) {
457      // Certain ABIs require that vectors are passed as integers. For vectors
458      // are the same size, this is an obvious bitcast.
459      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
460        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
461      } else if (ValueVT.bitsLT(PartEVT)) {
462        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
463        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
464        // Drop the extra bits.
465        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
466        return DAG.getBitcast(ValueVT, Val);
467      }
468 
469      diagnosePossiblyInvalidConstraint(
470          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
471      return DAG.getUNDEF(ValueVT);
472   }
473 
474   // Handle cases such as i8 -> <1 x i1>
475   EVT ValueSVT = ValueVT.getVectorElementType();
476   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
477     unsigned ValueSize = ValueSVT.getSizeInBits();
478     if (ValueSize == PartEVT.getSizeInBits()) {
479       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
480     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
481       // It's possible a scalar floating point type gets softened to integer and
482       // then promoted to a larger integer. If PartEVT is the larger integer
483       // we need to truncate it and then bitcast to the FP type.
484       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
485       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
486       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
487       Val = DAG.getBitcast(ValueSVT, Val);
488     } else {
489       Val = ValueVT.isFloatingPoint()
490                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
491                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
492     }
493   }
494 
495   return DAG.getBuildVector(ValueVT, DL, Val);
496 }
497 
498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
499                                  SDValue Val, SDValue *Parts, unsigned NumParts,
500                                  MVT PartVT, const Value *V,
501                                  std::optional<CallingConv::ID> CallConv);
502 
503 /// getCopyToParts - Create a series of nodes that contain the specified value
504 /// split into legal parts.  If the parts contain more bits than Val, then, for
505 /// integers, ExtendKind can be used to specify how to generate the extra bits.
506 static void
507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
508                unsigned NumParts, MVT PartVT, const Value *V,
509                std::optional<CallingConv::ID> CallConv = std::nullopt,
510                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
511   // Let the target split the parts if it wants to
512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
513   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
514                                       CallConv))
515     return;
516   EVT ValueVT = Val.getValueType();
517 
518   // Handle the vector case separately.
519   if (ValueVT.isVector())
520     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
521                                 CallConv);
522 
523   unsigned OrigNumParts = NumParts;
524   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
525          "Copying to an illegal type!");
526 
527   if (NumParts == 0)
528     return;
529 
530   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
531   EVT PartEVT = PartVT;
532   if (PartEVT == ValueVT) {
533     assert(NumParts == 1 && "No-op copy with multiple parts!");
534     Parts[0] = Val;
535     return;
536   }
537 
538   unsigned PartBits = PartVT.getSizeInBits();
539   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
540     // If the parts cover more bits than the value has, promote the value.
541     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
542       assert(NumParts == 1 && "Do not know what to promote to!");
543       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
544     } else {
545       if (ValueVT.isFloatingPoint()) {
546         // FP values need to be bitcast, then extended if they are being put
547         // into a larger container.
548         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
549         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
550       }
551       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
552              ValueVT.isInteger() &&
553              "Unknown mismatch!");
554       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
555       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
556       if (PartVT == MVT::x86mmx)
557         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
558     }
559   } else if (PartBits == ValueVT.getSizeInBits()) {
560     // Different types of the same size.
561     assert(NumParts == 1 && PartEVT != ValueVT);
562     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
564     // If the parts cover less bits than value has, truncate the value.
565     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
566            ValueVT.isInteger() &&
567            "Unknown mismatch!");
568     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
569     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
570     if (PartVT == MVT::x86mmx)
571       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572   }
573 
574   // The value may have changed - recompute ValueVT.
575   ValueVT = Val.getValueType();
576   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
577          "Failed to tile the value with PartVT!");
578 
579   if (NumParts == 1) {
580     if (PartEVT != ValueVT) {
581       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
582                                         "scalar-to-vector conversion failed");
583       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
584     }
585 
586     Parts[0] = Val;
587     return;
588   }
589 
590   // Expand the value into multiple parts.
591   if (NumParts & (NumParts - 1)) {
592     // The number of parts is not a power of 2.  Split off and copy the tail.
593     assert(PartVT.isInteger() && ValueVT.isInteger() &&
594            "Do not know what to expand to!");
595     unsigned RoundParts = llvm::bit_floor(NumParts);
596     unsigned RoundBits = RoundParts * PartBits;
597     unsigned OddParts = NumParts - RoundParts;
598     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
599       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
600 
601     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
602                    CallConv);
603 
604     if (DAG.getDataLayout().isBigEndian())
605       // The odd parts were reversed by getCopyToParts - unreverse them.
606       std::reverse(Parts + RoundParts, Parts + NumParts);
607 
608     NumParts = RoundParts;
609     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
610     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
611   }
612 
613   // The number of parts is a power of 2.  Repeatedly bisect the value using
614   // EXTRACT_ELEMENT.
615   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
616                          EVT::getIntegerVT(*DAG.getContext(),
617                                            ValueVT.getSizeInBits()),
618                          Val);
619 
620   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
621     for (unsigned i = 0; i < NumParts; i += StepSize) {
622       unsigned ThisBits = StepSize * PartBits / 2;
623       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
624       SDValue &Part0 = Parts[i];
625       SDValue &Part1 = Parts[i+StepSize/2];
626 
627       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
629       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
630                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
631 
632       if (ThisBits == PartBits && ThisVT != PartVT) {
633         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
634         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
635       }
636     }
637   }
638 
639   if (DAG.getDataLayout().isBigEndian())
640     std::reverse(Parts, Parts + OrigNumParts);
641 }
642 
643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
644                                      const SDLoc &DL, EVT PartVT) {
645   if (!PartVT.isVector())
646     return SDValue();
647 
648   EVT ValueVT = Val.getValueType();
649   EVT PartEVT = PartVT.getVectorElementType();
650   EVT ValueEVT = ValueVT.getVectorElementType();
651   ElementCount PartNumElts = PartVT.getVectorElementCount();
652   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
653 
654   // We only support widening vectors with equivalent element types and
655   // fixed/scalable properties. If a target needs to widen a fixed-length type
656   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
657   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
658       PartNumElts.isScalable() != ValueNumElts.isScalable())
659     return SDValue();
660 
661   // Have a try for bf16 because some targets share its ABI with fp16.
662   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
663     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
664            "Cannot widen to illegal type");
665     Val = DAG.getNode(ISD::BITCAST, DL,
666                       ValueVT.changeVectorElementType(MVT::f16), Val);
667   } else if (PartEVT != ValueEVT) {
668     return SDValue();
669   }
670 
671   // Widening a scalable vector to another scalable vector is done by inserting
672   // the vector into a larger undef one.
673   if (PartNumElts.isScalable())
674     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
675                        Val, DAG.getVectorIdxConstant(0, DL));
676 
677   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
678   // undef elements.
679   SmallVector<SDValue, 16> Ops;
680   DAG.ExtractVectorElements(Val, Ops);
681   SDValue EltUndef = DAG.getUNDEF(PartEVT);
682   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
683 
684   // FIXME: Use CONCAT for 2x -> 4x.
685   return DAG.getBuildVector(PartVT, DL, Ops);
686 }
687 
688 /// getCopyToPartsVector - Create a series of nodes that contain the specified
689 /// value split into legal parts.
690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
691                                  SDValue Val, SDValue *Parts, unsigned NumParts,
692                                  MVT PartVT, const Value *V,
693                                  std::optional<CallingConv::ID> CallConv) {
694   EVT ValueVT = Val.getValueType();
695   assert(ValueVT.isVector() && "Not a vector");
696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
697   const bool IsABIRegCopy = CallConv.has_value();
698 
699   if (NumParts == 1) {
700     EVT PartEVT = PartVT;
701     if (PartEVT == ValueVT) {
702       // Nothing to do.
703     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
704       // Bitconvert vector->vector case.
705       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
706     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
707       Val = Widened;
708     } else if (PartVT.isVector() &&
709                PartEVT.getVectorElementType().bitsGE(
710                    ValueVT.getVectorElementType()) &&
711                PartEVT.getVectorElementCount() ==
712                    ValueVT.getVectorElementCount()) {
713 
714       // Promoted vector extract
715       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
716     } else if (PartEVT.isVector() &&
717                PartEVT.getVectorElementType() !=
718                    ValueVT.getVectorElementType() &&
719                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
720                    TargetLowering::TypeWidenVector) {
721       // Combination of widening and promotion.
722       EVT WidenVT =
723           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
724                            PartVT.getVectorElementCount());
725       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
726       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
727     } else {
728       // Don't extract an integer from a float vector. This can happen if the
729       // FP type gets softened to integer and then promoted. The promotion
730       // prevents it from being picked up by the earlier bitcast case.
731       if (ValueVT.getVectorElementCount().isScalar() &&
732           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
733         // If we reach this condition and PartVT is FP, this means that
734         // ValueVT is also FP and both have a different size, otherwise we
735         // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
736         // would be invalid since that would mean the smaller FP type has to
737         // be extended to the larger one.
738         if (PartVT.isFloatingPoint()) {
739           Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
740           Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
741         } else
742           Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
743                             DAG.getVectorIdxConstant(0, DL));
744       } else {
745         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
746         assert(PartVT.getFixedSizeInBits() > ValueSize &&
747                "lossy conversion of vector to scalar type");
748         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
749         Val = DAG.getBitcast(IntermediateType, Val);
750         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
751       }
752     }
753 
754     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
755     Parts[0] = Val;
756     return;
757   }
758 
759   // Handle a multi-element vector.
760   EVT IntermediateVT;
761   MVT RegisterVT;
762   unsigned NumIntermediates;
763   unsigned NumRegs;
764   if (IsABIRegCopy) {
765     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
766         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
767         RegisterVT);
768   } else {
769     NumRegs =
770         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
771                                    NumIntermediates, RegisterVT);
772   }
773 
774   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
775   NumParts = NumRegs; // Silence a compiler warning.
776   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
777 
778   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
779          "Mixing scalable and fixed vectors when copying in parts");
780 
781   std::optional<ElementCount> DestEltCnt;
782 
783   if (IntermediateVT.isVector())
784     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
785   else
786     DestEltCnt = ElementCount::getFixed(NumIntermediates);
787 
788   EVT BuiltVectorTy = EVT::getVectorVT(
789       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
790 
791   if (ValueVT == BuiltVectorTy) {
792     // Nothing to do.
793   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
794     // Bitconvert vector->vector case.
795     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
796   } else {
797     if (BuiltVectorTy.getVectorElementType().bitsGT(
798             ValueVT.getVectorElementType())) {
799       // Integer promotion.
800       ValueVT = EVT::getVectorVT(*DAG.getContext(),
801                                  BuiltVectorTy.getVectorElementType(),
802                                  ValueVT.getVectorElementCount());
803       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
804     }
805 
806     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
807       Val = Widened;
808     }
809   }
810 
811   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
812 
813   // Split the vector into intermediate operands.
814   SmallVector<SDValue, 8> Ops(NumIntermediates);
815   for (unsigned i = 0; i != NumIntermediates; ++i) {
816     if (IntermediateVT.isVector()) {
817       // This does something sensible for scalable vectors - see the
818       // definition of EXTRACT_SUBVECTOR for further details.
819       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
820       Ops[i] =
821           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
822                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
823     } else {
824       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
825                            DAG.getVectorIdxConstant(i, DL));
826     }
827   }
828 
829   // Split the intermediate operands into legal parts.
830   if (NumParts == NumIntermediates) {
831     // If the register was not expanded, promote or copy the value,
832     // as appropriate.
833     for (unsigned i = 0; i != NumParts; ++i)
834       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
835   } else if (NumParts > 0) {
836     // If the intermediate type was expanded, split each the value into
837     // legal parts.
838     assert(NumIntermediates != 0 && "division by zero");
839     assert(NumParts % NumIntermediates == 0 &&
840            "Must expand into a divisible number of parts!");
841     unsigned Factor = NumParts / NumIntermediates;
842     for (unsigned i = 0; i != NumIntermediates; ++i)
843       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
844                      CallConv);
845   }
846 }
847 
848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
849                            EVT valuevt, std::optional<CallingConv::ID> CC)
850     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
851       RegCount(1, regs.size()), CallConv(CC) {}
852 
853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
854                            const DataLayout &DL, unsigned Reg, Type *Ty,
855                            std::optional<CallingConv::ID> CC) {
856   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
857 
858   CallConv = CC;
859 
860   for (EVT ValueVT : ValueVTs) {
861     unsigned NumRegs =
862         isABIMangled()
863             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
864             : TLI.getNumRegisters(Context, ValueVT);
865     MVT RegisterVT =
866         isABIMangled()
867             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
868             : TLI.getRegisterType(Context, ValueVT);
869     for (unsigned i = 0; i != NumRegs; ++i)
870       Regs.push_back(Reg + i);
871     RegVTs.push_back(RegisterVT);
872     RegCount.push_back(NumRegs);
873     Reg += NumRegs;
874   }
875 }
876 
877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
878                                       FunctionLoweringInfo &FuncInfo,
879                                       const SDLoc &dl, SDValue &Chain,
880                                       SDValue *Glue, const Value *V) const {
881   // A Value with type {} or [0 x %t] needs no registers.
882   if (ValueVTs.empty())
883     return SDValue();
884 
885   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
886 
887   // Assemble the legal parts into the final values.
888   SmallVector<SDValue, 4> Values(ValueVTs.size());
889   SmallVector<SDValue, 8> Parts;
890   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
891     // Copy the legal parts from the registers.
892     EVT ValueVT = ValueVTs[Value];
893     unsigned NumRegs = RegCount[Value];
894     MVT RegisterVT = isABIMangled()
895                          ? TLI.getRegisterTypeForCallingConv(
896                                *DAG.getContext(), *CallConv, RegVTs[Value])
897                          : RegVTs[Value];
898 
899     Parts.resize(NumRegs);
900     for (unsigned i = 0; i != NumRegs; ++i) {
901       SDValue P;
902       if (!Glue) {
903         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
904       } else {
905         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
906         *Glue = P.getValue(2);
907       }
908 
909       Chain = P.getValue(1);
910       Parts[i] = P;
911 
912       // If the source register was virtual and if we know something about it,
913       // add an assert node.
914       if (!Register::isVirtualRegister(Regs[Part + i]) ||
915           !RegisterVT.isInteger())
916         continue;
917 
918       const FunctionLoweringInfo::LiveOutInfo *LOI =
919         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
920       if (!LOI)
921         continue;
922 
923       unsigned RegSize = RegisterVT.getScalarSizeInBits();
924       unsigned NumSignBits = LOI->NumSignBits;
925       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
926 
927       if (NumZeroBits == RegSize) {
928         // The current value is a zero.
929         // Explicitly express that as it would be easier for
930         // optimizations to kick in.
931         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
932         continue;
933       }
934 
935       // FIXME: We capture more information than the dag can represent.  For
936       // now, just use the tightest assertzext/assertsext possible.
937       bool isSExt;
938       EVT FromVT(MVT::Other);
939       if (NumZeroBits) {
940         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
941         isSExt = false;
942       } else if (NumSignBits > 1) {
943         FromVT =
944             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
945         isSExt = true;
946       } else {
947         continue;
948       }
949       // Add an assertion node.
950       assert(FromVT != MVT::Other);
951       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
952                              RegisterVT, P, DAG.getValueType(FromVT));
953     }
954 
955     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
956                                      RegisterVT, ValueVT, V, Chain, CallConv);
957     Part += NumRegs;
958     Parts.clear();
959   }
960 
961   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
962 }
963 
964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
965                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
966                                  const Value *V,
967                                  ISD::NodeType PreferredExtendType) const {
968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
969   ISD::NodeType ExtendKind = PreferredExtendType;
970 
971   // Get the list of the values's legal parts.
972   unsigned NumRegs = Regs.size();
973   SmallVector<SDValue, 8> Parts(NumRegs);
974   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumParts = RegCount[Value];
976 
977     MVT RegisterVT = isABIMangled()
978                          ? TLI.getRegisterTypeForCallingConv(
979                                *DAG.getContext(), *CallConv, RegVTs[Value])
980                          : RegVTs[Value];
981 
982     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
983       ExtendKind = ISD::ZERO_EXTEND;
984 
985     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
986                    NumParts, RegisterVT, V, CallConv, ExtendKind);
987     Part += NumParts;
988   }
989 
990   // Copy the parts into the registers.
991   SmallVector<SDValue, 8> Chains(NumRegs);
992   for (unsigned i = 0; i != NumRegs; ++i) {
993     SDValue Part;
994     if (!Glue) {
995       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
996     } else {
997       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
998       *Glue = Part.getValue(1);
999     }
1000 
1001     Chains[i] = Part.getValue(0);
1002   }
1003 
1004   if (NumRegs == 1 || Glue)
1005     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1006     // flagged to it. That is the CopyToReg nodes and the user are considered
1007     // a single scheduling unit. If we create a TokenFactor and return it as
1008     // chain, then the TokenFactor is both a predecessor (operand) of the
1009     // user as well as a successor (the TF operands are flagged to the user).
1010     // c1, f1 = CopyToReg
1011     // c2, f2 = CopyToReg
1012     // c3     = TokenFactor c1, c2
1013     // ...
1014     //        = op c3, ..., f2
1015     Chain = Chains[NumRegs-1];
1016   else
1017     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1018 }
1019 
1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1021                                         unsigned MatchingIdx, const SDLoc &dl,
1022                                         SelectionDAG &DAG,
1023                                         std::vector<SDValue> &Ops) const {
1024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1025 
1026   InlineAsm::Flag Flag(Code, Regs.size());
1027   if (HasMatching)
1028     Flag.setMatchingOp(MatchingIdx);
1029   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1030     // Put the register class of the virtual registers in the flag word.  That
1031     // way, later passes can recompute register class constraints for inline
1032     // assembly as well as normal instructions.
1033     // Don't do this for tied operands that can use the regclass information
1034     // from the def.
1035     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1036     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1037     Flag.setRegClass(RC->getID());
1038   }
1039 
1040   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1041   Ops.push_back(Res);
1042 
1043   if (Code == InlineAsm::Kind::Clobber) {
1044     // Clobbers should always have a 1:1 mapping with registers, and may
1045     // reference registers that have illegal (e.g. vector) types. Hence, we
1046     // shouldn't try to apply any sort of splitting logic to them.
1047     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1048            "No 1:1 mapping from clobbers to regs?");
1049     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1050     (void)SP;
1051     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1052       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1053       assert(
1054           (Regs[I] != SP ||
1055            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1056           "If we clobbered the stack pointer, MFI should know about it.");
1057     }
1058     return;
1059   }
1060 
1061   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1062     MVT RegisterVT = RegVTs[Value];
1063     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1064                                            RegisterVT);
1065     for (unsigned i = 0; i != NumRegs; ++i) {
1066       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1067       unsigned TheReg = Regs[Reg++];
1068       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1069     }
1070   }
1071 }
1072 
1073 SmallVector<std::pair<unsigned, TypeSize>, 4>
1074 RegsForValue::getRegsAndSizes() const {
1075   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1076   unsigned I = 0;
1077   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1078     unsigned RegCount = std::get<0>(CountAndVT);
1079     MVT RegisterVT = std::get<1>(CountAndVT);
1080     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1081     for (unsigned E = I + RegCount; I != E; ++I)
1082       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1083   }
1084   return OutVec;
1085 }
1086 
1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1088                                AssumptionCache *ac,
1089                                const TargetLibraryInfo *li) {
1090   AA = aa;
1091   AC = ac;
1092   GFI = gfi;
1093   LibInfo = li;
1094   Context = DAG.getContext();
1095   LPadToCallSiteMap.clear();
1096   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1097   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1098       *DAG.getMachineFunction().getFunction().getParent());
1099 }
1100 
1101 void SelectionDAGBuilder::clear() {
1102   NodeMap.clear();
1103   UnusedArgNodeMap.clear();
1104   PendingLoads.clear();
1105   PendingExports.clear();
1106   PendingConstrainedFP.clear();
1107   PendingConstrainedFPStrict.clear();
1108   CurInst = nullptr;
1109   HasTailCall = false;
1110   SDNodeOrder = LowestSDNodeOrder;
1111   StatepointLowering.clear();
1112 }
1113 
1114 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1115   DanglingDebugInfoMap.clear();
1116 }
1117 
1118 // Update DAG root to include dependencies on Pending chains.
1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1120   SDValue Root = DAG.getRoot();
1121 
1122   if (Pending.empty())
1123     return Root;
1124 
1125   // Add current root to PendingChains, unless we already indirectly
1126   // depend on it.
1127   if (Root.getOpcode() != ISD::EntryToken) {
1128     unsigned i = 0, e = Pending.size();
1129     for (; i != e; ++i) {
1130       assert(Pending[i].getNode()->getNumOperands() > 1);
1131       if (Pending[i].getNode()->getOperand(0) == Root)
1132         break;  // Don't add the root if we already indirectly depend on it.
1133     }
1134 
1135     if (i == e)
1136       Pending.push_back(Root);
1137   }
1138 
1139   if (Pending.size() == 1)
1140     Root = Pending[0];
1141   else
1142     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1143 
1144   DAG.setRoot(Root);
1145   Pending.clear();
1146   return Root;
1147 }
1148 
1149 SDValue SelectionDAGBuilder::getMemoryRoot() {
1150   return updateRoot(PendingLoads);
1151 }
1152 
1153 SDValue SelectionDAGBuilder::getRoot() {
1154   // Chain up all pending constrained intrinsics together with all
1155   // pending loads, by simply appending them to PendingLoads and
1156   // then calling getMemoryRoot().
1157   PendingLoads.reserve(PendingLoads.size() +
1158                        PendingConstrainedFP.size() +
1159                        PendingConstrainedFPStrict.size());
1160   PendingLoads.append(PendingConstrainedFP.begin(),
1161                       PendingConstrainedFP.end());
1162   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1163                       PendingConstrainedFPStrict.end());
1164   PendingConstrainedFP.clear();
1165   PendingConstrainedFPStrict.clear();
1166   return getMemoryRoot();
1167 }
1168 
1169 SDValue SelectionDAGBuilder::getControlRoot() {
1170   // We need to emit pending fpexcept.strict constrained intrinsics,
1171   // so append them to the PendingExports list.
1172   PendingExports.append(PendingConstrainedFPStrict.begin(),
1173                         PendingConstrainedFPStrict.end());
1174   PendingConstrainedFPStrict.clear();
1175   return updateRoot(PendingExports);
1176 }
1177 
1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1179                                              DILocalVariable *Variable,
1180                                              DIExpression *Expression,
1181                                              DebugLoc DL) {
1182   assert(Variable && "Missing variable");
1183 
1184   // Check if address has undef value.
1185   if (!Address || isa<UndefValue>(Address) ||
1186       (Address->use_empty() && !isa<Argument>(Address))) {
1187     LLVM_DEBUG(
1188         dbgs()
1189         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1190     return;
1191   }
1192 
1193   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1194 
1195   SDValue &N = NodeMap[Address];
1196   if (!N.getNode() && isa<Argument>(Address))
1197     // Check unused arguments map.
1198     N = UnusedArgNodeMap[Address];
1199   SDDbgValue *SDV;
1200   if (N.getNode()) {
1201     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1202       Address = BCI->getOperand(0);
1203     // Parameters are handled specially.
1204     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1205     if (IsParameter && FINode) {
1206       // Byval parameter. We have a frame index at this point.
1207       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1208                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1209     } else if (isa<Argument>(Address)) {
1210       // Address is an argument, so try to emit its dbg value using
1211       // virtual register info from the FuncInfo.ValueMap.
1212       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213                                FuncArgumentDbgValueKind::Declare, N);
1214       return;
1215     } else {
1216       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1217                             true, DL, SDNodeOrder);
1218     }
1219     DAG.AddDbgValue(SDV, IsParameter);
1220   } else {
1221     // If Address is an argument then try to emit its dbg value using
1222     // virtual register info from the FuncInfo.ValueMap.
1223     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1224                                   FuncArgumentDbgValueKind::Declare, N)) {
1225       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1226                         << " (could not emit func-arg dbg_value)\n");
1227     }
1228   }
1229   return;
1230 }
1231 
1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1233   // Add SDDbgValue nodes for any var locs here. Do so before updating
1234   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1235   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1236     // Add SDDbgValue nodes for any var locs here. Do so before updating
1237     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1238     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1239          It != End; ++It) {
1240       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1241       dropDanglingDebugInfo(Var, It->Expr);
1242       if (It->Values.isKillLocation(It->Expr)) {
1243         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1244         continue;
1245       }
1246       SmallVector<Value *> Values(It->Values.location_ops());
1247       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1248                             It->Values.hasArgList())) {
1249         SmallVector<Value *, 4> Vals(It->Values.location_ops());
1250         addDanglingDebugInfo(Vals,
1251                              FnVarLocs->getDILocalVariable(It->VariableID),
1252                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1253       }
1254     }
1255   }
1256 
1257   // We must skip DbgVariableRecords if they've already been processed above as
1258   // we have just emitted the debug values resulting from assignment tracking
1259   // analysis, making any existing DbgVariableRecords redundant (and probably
1260   // less correct). We still need to process DbgLabelRecords. This does sink
1261   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1262   // be important as it does so deterministcally and ordering between
1263   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1264   // printing).
1265   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1266   // Is there is any debug-info attached to this instruction, in the form of
1267   // DbgRecord non-instruction debug-info records.
1268   for (DbgRecord &DR : I.getDbgRecordRange()) {
1269     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1270       assert(DLR->getLabel() && "Missing label");
1271       SDDbgLabel *SDV =
1272           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1273       DAG.AddDbgLabel(SDV);
1274       continue;
1275     }
1276 
1277     if (SkipDbgVariableRecords)
1278       continue;
1279     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1280     DILocalVariable *Variable = DVR.getVariable();
1281     DIExpression *Expression = DVR.getExpression();
1282     dropDanglingDebugInfo(Variable, Expression);
1283 
1284     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1285       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1286         continue;
1287       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1288                         << "\n");
1289       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1290                          DVR.getDebugLoc());
1291       continue;
1292     }
1293 
1294     // A DbgVariableRecord with no locations is a kill location.
1295     SmallVector<Value *, 4> Values(DVR.location_ops());
1296     if (Values.empty()) {
1297       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1298                            SDNodeOrder);
1299       continue;
1300     }
1301 
1302     // A DbgVariableRecord with an undef or absent location is also a kill
1303     // location.
1304     if (llvm::any_of(Values,
1305                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1306       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1307                            SDNodeOrder);
1308       continue;
1309     }
1310 
1311     bool IsVariadic = DVR.hasArgList();
1312     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1313                           SDNodeOrder, IsVariadic)) {
1314       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1315                            DVR.getDebugLoc(), SDNodeOrder);
1316     }
1317   }
1318 }
1319 
1320 void SelectionDAGBuilder::visit(const Instruction &I) {
1321   visitDbgInfo(I);
1322 
1323   // Set up outgoing PHI node register values before emitting the terminator.
1324   if (I.isTerminator()) {
1325     HandlePHINodesInSuccessorBlocks(I.getParent());
1326   }
1327 
1328   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1329   if (!isa<DbgInfoIntrinsic>(I))
1330     ++SDNodeOrder;
1331 
1332   CurInst = &I;
1333 
1334   // Set inserted listener only if required.
1335   bool NodeInserted = false;
1336   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1337   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1338   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1339   if (PCSectionsMD || MMRA) {
1340     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1341         DAG, [&](SDNode *) { NodeInserted = true; });
1342   }
1343 
1344   visit(I.getOpcode(), I);
1345 
1346   if (!I.isTerminator() && !HasTailCall &&
1347       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1348     CopyToExportRegsIfNeeded(&I);
1349 
1350   // Handle metadata.
1351   if (PCSectionsMD || MMRA) {
1352     auto It = NodeMap.find(&I);
1353     if (It != NodeMap.end()) {
1354       if (PCSectionsMD)
1355         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1356       if (MMRA)
1357         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1358     } else if (NodeInserted) {
1359       // This should not happen; if it does, don't let it go unnoticed so we can
1360       // fix it. Relevant visit*() function is probably missing a setValue().
1361       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1362              << I.getModule()->getName() << "]\n";
1363       LLVM_DEBUG(I.dump());
1364       assert(false);
1365     }
1366   }
1367 
1368   CurInst = nullptr;
1369 }
1370 
1371 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1372   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1373 }
1374 
1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1376   // Note: this doesn't use InstVisitor, because it has to work with
1377   // ConstantExpr's in addition to instructions.
1378   switch (Opcode) {
1379   default: llvm_unreachable("Unknown instruction type encountered!");
1380     // Build the switch statement using the Instruction.def file.
1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1382     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1383 #include "llvm/IR/Instruction.def"
1384   }
1385 }
1386 
1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1388                                             DILocalVariable *Variable,
1389                                             DebugLoc DL, unsigned Order,
1390                                             SmallVectorImpl<Value *> &Values,
1391                                             DIExpression *Expression) {
1392   // For variadic dbg_values we will now insert an undef.
1393   // FIXME: We can potentially recover these!
1394   SmallVector<SDDbgOperand, 2> Locs;
1395   for (const Value *V : Values) {
1396     auto *Undef = UndefValue::get(V->getType());
1397     Locs.push_back(SDDbgOperand::fromConst(Undef));
1398   }
1399   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1400                                         /*IsIndirect=*/false, DL, Order,
1401                                         /*IsVariadic=*/true);
1402   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1403   return true;
1404 }
1405 
1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1407                                                DILocalVariable *Var,
1408                                                DIExpression *Expr,
1409                                                bool IsVariadic, DebugLoc DL,
1410                                                unsigned Order) {
1411   if (IsVariadic) {
1412     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1413     return;
1414   }
1415   // TODO: Dangling debug info will eventually either be resolved or produce
1416   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1417   // between the original dbg.value location and its resolved DBG_VALUE,
1418   // which we should ideally fill with an extra Undef DBG_VALUE.
1419   assert(Values.size() == 1);
1420   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1421 }
1422 
1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1424                                                 const DIExpression *Expr) {
1425   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1426     DIVariable *DanglingVariable = DDI.getVariable();
1427     DIExpression *DanglingExpr = DDI.getExpression();
1428     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1429       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1430                         << printDDI(nullptr, DDI) << "\n");
1431       return true;
1432     }
1433     return false;
1434   };
1435 
1436   for (auto &DDIMI : DanglingDebugInfoMap) {
1437     DanglingDebugInfoVector &DDIV = DDIMI.second;
1438 
1439     // If debug info is to be dropped, run it through final checks to see
1440     // whether it can be salvaged.
1441     for (auto &DDI : DDIV)
1442       if (isMatchingDbgValue(DDI))
1443         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1444 
1445     erase_if(DDIV, isMatchingDbgValue);
1446   }
1447 }
1448 
1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1450 // generate the debug data structures now that we've seen its definition.
1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1452                                                    SDValue Val) {
1453   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1454   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1455     return;
1456 
1457   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1458   for (auto &DDI : DDIV) {
1459     DebugLoc DL = DDI.getDebugLoc();
1460     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1461     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1462     DILocalVariable *Variable = DDI.getVariable();
1463     DIExpression *Expr = DDI.getExpression();
1464     assert(Variable->isValidLocationForIntrinsic(DL) &&
1465            "Expected inlined-at fields to agree");
1466     SDDbgValue *SDV;
1467     if (Val.getNode()) {
1468       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1469       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1470       // we couldn't resolve it directly when examining the DbgValue intrinsic
1471       // in the first place we should not be more successful here). Unless we
1472       // have some test case that prove this to be correct we should avoid
1473       // calling EmitFuncArgumentDbgValue here.
1474       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1475                                     FuncArgumentDbgValueKind::Value, Val)) {
1476         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1477                           << printDDI(V, DDI) << "\n");
1478         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1479         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1480         // inserted after the definition of Val when emitting the instructions
1481         // after ISel. An alternative could be to teach
1482         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1483         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1484                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1485                    << ValSDNodeOrder << "\n");
1486         SDV = getDbgValue(Val, Variable, Expr, DL,
1487                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1488         DAG.AddDbgValue(SDV, false);
1489       } else
1490         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1491                           << printDDI(V, DDI)
1492                           << " in EmitFuncArgumentDbgValue\n");
1493     } else {
1494       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1495                         << "\n");
1496       auto Undef = UndefValue::get(V->getType());
1497       auto SDV =
1498           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1499       DAG.AddDbgValue(SDV, false);
1500     }
1501   }
1502   DDIV.clear();
1503 }
1504 
1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1506                                                     DanglingDebugInfo &DDI) {
1507   // TODO: For the variadic implementation, instead of only checking the fail
1508   // state of `handleDebugValue`, we need know specifically which values were
1509   // invalid, so that we attempt to salvage only those values when processing
1510   // a DIArgList.
1511   const Value *OrigV = V;
1512   DILocalVariable *Var = DDI.getVariable();
1513   DIExpression *Expr = DDI.getExpression();
1514   DebugLoc DL = DDI.getDebugLoc();
1515   unsigned SDOrder = DDI.getSDNodeOrder();
1516 
1517   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1518   // that DW_OP_stack_value is desired.
1519   bool StackValue = true;
1520 
1521   // Can this Value can be encoded without any further work?
1522   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1523     return;
1524 
1525   // Attempt to salvage back through as many instructions as possible. Bail if
1526   // a non-instruction is seen, such as a constant expression or global
1527   // variable. FIXME: Further work could recover those too.
1528   while (isa<Instruction>(V)) {
1529     const Instruction &VAsInst = *cast<const Instruction>(V);
1530     // Temporary "0", awaiting real implementation.
1531     SmallVector<uint64_t, 16> Ops;
1532     SmallVector<Value *, 4> AdditionalValues;
1533     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1534                              Expr->getNumLocationOperands(), Ops,
1535                              AdditionalValues);
1536     // If we cannot salvage any further, and haven't yet found a suitable debug
1537     // expression, bail out.
1538     if (!V)
1539       break;
1540 
1541     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1542     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1543     // here for variadic dbg_values, remove that condition.
1544     if (!AdditionalValues.empty())
1545       break;
1546 
1547     // New value and expr now represent this debuginfo.
1548     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1549 
1550     // Some kind of simplification occurred: check whether the operand of the
1551     // salvaged debug expression can be encoded in this DAG.
1552     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1553       LLVM_DEBUG(
1554           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1555                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1556       return;
1557     }
1558   }
1559 
1560   // This was the final opportunity to salvage this debug information, and it
1561   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1562   // any earlier variable location.
1563   assert(OrigV && "V shouldn't be null");
1564   auto *Undef = UndefValue::get(OrigV->getType());
1565   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1566   DAG.AddDbgValue(SDV, false);
1567   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1568                     << printDDI(OrigV, DDI) << "\n");
1569 }
1570 
1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1572                                                DIExpression *Expr,
1573                                                DebugLoc DbgLoc,
1574                                                unsigned Order) {
1575   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1576   DIExpression *NewExpr =
1577       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1578   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1579                    /*IsVariadic*/ false);
1580 }
1581 
1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1583                                            DILocalVariable *Var,
1584                                            DIExpression *Expr, DebugLoc DbgLoc,
1585                                            unsigned Order, bool IsVariadic) {
1586   if (Values.empty())
1587     return true;
1588 
1589   // Filter EntryValue locations out early.
1590   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1591     return true;
1592 
1593   SmallVector<SDDbgOperand> LocationOps;
1594   SmallVector<SDNode *> Dependencies;
1595   for (const Value *V : Values) {
1596     // Constant value.
1597     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1598         isa<ConstantPointerNull>(V)) {
1599       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1600       continue;
1601     }
1602 
1603     // Look through IntToPtr constants.
1604     if (auto *CE = dyn_cast<ConstantExpr>(V))
1605       if (CE->getOpcode() == Instruction::IntToPtr) {
1606         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1607         continue;
1608       }
1609 
1610     // If the Value is a frame index, we can create a FrameIndex debug value
1611     // without relying on the DAG at all.
1612     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1613       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1614       if (SI != FuncInfo.StaticAllocaMap.end()) {
1615         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1616         continue;
1617       }
1618     }
1619 
1620     // Do not use getValue() in here; we don't want to generate code at
1621     // this point if it hasn't been done yet.
1622     SDValue N = NodeMap[V];
1623     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1624       N = UnusedArgNodeMap[V];
1625     if (N.getNode()) {
1626       // Only emit func arg dbg value for non-variadic dbg.values for now.
1627       if (!IsVariadic &&
1628           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1629                                    FuncArgumentDbgValueKind::Value, N))
1630         return true;
1631       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1632         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1633         // describe stack slot locations.
1634         //
1635         // Consider "int x = 0; int *px = &x;". There are two kinds of
1636         // interesting debug values here after optimization:
1637         //
1638         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1639         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1640         //
1641         // Both describe the direct values of their associated variables.
1642         Dependencies.push_back(N.getNode());
1643         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1644         continue;
1645       }
1646       LocationOps.emplace_back(
1647           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1648       continue;
1649     }
1650 
1651     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1652     // Special rules apply for the first dbg.values of parameter variables in a
1653     // function. Identify them by the fact they reference Argument Values, that
1654     // they're parameters, and they are parameters of the current function. We
1655     // need to let them dangle until they get an SDNode.
1656     bool IsParamOfFunc =
1657         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1658     if (IsParamOfFunc)
1659       return false;
1660 
1661     // The value is not used in this block yet (or it would have an SDNode).
1662     // We still want the value to appear for the user if possible -- if it has
1663     // an associated VReg, we can refer to that instead.
1664     auto VMI = FuncInfo.ValueMap.find(V);
1665     if (VMI != FuncInfo.ValueMap.end()) {
1666       unsigned Reg = VMI->second;
1667       // If this is a PHI node, it may be split up into several MI PHI nodes
1668       // (in FunctionLoweringInfo::set).
1669       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1670                        V->getType(), std::nullopt);
1671       if (RFV.occupiesMultipleRegs()) {
1672         // FIXME: We could potentially support variadic dbg_values here.
1673         if (IsVariadic)
1674           return false;
1675         unsigned Offset = 0;
1676         unsigned BitsToDescribe = 0;
1677         if (auto VarSize = Var->getSizeInBits())
1678           BitsToDescribe = *VarSize;
1679         if (auto Fragment = Expr->getFragmentInfo())
1680           BitsToDescribe = Fragment->SizeInBits;
1681         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1682           // Bail out if all bits are described already.
1683           if (Offset >= BitsToDescribe)
1684             break;
1685           // TODO: handle scalable vectors.
1686           unsigned RegisterSize = RegAndSize.second;
1687           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1688                                       ? BitsToDescribe - Offset
1689                                       : RegisterSize;
1690           auto FragmentExpr = DIExpression::createFragmentExpression(
1691               Expr, Offset, FragmentSize);
1692           if (!FragmentExpr)
1693             continue;
1694           SDDbgValue *SDV = DAG.getVRegDbgValue(
1695               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1696           DAG.AddDbgValue(SDV, false);
1697           Offset += RegisterSize;
1698         }
1699         return true;
1700       }
1701       // We can use simple vreg locations for variadic dbg_values as well.
1702       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1703       continue;
1704     }
1705     // We failed to create a SDDbgOperand for V.
1706     return false;
1707   }
1708 
1709   // We have created a SDDbgOperand for each Value in Values.
1710   assert(!LocationOps.empty());
1711   SDDbgValue *SDV =
1712       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1713                           /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1714   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1715   return true;
1716 }
1717 
1718 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1719   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1720   for (auto &Pair : DanglingDebugInfoMap)
1721     for (auto &DDI : Pair.second)
1722       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1723   clearDanglingDebugInfo();
1724 }
1725 
1726 /// getCopyFromRegs - If there was virtual register allocated for the value V
1727 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1728 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1729   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1730   SDValue Result;
1731 
1732   if (It != FuncInfo.ValueMap.end()) {
1733     Register InReg = It->second;
1734 
1735     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1736                      DAG.getDataLayout(), InReg, Ty,
1737                      std::nullopt); // This is not an ABI copy.
1738     SDValue Chain = DAG.getEntryNode();
1739     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1740                                  V);
1741     resolveDanglingDebugInfo(V, Result);
1742   }
1743 
1744   return Result;
1745 }
1746 
1747 /// getValue - Return an SDValue for the given Value.
1748 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1749   // If we already have an SDValue for this value, use it. It's important
1750   // to do this first, so that we don't create a CopyFromReg if we already
1751   // have a regular SDValue.
1752   SDValue &N = NodeMap[V];
1753   if (N.getNode()) return N;
1754 
1755   // If there's a virtual register allocated and initialized for this
1756   // value, use it.
1757   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1758     return copyFromReg;
1759 
1760   // Otherwise create a new SDValue and remember it.
1761   SDValue Val = getValueImpl(V);
1762   NodeMap[V] = Val;
1763   resolveDanglingDebugInfo(V, Val);
1764   return Val;
1765 }
1766 
1767 /// getNonRegisterValue - Return an SDValue for the given Value, but
1768 /// don't look in FuncInfo.ValueMap for a virtual register.
1769 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1770   // If we already have an SDValue for this value, use it.
1771   SDValue &N = NodeMap[V];
1772   if (N.getNode()) {
1773     if (isIntOrFPConstant(N)) {
1774       // Remove the debug location from the node as the node is about to be used
1775       // in a location which may differ from the original debug location.  This
1776       // is relevant to Constant and ConstantFP nodes because they can appear
1777       // as constant expressions inside PHI nodes.
1778       N->setDebugLoc(DebugLoc());
1779     }
1780     return N;
1781   }
1782 
1783   // Otherwise create a new SDValue and remember it.
1784   SDValue Val = getValueImpl(V);
1785   NodeMap[V] = Val;
1786   resolveDanglingDebugInfo(V, Val);
1787   return Val;
1788 }
1789 
1790 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1791 /// Create an SDValue for the given value.
1792 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1794 
1795   if (const Constant *C = dyn_cast<Constant>(V)) {
1796     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1797 
1798     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1799       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1800 
1801     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1802       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1803 
1804     if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1805       return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1806                          getValue(CPA->getPointer()), getValue(CPA->getKey()),
1807                          getValue(CPA->getAddrDiscriminator()),
1808                          getValue(CPA->getDiscriminator()));
1809     }
1810 
1811     if (isa<ConstantPointerNull>(C)) {
1812       unsigned AS = V->getType()->getPointerAddressSpace();
1813       return DAG.getConstant(0, getCurSDLoc(),
1814                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1815     }
1816 
1817     if (match(C, m_VScale()))
1818       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1819 
1820     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1821       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1822 
1823     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1824       return DAG.getUNDEF(VT);
1825 
1826     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1827       visit(CE->getOpcode(), *CE);
1828       SDValue N1 = NodeMap[V];
1829       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1830       return N1;
1831     }
1832 
1833     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1834       SmallVector<SDValue, 4> Constants;
1835       for (const Use &U : C->operands()) {
1836         SDNode *Val = getValue(U).getNode();
1837         // If the operand is an empty aggregate, there are no values.
1838         if (!Val) continue;
1839         // Add each leaf value from the operand to the Constants list
1840         // to form a flattened list of all the values.
1841         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1842           Constants.push_back(SDValue(Val, i));
1843       }
1844 
1845       return DAG.getMergeValues(Constants, getCurSDLoc());
1846     }
1847 
1848     if (const ConstantDataSequential *CDS =
1849           dyn_cast<ConstantDataSequential>(C)) {
1850       SmallVector<SDValue, 4> Ops;
1851       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1852         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1853         // Add each leaf value from the operand to the Constants list
1854         // to form a flattened list of all the values.
1855         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1856           Ops.push_back(SDValue(Val, i));
1857       }
1858 
1859       if (isa<ArrayType>(CDS->getType()))
1860         return DAG.getMergeValues(Ops, getCurSDLoc());
1861       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1862     }
1863 
1864     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1865       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1866              "Unknown struct or array constant!");
1867 
1868       SmallVector<EVT, 4> ValueVTs;
1869       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1870       unsigned NumElts = ValueVTs.size();
1871       if (NumElts == 0)
1872         return SDValue(); // empty struct
1873       SmallVector<SDValue, 4> Constants(NumElts);
1874       for (unsigned i = 0; i != NumElts; ++i) {
1875         EVT EltVT = ValueVTs[i];
1876         if (isa<UndefValue>(C))
1877           Constants[i] = DAG.getUNDEF(EltVT);
1878         else if (EltVT.isFloatingPoint())
1879           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1880         else
1881           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1882       }
1883 
1884       return DAG.getMergeValues(Constants, getCurSDLoc());
1885     }
1886 
1887     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1888       return DAG.getBlockAddress(BA, VT);
1889 
1890     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1891       return getValue(Equiv->getGlobalValue());
1892 
1893     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1894       return getValue(NC->getGlobalValue());
1895 
1896     if (VT == MVT::aarch64svcount) {
1897       assert(C->isNullValue() && "Can only zero this target type!");
1898       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1899                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1900     }
1901 
1902     VectorType *VecTy = cast<VectorType>(V->getType());
1903 
1904     // Now that we know the number and type of the elements, get that number of
1905     // elements into the Ops array based on what kind of constant it is.
1906     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1907       SmallVector<SDValue, 16> Ops;
1908       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1909       for (unsigned i = 0; i != NumElements; ++i)
1910         Ops.push_back(getValue(CV->getOperand(i)));
1911 
1912       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1913     }
1914 
1915     if (isa<ConstantAggregateZero>(C)) {
1916       EVT EltVT =
1917           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1918 
1919       SDValue Op;
1920       if (EltVT.isFloatingPoint())
1921         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1922       else
1923         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1924 
1925       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1926     }
1927 
1928     llvm_unreachable("Unknown vector constant");
1929   }
1930 
1931   // If this is a static alloca, generate it as the frameindex instead of
1932   // computation.
1933   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1934     DenseMap<const AllocaInst*, int>::iterator SI =
1935       FuncInfo.StaticAllocaMap.find(AI);
1936     if (SI != FuncInfo.StaticAllocaMap.end())
1937       return DAG.getFrameIndex(
1938           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1939   }
1940 
1941   // If this is an instruction which fast-isel has deferred, select it now.
1942   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1943     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1944 
1945     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1946                      Inst->getType(), std::nullopt);
1947     SDValue Chain = DAG.getEntryNode();
1948     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1949   }
1950 
1951   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1952     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1953 
1954   if (const auto *BB = dyn_cast<BasicBlock>(V))
1955     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1956 
1957   llvm_unreachable("Can't get register for value!");
1958 }
1959 
1960 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1961   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1962   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1963   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1964   bool IsSEH = isAsynchronousEHPersonality(Pers);
1965   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1966   if (!IsSEH)
1967     CatchPadMBB->setIsEHScopeEntry();
1968   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1969   if (IsMSVCCXX || IsCoreCLR)
1970     CatchPadMBB->setIsEHFuncletEntry();
1971 }
1972 
1973 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1974   // Update machine-CFG edge.
1975   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1976   FuncInfo.MBB->addSuccessor(TargetMBB);
1977   TargetMBB->setIsEHCatchretTarget(true);
1978   DAG.getMachineFunction().setHasEHCatchret(true);
1979 
1980   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1981   bool IsSEH = isAsynchronousEHPersonality(Pers);
1982   if (IsSEH) {
1983     // If this is not a fall-through branch or optimizations are switched off,
1984     // emit the branch.
1985     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1986         TM.getOptLevel() == CodeGenOptLevel::None)
1987       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1988                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1989     return;
1990   }
1991 
1992   // Figure out the funclet membership for the catchret's successor.
1993   // This will be used by the FuncletLayout pass to determine how to order the
1994   // BB's.
1995   // A 'catchret' returns to the outer scope's color.
1996   Value *ParentPad = I.getCatchSwitchParentPad();
1997   const BasicBlock *SuccessorColor;
1998   if (isa<ConstantTokenNone>(ParentPad))
1999     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2000   else
2001     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2002   assert(SuccessorColor && "No parent funclet for catchret!");
2003   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
2004   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2005 
2006   // Create the terminator node.
2007   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2008                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
2009                             DAG.getBasicBlock(SuccessorColorMBB));
2010   DAG.setRoot(Ret);
2011 }
2012 
2013 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2014   // Don't emit any special code for the cleanuppad instruction. It just marks
2015   // the start of an EH scope/funclet.
2016   FuncInfo.MBB->setIsEHScopeEntry();
2017   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2018   if (Pers != EHPersonality::Wasm_CXX) {
2019     FuncInfo.MBB->setIsEHFuncletEntry();
2020     FuncInfo.MBB->setIsCleanupFuncletEntry();
2021   }
2022 }
2023 
2024 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2025 // not match, it is OK to add only the first unwind destination catchpad to the
2026 // successors, because there will be at least one invoke instruction within the
2027 // catch scope that points to the next unwind destination, if one exists, so
2028 // CFGSort cannot mess up with BB sorting order.
2029 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2030 // call within them, and catchpads only consisting of 'catch (...)' have a
2031 // '__cxa_end_catch' call within them, both of which generate invokes in case
2032 // the next unwind destination exists, i.e., the next unwind destination is not
2033 // the caller.)
2034 //
2035 // Having at most one EH pad successor is also simpler and helps later
2036 // transformations.
2037 //
2038 // For example,
2039 // current:
2040 //   invoke void @foo to ... unwind label %catch.dispatch
2041 // catch.dispatch:
2042 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2043 // catch.start:
2044 //   ...
2045 //   ... in this BB or some other child BB dominated by this BB there will be an
2046 //   invoke that points to 'next' BB as an unwind destination
2047 //
2048 // next: ; We don't need to add this to 'current' BB's successor
2049 //   ...
2050 static void findWasmUnwindDestinations(
2051     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2052     BranchProbability Prob,
2053     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2054         &UnwindDests) {
2055   while (EHPadBB) {
2056     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2057     if (isa<CleanupPadInst>(Pad)) {
2058       // Stop on cleanup pads.
2059       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2060       UnwindDests.back().first->setIsEHScopeEntry();
2061       break;
2062     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2063       // Add the catchpad handlers to the possible destinations. We don't
2064       // continue to the unwind destination of the catchswitch for wasm.
2065       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2066         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2067         UnwindDests.back().first->setIsEHScopeEntry();
2068       }
2069       break;
2070     } else {
2071       continue;
2072     }
2073   }
2074 }
2075 
2076 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2077 /// many places it could ultimately go. In the IR, we have a single unwind
2078 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2079 /// This function skips over imaginary basic blocks that hold catchswitch
2080 /// instructions, and finds all the "real" machine
2081 /// basic block destinations. As those destinations may not be successors of
2082 /// EHPadBB, here we also calculate the edge probability to those destinations.
2083 /// The passed-in Prob is the edge probability to EHPadBB.
2084 static void findUnwindDestinations(
2085     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2086     BranchProbability Prob,
2087     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2088         &UnwindDests) {
2089   EHPersonality Personality =
2090     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2091   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2092   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2093   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2094   bool IsSEH = isAsynchronousEHPersonality(Personality);
2095 
2096   if (IsWasmCXX) {
2097     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2098     assert(UnwindDests.size() <= 1 &&
2099            "There should be at most one unwind destination for wasm");
2100     return;
2101   }
2102 
2103   while (EHPadBB) {
2104     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2105     BasicBlock *NewEHPadBB = nullptr;
2106     if (isa<LandingPadInst>(Pad)) {
2107       // Stop on landingpads. They are not funclets.
2108       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2109       break;
2110     } else if (isa<CleanupPadInst>(Pad)) {
2111       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2112       // personalities.
2113       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2114       UnwindDests.back().first->setIsEHScopeEntry();
2115       UnwindDests.back().first->setIsEHFuncletEntry();
2116       break;
2117     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2118       // Add the catchpad handlers to the possible destinations.
2119       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2120         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2121         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2122         if (IsMSVCCXX || IsCoreCLR)
2123           UnwindDests.back().first->setIsEHFuncletEntry();
2124         if (!IsSEH)
2125           UnwindDests.back().first->setIsEHScopeEntry();
2126       }
2127       NewEHPadBB = CatchSwitch->getUnwindDest();
2128     } else {
2129       continue;
2130     }
2131 
2132     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2133     if (BPI && NewEHPadBB)
2134       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2135     EHPadBB = NewEHPadBB;
2136   }
2137 }
2138 
2139 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2140   // Update successor info.
2141   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2142   auto UnwindDest = I.getUnwindDest();
2143   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2144   BranchProbability UnwindDestProb =
2145       (BPI && UnwindDest)
2146           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2147           : BranchProbability::getZero();
2148   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2149   for (auto &UnwindDest : UnwindDests) {
2150     UnwindDest.first->setIsEHPad();
2151     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2152   }
2153   FuncInfo.MBB->normalizeSuccProbs();
2154 
2155   // Create the terminator node.
2156   SDValue Ret =
2157       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2158   DAG.setRoot(Ret);
2159 }
2160 
2161 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2162   report_fatal_error("visitCatchSwitch not yet implemented!");
2163 }
2164 
2165 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2167   auto &DL = DAG.getDataLayout();
2168   SDValue Chain = getControlRoot();
2169   SmallVector<ISD::OutputArg, 8> Outs;
2170   SmallVector<SDValue, 8> OutVals;
2171 
2172   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2173   // lower
2174   //
2175   //   %val = call <ty> @llvm.experimental.deoptimize()
2176   //   ret <ty> %val
2177   //
2178   // differently.
2179   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2180     LowerDeoptimizingReturn();
2181     return;
2182   }
2183 
2184   if (!FuncInfo.CanLowerReturn) {
2185     unsigned DemoteReg = FuncInfo.DemoteRegister;
2186     const Function *F = I.getParent()->getParent();
2187 
2188     // Emit a store of the return value through the virtual register.
2189     // Leave Outs empty so that LowerReturn won't try to load return
2190     // registers the usual way.
2191     SmallVector<EVT, 1> PtrValueVTs;
2192     ComputeValueVTs(TLI, DL,
2193                     PointerType::get(F->getContext(),
2194                                      DAG.getDataLayout().getAllocaAddrSpace()),
2195                     PtrValueVTs);
2196 
2197     SDValue RetPtr =
2198         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2199     SDValue RetOp = getValue(I.getOperand(0));
2200 
2201     SmallVector<EVT, 4> ValueVTs, MemVTs;
2202     SmallVector<uint64_t, 4> Offsets;
2203     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2204                     &Offsets, 0);
2205     unsigned NumValues = ValueVTs.size();
2206 
2207     SmallVector<SDValue, 4> Chains(NumValues);
2208     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2209     for (unsigned i = 0; i != NumValues; ++i) {
2210       // An aggregate return value cannot wrap around the address space, so
2211       // offsets to its parts don't wrap either.
2212       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2213                                            TypeSize::getFixed(Offsets[i]));
2214 
2215       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2216       if (MemVTs[i] != ValueVTs[i])
2217         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2218       Chains[i] = DAG.getStore(
2219           Chain, getCurSDLoc(), Val,
2220           // FIXME: better loc info would be nice.
2221           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2222           commonAlignment(BaseAlign, Offsets[i]));
2223     }
2224 
2225     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2226                         MVT::Other, Chains);
2227   } else if (I.getNumOperands() != 0) {
2228     SmallVector<EVT, 4> ValueVTs;
2229     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2230     unsigned NumValues = ValueVTs.size();
2231     if (NumValues) {
2232       SDValue RetOp = getValue(I.getOperand(0));
2233 
2234       const Function *F = I.getParent()->getParent();
2235 
2236       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2237           I.getOperand(0)->getType(), F->getCallingConv(),
2238           /*IsVarArg*/ false, DL);
2239 
2240       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2241       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2242         ExtendKind = ISD::SIGN_EXTEND;
2243       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2244         ExtendKind = ISD::ZERO_EXTEND;
2245 
2246       LLVMContext &Context = F->getContext();
2247       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2248 
2249       for (unsigned j = 0; j != NumValues; ++j) {
2250         EVT VT = ValueVTs[j];
2251 
2252         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2253           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2254 
2255         CallingConv::ID CC = F->getCallingConv();
2256 
2257         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2258         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2259         SmallVector<SDValue, 4> Parts(NumParts);
2260         getCopyToParts(DAG, getCurSDLoc(),
2261                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2262                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2263 
2264         // 'inreg' on function refers to return value
2265         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2266         if (RetInReg)
2267           Flags.setInReg();
2268 
2269         if (I.getOperand(0)->getType()->isPointerTy()) {
2270           Flags.setPointer();
2271           Flags.setPointerAddrSpace(
2272               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2273         }
2274 
2275         if (NeedsRegBlock) {
2276           Flags.setInConsecutiveRegs();
2277           if (j == NumValues - 1)
2278             Flags.setInConsecutiveRegsLast();
2279         }
2280 
2281         // Propagate extension type if any
2282         if (ExtendKind == ISD::SIGN_EXTEND)
2283           Flags.setSExt();
2284         else if (ExtendKind == ISD::ZERO_EXTEND)
2285           Flags.setZExt();
2286 
2287         for (unsigned i = 0; i < NumParts; ++i) {
2288           Outs.push_back(ISD::OutputArg(Flags,
2289                                         Parts[i].getValueType().getSimpleVT(),
2290                                         VT, /*isfixed=*/true, 0, 0));
2291           OutVals.push_back(Parts[i]);
2292         }
2293       }
2294     }
2295   }
2296 
2297   // Push in swifterror virtual register as the last element of Outs. This makes
2298   // sure swifterror virtual register will be returned in the swifterror
2299   // physical register.
2300   const Function *F = I.getParent()->getParent();
2301   if (TLI.supportSwiftError() &&
2302       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2303     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2304     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2305     Flags.setSwiftError();
2306     Outs.push_back(ISD::OutputArg(
2307         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2308         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2309     // Create SDNode for the swifterror virtual register.
2310     OutVals.push_back(
2311         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2312                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2313                         EVT(TLI.getPointerTy(DL))));
2314   }
2315 
2316   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2317   CallingConv::ID CallConv =
2318     DAG.getMachineFunction().getFunction().getCallingConv();
2319   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2320       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2321 
2322   // Verify that the target's LowerReturn behaved as expected.
2323   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2324          "LowerReturn didn't return a valid chain!");
2325 
2326   // Update the DAG with the new chain value resulting from return lowering.
2327   DAG.setRoot(Chain);
2328 }
2329 
2330 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2331 /// created for it, emit nodes to copy the value into the virtual
2332 /// registers.
2333 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2334   // Skip empty types
2335   if (V->getType()->isEmptyTy())
2336     return;
2337 
2338   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2339   if (VMI != FuncInfo.ValueMap.end()) {
2340     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2341            "Unused value assigned virtual registers!");
2342     CopyValueToVirtualRegister(V, VMI->second);
2343   }
2344 }
2345 
2346 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2347 /// the current basic block, add it to ValueMap now so that we'll get a
2348 /// CopyTo/FromReg.
2349 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2350   // No need to export constants.
2351   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2352 
2353   // Already exported?
2354   if (FuncInfo.isExportedInst(V)) return;
2355 
2356   Register Reg = FuncInfo.InitializeRegForValue(V);
2357   CopyValueToVirtualRegister(V, Reg);
2358 }
2359 
2360 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2361                                                      const BasicBlock *FromBB) {
2362   // The operands of the setcc have to be in this block.  We don't know
2363   // how to export them from some other block.
2364   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2365     // Can export from current BB.
2366     if (VI->getParent() == FromBB)
2367       return true;
2368 
2369     // Is already exported, noop.
2370     return FuncInfo.isExportedInst(V);
2371   }
2372 
2373   // If this is an argument, we can export it if the BB is the entry block or
2374   // if it is already exported.
2375   if (isa<Argument>(V)) {
2376     if (FromBB->isEntryBlock())
2377       return true;
2378 
2379     // Otherwise, can only export this if it is already exported.
2380     return FuncInfo.isExportedInst(V);
2381   }
2382 
2383   // Otherwise, constants can always be exported.
2384   return true;
2385 }
2386 
2387 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2388 BranchProbability
2389 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2390                                         const MachineBasicBlock *Dst) const {
2391   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2392   const BasicBlock *SrcBB = Src->getBasicBlock();
2393   const BasicBlock *DstBB = Dst->getBasicBlock();
2394   if (!BPI) {
2395     // If BPI is not available, set the default probability as 1 / N, where N is
2396     // the number of successors.
2397     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2398     return BranchProbability(1, SuccSize);
2399   }
2400   return BPI->getEdgeProbability(SrcBB, DstBB);
2401 }
2402 
2403 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2404                                                MachineBasicBlock *Dst,
2405                                                BranchProbability Prob) {
2406   if (!FuncInfo.BPI)
2407     Src->addSuccessorWithoutProb(Dst);
2408   else {
2409     if (Prob.isUnknown())
2410       Prob = getEdgeProbability(Src, Dst);
2411     Src->addSuccessor(Dst, Prob);
2412   }
2413 }
2414 
2415 static bool InBlock(const Value *V, const BasicBlock *BB) {
2416   if (const Instruction *I = dyn_cast<Instruction>(V))
2417     return I->getParent() == BB;
2418   return true;
2419 }
2420 
2421 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2422 /// This function emits a branch and is used at the leaves of an OR or an
2423 /// AND operator tree.
2424 void
2425 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2426                                                   MachineBasicBlock *TBB,
2427                                                   MachineBasicBlock *FBB,
2428                                                   MachineBasicBlock *CurBB,
2429                                                   MachineBasicBlock *SwitchBB,
2430                                                   BranchProbability TProb,
2431                                                   BranchProbability FProb,
2432                                                   bool InvertCond) {
2433   const BasicBlock *BB = CurBB->getBasicBlock();
2434 
2435   // If the leaf of the tree is a comparison, merge the condition into
2436   // the caseblock.
2437   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2438     // The operands of the cmp have to be in this block.  We don't know
2439     // how to export them from some other block.  If this is the first block
2440     // of the sequence, no exporting is needed.
2441     if (CurBB == SwitchBB ||
2442         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2443          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2444       ISD::CondCode Condition;
2445       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2446         ICmpInst::Predicate Pred =
2447             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2448         Condition = getICmpCondCode(Pred);
2449       } else {
2450         const FCmpInst *FC = cast<FCmpInst>(Cond);
2451         FCmpInst::Predicate Pred =
2452             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2453         Condition = getFCmpCondCode(Pred);
2454         if (TM.Options.NoNaNsFPMath)
2455           Condition = getFCmpCodeWithoutNaN(Condition);
2456       }
2457 
2458       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2459                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2460       SL->SwitchCases.push_back(CB);
2461       return;
2462     }
2463   }
2464 
2465   // Create a CaseBlock record representing this branch.
2466   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2467   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2468                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2469   SL->SwitchCases.push_back(CB);
2470 }
2471 
2472 // Collect dependencies on V recursively. This is used for the cost analysis in
2473 // `shouldKeepJumpConditionsTogether`.
2474 static bool collectInstructionDeps(
2475     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2476     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2477     unsigned Depth = 0) {
2478   // Return false if we have an incomplete count.
2479   if (Depth >= SelectionDAG::MaxRecursionDepth)
2480     return false;
2481 
2482   auto *I = dyn_cast<Instruction>(V);
2483   if (I == nullptr)
2484     return true;
2485 
2486   if (Necessary != nullptr) {
2487     // This instruction is necessary for the other side of the condition so
2488     // don't count it.
2489     if (Necessary->contains(I))
2490       return true;
2491   }
2492 
2493   // Already added this dep.
2494   if (!Deps->try_emplace(I, false).second)
2495     return true;
2496 
2497   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2498     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2499                                 Depth + 1))
2500       return false;
2501   return true;
2502 }
2503 
2504 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2505     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2506     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2507     TargetLoweringBase::CondMergingParams Params) const {
2508   if (I.getNumSuccessors() != 2)
2509     return false;
2510 
2511   if (!I.isConditional())
2512     return false;
2513 
2514   if (Params.BaseCost < 0)
2515     return false;
2516 
2517   // Baseline cost.
2518   InstructionCost CostThresh = Params.BaseCost;
2519 
2520   BranchProbabilityInfo *BPI = nullptr;
2521   if (Params.LikelyBias || Params.UnlikelyBias)
2522     BPI = FuncInfo.BPI;
2523   if (BPI != nullptr) {
2524     // See if we are either likely to get an early out or compute both lhs/rhs
2525     // of the condition.
2526     BasicBlock *IfFalse = I.getSuccessor(0);
2527     BasicBlock *IfTrue = I.getSuccessor(1);
2528 
2529     std::optional<bool> Likely;
2530     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2531       Likely = true;
2532     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2533       Likely = false;
2534 
2535     if (Likely) {
2536       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2537         // Its likely we will have to compute both lhs and rhs of condition
2538         CostThresh += Params.LikelyBias;
2539       else {
2540         if (Params.UnlikelyBias < 0)
2541           return false;
2542         // Its likely we will get an early out.
2543         CostThresh -= Params.UnlikelyBias;
2544       }
2545     }
2546   }
2547 
2548   if (CostThresh <= 0)
2549     return false;
2550 
2551   // Collect "all" instructions that lhs condition is dependent on.
2552   // Use map for stable iteration (to avoid non-determanism of iteration of
2553   // SmallPtrSet). The `bool` value is just a dummy.
2554   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2555   collectInstructionDeps(&LhsDeps, Lhs);
2556   // Collect "all" instructions that rhs condition is dependent on AND are
2557   // dependencies of lhs. This gives us an estimate on which instructions we
2558   // stand to save by splitting the condition.
2559   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2560     return false;
2561   // Add the compare instruction itself unless its a dependency on the LHS.
2562   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2563     if (!LhsDeps.contains(RhsI))
2564       RhsDeps.try_emplace(RhsI, false);
2565 
2566   const auto &TLI = DAG.getTargetLoweringInfo();
2567   const auto &TTI =
2568       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2569 
2570   InstructionCost CostOfIncluding = 0;
2571   // See if this instruction will need to computed independently of whether RHS
2572   // is.
2573   Value *BrCond = I.getCondition();
2574   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2575     for (const auto *U : Ins->users()) {
2576       // If user is independent of RHS calculation we don't need to count it.
2577       if (auto *UIns = dyn_cast<Instruction>(U))
2578         if (UIns != BrCond && !RhsDeps.contains(UIns))
2579           return false;
2580     }
2581     return true;
2582   };
2583 
2584   // Prune instructions from RHS Deps that are dependencies of unrelated
2585   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2586   // arbitrary and just meant to cap the how much time we spend in the pruning
2587   // loop. Its highly unlikely to come into affect.
2588   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2589   // Stop after a certain point. No incorrectness from including too many
2590   // instructions.
2591   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2592     const Instruction *ToDrop = nullptr;
2593     for (const auto &InsPair : RhsDeps) {
2594       if (!ShouldCountInsn(InsPair.first)) {
2595         ToDrop = InsPair.first;
2596         break;
2597       }
2598     }
2599     if (ToDrop == nullptr)
2600       break;
2601     RhsDeps.erase(ToDrop);
2602   }
2603 
2604   for (const auto &InsPair : RhsDeps) {
2605     // Finally accumulate latency that we can only attribute to computing the
2606     // RHS condition. Use latency because we are essentially trying to calculate
2607     // the cost of the dependency chain.
2608     // Possible TODO: We could try to estimate ILP and make this more precise.
2609     CostOfIncluding +=
2610         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2611 
2612     if (CostOfIncluding > CostThresh)
2613       return false;
2614   }
2615   return true;
2616 }
2617 
2618 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2619                                                MachineBasicBlock *TBB,
2620                                                MachineBasicBlock *FBB,
2621                                                MachineBasicBlock *CurBB,
2622                                                MachineBasicBlock *SwitchBB,
2623                                                Instruction::BinaryOps Opc,
2624                                                BranchProbability TProb,
2625                                                BranchProbability FProb,
2626                                                bool InvertCond) {
2627   // Skip over not part of the tree and remember to invert op and operands at
2628   // next level.
2629   Value *NotCond;
2630   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2631       InBlock(NotCond, CurBB->getBasicBlock())) {
2632     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2633                          !InvertCond);
2634     return;
2635   }
2636 
2637   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2638   const Value *BOpOp0, *BOpOp1;
2639   // Compute the effective opcode for Cond, taking into account whether it needs
2640   // to be inverted, e.g.
2641   //   and (not (or A, B)), C
2642   // gets lowered as
2643   //   and (and (not A, not B), C)
2644   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2645   if (BOp) {
2646     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2647                ? Instruction::And
2648                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2649                       ? Instruction::Or
2650                       : (Instruction::BinaryOps)0);
2651     if (InvertCond) {
2652       if (BOpc == Instruction::And)
2653         BOpc = Instruction::Or;
2654       else if (BOpc == Instruction::Or)
2655         BOpc = Instruction::And;
2656     }
2657   }
2658 
2659   // If this node is not part of the or/and tree, emit it as a branch.
2660   // Note that all nodes in the tree should have same opcode.
2661   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2662   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2663       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2664       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2665     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2666                                  TProb, FProb, InvertCond);
2667     return;
2668   }
2669 
2670   //  Create TmpBB after CurBB.
2671   MachineFunction::iterator BBI(CurBB);
2672   MachineFunction &MF = DAG.getMachineFunction();
2673   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2674   CurBB->getParent()->insert(++BBI, TmpBB);
2675 
2676   if (Opc == Instruction::Or) {
2677     // Codegen X | Y as:
2678     // BB1:
2679     //   jmp_if_X TBB
2680     //   jmp TmpBB
2681     // TmpBB:
2682     //   jmp_if_Y TBB
2683     //   jmp FBB
2684     //
2685 
2686     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2687     // The requirement is that
2688     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2689     //     = TrueProb for original BB.
2690     // Assuming the original probabilities are A and B, one choice is to set
2691     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2692     // A/(1+B) and 2B/(1+B). This choice assumes that
2693     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2694     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2695     // TmpBB, but the math is more complicated.
2696 
2697     auto NewTrueProb = TProb / 2;
2698     auto NewFalseProb = TProb / 2 + FProb;
2699     // Emit the LHS condition.
2700     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2701                          NewFalseProb, InvertCond);
2702 
2703     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2704     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2705     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2706     // Emit the RHS condition into TmpBB.
2707     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2708                          Probs[1], InvertCond);
2709   } else {
2710     assert(Opc == Instruction::And && "Unknown merge op!");
2711     // Codegen X & Y as:
2712     // BB1:
2713     //   jmp_if_X TmpBB
2714     //   jmp FBB
2715     // TmpBB:
2716     //   jmp_if_Y TBB
2717     //   jmp FBB
2718     //
2719     //  This requires creation of TmpBB after CurBB.
2720 
2721     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2722     // The requirement is that
2723     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2724     //     = FalseProb for original BB.
2725     // Assuming the original probabilities are A and B, one choice is to set
2726     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2727     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2728     // TrueProb for BB1 * FalseProb for TmpBB.
2729 
2730     auto NewTrueProb = TProb + FProb / 2;
2731     auto NewFalseProb = FProb / 2;
2732     // Emit the LHS condition.
2733     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2734                          NewFalseProb, InvertCond);
2735 
2736     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2737     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2738     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2739     // Emit the RHS condition into TmpBB.
2740     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2741                          Probs[1], InvertCond);
2742   }
2743 }
2744 
2745 /// If the set of cases should be emitted as a series of branches, return true.
2746 /// If we should emit this as a bunch of and/or'd together conditions, return
2747 /// false.
2748 bool
2749 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2750   if (Cases.size() != 2) return true;
2751 
2752   // If this is two comparisons of the same values or'd or and'd together, they
2753   // will get folded into a single comparison, so don't emit two blocks.
2754   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2755        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2756       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2757        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2758     return false;
2759   }
2760 
2761   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2762   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2763   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2764       Cases[0].CC == Cases[1].CC &&
2765       isa<Constant>(Cases[0].CmpRHS) &&
2766       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2767     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2768       return false;
2769     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2770       return false;
2771   }
2772 
2773   return true;
2774 }
2775 
2776 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2777   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2778 
2779   // Update machine-CFG edges.
2780   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2781 
2782   if (I.isUnconditional()) {
2783     // Update machine-CFG edges.
2784     BrMBB->addSuccessor(Succ0MBB);
2785 
2786     // If this is not a fall-through branch or optimizations are switched off,
2787     // emit the branch.
2788     if (Succ0MBB != NextBlock(BrMBB) ||
2789         TM.getOptLevel() == CodeGenOptLevel::None) {
2790       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2791                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2792       setValue(&I, Br);
2793       DAG.setRoot(Br);
2794     }
2795 
2796     return;
2797   }
2798 
2799   // If this condition is one of the special cases we handle, do special stuff
2800   // now.
2801   const Value *CondVal = I.getCondition();
2802   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2803 
2804   // If this is a series of conditions that are or'd or and'd together, emit
2805   // this as a sequence of branches instead of setcc's with and/or operations.
2806   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2807   // unpredictable branches, and vector extracts because those jumps are likely
2808   // expensive for any target), this should improve performance.
2809   // For example, instead of something like:
2810   //     cmp A, B
2811   //     C = seteq
2812   //     cmp D, E
2813   //     F = setle
2814   //     or C, F
2815   //     jnz foo
2816   // Emit:
2817   //     cmp A, B
2818   //     je foo
2819   //     cmp D, E
2820   //     jle foo
2821   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2822   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2823       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2824     Value *Vec;
2825     const Value *BOp0, *BOp1;
2826     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2827     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2828       Opcode = Instruction::And;
2829     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2830       Opcode = Instruction::Or;
2831 
2832     if (Opcode &&
2833         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2834           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2835         !shouldKeepJumpConditionsTogether(
2836             FuncInfo, I, Opcode, BOp0, BOp1,
2837             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2838                 Opcode, BOp0, BOp1))) {
2839       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2840                            getEdgeProbability(BrMBB, Succ0MBB),
2841                            getEdgeProbability(BrMBB, Succ1MBB),
2842                            /*InvertCond=*/false);
2843       // If the compares in later blocks need to use values not currently
2844       // exported from this block, export them now.  This block should always
2845       // be the first entry.
2846       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2847 
2848       // Allow some cases to be rejected.
2849       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2850         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2851           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2852           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2853         }
2854 
2855         // Emit the branch for this block.
2856         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2857         SL->SwitchCases.erase(SL->SwitchCases.begin());
2858         return;
2859       }
2860 
2861       // Okay, we decided not to do this, remove any inserted MBB's and clear
2862       // SwitchCases.
2863       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2864         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2865 
2866       SL->SwitchCases.clear();
2867     }
2868   }
2869 
2870   // Create a CaseBlock record representing this branch.
2871   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2872                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2873 
2874   // Use visitSwitchCase to actually insert the fast branch sequence for this
2875   // cond branch.
2876   visitSwitchCase(CB, BrMBB);
2877 }
2878 
2879 /// visitSwitchCase - Emits the necessary code to represent a single node in
2880 /// the binary search tree resulting from lowering a switch instruction.
2881 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2882                                           MachineBasicBlock *SwitchBB) {
2883   SDValue Cond;
2884   SDValue CondLHS = getValue(CB.CmpLHS);
2885   SDLoc dl = CB.DL;
2886 
2887   if (CB.CC == ISD::SETTRUE) {
2888     // Branch or fall through to TrueBB.
2889     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2890     SwitchBB->normalizeSuccProbs();
2891     if (CB.TrueBB != NextBlock(SwitchBB)) {
2892       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2893                               DAG.getBasicBlock(CB.TrueBB)));
2894     }
2895     return;
2896   }
2897 
2898   auto &TLI = DAG.getTargetLoweringInfo();
2899   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2900 
2901   // Build the setcc now.
2902   if (!CB.CmpMHS) {
2903     // Fold "(X == true)" to X and "(X == false)" to !X to
2904     // handle common cases produced by branch lowering.
2905     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2906         CB.CC == ISD::SETEQ)
2907       Cond = CondLHS;
2908     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2909              CB.CC == ISD::SETEQ) {
2910       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2911       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2912     } else {
2913       SDValue CondRHS = getValue(CB.CmpRHS);
2914 
2915       // If a pointer's DAG type is larger than its memory type then the DAG
2916       // values are zero-extended. This breaks signed comparisons so truncate
2917       // back to the underlying type before doing the compare.
2918       if (CondLHS.getValueType() != MemVT) {
2919         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2920         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2921       }
2922       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2923     }
2924   } else {
2925     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2926 
2927     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2928     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2929 
2930     SDValue CmpOp = getValue(CB.CmpMHS);
2931     EVT VT = CmpOp.getValueType();
2932 
2933     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2934       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2935                           ISD::SETLE);
2936     } else {
2937       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2938                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2939       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2940                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2941     }
2942   }
2943 
2944   // Update successor info
2945   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2946   // TrueBB and FalseBB are always different unless the incoming IR is
2947   // degenerate. This only happens when running llc on weird IR.
2948   if (CB.TrueBB != CB.FalseBB)
2949     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2950   SwitchBB->normalizeSuccProbs();
2951 
2952   // If the lhs block is the next block, invert the condition so that we can
2953   // fall through to the lhs instead of the rhs block.
2954   if (CB.TrueBB == NextBlock(SwitchBB)) {
2955     std::swap(CB.TrueBB, CB.FalseBB);
2956     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2957     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2958   }
2959 
2960   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2961                                MVT::Other, getControlRoot(), Cond,
2962                                DAG.getBasicBlock(CB.TrueBB));
2963 
2964   setValue(CurInst, BrCond);
2965 
2966   // Insert the false branch. Do this even if it's a fall through branch,
2967   // this makes it easier to do DAG optimizations which require inverting
2968   // the branch condition.
2969   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2970                        DAG.getBasicBlock(CB.FalseBB));
2971 
2972   DAG.setRoot(BrCond);
2973 }
2974 
2975 /// visitJumpTable - Emit JumpTable node in the current MBB
2976 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2977   // Emit the code for the jump table
2978   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2979   assert(JT.Reg != -1U && "Should lower JT Header first!");
2980   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2981   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2982   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2983   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2984                                     Index.getValue(1), Table, Index);
2985   DAG.setRoot(BrJumpTable);
2986 }
2987 
2988 /// visitJumpTableHeader - This function emits necessary code to produce index
2989 /// in the JumpTable from switch case.
2990 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2991                                                JumpTableHeader &JTH,
2992                                                MachineBasicBlock *SwitchBB) {
2993   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2994   const SDLoc &dl = *JT.SL;
2995 
2996   // Subtract the lowest switch case value from the value being switched on.
2997   SDValue SwitchOp = getValue(JTH.SValue);
2998   EVT VT = SwitchOp.getValueType();
2999   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3000                             DAG.getConstant(JTH.First, dl, VT));
3001 
3002   // The SDNode we just created, which holds the value being switched on minus
3003   // the smallest case value, needs to be copied to a virtual register so it
3004   // can be used as an index into the jump table in a subsequent basic block.
3005   // This value may be smaller or larger than the target's pointer type, and
3006   // therefore require extension or truncating.
3007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3008   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
3009 
3010   unsigned JumpTableReg =
3011       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
3012   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
3013                                     JumpTableReg, SwitchOp);
3014   JT.Reg = JumpTableReg;
3015 
3016   if (!JTH.FallthroughUnreachable) {
3017     // Emit the range check for the jump table, and branch to the default block
3018     // for the switch statement if the value being switched on exceeds the
3019     // largest case in the switch.
3020     SDValue CMP = DAG.getSetCC(
3021         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3022                                    Sub.getValueType()),
3023         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3024 
3025     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3026                                  MVT::Other, CopyTo, CMP,
3027                                  DAG.getBasicBlock(JT.Default));
3028 
3029     // Avoid emitting unnecessary branches to the next block.
3030     if (JT.MBB != NextBlock(SwitchBB))
3031       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3032                            DAG.getBasicBlock(JT.MBB));
3033 
3034     DAG.setRoot(BrCond);
3035   } else {
3036     // Avoid emitting unnecessary branches to the next block.
3037     if (JT.MBB != NextBlock(SwitchBB))
3038       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3039                               DAG.getBasicBlock(JT.MBB)));
3040     else
3041       DAG.setRoot(CopyTo);
3042   }
3043 }
3044 
3045 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3046 /// variable if there exists one.
3047 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3048                                  SDValue &Chain) {
3049   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3050   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3051   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3052   MachineFunction &MF = DAG.getMachineFunction();
3053   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3054   MachineSDNode *Node =
3055       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3056   if (Global) {
3057     MachinePointerInfo MPInfo(Global);
3058     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3059                  MachineMemOperand::MODereferenceable;
3060     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3061         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3062         DAG.getEVTAlign(PtrTy));
3063     DAG.setNodeMemRefs(Node, {MemRef});
3064   }
3065   if (PtrTy != PtrMemTy)
3066     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3067   return SDValue(Node, 0);
3068 }
3069 
3070 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3071 /// tail spliced into a stack protector check success bb.
3072 ///
3073 /// For a high level explanation of how this fits into the stack protector
3074 /// generation see the comment on the declaration of class
3075 /// StackProtectorDescriptor.
3076 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3077                                                   MachineBasicBlock *ParentBB) {
3078 
3079   // First create the loads to the guard/stack slot for the comparison.
3080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3081   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3082   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3083 
3084   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3085   int FI = MFI.getStackProtectorIndex();
3086 
3087   SDValue Guard;
3088   SDLoc dl = getCurSDLoc();
3089   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3090   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3091   Align Align =
3092       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3093 
3094   // Generate code to load the content of the guard slot.
3095   SDValue GuardVal = DAG.getLoad(
3096       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3097       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3098       MachineMemOperand::MOVolatile);
3099 
3100   if (TLI.useStackGuardXorFP())
3101     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3102 
3103   // Retrieve guard check function, nullptr if instrumentation is inlined.
3104   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3105     // The target provides a guard check function to validate the guard value.
3106     // Generate a call to that function with the content of the guard slot as
3107     // argument.
3108     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3109     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3110 
3111     TargetLowering::ArgListTy Args;
3112     TargetLowering::ArgListEntry Entry;
3113     Entry.Node = GuardVal;
3114     Entry.Ty = FnTy->getParamType(0);
3115     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3116       Entry.IsInReg = true;
3117     Args.push_back(Entry);
3118 
3119     TargetLowering::CallLoweringInfo CLI(DAG);
3120     CLI.setDebugLoc(getCurSDLoc())
3121         .setChain(DAG.getEntryNode())
3122         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3123                    getValue(GuardCheckFn), std::move(Args));
3124 
3125     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3126     DAG.setRoot(Result.second);
3127     return;
3128   }
3129 
3130   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3131   // Otherwise, emit a volatile load to retrieve the stack guard value.
3132   SDValue Chain = DAG.getEntryNode();
3133   if (TLI.useLoadStackGuardNode()) {
3134     Guard = getLoadStackGuard(DAG, dl, Chain);
3135   } else {
3136     const Value *IRGuard = TLI.getSDagStackGuard(M);
3137     SDValue GuardPtr = getValue(IRGuard);
3138 
3139     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3140                         MachinePointerInfo(IRGuard, 0), Align,
3141                         MachineMemOperand::MOVolatile);
3142   }
3143 
3144   // Perform the comparison via a getsetcc.
3145   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3146                                                         *DAG.getContext(),
3147                                                         Guard.getValueType()),
3148                              Guard, GuardVal, ISD::SETNE);
3149 
3150   // If the guard/stackslot do not equal, branch to failure MBB.
3151   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3152                                MVT::Other, GuardVal.getOperand(0),
3153                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3154   // Otherwise branch to success MBB.
3155   SDValue Br = DAG.getNode(ISD::BR, dl,
3156                            MVT::Other, BrCond,
3157                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3158 
3159   DAG.setRoot(Br);
3160 }
3161 
3162 /// Codegen the failure basic block for a stack protector check.
3163 ///
3164 /// A failure stack protector machine basic block consists simply of a call to
3165 /// __stack_chk_fail().
3166 ///
3167 /// For a high level explanation of how this fits into the stack protector
3168 /// generation see the comment on the declaration of class
3169 /// StackProtectorDescriptor.
3170 void
3171 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3173   TargetLowering::MakeLibCallOptions CallOptions;
3174   CallOptions.setDiscardResult(true);
3175   SDValue Chain =
3176       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3177                       std::nullopt, CallOptions, getCurSDLoc())
3178           .second;
3179   // On PS4/PS5, the "return address" must still be within the calling
3180   // function, even if it's at the very end, so emit an explicit TRAP here.
3181   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3182   if (TM.getTargetTriple().isPS())
3183     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3184   // WebAssembly needs an unreachable instruction after a non-returning call,
3185   // because the function return type can be different from __stack_chk_fail's
3186   // return type (void).
3187   if (TM.getTargetTriple().isWasm())
3188     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3189 
3190   DAG.setRoot(Chain);
3191 }
3192 
3193 /// visitBitTestHeader - This function emits necessary code to produce value
3194 /// suitable for "bit tests"
3195 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3196                                              MachineBasicBlock *SwitchBB) {
3197   SDLoc dl = getCurSDLoc();
3198 
3199   // Subtract the minimum value.
3200   SDValue SwitchOp = getValue(B.SValue);
3201   EVT VT = SwitchOp.getValueType();
3202   SDValue RangeSub =
3203       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3204 
3205   // Determine the type of the test operands.
3206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3207   bool UsePtrType = false;
3208   if (!TLI.isTypeLegal(VT)) {
3209     UsePtrType = true;
3210   } else {
3211     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3212       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3213         // Switch table case range are encoded into series of masks.
3214         // Just use pointer type, it's guaranteed to fit.
3215         UsePtrType = true;
3216         break;
3217       }
3218   }
3219   SDValue Sub = RangeSub;
3220   if (UsePtrType) {
3221     VT = TLI.getPointerTy(DAG.getDataLayout());
3222     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3223   }
3224 
3225   B.RegVT = VT.getSimpleVT();
3226   B.Reg = FuncInfo.CreateReg(B.RegVT);
3227   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3228 
3229   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3230 
3231   if (!B.FallthroughUnreachable)
3232     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3233   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3234   SwitchBB->normalizeSuccProbs();
3235 
3236   SDValue Root = CopyTo;
3237   if (!B.FallthroughUnreachable) {
3238     // Conditional branch to the default block.
3239     SDValue RangeCmp = DAG.getSetCC(dl,
3240         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3241                                RangeSub.getValueType()),
3242         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3243         ISD::SETUGT);
3244 
3245     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3246                        DAG.getBasicBlock(B.Default));
3247   }
3248 
3249   // Avoid emitting unnecessary branches to the next block.
3250   if (MBB != NextBlock(SwitchBB))
3251     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3252 
3253   DAG.setRoot(Root);
3254 }
3255 
3256 /// visitBitTestCase - this function produces one "bit test"
3257 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3258                                            MachineBasicBlock* NextMBB,
3259                                            BranchProbability BranchProbToNext,
3260                                            unsigned Reg,
3261                                            BitTestCase &B,
3262                                            MachineBasicBlock *SwitchBB) {
3263   SDLoc dl = getCurSDLoc();
3264   MVT VT = BB.RegVT;
3265   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3266   SDValue Cmp;
3267   unsigned PopCount = llvm::popcount(B.Mask);
3268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3269   if (PopCount == 1) {
3270     // Testing for a single bit; just compare the shift count with what it
3271     // would need to be to shift a 1 bit in that position.
3272     Cmp = DAG.getSetCC(
3273         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3274         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3275         ISD::SETEQ);
3276   } else if (PopCount == BB.Range) {
3277     // There is only one zero bit in the range, test for it directly.
3278     Cmp = DAG.getSetCC(
3279         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3280         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3281   } else {
3282     // Make desired shift
3283     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3284                                     DAG.getConstant(1, dl, VT), ShiftOp);
3285 
3286     // Emit bit tests and jumps
3287     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3288                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3289     Cmp = DAG.getSetCC(
3290         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3291         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3292   }
3293 
3294   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3295   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3296   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3297   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3298   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3299   // one as they are relative probabilities (and thus work more like weights),
3300   // and hence we need to normalize them to let the sum of them become one.
3301   SwitchBB->normalizeSuccProbs();
3302 
3303   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3304                               MVT::Other, getControlRoot(),
3305                               Cmp, DAG.getBasicBlock(B.TargetBB));
3306 
3307   // Avoid emitting unnecessary branches to the next block.
3308   if (NextMBB != NextBlock(SwitchBB))
3309     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3310                         DAG.getBasicBlock(NextMBB));
3311 
3312   DAG.setRoot(BrAnd);
3313 }
3314 
3315 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3316   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3317 
3318   // Retrieve successors. Look through artificial IR level blocks like
3319   // catchswitch for successors.
3320   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3321   const BasicBlock *EHPadBB = I.getSuccessor(1);
3322   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3323 
3324   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3325   // have to do anything here to lower funclet bundles.
3326   assert(!I.hasOperandBundlesOtherThan(
3327              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3328               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3329               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3330               LLVMContext::OB_clang_arc_attachedcall}) &&
3331          "Cannot lower invokes with arbitrary operand bundles yet!");
3332 
3333   const Value *Callee(I.getCalledOperand());
3334   const Function *Fn = dyn_cast<Function>(Callee);
3335   if (isa<InlineAsm>(Callee))
3336     visitInlineAsm(I, EHPadBB);
3337   else if (Fn && Fn->isIntrinsic()) {
3338     switch (Fn->getIntrinsicID()) {
3339     default:
3340       llvm_unreachable("Cannot invoke this intrinsic");
3341     case Intrinsic::donothing:
3342       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3343     case Intrinsic::seh_try_begin:
3344     case Intrinsic::seh_scope_begin:
3345     case Intrinsic::seh_try_end:
3346     case Intrinsic::seh_scope_end:
3347       if (EHPadMBB)
3348           // a block referenced by EH table
3349           // so dtor-funclet not removed by opts
3350           EHPadMBB->setMachineBlockAddressTaken();
3351       break;
3352     case Intrinsic::experimental_patchpoint_void:
3353     case Intrinsic::experimental_patchpoint:
3354       visitPatchpoint(I, EHPadBB);
3355       break;
3356     case Intrinsic::experimental_gc_statepoint:
3357       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3358       break;
3359     case Intrinsic::wasm_rethrow: {
3360       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3361       // special because it can be invoked, so we manually lower it to a DAG
3362       // node here.
3363       SmallVector<SDValue, 8> Ops;
3364       Ops.push_back(getControlRoot()); // inchain for the terminator node
3365       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3366       Ops.push_back(
3367           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3368                                 TLI.getPointerTy(DAG.getDataLayout())));
3369       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3370       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3371       break;
3372     }
3373     }
3374   } else if (I.hasDeoptState()) {
3375     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3376     // Eventually we will support lowering the @llvm.experimental.deoptimize
3377     // intrinsic, and right now there are no plans to support other intrinsics
3378     // with deopt state.
3379     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3380   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3381     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3382   } else {
3383     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3384   }
3385 
3386   // If the value of the invoke is used outside of its defining block, make it
3387   // available as a virtual register.
3388   // We already took care of the exported value for the statepoint instruction
3389   // during call to the LowerStatepoint.
3390   if (!isa<GCStatepointInst>(I)) {
3391     CopyToExportRegsIfNeeded(&I);
3392   }
3393 
3394   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3395   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3396   BranchProbability EHPadBBProb =
3397       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3398           : BranchProbability::getZero();
3399   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3400 
3401   // Update successor info.
3402   addSuccessorWithProb(InvokeMBB, Return);
3403   for (auto &UnwindDest : UnwindDests) {
3404     UnwindDest.first->setIsEHPad();
3405     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3406   }
3407   InvokeMBB->normalizeSuccProbs();
3408 
3409   // Drop into normal successor.
3410   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3411                           DAG.getBasicBlock(Return)));
3412 }
3413 
3414 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3415   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3416 
3417   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3418   // have to do anything here to lower funclet bundles.
3419   assert(!I.hasOperandBundlesOtherThan(
3420              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3421          "Cannot lower callbrs with arbitrary operand bundles yet!");
3422 
3423   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3424   visitInlineAsm(I);
3425   CopyToExportRegsIfNeeded(&I);
3426 
3427   // Retrieve successors.
3428   SmallPtrSet<BasicBlock *, 8> Dests;
3429   Dests.insert(I.getDefaultDest());
3430   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3431 
3432   // Update successor info.
3433   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3434   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3435     BasicBlock *Dest = I.getIndirectDest(i);
3436     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3437     Target->setIsInlineAsmBrIndirectTarget();
3438     Target->setMachineBlockAddressTaken();
3439     Target->setLabelMustBeEmitted();
3440     // Don't add duplicate machine successors.
3441     if (Dests.insert(Dest).second)
3442       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3443   }
3444   CallBrMBB->normalizeSuccProbs();
3445 
3446   // Drop into default successor.
3447   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3448                           MVT::Other, getControlRoot(),
3449                           DAG.getBasicBlock(Return)));
3450 }
3451 
3452 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3453   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3454 }
3455 
3456 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3457   assert(FuncInfo.MBB->isEHPad() &&
3458          "Call to landingpad not in landing pad!");
3459 
3460   // If there aren't registers to copy the values into (e.g., during SjLj
3461   // exceptions), then don't bother to create these DAG nodes.
3462   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3463   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3464   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3465       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3466     return;
3467 
3468   // If landingpad's return type is token type, we don't create DAG nodes
3469   // for its exception pointer and selector value. The extraction of exception
3470   // pointer or selector value from token type landingpads is not currently
3471   // supported.
3472   if (LP.getType()->isTokenTy())
3473     return;
3474 
3475   SmallVector<EVT, 2> ValueVTs;
3476   SDLoc dl = getCurSDLoc();
3477   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3478   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3479 
3480   // Get the two live-in registers as SDValues. The physregs have already been
3481   // copied into virtual registers.
3482   SDValue Ops[2];
3483   if (FuncInfo.ExceptionPointerVirtReg) {
3484     Ops[0] = DAG.getZExtOrTrunc(
3485         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3486                            FuncInfo.ExceptionPointerVirtReg,
3487                            TLI.getPointerTy(DAG.getDataLayout())),
3488         dl, ValueVTs[0]);
3489   } else {
3490     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3491   }
3492   Ops[1] = DAG.getZExtOrTrunc(
3493       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3494                          FuncInfo.ExceptionSelectorVirtReg,
3495                          TLI.getPointerTy(DAG.getDataLayout())),
3496       dl, ValueVTs[1]);
3497 
3498   // Merge into one.
3499   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3500                             DAG.getVTList(ValueVTs), Ops);
3501   setValue(&LP, Res);
3502 }
3503 
3504 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3505                                            MachineBasicBlock *Last) {
3506   // Update JTCases.
3507   for (JumpTableBlock &JTB : SL->JTCases)
3508     if (JTB.first.HeaderBB == First)
3509       JTB.first.HeaderBB = Last;
3510 
3511   // Update BitTestCases.
3512   for (BitTestBlock &BTB : SL->BitTestCases)
3513     if (BTB.Parent == First)
3514       BTB.Parent = Last;
3515 }
3516 
3517 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3518   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3519 
3520   // Update machine-CFG edges with unique successors.
3521   SmallSet<BasicBlock*, 32> Done;
3522   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3523     BasicBlock *BB = I.getSuccessor(i);
3524     bool Inserted = Done.insert(BB).second;
3525     if (!Inserted)
3526         continue;
3527 
3528     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3529     addSuccessorWithProb(IndirectBrMBB, Succ);
3530   }
3531   IndirectBrMBB->normalizeSuccProbs();
3532 
3533   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3534                           MVT::Other, getControlRoot(),
3535                           getValue(I.getAddress())));
3536 }
3537 
3538 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3539   if (!DAG.getTarget().Options.TrapUnreachable)
3540     return;
3541 
3542   // We may be able to ignore unreachable behind a noreturn call.
3543   if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode());
3544       Call && Call->doesNotReturn()) {
3545     if (DAG.getTarget().Options.NoTrapAfterNoreturn)
3546       return;
3547     // Do not emit an additional trap instruction.
3548     if (Call->isNonContinuableTrap())
3549       return;
3550   }
3551 
3552   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3553 }
3554 
3555 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3556   SDNodeFlags Flags;
3557   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3558     Flags.copyFMF(*FPOp);
3559 
3560   SDValue Op = getValue(I.getOperand(0));
3561   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3562                                     Op, Flags);
3563   setValue(&I, UnNodeValue);
3564 }
3565 
3566 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3567   SDNodeFlags Flags;
3568   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3569     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3570     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3571   }
3572   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3573     Flags.setExact(ExactOp->isExact());
3574   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3575     Flags.setDisjoint(DisjointOp->isDisjoint());
3576   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3577     Flags.copyFMF(*FPOp);
3578 
3579   SDValue Op1 = getValue(I.getOperand(0));
3580   SDValue Op2 = getValue(I.getOperand(1));
3581   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3582                                      Op1, Op2, Flags);
3583   setValue(&I, BinNodeValue);
3584 }
3585 
3586 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3587   SDValue Op1 = getValue(I.getOperand(0));
3588   SDValue Op2 = getValue(I.getOperand(1));
3589 
3590   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3591       Op1.getValueType(), DAG.getDataLayout());
3592 
3593   // Coerce the shift amount to the right type if we can. This exposes the
3594   // truncate or zext to optimization early.
3595   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3596     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3597            "Unexpected shift type");
3598     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3599   }
3600 
3601   bool nuw = false;
3602   bool nsw = false;
3603   bool exact = false;
3604 
3605   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3606 
3607     if (const OverflowingBinaryOperator *OFBinOp =
3608             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3609       nuw = OFBinOp->hasNoUnsignedWrap();
3610       nsw = OFBinOp->hasNoSignedWrap();
3611     }
3612     if (const PossiblyExactOperator *ExactOp =
3613             dyn_cast<const PossiblyExactOperator>(&I))
3614       exact = ExactOp->isExact();
3615   }
3616   SDNodeFlags Flags;
3617   Flags.setExact(exact);
3618   Flags.setNoSignedWrap(nsw);
3619   Flags.setNoUnsignedWrap(nuw);
3620   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3621                             Flags);
3622   setValue(&I, Res);
3623 }
3624 
3625 void SelectionDAGBuilder::visitSDiv(const User &I) {
3626   SDValue Op1 = getValue(I.getOperand(0));
3627   SDValue Op2 = getValue(I.getOperand(1));
3628 
3629   SDNodeFlags Flags;
3630   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3631                  cast<PossiblyExactOperator>(&I)->isExact());
3632   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3633                            Op2, Flags));
3634 }
3635 
3636 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3637   ICmpInst::Predicate predicate = I.getPredicate();
3638   SDValue Op1 = getValue(I.getOperand(0));
3639   SDValue Op2 = getValue(I.getOperand(1));
3640   ISD::CondCode Opcode = getICmpCondCode(predicate);
3641 
3642   auto &TLI = DAG.getTargetLoweringInfo();
3643   EVT MemVT =
3644       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3645 
3646   // If a pointer's DAG type is larger than its memory type then the DAG values
3647   // are zero-extended. This breaks signed comparisons so truncate back to the
3648   // underlying type before doing the compare.
3649   if (Op1.getValueType() != MemVT) {
3650     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3651     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3652   }
3653 
3654   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3655                                                         I.getType());
3656   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3657 }
3658 
3659 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3660   FCmpInst::Predicate predicate = I.getPredicate();
3661   SDValue Op1 = getValue(I.getOperand(0));
3662   SDValue Op2 = getValue(I.getOperand(1));
3663 
3664   ISD::CondCode Condition = getFCmpCondCode(predicate);
3665   auto *FPMO = cast<FPMathOperator>(&I);
3666   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3667     Condition = getFCmpCodeWithoutNaN(Condition);
3668 
3669   SDNodeFlags Flags;
3670   Flags.copyFMF(*FPMO);
3671   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3672 
3673   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3674                                                         I.getType());
3675   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3676 }
3677 
3678 // Check if the condition of the select has one use or two users that are both
3679 // selects with the same condition.
3680 static bool hasOnlySelectUsers(const Value *Cond) {
3681   return llvm::all_of(Cond->users(), [](const Value *V) {
3682     return isa<SelectInst>(V);
3683   });
3684 }
3685 
3686 void SelectionDAGBuilder::visitSelect(const User &I) {
3687   SmallVector<EVT, 4> ValueVTs;
3688   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3689                   ValueVTs);
3690   unsigned NumValues = ValueVTs.size();
3691   if (NumValues == 0) return;
3692 
3693   SmallVector<SDValue, 4> Values(NumValues);
3694   SDValue Cond     = getValue(I.getOperand(0));
3695   SDValue LHSVal   = getValue(I.getOperand(1));
3696   SDValue RHSVal   = getValue(I.getOperand(2));
3697   SmallVector<SDValue, 1> BaseOps(1, Cond);
3698   ISD::NodeType OpCode =
3699       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3700 
3701   bool IsUnaryAbs = false;
3702   bool Negate = false;
3703 
3704   SDNodeFlags Flags;
3705   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3706     Flags.copyFMF(*FPOp);
3707 
3708   Flags.setUnpredictable(
3709       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3710 
3711   // Min/max matching is only viable if all output VTs are the same.
3712   if (all_equal(ValueVTs)) {
3713     EVT VT = ValueVTs[0];
3714     LLVMContext &Ctx = *DAG.getContext();
3715     auto &TLI = DAG.getTargetLoweringInfo();
3716 
3717     // We care about the legality of the operation after it has been type
3718     // legalized.
3719     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3720       VT = TLI.getTypeToTransformTo(Ctx, VT);
3721 
3722     // If the vselect is legal, assume we want to leave this as a vector setcc +
3723     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3724     // min/max is legal on the scalar type.
3725     bool UseScalarMinMax = VT.isVector() &&
3726       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3727 
3728     // ValueTracking's select pattern matching does not account for -0.0,
3729     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3730     // -0.0 is less than +0.0.
3731     const Value *LHS, *RHS;
3732     auto SPR = matchSelectPattern(&I, LHS, RHS);
3733     ISD::NodeType Opc = ISD::DELETED_NODE;
3734     switch (SPR.Flavor) {
3735     case SPF_UMAX:    Opc = ISD::UMAX; break;
3736     case SPF_UMIN:    Opc = ISD::UMIN; break;
3737     case SPF_SMAX:    Opc = ISD::SMAX; break;
3738     case SPF_SMIN:    Opc = ISD::SMIN; break;
3739     case SPF_FMINNUM:
3740       switch (SPR.NaNBehavior) {
3741       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3742       case SPNB_RETURNS_NAN: break;
3743       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3744       case SPNB_RETURNS_ANY:
3745         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3746             (UseScalarMinMax &&
3747              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3748           Opc = ISD::FMINNUM;
3749         break;
3750       }
3751       break;
3752     case SPF_FMAXNUM:
3753       switch (SPR.NaNBehavior) {
3754       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3755       case SPNB_RETURNS_NAN: break;
3756       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3757       case SPNB_RETURNS_ANY:
3758         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3759             (UseScalarMinMax &&
3760              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3761           Opc = ISD::FMAXNUM;
3762         break;
3763       }
3764       break;
3765     case SPF_NABS:
3766       Negate = true;
3767       [[fallthrough]];
3768     case SPF_ABS:
3769       IsUnaryAbs = true;
3770       Opc = ISD::ABS;
3771       break;
3772     default: break;
3773     }
3774 
3775     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3776         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3777          (UseScalarMinMax &&
3778           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3779         // If the underlying comparison instruction is used by any other
3780         // instruction, the consumed instructions won't be destroyed, so it is
3781         // not profitable to convert to a min/max.
3782         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3783       OpCode = Opc;
3784       LHSVal = getValue(LHS);
3785       RHSVal = getValue(RHS);
3786       BaseOps.clear();
3787     }
3788 
3789     if (IsUnaryAbs) {
3790       OpCode = Opc;
3791       LHSVal = getValue(LHS);
3792       BaseOps.clear();
3793     }
3794   }
3795 
3796   if (IsUnaryAbs) {
3797     for (unsigned i = 0; i != NumValues; ++i) {
3798       SDLoc dl = getCurSDLoc();
3799       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3800       Values[i] =
3801           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3802       if (Negate)
3803         Values[i] = DAG.getNegative(Values[i], dl, VT);
3804     }
3805   } else {
3806     for (unsigned i = 0; i != NumValues; ++i) {
3807       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3808       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3809       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3810       Values[i] = DAG.getNode(
3811           OpCode, getCurSDLoc(),
3812           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3813     }
3814   }
3815 
3816   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3817                            DAG.getVTList(ValueVTs), Values));
3818 }
3819 
3820 void SelectionDAGBuilder::visitTrunc(const User &I) {
3821   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3822   SDValue N = getValue(I.getOperand(0));
3823   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3824                                                         I.getType());
3825   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3826 }
3827 
3828 void SelectionDAGBuilder::visitZExt(const User &I) {
3829   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3830   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3831   SDValue N = getValue(I.getOperand(0));
3832   auto &TLI = DAG.getTargetLoweringInfo();
3833   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3834 
3835   SDNodeFlags Flags;
3836   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3837     Flags.setNonNeg(PNI->hasNonNeg());
3838 
3839   // Eagerly use nonneg information to canonicalize towards sign_extend if
3840   // that is the target's preference.
3841   // TODO: Let the target do this later.
3842   if (Flags.hasNonNeg() &&
3843       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3844     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3845     return;
3846   }
3847 
3848   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3849 }
3850 
3851 void SelectionDAGBuilder::visitSExt(const User &I) {
3852   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3853   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3854   SDValue N = getValue(I.getOperand(0));
3855   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3856                                                         I.getType());
3857   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3858 }
3859 
3860 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3861   // FPTrunc is never a no-op cast, no need to check
3862   SDValue N = getValue(I.getOperand(0));
3863   SDLoc dl = getCurSDLoc();
3864   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3865   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3866   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3867                            DAG.getTargetConstant(
3868                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3869 }
3870 
3871 void SelectionDAGBuilder::visitFPExt(const User &I) {
3872   // FPExt is never a no-op cast, no need to check
3873   SDValue N = getValue(I.getOperand(0));
3874   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3875                                                         I.getType());
3876   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3877 }
3878 
3879 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3880   // FPToUI is never a no-op cast, no need to check
3881   SDValue N = getValue(I.getOperand(0));
3882   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3883                                                         I.getType());
3884   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3885 }
3886 
3887 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3888   // FPToSI is never a no-op cast, no need to check
3889   SDValue N = getValue(I.getOperand(0));
3890   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3891                                                         I.getType());
3892   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3893 }
3894 
3895 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3896   // UIToFP is never a no-op cast, no need to check
3897   SDValue N = getValue(I.getOperand(0));
3898   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3899                                                         I.getType());
3900   SDNodeFlags Flags;
3901   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3902     Flags.setNonNeg(PNI->hasNonNeg());
3903 
3904   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3905 }
3906 
3907 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3908   // SIToFP is never a no-op cast, no need to check
3909   SDValue N = getValue(I.getOperand(0));
3910   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3911                                                         I.getType());
3912   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3913 }
3914 
3915 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3916   // What to do depends on the size of the integer and the size of the pointer.
3917   // We can either truncate, zero extend, or no-op, accordingly.
3918   SDValue N = getValue(I.getOperand(0));
3919   auto &TLI = DAG.getTargetLoweringInfo();
3920   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3921                                                         I.getType());
3922   EVT PtrMemVT =
3923       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3924   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3925   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3926   setValue(&I, N);
3927 }
3928 
3929 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3930   // What to do depends on the size of the integer and the size of the pointer.
3931   // We can either truncate, zero extend, or no-op, accordingly.
3932   SDValue N = getValue(I.getOperand(0));
3933   auto &TLI = DAG.getTargetLoweringInfo();
3934   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3935   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3936   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3937   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3938   setValue(&I, N);
3939 }
3940 
3941 void SelectionDAGBuilder::visitBitCast(const User &I) {
3942   SDValue N = getValue(I.getOperand(0));
3943   SDLoc dl = getCurSDLoc();
3944   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3945                                                         I.getType());
3946 
3947   // BitCast assures us that source and destination are the same size so this is
3948   // either a BITCAST or a no-op.
3949   if (DestVT != N.getValueType())
3950     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3951                              DestVT, N)); // convert types.
3952   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3953   // might fold any kind of constant expression to an integer constant and that
3954   // is not what we are looking for. Only recognize a bitcast of a genuine
3955   // constant integer as an opaque constant.
3956   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3957     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3958                                  /*isOpaque*/true));
3959   else
3960     setValue(&I, N);            // noop cast.
3961 }
3962 
3963 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3965   const Value *SV = I.getOperand(0);
3966   SDValue N = getValue(SV);
3967   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3968 
3969   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3970   unsigned DestAS = I.getType()->getPointerAddressSpace();
3971 
3972   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3973     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3974 
3975   setValue(&I, N);
3976 }
3977 
3978 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3980   SDValue InVec = getValue(I.getOperand(0));
3981   SDValue InVal = getValue(I.getOperand(1));
3982   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3983                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3984   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3985                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3986                            InVec, InVal, InIdx));
3987 }
3988 
3989 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3991   SDValue InVec = getValue(I.getOperand(0));
3992   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3993                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3994   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3995                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3996                            InVec, InIdx));
3997 }
3998 
3999 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4000   SDValue Src1 = getValue(I.getOperand(0));
4001   SDValue Src2 = getValue(I.getOperand(1));
4002   ArrayRef<int> Mask;
4003   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4004     Mask = SVI->getShuffleMask();
4005   else
4006     Mask = cast<ConstantExpr>(I).getShuffleMask();
4007   SDLoc DL = getCurSDLoc();
4008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4009   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4010   EVT SrcVT = Src1.getValueType();
4011 
4012   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4013       VT.isScalableVector()) {
4014     // Canonical splat form of first element of first input vector.
4015     SDValue FirstElt =
4016         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4017                     DAG.getVectorIdxConstant(0, DL));
4018     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4019     return;
4020   }
4021 
4022   // For now, we only handle splats for scalable vectors.
4023   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4024   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4025   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4026 
4027   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4028   unsigned MaskNumElts = Mask.size();
4029 
4030   if (SrcNumElts == MaskNumElts) {
4031     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4032     return;
4033   }
4034 
4035   // Normalize the shuffle vector since mask and vector length don't match.
4036   if (SrcNumElts < MaskNumElts) {
4037     // Mask is longer than the source vectors. We can use concatenate vector to
4038     // make the mask and vectors lengths match.
4039 
4040     if (MaskNumElts % SrcNumElts == 0) {
4041       // Mask length is a multiple of the source vector length.
4042       // Check if the shuffle is some kind of concatenation of the input
4043       // vectors.
4044       unsigned NumConcat = MaskNumElts / SrcNumElts;
4045       bool IsConcat = true;
4046       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4047       for (unsigned i = 0; i != MaskNumElts; ++i) {
4048         int Idx = Mask[i];
4049         if (Idx < 0)
4050           continue;
4051         // Ensure the indices in each SrcVT sized piece are sequential and that
4052         // the same source is used for the whole piece.
4053         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4054             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4055              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4056           IsConcat = false;
4057           break;
4058         }
4059         // Remember which source this index came from.
4060         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4061       }
4062 
4063       // The shuffle is concatenating multiple vectors together. Just emit
4064       // a CONCAT_VECTORS operation.
4065       if (IsConcat) {
4066         SmallVector<SDValue, 8> ConcatOps;
4067         for (auto Src : ConcatSrcs) {
4068           if (Src < 0)
4069             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4070           else if (Src == 0)
4071             ConcatOps.push_back(Src1);
4072           else
4073             ConcatOps.push_back(Src2);
4074         }
4075         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4076         return;
4077       }
4078     }
4079 
4080     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4081     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4082     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4083                                     PaddedMaskNumElts);
4084 
4085     // Pad both vectors with undefs to make them the same length as the mask.
4086     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4087 
4088     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4089     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4090     MOps1[0] = Src1;
4091     MOps2[0] = Src2;
4092 
4093     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4094     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4095 
4096     // Readjust mask for new input vector length.
4097     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4098     for (unsigned i = 0; i != MaskNumElts; ++i) {
4099       int Idx = Mask[i];
4100       if (Idx >= (int)SrcNumElts)
4101         Idx -= SrcNumElts - PaddedMaskNumElts;
4102       MappedOps[i] = Idx;
4103     }
4104 
4105     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4106 
4107     // If the concatenated vector was padded, extract a subvector with the
4108     // correct number of elements.
4109     if (MaskNumElts != PaddedMaskNumElts)
4110       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4111                            DAG.getVectorIdxConstant(0, DL));
4112 
4113     setValue(&I, Result);
4114     return;
4115   }
4116 
4117   if (SrcNumElts > MaskNumElts) {
4118     // Analyze the access pattern of the vector to see if we can extract
4119     // two subvectors and do the shuffle.
4120     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4121     bool CanExtract = true;
4122     for (int Idx : Mask) {
4123       unsigned Input = 0;
4124       if (Idx < 0)
4125         continue;
4126 
4127       if (Idx >= (int)SrcNumElts) {
4128         Input = 1;
4129         Idx -= SrcNumElts;
4130       }
4131 
4132       // If all the indices come from the same MaskNumElts sized portion of
4133       // the sources we can use extract. Also make sure the extract wouldn't
4134       // extract past the end of the source.
4135       int NewStartIdx = alignDown(Idx, MaskNumElts);
4136       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4137           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4138         CanExtract = false;
4139       // Make sure we always update StartIdx as we use it to track if all
4140       // elements are undef.
4141       StartIdx[Input] = NewStartIdx;
4142     }
4143 
4144     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4145       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4146       return;
4147     }
4148     if (CanExtract) {
4149       // Extract appropriate subvector and generate a vector shuffle
4150       for (unsigned Input = 0; Input < 2; ++Input) {
4151         SDValue &Src = Input == 0 ? Src1 : Src2;
4152         if (StartIdx[Input] < 0)
4153           Src = DAG.getUNDEF(VT);
4154         else {
4155           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4156                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4157         }
4158       }
4159 
4160       // Calculate new mask.
4161       SmallVector<int, 8> MappedOps(Mask);
4162       for (int &Idx : MappedOps) {
4163         if (Idx >= (int)SrcNumElts)
4164           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4165         else if (Idx >= 0)
4166           Idx -= StartIdx[0];
4167       }
4168 
4169       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4170       return;
4171     }
4172   }
4173 
4174   // We can't use either concat vectors or extract subvectors so fall back to
4175   // replacing the shuffle with extract and build vector.
4176   // to insert and build vector.
4177   EVT EltVT = VT.getVectorElementType();
4178   SmallVector<SDValue,8> Ops;
4179   for (int Idx : Mask) {
4180     SDValue Res;
4181 
4182     if (Idx < 0) {
4183       Res = DAG.getUNDEF(EltVT);
4184     } else {
4185       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4186       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4187 
4188       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4189                         DAG.getVectorIdxConstant(Idx, DL));
4190     }
4191 
4192     Ops.push_back(Res);
4193   }
4194 
4195   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4196 }
4197 
4198 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4199   ArrayRef<unsigned> Indices = I.getIndices();
4200   const Value *Op0 = I.getOperand(0);
4201   const Value *Op1 = I.getOperand(1);
4202   Type *AggTy = I.getType();
4203   Type *ValTy = Op1->getType();
4204   bool IntoUndef = isa<UndefValue>(Op0);
4205   bool FromUndef = isa<UndefValue>(Op1);
4206 
4207   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4208 
4209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4210   SmallVector<EVT, 4> AggValueVTs;
4211   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4212   SmallVector<EVT, 4> ValValueVTs;
4213   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4214 
4215   unsigned NumAggValues = AggValueVTs.size();
4216   unsigned NumValValues = ValValueVTs.size();
4217   SmallVector<SDValue, 4> Values(NumAggValues);
4218 
4219   // Ignore an insertvalue that produces an empty object
4220   if (!NumAggValues) {
4221     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4222     return;
4223   }
4224 
4225   SDValue Agg = getValue(Op0);
4226   unsigned i = 0;
4227   // Copy the beginning value(s) from the original aggregate.
4228   for (; i != LinearIndex; ++i)
4229     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4230                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4231   // Copy values from the inserted value(s).
4232   if (NumValValues) {
4233     SDValue Val = getValue(Op1);
4234     for (; i != LinearIndex + NumValValues; ++i)
4235       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4236                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4237   }
4238   // Copy remaining value(s) from the original aggregate.
4239   for (; i != NumAggValues; ++i)
4240     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4241                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4242 
4243   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4244                            DAG.getVTList(AggValueVTs), Values));
4245 }
4246 
4247 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4248   ArrayRef<unsigned> Indices = I.getIndices();
4249   const Value *Op0 = I.getOperand(0);
4250   Type *AggTy = Op0->getType();
4251   Type *ValTy = I.getType();
4252   bool OutOfUndef = isa<UndefValue>(Op0);
4253 
4254   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4255 
4256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4257   SmallVector<EVT, 4> ValValueVTs;
4258   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4259 
4260   unsigned NumValValues = ValValueVTs.size();
4261 
4262   // Ignore a extractvalue that produces an empty object
4263   if (!NumValValues) {
4264     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4265     return;
4266   }
4267 
4268   SmallVector<SDValue, 4> Values(NumValValues);
4269 
4270   SDValue Agg = getValue(Op0);
4271   // Copy out the selected value(s).
4272   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4273     Values[i - LinearIndex] =
4274       OutOfUndef ?
4275         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4276         SDValue(Agg.getNode(), Agg.getResNo() + i);
4277 
4278   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4279                            DAG.getVTList(ValValueVTs), Values));
4280 }
4281 
4282 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4283   Value *Op0 = I.getOperand(0);
4284   // Note that the pointer operand may be a vector of pointers. Take the scalar
4285   // element which holds a pointer.
4286   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4287   SDValue N = getValue(Op0);
4288   SDLoc dl = getCurSDLoc();
4289   auto &TLI = DAG.getTargetLoweringInfo();
4290 
4291   // Normalize Vector GEP - all scalar operands should be converted to the
4292   // splat vector.
4293   bool IsVectorGEP = I.getType()->isVectorTy();
4294   ElementCount VectorElementCount =
4295       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4296                   : ElementCount::getFixed(0);
4297 
4298   if (IsVectorGEP && !N.getValueType().isVector()) {
4299     LLVMContext &Context = *DAG.getContext();
4300     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4301     N = DAG.getSplat(VT, dl, N);
4302   }
4303 
4304   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4305        GTI != E; ++GTI) {
4306     const Value *Idx = GTI.getOperand();
4307     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4308       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4309       if (Field) {
4310         // N = N + Offset
4311         uint64_t Offset =
4312             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4313 
4314         // In an inbounds GEP with an offset that is nonnegative even when
4315         // interpreted as signed, assume there is no unsigned overflow.
4316         SDNodeFlags Flags;
4317         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4318           Flags.setNoUnsignedWrap(true);
4319 
4320         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4321                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4322       }
4323     } else {
4324       // IdxSize is the width of the arithmetic according to IR semantics.
4325       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4326       // (and fix up the result later).
4327       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4328       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4329       TypeSize ElementSize =
4330           GTI.getSequentialElementStride(DAG.getDataLayout());
4331       // We intentionally mask away the high bits here; ElementSize may not
4332       // fit in IdxTy.
4333       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4334       bool ElementScalable = ElementSize.isScalable();
4335 
4336       // If this is a scalar constant or a splat vector of constants,
4337       // handle it quickly.
4338       const auto *C = dyn_cast<Constant>(Idx);
4339       if (C && isa<VectorType>(C->getType()))
4340         C = C->getSplatValue();
4341 
4342       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4343       if (CI && CI->isZero())
4344         continue;
4345       if (CI && !ElementScalable) {
4346         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4347         LLVMContext &Context = *DAG.getContext();
4348         SDValue OffsVal;
4349         if (IsVectorGEP)
4350           OffsVal = DAG.getConstant(
4351               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4352         else
4353           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4354 
4355         // In an inbounds GEP with an offset that is nonnegative even when
4356         // interpreted as signed, assume there is no unsigned overflow.
4357         SDNodeFlags Flags;
4358         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4359           Flags.setNoUnsignedWrap(true);
4360 
4361         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4362 
4363         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4364         continue;
4365       }
4366 
4367       // N = N + Idx * ElementMul;
4368       SDValue IdxN = getValue(Idx);
4369 
4370       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4371         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4372                                   VectorElementCount);
4373         IdxN = DAG.getSplat(VT, dl, IdxN);
4374       }
4375 
4376       // If the index is smaller or larger than intptr_t, truncate or extend
4377       // it.
4378       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4379 
4380       if (ElementScalable) {
4381         EVT VScaleTy = N.getValueType().getScalarType();
4382         SDValue VScale = DAG.getNode(
4383             ISD::VSCALE, dl, VScaleTy,
4384             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4385         if (IsVectorGEP)
4386           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4387         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4388       } else {
4389         // If this is a multiply by a power of two, turn it into a shl
4390         // immediately.  This is a very common case.
4391         if (ElementMul != 1) {
4392           if (ElementMul.isPowerOf2()) {
4393             unsigned Amt = ElementMul.logBase2();
4394             IdxN = DAG.getNode(ISD::SHL, dl,
4395                                N.getValueType(), IdxN,
4396                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4397           } else {
4398             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4399                                             IdxN.getValueType());
4400             IdxN = DAG.getNode(ISD::MUL, dl,
4401                                N.getValueType(), IdxN, Scale);
4402           }
4403         }
4404       }
4405 
4406       N = DAG.getNode(ISD::ADD, dl,
4407                       N.getValueType(), N, IdxN);
4408     }
4409   }
4410 
4411   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4412   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4413   if (IsVectorGEP) {
4414     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4415     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4416   }
4417 
4418   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4419     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4420 
4421   setValue(&I, N);
4422 }
4423 
4424 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4425   // If this is a fixed sized alloca in the entry block of the function,
4426   // allocate it statically on the stack.
4427   if (FuncInfo.StaticAllocaMap.count(&I))
4428     return;   // getValue will auto-populate this.
4429 
4430   SDLoc dl = getCurSDLoc();
4431   Type *Ty = I.getAllocatedType();
4432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4433   auto &DL = DAG.getDataLayout();
4434   TypeSize TySize = DL.getTypeAllocSize(Ty);
4435   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4436 
4437   SDValue AllocSize = getValue(I.getArraySize());
4438 
4439   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4440   if (AllocSize.getValueType() != IntPtr)
4441     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4442 
4443   if (TySize.isScalable())
4444     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4445                             DAG.getVScale(dl, IntPtr,
4446                                           APInt(IntPtr.getScalarSizeInBits(),
4447                                                 TySize.getKnownMinValue())));
4448   else {
4449     SDValue TySizeValue =
4450         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4451     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4452                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4453   }
4454 
4455   // Handle alignment.  If the requested alignment is less than or equal to
4456   // the stack alignment, ignore it.  If the size is greater than or equal to
4457   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4458   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4459   if (*Alignment <= StackAlign)
4460     Alignment = std::nullopt;
4461 
4462   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4463   // Round the size of the allocation up to the stack alignment size
4464   // by add SA-1 to the size. This doesn't overflow because we're computing
4465   // an address inside an alloca.
4466   SDNodeFlags Flags;
4467   Flags.setNoUnsignedWrap(true);
4468   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4469                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4470 
4471   // Mask out the low bits for alignment purposes.
4472   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4473                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4474 
4475   SDValue Ops[] = {
4476       getRoot(), AllocSize,
4477       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4478   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4479   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4480   setValue(&I, DSA);
4481   DAG.setRoot(DSA.getValue(1));
4482 
4483   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4484 }
4485 
4486 static const MDNode *getRangeMetadata(const Instruction &I) {
4487   // If !noundef is not present, then !range violation results in a poison
4488   // value rather than immediate undefined behavior. In theory, transferring
4489   // these annotations to SDAG is fine, but in practice there are key SDAG
4490   // transforms that are known not to be poison-safe, such as folding logical
4491   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4492   // also present.
4493   if (!I.hasMetadata(LLVMContext::MD_noundef))
4494     return nullptr;
4495   return I.getMetadata(LLVMContext::MD_range);
4496 }
4497 
4498 static std::optional<ConstantRange> getRange(const Instruction &I) {
4499   if (const auto *CB = dyn_cast<CallBase>(&I)) {
4500     // see comment in getRangeMetadata about this check
4501     if (CB->hasRetAttr(Attribute::NoUndef))
4502       return CB->getRange();
4503   }
4504   if (const MDNode *Range = getRangeMetadata(I))
4505     return getConstantRangeFromMetadata(*Range);
4506   return std::nullopt;
4507 }
4508 
4509 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4510   if (I.isAtomic())
4511     return visitAtomicLoad(I);
4512 
4513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4514   const Value *SV = I.getOperand(0);
4515   if (TLI.supportSwiftError()) {
4516     // Swifterror values can come from either a function parameter with
4517     // swifterror attribute or an alloca with swifterror attribute.
4518     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4519       if (Arg->hasSwiftErrorAttr())
4520         return visitLoadFromSwiftError(I);
4521     }
4522 
4523     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4524       if (Alloca->isSwiftError())
4525         return visitLoadFromSwiftError(I);
4526     }
4527   }
4528 
4529   SDValue Ptr = getValue(SV);
4530 
4531   Type *Ty = I.getType();
4532   SmallVector<EVT, 4> ValueVTs, MemVTs;
4533   SmallVector<TypeSize, 4> Offsets;
4534   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4535   unsigned NumValues = ValueVTs.size();
4536   if (NumValues == 0)
4537     return;
4538 
4539   Align Alignment = I.getAlign();
4540   AAMDNodes AAInfo = I.getAAMetadata();
4541   const MDNode *Ranges = getRangeMetadata(I);
4542   bool isVolatile = I.isVolatile();
4543   MachineMemOperand::Flags MMOFlags =
4544       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4545 
4546   SDValue Root;
4547   bool ConstantMemory = false;
4548   if (isVolatile)
4549     // Serialize volatile loads with other side effects.
4550     Root = getRoot();
4551   else if (NumValues > MaxParallelChains)
4552     Root = getMemoryRoot();
4553   else if (AA &&
4554            AA->pointsToConstantMemory(MemoryLocation(
4555                SV,
4556                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4557                AAInfo))) {
4558     // Do not serialize (non-volatile) loads of constant memory with anything.
4559     Root = DAG.getEntryNode();
4560     ConstantMemory = true;
4561     MMOFlags |= MachineMemOperand::MOInvariant;
4562   } else {
4563     // Do not serialize non-volatile loads against each other.
4564     Root = DAG.getRoot();
4565   }
4566 
4567   SDLoc dl = getCurSDLoc();
4568 
4569   if (isVolatile)
4570     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4571 
4572   SmallVector<SDValue, 4> Values(NumValues);
4573   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4574 
4575   unsigned ChainI = 0;
4576   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4577     // Serializing loads here may result in excessive register pressure, and
4578     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4579     // could recover a bit by hoisting nodes upward in the chain by recognizing
4580     // they are side-effect free or do not alias. The optimizer should really
4581     // avoid this case by converting large object/array copies to llvm.memcpy
4582     // (MaxParallelChains should always remain as failsafe).
4583     if (ChainI == MaxParallelChains) {
4584       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4585       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4586                                   ArrayRef(Chains.data(), ChainI));
4587       Root = Chain;
4588       ChainI = 0;
4589     }
4590 
4591     // TODO: MachinePointerInfo only supports a fixed length offset.
4592     MachinePointerInfo PtrInfo =
4593         !Offsets[i].isScalable() || Offsets[i].isZero()
4594             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4595             : MachinePointerInfo();
4596 
4597     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4598     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4599                             MMOFlags, AAInfo, Ranges);
4600     Chains[ChainI] = L.getValue(1);
4601 
4602     if (MemVTs[i] != ValueVTs[i])
4603       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4604 
4605     Values[i] = L;
4606   }
4607 
4608   if (!ConstantMemory) {
4609     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4610                                 ArrayRef(Chains.data(), ChainI));
4611     if (isVolatile)
4612       DAG.setRoot(Chain);
4613     else
4614       PendingLoads.push_back(Chain);
4615   }
4616 
4617   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4618                            DAG.getVTList(ValueVTs), Values));
4619 }
4620 
4621 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4622   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4623          "call visitStoreToSwiftError when backend supports swifterror");
4624 
4625   SmallVector<EVT, 4> ValueVTs;
4626   SmallVector<uint64_t, 4> Offsets;
4627   const Value *SrcV = I.getOperand(0);
4628   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4629                   SrcV->getType(), ValueVTs, &Offsets, 0);
4630   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4631          "expect a single EVT for swifterror");
4632 
4633   SDValue Src = getValue(SrcV);
4634   // Create a virtual register, then update the virtual register.
4635   Register VReg =
4636       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4637   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4638   // Chain can be getRoot or getControlRoot.
4639   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4640                                       SDValue(Src.getNode(), Src.getResNo()));
4641   DAG.setRoot(CopyNode);
4642 }
4643 
4644 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4645   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4646          "call visitLoadFromSwiftError when backend supports swifterror");
4647 
4648   assert(!I.isVolatile() &&
4649          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4650          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4651          "Support volatile, non temporal, invariant for load_from_swift_error");
4652 
4653   const Value *SV = I.getOperand(0);
4654   Type *Ty = I.getType();
4655   assert(
4656       (!AA ||
4657        !AA->pointsToConstantMemory(MemoryLocation(
4658            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4659            I.getAAMetadata()))) &&
4660       "load_from_swift_error should not be constant memory");
4661 
4662   SmallVector<EVT, 4> ValueVTs;
4663   SmallVector<uint64_t, 4> Offsets;
4664   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4665                   ValueVTs, &Offsets, 0);
4666   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4667          "expect a single EVT for swifterror");
4668 
4669   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4670   SDValue L = DAG.getCopyFromReg(
4671       getRoot(), getCurSDLoc(),
4672       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4673 
4674   setValue(&I, L);
4675 }
4676 
4677 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4678   if (I.isAtomic())
4679     return visitAtomicStore(I);
4680 
4681   const Value *SrcV = I.getOperand(0);
4682   const Value *PtrV = I.getOperand(1);
4683 
4684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4685   if (TLI.supportSwiftError()) {
4686     // Swifterror values can come from either a function parameter with
4687     // swifterror attribute or an alloca with swifterror attribute.
4688     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4689       if (Arg->hasSwiftErrorAttr())
4690         return visitStoreToSwiftError(I);
4691     }
4692 
4693     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4694       if (Alloca->isSwiftError())
4695         return visitStoreToSwiftError(I);
4696     }
4697   }
4698 
4699   SmallVector<EVT, 4> ValueVTs, MemVTs;
4700   SmallVector<TypeSize, 4> Offsets;
4701   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4702                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4703   unsigned NumValues = ValueVTs.size();
4704   if (NumValues == 0)
4705     return;
4706 
4707   // Get the lowered operands. Note that we do this after
4708   // checking if NumResults is zero, because with zero results
4709   // the operands won't have values in the map.
4710   SDValue Src = getValue(SrcV);
4711   SDValue Ptr = getValue(PtrV);
4712 
4713   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4714   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4715   SDLoc dl = getCurSDLoc();
4716   Align Alignment = I.getAlign();
4717   AAMDNodes AAInfo = I.getAAMetadata();
4718 
4719   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4720 
4721   unsigned ChainI = 0;
4722   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4723     // See visitLoad comments.
4724     if (ChainI == MaxParallelChains) {
4725       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4726                                   ArrayRef(Chains.data(), ChainI));
4727       Root = Chain;
4728       ChainI = 0;
4729     }
4730 
4731     // TODO: MachinePointerInfo only supports a fixed length offset.
4732     MachinePointerInfo PtrInfo =
4733         !Offsets[i].isScalable() || Offsets[i].isZero()
4734             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4735             : MachinePointerInfo();
4736 
4737     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4738     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4739     if (MemVTs[i] != ValueVTs[i])
4740       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4741     SDValue St =
4742         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4743     Chains[ChainI] = St;
4744   }
4745 
4746   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4747                                   ArrayRef(Chains.data(), ChainI));
4748   setValue(&I, StoreNode);
4749   DAG.setRoot(StoreNode);
4750 }
4751 
4752 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4753                                            bool IsCompressing) {
4754   SDLoc sdl = getCurSDLoc();
4755 
4756   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4757                                Align &Alignment) {
4758     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4759     Src0 = I.getArgOperand(0);
4760     Ptr = I.getArgOperand(1);
4761     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4762     Mask = I.getArgOperand(3);
4763   };
4764   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4765                                     Align &Alignment) {
4766     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4767     Src0 = I.getArgOperand(0);
4768     Ptr = I.getArgOperand(1);
4769     Mask = I.getArgOperand(2);
4770     Alignment = I.getParamAlign(1).valueOrOne();
4771   };
4772 
4773   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4774   Align Alignment;
4775   if (IsCompressing)
4776     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4777   else
4778     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4779 
4780   SDValue Ptr = getValue(PtrOperand);
4781   SDValue Src0 = getValue(Src0Operand);
4782   SDValue Mask = getValue(MaskOperand);
4783   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4784 
4785   EVT VT = Src0.getValueType();
4786 
4787   auto MMOFlags = MachineMemOperand::MOStore;
4788   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4789     MMOFlags |= MachineMemOperand::MONonTemporal;
4790 
4791   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4792       MachinePointerInfo(PtrOperand), MMOFlags,
4793       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4794 
4795   const auto &TLI = DAG.getTargetLoweringInfo();
4796   const auto &TTI =
4797       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4798   SDValue StoreNode =
4799       !IsCompressing &&
4800               TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType())
4801           ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4802                                  Mask)
4803           : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4804                                VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4805                                IsCompressing);
4806   DAG.setRoot(StoreNode);
4807   setValue(&I, StoreNode);
4808 }
4809 
4810 // Get a uniform base for the Gather/Scatter intrinsic.
4811 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4812 // We try to represent it as a base pointer + vector of indices.
4813 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4814 // The first operand of the GEP may be a single pointer or a vector of pointers
4815 // Example:
4816 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4817 //  or
4818 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4819 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4820 //
4821 // When the first GEP operand is a single pointer - it is the uniform base we
4822 // are looking for. If first operand of the GEP is a splat vector - we
4823 // extract the splat value and use it as a uniform base.
4824 // In all other cases the function returns 'false'.
4825 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4826                            ISD::MemIndexType &IndexType, SDValue &Scale,
4827                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4828                            uint64_t ElemSize) {
4829   SelectionDAG& DAG = SDB->DAG;
4830   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4831   const DataLayout &DL = DAG.getDataLayout();
4832 
4833   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4834 
4835   // Handle splat constant pointer.
4836   if (auto *C = dyn_cast<Constant>(Ptr)) {
4837     C = C->getSplatValue();
4838     if (!C)
4839       return false;
4840 
4841     Base = SDB->getValue(C);
4842 
4843     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4844     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4845     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4846     IndexType = ISD::SIGNED_SCALED;
4847     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4848     return true;
4849   }
4850 
4851   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4852   if (!GEP || GEP->getParent() != CurBB)
4853     return false;
4854 
4855   if (GEP->getNumOperands() != 2)
4856     return false;
4857 
4858   const Value *BasePtr = GEP->getPointerOperand();
4859   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4860 
4861   // Make sure the base is scalar and the index is a vector.
4862   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4863     return false;
4864 
4865   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4866   if (ScaleVal.isScalable())
4867     return false;
4868 
4869   // Target may not support the required addressing mode.
4870   if (ScaleVal != 1 &&
4871       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4872     return false;
4873 
4874   Base = SDB->getValue(BasePtr);
4875   Index = SDB->getValue(IndexVal);
4876   IndexType = ISD::SIGNED_SCALED;
4877 
4878   Scale =
4879       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4880   return true;
4881 }
4882 
4883 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4884   SDLoc sdl = getCurSDLoc();
4885 
4886   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4887   const Value *Ptr = I.getArgOperand(1);
4888   SDValue Src0 = getValue(I.getArgOperand(0));
4889   SDValue Mask = getValue(I.getArgOperand(3));
4890   EVT VT = Src0.getValueType();
4891   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4892                         ->getMaybeAlignValue()
4893                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4895 
4896   SDValue Base;
4897   SDValue Index;
4898   ISD::MemIndexType IndexType;
4899   SDValue Scale;
4900   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4901                                     I.getParent(), VT.getScalarStoreSize());
4902 
4903   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4904   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4905       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4906       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4907   if (!UniformBase) {
4908     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4909     Index = getValue(Ptr);
4910     IndexType = ISD::SIGNED_SCALED;
4911     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4912   }
4913 
4914   EVT IdxVT = Index.getValueType();
4915   EVT EltTy = IdxVT.getVectorElementType();
4916   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4917     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4918     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4919   }
4920 
4921   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4922   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4923                                          Ops, MMO, IndexType, false);
4924   DAG.setRoot(Scatter);
4925   setValue(&I, Scatter);
4926 }
4927 
4928 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4929   SDLoc sdl = getCurSDLoc();
4930 
4931   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4932                               Align &Alignment) {
4933     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4934     Ptr = I.getArgOperand(0);
4935     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4936     Mask = I.getArgOperand(2);
4937     Src0 = I.getArgOperand(3);
4938   };
4939   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4940                                  Align &Alignment) {
4941     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4942     Ptr = I.getArgOperand(0);
4943     Alignment = I.getParamAlign(0).valueOrOne();
4944     Mask = I.getArgOperand(1);
4945     Src0 = I.getArgOperand(2);
4946   };
4947 
4948   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4949   Align Alignment;
4950   if (IsExpanding)
4951     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4952   else
4953     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4954 
4955   SDValue Ptr = getValue(PtrOperand);
4956   SDValue Src0 = getValue(Src0Operand);
4957   SDValue Mask = getValue(MaskOperand);
4958   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4959 
4960   EVT VT = Src0.getValueType();
4961   AAMDNodes AAInfo = I.getAAMetadata();
4962   const MDNode *Ranges = getRangeMetadata(I);
4963 
4964   // Do not serialize masked loads of constant memory with anything.
4965   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4966   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4967 
4968   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4969 
4970   auto MMOFlags = MachineMemOperand::MOLoad;
4971   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4972     MMOFlags |= MachineMemOperand::MONonTemporal;
4973 
4974   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4975       MachinePointerInfo(PtrOperand), MMOFlags,
4976       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4977 
4978   const auto &TLI = DAG.getTargetLoweringInfo();
4979   const auto &TTI =
4980       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4981   // The Load/Res may point to different values and both of them are output
4982   // variables.
4983   SDValue Load;
4984   SDValue Res;
4985   if (!IsExpanding &&
4986       TTI.hasConditionalLoadStoreForType(Src0Operand->getType()))
4987     Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
4988   else
4989     Res = Load =
4990         DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4991                           ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4992   if (AddToChain)
4993     PendingLoads.push_back(Load.getValue(1));
4994   setValue(&I, Res);
4995 }
4996 
4997 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4998   SDLoc sdl = getCurSDLoc();
4999 
5000   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
5001   const Value *Ptr = I.getArgOperand(0);
5002   SDValue Src0 = getValue(I.getArgOperand(3));
5003   SDValue Mask = getValue(I.getArgOperand(2));
5004 
5005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5006   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5007   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
5008                         ->getMaybeAlignValue()
5009                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
5010 
5011   const MDNode *Ranges = getRangeMetadata(I);
5012 
5013   SDValue Root = DAG.getRoot();
5014   SDValue Base;
5015   SDValue Index;
5016   ISD::MemIndexType IndexType;
5017   SDValue Scale;
5018   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
5019                                     I.getParent(), VT.getScalarStoreSize());
5020   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5021   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5022       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5023       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5024       Ranges);
5025 
5026   if (!UniformBase) {
5027     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5028     Index = getValue(Ptr);
5029     IndexType = ISD::SIGNED_SCALED;
5030     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5031   }
5032 
5033   EVT IdxVT = Index.getValueType();
5034   EVT EltTy = IdxVT.getVectorElementType();
5035   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5036     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5037     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5038   }
5039 
5040   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5041   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5042                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5043 
5044   PendingLoads.push_back(Gather.getValue(1));
5045   setValue(&I, Gather);
5046 }
5047 
5048 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5049   SDLoc dl = getCurSDLoc();
5050   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5051   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5052   SyncScope::ID SSID = I.getSyncScopeID();
5053 
5054   SDValue InChain = getRoot();
5055 
5056   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5057   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5058 
5059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5060   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5061 
5062   MachineFunction &MF = DAG.getMachineFunction();
5063   MachineMemOperand *MMO = MF.getMachineMemOperand(
5064       MachinePointerInfo(I.getPointerOperand()), Flags,
5065       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5066       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5067 
5068   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5069                                    dl, MemVT, VTs, InChain,
5070                                    getValue(I.getPointerOperand()),
5071                                    getValue(I.getCompareOperand()),
5072                                    getValue(I.getNewValOperand()), MMO);
5073 
5074   SDValue OutChain = L.getValue(2);
5075 
5076   setValue(&I, L);
5077   DAG.setRoot(OutChain);
5078 }
5079 
5080 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5081   SDLoc dl = getCurSDLoc();
5082   ISD::NodeType NT;
5083   switch (I.getOperation()) {
5084   default: llvm_unreachable("Unknown atomicrmw operation");
5085   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5086   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5087   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5088   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5089   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5090   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5091   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5092   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5093   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5094   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5095   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5096   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5097   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5098   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5099   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5100   case AtomicRMWInst::UIncWrap:
5101     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5102     break;
5103   case AtomicRMWInst::UDecWrap:
5104     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5105     break;
5106   }
5107   AtomicOrdering Ordering = I.getOrdering();
5108   SyncScope::ID SSID = I.getSyncScopeID();
5109 
5110   SDValue InChain = getRoot();
5111 
5112   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5113   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5114   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5115 
5116   MachineFunction &MF = DAG.getMachineFunction();
5117   MachineMemOperand *MMO = MF.getMachineMemOperand(
5118       MachinePointerInfo(I.getPointerOperand()), Flags,
5119       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5120       AAMDNodes(), nullptr, SSID, Ordering);
5121 
5122   SDValue L =
5123     DAG.getAtomic(NT, dl, MemVT, InChain,
5124                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5125                   MMO);
5126 
5127   SDValue OutChain = L.getValue(1);
5128 
5129   setValue(&I, L);
5130   DAG.setRoot(OutChain);
5131 }
5132 
5133 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5134   SDLoc dl = getCurSDLoc();
5135   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5136   SDValue Ops[3];
5137   Ops[0] = getRoot();
5138   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5139                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5140   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5141                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5142   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5143   setValue(&I, N);
5144   DAG.setRoot(N);
5145 }
5146 
5147 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5148   SDLoc dl = getCurSDLoc();
5149   AtomicOrdering Order = I.getOrdering();
5150   SyncScope::ID SSID = I.getSyncScopeID();
5151 
5152   SDValue InChain = getRoot();
5153 
5154   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5155   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5156   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5157 
5158   if (!TLI.supportsUnalignedAtomics() &&
5159       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5160     report_fatal_error("Cannot generate unaligned atomic load");
5161 
5162   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5163 
5164   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5165       MachinePointerInfo(I.getPointerOperand()), Flags,
5166       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5167       nullptr, SSID, Order);
5168 
5169   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5170 
5171   SDValue Ptr = getValue(I.getPointerOperand());
5172   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5173                             Ptr, MMO);
5174 
5175   SDValue OutChain = L.getValue(1);
5176   if (MemVT != VT)
5177     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5178 
5179   setValue(&I, L);
5180   DAG.setRoot(OutChain);
5181 }
5182 
5183 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5184   SDLoc dl = getCurSDLoc();
5185 
5186   AtomicOrdering Ordering = I.getOrdering();
5187   SyncScope::ID SSID = I.getSyncScopeID();
5188 
5189   SDValue InChain = getRoot();
5190 
5191   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5192   EVT MemVT =
5193       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5194 
5195   if (!TLI.supportsUnalignedAtomics() &&
5196       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5197     report_fatal_error("Cannot generate unaligned atomic store");
5198 
5199   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5200 
5201   MachineFunction &MF = DAG.getMachineFunction();
5202   MachineMemOperand *MMO = MF.getMachineMemOperand(
5203       MachinePointerInfo(I.getPointerOperand()), Flags,
5204       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5205       nullptr, SSID, Ordering);
5206 
5207   SDValue Val = getValue(I.getValueOperand());
5208   if (Val.getValueType() != MemVT)
5209     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5210   SDValue Ptr = getValue(I.getPointerOperand());
5211 
5212   SDValue OutChain =
5213       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5214 
5215   setValue(&I, OutChain);
5216   DAG.setRoot(OutChain);
5217 }
5218 
5219 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5220 /// node.
5221 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5222                                                unsigned Intrinsic) {
5223   // Ignore the callsite's attributes. A specific call site may be marked with
5224   // readnone, but the lowering code will expect the chain based on the
5225   // definition.
5226   const Function *F = I.getCalledFunction();
5227   bool HasChain = !F->doesNotAccessMemory();
5228   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5229 
5230   // Build the operand list.
5231   SmallVector<SDValue, 8> Ops;
5232   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5233     if (OnlyLoad) {
5234       // We don't need to serialize loads against other loads.
5235       Ops.push_back(DAG.getRoot());
5236     } else {
5237       Ops.push_back(getRoot());
5238     }
5239   }
5240 
5241   // Info is set by getTgtMemIntrinsic
5242   TargetLowering::IntrinsicInfo Info;
5243   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5244   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5245                                                DAG.getMachineFunction(),
5246                                                Intrinsic);
5247 
5248   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5249   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5250       Info.opc == ISD::INTRINSIC_W_CHAIN)
5251     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5252                                         TLI.getPointerTy(DAG.getDataLayout())));
5253 
5254   // Add all operands of the call to the operand list.
5255   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5256     const Value *Arg = I.getArgOperand(i);
5257     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5258       Ops.push_back(getValue(Arg));
5259       continue;
5260     }
5261 
5262     // Use TargetConstant instead of a regular constant for immarg.
5263     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5264     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5265       assert(CI->getBitWidth() <= 64 &&
5266              "large intrinsic immediates not handled");
5267       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5268     } else {
5269       Ops.push_back(
5270           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5271     }
5272   }
5273 
5274   SmallVector<EVT, 4> ValueVTs;
5275   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5276 
5277   if (HasChain)
5278     ValueVTs.push_back(MVT::Other);
5279 
5280   SDVTList VTs = DAG.getVTList(ValueVTs);
5281 
5282   // Propagate fast-math-flags from IR to node(s).
5283   SDNodeFlags Flags;
5284   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5285     Flags.copyFMF(*FPMO);
5286   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5287 
5288   // Create the node.
5289   SDValue Result;
5290 
5291   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5292     auto *Token = Bundle->Inputs[0].get();
5293     SDValue ConvControlToken = getValue(Token);
5294     assert(Ops.back().getValueType() != MVT::Glue &&
5295            "Did not expected another glue node here.");
5296     ConvControlToken =
5297         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5298     Ops.push_back(ConvControlToken);
5299   }
5300 
5301   // In some cases, custom collection of operands from CallInst I may be needed.
5302   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5303   if (IsTgtIntrinsic) {
5304     // This is target intrinsic that touches memory
5305     //
5306     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5307     //       didn't yield anything useful.
5308     MachinePointerInfo MPI;
5309     if (Info.ptrVal)
5310       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5311     else if (Info.fallbackAddressSpace)
5312       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5313     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5314                                      Info.memVT, MPI, Info.align, Info.flags,
5315                                      Info.size, I.getAAMetadata());
5316   } else if (!HasChain) {
5317     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5318   } else if (!I.getType()->isVoidTy()) {
5319     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5320   } else {
5321     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5322   }
5323 
5324   if (HasChain) {
5325     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5326     if (OnlyLoad)
5327       PendingLoads.push_back(Chain);
5328     else
5329       DAG.setRoot(Chain);
5330   }
5331 
5332   if (!I.getType()->isVoidTy()) {
5333     if (!isa<VectorType>(I.getType()))
5334       Result = lowerRangeToAssertZExt(DAG, I, Result);
5335 
5336     MaybeAlign Alignment = I.getRetAlign();
5337 
5338     // Insert `assertalign` node if there's an alignment.
5339     if (InsertAssertAlign && Alignment) {
5340       Result =
5341           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5342     }
5343   }
5344 
5345   setValue(&I, Result);
5346 }
5347 
5348 /// GetSignificand - Get the significand and build it into a floating-point
5349 /// number with exponent of 1:
5350 ///
5351 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5352 ///
5353 /// where Op is the hexadecimal representation of floating point value.
5354 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5355   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5356                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5357   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5358                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5359   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5360 }
5361 
5362 /// GetExponent - Get the exponent:
5363 ///
5364 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5365 ///
5366 /// where Op is the hexadecimal representation of floating point value.
5367 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5368                            const TargetLowering &TLI, const SDLoc &dl) {
5369   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5370                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5371   SDValue t1 = DAG.getNode(
5372       ISD::SRL, dl, MVT::i32, t0,
5373       DAG.getConstant(23, dl,
5374                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5375   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5376                            DAG.getConstant(127, dl, MVT::i32));
5377   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5378 }
5379 
5380 /// getF32Constant - Get 32-bit floating point constant.
5381 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5382                               const SDLoc &dl) {
5383   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5384                            MVT::f32);
5385 }
5386 
5387 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5388                                        SelectionDAG &DAG) {
5389   // TODO: What fast-math-flags should be set on the floating-point nodes?
5390 
5391   //   IntegerPartOfX = ((int32_t)(t0);
5392   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5393 
5394   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5395   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5396   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5397 
5398   //   IntegerPartOfX <<= 23;
5399   IntegerPartOfX =
5400       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5401                   DAG.getConstant(23, dl,
5402                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5403                                       MVT::i32, DAG.getDataLayout())));
5404 
5405   SDValue TwoToFractionalPartOfX;
5406   if (LimitFloatPrecision <= 6) {
5407     // For floating-point precision of 6:
5408     //
5409     //   TwoToFractionalPartOfX =
5410     //     0.997535578f +
5411     //       (0.735607626f + 0.252464424f * x) * x;
5412     //
5413     // error 0.0144103317, which is 6 bits
5414     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5415                              getF32Constant(DAG, 0x3e814304, dl));
5416     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5417                              getF32Constant(DAG, 0x3f3c50c8, dl));
5418     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5419     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5420                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5421   } else if (LimitFloatPrecision <= 12) {
5422     // For floating-point precision of 12:
5423     //
5424     //   TwoToFractionalPartOfX =
5425     //     0.999892986f +
5426     //       (0.696457318f +
5427     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5428     //
5429     // error 0.000107046256, which is 13 to 14 bits
5430     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5431                              getF32Constant(DAG, 0x3da235e3, dl));
5432     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5433                              getF32Constant(DAG, 0x3e65b8f3, dl));
5434     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5435     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5436                              getF32Constant(DAG, 0x3f324b07, dl));
5437     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5438     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5439                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5440   } else { // LimitFloatPrecision <= 18
5441     // For floating-point precision of 18:
5442     //
5443     //   TwoToFractionalPartOfX =
5444     //     0.999999982f +
5445     //       (0.693148872f +
5446     //         (0.240227044f +
5447     //           (0.554906021e-1f +
5448     //             (0.961591928e-2f +
5449     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5450     // error 2.47208000*10^(-7), which is better than 18 bits
5451     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5452                              getF32Constant(DAG, 0x3924b03e, dl));
5453     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5454                              getF32Constant(DAG, 0x3ab24b87, dl));
5455     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5456     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5457                              getF32Constant(DAG, 0x3c1d8c17, dl));
5458     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5459     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5460                              getF32Constant(DAG, 0x3d634a1d, dl));
5461     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5462     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5463                              getF32Constant(DAG, 0x3e75fe14, dl));
5464     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5465     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5466                               getF32Constant(DAG, 0x3f317234, dl));
5467     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5468     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5469                                          getF32Constant(DAG, 0x3f800000, dl));
5470   }
5471 
5472   // Add the exponent into the result in integer domain.
5473   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5474   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5475                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5476 }
5477 
5478 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5479 /// limited-precision mode.
5480 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5481                          const TargetLowering &TLI, SDNodeFlags Flags) {
5482   if (Op.getValueType() == MVT::f32 &&
5483       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5484 
5485     // Put the exponent in the right bit position for later addition to the
5486     // final result:
5487     //
5488     // t0 = Op * log2(e)
5489 
5490     // TODO: What fast-math-flags should be set here?
5491     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5492                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5493     return getLimitedPrecisionExp2(t0, dl, DAG);
5494   }
5495 
5496   // No special expansion.
5497   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5498 }
5499 
5500 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5501 /// limited-precision mode.
5502 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5503                          const TargetLowering &TLI, SDNodeFlags Flags) {
5504   // TODO: What fast-math-flags should be set on the floating-point nodes?
5505 
5506   if (Op.getValueType() == MVT::f32 &&
5507       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5508     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5509 
5510     // Scale the exponent by log(2).
5511     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5512     SDValue LogOfExponent =
5513         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5514                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5515 
5516     // Get the significand and build it into a floating-point number with
5517     // exponent of 1.
5518     SDValue X = GetSignificand(DAG, Op1, dl);
5519 
5520     SDValue LogOfMantissa;
5521     if (LimitFloatPrecision <= 6) {
5522       // For floating-point precision of 6:
5523       //
5524       //   LogofMantissa =
5525       //     -1.1609546f +
5526       //       (1.4034025f - 0.23903021f * x) * x;
5527       //
5528       // error 0.0034276066, which is better than 8 bits
5529       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5530                                getF32Constant(DAG, 0xbe74c456, dl));
5531       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5532                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5533       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5534       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5535                                   getF32Constant(DAG, 0x3f949a29, dl));
5536     } else if (LimitFloatPrecision <= 12) {
5537       // For floating-point precision of 12:
5538       //
5539       //   LogOfMantissa =
5540       //     -1.7417939f +
5541       //       (2.8212026f +
5542       //         (-1.4699568f +
5543       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5544       //
5545       // error 0.000061011436, which is 14 bits
5546       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5547                                getF32Constant(DAG, 0xbd67b6d6, dl));
5548       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5549                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5550       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5551       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5552                                getF32Constant(DAG, 0x3fbc278b, dl));
5553       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5554       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5555                                getF32Constant(DAG, 0x40348e95, dl));
5556       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5557       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5558                                   getF32Constant(DAG, 0x3fdef31a, dl));
5559     } else { // LimitFloatPrecision <= 18
5560       // For floating-point precision of 18:
5561       //
5562       //   LogOfMantissa =
5563       //     -2.1072184f +
5564       //       (4.2372794f +
5565       //         (-3.7029485f +
5566       //           (2.2781945f +
5567       //             (-0.87823314f +
5568       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5569       //
5570       // error 0.0000023660568, which is better than 18 bits
5571       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5572                                getF32Constant(DAG, 0xbc91e5ac, dl));
5573       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5574                                getF32Constant(DAG, 0x3e4350aa, dl));
5575       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5576       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5577                                getF32Constant(DAG, 0x3f60d3e3, dl));
5578       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5579       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5580                                getF32Constant(DAG, 0x4011cdf0, dl));
5581       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5582       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5583                                getF32Constant(DAG, 0x406cfd1c, dl));
5584       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5585       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5586                                getF32Constant(DAG, 0x408797cb, dl));
5587       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5588       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5589                                   getF32Constant(DAG, 0x4006dcab, dl));
5590     }
5591 
5592     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5593   }
5594 
5595   // No special expansion.
5596   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5597 }
5598 
5599 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5600 /// limited-precision mode.
5601 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5602                           const TargetLowering &TLI, SDNodeFlags Flags) {
5603   // TODO: What fast-math-flags should be set on the floating-point nodes?
5604 
5605   if (Op.getValueType() == MVT::f32 &&
5606       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5607     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5608 
5609     // Get the exponent.
5610     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5611 
5612     // Get the significand and build it into a floating-point number with
5613     // exponent of 1.
5614     SDValue X = GetSignificand(DAG, Op1, dl);
5615 
5616     // Different possible minimax approximations of significand in
5617     // floating-point for various degrees of accuracy over [1,2].
5618     SDValue Log2ofMantissa;
5619     if (LimitFloatPrecision <= 6) {
5620       // For floating-point precision of 6:
5621       //
5622       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5623       //
5624       // error 0.0049451742, which is more than 7 bits
5625       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5626                                getF32Constant(DAG, 0xbeb08fe0, dl));
5627       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5628                                getF32Constant(DAG, 0x40019463, dl));
5629       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5630       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5631                                    getF32Constant(DAG, 0x3fd6633d, dl));
5632     } else if (LimitFloatPrecision <= 12) {
5633       // For floating-point precision of 12:
5634       //
5635       //   Log2ofMantissa =
5636       //     -2.51285454f +
5637       //       (4.07009056f +
5638       //         (-2.12067489f +
5639       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5640       //
5641       // error 0.0000876136000, which is better than 13 bits
5642       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5643                                getF32Constant(DAG, 0xbda7262e, dl));
5644       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5645                                getF32Constant(DAG, 0x3f25280b, dl));
5646       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5647       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5648                                getF32Constant(DAG, 0x4007b923, dl));
5649       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5650       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5651                                getF32Constant(DAG, 0x40823e2f, dl));
5652       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5653       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5654                                    getF32Constant(DAG, 0x4020d29c, dl));
5655     } else { // LimitFloatPrecision <= 18
5656       // For floating-point precision of 18:
5657       //
5658       //   Log2ofMantissa =
5659       //     -3.0400495f +
5660       //       (6.1129976f +
5661       //         (-5.3420409f +
5662       //           (3.2865683f +
5663       //             (-1.2669343f +
5664       //               (0.27515199f -
5665       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5666       //
5667       // error 0.0000018516, which is better than 18 bits
5668       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5669                                getF32Constant(DAG, 0xbcd2769e, dl));
5670       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5671                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5672       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5673       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5674                                getF32Constant(DAG, 0x3fa22ae7, dl));
5675       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5676       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5677                                getF32Constant(DAG, 0x40525723, dl));
5678       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5679       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5680                                getF32Constant(DAG, 0x40aaf200, dl));
5681       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5682       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5683                                getF32Constant(DAG, 0x40c39dad, dl));
5684       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5685       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5686                                    getF32Constant(DAG, 0x4042902c, dl));
5687     }
5688 
5689     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5690   }
5691 
5692   // No special expansion.
5693   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5694 }
5695 
5696 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5697 /// limited-precision mode.
5698 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5699                            const TargetLowering &TLI, SDNodeFlags Flags) {
5700   // TODO: What fast-math-flags should be set on the floating-point nodes?
5701 
5702   if (Op.getValueType() == MVT::f32 &&
5703       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5704     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5705 
5706     // Scale the exponent by log10(2) [0.30102999f].
5707     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5708     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5709                                         getF32Constant(DAG, 0x3e9a209a, dl));
5710 
5711     // Get the significand and build it into a floating-point number with
5712     // exponent of 1.
5713     SDValue X = GetSignificand(DAG, Op1, dl);
5714 
5715     SDValue Log10ofMantissa;
5716     if (LimitFloatPrecision <= 6) {
5717       // For floating-point precision of 6:
5718       //
5719       //   Log10ofMantissa =
5720       //     -0.50419619f +
5721       //       (0.60948995f - 0.10380950f * x) * x;
5722       //
5723       // error 0.0014886165, which is 6 bits
5724       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5725                                getF32Constant(DAG, 0xbdd49a13, dl));
5726       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5727                                getF32Constant(DAG, 0x3f1c0789, dl));
5728       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5729       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5730                                     getF32Constant(DAG, 0x3f011300, dl));
5731     } else if (LimitFloatPrecision <= 12) {
5732       // For floating-point precision of 12:
5733       //
5734       //   Log10ofMantissa =
5735       //     -0.64831180f +
5736       //       (0.91751397f +
5737       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5738       //
5739       // error 0.00019228036, which is better than 12 bits
5740       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5741                                getF32Constant(DAG, 0x3d431f31, dl));
5742       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5743                                getF32Constant(DAG, 0x3ea21fb2, dl));
5744       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5745       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5746                                getF32Constant(DAG, 0x3f6ae232, dl));
5747       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5748       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5749                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5750     } else { // LimitFloatPrecision <= 18
5751       // For floating-point precision of 18:
5752       //
5753       //   Log10ofMantissa =
5754       //     -0.84299375f +
5755       //       (1.5327582f +
5756       //         (-1.0688956f +
5757       //           (0.49102474f +
5758       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5759       //
5760       // error 0.0000037995730, which is better than 18 bits
5761       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5762                                getF32Constant(DAG, 0x3c5d51ce, dl));
5763       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5764                                getF32Constant(DAG, 0x3e00685a, dl));
5765       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5766       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5767                                getF32Constant(DAG, 0x3efb6798, dl));
5768       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5769       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5770                                getF32Constant(DAG, 0x3f88d192, dl));
5771       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5772       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5773                                getF32Constant(DAG, 0x3fc4316c, dl));
5774       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5775       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5776                                     getF32Constant(DAG, 0x3f57ce70, dl));
5777     }
5778 
5779     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5780   }
5781 
5782   // No special expansion.
5783   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5784 }
5785 
5786 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5787 /// limited-precision mode.
5788 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5789                           const TargetLowering &TLI, SDNodeFlags Flags) {
5790   if (Op.getValueType() == MVT::f32 &&
5791       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5792     return getLimitedPrecisionExp2(Op, dl, DAG);
5793 
5794   // No special expansion.
5795   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5796 }
5797 
5798 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5799 /// limited-precision mode with x == 10.0f.
5800 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5801                          SelectionDAG &DAG, const TargetLowering &TLI,
5802                          SDNodeFlags Flags) {
5803   bool IsExp10 = false;
5804   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5805       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5806     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5807       APFloat Ten(10.0f);
5808       IsExp10 = LHSC->isExactlyValue(Ten);
5809     }
5810   }
5811 
5812   // TODO: What fast-math-flags should be set on the FMUL node?
5813   if (IsExp10) {
5814     // Put the exponent in the right bit position for later addition to the
5815     // final result:
5816     //
5817     //   #define LOG2OF10 3.3219281f
5818     //   t0 = Op * LOG2OF10;
5819     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5820                              getF32Constant(DAG, 0x40549a78, dl));
5821     return getLimitedPrecisionExp2(t0, dl, DAG);
5822   }
5823 
5824   // No special expansion.
5825   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5826 }
5827 
5828 /// ExpandPowI - Expand a llvm.powi intrinsic.
5829 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5830                           SelectionDAG &DAG) {
5831   // If RHS is a constant, we can expand this out to a multiplication tree if
5832   // it's beneficial on the target, otherwise we end up lowering to a call to
5833   // __powidf2 (for example).
5834   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5835     unsigned Val = RHSC->getSExtValue();
5836 
5837     // powi(x, 0) -> 1.0
5838     if (Val == 0)
5839       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5840 
5841     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5842             Val, DAG.shouldOptForSize())) {
5843       // Get the exponent as a positive value.
5844       if ((int)Val < 0)
5845         Val = -Val;
5846       // We use the simple binary decomposition method to generate the multiply
5847       // sequence.  There are more optimal ways to do this (for example,
5848       // powi(x,15) generates one more multiply than it should), but this has
5849       // the benefit of being both really simple and much better than a libcall.
5850       SDValue Res; // Logically starts equal to 1.0
5851       SDValue CurSquare = LHS;
5852       // TODO: Intrinsics should have fast-math-flags that propagate to these
5853       // nodes.
5854       while (Val) {
5855         if (Val & 1) {
5856           if (Res.getNode())
5857             Res =
5858                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5859           else
5860             Res = CurSquare; // 1.0*CurSquare.
5861         }
5862 
5863         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5864                                 CurSquare, CurSquare);
5865         Val >>= 1;
5866       }
5867 
5868       // If the original was negative, invert the result, producing 1/(x*x*x).
5869       if (RHSC->getSExtValue() < 0)
5870         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5871                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5872       return Res;
5873     }
5874   }
5875 
5876   // Otherwise, expand to a libcall.
5877   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5878 }
5879 
5880 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5881                             SDValue LHS, SDValue RHS, SDValue Scale,
5882                             SelectionDAG &DAG, const TargetLowering &TLI) {
5883   EVT VT = LHS.getValueType();
5884   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5885   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5886   LLVMContext &Ctx = *DAG.getContext();
5887 
5888   // If the type is legal but the operation isn't, this node might survive all
5889   // the way to operation legalization. If we end up there and we do not have
5890   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5891   // node.
5892 
5893   // Coax the legalizer into expanding the node during type legalization instead
5894   // by bumping the size by one bit. This will force it to Promote, enabling the
5895   // early expansion and avoiding the need to expand later.
5896 
5897   // We don't have to do this if Scale is 0; that can always be expanded, unless
5898   // it's a saturating signed operation. Those can experience true integer
5899   // division overflow, a case which we must avoid.
5900 
5901   // FIXME: We wouldn't have to do this (or any of the early
5902   // expansion/promotion) if it was possible to expand a libcall of an
5903   // illegal type during operation legalization. But it's not, so things
5904   // get a bit hacky.
5905   unsigned ScaleInt = Scale->getAsZExtVal();
5906   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5907       (TLI.isTypeLegal(VT) ||
5908        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5909     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5910         Opcode, VT, ScaleInt);
5911     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5912       EVT PromVT;
5913       if (VT.isScalarInteger())
5914         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5915       else if (VT.isVector()) {
5916         PromVT = VT.getVectorElementType();
5917         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5918         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5919       } else
5920         llvm_unreachable("Wrong VT for DIVFIX?");
5921       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5922       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5923       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5924       // For saturating operations, we need to shift up the LHS to get the
5925       // proper saturation width, and then shift down again afterwards.
5926       if (Saturating)
5927         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5928                           DAG.getConstant(1, DL, ShiftTy));
5929       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5930       if (Saturating)
5931         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5932                           DAG.getConstant(1, DL, ShiftTy));
5933       return DAG.getZExtOrTrunc(Res, DL, VT);
5934     }
5935   }
5936 
5937   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5938 }
5939 
5940 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5941 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5942 static void
5943 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5944                      const SDValue &N) {
5945   switch (N.getOpcode()) {
5946   case ISD::CopyFromReg: {
5947     SDValue Op = N.getOperand(1);
5948     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5949                       Op.getValueType().getSizeInBits());
5950     return;
5951   }
5952   case ISD::BITCAST:
5953   case ISD::AssertZext:
5954   case ISD::AssertSext:
5955   case ISD::TRUNCATE:
5956     getUnderlyingArgRegs(Regs, N.getOperand(0));
5957     return;
5958   case ISD::BUILD_PAIR:
5959   case ISD::BUILD_VECTOR:
5960   case ISD::CONCAT_VECTORS:
5961     for (SDValue Op : N->op_values())
5962       getUnderlyingArgRegs(Regs, Op);
5963     return;
5964   default:
5965     return;
5966   }
5967 }
5968 
5969 /// If the DbgValueInst is a dbg_value of a function argument, create the
5970 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5971 /// instruction selection, they will be inserted to the entry BB.
5972 /// We don't currently support this for variadic dbg_values, as they shouldn't
5973 /// appear for function arguments or in the prologue.
5974 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5975     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5976     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5977   const Argument *Arg = dyn_cast<Argument>(V);
5978   if (!Arg)
5979     return false;
5980 
5981   MachineFunction &MF = DAG.getMachineFunction();
5982   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5983 
5984   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5985   // we've been asked to pursue.
5986   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5987                               bool Indirect) {
5988     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5989       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5990       // pointing at the VReg, which will be patched up later.
5991       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5992       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5993           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5994           /* isKill */ false, /* isDead */ false,
5995           /* isUndef */ false, /* isEarlyClobber */ false,
5996           /* SubReg */ 0, /* isDebug */ true)});
5997 
5998       auto *NewDIExpr = FragExpr;
5999       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6000       // the DIExpression.
6001       if (Indirect)
6002         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6003       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
6004       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6005       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6006     } else {
6007       // Create a completely standard DBG_VALUE.
6008       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6009       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6010     }
6011   };
6012 
6013   if (Kind == FuncArgumentDbgValueKind::Value) {
6014     // ArgDbgValues are hoisted to the beginning of the entry block. So we
6015     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6016     // the entry block.
6017     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6018     if (!IsInEntryBlock)
6019       return false;
6020 
6021     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
6022     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6023     // variable that also is a param.
6024     //
6025     // Although, if we are at the top of the entry block already, we can still
6026     // emit using ArgDbgValue. This might catch some situations when the
6027     // dbg.value refers to an argument that isn't used in the entry block, so
6028     // any CopyToReg node would be optimized out and the only way to express
6029     // this DBG_VALUE is by using the physical reg (or FI) as done in this
6030     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
6031     // we should only emit as ArgDbgValue if the Variable is an argument to the
6032     // current function, and the dbg.value intrinsic is found in the entry
6033     // block.
6034     bool VariableIsFunctionInputArg = Variable->isParameter() &&
6035         !DL->getInlinedAt();
6036     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6037     if (!IsInPrologue && !VariableIsFunctionInputArg)
6038       return false;
6039 
6040     // Here we assume that a function argument on IR level only can be used to
6041     // describe one input parameter on source level. If we for example have
6042     // source code like this
6043     //
6044     //    struct A { long x, y; };
6045     //    void foo(struct A a, long b) {
6046     //      ...
6047     //      b = a.x;
6048     //      ...
6049     //    }
6050     //
6051     // and IR like this
6052     //
6053     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6054     //  entry:
6055     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6056     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6057     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6058     //    ...
6059     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6060     //    ...
6061     //
6062     // then the last dbg.value is describing a parameter "b" using a value that
6063     // is an argument. But since we already has used %a1 to describe a parameter
6064     // we should not handle that last dbg.value here (that would result in an
6065     // incorrect hoisting of the DBG_VALUE to the function entry).
6066     // Notice that we allow one dbg.value per IR level argument, to accommodate
6067     // for the situation with fragments above.
6068     // If there is no node for the value being handled, we return true to skip
6069     // the normal generation of debug info, as it would kill existing debug
6070     // info for the parameter in case of duplicates.
6071     if (VariableIsFunctionInputArg) {
6072       unsigned ArgNo = Arg->getArgNo();
6073       if (ArgNo >= FuncInfo.DescribedArgs.size())
6074         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6075       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6076         return !NodeMap[V].getNode();
6077       FuncInfo.DescribedArgs.set(ArgNo);
6078     }
6079   }
6080 
6081   bool IsIndirect = false;
6082   std::optional<MachineOperand> Op;
6083   // Some arguments' frame index is recorded during argument lowering.
6084   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6085   if (FI != std::numeric_limits<int>::max())
6086     Op = MachineOperand::CreateFI(FI);
6087 
6088   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6089   if (!Op && N.getNode()) {
6090     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6091     Register Reg;
6092     if (ArgRegsAndSizes.size() == 1)
6093       Reg = ArgRegsAndSizes.front().first;
6094 
6095     if (Reg && Reg.isVirtual()) {
6096       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6097       Register PR = RegInfo.getLiveInPhysReg(Reg);
6098       if (PR)
6099         Reg = PR;
6100     }
6101     if (Reg) {
6102       Op = MachineOperand::CreateReg(Reg, false);
6103       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6104     }
6105   }
6106 
6107   if (!Op && N.getNode()) {
6108     // Check if frame index is available.
6109     SDValue LCandidate = peekThroughBitcasts(N);
6110     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6111       if (FrameIndexSDNode *FINode =
6112           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6113         Op = MachineOperand::CreateFI(FINode->getIndex());
6114   }
6115 
6116   if (!Op) {
6117     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6118     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6119                                          SplitRegs) {
6120       unsigned Offset = 0;
6121       for (const auto &RegAndSize : SplitRegs) {
6122         // If the expression is already a fragment, the current register
6123         // offset+size might extend beyond the fragment. In this case, only
6124         // the register bits that are inside the fragment are relevant.
6125         int RegFragmentSizeInBits = RegAndSize.second;
6126         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6127           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6128           // The register is entirely outside the expression fragment,
6129           // so is irrelevant for debug info.
6130           if (Offset >= ExprFragmentSizeInBits)
6131             break;
6132           // The register is partially outside the expression fragment, only
6133           // the low bits within the fragment are relevant for debug info.
6134           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6135             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6136           }
6137         }
6138 
6139         auto FragmentExpr = DIExpression::createFragmentExpression(
6140             Expr, Offset, RegFragmentSizeInBits);
6141         Offset += RegAndSize.second;
6142         // If a valid fragment expression cannot be created, the variable's
6143         // correct value cannot be determined and so it is set as Undef.
6144         if (!FragmentExpr) {
6145           SDDbgValue *SDV = DAG.getConstantDbgValue(
6146               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6147           DAG.AddDbgValue(SDV, false);
6148           continue;
6149         }
6150         MachineInstr *NewMI =
6151             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6152                              Kind != FuncArgumentDbgValueKind::Value);
6153         FuncInfo.ArgDbgValues.push_back(NewMI);
6154       }
6155     };
6156 
6157     // Check if ValueMap has reg number.
6158     DenseMap<const Value *, Register>::const_iterator
6159       VMI = FuncInfo.ValueMap.find(V);
6160     if (VMI != FuncInfo.ValueMap.end()) {
6161       const auto &TLI = DAG.getTargetLoweringInfo();
6162       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6163                        V->getType(), std::nullopt);
6164       if (RFV.occupiesMultipleRegs()) {
6165         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6166         return true;
6167       }
6168 
6169       Op = MachineOperand::CreateReg(VMI->second, false);
6170       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6171     } else if (ArgRegsAndSizes.size() > 1) {
6172       // This was split due to the calling convention, and no virtual register
6173       // mapping exists for the value.
6174       splitMultiRegDbgValue(ArgRegsAndSizes);
6175       return true;
6176     }
6177   }
6178 
6179   if (!Op)
6180     return false;
6181 
6182   assert(Variable->isValidLocationForIntrinsic(DL) &&
6183          "Expected inlined-at fields to agree");
6184   MachineInstr *NewMI = nullptr;
6185 
6186   if (Op->isReg())
6187     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6188   else
6189     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6190                     Variable, Expr);
6191 
6192   // Otherwise, use ArgDbgValues.
6193   FuncInfo.ArgDbgValues.push_back(NewMI);
6194   return true;
6195 }
6196 
6197 /// Return the appropriate SDDbgValue based on N.
6198 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6199                                              DILocalVariable *Variable,
6200                                              DIExpression *Expr,
6201                                              const DebugLoc &dl,
6202                                              unsigned DbgSDNodeOrder) {
6203   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6204     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6205     // stack slot locations.
6206     //
6207     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6208     // debug values here after optimization:
6209     //
6210     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6211     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6212     //
6213     // Both describe the direct values of their associated variables.
6214     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6215                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6216   }
6217   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6218                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6219 }
6220 
6221 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6222   switch (Intrinsic) {
6223   case Intrinsic::smul_fix:
6224     return ISD::SMULFIX;
6225   case Intrinsic::umul_fix:
6226     return ISD::UMULFIX;
6227   case Intrinsic::smul_fix_sat:
6228     return ISD::SMULFIXSAT;
6229   case Intrinsic::umul_fix_sat:
6230     return ISD::UMULFIXSAT;
6231   case Intrinsic::sdiv_fix:
6232     return ISD::SDIVFIX;
6233   case Intrinsic::udiv_fix:
6234     return ISD::UDIVFIX;
6235   case Intrinsic::sdiv_fix_sat:
6236     return ISD::SDIVFIXSAT;
6237   case Intrinsic::udiv_fix_sat:
6238     return ISD::UDIVFIXSAT;
6239   default:
6240     llvm_unreachable("Unhandled fixed point intrinsic");
6241   }
6242 }
6243 
6244 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6245                                            const char *FunctionName) {
6246   assert(FunctionName && "FunctionName must not be nullptr");
6247   SDValue Callee = DAG.getExternalSymbol(
6248       FunctionName,
6249       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6250   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6251 }
6252 
6253 /// Given a @llvm.call.preallocated.setup, return the corresponding
6254 /// preallocated call.
6255 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6256   assert(cast<CallBase>(PreallocatedSetup)
6257                  ->getCalledFunction()
6258                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6259          "expected call_preallocated_setup Value");
6260   for (const auto *U : PreallocatedSetup->users()) {
6261     auto *UseCall = cast<CallBase>(U);
6262     const Function *Fn = UseCall->getCalledFunction();
6263     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6264       return UseCall;
6265     }
6266   }
6267   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6268 }
6269 
6270 /// If DI is a debug value with an EntryValue expression, lower it using the
6271 /// corresponding physical register of the associated Argument value
6272 /// (guaranteed to exist by the verifier).
6273 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6274     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6275     DIExpression *Expr, DebugLoc DbgLoc) {
6276   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6277     return false;
6278 
6279   // These properties are guaranteed by the verifier.
6280   const Argument *Arg = cast<Argument>(Values[0]);
6281   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6282 
6283   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6284   if (ArgIt == FuncInfo.ValueMap.end()) {
6285     LLVM_DEBUG(
6286         dbgs() << "Dropping dbg.value: expression is entry_value but "
6287                   "couldn't find an associated register for the Argument\n");
6288     return true;
6289   }
6290   Register ArgVReg = ArgIt->getSecond();
6291 
6292   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6293     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6294       SDDbgValue *SDV = DAG.getVRegDbgValue(
6295           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6296       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6297       return true;
6298     }
6299   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6300                        "couldn't find a physical register\n");
6301   return true;
6302 }
6303 
6304 /// Lower the call to the specified intrinsic function.
6305 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6306                                                   unsigned Intrinsic) {
6307   SDLoc sdl = getCurSDLoc();
6308   switch (Intrinsic) {
6309   case Intrinsic::experimental_convergence_anchor:
6310     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6311     break;
6312   case Intrinsic::experimental_convergence_entry:
6313     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6314     break;
6315   case Intrinsic::experimental_convergence_loop: {
6316     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6317     auto *Token = Bundle->Inputs[0].get();
6318     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6319                              getValue(Token)));
6320     break;
6321   }
6322   }
6323 }
6324 
6325 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6326                                                unsigned IntrinsicID) {
6327   // For now, we're only lowering an 'add' histogram.
6328   // We can add others later, e.g. saturating adds, min/max.
6329   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6330          "Tried to lower unsupported histogram type");
6331   SDLoc sdl = getCurSDLoc();
6332   Value *Ptr = I.getOperand(0);
6333   SDValue Inc = getValue(I.getOperand(1));
6334   SDValue Mask = getValue(I.getOperand(2));
6335 
6336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6337   DataLayout TargetDL = DAG.getDataLayout();
6338   EVT VT = Inc.getValueType();
6339   Align Alignment = DAG.getEVTAlign(VT);
6340 
6341   const MDNode *Ranges = getRangeMetadata(I);
6342 
6343   SDValue Root = DAG.getRoot();
6344   SDValue Base;
6345   SDValue Index;
6346   ISD::MemIndexType IndexType;
6347   SDValue Scale;
6348   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6349                                     I.getParent(), VT.getScalarStoreSize());
6350 
6351   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6352 
6353   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6354       MachinePointerInfo(AS),
6355       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6356       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6357 
6358   if (!UniformBase) {
6359     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6360     Index = getValue(Ptr);
6361     IndexType = ISD::SIGNED_SCALED;
6362     Scale =
6363         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6364   }
6365 
6366   EVT IdxVT = Index.getValueType();
6367   EVT EltTy = IdxVT.getVectorElementType();
6368   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6369     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6370     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6371   }
6372 
6373   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6374 
6375   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6376   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6377                                              Ops, MMO, IndexType);
6378 
6379   setValue(&I, Histogram);
6380   DAG.setRoot(Histogram);
6381 }
6382 
6383 /// Lower the call to the specified intrinsic function.
6384 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6385                                              unsigned Intrinsic) {
6386   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6387   SDLoc sdl = getCurSDLoc();
6388   DebugLoc dl = getCurDebugLoc();
6389   SDValue Res;
6390 
6391   SDNodeFlags Flags;
6392   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6393     Flags.copyFMF(*FPOp);
6394 
6395   switch (Intrinsic) {
6396   default:
6397     // By default, turn this into a target intrinsic node.
6398     visitTargetIntrinsic(I, Intrinsic);
6399     return;
6400   case Intrinsic::vscale: {
6401     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6402     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6403     return;
6404   }
6405   case Intrinsic::vastart:  visitVAStart(I); return;
6406   case Intrinsic::vaend:    visitVAEnd(I); return;
6407   case Intrinsic::vacopy:   visitVACopy(I); return;
6408   case Intrinsic::returnaddress:
6409     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6410                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6411                              getValue(I.getArgOperand(0))));
6412     return;
6413   case Intrinsic::addressofreturnaddress:
6414     setValue(&I,
6415              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6416                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6417     return;
6418   case Intrinsic::sponentry:
6419     setValue(&I,
6420              DAG.getNode(ISD::SPONENTRY, sdl,
6421                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6422     return;
6423   case Intrinsic::frameaddress:
6424     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6425                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6426                              getValue(I.getArgOperand(0))));
6427     return;
6428   case Intrinsic::read_volatile_register:
6429   case Intrinsic::read_register: {
6430     Value *Reg = I.getArgOperand(0);
6431     SDValue Chain = getRoot();
6432     SDValue RegName =
6433         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6434     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6435     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6436       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6437     setValue(&I, Res);
6438     DAG.setRoot(Res.getValue(1));
6439     return;
6440   }
6441   case Intrinsic::write_register: {
6442     Value *Reg = I.getArgOperand(0);
6443     Value *RegValue = I.getArgOperand(1);
6444     SDValue Chain = getRoot();
6445     SDValue RegName =
6446         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6447     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6448                             RegName, getValue(RegValue)));
6449     return;
6450   }
6451   case Intrinsic::memcpy: {
6452     const auto &MCI = cast<MemCpyInst>(I);
6453     SDValue Op1 = getValue(I.getArgOperand(0));
6454     SDValue Op2 = getValue(I.getArgOperand(1));
6455     SDValue Op3 = getValue(I.getArgOperand(2));
6456     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6457     Align DstAlign = MCI.getDestAlign().valueOrOne();
6458     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6459     Align Alignment = std::min(DstAlign, SrcAlign);
6460     bool isVol = MCI.isVolatile();
6461     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6462     // node.
6463     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6464     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6465                                /* AlwaysInline */ false, &I, std::nullopt,
6466                                MachinePointerInfo(I.getArgOperand(0)),
6467                                MachinePointerInfo(I.getArgOperand(1)),
6468                                I.getAAMetadata(), AA);
6469     updateDAGForMaybeTailCall(MC);
6470     return;
6471   }
6472   case Intrinsic::memcpy_inline: {
6473     const auto &MCI = cast<MemCpyInlineInst>(I);
6474     SDValue Dst = getValue(I.getArgOperand(0));
6475     SDValue Src = getValue(I.getArgOperand(1));
6476     SDValue Size = getValue(I.getArgOperand(2));
6477     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6478     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6479     Align DstAlign = MCI.getDestAlign().valueOrOne();
6480     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6481     Align Alignment = std::min(DstAlign, SrcAlign);
6482     bool isVol = MCI.isVolatile();
6483     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6484     // node.
6485     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6486                                /* AlwaysInline */ true, &I, std::nullopt,
6487                                MachinePointerInfo(I.getArgOperand(0)),
6488                                MachinePointerInfo(I.getArgOperand(1)),
6489                                I.getAAMetadata(), AA);
6490     updateDAGForMaybeTailCall(MC);
6491     return;
6492   }
6493   case Intrinsic::memset: {
6494     const auto &MSI = cast<MemSetInst>(I);
6495     SDValue Op1 = getValue(I.getArgOperand(0));
6496     SDValue Op2 = getValue(I.getArgOperand(1));
6497     SDValue Op3 = getValue(I.getArgOperand(2));
6498     // @llvm.memset defines 0 and 1 to both mean no alignment.
6499     Align Alignment = MSI.getDestAlign().valueOrOne();
6500     bool isVol = MSI.isVolatile();
6501     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6502     SDValue MS = DAG.getMemset(
6503         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6504         &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6505     updateDAGForMaybeTailCall(MS);
6506     return;
6507   }
6508   case Intrinsic::memset_inline: {
6509     const auto &MSII = cast<MemSetInlineInst>(I);
6510     SDValue Dst = getValue(I.getArgOperand(0));
6511     SDValue Value = getValue(I.getArgOperand(1));
6512     SDValue Size = getValue(I.getArgOperand(2));
6513     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6514     // @llvm.memset defines 0 and 1 to both mean no alignment.
6515     Align DstAlign = MSII.getDestAlign().valueOrOne();
6516     bool isVol = MSII.isVolatile();
6517     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6518     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6519                                /* AlwaysInline */ true, &I,
6520                                MachinePointerInfo(I.getArgOperand(0)),
6521                                I.getAAMetadata());
6522     updateDAGForMaybeTailCall(MC);
6523     return;
6524   }
6525   case Intrinsic::memmove: {
6526     const auto &MMI = cast<MemMoveInst>(I);
6527     SDValue Op1 = getValue(I.getArgOperand(0));
6528     SDValue Op2 = getValue(I.getArgOperand(1));
6529     SDValue Op3 = getValue(I.getArgOperand(2));
6530     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6531     Align DstAlign = MMI.getDestAlign().valueOrOne();
6532     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6533     Align Alignment = std::min(DstAlign, SrcAlign);
6534     bool isVol = MMI.isVolatile();
6535     // FIXME: Support passing different dest/src alignments to the memmove DAG
6536     // node.
6537     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6538     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6539                                 /* OverrideTailCall */ std::nullopt,
6540                                 MachinePointerInfo(I.getArgOperand(0)),
6541                                 MachinePointerInfo(I.getArgOperand(1)),
6542                                 I.getAAMetadata(), AA);
6543     updateDAGForMaybeTailCall(MM);
6544     return;
6545   }
6546   case Intrinsic::memcpy_element_unordered_atomic: {
6547     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6548     SDValue Dst = getValue(MI.getRawDest());
6549     SDValue Src = getValue(MI.getRawSource());
6550     SDValue Length = getValue(MI.getLength());
6551 
6552     Type *LengthTy = MI.getLength()->getType();
6553     unsigned ElemSz = MI.getElementSizeInBytes();
6554     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6555     SDValue MC =
6556         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6557                             isTC, MachinePointerInfo(MI.getRawDest()),
6558                             MachinePointerInfo(MI.getRawSource()));
6559     updateDAGForMaybeTailCall(MC);
6560     return;
6561   }
6562   case Intrinsic::memmove_element_unordered_atomic: {
6563     auto &MI = cast<AtomicMemMoveInst>(I);
6564     SDValue Dst = getValue(MI.getRawDest());
6565     SDValue Src = getValue(MI.getRawSource());
6566     SDValue Length = getValue(MI.getLength());
6567 
6568     Type *LengthTy = MI.getLength()->getType();
6569     unsigned ElemSz = MI.getElementSizeInBytes();
6570     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6571     SDValue MC =
6572         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6573                              isTC, MachinePointerInfo(MI.getRawDest()),
6574                              MachinePointerInfo(MI.getRawSource()));
6575     updateDAGForMaybeTailCall(MC);
6576     return;
6577   }
6578   case Intrinsic::memset_element_unordered_atomic: {
6579     auto &MI = cast<AtomicMemSetInst>(I);
6580     SDValue Dst = getValue(MI.getRawDest());
6581     SDValue Val = getValue(MI.getValue());
6582     SDValue Length = getValue(MI.getLength());
6583 
6584     Type *LengthTy = MI.getLength()->getType();
6585     unsigned ElemSz = MI.getElementSizeInBytes();
6586     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6587     SDValue MC =
6588         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6589                             isTC, MachinePointerInfo(MI.getRawDest()));
6590     updateDAGForMaybeTailCall(MC);
6591     return;
6592   }
6593   case Intrinsic::call_preallocated_setup: {
6594     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6595     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6596     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6597                               getRoot(), SrcValue);
6598     setValue(&I, Res);
6599     DAG.setRoot(Res);
6600     return;
6601   }
6602   case Intrinsic::call_preallocated_arg: {
6603     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6604     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6605     SDValue Ops[3];
6606     Ops[0] = getRoot();
6607     Ops[1] = SrcValue;
6608     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6609                                    MVT::i32); // arg index
6610     SDValue Res = DAG.getNode(
6611         ISD::PREALLOCATED_ARG, sdl,
6612         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6613     setValue(&I, Res);
6614     DAG.setRoot(Res.getValue(1));
6615     return;
6616   }
6617   case Intrinsic::dbg_declare: {
6618     const auto &DI = cast<DbgDeclareInst>(I);
6619     // Debug intrinsics are handled separately in assignment tracking mode.
6620     // Some intrinsics are handled right after Argument lowering.
6621     if (AssignmentTrackingEnabled ||
6622         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6623       return;
6624     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6625     DILocalVariable *Variable = DI.getVariable();
6626     DIExpression *Expression = DI.getExpression();
6627     dropDanglingDebugInfo(Variable, Expression);
6628     // Assume dbg.declare can not currently use DIArgList, i.e.
6629     // it is non-variadic.
6630     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6631     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6632                        DI.getDebugLoc());
6633     return;
6634   }
6635   case Intrinsic::dbg_label: {
6636     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6637     DILabel *Label = DI.getLabel();
6638     assert(Label && "Missing label");
6639 
6640     SDDbgLabel *SDV;
6641     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6642     DAG.AddDbgLabel(SDV);
6643     return;
6644   }
6645   case Intrinsic::dbg_assign: {
6646     // Debug intrinsics are handled separately in assignment tracking mode.
6647     if (AssignmentTrackingEnabled)
6648       return;
6649     // If assignment tracking hasn't been enabled then fall through and treat
6650     // the dbg.assign as a dbg.value.
6651     [[fallthrough]];
6652   }
6653   case Intrinsic::dbg_value: {
6654     // Debug intrinsics are handled separately in assignment tracking mode.
6655     if (AssignmentTrackingEnabled)
6656       return;
6657     const DbgValueInst &DI = cast<DbgValueInst>(I);
6658     assert(DI.getVariable() && "Missing variable");
6659 
6660     DILocalVariable *Variable = DI.getVariable();
6661     DIExpression *Expression = DI.getExpression();
6662     dropDanglingDebugInfo(Variable, Expression);
6663 
6664     if (DI.isKillLocation()) {
6665       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6666       return;
6667     }
6668 
6669     SmallVector<Value *, 4> Values(DI.getValues());
6670     if (Values.empty())
6671       return;
6672 
6673     bool IsVariadic = DI.hasArgList();
6674     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6675                           SDNodeOrder, IsVariadic))
6676       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6677                            DI.getDebugLoc(), SDNodeOrder);
6678     return;
6679   }
6680 
6681   case Intrinsic::eh_typeid_for: {
6682     // Find the type id for the given typeinfo.
6683     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6684     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6685     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6686     setValue(&I, Res);
6687     return;
6688   }
6689 
6690   case Intrinsic::eh_return_i32:
6691   case Intrinsic::eh_return_i64:
6692     DAG.getMachineFunction().setCallsEHReturn(true);
6693     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6694                             MVT::Other,
6695                             getControlRoot(),
6696                             getValue(I.getArgOperand(0)),
6697                             getValue(I.getArgOperand(1))));
6698     return;
6699   case Intrinsic::eh_unwind_init:
6700     DAG.getMachineFunction().setCallsUnwindInit(true);
6701     return;
6702   case Intrinsic::eh_dwarf_cfa:
6703     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6704                              TLI.getPointerTy(DAG.getDataLayout()),
6705                              getValue(I.getArgOperand(0))));
6706     return;
6707   case Intrinsic::eh_sjlj_callsite: {
6708     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6709     assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6710 
6711     FuncInfo.setCurrentCallSite(CI->getZExtValue());
6712     return;
6713   }
6714   case Intrinsic::eh_sjlj_functioncontext: {
6715     // Get and store the index of the function context.
6716     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6717     AllocaInst *FnCtx =
6718       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6719     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6720     MFI.setFunctionContextIndex(FI);
6721     return;
6722   }
6723   case Intrinsic::eh_sjlj_setjmp: {
6724     SDValue Ops[2];
6725     Ops[0] = getRoot();
6726     Ops[1] = getValue(I.getArgOperand(0));
6727     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6728                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6729     setValue(&I, Op.getValue(0));
6730     DAG.setRoot(Op.getValue(1));
6731     return;
6732   }
6733   case Intrinsic::eh_sjlj_longjmp:
6734     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6735                             getRoot(), getValue(I.getArgOperand(0))));
6736     return;
6737   case Intrinsic::eh_sjlj_setup_dispatch:
6738     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6739                             getRoot()));
6740     return;
6741   case Intrinsic::masked_gather:
6742     visitMaskedGather(I);
6743     return;
6744   case Intrinsic::masked_load:
6745     visitMaskedLoad(I);
6746     return;
6747   case Intrinsic::masked_scatter:
6748     visitMaskedScatter(I);
6749     return;
6750   case Intrinsic::masked_store:
6751     visitMaskedStore(I);
6752     return;
6753   case Intrinsic::masked_expandload:
6754     visitMaskedLoad(I, true /* IsExpanding */);
6755     return;
6756   case Intrinsic::masked_compressstore:
6757     visitMaskedStore(I, true /* IsCompressing */);
6758     return;
6759   case Intrinsic::powi:
6760     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6761                             getValue(I.getArgOperand(1)), DAG));
6762     return;
6763   case Intrinsic::log:
6764     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6765     return;
6766   case Intrinsic::log2:
6767     setValue(&I,
6768              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6769     return;
6770   case Intrinsic::log10:
6771     setValue(&I,
6772              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6773     return;
6774   case Intrinsic::exp:
6775     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6776     return;
6777   case Intrinsic::exp2:
6778     setValue(&I,
6779              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6780     return;
6781   case Intrinsic::pow:
6782     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6783                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6784     return;
6785   case Intrinsic::sqrt:
6786   case Intrinsic::fabs:
6787   case Intrinsic::sin:
6788   case Intrinsic::cos:
6789   case Intrinsic::tan:
6790   case Intrinsic::asin:
6791   case Intrinsic::acos:
6792   case Intrinsic::atan:
6793   case Intrinsic::sinh:
6794   case Intrinsic::cosh:
6795   case Intrinsic::tanh:
6796   case Intrinsic::exp10:
6797   case Intrinsic::floor:
6798   case Intrinsic::ceil:
6799   case Intrinsic::trunc:
6800   case Intrinsic::rint:
6801   case Intrinsic::nearbyint:
6802   case Intrinsic::round:
6803   case Intrinsic::roundeven:
6804   case Intrinsic::canonicalize: {
6805     unsigned Opcode;
6806     // clang-format off
6807     switch (Intrinsic) {
6808     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6809     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6810     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6811     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6812     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6813     case Intrinsic::tan:          Opcode = ISD::FTAN;          break;
6814     case Intrinsic::asin:         Opcode = ISD::FASIN;         break;
6815     case Intrinsic::acos:         Opcode = ISD::FACOS;         break;
6816     case Intrinsic::atan:         Opcode = ISD::FATAN;         break;
6817     case Intrinsic::sinh:         Opcode = ISD::FSINH;         break;
6818     case Intrinsic::cosh:         Opcode = ISD::FCOSH;         break;
6819     case Intrinsic::tanh:         Opcode = ISD::FTANH;         break;
6820     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6821     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6822     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6823     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6824     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6825     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6826     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6827     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6828     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6829     }
6830     // clang-format on
6831 
6832     setValue(&I, DAG.getNode(Opcode, sdl,
6833                              getValue(I.getArgOperand(0)).getValueType(),
6834                              getValue(I.getArgOperand(0)), Flags));
6835     return;
6836   }
6837   case Intrinsic::lround:
6838   case Intrinsic::llround:
6839   case Intrinsic::lrint:
6840   case Intrinsic::llrint: {
6841     unsigned Opcode;
6842     // clang-format off
6843     switch (Intrinsic) {
6844     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6845     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6846     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6847     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6848     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6849     }
6850     // clang-format on
6851 
6852     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6853     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6854                              getValue(I.getArgOperand(0))));
6855     return;
6856   }
6857   case Intrinsic::minnum:
6858     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6859                              getValue(I.getArgOperand(0)).getValueType(),
6860                              getValue(I.getArgOperand(0)),
6861                              getValue(I.getArgOperand(1)), Flags));
6862     return;
6863   case Intrinsic::maxnum:
6864     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6865                              getValue(I.getArgOperand(0)).getValueType(),
6866                              getValue(I.getArgOperand(0)),
6867                              getValue(I.getArgOperand(1)), Flags));
6868     return;
6869   case Intrinsic::minimum:
6870     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6871                              getValue(I.getArgOperand(0)).getValueType(),
6872                              getValue(I.getArgOperand(0)),
6873                              getValue(I.getArgOperand(1)), Flags));
6874     return;
6875   case Intrinsic::maximum:
6876     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6877                              getValue(I.getArgOperand(0)).getValueType(),
6878                              getValue(I.getArgOperand(0)),
6879                              getValue(I.getArgOperand(1)), Flags));
6880     return;
6881   case Intrinsic::copysign:
6882     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6883                              getValue(I.getArgOperand(0)).getValueType(),
6884                              getValue(I.getArgOperand(0)),
6885                              getValue(I.getArgOperand(1)), Flags));
6886     return;
6887   case Intrinsic::ldexp:
6888     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6889                              getValue(I.getArgOperand(0)).getValueType(),
6890                              getValue(I.getArgOperand(0)),
6891                              getValue(I.getArgOperand(1)), Flags));
6892     return;
6893   case Intrinsic::frexp: {
6894     SmallVector<EVT, 2> ValueVTs;
6895     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6896     SDVTList VTs = DAG.getVTList(ValueVTs);
6897     setValue(&I,
6898              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6899     return;
6900   }
6901   case Intrinsic::arithmetic_fence: {
6902     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6903                              getValue(I.getArgOperand(0)).getValueType(),
6904                              getValue(I.getArgOperand(0)), Flags));
6905     return;
6906   }
6907   case Intrinsic::fma:
6908     setValue(&I, DAG.getNode(
6909                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6910                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6911                      getValue(I.getArgOperand(2)), Flags));
6912     return;
6913 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6914   case Intrinsic::INTRINSIC:
6915 #include "llvm/IR/ConstrainedOps.def"
6916     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6917     return;
6918 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6919 #include "llvm/IR/VPIntrinsics.def"
6920     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6921     return;
6922   case Intrinsic::fptrunc_round: {
6923     // Get the last argument, the metadata and convert it to an integer in the
6924     // call
6925     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6926     std::optional<RoundingMode> RoundMode =
6927         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6928 
6929     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6930 
6931     // Propagate fast-math-flags from IR to node(s).
6932     SDNodeFlags Flags;
6933     Flags.copyFMF(*cast<FPMathOperator>(&I));
6934     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6935 
6936     SDValue Result;
6937     Result = DAG.getNode(
6938         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6939         DAG.getTargetConstant((int)*RoundMode, sdl,
6940                               TLI.getPointerTy(DAG.getDataLayout())));
6941     setValue(&I, Result);
6942 
6943     return;
6944   }
6945   case Intrinsic::fmuladd: {
6946     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6947     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6948         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6949       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6950                                getValue(I.getArgOperand(0)).getValueType(),
6951                                getValue(I.getArgOperand(0)),
6952                                getValue(I.getArgOperand(1)),
6953                                getValue(I.getArgOperand(2)), Flags));
6954     } else {
6955       // TODO: Intrinsic calls should have fast-math-flags.
6956       SDValue Mul = DAG.getNode(
6957           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6958           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6959       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6960                                 getValue(I.getArgOperand(0)).getValueType(),
6961                                 Mul, getValue(I.getArgOperand(2)), Flags);
6962       setValue(&I, Add);
6963     }
6964     return;
6965   }
6966   case Intrinsic::convert_to_fp16:
6967     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6968                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6969                                          getValue(I.getArgOperand(0)),
6970                                          DAG.getTargetConstant(0, sdl,
6971                                                                MVT::i32))));
6972     return;
6973   case Intrinsic::convert_from_fp16:
6974     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6975                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6976                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6977                                          getValue(I.getArgOperand(0)))));
6978     return;
6979   case Intrinsic::fptosi_sat: {
6980     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6981     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6982                              getValue(I.getArgOperand(0)),
6983                              DAG.getValueType(VT.getScalarType())));
6984     return;
6985   }
6986   case Intrinsic::fptoui_sat: {
6987     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6988     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6989                              getValue(I.getArgOperand(0)),
6990                              DAG.getValueType(VT.getScalarType())));
6991     return;
6992   }
6993   case Intrinsic::set_rounding:
6994     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6995                       {getRoot(), getValue(I.getArgOperand(0))});
6996     setValue(&I, Res);
6997     DAG.setRoot(Res.getValue(0));
6998     return;
6999   case Intrinsic::is_fpclass: {
7000     const DataLayout DLayout = DAG.getDataLayout();
7001     EVT DestVT = TLI.getValueType(DLayout, I.getType());
7002     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7003     FPClassTest Test = static_cast<FPClassTest>(
7004         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7005     MachineFunction &MF = DAG.getMachineFunction();
7006     const Function &F = MF.getFunction();
7007     SDValue Op = getValue(I.getArgOperand(0));
7008     SDNodeFlags Flags;
7009     Flags.setNoFPExcept(
7010         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7011     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7012     // expansion can use illegal types. Making expansion early allows
7013     // legalizing these types prior to selection.
7014     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
7015       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7016       setValue(&I, Result);
7017       return;
7018     }
7019 
7020     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7021     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7022     setValue(&I, V);
7023     return;
7024   }
7025   case Intrinsic::get_fpenv: {
7026     const DataLayout DLayout = DAG.getDataLayout();
7027     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7028     Align TempAlign = DAG.getEVTAlign(EnvVT);
7029     SDValue Chain = getRoot();
7030     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7031     // and temporary storage in stack.
7032     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7033       Res = DAG.getNode(
7034           ISD::GET_FPENV, sdl,
7035           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7036                         MVT::Other),
7037           Chain);
7038     } else {
7039       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7040       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7041       auto MPI =
7042           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7043       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7044           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
7045           TempAlign);
7046       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7047       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7048     }
7049     setValue(&I, Res);
7050     DAG.setRoot(Res.getValue(1));
7051     return;
7052   }
7053   case Intrinsic::set_fpenv: {
7054     const DataLayout DLayout = DAG.getDataLayout();
7055     SDValue Env = getValue(I.getArgOperand(0));
7056     EVT EnvVT = Env.getValueType();
7057     Align TempAlign = DAG.getEVTAlign(EnvVT);
7058     SDValue Chain = getRoot();
7059     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7060     // environment from memory.
7061     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7062       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7063     } else {
7064       // Allocate space in stack, copy environment bits into it and use this
7065       // memory in SET_FPENV_MEM.
7066       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7067       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7068       auto MPI =
7069           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7070       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7071                            MachineMemOperand::MOStore);
7072       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7073           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7074           TempAlign);
7075       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7076     }
7077     DAG.setRoot(Chain);
7078     return;
7079   }
7080   case Intrinsic::reset_fpenv:
7081     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7082     return;
7083   case Intrinsic::get_fpmode:
7084     Res = DAG.getNode(
7085         ISD::GET_FPMODE, sdl,
7086         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7087                       MVT::Other),
7088         DAG.getRoot());
7089     setValue(&I, Res);
7090     DAG.setRoot(Res.getValue(1));
7091     return;
7092   case Intrinsic::set_fpmode:
7093     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7094                       getValue(I.getArgOperand(0)));
7095     DAG.setRoot(Res);
7096     return;
7097   case Intrinsic::reset_fpmode: {
7098     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7099     DAG.setRoot(Res);
7100     return;
7101   }
7102   case Intrinsic::pcmarker: {
7103     SDValue Tmp = getValue(I.getArgOperand(0));
7104     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7105     return;
7106   }
7107   case Intrinsic::readcyclecounter: {
7108     SDValue Op = getRoot();
7109     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7110                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7111     setValue(&I, Res);
7112     DAG.setRoot(Res.getValue(1));
7113     return;
7114   }
7115   case Intrinsic::readsteadycounter: {
7116     SDValue Op = getRoot();
7117     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7118                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7119     setValue(&I, Res);
7120     DAG.setRoot(Res.getValue(1));
7121     return;
7122   }
7123   case Intrinsic::bitreverse:
7124     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7125                              getValue(I.getArgOperand(0)).getValueType(),
7126                              getValue(I.getArgOperand(0))));
7127     return;
7128   case Intrinsic::bswap:
7129     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7130                              getValue(I.getArgOperand(0)).getValueType(),
7131                              getValue(I.getArgOperand(0))));
7132     return;
7133   case Intrinsic::cttz: {
7134     SDValue Arg = getValue(I.getArgOperand(0));
7135     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7136     EVT Ty = Arg.getValueType();
7137     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7138                              sdl, Ty, Arg));
7139     return;
7140   }
7141   case Intrinsic::ctlz: {
7142     SDValue Arg = getValue(I.getArgOperand(0));
7143     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7144     EVT Ty = Arg.getValueType();
7145     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7146                              sdl, Ty, Arg));
7147     return;
7148   }
7149   case Intrinsic::ctpop: {
7150     SDValue Arg = getValue(I.getArgOperand(0));
7151     EVT Ty = Arg.getValueType();
7152     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7153     return;
7154   }
7155   case Intrinsic::fshl:
7156   case Intrinsic::fshr: {
7157     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7158     SDValue X = getValue(I.getArgOperand(0));
7159     SDValue Y = getValue(I.getArgOperand(1));
7160     SDValue Z = getValue(I.getArgOperand(2));
7161     EVT VT = X.getValueType();
7162 
7163     if (X == Y) {
7164       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7165       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7166     } else {
7167       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7168       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7169     }
7170     return;
7171   }
7172   case Intrinsic::sadd_sat: {
7173     SDValue Op1 = getValue(I.getArgOperand(0));
7174     SDValue Op2 = getValue(I.getArgOperand(1));
7175     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7176     return;
7177   }
7178   case Intrinsic::uadd_sat: {
7179     SDValue Op1 = getValue(I.getArgOperand(0));
7180     SDValue Op2 = getValue(I.getArgOperand(1));
7181     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7182     return;
7183   }
7184   case Intrinsic::ssub_sat: {
7185     SDValue Op1 = getValue(I.getArgOperand(0));
7186     SDValue Op2 = getValue(I.getArgOperand(1));
7187     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7188     return;
7189   }
7190   case Intrinsic::usub_sat: {
7191     SDValue Op1 = getValue(I.getArgOperand(0));
7192     SDValue Op2 = getValue(I.getArgOperand(1));
7193     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7194     return;
7195   }
7196   case Intrinsic::sshl_sat: {
7197     SDValue Op1 = getValue(I.getArgOperand(0));
7198     SDValue Op2 = getValue(I.getArgOperand(1));
7199     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7200     return;
7201   }
7202   case Intrinsic::ushl_sat: {
7203     SDValue Op1 = getValue(I.getArgOperand(0));
7204     SDValue Op2 = getValue(I.getArgOperand(1));
7205     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7206     return;
7207   }
7208   case Intrinsic::smul_fix:
7209   case Intrinsic::umul_fix:
7210   case Intrinsic::smul_fix_sat:
7211   case Intrinsic::umul_fix_sat: {
7212     SDValue Op1 = getValue(I.getArgOperand(0));
7213     SDValue Op2 = getValue(I.getArgOperand(1));
7214     SDValue Op3 = getValue(I.getArgOperand(2));
7215     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7216                              Op1.getValueType(), Op1, Op2, Op3));
7217     return;
7218   }
7219   case Intrinsic::sdiv_fix:
7220   case Intrinsic::udiv_fix:
7221   case Intrinsic::sdiv_fix_sat:
7222   case Intrinsic::udiv_fix_sat: {
7223     SDValue Op1 = getValue(I.getArgOperand(0));
7224     SDValue Op2 = getValue(I.getArgOperand(1));
7225     SDValue Op3 = getValue(I.getArgOperand(2));
7226     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7227                               Op1, Op2, Op3, DAG, TLI));
7228     return;
7229   }
7230   case Intrinsic::smax: {
7231     SDValue Op1 = getValue(I.getArgOperand(0));
7232     SDValue Op2 = getValue(I.getArgOperand(1));
7233     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7234     return;
7235   }
7236   case Intrinsic::smin: {
7237     SDValue Op1 = getValue(I.getArgOperand(0));
7238     SDValue Op2 = getValue(I.getArgOperand(1));
7239     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7240     return;
7241   }
7242   case Intrinsic::umax: {
7243     SDValue Op1 = getValue(I.getArgOperand(0));
7244     SDValue Op2 = getValue(I.getArgOperand(1));
7245     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7246     return;
7247   }
7248   case Intrinsic::umin: {
7249     SDValue Op1 = getValue(I.getArgOperand(0));
7250     SDValue Op2 = getValue(I.getArgOperand(1));
7251     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7252     return;
7253   }
7254   case Intrinsic::abs: {
7255     // TODO: Preserve "int min is poison" arg in SDAG?
7256     SDValue Op1 = getValue(I.getArgOperand(0));
7257     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7258     return;
7259   }
7260   case Intrinsic::scmp: {
7261     SDValue Op1 = getValue(I.getArgOperand(0));
7262     SDValue Op2 = getValue(I.getArgOperand(1));
7263     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7264     setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7265     break;
7266   }
7267   case Intrinsic::ucmp: {
7268     SDValue Op1 = getValue(I.getArgOperand(0));
7269     SDValue Op2 = getValue(I.getArgOperand(1));
7270     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7271     setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7272     break;
7273   }
7274   case Intrinsic::stacksave: {
7275     SDValue Op = getRoot();
7276     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7277     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7278     setValue(&I, Res);
7279     DAG.setRoot(Res.getValue(1));
7280     return;
7281   }
7282   case Intrinsic::stackrestore:
7283     Res = getValue(I.getArgOperand(0));
7284     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7285     return;
7286   case Intrinsic::get_dynamic_area_offset: {
7287     SDValue Op = getRoot();
7288     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7289     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7290     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7291     // target.
7292     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7293       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7294                          " intrinsic!");
7295     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7296                       Op);
7297     DAG.setRoot(Op);
7298     setValue(&I, Res);
7299     return;
7300   }
7301   case Intrinsic::stackguard: {
7302     MachineFunction &MF = DAG.getMachineFunction();
7303     const Module &M = *MF.getFunction().getParent();
7304     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7305     SDValue Chain = getRoot();
7306     if (TLI.useLoadStackGuardNode()) {
7307       Res = getLoadStackGuard(DAG, sdl, Chain);
7308       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7309     } else {
7310       const Value *Global = TLI.getSDagStackGuard(M);
7311       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7312       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7313                         MachinePointerInfo(Global, 0), Align,
7314                         MachineMemOperand::MOVolatile);
7315     }
7316     if (TLI.useStackGuardXorFP())
7317       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7318     DAG.setRoot(Chain);
7319     setValue(&I, Res);
7320     return;
7321   }
7322   case Intrinsic::stackprotector: {
7323     // Emit code into the DAG to store the stack guard onto the stack.
7324     MachineFunction &MF = DAG.getMachineFunction();
7325     MachineFrameInfo &MFI = MF.getFrameInfo();
7326     SDValue Src, Chain = getRoot();
7327 
7328     if (TLI.useLoadStackGuardNode())
7329       Src = getLoadStackGuard(DAG, sdl, Chain);
7330     else
7331       Src = getValue(I.getArgOperand(0));   // The guard's value.
7332 
7333     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7334 
7335     int FI = FuncInfo.StaticAllocaMap[Slot];
7336     MFI.setStackProtectorIndex(FI);
7337     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7338 
7339     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7340 
7341     // Store the stack protector onto the stack.
7342     Res = DAG.getStore(
7343         Chain, sdl, Src, FIN,
7344         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7345         MaybeAlign(), MachineMemOperand::MOVolatile);
7346     setValue(&I, Res);
7347     DAG.setRoot(Res);
7348     return;
7349   }
7350   case Intrinsic::objectsize:
7351     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7352 
7353   case Intrinsic::is_constant:
7354     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7355 
7356   case Intrinsic::annotation:
7357   case Intrinsic::ptr_annotation:
7358   case Intrinsic::launder_invariant_group:
7359   case Intrinsic::strip_invariant_group:
7360     // Drop the intrinsic, but forward the value
7361     setValue(&I, getValue(I.getOperand(0)));
7362     return;
7363 
7364   case Intrinsic::assume:
7365   case Intrinsic::experimental_noalias_scope_decl:
7366   case Intrinsic::var_annotation:
7367   case Intrinsic::sideeffect:
7368     // Discard annotate attributes, noalias scope declarations, assumptions, and
7369     // artificial side-effects.
7370     return;
7371 
7372   case Intrinsic::codeview_annotation: {
7373     // Emit a label associated with this metadata.
7374     MachineFunction &MF = DAG.getMachineFunction();
7375     MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7376     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7377     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7378     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7379     DAG.setRoot(Res);
7380     return;
7381   }
7382 
7383   case Intrinsic::init_trampoline: {
7384     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7385 
7386     SDValue Ops[6];
7387     Ops[0] = getRoot();
7388     Ops[1] = getValue(I.getArgOperand(0));
7389     Ops[2] = getValue(I.getArgOperand(1));
7390     Ops[3] = getValue(I.getArgOperand(2));
7391     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7392     Ops[5] = DAG.getSrcValue(F);
7393 
7394     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7395 
7396     DAG.setRoot(Res);
7397     return;
7398   }
7399   case Intrinsic::adjust_trampoline:
7400     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7401                              TLI.getPointerTy(DAG.getDataLayout()),
7402                              getValue(I.getArgOperand(0))));
7403     return;
7404   case Intrinsic::gcroot: {
7405     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7406            "only valid in functions with gc specified, enforced by Verifier");
7407     assert(GFI && "implied by previous");
7408     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7409     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7410 
7411     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7412     GFI->addStackRoot(FI->getIndex(), TypeMap);
7413     return;
7414   }
7415   case Intrinsic::gcread:
7416   case Intrinsic::gcwrite:
7417     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7418   case Intrinsic::get_rounding:
7419     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7420     setValue(&I, Res);
7421     DAG.setRoot(Res.getValue(1));
7422     return;
7423 
7424   case Intrinsic::expect:
7425     // Just replace __builtin_expect(exp, c) with EXP.
7426     setValue(&I, getValue(I.getArgOperand(0)));
7427     return;
7428 
7429   case Intrinsic::ubsantrap:
7430   case Intrinsic::debugtrap:
7431   case Intrinsic::trap: {
7432     StringRef TrapFuncName =
7433         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7434     if (TrapFuncName.empty()) {
7435       switch (Intrinsic) {
7436       case Intrinsic::trap:
7437         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7438         break;
7439       case Intrinsic::debugtrap:
7440         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7441         break;
7442       case Intrinsic::ubsantrap:
7443         DAG.setRoot(DAG.getNode(
7444             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7445             DAG.getTargetConstant(
7446                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7447                 MVT::i32)));
7448         break;
7449       default: llvm_unreachable("unknown trap intrinsic");
7450       }
7451       return;
7452     }
7453     TargetLowering::ArgListTy Args;
7454     if (Intrinsic == Intrinsic::ubsantrap) {
7455       Args.push_back(TargetLoweringBase::ArgListEntry());
7456       Args[0].Val = I.getArgOperand(0);
7457       Args[0].Node = getValue(Args[0].Val);
7458       Args[0].Ty = Args[0].Val->getType();
7459     }
7460 
7461     TargetLowering::CallLoweringInfo CLI(DAG);
7462     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7463         CallingConv::C, I.getType(),
7464         DAG.getExternalSymbol(TrapFuncName.data(),
7465                               TLI.getPointerTy(DAG.getDataLayout())),
7466         std::move(Args));
7467 
7468     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7469     DAG.setRoot(Result.second);
7470     return;
7471   }
7472 
7473   case Intrinsic::allow_runtime_check:
7474   case Intrinsic::allow_ubsan_check:
7475     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7476     return;
7477 
7478   case Intrinsic::uadd_with_overflow:
7479   case Intrinsic::sadd_with_overflow:
7480   case Intrinsic::usub_with_overflow:
7481   case Intrinsic::ssub_with_overflow:
7482   case Intrinsic::umul_with_overflow:
7483   case Intrinsic::smul_with_overflow: {
7484     ISD::NodeType Op;
7485     switch (Intrinsic) {
7486     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7487     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7488     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7489     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7490     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7491     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7492     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7493     }
7494     SDValue Op1 = getValue(I.getArgOperand(0));
7495     SDValue Op2 = getValue(I.getArgOperand(1));
7496 
7497     EVT ResultVT = Op1.getValueType();
7498     EVT OverflowVT = MVT::i1;
7499     if (ResultVT.isVector())
7500       OverflowVT = EVT::getVectorVT(
7501           *Context, OverflowVT, ResultVT.getVectorElementCount());
7502 
7503     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7504     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7505     return;
7506   }
7507   case Intrinsic::prefetch: {
7508     SDValue Ops[5];
7509     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7510     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7511     Ops[0] = DAG.getRoot();
7512     Ops[1] = getValue(I.getArgOperand(0));
7513     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7514                                    MVT::i32);
7515     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7516                                    MVT::i32);
7517     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7518                                    MVT::i32);
7519     SDValue Result = DAG.getMemIntrinsicNode(
7520         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7521         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7522         /* align */ std::nullopt, Flags);
7523 
7524     // Chain the prefetch in parallel with any pending loads, to stay out of
7525     // the way of later optimizations.
7526     PendingLoads.push_back(Result);
7527     Result = getRoot();
7528     DAG.setRoot(Result);
7529     return;
7530   }
7531   case Intrinsic::lifetime_start:
7532   case Intrinsic::lifetime_end: {
7533     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7534     // Stack coloring is not enabled in O0, discard region information.
7535     if (TM.getOptLevel() == CodeGenOptLevel::None)
7536       return;
7537 
7538     const int64_t ObjectSize =
7539         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7540     Value *const ObjectPtr = I.getArgOperand(1);
7541     SmallVector<const Value *, 4> Allocas;
7542     getUnderlyingObjects(ObjectPtr, Allocas);
7543 
7544     for (const Value *Alloca : Allocas) {
7545       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7546 
7547       // Could not find an Alloca.
7548       if (!LifetimeObject)
7549         continue;
7550 
7551       // First check that the Alloca is static, otherwise it won't have a
7552       // valid frame index.
7553       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7554       if (SI == FuncInfo.StaticAllocaMap.end())
7555         return;
7556 
7557       const int FrameIndex = SI->second;
7558       int64_t Offset;
7559       if (GetPointerBaseWithConstantOffset(
7560               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7561         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7562       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7563                                 Offset);
7564       DAG.setRoot(Res);
7565     }
7566     return;
7567   }
7568   case Intrinsic::pseudoprobe: {
7569     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7570     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7571     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7572     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7573     DAG.setRoot(Res);
7574     return;
7575   }
7576   case Intrinsic::invariant_start:
7577     // Discard region information.
7578     setValue(&I,
7579              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7580     return;
7581   case Intrinsic::invariant_end:
7582     // Discard region information.
7583     return;
7584   case Intrinsic::clear_cache: {
7585     SDValue InputChain = DAG.getRoot();
7586     SDValue StartVal = getValue(I.getArgOperand(0));
7587     SDValue EndVal = getValue(I.getArgOperand(1));
7588     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7589                       {InputChain, StartVal, EndVal});
7590     setValue(&I, Res);
7591     DAG.setRoot(Res);
7592     return;
7593   }
7594   case Intrinsic::donothing:
7595   case Intrinsic::seh_try_begin:
7596   case Intrinsic::seh_scope_begin:
7597   case Intrinsic::seh_try_end:
7598   case Intrinsic::seh_scope_end:
7599     // ignore
7600     return;
7601   case Intrinsic::experimental_stackmap:
7602     visitStackmap(I);
7603     return;
7604   case Intrinsic::experimental_patchpoint_void:
7605   case Intrinsic::experimental_patchpoint:
7606     visitPatchpoint(I);
7607     return;
7608   case Intrinsic::experimental_gc_statepoint:
7609     LowerStatepoint(cast<GCStatepointInst>(I));
7610     return;
7611   case Intrinsic::experimental_gc_result:
7612     visitGCResult(cast<GCResultInst>(I));
7613     return;
7614   case Intrinsic::experimental_gc_relocate:
7615     visitGCRelocate(cast<GCRelocateInst>(I));
7616     return;
7617   case Intrinsic::instrprof_cover:
7618     llvm_unreachable("instrprof failed to lower a cover");
7619   case Intrinsic::instrprof_increment:
7620     llvm_unreachable("instrprof failed to lower an increment");
7621   case Intrinsic::instrprof_timestamp:
7622     llvm_unreachable("instrprof failed to lower a timestamp");
7623   case Intrinsic::instrprof_value_profile:
7624     llvm_unreachable("instrprof failed to lower a value profiling call");
7625   case Intrinsic::instrprof_mcdc_parameters:
7626     llvm_unreachable("instrprof failed to lower mcdc parameters");
7627   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7628     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7629   case Intrinsic::localescape: {
7630     MachineFunction &MF = DAG.getMachineFunction();
7631     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7632 
7633     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7634     // is the same on all targets.
7635     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7636       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7637       if (isa<ConstantPointerNull>(Arg))
7638         continue; // Skip null pointers. They represent a hole in index space.
7639       AllocaInst *Slot = cast<AllocaInst>(Arg);
7640       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7641              "can only escape static allocas");
7642       int FI = FuncInfo.StaticAllocaMap[Slot];
7643       MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7644           GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7645       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7646               TII->get(TargetOpcode::LOCAL_ESCAPE))
7647           .addSym(FrameAllocSym)
7648           .addFrameIndex(FI);
7649     }
7650 
7651     return;
7652   }
7653 
7654   case Intrinsic::localrecover: {
7655     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7656     MachineFunction &MF = DAG.getMachineFunction();
7657 
7658     // Get the symbol that defines the frame offset.
7659     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7660     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7661     unsigned IdxVal =
7662         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7663     MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7664         GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7665 
7666     Value *FP = I.getArgOperand(1);
7667     SDValue FPVal = getValue(FP);
7668     EVT PtrVT = FPVal.getValueType();
7669 
7670     // Create a MCSymbol for the label to avoid any target lowering
7671     // that would make this PC relative.
7672     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7673     SDValue OffsetVal =
7674         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7675 
7676     // Add the offset to the FP.
7677     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7678     setValue(&I, Add);
7679 
7680     return;
7681   }
7682 
7683   case Intrinsic::eh_exceptionpointer:
7684   case Intrinsic::eh_exceptioncode: {
7685     // Get the exception pointer vreg, copy from it, and resize it to fit.
7686     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7687     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7688     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7689     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7690     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7691     if (Intrinsic == Intrinsic::eh_exceptioncode)
7692       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7693     setValue(&I, N);
7694     return;
7695   }
7696   case Intrinsic::xray_customevent: {
7697     // Here we want to make sure that the intrinsic behaves as if it has a
7698     // specific calling convention.
7699     const auto &Triple = DAG.getTarget().getTargetTriple();
7700     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7701       return;
7702 
7703     SmallVector<SDValue, 8> Ops;
7704 
7705     // We want to say that we always want the arguments in registers.
7706     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7707     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7708     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7709     SDValue Chain = getRoot();
7710     Ops.push_back(LogEntryVal);
7711     Ops.push_back(StrSizeVal);
7712     Ops.push_back(Chain);
7713 
7714     // We need to enforce the calling convention for the callsite, so that
7715     // argument ordering is enforced correctly, and that register allocation can
7716     // see that some registers may be assumed clobbered and have to preserve
7717     // them across calls to the intrinsic.
7718     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7719                                            sdl, NodeTys, Ops);
7720     SDValue patchableNode = SDValue(MN, 0);
7721     DAG.setRoot(patchableNode);
7722     setValue(&I, patchableNode);
7723     return;
7724   }
7725   case Intrinsic::xray_typedevent: {
7726     // Here we want to make sure that the intrinsic behaves as if it has a
7727     // specific calling convention.
7728     const auto &Triple = DAG.getTarget().getTargetTriple();
7729     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7730       return;
7731 
7732     SmallVector<SDValue, 8> Ops;
7733 
7734     // We want to say that we always want the arguments in registers.
7735     // It's unclear to me how manipulating the selection DAG here forces callers
7736     // to provide arguments in registers instead of on the stack.
7737     SDValue LogTypeId = getValue(I.getArgOperand(0));
7738     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7739     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7740     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7741     SDValue Chain = getRoot();
7742     Ops.push_back(LogTypeId);
7743     Ops.push_back(LogEntryVal);
7744     Ops.push_back(StrSizeVal);
7745     Ops.push_back(Chain);
7746 
7747     // We need to enforce the calling convention for the callsite, so that
7748     // argument ordering is enforced correctly, and that register allocation can
7749     // see that some registers may be assumed clobbered and have to preserve
7750     // them across calls to the intrinsic.
7751     MachineSDNode *MN = DAG.getMachineNode(
7752         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7753     SDValue patchableNode = SDValue(MN, 0);
7754     DAG.setRoot(patchableNode);
7755     setValue(&I, patchableNode);
7756     return;
7757   }
7758   case Intrinsic::experimental_deoptimize:
7759     LowerDeoptimizeCall(&I);
7760     return;
7761   case Intrinsic::experimental_stepvector:
7762     visitStepVector(I);
7763     return;
7764   case Intrinsic::vector_reduce_fadd:
7765   case Intrinsic::vector_reduce_fmul:
7766   case Intrinsic::vector_reduce_add:
7767   case Intrinsic::vector_reduce_mul:
7768   case Intrinsic::vector_reduce_and:
7769   case Intrinsic::vector_reduce_or:
7770   case Intrinsic::vector_reduce_xor:
7771   case Intrinsic::vector_reduce_smax:
7772   case Intrinsic::vector_reduce_smin:
7773   case Intrinsic::vector_reduce_umax:
7774   case Intrinsic::vector_reduce_umin:
7775   case Intrinsic::vector_reduce_fmax:
7776   case Intrinsic::vector_reduce_fmin:
7777   case Intrinsic::vector_reduce_fmaximum:
7778   case Intrinsic::vector_reduce_fminimum:
7779     visitVectorReduce(I, Intrinsic);
7780     return;
7781 
7782   case Intrinsic::icall_branch_funnel: {
7783     SmallVector<SDValue, 16> Ops;
7784     Ops.push_back(getValue(I.getArgOperand(0)));
7785 
7786     int64_t Offset;
7787     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7788         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7789     if (!Base)
7790       report_fatal_error(
7791           "llvm.icall.branch.funnel operand must be a GlobalValue");
7792     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7793 
7794     struct BranchFunnelTarget {
7795       int64_t Offset;
7796       SDValue Target;
7797     };
7798     SmallVector<BranchFunnelTarget, 8> Targets;
7799 
7800     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7801       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7802           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7803       if (ElemBase != Base)
7804         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7805                            "to the same GlobalValue");
7806 
7807       SDValue Val = getValue(I.getArgOperand(Op + 1));
7808       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7809       if (!GA)
7810         report_fatal_error(
7811             "llvm.icall.branch.funnel operand must be a GlobalValue");
7812       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7813                                      GA->getGlobal(), sdl, Val.getValueType(),
7814                                      GA->getOffset())});
7815     }
7816     llvm::sort(Targets,
7817                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7818                  return T1.Offset < T2.Offset;
7819                });
7820 
7821     for (auto &T : Targets) {
7822       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7823       Ops.push_back(T.Target);
7824     }
7825 
7826     Ops.push_back(DAG.getRoot()); // Chain
7827     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7828                                  MVT::Other, Ops),
7829               0);
7830     DAG.setRoot(N);
7831     setValue(&I, N);
7832     HasTailCall = true;
7833     return;
7834   }
7835 
7836   case Intrinsic::wasm_landingpad_index:
7837     // Information this intrinsic contained has been transferred to
7838     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7839     // delete it now.
7840     return;
7841 
7842   case Intrinsic::aarch64_settag:
7843   case Intrinsic::aarch64_settag_zero: {
7844     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7845     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7846     SDValue Val = TSI.EmitTargetCodeForSetTag(
7847         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7848         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7849         ZeroMemory);
7850     DAG.setRoot(Val);
7851     setValue(&I, Val);
7852     return;
7853   }
7854   case Intrinsic::amdgcn_cs_chain: {
7855     assert(I.arg_size() == 5 && "Additional args not supported yet");
7856     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7857            "Non-zero flags not supported yet");
7858 
7859     // At this point we don't care if it's amdgpu_cs_chain or
7860     // amdgpu_cs_chain_preserve.
7861     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7862 
7863     Type *RetTy = I.getType();
7864     assert(RetTy->isVoidTy() && "Should not return");
7865 
7866     SDValue Callee = getValue(I.getOperand(0));
7867 
7868     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7869     // We'll also tack the value of the EXEC mask at the end.
7870     TargetLowering::ArgListTy Args;
7871     Args.reserve(3);
7872 
7873     for (unsigned Idx : {2, 3, 1}) {
7874       TargetLowering::ArgListEntry Arg;
7875       Arg.Node = getValue(I.getOperand(Idx));
7876       Arg.Ty = I.getOperand(Idx)->getType();
7877       Arg.setAttributes(&I, Idx);
7878       Args.push_back(Arg);
7879     }
7880 
7881     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7882     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7883     Args[2].IsInReg = true; // EXEC should be inreg
7884 
7885     TargetLowering::CallLoweringInfo CLI(DAG);
7886     CLI.setDebugLoc(getCurSDLoc())
7887         .setChain(getRoot())
7888         .setCallee(CC, RetTy, Callee, std::move(Args))
7889         .setNoReturn(true)
7890         .setTailCall(true)
7891         .setConvergent(I.isConvergent());
7892     CLI.CB = &I;
7893     std::pair<SDValue, SDValue> Result =
7894         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7895     (void)Result;
7896     assert(!Result.first.getNode() && !Result.second.getNode() &&
7897            "Should've lowered as tail call");
7898 
7899     HasTailCall = true;
7900     return;
7901   }
7902   case Intrinsic::ptrmask: {
7903     SDValue Ptr = getValue(I.getOperand(0));
7904     SDValue Mask = getValue(I.getOperand(1));
7905 
7906     // On arm64_32, pointers are 32 bits when stored in memory, but
7907     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
7908     // match the index type, but the pointer is 64 bits, so the the mask must be
7909     // zero-extended up to 64 bits to match the pointer.
7910     EVT PtrVT =
7911         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7912     EVT MemVT =
7913         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7914     assert(PtrVT == Ptr.getValueType());
7915     assert(MemVT == Mask.getValueType());
7916     if (MemVT != PtrVT)
7917       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7918 
7919     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7920     return;
7921   }
7922   case Intrinsic::threadlocal_address: {
7923     setValue(&I, getValue(I.getOperand(0)));
7924     return;
7925   }
7926   case Intrinsic::get_active_lane_mask: {
7927     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7928     SDValue Index = getValue(I.getOperand(0));
7929     EVT ElementVT = Index.getValueType();
7930 
7931     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7932       visitTargetIntrinsic(I, Intrinsic);
7933       return;
7934     }
7935 
7936     SDValue TripCount = getValue(I.getOperand(1));
7937     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7938                                  CCVT.getVectorElementCount());
7939 
7940     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7941     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7942     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7943     SDValue VectorInduction = DAG.getNode(
7944         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7945     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7946                                  VectorTripCount, ISD::CondCode::SETULT);
7947     setValue(&I, SetCC);
7948     return;
7949   }
7950   case Intrinsic::experimental_get_vector_length: {
7951     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7952            "Expected positive VF");
7953     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7954     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7955 
7956     SDValue Count = getValue(I.getOperand(0));
7957     EVT CountVT = Count.getValueType();
7958 
7959     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7960       visitTargetIntrinsic(I, Intrinsic);
7961       return;
7962     }
7963 
7964     // Expand to a umin between the trip count and the maximum elements the type
7965     // can hold.
7966     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7967 
7968     // Extend the trip count to at least the result VT.
7969     if (CountVT.bitsLT(VT)) {
7970       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7971       CountVT = VT;
7972     }
7973 
7974     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7975                                          ElementCount::get(VF, IsScalable));
7976 
7977     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7978     // Clip to the result type if needed.
7979     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7980 
7981     setValue(&I, Trunc);
7982     return;
7983   }
7984   case Intrinsic::experimental_vector_partial_reduce_add: {
7985     SDValue OpNode = getValue(I.getOperand(1));
7986     EVT ReducedTy = EVT::getEVT(I.getType());
7987     EVT FullTy = OpNode.getValueType();
7988 
7989     unsigned Stride = ReducedTy.getVectorMinNumElements();
7990     unsigned ScaleFactor = FullTy.getVectorMinNumElements() / Stride;
7991 
7992     // Collect all of the subvectors
7993     std::deque<SDValue> Subvectors;
7994     Subvectors.push_back(getValue(I.getOperand(0)));
7995     for (unsigned i = 0; i < ScaleFactor; i++) {
7996       auto SourceIndex = DAG.getVectorIdxConstant(i * Stride, sdl);
7997       Subvectors.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ReducedTy,
7998                                        {OpNode, SourceIndex}));
7999     }
8000 
8001     // Flatten the subvector tree
8002     while (Subvectors.size() > 1) {
8003       Subvectors.push_back(DAG.getNode(ISD::ADD, sdl, ReducedTy,
8004                                        {Subvectors[0], Subvectors[1]}));
8005       Subvectors.pop_front();
8006       Subvectors.pop_front();
8007     }
8008 
8009     assert(Subvectors.size() == 1 &&
8010            "There should only be one subvector after tree flattening");
8011 
8012     setValue(&I, Subvectors[0]);
8013     return;
8014   }
8015   case Intrinsic::experimental_cttz_elts: {
8016     auto DL = getCurSDLoc();
8017     SDValue Op = getValue(I.getOperand(0));
8018     EVT OpVT = Op.getValueType();
8019 
8020     if (!TLI.shouldExpandCttzElements(OpVT)) {
8021       visitTargetIntrinsic(I, Intrinsic);
8022       return;
8023     }
8024 
8025     if (OpVT.getScalarType() != MVT::i1) {
8026       // Compare the input vector elements to zero & use to count trailing zeros
8027       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8028       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8029                               OpVT.getVectorElementCount());
8030       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8031     }
8032 
8033     // If the zero-is-poison flag is set, we can assume the upper limit
8034     // of the result is VF-1.
8035     bool ZeroIsPoison =
8036         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8037     ConstantRange VScaleRange(1, true); // Dummy value.
8038     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8039       VScaleRange = getVScaleRange(I.getCaller(), 64);
8040     unsigned EltWidth = TLI.getBitWidthForCttzElements(
8041         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8042 
8043     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8044 
8045     // Create the new vector type & get the vector length
8046     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8047                                  OpVT.getVectorElementCount());
8048 
8049     SDValue VL =
8050         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8051 
8052     SDValue StepVec = DAG.getStepVector(DL, NewVT);
8053     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8054     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8055     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8056     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8057     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8058     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8059 
8060     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8061     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8062 
8063     setValue(&I, Ret);
8064     return;
8065   }
8066   case Intrinsic::vector_insert: {
8067     SDValue Vec = getValue(I.getOperand(0));
8068     SDValue SubVec = getValue(I.getOperand(1));
8069     SDValue Index = getValue(I.getOperand(2));
8070 
8071     // The intrinsic's index type is i64, but the SDNode requires an index type
8072     // suitable for the target. Convert the index as required.
8073     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8074     if (Index.getValueType() != VectorIdxTy)
8075       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8076 
8077     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8078     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8079                              Index));
8080     return;
8081   }
8082   case Intrinsic::vector_extract: {
8083     SDValue Vec = getValue(I.getOperand(0));
8084     SDValue Index = getValue(I.getOperand(1));
8085     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8086 
8087     // The intrinsic's index type is i64, but the SDNode requires an index type
8088     // suitable for the target. Convert the index as required.
8089     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8090     if (Index.getValueType() != VectorIdxTy)
8091       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8092 
8093     setValue(&I,
8094              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8095     return;
8096   }
8097   case Intrinsic::vector_reverse:
8098     visitVectorReverse(I);
8099     return;
8100   case Intrinsic::vector_splice:
8101     visitVectorSplice(I);
8102     return;
8103   case Intrinsic::callbr_landingpad:
8104     visitCallBrLandingPad(I);
8105     return;
8106   case Intrinsic::vector_interleave2:
8107     visitVectorInterleave(I);
8108     return;
8109   case Intrinsic::vector_deinterleave2:
8110     visitVectorDeinterleave(I);
8111     return;
8112   case Intrinsic::experimental_vector_compress:
8113     setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8114                              getValue(I.getArgOperand(0)).getValueType(),
8115                              getValue(I.getArgOperand(0)),
8116                              getValue(I.getArgOperand(1)),
8117                              getValue(I.getArgOperand(2)), Flags));
8118     return;
8119   case Intrinsic::experimental_convergence_anchor:
8120   case Intrinsic::experimental_convergence_entry:
8121   case Intrinsic::experimental_convergence_loop:
8122     visitConvergenceControl(I, Intrinsic);
8123     return;
8124   case Intrinsic::experimental_vector_histogram_add: {
8125     visitVectorHistogram(I, Intrinsic);
8126     return;
8127   }
8128   }
8129 }
8130 
8131 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8132     const ConstrainedFPIntrinsic &FPI) {
8133   SDLoc sdl = getCurSDLoc();
8134 
8135   // We do not need to serialize constrained FP intrinsics against
8136   // each other or against (nonvolatile) loads, so they can be
8137   // chained like loads.
8138   SDValue Chain = DAG.getRoot();
8139   SmallVector<SDValue, 4> Opers;
8140   Opers.push_back(Chain);
8141   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8142     Opers.push_back(getValue(FPI.getArgOperand(I)));
8143 
8144   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8145     assert(Result.getNode()->getNumValues() == 2);
8146 
8147     // Push node to the appropriate list so that future instructions can be
8148     // chained up correctly.
8149     SDValue OutChain = Result.getValue(1);
8150     switch (EB) {
8151     case fp::ExceptionBehavior::ebIgnore:
8152       // The only reason why ebIgnore nodes still need to be chained is that
8153       // they might depend on the current rounding mode, and therefore must
8154       // not be moved across instruction that may change that mode.
8155       [[fallthrough]];
8156     case fp::ExceptionBehavior::ebMayTrap:
8157       // These must not be moved across calls or instructions that may change
8158       // floating-point exception masks.
8159       PendingConstrainedFP.push_back(OutChain);
8160       break;
8161     case fp::ExceptionBehavior::ebStrict:
8162       // These must not be moved across calls or instructions that may change
8163       // floating-point exception masks or read floating-point exception flags.
8164       // In addition, they cannot be optimized out even if unused.
8165       PendingConstrainedFPStrict.push_back(OutChain);
8166       break;
8167     }
8168   };
8169 
8170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8171   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8172   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8173   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8174 
8175   SDNodeFlags Flags;
8176   if (EB == fp::ExceptionBehavior::ebIgnore)
8177     Flags.setNoFPExcept(true);
8178 
8179   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8180     Flags.copyFMF(*FPOp);
8181 
8182   unsigned Opcode;
8183   switch (FPI.getIntrinsicID()) {
8184   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8185 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8186   case Intrinsic::INTRINSIC:                                                   \
8187     Opcode = ISD::STRICT_##DAGN;                                               \
8188     break;
8189 #include "llvm/IR/ConstrainedOps.def"
8190   case Intrinsic::experimental_constrained_fmuladd: {
8191     Opcode = ISD::STRICT_FMA;
8192     // Break fmuladd into fmul and fadd.
8193     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8194         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8195       Opers.pop_back();
8196       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8197       pushOutChain(Mul, EB);
8198       Opcode = ISD::STRICT_FADD;
8199       Opers.clear();
8200       Opers.push_back(Mul.getValue(1));
8201       Opers.push_back(Mul.getValue(0));
8202       Opers.push_back(getValue(FPI.getArgOperand(2)));
8203     }
8204     break;
8205   }
8206   }
8207 
8208   // A few strict DAG nodes carry additional operands that are not
8209   // set up by the default code above.
8210   switch (Opcode) {
8211   default: break;
8212   case ISD::STRICT_FP_ROUND:
8213     Opers.push_back(
8214         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8215     break;
8216   case ISD::STRICT_FSETCC:
8217   case ISD::STRICT_FSETCCS: {
8218     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8219     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8220     if (TM.Options.NoNaNsFPMath)
8221       Condition = getFCmpCodeWithoutNaN(Condition);
8222     Opers.push_back(DAG.getCondCode(Condition));
8223     break;
8224   }
8225   }
8226 
8227   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8228   pushOutChain(Result, EB);
8229 
8230   SDValue FPResult = Result.getValue(0);
8231   setValue(&FPI, FPResult);
8232 }
8233 
8234 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8235   std::optional<unsigned> ResOPC;
8236   switch (VPIntrin.getIntrinsicID()) {
8237   case Intrinsic::vp_ctlz: {
8238     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8239     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8240     break;
8241   }
8242   case Intrinsic::vp_cttz: {
8243     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8244     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8245     break;
8246   }
8247   case Intrinsic::vp_cttz_elts: {
8248     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8249     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8250     break;
8251   }
8252 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8253   case Intrinsic::VPID:                                                        \
8254     ResOPC = ISD::VPSD;                                                        \
8255     break;
8256 #include "llvm/IR/VPIntrinsics.def"
8257   }
8258 
8259   if (!ResOPC)
8260     llvm_unreachable(
8261         "Inconsistency: no SDNode available for this VPIntrinsic!");
8262 
8263   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8264       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8265     if (VPIntrin.getFastMathFlags().allowReassoc())
8266       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8267                                                 : ISD::VP_REDUCE_FMUL;
8268   }
8269 
8270   return *ResOPC;
8271 }
8272 
8273 void SelectionDAGBuilder::visitVPLoad(
8274     const VPIntrinsic &VPIntrin, EVT VT,
8275     const SmallVectorImpl<SDValue> &OpValues) {
8276   SDLoc DL = getCurSDLoc();
8277   Value *PtrOperand = VPIntrin.getArgOperand(0);
8278   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8279   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8280   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8281   SDValue LD;
8282   // Do not serialize variable-length loads of constant memory with
8283   // anything.
8284   if (!Alignment)
8285     Alignment = DAG.getEVTAlign(VT);
8286   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8287   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8288   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8289   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8290       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8291       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8292   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8293                      MMO, false /*IsExpanding */);
8294   if (AddToChain)
8295     PendingLoads.push_back(LD.getValue(1));
8296   setValue(&VPIntrin, LD);
8297 }
8298 
8299 void SelectionDAGBuilder::visitVPGather(
8300     const VPIntrinsic &VPIntrin, EVT VT,
8301     const SmallVectorImpl<SDValue> &OpValues) {
8302   SDLoc DL = getCurSDLoc();
8303   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8304   Value *PtrOperand = VPIntrin.getArgOperand(0);
8305   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8306   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8307   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8308   SDValue LD;
8309   if (!Alignment)
8310     Alignment = DAG.getEVTAlign(VT.getScalarType());
8311   unsigned AS =
8312     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8313   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8314       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8315       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8316   SDValue Base, Index, Scale;
8317   ISD::MemIndexType IndexType;
8318   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8319                                     this, VPIntrin.getParent(),
8320                                     VT.getScalarStoreSize());
8321   if (!UniformBase) {
8322     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8323     Index = getValue(PtrOperand);
8324     IndexType = ISD::SIGNED_SCALED;
8325     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8326   }
8327   EVT IdxVT = Index.getValueType();
8328   EVT EltTy = IdxVT.getVectorElementType();
8329   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8330     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8331     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8332   }
8333   LD = DAG.getGatherVP(
8334       DAG.getVTList(VT, MVT::Other), VT, DL,
8335       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8336       IndexType);
8337   PendingLoads.push_back(LD.getValue(1));
8338   setValue(&VPIntrin, LD);
8339 }
8340 
8341 void SelectionDAGBuilder::visitVPStore(
8342     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8343   SDLoc DL = getCurSDLoc();
8344   Value *PtrOperand = VPIntrin.getArgOperand(1);
8345   EVT VT = OpValues[0].getValueType();
8346   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8347   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8348   SDValue ST;
8349   if (!Alignment)
8350     Alignment = DAG.getEVTAlign(VT);
8351   SDValue Ptr = OpValues[1];
8352   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8353   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8354       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8355       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8356   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8357                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8358                       /* IsTruncating */ false, /*IsCompressing*/ false);
8359   DAG.setRoot(ST);
8360   setValue(&VPIntrin, ST);
8361 }
8362 
8363 void SelectionDAGBuilder::visitVPScatter(
8364     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8365   SDLoc DL = getCurSDLoc();
8366   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8367   Value *PtrOperand = VPIntrin.getArgOperand(1);
8368   EVT VT = OpValues[0].getValueType();
8369   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8370   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8371   SDValue ST;
8372   if (!Alignment)
8373     Alignment = DAG.getEVTAlign(VT.getScalarType());
8374   unsigned AS =
8375       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8376   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8377       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8378       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8379   SDValue Base, Index, Scale;
8380   ISD::MemIndexType IndexType;
8381   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8382                                     this, VPIntrin.getParent(),
8383                                     VT.getScalarStoreSize());
8384   if (!UniformBase) {
8385     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8386     Index = getValue(PtrOperand);
8387     IndexType = ISD::SIGNED_SCALED;
8388     Scale =
8389       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8390   }
8391   EVT IdxVT = Index.getValueType();
8392   EVT EltTy = IdxVT.getVectorElementType();
8393   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8394     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8395     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8396   }
8397   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8398                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8399                          OpValues[2], OpValues[3]},
8400                         MMO, IndexType);
8401   DAG.setRoot(ST);
8402   setValue(&VPIntrin, ST);
8403 }
8404 
8405 void SelectionDAGBuilder::visitVPStridedLoad(
8406     const VPIntrinsic &VPIntrin, EVT VT,
8407     const SmallVectorImpl<SDValue> &OpValues) {
8408   SDLoc DL = getCurSDLoc();
8409   Value *PtrOperand = VPIntrin.getArgOperand(0);
8410   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8411   if (!Alignment)
8412     Alignment = DAG.getEVTAlign(VT.getScalarType());
8413   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8414   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8415   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8416   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8417   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8418   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8419   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8420       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8421       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8422 
8423   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8424                                     OpValues[2], OpValues[3], MMO,
8425                                     false /*IsExpanding*/);
8426 
8427   if (AddToChain)
8428     PendingLoads.push_back(LD.getValue(1));
8429   setValue(&VPIntrin, LD);
8430 }
8431 
8432 void SelectionDAGBuilder::visitVPStridedStore(
8433     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8434   SDLoc DL = getCurSDLoc();
8435   Value *PtrOperand = VPIntrin.getArgOperand(1);
8436   EVT VT = OpValues[0].getValueType();
8437   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8438   if (!Alignment)
8439     Alignment = DAG.getEVTAlign(VT.getScalarType());
8440   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8441   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8442   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8443       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8444       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8445 
8446   SDValue ST = DAG.getStridedStoreVP(
8447       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8448       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8449       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8450       /*IsCompressing*/ false);
8451 
8452   DAG.setRoot(ST);
8453   setValue(&VPIntrin, ST);
8454 }
8455 
8456 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8457   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8458   SDLoc DL = getCurSDLoc();
8459 
8460   ISD::CondCode Condition;
8461   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8462   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8463   if (IsFP) {
8464     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8465     // flags, but calls that don't return floating-point types can't be
8466     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8467     Condition = getFCmpCondCode(CondCode);
8468     if (TM.Options.NoNaNsFPMath)
8469       Condition = getFCmpCodeWithoutNaN(Condition);
8470   } else {
8471     Condition = getICmpCondCode(CondCode);
8472   }
8473 
8474   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8475   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8476   // #2 is the condition code
8477   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8478   SDValue EVL = getValue(VPIntrin.getOperand(4));
8479   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8480   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8481          "Unexpected target EVL type");
8482   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8483 
8484   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8485                                                         VPIntrin.getType());
8486   setValue(&VPIntrin,
8487            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8488 }
8489 
8490 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8491     const VPIntrinsic &VPIntrin) {
8492   SDLoc DL = getCurSDLoc();
8493   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8494 
8495   auto IID = VPIntrin.getIntrinsicID();
8496 
8497   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8498     return visitVPCmp(*CmpI);
8499 
8500   SmallVector<EVT, 4> ValueVTs;
8501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8502   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8503   SDVTList VTs = DAG.getVTList(ValueVTs);
8504 
8505   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8506 
8507   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8508   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8509          "Unexpected target EVL type");
8510 
8511   // Request operands.
8512   SmallVector<SDValue, 7> OpValues;
8513   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8514     auto Op = getValue(VPIntrin.getArgOperand(I));
8515     if (I == EVLParamPos)
8516       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8517     OpValues.push_back(Op);
8518   }
8519 
8520   switch (Opcode) {
8521   default: {
8522     SDNodeFlags SDFlags;
8523     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8524       SDFlags.copyFMF(*FPMO);
8525     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8526     setValue(&VPIntrin, Result);
8527     break;
8528   }
8529   case ISD::VP_LOAD:
8530     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8531     break;
8532   case ISD::VP_GATHER:
8533     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8534     break;
8535   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8536     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8537     break;
8538   case ISD::VP_STORE:
8539     visitVPStore(VPIntrin, OpValues);
8540     break;
8541   case ISD::VP_SCATTER:
8542     visitVPScatter(VPIntrin, OpValues);
8543     break;
8544   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8545     visitVPStridedStore(VPIntrin, OpValues);
8546     break;
8547   case ISD::VP_FMULADD: {
8548     assert(OpValues.size() == 5 && "Unexpected number of operands");
8549     SDNodeFlags SDFlags;
8550     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8551       SDFlags.copyFMF(*FPMO);
8552     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8553         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8554       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8555     } else {
8556       SDValue Mul = DAG.getNode(
8557           ISD::VP_FMUL, DL, VTs,
8558           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8559       SDValue Add =
8560           DAG.getNode(ISD::VP_FADD, DL, VTs,
8561                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8562       setValue(&VPIntrin, Add);
8563     }
8564     break;
8565   }
8566   case ISD::VP_IS_FPCLASS: {
8567     const DataLayout DLayout = DAG.getDataLayout();
8568     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8569     auto Constant = OpValues[1]->getAsZExtVal();
8570     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8571     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8572                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8573     setValue(&VPIntrin, V);
8574     return;
8575   }
8576   case ISD::VP_INTTOPTR: {
8577     SDValue N = OpValues[0];
8578     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8579     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8580     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8581                                OpValues[2]);
8582     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8583                              OpValues[2]);
8584     setValue(&VPIntrin, N);
8585     break;
8586   }
8587   case ISD::VP_PTRTOINT: {
8588     SDValue N = OpValues[0];
8589     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8590                                                           VPIntrin.getType());
8591     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8592                                        VPIntrin.getOperand(0)->getType());
8593     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8594                                OpValues[2]);
8595     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8596                              OpValues[2]);
8597     setValue(&VPIntrin, N);
8598     break;
8599   }
8600   case ISD::VP_ABS:
8601   case ISD::VP_CTLZ:
8602   case ISD::VP_CTLZ_ZERO_UNDEF:
8603   case ISD::VP_CTTZ:
8604   case ISD::VP_CTTZ_ZERO_UNDEF:
8605   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8606   case ISD::VP_CTTZ_ELTS: {
8607     SDValue Result =
8608         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8609     setValue(&VPIntrin, Result);
8610     break;
8611   }
8612   }
8613 }
8614 
8615 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8616                                           const BasicBlock *EHPadBB,
8617                                           MCSymbol *&BeginLabel) {
8618   MachineFunction &MF = DAG.getMachineFunction();
8619 
8620   // Insert a label before the invoke call to mark the try range.  This can be
8621   // used to detect deletion of the invoke via the MachineModuleInfo.
8622   BeginLabel = MF.getContext().createTempSymbol();
8623 
8624   // For SjLj, keep track of which landing pads go with which invokes
8625   // so as to maintain the ordering of pads in the LSDA.
8626   unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8627   if (CallSiteIndex) {
8628     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8629     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8630 
8631     // Now that the call site is handled, stop tracking it.
8632     FuncInfo.setCurrentCallSite(0);
8633   }
8634 
8635   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8636 }
8637 
8638 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8639                                         const BasicBlock *EHPadBB,
8640                                         MCSymbol *BeginLabel) {
8641   assert(BeginLabel && "BeginLabel should've been set");
8642 
8643   MachineFunction &MF = DAG.getMachineFunction();
8644 
8645   // Insert a label at the end of the invoke call to mark the try range.  This
8646   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8647   MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8648   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8649 
8650   // Inform MachineModuleInfo of range.
8651   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8652   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8653   // actually use outlined funclets and their LSDA info style.
8654   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8655     assert(II && "II should've been set");
8656     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8657     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8658   } else if (!isScopedEHPersonality(Pers)) {
8659     assert(EHPadBB);
8660     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8661   }
8662 
8663   return Chain;
8664 }
8665 
8666 std::pair<SDValue, SDValue>
8667 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8668                                     const BasicBlock *EHPadBB) {
8669   MCSymbol *BeginLabel = nullptr;
8670 
8671   if (EHPadBB) {
8672     // Both PendingLoads and PendingExports must be flushed here;
8673     // this call might not return.
8674     (void)getRoot();
8675     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8676     CLI.setChain(getRoot());
8677   }
8678 
8679   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8680   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8681 
8682   assert((CLI.IsTailCall || Result.second.getNode()) &&
8683          "Non-null chain expected with non-tail call!");
8684   assert((Result.second.getNode() || !Result.first.getNode()) &&
8685          "Null value expected with tail call!");
8686 
8687   if (!Result.second.getNode()) {
8688     // As a special case, a null chain means that a tail call has been emitted
8689     // and the DAG root is already updated.
8690     HasTailCall = true;
8691 
8692     // Since there's no actual continuation from this block, nothing can be
8693     // relying on us setting vregs for them.
8694     PendingExports.clear();
8695   } else {
8696     DAG.setRoot(Result.second);
8697   }
8698 
8699   if (EHPadBB) {
8700     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8701                            BeginLabel));
8702     Result.second = getRoot();
8703   }
8704 
8705   return Result;
8706 }
8707 
8708 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8709                                       bool isTailCall, bool isMustTailCall,
8710                                       const BasicBlock *EHPadBB,
8711                                       const TargetLowering::PtrAuthInfo *PAI) {
8712   auto &DL = DAG.getDataLayout();
8713   FunctionType *FTy = CB.getFunctionType();
8714   Type *RetTy = CB.getType();
8715 
8716   TargetLowering::ArgListTy Args;
8717   Args.reserve(CB.arg_size());
8718 
8719   const Value *SwiftErrorVal = nullptr;
8720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8721 
8722   if (isTailCall) {
8723     // Avoid emitting tail calls in functions with the disable-tail-calls
8724     // attribute.
8725     auto *Caller = CB.getParent()->getParent();
8726     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8727         "true" && !isMustTailCall)
8728       isTailCall = false;
8729 
8730     // We can't tail call inside a function with a swifterror argument. Lowering
8731     // does not support this yet. It would have to move into the swifterror
8732     // register before the call.
8733     if (TLI.supportSwiftError() &&
8734         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8735       isTailCall = false;
8736   }
8737 
8738   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8739     TargetLowering::ArgListEntry Entry;
8740     const Value *V = *I;
8741 
8742     // Skip empty types
8743     if (V->getType()->isEmptyTy())
8744       continue;
8745 
8746     SDValue ArgNode = getValue(V);
8747     Entry.Node = ArgNode; Entry.Ty = V->getType();
8748 
8749     Entry.setAttributes(&CB, I - CB.arg_begin());
8750 
8751     // Use swifterror virtual register as input to the call.
8752     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8753       SwiftErrorVal = V;
8754       // We find the virtual register for the actual swifterror argument.
8755       // Instead of using the Value, we use the virtual register instead.
8756       Entry.Node =
8757           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8758                           EVT(TLI.getPointerTy(DL)));
8759     }
8760 
8761     Args.push_back(Entry);
8762 
8763     // If we have an explicit sret argument that is an Instruction, (i.e., it
8764     // might point to function-local memory), we can't meaningfully tail-call.
8765     if (Entry.IsSRet && isa<Instruction>(V))
8766       isTailCall = false;
8767   }
8768 
8769   // If call site has a cfguardtarget operand bundle, create and add an
8770   // additional ArgListEntry.
8771   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8772     TargetLowering::ArgListEntry Entry;
8773     Value *V = Bundle->Inputs[0];
8774     SDValue ArgNode = getValue(V);
8775     Entry.Node = ArgNode;
8776     Entry.Ty = V->getType();
8777     Entry.IsCFGuardTarget = true;
8778     Args.push_back(Entry);
8779   }
8780 
8781   // Check if target-independent constraints permit a tail call here.
8782   // Target-dependent constraints are checked within TLI->LowerCallTo.
8783   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8784     isTailCall = false;
8785 
8786   // Disable tail calls if there is an swifterror argument. Targets have not
8787   // been updated to support tail calls.
8788   if (TLI.supportSwiftError() && SwiftErrorVal)
8789     isTailCall = false;
8790 
8791   ConstantInt *CFIType = nullptr;
8792   if (CB.isIndirectCall()) {
8793     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8794       if (!TLI.supportKCFIBundles())
8795         report_fatal_error(
8796             "Target doesn't support calls with kcfi operand bundles.");
8797       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8798       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8799     }
8800   }
8801 
8802   SDValue ConvControlToken;
8803   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8804     auto *Token = Bundle->Inputs[0].get();
8805     ConvControlToken = getValue(Token);
8806   }
8807 
8808   TargetLowering::CallLoweringInfo CLI(DAG);
8809   CLI.setDebugLoc(getCurSDLoc())
8810       .setChain(getRoot())
8811       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8812       .setTailCall(isTailCall)
8813       .setConvergent(CB.isConvergent())
8814       .setIsPreallocated(
8815           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8816       .setCFIType(CFIType)
8817       .setConvergenceControlToken(ConvControlToken);
8818 
8819   // Set the pointer authentication info if we have it.
8820   if (PAI) {
8821     if (!TLI.supportPtrAuthBundles())
8822       report_fatal_error(
8823           "This target doesn't support calls with ptrauth operand bundles.");
8824     CLI.setPtrAuth(*PAI);
8825   }
8826 
8827   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8828 
8829   if (Result.first.getNode()) {
8830     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8831     setValue(&CB, Result.first);
8832   }
8833 
8834   // The last element of CLI.InVals has the SDValue for swifterror return.
8835   // Here we copy it to a virtual register and update SwiftErrorMap for
8836   // book-keeping.
8837   if (SwiftErrorVal && TLI.supportSwiftError()) {
8838     // Get the last element of InVals.
8839     SDValue Src = CLI.InVals.back();
8840     Register VReg =
8841         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8842     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8843     DAG.setRoot(CopyNode);
8844   }
8845 }
8846 
8847 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8848                              SelectionDAGBuilder &Builder) {
8849   // Check to see if this load can be trivially constant folded, e.g. if the
8850   // input is from a string literal.
8851   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8852     // Cast pointer to the type we really want to load.
8853     Type *LoadTy =
8854         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8855     if (LoadVT.isVector())
8856       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8857 
8858     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8859                                          PointerType::getUnqual(LoadTy));
8860 
8861     if (const Constant *LoadCst =
8862             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8863                                          LoadTy, Builder.DAG.getDataLayout()))
8864       return Builder.getValue(LoadCst);
8865   }
8866 
8867   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8868   // still constant memory, the input chain can be the entry node.
8869   SDValue Root;
8870   bool ConstantMemory = false;
8871 
8872   // Do not serialize (non-volatile) loads of constant memory with anything.
8873   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8874     Root = Builder.DAG.getEntryNode();
8875     ConstantMemory = true;
8876   } else {
8877     // Do not serialize non-volatile loads against each other.
8878     Root = Builder.DAG.getRoot();
8879   }
8880 
8881   SDValue Ptr = Builder.getValue(PtrVal);
8882   SDValue LoadVal =
8883       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8884                           MachinePointerInfo(PtrVal), Align(1));
8885 
8886   if (!ConstantMemory)
8887     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8888   return LoadVal;
8889 }
8890 
8891 /// Record the value for an instruction that produces an integer result,
8892 /// converting the type where necessary.
8893 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8894                                                   SDValue Value,
8895                                                   bool IsSigned) {
8896   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8897                                                     I.getType(), true);
8898   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8899   setValue(&I, Value);
8900 }
8901 
8902 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8903 /// true and lower it. Otherwise return false, and it will be lowered like a
8904 /// normal call.
8905 /// The caller already checked that \p I calls the appropriate LibFunc with a
8906 /// correct prototype.
8907 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8908   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8909   const Value *Size = I.getArgOperand(2);
8910   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8911   if (CSize && CSize->getZExtValue() == 0) {
8912     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8913                                                           I.getType(), true);
8914     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8915     return true;
8916   }
8917 
8918   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8919   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8920       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8921       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8922   if (Res.first.getNode()) {
8923     processIntegerCallValue(I, Res.first, true);
8924     PendingLoads.push_back(Res.second);
8925     return true;
8926   }
8927 
8928   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8929   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8930   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8931     return false;
8932 
8933   // If the target has a fast compare for the given size, it will return a
8934   // preferred load type for that size. Require that the load VT is legal and
8935   // that the target supports unaligned loads of that type. Otherwise, return
8936   // INVALID.
8937   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8938     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8939     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8940     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8941       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8942       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8943       // TODO: Check alignment of src and dest ptrs.
8944       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8945       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8946       if (!TLI.isTypeLegal(LVT) ||
8947           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8948           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8949         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8950     }
8951 
8952     return LVT;
8953   };
8954 
8955   // This turns into unaligned loads. We only do this if the target natively
8956   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8957   // we'll only produce a small number of byte loads.
8958   MVT LoadVT;
8959   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8960   switch (NumBitsToCompare) {
8961   default:
8962     return false;
8963   case 16:
8964     LoadVT = MVT::i16;
8965     break;
8966   case 32:
8967     LoadVT = MVT::i32;
8968     break;
8969   case 64:
8970   case 128:
8971   case 256:
8972     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8973     break;
8974   }
8975 
8976   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8977     return false;
8978 
8979   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8980   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8981 
8982   // Bitcast to a wide integer type if the loads are vectors.
8983   if (LoadVT.isVector()) {
8984     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8985     LoadL = DAG.getBitcast(CmpVT, LoadL);
8986     LoadR = DAG.getBitcast(CmpVT, LoadR);
8987   }
8988 
8989   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8990   processIntegerCallValue(I, Cmp, false);
8991   return true;
8992 }
8993 
8994 /// See if we can lower a memchr call into an optimized form. If so, return
8995 /// true and lower it. Otherwise return false, and it will be lowered like a
8996 /// normal call.
8997 /// The caller already checked that \p I calls the appropriate LibFunc with a
8998 /// correct prototype.
8999 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9000   const Value *Src = I.getArgOperand(0);
9001   const Value *Char = I.getArgOperand(1);
9002   const Value *Length = I.getArgOperand(2);
9003 
9004   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9005   std::pair<SDValue, SDValue> Res =
9006     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9007                                 getValue(Src), getValue(Char), getValue(Length),
9008                                 MachinePointerInfo(Src));
9009   if (Res.first.getNode()) {
9010     setValue(&I, Res.first);
9011     PendingLoads.push_back(Res.second);
9012     return true;
9013   }
9014 
9015   return false;
9016 }
9017 
9018 /// See if we can lower a mempcpy call into an optimized form. If so, return
9019 /// true and lower it. Otherwise return false, and it will be lowered like a
9020 /// normal call.
9021 /// The caller already checked that \p I calls the appropriate LibFunc with a
9022 /// correct prototype.
9023 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9024   SDValue Dst = getValue(I.getArgOperand(0));
9025   SDValue Src = getValue(I.getArgOperand(1));
9026   SDValue Size = getValue(I.getArgOperand(2));
9027 
9028   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9029   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9030   // DAG::getMemcpy needs Alignment to be defined.
9031   Align Alignment = std::min(DstAlign, SrcAlign);
9032 
9033   SDLoc sdl = getCurSDLoc();
9034 
9035   // In the mempcpy context we need to pass in a false value for isTailCall
9036   // because the return pointer needs to be adjusted by the size of
9037   // the copied memory.
9038   SDValue Root = getMemoryRoot();
9039   SDValue MC = DAG.getMemcpy(
9040       Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9041       std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9042       MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9043   assert(MC.getNode() != nullptr &&
9044          "** memcpy should not be lowered as TailCall in mempcpy context **");
9045   DAG.setRoot(MC);
9046 
9047   // Check if Size needs to be truncated or extended.
9048   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9049 
9050   // Adjust return pointer to point just past the last dst byte.
9051   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
9052                                     Dst, Size);
9053   setValue(&I, DstPlusSize);
9054   return true;
9055 }
9056 
9057 /// See if we can lower a strcpy call into an optimized form.  If so, return
9058 /// true and lower it, otherwise return false and it will be lowered like a
9059 /// normal call.
9060 /// The caller already checked that \p I calls the appropriate LibFunc with a
9061 /// correct prototype.
9062 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9063   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9064 
9065   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9066   std::pair<SDValue, SDValue> Res =
9067     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
9068                                 getValue(Arg0), getValue(Arg1),
9069                                 MachinePointerInfo(Arg0),
9070                                 MachinePointerInfo(Arg1), isStpcpy);
9071   if (Res.first.getNode()) {
9072     setValue(&I, Res.first);
9073     DAG.setRoot(Res.second);
9074     return true;
9075   }
9076 
9077   return false;
9078 }
9079 
9080 /// See if we can lower a strcmp call into an optimized form.  If so, return
9081 /// true and lower it, otherwise return false and it will be lowered like a
9082 /// normal call.
9083 /// The caller already checked that \p I calls the appropriate LibFunc with a
9084 /// correct prototype.
9085 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9086   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9087 
9088   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9089   std::pair<SDValue, SDValue> Res =
9090     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9091                                 getValue(Arg0), getValue(Arg1),
9092                                 MachinePointerInfo(Arg0),
9093                                 MachinePointerInfo(Arg1));
9094   if (Res.first.getNode()) {
9095     processIntegerCallValue(I, Res.first, true);
9096     PendingLoads.push_back(Res.second);
9097     return true;
9098   }
9099 
9100   return false;
9101 }
9102 
9103 /// See if we can lower a strlen call into an optimized form.  If so, return
9104 /// true and lower it, otherwise return false and it will be lowered like a
9105 /// normal call.
9106 /// The caller already checked that \p I calls the appropriate LibFunc with a
9107 /// correct prototype.
9108 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9109   const Value *Arg0 = I.getArgOperand(0);
9110 
9111   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9112   std::pair<SDValue, SDValue> Res =
9113     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9114                                 getValue(Arg0), MachinePointerInfo(Arg0));
9115   if (Res.first.getNode()) {
9116     processIntegerCallValue(I, Res.first, false);
9117     PendingLoads.push_back(Res.second);
9118     return true;
9119   }
9120 
9121   return false;
9122 }
9123 
9124 /// See if we can lower a strnlen call into an optimized form.  If so, return
9125 /// true and lower it, otherwise return false and it will be lowered like a
9126 /// normal call.
9127 /// The caller already checked that \p I calls the appropriate LibFunc with a
9128 /// correct prototype.
9129 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9130   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9131 
9132   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9133   std::pair<SDValue, SDValue> Res =
9134     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9135                                  getValue(Arg0), getValue(Arg1),
9136                                  MachinePointerInfo(Arg0));
9137   if (Res.first.getNode()) {
9138     processIntegerCallValue(I, Res.first, false);
9139     PendingLoads.push_back(Res.second);
9140     return true;
9141   }
9142 
9143   return false;
9144 }
9145 
9146 /// See if we can lower a unary floating-point operation into an SDNode with
9147 /// the specified Opcode.  If so, return true and lower it, otherwise return
9148 /// false and it will be lowered like a normal call.
9149 /// The caller already checked that \p I calls the appropriate LibFunc with a
9150 /// correct prototype.
9151 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9152                                               unsigned Opcode) {
9153   // We already checked this call's prototype; verify it doesn't modify errno.
9154   if (!I.onlyReadsMemory())
9155     return false;
9156 
9157   SDNodeFlags Flags;
9158   Flags.copyFMF(cast<FPMathOperator>(I));
9159 
9160   SDValue Tmp = getValue(I.getArgOperand(0));
9161   setValue(&I,
9162            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9163   return true;
9164 }
9165 
9166 /// See if we can lower a binary floating-point operation into an SDNode with
9167 /// the specified Opcode. If so, return true and lower it. Otherwise return
9168 /// false, and it will be lowered like a normal call.
9169 /// The caller already checked that \p I calls the appropriate LibFunc with a
9170 /// correct prototype.
9171 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9172                                                unsigned Opcode) {
9173   // We already checked this call's prototype; verify it doesn't modify errno.
9174   if (!I.onlyReadsMemory())
9175     return false;
9176 
9177   SDNodeFlags Flags;
9178   Flags.copyFMF(cast<FPMathOperator>(I));
9179 
9180   SDValue Tmp0 = getValue(I.getArgOperand(0));
9181   SDValue Tmp1 = getValue(I.getArgOperand(1));
9182   EVT VT = Tmp0.getValueType();
9183   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9184   return true;
9185 }
9186 
9187 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9188   // Handle inline assembly differently.
9189   if (I.isInlineAsm()) {
9190     visitInlineAsm(I);
9191     return;
9192   }
9193 
9194   diagnoseDontCall(I);
9195 
9196   if (Function *F = I.getCalledFunction()) {
9197     if (F->isDeclaration()) {
9198       // Is this an LLVM intrinsic or a target-specific intrinsic?
9199       unsigned IID = F->getIntrinsicID();
9200       if (!IID)
9201         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9202           IID = II->getIntrinsicID(F);
9203 
9204       if (IID) {
9205         visitIntrinsicCall(I, IID);
9206         return;
9207       }
9208     }
9209 
9210     // Check for well-known libc/libm calls.  If the function is internal, it
9211     // can't be a library call.  Don't do the check if marked as nobuiltin for
9212     // some reason or the call site requires strict floating point semantics.
9213     LibFunc Func;
9214     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9215         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9216         LibInfo->hasOptimizedCodeGen(Func)) {
9217       switch (Func) {
9218       default: break;
9219       case LibFunc_bcmp:
9220         if (visitMemCmpBCmpCall(I))
9221           return;
9222         break;
9223       case LibFunc_copysign:
9224       case LibFunc_copysignf:
9225       case LibFunc_copysignl:
9226         // We already checked this call's prototype; verify it doesn't modify
9227         // errno.
9228         if (I.onlyReadsMemory()) {
9229           SDValue LHS = getValue(I.getArgOperand(0));
9230           SDValue RHS = getValue(I.getArgOperand(1));
9231           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9232                                    LHS.getValueType(), LHS, RHS));
9233           return;
9234         }
9235         break;
9236       case LibFunc_fabs:
9237       case LibFunc_fabsf:
9238       case LibFunc_fabsl:
9239         if (visitUnaryFloatCall(I, ISD::FABS))
9240           return;
9241         break;
9242       case LibFunc_fmin:
9243       case LibFunc_fminf:
9244       case LibFunc_fminl:
9245         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9246           return;
9247         break;
9248       case LibFunc_fmax:
9249       case LibFunc_fmaxf:
9250       case LibFunc_fmaxl:
9251         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9252           return;
9253         break;
9254       case LibFunc_sin:
9255       case LibFunc_sinf:
9256       case LibFunc_sinl:
9257         if (visitUnaryFloatCall(I, ISD::FSIN))
9258           return;
9259         break;
9260       case LibFunc_cos:
9261       case LibFunc_cosf:
9262       case LibFunc_cosl:
9263         if (visitUnaryFloatCall(I, ISD::FCOS))
9264           return;
9265         break;
9266       case LibFunc_tan:
9267       case LibFunc_tanf:
9268       case LibFunc_tanl:
9269         if (visitUnaryFloatCall(I, ISD::FTAN))
9270           return;
9271         break;
9272       case LibFunc_asin:
9273       case LibFunc_asinf:
9274       case LibFunc_asinl:
9275         if (visitUnaryFloatCall(I, ISD::FASIN))
9276           return;
9277         break;
9278       case LibFunc_acos:
9279       case LibFunc_acosf:
9280       case LibFunc_acosl:
9281         if (visitUnaryFloatCall(I, ISD::FACOS))
9282           return;
9283         break;
9284       case LibFunc_atan:
9285       case LibFunc_atanf:
9286       case LibFunc_atanl:
9287         if (visitUnaryFloatCall(I, ISD::FATAN))
9288           return;
9289         break;
9290       case LibFunc_sinh:
9291       case LibFunc_sinhf:
9292       case LibFunc_sinhl:
9293         if (visitUnaryFloatCall(I, ISD::FSINH))
9294           return;
9295         break;
9296       case LibFunc_cosh:
9297       case LibFunc_coshf:
9298       case LibFunc_coshl:
9299         if (visitUnaryFloatCall(I, ISD::FCOSH))
9300           return;
9301         break;
9302       case LibFunc_tanh:
9303       case LibFunc_tanhf:
9304       case LibFunc_tanhl:
9305         if (visitUnaryFloatCall(I, ISD::FTANH))
9306           return;
9307         break;
9308       case LibFunc_sqrt:
9309       case LibFunc_sqrtf:
9310       case LibFunc_sqrtl:
9311       case LibFunc_sqrt_finite:
9312       case LibFunc_sqrtf_finite:
9313       case LibFunc_sqrtl_finite:
9314         if (visitUnaryFloatCall(I, ISD::FSQRT))
9315           return;
9316         break;
9317       case LibFunc_floor:
9318       case LibFunc_floorf:
9319       case LibFunc_floorl:
9320         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9321           return;
9322         break;
9323       case LibFunc_nearbyint:
9324       case LibFunc_nearbyintf:
9325       case LibFunc_nearbyintl:
9326         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9327           return;
9328         break;
9329       case LibFunc_ceil:
9330       case LibFunc_ceilf:
9331       case LibFunc_ceill:
9332         if (visitUnaryFloatCall(I, ISD::FCEIL))
9333           return;
9334         break;
9335       case LibFunc_rint:
9336       case LibFunc_rintf:
9337       case LibFunc_rintl:
9338         if (visitUnaryFloatCall(I, ISD::FRINT))
9339           return;
9340         break;
9341       case LibFunc_round:
9342       case LibFunc_roundf:
9343       case LibFunc_roundl:
9344         if (visitUnaryFloatCall(I, ISD::FROUND))
9345           return;
9346         break;
9347       case LibFunc_trunc:
9348       case LibFunc_truncf:
9349       case LibFunc_truncl:
9350         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9351           return;
9352         break;
9353       case LibFunc_log2:
9354       case LibFunc_log2f:
9355       case LibFunc_log2l:
9356         if (visitUnaryFloatCall(I, ISD::FLOG2))
9357           return;
9358         break;
9359       case LibFunc_exp2:
9360       case LibFunc_exp2f:
9361       case LibFunc_exp2l:
9362         if (visitUnaryFloatCall(I, ISD::FEXP2))
9363           return;
9364         break;
9365       case LibFunc_exp10:
9366       case LibFunc_exp10f:
9367       case LibFunc_exp10l:
9368         if (visitUnaryFloatCall(I, ISD::FEXP10))
9369           return;
9370         break;
9371       case LibFunc_ldexp:
9372       case LibFunc_ldexpf:
9373       case LibFunc_ldexpl:
9374         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9375           return;
9376         break;
9377       case LibFunc_memcmp:
9378         if (visitMemCmpBCmpCall(I))
9379           return;
9380         break;
9381       case LibFunc_mempcpy:
9382         if (visitMemPCpyCall(I))
9383           return;
9384         break;
9385       case LibFunc_memchr:
9386         if (visitMemChrCall(I))
9387           return;
9388         break;
9389       case LibFunc_strcpy:
9390         if (visitStrCpyCall(I, false))
9391           return;
9392         break;
9393       case LibFunc_stpcpy:
9394         if (visitStrCpyCall(I, true))
9395           return;
9396         break;
9397       case LibFunc_strcmp:
9398         if (visitStrCmpCall(I))
9399           return;
9400         break;
9401       case LibFunc_strlen:
9402         if (visitStrLenCall(I))
9403           return;
9404         break;
9405       case LibFunc_strnlen:
9406         if (visitStrNLenCall(I))
9407           return;
9408         break;
9409       }
9410     }
9411   }
9412 
9413   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9414     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9415     return;
9416   }
9417 
9418   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9419   // have to do anything here to lower funclet bundles.
9420   // CFGuardTarget bundles are lowered in LowerCallTo.
9421   assert(!I.hasOperandBundlesOtherThan(
9422              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9423               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9424               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9425               LLVMContext::OB_convergencectrl}) &&
9426          "Cannot lower calls with arbitrary operand bundles!");
9427 
9428   SDValue Callee = getValue(I.getCalledOperand());
9429 
9430   if (I.hasDeoptState())
9431     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9432   else
9433     // Check if we can potentially perform a tail call. More detailed checking
9434     // is be done within LowerCallTo, after more information about the call is
9435     // known.
9436     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9437 }
9438 
9439 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9440     const CallBase &CB, const BasicBlock *EHPadBB) {
9441   auto PAB = CB.getOperandBundle("ptrauth");
9442   const Value *CalleeV = CB.getCalledOperand();
9443 
9444   // Gather the call ptrauth data from the operand bundle:
9445   //   [ i32 <key>, i64 <discriminator> ]
9446   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9447   const Value *Discriminator = PAB->Inputs[1];
9448 
9449   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9450   assert(Discriminator->getType()->isIntegerTy(64) &&
9451          "Invalid ptrauth discriminator");
9452 
9453   // Look through ptrauth constants to find the raw callee.
9454   // Do a direct unauthenticated call if we found it and everything matches.
9455   if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9456     if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9457                                          DAG.getDataLayout()))
9458       return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9459                          CB.isMustTailCall(), EHPadBB);
9460 
9461   // Functions should never be ptrauth-called directly.
9462   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9463 
9464   // Otherwise, do an authenticated indirect call.
9465   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9466                                      getValue(Discriminator)};
9467 
9468   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9469               EHPadBB, &PAI);
9470 }
9471 
9472 namespace {
9473 
9474 /// AsmOperandInfo - This contains information for each constraint that we are
9475 /// lowering.
9476 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9477 public:
9478   /// CallOperand - If this is the result output operand or a clobber
9479   /// this is null, otherwise it is the incoming operand to the CallInst.
9480   /// This gets modified as the asm is processed.
9481   SDValue CallOperand;
9482 
9483   /// AssignedRegs - If this is a register or register class operand, this
9484   /// contains the set of register corresponding to the operand.
9485   RegsForValue AssignedRegs;
9486 
9487   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9488     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9489   }
9490 
9491   /// Whether or not this operand accesses memory
9492   bool hasMemory(const TargetLowering &TLI) const {
9493     // Indirect operand accesses access memory.
9494     if (isIndirect)
9495       return true;
9496 
9497     for (const auto &Code : Codes)
9498       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9499         return true;
9500 
9501     return false;
9502   }
9503 };
9504 
9505 
9506 } // end anonymous namespace
9507 
9508 /// Make sure that the output operand \p OpInfo and its corresponding input
9509 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9510 /// out).
9511 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9512                                SDISelAsmOperandInfo &MatchingOpInfo,
9513                                SelectionDAG &DAG) {
9514   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9515     return;
9516 
9517   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9518   const auto &TLI = DAG.getTargetLoweringInfo();
9519 
9520   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9521       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9522                                        OpInfo.ConstraintVT);
9523   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9524       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9525                                        MatchingOpInfo.ConstraintVT);
9526   if ((OpInfo.ConstraintVT.isInteger() !=
9527        MatchingOpInfo.ConstraintVT.isInteger()) ||
9528       (MatchRC.second != InputRC.second)) {
9529     // FIXME: error out in a more elegant fashion
9530     report_fatal_error("Unsupported asm: input constraint"
9531                        " with a matching output constraint of"
9532                        " incompatible type!");
9533   }
9534   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9535 }
9536 
9537 /// Get a direct memory input to behave well as an indirect operand.
9538 /// This may introduce stores, hence the need for a \p Chain.
9539 /// \return The (possibly updated) chain.
9540 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9541                                         SDISelAsmOperandInfo &OpInfo,
9542                                         SelectionDAG &DAG) {
9543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9544 
9545   // If we don't have an indirect input, put it in the constpool if we can,
9546   // otherwise spill it to a stack slot.
9547   // TODO: This isn't quite right. We need to handle these according to
9548   // the addressing mode that the constraint wants. Also, this may take
9549   // an additional register for the computation and we don't want that
9550   // either.
9551 
9552   // If the operand is a float, integer, or vector constant, spill to a
9553   // constant pool entry to get its address.
9554   const Value *OpVal = OpInfo.CallOperandVal;
9555   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9556       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9557     OpInfo.CallOperand = DAG.getConstantPool(
9558         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9559     return Chain;
9560   }
9561 
9562   // Otherwise, create a stack slot and emit a store to it before the asm.
9563   Type *Ty = OpVal->getType();
9564   auto &DL = DAG.getDataLayout();
9565   TypeSize TySize = DL.getTypeAllocSize(Ty);
9566   MachineFunction &MF = DAG.getMachineFunction();
9567   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
9568   int StackID = 0;
9569   if (TySize.isScalable())
9570     StackID = TFI->getStackIDForScalableVectors();
9571   int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9572                                                  DL.getPrefTypeAlign(Ty), false,
9573                                                  nullptr, StackID);
9574   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9575   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9576                             MachinePointerInfo::getFixedStack(MF, SSFI),
9577                             TLI.getMemValueType(DL, Ty));
9578   OpInfo.CallOperand = StackSlot;
9579 
9580   return Chain;
9581 }
9582 
9583 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9584 /// specified operand.  We prefer to assign virtual registers, to allow the
9585 /// register allocator to handle the assignment process.  However, if the asm
9586 /// uses features that we can't model on machineinstrs, we have SDISel do the
9587 /// allocation.  This produces generally horrible, but correct, code.
9588 ///
9589 ///   OpInfo describes the operand
9590 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9591 static std::optional<unsigned>
9592 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9593                      SDISelAsmOperandInfo &OpInfo,
9594                      SDISelAsmOperandInfo &RefOpInfo) {
9595   LLVMContext &Context = *DAG.getContext();
9596   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9597 
9598   MachineFunction &MF = DAG.getMachineFunction();
9599   SmallVector<unsigned, 4> Regs;
9600   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9601 
9602   // No work to do for memory/address operands.
9603   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9604       OpInfo.ConstraintType == TargetLowering::C_Address)
9605     return std::nullopt;
9606 
9607   // If this is a constraint for a single physreg, or a constraint for a
9608   // register class, find it.
9609   unsigned AssignedReg;
9610   const TargetRegisterClass *RC;
9611   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9612       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9613   // RC is unset only on failure. Return immediately.
9614   if (!RC)
9615     return std::nullopt;
9616 
9617   // Get the actual register value type.  This is important, because the user
9618   // may have asked for (e.g.) the AX register in i32 type.  We need to
9619   // remember that AX is actually i16 to get the right extension.
9620   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9621 
9622   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9623     // If this is an FP operand in an integer register (or visa versa), or more
9624     // generally if the operand value disagrees with the register class we plan
9625     // to stick it in, fix the operand type.
9626     //
9627     // If this is an input value, the bitcast to the new type is done now.
9628     // Bitcast for output value is done at the end of visitInlineAsm().
9629     if ((OpInfo.Type == InlineAsm::isOutput ||
9630          OpInfo.Type == InlineAsm::isInput) &&
9631         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9632       // Try to convert to the first EVT that the reg class contains.  If the
9633       // types are identical size, use a bitcast to convert (e.g. two differing
9634       // vector types).  Note: output bitcast is done at the end of
9635       // visitInlineAsm().
9636       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9637         // Exclude indirect inputs while they are unsupported because the code
9638         // to perform the load is missing and thus OpInfo.CallOperand still
9639         // refers to the input address rather than the pointed-to value.
9640         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9641           OpInfo.CallOperand =
9642               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9643         OpInfo.ConstraintVT = RegVT;
9644         // If the operand is an FP value and we want it in integer registers,
9645         // use the corresponding integer type. This turns an f64 value into
9646         // i64, which can be passed with two i32 values on a 32-bit machine.
9647       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9648         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9649         if (OpInfo.Type == InlineAsm::isInput)
9650           OpInfo.CallOperand =
9651               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9652         OpInfo.ConstraintVT = VT;
9653       }
9654     }
9655   }
9656 
9657   // No need to allocate a matching input constraint since the constraint it's
9658   // matching to has already been allocated.
9659   if (OpInfo.isMatchingInputConstraint())
9660     return std::nullopt;
9661 
9662   EVT ValueVT = OpInfo.ConstraintVT;
9663   if (OpInfo.ConstraintVT == MVT::Other)
9664     ValueVT = RegVT;
9665 
9666   // Initialize NumRegs.
9667   unsigned NumRegs = 1;
9668   if (OpInfo.ConstraintVT != MVT::Other)
9669     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9670 
9671   // If this is a constraint for a specific physical register, like {r17},
9672   // assign it now.
9673 
9674   // If this associated to a specific register, initialize iterator to correct
9675   // place. If virtual, make sure we have enough registers
9676 
9677   // Initialize iterator if necessary
9678   TargetRegisterClass::iterator I = RC->begin();
9679   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9680 
9681   // Do not check for single registers.
9682   if (AssignedReg) {
9683     I = std::find(I, RC->end(), AssignedReg);
9684     if (I == RC->end()) {
9685       // RC does not contain the selected register, which indicates a
9686       // mismatch between the register and the required type/bitwidth.
9687       return {AssignedReg};
9688     }
9689   }
9690 
9691   for (; NumRegs; --NumRegs, ++I) {
9692     assert(I != RC->end() && "Ran out of registers to allocate!");
9693     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9694     Regs.push_back(R);
9695   }
9696 
9697   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9698   return std::nullopt;
9699 }
9700 
9701 static unsigned
9702 findMatchingInlineAsmOperand(unsigned OperandNo,
9703                              const std::vector<SDValue> &AsmNodeOperands) {
9704   // Scan until we find the definition we already emitted of this operand.
9705   unsigned CurOp = InlineAsm::Op_FirstOperand;
9706   for (; OperandNo; --OperandNo) {
9707     // Advance to the next operand.
9708     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9709     const InlineAsm::Flag F(OpFlag);
9710     assert(
9711         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9712         "Skipped past definitions?");
9713     CurOp += F.getNumOperandRegisters() + 1;
9714   }
9715   return CurOp;
9716 }
9717 
9718 namespace {
9719 
9720 class ExtraFlags {
9721   unsigned Flags = 0;
9722 
9723 public:
9724   explicit ExtraFlags(const CallBase &Call) {
9725     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9726     if (IA->hasSideEffects())
9727       Flags |= InlineAsm::Extra_HasSideEffects;
9728     if (IA->isAlignStack())
9729       Flags |= InlineAsm::Extra_IsAlignStack;
9730     if (Call.isConvergent())
9731       Flags |= InlineAsm::Extra_IsConvergent;
9732     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9733   }
9734 
9735   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9736     // Ideally, we would only check against memory constraints.  However, the
9737     // meaning of an Other constraint can be target-specific and we can't easily
9738     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9739     // for Other constraints as well.
9740     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9741         OpInfo.ConstraintType == TargetLowering::C_Other) {
9742       if (OpInfo.Type == InlineAsm::isInput)
9743         Flags |= InlineAsm::Extra_MayLoad;
9744       else if (OpInfo.Type == InlineAsm::isOutput)
9745         Flags |= InlineAsm::Extra_MayStore;
9746       else if (OpInfo.Type == InlineAsm::isClobber)
9747         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9748     }
9749   }
9750 
9751   unsigned get() const { return Flags; }
9752 };
9753 
9754 } // end anonymous namespace
9755 
9756 static bool isFunction(SDValue Op) {
9757   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9758     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9759       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9760 
9761       // In normal "call dllimport func" instruction (non-inlineasm) it force
9762       // indirect access by specifing call opcode. And usually specially print
9763       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9764       // not do in this way now. (In fact, this is similar with "Data Access"
9765       // action). So here we ignore dllimport function.
9766       if (Fn && !Fn->hasDLLImportStorageClass())
9767         return true;
9768     }
9769   }
9770   return false;
9771 }
9772 
9773 /// visitInlineAsm - Handle a call to an InlineAsm object.
9774 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9775                                          const BasicBlock *EHPadBB) {
9776   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9777 
9778   /// ConstraintOperands - Information about all of the constraints.
9779   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9780 
9781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9782   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9783       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9784 
9785   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9786   // AsmDialect, MayLoad, MayStore).
9787   bool HasSideEffect = IA->hasSideEffects();
9788   ExtraFlags ExtraInfo(Call);
9789 
9790   for (auto &T : TargetConstraints) {
9791     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9792     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9793 
9794     if (OpInfo.CallOperandVal)
9795       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9796 
9797     if (!HasSideEffect)
9798       HasSideEffect = OpInfo.hasMemory(TLI);
9799 
9800     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9801     // FIXME: Could we compute this on OpInfo rather than T?
9802 
9803     // Compute the constraint code and ConstraintType to use.
9804     TLI.ComputeConstraintToUse(T, SDValue());
9805 
9806     if (T.ConstraintType == TargetLowering::C_Immediate &&
9807         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9808       // We've delayed emitting a diagnostic like the "n" constraint because
9809       // inlining could cause an integer showing up.
9810       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9811                                           "' expects an integer constant "
9812                                           "expression");
9813 
9814     ExtraInfo.update(T);
9815   }
9816 
9817   // We won't need to flush pending loads if this asm doesn't touch
9818   // memory and is nonvolatile.
9819   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9820 
9821   bool EmitEHLabels = isa<InvokeInst>(Call);
9822   if (EmitEHLabels) {
9823     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9824   }
9825   bool IsCallBr = isa<CallBrInst>(Call);
9826 
9827   if (IsCallBr || EmitEHLabels) {
9828     // If this is a callbr or invoke we need to flush pending exports since
9829     // inlineasm_br and invoke are terminators.
9830     // We need to do this before nodes are glued to the inlineasm_br node.
9831     Chain = getControlRoot();
9832   }
9833 
9834   MCSymbol *BeginLabel = nullptr;
9835   if (EmitEHLabels) {
9836     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9837   }
9838 
9839   int OpNo = -1;
9840   SmallVector<StringRef> AsmStrs;
9841   IA->collectAsmStrs(AsmStrs);
9842 
9843   // Second pass over the constraints: compute which constraint option to use.
9844   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9845     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9846       OpNo++;
9847 
9848     // If this is an output operand with a matching input operand, look up the
9849     // matching input. If their types mismatch, e.g. one is an integer, the
9850     // other is floating point, or their sizes are different, flag it as an
9851     // error.
9852     if (OpInfo.hasMatchingInput()) {
9853       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9854       patchMatchingInput(OpInfo, Input, DAG);
9855     }
9856 
9857     // Compute the constraint code and ConstraintType to use.
9858     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9859 
9860     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9861          OpInfo.Type == InlineAsm::isClobber) ||
9862         OpInfo.ConstraintType == TargetLowering::C_Address)
9863       continue;
9864 
9865     // In Linux PIC model, there are 4 cases about value/label addressing:
9866     //
9867     // 1: Function call or Label jmp inside the module.
9868     // 2: Data access (such as global variable, static variable) inside module.
9869     // 3: Function call or Label jmp outside the module.
9870     // 4: Data access (such as global variable) outside the module.
9871     //
9872     // Due to current llvm inline asm architecture designed to not "recognize"
9873     // the asm code, there are quite troubles for us to treat mem addressing
9874     // differently for same value/adress used in different instuctions.
9875     // For example, in pic model, call a func may in plt way or direclty
9876     // pc-related, but lea/mov a function adress may use got.
9877     //
9878     // Here we try to "recognize" function call for the case 1 and case 3 in
9879     // inline asm. And try to adjust the constraint for them.
9880     //
9881     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9882     // label, so here we don't handle jmp function label now, but we need to
9883     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9884     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9885         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9886         TM.getCodeModel() != CodeModel::Large) {
9887       OpInfo.isIndirect = false;
9888       OpInfo.ConstraintType = TargetLowering::C_Address;
9889     }
9890 
9891     // If this is a memory input, and if the operand is not indirect, do what we
9892     // need to provide an address for the memory input.
9893     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9894         !OpInfo.isIndirect) {
9895       assert((OpInfo.isMultipleAlternative ||
9896               (OpInfo.Type == InlineAsm::isInput)) &&
9897              "Can only indirectify direct input operands!");
9898 
9899       // Memory operands really want the address of the value.
9900       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9901 
9902       // There is no longer a Value* corresponding to this operand.
9903       OpInfo.CallOperandVal = nullptr;
9904 
9905       // It is now an indirect operand.
9906       OpInfo.isIndirect = true;
9907     }
9908 
9909   }
9910 
9911   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9912   std::vector<SDValue> AsmNodeOperands;
9913   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9914   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9915       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9916 
9917   // If we have a !srcloc metadata node associated with it, we want to attach
9918   // this to the ultimately generated inline asm machineinstr.  To do this, we
9919   // pass in the third operand as this (potentially null) inline asm MDNode.
9920   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9921   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9922 
9923   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9924   // bits as operand 3.
9925   AsmNodeOperands.push_back(DAG.getTargetConstant(
9926       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9927 
9928   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9929   // this, assign virtual and physical registers for inputs and otput.
9930   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9931     // Assign Registers.
9932     SDISelAsmOperandInfo &RefOpInfo =
9933         OpInfo.isMatchingInputConstraint()
9934             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9935             : OpInfo;
9936     const auto RegError =
9937         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9938     if (RegError) {
9939       const MachineFunction &MF = DAG.getMachineFunction();
9940       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9941       const char *RegName = TRI.getName(*RegError);
9942       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9943                                    "' allocated for constraint '" +
9944                                    Twine(OpInfo.ConstraintCode) +
9945                                    "' does not match required type");
9946       return;
9947     }
9948 
9949     auto DetectWriteToReservedRegister = [&]() {
9950       const MachineFunction &MF = DAG.getMachineFunction();
9951       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9952       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9953         if (Register::isPhysicalRegister(Reg) &&
9954             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9955           const char *RegName = TRI.getName(Reg);
9956           emitInlineAsmError(Call, "write to reserved register '" +
9957                                        Twine(RegName) + "'");
9958           return true;
9959         }
9960       }
9961       return false;
9962     };
9963     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9964             (OpInfo.Type == InlineAsm::isInput &&
9965              !OpInfo.isMatchingInputConstraint())) &&
9966            "Only address as input operand is allowed.");
9967 
9968     switch (OpInfo.Type) {
9969     case InlineAsm::isOutput:
9970       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9971         const InlineAsm::ConstraintCode ConstraintID =
9972             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9973         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9974                "Failed to convert memory constraint code to constraint id.");
9975 
9976         // Add information to the INLINEASM node to know about this output.
9977         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9978         OpFlags.setMemConstraint(ConstraintID);
9979         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9980                                                         MVT::i32));
9981         AsmNodeOperands.push_back(OpInfo.CallOperand);
9982       } else {
9983         // Otherwise, this outputs to a register (directly for C_Register /
9984         // C_RegisterClass, and a target-defined fashion for
9985         // C_Immediate/C_Other). Find a register that we can use.
9986         if (OpInfo.AssignedRegs.Regs.empty()) {
9987           emitInlineAsmError(
9988               Call, "couldn't allocate output register for constraint '" +
9989                         Twine(OpInfo.ConstraintCode) + "'");
9990           return;
9991         }
9992 
9993         if (DetectWriteToReservedRegister())
9994           return;
9995 
9996         // Add information to the INLINEASM node to know that this register is
9997         // set.
9998         OpInfo.AssignedRegs.AddInlineAsmOperands(
9999             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10000                                   : InlineAsm::Kind::RegDef,
10001             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10002       }
10003       break;
10004 
10005     case InlineAsm::isInput:
10006     case InlineAsm::isLabel: {
10007       SDValue InOperandVal = OpInfo.CallOperand;
10008 
10009       if (OpInfo.isMatchingInputConstraint()) {
10010         // If this is required to match an output register we have already set,
10011         // just use its register.
10012         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10013                                                   AsmNodeOperands);
10014         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10015         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10016           if (OpInfo.isIndirect) {
10017             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10018             emitInlineAsmError(Call, "inline asm not supported yet: "
10019                                      "don't know how to handle tied "
10020                                      "indirect register inputs");
10021             return;
10022           }
10023 
10024           SmallVector<unsigned, 4> Regs;
10025           MachineFunction &MF = DAG.getMachineFunction();
10026           MachineRegisterInfo &MRI = MF.getRegInfo();
10027           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10028           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10029           Register TiedReg = R->getReg();
10030           MVT RegVT = R->getSimpleValueType(0);
10031           const TargetRegisterClass *RC =
10032               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
10033               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10034                                       : TRI.getMinimalPhysRegClass(TiedReg);
10035           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10036             Regs.push_back(MRI.createVirtualRegister(RC));
10037 
10038           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10039 
10040           SDLoc dl = getCurSDLoc();
10041           // Use the produced MatchedRegs object to
10042           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10043           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10044                                            OpInfo.getMatchedOperand(), dl, DAG,
10045                                            AsmNodeOperands);
10046           break;
10047         }
10048 
10049         assert(Flag.isMemKind() && "Unknown matching constraint!");
10050         assert(Flag.getNumOperandRegisters() == 1 &&
10051                "Unexpected number of operands");
10052         // Add information to the INLINEASM node to know about this input.
10053         // See InlineAsm.h isUseOperandTiedToDef.
10054         Flag.clearMemConstraint();
10055         Flag.setMatchingOp(OpInfo.getMatchedOperand());
10056         AsmNodeOperands.push_back(DAG.getTargetConstant(
10057             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10058         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10059         break;
10060       }
10061 
10062       // Treat indirect 'X' constraint as memory.
10063       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10064           OpInfo.isIndirect)
10065         OpInfo.ConstraintType = TargetLowering::C_Memory;
10066 
10067       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10068           OpInfo.ConstraintType == TargetLowering::C_Other) {
10069         std::vector<SDValue> Ops;
10070         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10071                                           Ops, DAG);
10072         if (Ops.empty()) {
10073           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10074             if (isa<ConstantSDNode>(InOperandVal)) {
10075               emitInlineAsmError(Call, "value out of range for constraint '" +
10076                                            Twine(OpInfo.ConstraintCode) + "'");
10077               return;
10078             }
10079 
10080           emitInlineAsmError(Call,
10081                              "invalid operand for inline asm constraint '" +
10082                                  Twine(OpInfo.ConstraintCode) + "'");
10083           return;
10084         }
10085 
10086         // Add information to the INLINEASM node to know about this input.
10087         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10088         AsmNodeOperands.push_back(DAG.getTargetConstant(
10089             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10090         llvm::append_range(AsmNodeOperands, Ops);
10091         break;
10092       }
10093 
10094       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10095         assert((OpInfo.isIndirect ||
10096                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10097                "Operand must be indirect to be a mem!");
10098         assert(InOperandVal.getValueType() ==
10099                    TLI.getPointerTy(DAG.getDataLayout()) &&
10100                "Memory operands expect pointer values");
10101 
10102         const InlineAsm::ConstraintCode ConstraintID =
10103             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10104         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10105                "Failed to convert memory constraint code to constraint id.");
10106 
10107         // Add information to the INLINEASM node to know about this input.
10108         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10109         ResOpType.setMemConstraint(ConstraintID);
10110         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10111                                                         getCurSDLoc(),
10112                                                         MVT::i32));
10113         AsmNodeOperands.push_back(InOperandVal);
10114         break;
10115       }
10116 
10117       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10118         const InlineAsm::ConstraintCode ConstraintID =
10119             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10120         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10121                "Failed to convert memory constraint code to constraint id.");
10122 
10123         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10124 
10125         SDValue AsmOp = InOperandVal;
10126         if (isFunction(InOperandVal)) {
10127           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10128           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10129           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10130                                              InOperandVal.getValueType(),
10131                                              GA->getOffset());
10132         }
10133 
10134         // Add information to the INLINEASM node to know about this input.
10135         ResOpType.setMemConstraint(ConstraintID);
10136 
10137         AsmNodeOperands.push_back(
10138             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10139 
10140         AsmNodeOperands.push_back(AsmOp);
10141         break;
10142       }
10143 
10144       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10145           OpInfo.ConstraintType != TargetLowering::C_Register) {
10146         emitInlineAsmError(Call, "unknown asm constraint '" +
10147                                      Twine(OpInfo.ConstraintCode) + "'");
10148         return;
10149       }
10150 
10151       // TODO: Support this.
10152       if (OpInfo.isIndirect) {
10153         emitInlineAsmError(
10154             Call, "Don't know how to handle indirect register inputs yet "
10155                   "for constraint '" +
10156                       Twine(OpInfo.ConstraintCode) + "'");
10157         return;
10158       }
10159 
10160       // Copy the input into the appropriate registers.
10161       if (OpInfo.AssignedRegs.Regs.empty()) {
10162         emitInlineAsmError(Call,
10163                            "couldn't allocate input reg for constraint '" +
10164                                Twine(OpInfo.ConstraintCode) + "'");
10165         return;
10166       }
10167 
10168       if (DetectWriteToReservedRegister())
10169         return;
10170 
10171       SDLoc dl = getCurSDLoc();
10172 
10173       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10174                                         &Call);
10175 
10176       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10177                                                0, dl, DAG, AsmNodeOperands);
10178       break;
10179     }
10180     case InlineAsm::isClobber:
10181       // Add the clobbered value to the operand list, so that the register
10182       // allocator is aware that the physreg got clobbered.
10183       if (!OpInfo.AssignedRegs.Regs.empty())
10184         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10185                                                  false, 0, getCurSDLoc(), DAG,
10186                                                  AsmNodeOperands);
10187       break;
10188     }
10189   }
10190 
10191   // Finish up input operands.  Set the input chain and add the flag last.
10192   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10193   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10194 
10195   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10196   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10197                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10198   Glue = Chain.getValue(1);
10199 
10200   // Do additional work to generate outputs.
10201 
10202   SmallVector<EVT, 1> ResultVTs;
10203   SmallVector<SDValue, 1> ResultValues;
10204   SmallVector<SDValue, 8> OutChains;
10205 
10206   llvm::Type *CallResultType = Call.getType();
10207   ArrayRef<Type *> ResultTypes;
10208   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10209     ResultTypes = StructResult->elements();
10210   else if (!CallResultType->isVoidTy())
10211     ResultTypes = ArrayRef(CallResultType);
10212 
10213   auto CurResultType = ResultTypes.begin();
10214   auto handleRegAssign = [&](SDValue V) {
10215     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10216     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10217     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10218     ++CurResultType;
10219     // If the type of the inline asm call site return value is different but has
10220     // same size as the type of the asm output bitcast it.  One example of this
10221     // is for vectors with different width / number of elements.  This can
10222     // happen for register classes that can contain multiple different value
10223     // types.  The preg or vreg allocated may not have the same VT as was
10224     // expected.
10225     //
10226     // This can also happen for a return value that disagrees with the register
10227     // class it is put in, eg. a double in a general-purpose register on a
10228     // 32-bit machine.
10229     if (ResultVT != V.getValueType() &&
10230         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10231       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10232     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10233              V.getValueType().isInteger()) {
10234       // If a result value was tied to an input value, the computed result
10235       // may have a wider width than the expected result.  Extract the
10236       // relevant portion.
10237       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10238     }
10239     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10240     ResultVTs.push_back(ResultVT);
10241     ResultValues.push_back(V);
10242   };
10243 
10244   // Deal with output operands.
10245   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10246     if (OpInfo.Type == InlineAsm::isOutput) {
10247       SDValue Val;
10248       // Skip trivial output operands.
10249       if (OpInfo.AssignedRegs.Regs.empty())
10250         continue;
10251 
10252       switch (OpInfo.ConstraintType) {
10253       case TargetLowering::C_Register:
10254       case TargetLowering::C_RegisterClass:
10255         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10256                                                   Chain, &Glue, &Call);
10257         break;
10258       case TargetLowering::C_Immediate:
10259       case TargetLowering::C_Other:
10260         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10261                                               OpInfo, DAG);
10262         break;
10263       case TargetLowering::C_Memory:
10264         break; // Already handled.
10265       case TargetLowering::C_Address:
10266         break; // Silence warning.
10267       case TargetLowering::C_Unknown:
10268         assert(false && "Unexpected unknown constraint");
10269       }
10270 
10271       // Indirect output manifest as stores. Record output chains.
10272       if (OpInfo.isIndirect) {
10273         const Value *Ptr = OpInfo.CallOperandVal;
10274         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10275         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10276                                      MachinePointerInfo(Ptr));
10277         OutChains.push_back(Store);
10278       } else {
10279         // generate CopyFromRegs to associated registers.
10280         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10281         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10282           for (const SDValue &V : Val->op_values())
10283             handleRegAssign(V);
10284         } else
10285           handleRegAssign(Val);
10286       }
10287     }
10288   }
10289 
10290   // Set results.
10291   if (!ResultValues.empty()) {
10292     assert(CurResultType == ResultTypes.end() &&
10293            "Mismatch in number of ResultTypes");
10294     assert(ResultValues.size() == ResultTypes.size() &&
10295            "Mismatch in number of output operands in asm result");
10296 
10297     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10298                             DAG.getVTList(ResultVTs), ResultValues);
10299     setValue(&Call, V);
10300   }
10301 
10302   // Collect store chains.
10303   if (!OutChains.empty())
10304     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10305 
10306   if (EmitEHLabels) {
10307     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10308   }
10309 
10310   // Only Update Root if inline assembly has a memory effect.
10311   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10312       EmitEHLabels)
10313     DAG.setRoot(Chain);
10314 }
10315 
10316 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10317                                              const Twine &Message) {
10318   LLVMContext &Ctx = *DAG.getContext();
10319   Ctx.emitError(&Call, Message);
10320 
10321   // Make sure we leave the DAG in a valid state
10322   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10323   SmallVector<EVT, 1> ValueVTs;
10324   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10325 
10326   if (ValueVTs.empty())
10327     return;
10328 
10329   SmallVector<SDValue, 1> Ops;
10330   for (const EVT &VT : ValueVTs)
10331     Ops.push_back(DAG.getUNDEF(VT));
10332 
10333   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10334 }
10335 
10336 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10337   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10338                           MVT::Other, getRoot(),
10339                           getValue(I.getArgOperand(0)),
10340                           DAG.getSrcValue(I.getArgOperand(0))));
10341 }
10342 
10343 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10345   const DataLayout &DL = DAG.getDataLayout();
10346   SDValue V = DAG.getVAArg(
10347       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10348       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10349       DL.getABITypeAlign(I.getType()).value());
10350   DAG.setRoot(V.getValue(1));
10351 
10352   if (I.getType()->isPointerTy())
10353     V = DAG.getPtrExtOrTrunc(
10354         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10355   setValue(&I, V);
10356 }
10357 
10358 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10359   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10360                           MVT::Other, getRoot(),
10361                           getValue(I.getArgOperand(0)),
10362                           DAG.getSrcValue(I.getArgOperand(0))));
10363 }
10364 
10365 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10366   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10367                           MVT::Other, getRoot(),
10368                           getValue(I.getArgOperand(0)),
10369                           getValue(I.getArgOperand(1)),
10370                           DAG.getSrcValue(I.getArgOperand(0)),
10371                           DAG.getSrcValue(I.getArgOperand(1))));
10372 }
10373 
10374 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10375                                                     const Instruction &I,
10376                                                     SDValue Op) {
10377   std::optional<ConstantRange> CR = getRange(I);
10378 
10379   if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10380     return Op;
10381 
10382   APInt Lo = CR->getUnsignedMin();
10383   if (!Lo.isMinValue())
10384     return Op;
10385 
10386   APInt Hi = CR->getUnsignedMax();
10387   unsigned Bits = std::max(Hi.getActiveBits(),
10388                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10389 
10390   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10391 
10392   SDLoc SL = getCurSDLoc();
10393 
10394   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10395                              DAG.getValueType(SmallVT));
10396   unsigned NumVals = Op.getNode()->getNumValues();
10397   if (NumVals == 1)
10398     return ZExt;
10399 
10400   SmallVector<SDValue, 4> Ops;
10401 
10402   Ops.push_back(ZExt);
10403   for (unsigned I = 1; I != NumVals; ++I)
10404     Ops.push_back(Op.getValue(I));
10405 
10406   return DAG.getMergeValues(Ops, SL);
10407 }
10408 
10409 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10410 /// the call being lowered.
10411 ///
10412 /// This is a helper for lowering intrinsics that follow a target calling
10413 /// convention or require stack pointer adjustment. Only a subset of the
10414 /// intrinsic's operands need to participate in the calling convention.
10415 void SelectionDAGBuilder::populateCallLoweringInfo(
10416     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10417     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10418     AttributeSet RetAttrs, bool IsPatchPoint) {
10419   TargetLowering::ArgListTy Args;
10420   Args.reserve(NumArgs);
10421 
10422   // Populate the argument list.
10423   // Attributes for args start at offset 1, after the return attribute.
10424   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10425        ArgI != ArgE; ++ArgI) {
10426     const Value *V = Call->getOperand(ArgI);
10427 
10428     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10429 
10430     TargetLowering::ArgListEntry Entry;
10431     Entry.Node = getValue(V);
10432     Entry.Ty = V->getType();
10433     Entry.setAttributes(Call, ArgI);
10434     Args.push_back(Entry);
10435   }
10436 
10437   CLI.setDebugLoc(getCurSDLoc())
10438       .setChain(getRoot())
10439       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10440                  RetAttrs)
10441       .setDiscardResult(Call->use_empty())
10442       .setIsPatchPoint(IsPatchPoint)
10443       .setIsPreallocated(
10444           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10445 }
10446 
10447 /// Add a stack map intrinsic call's live variable operands to a stackmap
10448 /// or patchpoint target node's operand list.
10449 ///
10450 /// Constants are converted to TargetConstants purely as an optimization to
10451 /// avoid constant materialization and register allocation.
10452 ///
10453 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10454 /// generate addess computation nodes, and so FinalizeISel can convert the
10455 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10456 /// address materialization and register allocation, but may also be required
10457 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10458 /// alloca in the entry block, then the runtime may assume that the alloca's
10459 /// StackMap location can be read immediately after compilation and that the
10460 /// location is valid at any point during execution (this is similar to the
10461 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10462 /// only available in a register, then the runtime would need to trap when
10463 /// execution reaches the StackMap in order to read the alloca's location.
10464 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10465                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10466                                 SelectionDAGBuilder &Builder) {
10467   SelectionDAG &DAG = Builder.DAG;
10468   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10469     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10470 
10471     // Things on the stack are pointer-typed, meaning that they are already
10472     // legal and can be emitted directly to target nodes.
10473     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10474       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10475     } else {
10476       // Otherwise emit a target independent node to be legalised.
10477       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10478     }
10479   }
10480 }
10481 
10482 /// Lower llvm.experimental.stackmap.
10483 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10484   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10485   //                                  [live variables...])
10486 
10487   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10488 
10489   SDValue Chain, InGlue, Callee;
10490   SmallVector<SDValue, 32> Ops;
10491 
10492   SDLoc DL = getCurSDLoc();
10493   Callee = getValue(CI.getCalledOperand());
10494 
10495   // The stackmap intrinsic only records the live variables (the arguments
10496   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10497   // intrinsic, this won't be lowered to a function call. This means we don't
10498   // have to worry about calling conventions and target specific lowering code.
10499   // Instead we perform the call lowering right here.
10500   //
10501   // chain, flag = CALLSEQ_START(chain, 0, 0)
10502   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10503   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10504   //
10505   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10506   InGlue = Chain.getValue(1);
10507 
10508   // Add the STACKMAP operands, starting with DAG house-keeping.
10509   Ops.push_back(Chain);
10510   Ops.push_back(InGlue);
10511 
10512   // Add the <id>, <numShadowBytes> operands.
10513   //
10514   // These do not require legalisation, and can be emitted directly to target
10515   // constant nodes.
10516   SDValue ID = getValue(CI.getArgOperand(0));
10517   assert(ID.getValueType() == MVT::i64);
10518   SDValue IDConst =
10519       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10520   Ops.push_back(IDConst);
10521 
10522   SDValue Shad = getValue(CI.getArgOperand(1));
10523   assert(Shad.getValueType() == MVT::i32);
10524   SDValue ShadConst =
10525       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10526   Ops.push_back(ShadConst);
10527 
10528   // Add the live variables.
10529   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10530 
10531   // Create the STACKMAP node.
10532   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10533   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10534   InGlue = Chain.getValue(1);
10535 
10536   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10537 
10538   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10539 
10540   // Set the root to the target-lowered call chain.
10541   DAG.setRoot(Chain);
10542 
10543   // Inform the Frame Information that we have a stackmap in this function.
10544   FuncInfo.MF->getFrameInfo().setHasStackMap();
10545 }
10546 
10547 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10548 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10549                                           const BasicBlock *EHPadBB) {
10550   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10551   //                                         i32 <numBytes>,
10552   //                                         i8* <target>,
10553   //                                         i32 <numArgs>,
10554   //                                         [Args...],
10555   //                                         [live variables...])
10556 
10557   CallingConv::ID CC = CB.getCallingConv();
10558   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10559   bool HasDef = !CB.getType()->isVoidTy();
10560   SDLoc dl = getCurSDLoc();
10561   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10562 
10563   // Handle immediate and symbolic callees.
10564   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10565     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10566                                    /*isTarget=*/true);
10567   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10568     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10569                                          SDLoc(SymbolicCallee),
10570                                          SymbolicCallee->getValueType(0));
10571 
10572   // Get the real number of arguments participating in the call <numArgs>
10573   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10574   unsigned NumArgs = NArgVal->getAsZExtVal();
10575 
10576   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10577   // Intrinsics include all meta-operands up to but not including CC.
10578   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10579   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10580          "Not enough arguments provided to the patchpoint intrinsic");
10581 
10582   // For AnyRegCC the arguments are lowered later on manually.
10583   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10584   Type *ReturnTy =
10585       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10586 
10587   TargetLowering::CallLoweringInfo CLI(DAG);
10588   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10589                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10590   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10591 
10592   SDNode *CallEnd = Result.second.getNode();
10593   if (CallEnd->getOpcode() == ISD::EH_LABEL)
10594     CallEnd = CallEnd->getOperand(0).getNode();
10595   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10596     CallEnd = CallEnd->getOperand(0).getNode();
10597 
10598   /// Get a call instruction from the call sequence chain.
10599   /// Tail calls are not allowed.
10600   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10601          "Expected a callseq node.");
10602   SDNode *Call = CallEnd->getOperand(0).getNode();
10603   bool HasGlue = Call->getGluedNode();
10604 
10605   // Replace the target specific call node with the patchable intrinsic.
10606   SmallVector<SDValue, 8> Ops;
10607 
10608   // Push the chain.
10609   Ops.push_back(*(Call->op_begin()));
10610 
10611   // Optionally, push the glue (if any).
10612   if (HasGlue)
10613     Ops.push_back(*(Call->op_end() - 1));
10614 
10615   // Push the register mask info.
10616   if (HasGlue)
10617     Ops.push_back(*(Call->op_end() - 2));
10618   else
10619     Ops.push_back(*(Call->op_end() - 1));
10620 
10621   // Add the <id> and <numBytes> constants.
10622   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10623   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10624   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10625   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10626 
10627   // Add the callee.
10628   Ops.push_back(Callee);
10629 
10630   // Adjust <numArgs> to account for any arguments that have been passed on the
10631   // stack instead.
10632   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10633   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10634   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10635   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10636 
10637   // Add the calling convention
10638   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10639 
10640   // Add the arguments we omitted previously. The register allocator should
10641   // place these in any free register.
10642   if (IsAnyRegCC)
10643     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10644       Ops.push_back(getValue(CB.getArgOperand(i)));
10645 
10646   // Push the arguments from the call instruction.
10647   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10648   Ops.append(Call->op_begin() + 2, e);
10649 
10650   // Push live variables for the stack map.
10651   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10652 
10653   SDVTList NodeTys;
10654   if (IsAnyRegCC && HasDef) {
10655     // Create the return types based on the intrinsic definition
10656     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10657     SmallVector<EVT, 3> ValueVTs;
10658     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10659     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10660 
10661     // There is always a chain and a glue type at the end
10662     ValueVTs.push_back(MVT::Other);
10663     ValueVTs.push_back(MVT::Glue);
10664     NodeTys = DAG.getVTList(ValueVTs);
10665   } else
10666     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10667 
10668   // Replace the target specific call node with a PATCHPOINT node.
10669   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10670 
10671   // Update the NodeMap.
10672   if (HasDef) {
10673     if (IsAnyRegCC)
10674       setValue(&CB, SDValue(PPV.getNode(), 0));
10675     else
10676       setValue(&CB, Result.first);
10677   }
10678 
10679   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10680   // call sequence. Furthermore the location of the chain and glue can change
10681   // when the AnyReg calling convention is used and the intrinsic returns a
10682   // value.
10683   if (IsAnyRegCC && HasDef) {
10684     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10685     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10686     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10687   } else
10688     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10689   DAG.DeleteNode(Call);
10690 
10691   // Inform the Frame Information that we have a patchpoint in this function.
10692   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10693 }
10694 
10695 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10696                                             unsigned Intrinsic) {
10697   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10698   SDValue Op1 = getValue(I.getArgOperand(0));
10699   SDValue Op2;
10700   if (I.arg_size() > 1)
10701     Op2 = getValue(I.getArgOperand(1));
10702   SDLoc dl = getCurSDLoc();
10703   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10704   SDValue Res;
10705   SDNodeFlags SDFlags;
10706   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10707     SDFlags.copyFMF(*FPMO);
10708 
10709   switch (Intrinsic) {
10710   case Intrinsic::vector_reduce_fadd:
10711     if (SDFlags.hasAllowReassociation())
10712       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10713                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10714                         SDFlags);
10715     else
10716       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10717     break;
10718   case Intrinsic::vector_reduce_fmul:
10719     if (SDFlags.hasAllowReassociation())
10720       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10721                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10722                         SDFlags);
10723     else
10724       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10725     break;
10726   case Intrinsic::vector_reduce_add:
10727     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10728     break;
10729   case Intrinsic::vector_reduce_mul:
10730     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10731     break;
10732   case Intrinsic::vector_reduce_and:
10733     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10734     break;
10735   case Intrinsic::vector_reduce_or:
10736     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10737     break;
10738   case Intrinsic::vector_reduce_xor:
10739     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10740     break;
10741   case Intrinsic::vector_reduce_smax:
10742     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10743     break;
10744   case Intrinsic::vector_reduce_smin:
10745     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10746     break;
10747   case Intrinsic::vector_reduce_umax:
10748     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10749     break;
10750   case Intrinsic::vector_reduce_umin:
10751     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10752     break;
10753   case Intrinsic::vector_reduce_fmax:
10754     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10755     break;
10756   case Intrinsic::vector_reduce_fmin:
10757     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10758     break;
10759   case Intrinsic::vector_reduce_fmaximum:
10760     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10761     break;
10762   case Intrinsic::vector_reduce_fminimum:
10763     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10764     break;
10765   default:
10766     llvm_unreachable("Unhandled vector reduce intrinsic");
10767   }
10768   setValue(&I, Res);
10769 }
10770 
10771 /// Returns an AttributeList representing the attributes applied to the return
10772 /// value of the given call.
10773 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10774   SmallVector<Attribute::AttrKind, 2> Attrs;
10775   if (CLI.RetSExt)
10776     Attrs.push_back(Attribute::SExt);
10777   if (CLI.RetZExt)
10778     Attrs.push_back(Attribute::ZExt);
10779   if (CLI.IsInReg)
10780     Attrs.push_back(Attribute::InReg);
10781 
10782   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10783                             Attrs);
10784 }
10785 
10786 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10787 /// implementation, which just calls LowerCall.
10788 /// FIXME: When all targets are
10789 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10790 std::pair<SDValue, SDValue>
10791 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10792   // Handle the incoming return values from the call.
10793   CLI.Ins.clear();
10794   Type *OrigRetTy = CLI.RetTy;
10795   SmallVector<EVT, 4> RetTys;
10796   SmallVector<TypeSize, 4> Offsets;
10797   auto &DL = CLI.DAG.getDataLayout();
10798   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10799 
10800   if (CLI.IsPostTypeLegalization) {
10801     // If we are lowering a libcall after legalization, split the return type.
10802     SmallVector<EVT, 4> OldRetTys;
10803     SmallVector<TypeSize, 4> OldOffsets;
10804     RetTys.swap(OldRetTys);
10805     Offsets.swap(OldOffsets);
10806 
10807     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10808       EVT RetVT = OldRetTys[i];
10809       uint64_t Offset = OldOffsets[i];
10810       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10811       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10812       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10813       RetTys.append(NumRegs, RegisterVT);
10814       for (unsigned j = 0; j != NumRegs; ++j)
10815         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10816     }
10817   }
10818 
10819   SmallVector<ISD::OutputArg, 4> Outs;
10820   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10821 
10822   bool CanLowerReturn =
10823       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10824                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10825 
10826   SDValue DemoteStackSlot;
10827   int DemoteStackIdx = -100;
10828   if (!CanLowerReturn) {
10829     // FIXME: equivalent assert?
10830     // assert(!CS.hasInAllocaArgument() &&
10831     //        "sret demotion is incompatible with inalloca");
10832     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10833     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10834     MachineFunction &MF = CLI.DAG.getMachineFunction();
10835     DemoteStackIdx =
10836         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10837     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10838                                               DL.getAllocaAddrSpace());
10839 
10840     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10841     ArgListEntry Entry;
10842     Entry.Node = DemoteStackSlot;
10843     Entry.Ty = StackSlotPtrType;
10844     Entry.IsSExt = false;
10845     Entry.IsZExt = false;
10846     Entry.IsInReg = false;
10847     Entry.IsSRet = true;
10848     Entry.IsNest = false;
10849     Entry.IsByVal = false;
10850     Entry.IsByRef = false;
10851     Entry.IsReturned = false;
10852     Entry.IsSwiftSelf = false;
10853     Entry.IsSwiftAsync = false;
10854     Entry.IsSwiftError = false;
10855     Entry.IsCFGuardTarget = false;
10856     Entry.Alignment = Alignment;
10857     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10858     CLI.NumFixedArgs += 1;
10859     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10860     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10861 
10862     // sret demotion isn't compatible with tail-calls, since the sret argument
10863     // points into the callers stack frame.
10864     CLI.IsTailCall = false;
10865   } else {
10866     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10867         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10868     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10869       ISD::ArgFlagsTy Flags;
10870       if (NeedsRegBlock) {
10871         Flags.setInConsecutiveRegs();
10872         if (I == RetTys.size() - 1)
10873           Flags.setInConsecutiveRegsLast();
10874       }
10875       EVT VT = RetTys[I];
10876       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10877                                                      CLI.CallConv, VT);
10878       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10879                                                        CLI.CallConv, VT);
10880       for (unsigned i = 0; i != NumRegs; ++i) {
10881         ISD::InputArg MyFlags;
10882         MyFlags.Flags = Flags;
10883         MyFlags.VT = RegisterVT;
10884         MyFlags.ArgVT = VT;
10885         MyFlags.Used = CLI.IsReturnValueUsed;
10886         if (CLI.RetTy->isPointerTy()) {
10887           MyFlags.Flags.setPointer();
10888           MyFlags.Flags.setPointerAddrSpace(
10889               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10890         }
10891         if (CLI.RetSExt)
10892           MyFlags.Flags.setSExt();
10893         if (CLI.RetZExt)
10894           MyFlags.Flags.setZExt();
10895         if (CLI.IsInReg)
10896           MyFlags.Flags.setInReg();
10897         CLI.Ins.push_back(MyFlags);
10898       }
10899     }
10900   }
10901 
10902   // We push in swifterror return as the last element of CLI.Ins.
10903   ArgListTy &Args = CLI.getArgs();
10904   if (supportSwiftError()) {
10905     for (const ArgListEntry &Arg : Args) {
10906       if (Arg.IsSwiftError) {
10907         ISD::InputArg MyFlags;
10908         MyFlags.VT = getPointerTy(DL);
10909         MyFlags.ArgVT = EVT(getPointerTy(DL));
10910         MyFlags.Flags.setSwiftError();
10911         CLI.Ins.push_back(MyFlags);
10912       }
10913     }
10914   }
10915 
10916   // Handle all of the outgoing arguments.
10917   CLI.Outs.clear();
10918   CLI.OutVals.clear();
10919   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10920     SmallVector<EVT, 4> ValueVTs;
10921     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10922     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10923     Type *FinalType = Args[i].Ty;
10924     if (Args[i].IsByVal)
10925       FinalType = Args[i].IndirectType;
10926     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10927         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10928     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10929          ++Value) {
10930       EVT VT = ValueVTs[Value];
10931       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10932       SDValue Op = SDValue(Args[i].Node.getNode(),
10933                            Args[i].Node.getResNo() + Value);
10934       ISD::ArgFlagsTy Flags;
10935 
10936       // Certain targets (such as MIPS), may have a different ABI alignment
10937       // for a type depending on the context. Give the target a chance to
10938       // specify the alignment it wants.
10939       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10940       Flags.setOrigAlign(OriginalAlignment);
10941 
10942       if (Args[i].Ty->isPointerTy()) {
10943         Flags.setPointer();
10944         Flags.setPointerAddrSpace(
10945             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10946       }
10947       if (Args[i].IsZExt)
10948         Flags.setZExt();
10949       if (Args[i].IsSExt)
10950         Flags.setSExt();
10951       if (Args[i].IsInReg) {
10952         // If we are using vectorcall calling convention, a structure that is
10953         // passed InReg - is surely an HVA
10954         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10955             isa<StructType>(FinalType)) {
10956           // The first value of a structure is marked
10957           if (0 == Value)
10958             Flags.setHvaStart();
10959           Flags.setHva();
10960         }
10961         // Set InReg Flag
10962         Flags.setInReg();
10963       }
10964       if (Args[i].IsSRet)
10965         Flags.setSRet();
10966       if (Args[i].IsSwiftSelf)
10967         Flags.setSwiftSelf();
10968       if (Args[i].IsSwiftAsync)
10969         Flags.setSwiftAsync();
10970       if (Args[i].IsSwiftError)
10971         Flags.setSwiftError();
10972       if (Args[i].IsCFGuardTarget)
10973         Flags.setCFGuardTarget();
10974       if (Args[i].IsByVal)
10975         Flags.setByVal();
10976       if (Args[i].IsByRef)
10977         Flags.setByRef();
10978       if (Args[i].IsPreallocated) {
10979         Flags.setPreallocated();
10980         // Set the byval flag for CCAssignFn callbacks that don't know about
10981         // preallocated.  This way we can know how many bytes we should've
10982         // allocated and how many bytes a callee cleanup function will pop.  If
10983         // we port preallocated to more targets, we'll have to add custom
10984         // preallocated handling in the various CC lowering callbacks.
10985         Flags.setByVal();
10986       }
10987       if (Args[i].IsInAlloca) {
10988         Flags.setInAlloca();
10989         // Set the byval flag for CCAssignFn callbacks that don't know about
10990         // inalloca.  This way we can know how many bytes we should've allocated
10991         // and how many bytes a callee cleanup function will pop.  If we port
10992         // inalloca to more targets, we'll have to add custom inalloca handling
10993         // in the various CC lowering callbacks.
10994         Flags.setByVal();
10995       }
10996       Align MemAlign;
10997       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10998         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10999         Flags.setByValSize(FrameSize);
11000 
11001         // info is not there but there are cases it cannot get right.
11002         if (auto MA = Args[i].Alignment)
11003           MemAlign = *MA;
11004         else
11005           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
11006       } else if (auto MA = Args[i].Alignment) {
11007         MemAlign = *MA;
11008       } else {
11009         MemAlign = OriginalAlignment;
11010       }
11011       Flags.setMemAlign(MemAlign);
11012       if (Args[i].IsNest)
11013         Flags.setNest();
11014       if (NeedsRegBlock)
11015         Flags.setInConsecutiveRegs();
11016 
11017       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11018                                                  CLI.CallConv, VT);
11019       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11020                                                         CLI.CallConv, VT);
11021       SmallVector<SDValue, 4> Parts(NumParts);
11022       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11023 
11024       if (Args[i].IsSExt)
11025         ExtendKind = ISD::SIGN_EXTEND;
11026       else if (Args[i].IsZExt)
11027         ExtendKind = ISD::ZERO_EXTEND;
11028 
11029       // Conservatively only handle 'returned' on non-vectors that can be lowered,
11030       // for now.
11031       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11032           CanLowerReturn) {
11033         assert((CLI.RetTy == Args[i].Ty ||
11034                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11035                  CLI.RetTy->getPointerAddressSpace() ==
11036                      Args[i].Ty->getPointerAddressSpace())) &&
11037                RetTys.size() == NumValues && "unexpected use of 'returned'");
11038         // Before passing 'returned' to the target lowering code, ensure that
11039         // either the register MVT and the actual EVT are the same size or that
11040         // the return value and argument are extended in the same way; in these
11041         // cases it's safe to pass the argument register value unchanged as the
11042         // return register value (although it's at the target's option whether
11043         // to do so)
11044         // TODO: allow code generation to take advantage of partially preserved
11045         // registers rather than clobbering the entire register when the
11046         // parameter extension method is not compatible with the return
11047         // extension method
11048         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11049             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11050              CLI.RetZExt == Args[i].IsZExt))
11051           Flags.setReturned();
11052       }
11053 
11054       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11055                      CLI.CallConv, ExtendKind);
11056 
11057       for (unsigned j = 0; j != NumParts; ++j) {
11058         // if it isn't first piece, alignment must be 1
11059         // For scalable vectors the scalable part is currently handled
11060         // by individual targets, so we just use the known minimum size here.
11061         ISD::OutputArg MyFlags(
11062             Flags, Parts[j].getValueType().getSimpleVT(), VT,
11063             i < CLI.NumFixedArgs, i,
11064             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11065         if (NumParts > 1 && j == 0)
11066           MyFlags.Flags.setSplit();
11067         else if (j != 0) {
11068           MyFlags.Flags.setOrigAlign(Align(1));
11069           if (j == NumParts - 1)
11070             MyFlags.Flags.setSplitEnd();
11071         }
11072 
11073         CLI.Outs.push_back(MyFlags);
11074         CLI.OutVals.push_back(Parts[j]);
11075       }
11076 
11077       if (NeedsRegBlock && Value == NumValues - 1)
11078         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11079     }
11080   }
11081 
11082   SmallVector<SDValue, 4> InVals;
11083   CLI.Chain = LowerCall(CLI, InVals);
11084 
11085   // Update CLI.InVals to use outside of this function.
11086   CLI.InVals = InVals;
11087 
11088   // Verify that the target's LowerCall behaved as expected.
11089   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11090          "LowerCall didn't return a valid chain!");
11091   assert((!CLI.IsTailCall || InVals.empty()) &&
11092          "LowerCall emitted a return value for a tail call!");
11093   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11094          "LowerCall didn't emit the correct number of values!");
11095 
11096   // For a tail call, the return value is merely live-out and there aren't
11097   // any nodes in the DAG representing it. Return a special value to
11098   // indicate that a tail call has been emitted and no more Instructions
11099   // should be processed in the current block.
11100   if (CLI.IsTailCall) {
11101     CLI.DAG.setRoot(CLI.Chain);
11102     return std::make_pair(SDValue(), SDValue());
11103   }
11104 
11105 #ifndef NDEBUG
11106   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11107     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11108     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11109            "LowerCall emitted a value with the wrong type!");
11110   }
11111 #endif
11112 
11113   SmallVector<SDValue, 4> ReturnValues;
11114   if (!CanLowerReturn) {
11115     // The instruction result is the result of loading from the
11116     // hidden sret parameter.
11117     SmallVector<EVT, 1> PVTs;
11118     Type *PtrRetTy =
11119         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
11120 
11121     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
11122     assert(PVTs.size() == 1 && "Pointers should fit in one register");
11123     EVT PtrVT = PVTs[0];
11124 
11125     unsigned NumValues = RetTys.size();
11126     ReturnValues.resize(NumValues);
11127     SmallVector<SDValue, 4> Chains(NumValues);
11128 
11129     // An aggregate return value cannot wrap around the address space, so
11130     // offsets to its parts don't wrap either.
11131     SDNodeFlags Flags;
11132     Flags.setNoUnsignedWrap(true);
11133 
11134     MachineFunction &MF = CLI.DAG.getMachineFunction();
11135     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11136     for (unsigned i = 0; i < NumValues; ++i) {
11137       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
11138                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
11139                                                         PtrVT), Flags);
11140       SDValue L = CLI.DAG.getLoad(
11141           RetTys[i], CLI.DL, CLI.Chain, Add,
11142           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
11143                                             DemoteStackIdx, Offsets[i]),
11144           HiddenSRetAlign);
11145       ReturnValues[i] = L;
11146       Chains[i] = L.getValue(1);
11147     }
11148 
11149     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11150   } else {
11151     // Collect the legal value parts into potentially illegal values
11152     // that correspond to the original function's return values.
11153     std::optional<ISD::NodeType> AssertOp;
11154     if (CLI.RetSExt)
11155       AssertOp = ISD::AssertSext;
11156     else if (CLI.RetZExt)
11157       AssertOp = ISD::AssertZext;
11158     unsigned CurReg = 0;
11159     for (EVT VT : RetTys) {
11160       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11161                                                      CLI.CallConv, VT);
11162       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11163                                                        CLI.CallConv, VT);
11164 
11165       ReturnValues.push_back(getCopyFromParts(
11166           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11167           CLI.Chain, CLI.CallConv, AssertOp));
11168       CurReg += NumRegs;
11169     }
11170 
11171     // For a function returning void, there is no return value. We can't create
11172     // such a node, so we just return a null return value in that case. In
11173     // that case, nothing will actually look at the value.
11174     if (ReturnValues.empty())
11175       return std::make_pair(SDValue(), CLI.Chain);
11176   }
11177 
11178   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11179                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11180   return std::make_pair(Res, CLI.Chain);
11181 }
11182 
11183 /// Places new result values for the node in Results (their number
11184 /// and types must exactly match those of the original return values of
11185 /// the node), or leaves Results empty, which indicates that the node is not
11186 /// to be custom lowered after all.
11187 void TargetLowering::LowerOperationWrapper(SDNode *N,
11188                                            SmallVectorImpl<SDValue> &Results,
11189                                            SelectionDAG &DAG) const {
11190   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11191 
11192   if (!Res.getNode())
11193     return;
11194 
11195   // If the original node has one result, take the return value from
11196   // LowerOperation as is. It might not be result number 0.
11197   if (N->getNumValues() == 1) {
11198     Results.push_back(Res);
11199     return;
11200   }
11201 
11202   // If the original node has multiple results, then the return node should
11203   // have the same number of results.
11204   assert((N->getNumValues() == Res->getNumValues()) &&
11205       "Lowering returned the wrong number of results!");
11206 
11207   // Places new result values base on N result number.
11208   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11209     Results.push_back(Res.getValue(I));
11210 }
11211 
11212 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11213   llvm_unreachable("LowerOperation not implemented for this target!");
11214 }
11215 
11216 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11217                                                      unsigned Reg,
11218                                                      ISD::NodeType ExtendType) {
11219   SDValue Op = getNonRegisterValue(V);
11220   assert((Op.getOpcode() != ISD::CopyFromReg ||
11221           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11222          "Copy from a reg to the same reg!");
11223   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11224 
11225   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11226   // If this is an InlineAsm we have to match the registers required, not the
11227   // notional registers required by the type.
11228 
11229   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11230                    std::nullopt); // This is not an ABI copy.
11231   SDValue Chain = DAG.getEntryNode();
11232 
11233   if (ExtendType == ISD::ANY_EXTEND) {
11234     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11235     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11236       ExtendType = PreferredExtendIt->second;
11237   }
11238   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11239   PendingExports.push_back(Chain);
11240 }
11241 
11242 #include "llvm/CodeGen/SelectionDAGISel.h"
11243 
11244 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11245 /// entry block, return true.  This includes arguments used by switches, since
11246 /// the switch may expand into multiple basic blocks.
11247 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11248   // With FastISel active, we may be splitting blocks, so force creation
11249   // of virtual registers for all non-dead arguments.
11250   if (FastISel)
11251     return A->use_empty();
11252 
11253   const BasicBlock &Entry = A->getParent()->front();
11254   for (const User *U : A->users())
11255     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11256       return false;  // Use not in entry block.
11257 
11258   return true;
11259 }
11260 
11261 using ArgCopyElisionMapTy =
11262     DenseMap<const Argument *,
11263              std::pair<const AllocaInst *, const StoreInst *>>;
11264 
11265 /// Scan the entry block of the function in FuncInfo for arguments that look
11266 /// like copies into a local alloca. Record any copied arguments in
11267 /// ArgCopyElisionCandidates.
11268 static void
11269 findArgumentCopyElisionCandidates(const DataLayout &DL,
11270                                   FunctionLoweringInfo *FuncInfo,
11271                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11272   // Record the state of every static alloca used in the entry block. Argument
11273   // allocas are all used in the entry block, so we need approximately as many
11274   // entries as we have arguments.
11275   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11276   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11277   unsigned NumArgs = FuncInfo->Fn->arg_size();
11278   StaticAllocas.reserve(NumArgs * 2);
11279 
11280   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11281     if (!V)
11282       return nullptr;
11283     V = V->stripPointerCasts();
11284     const auto *AI = dyn_cast<AllocaInst>(V);
11285     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11286       return nullptr;
11287     auto Iter = StaticAllocas.insert({AI, Unknown});
11288     return &Iter.first->second;
11289   };
11290 
11291   // Look for stores of arguments to static allocas. Look through bitcasts and
11292   // GEPs to handle type coercions, as long as the alloca is fully initialized
11293   // by the store. Any non-store use of an alloca escapes it and any subsequent
11294   // unanalyzed store might write it.
11295   // FIXME: Handle structs initialized with multiple stores.
11296   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11297     // Look for stores, and handle non-store uses conservatively.
11298     const auto *SI = dyn_cast<StoreInst>(&I);
11299     if (!SI) {
11300       // We will look through cast uses, so ignore them completely.
11301       if (I.isCast())
11302         continue;
11303       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11304       // to allocas.
11305       if (I.isDebugOrPseudoInst())
11306         continue;
11307       // This is an unknown instruction. Assume it escapes or writes to all
11308       // static alloca operands.
11309       for (const Use &U : I.operands()) {
11310         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11311           *Info = StaticAllocaInfo::Clobbered;
11312       }
11313       continue;
11314     }
11315 
11316     // If the stored value is a static alloca, mark it as escaped.
11317     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11318       *Info = StaticAllocaInfo::Clobbered;
11319 
11320     // Check if the destination is a static alloca.
11321     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11322     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11323     if (!Info)
11324       continue;
11325     const AllocaInst *AI = cast<AllocaInst>(Dst);
11326 
11327     // Skip allocas that have been initialized or clobbered.
11328     if (*Info != StaticAllocaInfo::Unknown)
11329       continue;
11330 
11331     // Check if the stored value is an argument, and that this store fully
11332     // initializes the alloca.
11333     // If the argument type has padding bits we can't directly forward a pointer
11334     // as the upper bits may contain garbage.
11335     // Don't elide copies from the same argument twice.
11336     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11337     const auto *Arg = dyn_cast<Argument>(Val);
11338     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11339         Arg->getType()->isEmptyTy() ||
11340         DL.getTypeStoreSize(Arg->getType()) !=
11341             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11342         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11343         ArgCopyElisionCandidates.count(Arg)) {
11344       *Info = StaticAllocaInfo::Clobbered;
11345       continue;
11346     }
11347 
11348     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11349                       << '\n');
11350 
11351     // Mark this alloca and store for argument copy elision.
11352     *Info = StaticAllocaInfo::Elidable;
11353     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11354 
11355     // Stop scanning if we've seen all arguments. This will happen early in -O0
11356     // builds, which is useful, because -O0 builds have large entry blocks and
11357     // many allocas.
11358     if (ArgCopyElisionCandidates.size() == NumArgs)
11359       break;
11360   }
11361 }
11362 
11363 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11364 /// ArgVal is a load from a suitable fixed stack object.
11365 static void tryToElideArgumentCopy(
11366     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11367     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11368     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11369     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11370     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11371   // Check if this is a load from a fixed stack object.
11372   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11373   if (!LNode)
11374     return;
11375   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11376   if (!FINode)
11377     return;
11378 
11379   // Check that the fixed stack object is the right size and alignment.
11380   // Look at the alignment that the user wrote on the alloca instead of looking
11381   // at the stack object.
11382   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11383   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11384   const AllocaInst *AI = ArgCopyIter->second.first;
11385   int FixedIndex = FINode->getIndex();
11386   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11387   int OldIndex = AllocaIndex;
11388   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11389   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11390     LLVM_DEBUG(
11391         dbgs() << "  argument copy elision failed due to bad fixed stack "
11392                   "object size\n");
11393     return;
11394   }
11395   Align RequiredAlignment = AI->getAlign();
11396   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11397     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11398                          "greater than stack argument alignment ("
11399                       << DebugStr(RequiredAlignment) << " vs "
11400                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11401     return;
11402   }
11403 
11404   // Perform the elision. Delete the old stack object and replace its only use
11405   // in the variable info map. Mark the stack object as mutable and aliased.
11406   LLVM_DEBUG({
11407     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11408            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11409            << '\n';
11410   });
11411   MFI.RemoveStackObject(OldIndex);
11412   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11413   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11414   AllocaIndex = FixedIndex;
11415   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11416   for (SDValue ArgVal : ArgVals)
11417     Chains.push_back(ArgVal.getValue(1));
11418 
11419   // Avoid emitting code for the store implementing the copy.
11420   const StoreInst *SI = ArgCopyIter->second.second;
11421   ElidedArgCopyInstrs.insert(SI);
11422 
11423   // Check for uses of the argument again so that we can avoid exporting ArgVal
11424   // if it is't used by anything other than the store.
11425   for (const Value *U : Arg.users()) {
11426     if (U != SI) {
11427       ArgHasUses = true;
11428       break;
11429     }
11430   }
11431 }
11432 
11433 void SelectionDAGISel::LowerArguments(const Function &F) {
11434   SelectionDAG &DAG = SDB->DAG;
11435   SDLoc dl = SDB->getCurSDLoc();
11436   const DataLayout &DL = DAG.getDataLayout();
11437   SmallVector<ISD::InputArg, 16> Ins;
11438 
11439   // In Naked functions we aren't going to save any registers.
11440   if (F.hasFnAttribute(Attribute::Naked))
11441     return;
11442 
11443   if (!FuncInfo->CanLowerReturn) {
11444     // Put in an sret pointer parameter before all the other parameters.
11445     SmallVector<EVT, 1> ValueVTs;
11446     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11447                     PointerType::get(F.getContext(),
11448                                      DAG.getDataLayout().getAllocaAddrSpace()),
11449                     ValueVTs);
11450 
11451     // NOTE: Assuming that a pointer will never break down to more than one VT
11452     // or one register.
11453     ISD::ArgFlagsTy Flags;
11454     Flags.setSRet();
11455     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11456     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11457                          ISD::InputArg::NoArgIndex, 0);
11458     Ins.push_back(RetArg);
11459   }
11460 
11461   // Look for stores of arguments to static allocas. Mark such arguments with a
11462   // flag to ask the target to give us the memory location of that argument if
11463   // available.
11464   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11465   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11466                                     ArgCopyElisionCandidates);
11467 
11468   // Set up the incoming argument description vector.
11469   for (const Argument &Arg : F.args()) {
11470     unsigned ArgNo = Arg.getArgNo();
11471     SmallVector<EVT, 4> ValueVTs;
11472     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11473     bool isArgValueUsed = !Arg.use_empty();
11474     unsigned PartBase = 0;
11475     Type *FinalType = Arg.getType();
11476     if (Arg.hasAttribute(Attribute::ByVal))
11477       FinalType = Arg.getParamByValType();
11478     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11479         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11480     for (unsigned Value = 0, NumValues = ValueVTs.size();
11481          Value != NumValues; ++Value) {
11482       EVT VT = ValueVTs[Value];
11483       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11484       ISD::ArgFlagsTy Flags;
11485 
11486 
11487       if (Arg.getType()->isPointerTy()) {
11488         Flags.setPointer();
11489         Flags.setPointerAddrSpace(
11490             cast<PointerType>(Arg.getType())->getAddressSpace());
11491       }
11492       if (Arg.hasAttribute(Attribute::ZExt))
11493         Flags.setZExt();
11494       if (Arg.hasAttribute(Attribute::SExt))
11495         Flags.setSExt();
11496       if (Arg.hasAttribute(Attribute::InReg)) {
11497         // If we are using vectorcall calling convention, a structure that is
11498         // passed InReg - is surely an HVA
11499         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11500             isa<StructType>(Arg.getType())) {
11501           // The first value of a structure is marked
11502           if (0 == Value)
11503             Flags.setHvaStart();
11504           Flags.setHva();
11505         }
11506         // Set InReg Flag
11507         Flags.setInReg();
11508       }
11509       if (Arg.hasAttribute(Attribute::StructRet))
11510         Flags.setSRet();
11511       if (Arg.hasAttribute(Attribute::SwiftSelf))
11512         Flags.setSwiftSelf();
11513       if (Arg.hasAttribute(Attribute::SwiftAsync))
11514         Flags.setSwiftAsync();
11515       if (Arg.hasAttribute(Attribute::SwiftError))
11516         Flags.setSwiftError();
11517       if (Arg.hasAttribute(Attribute::ByVal))
11518         Flags.setByVal();
11519       if (Arg.hasAttribute(Attribute::ByRef))
11520         Flags.setByRef();
11521       if (Arg.hasAttribute(Attribute::InAlloca)) {
11522         Flags.setInAlloca();
11523         // Set the byval flag for CCAssignFn callbacks that don't know about
11524         // inalloca.  This way we can know how many bytes we should've allocated
11525         // and how many bytes a callee cleanup function will pop.  If we port
11526         // inalloca to more targets, we'll have to add custom inalloca handling
11527         // in the various CC lowering callbacks.
11528         Flags.setByVal();
11529       }
11530       if (Arg.hasAttribute(Attribute::Preallocated)) {
11531         Flags.setPreallocated();
11532         // Set the byval flag for CCAssignFn callbacks that don't know about
11533         // preallocated.  This way we can know how many bytes we should've
11534         // allocated and how many bytes a callee cleanup function will pop.  If
11535         // we port preallocated to more targets, we'll have to add custom
11536         // preallocated handling in the various CC lowering callbacks.
11537         Flags.setByVal();
11538       }
11539 
11540       // Certain targets (such as MIPS), may have a different ABI alignment
11541       // for a type depending on the context. Give the target a chance to
11542       // specify the alignment it wants.
11543       const Align OriginalAlignment(
11544           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11545       Flags.setOrigAlign(OriginalAlignment);
11546 
11547       Align MemAlign;
11548       Type *ArgMemTy = nullptr;
11549       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11550           Flags.isByRef()) {
11551         if (!ArgMemTy)
11552           ArgMemTy = Arg.getPointeeInMemoryValueType();
11553 
11554         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11555 
11556         // For in-memory arguments, size and alignment should be passed from FE.
11557         // BE will guess if this info is not there but there are cases it cannot
11558         // get right.
11559         if (auto ParamAlign = Arg.getParamStackAlign())
11560           MemAlign = *ParamAlign;
11561         else if ((ParamAlign = Arg.getParamAlign()))
11562           MemAlign = *ParamAlign;
11563         else
11564           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11565         if (Flags.isByRef())
11566           Flags.setByRefSize(MemSize);
11567         else
11568           Flags.setByValSize(MemSize);
11569       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11570         MemAlign = *ParamAlign;
11571       } else {
11572         MemAlign = OriginalAlignment;
11573       }
11574       Flags.setMemAlign(MemAlign);
11575 
11576       if (Arg.hasAttribute(Attribute::Nest))
11577         Flags.setNest();
11578       if (NeedsRegBlock)
11579         Flags.setInConsecutiveRegs();
11580       if (ArgCopyElisionCandidates.count(&Arg))
11581         Flags.setCopyElisionCandidate();
11582       if (Arg.hasAttribute(Attribute::Returned))
11583         Flags.setReturned();
11584 
11585       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11586           *CurDAG->getContext(), F.getCallingConv(), VT);
11587       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11588           *CurDAG->getContext(), F.getCallingConv(), VT);
11589       for (unsigned i = 0; i != NumRegs; ++i) {
11590         // For scalable vectors, use the minimum size; individual targets
11591         // are responsible for handling scalable vector arguments and
11592         // return values.
11593         ISD::InputArg MyFlags(
11594             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11595             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11596         if (NumRegs > 1 && i == 0)
11597           MyFlags.Flags.setSplit();
11598         // if it isn't first piece, alignment must be 1
11599         else if (i > 0) {
11600           MyFlags.Flags.setOrigAlign(Align(1));
11601           if (i == NumRegs - 1)
11602             MyFlags.Flags.setSplitEnd();
11603         }
11604         Ins.push_back(MyFlags);
11605       }
11606       if (NeedsRegBlock && Value == NumValues - 1)
11607         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11608       PartBase += VT.getStoreSize().getKnownMinValue();
11609     }
11610   }
11611 
11612   // Call the target to set up the argument values.
11613   SmallVector<SDValue, 8> InVals;
11614   SDValue NewRoot = TLI->LowerFormalArguments(
11615       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11616 
11617   // Verify that the target's LowerFormalArguments behaved as expected.
11618   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11619          "LowerFormalArguments didn't return a valid chain!");
11620   assert(InVals.size() == Ins.size() &&
11621          "LowerFormalArguments didn't emit the correct number of values!");
11622   LLVM_DEBUG({
11623     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11624       assert(InVals[i].getNode() &&
11625              "LowerFormalArguments emitted a null value!");
11626       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11627              "LowerFormalArguments emitted a value with the wrong type!");
11628     }
11629   });
11630 
11631   // Update the DAG with the new chain value resulting from argument lowering.
11632   DAG.setRoot(NewRoot);
11633 
11634   // Set up the argument values.
11635   unsigned i = 0;
11636   if (!FuncInfo->CanLowerReturn) {
11637     // Create a virtual register for the sret pointer, and put in a copy
11638     // from the sret argument into it.
11639     SmallVector<EVT, 1> ValueVTs;
11640     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11641                     PointerType::get(F.getContext(),
11642                                      DAG.getDataLayout().getAllocaAddrSpace()),
11643                     ValueVTs);
11644     MVT VT = ValueVTs[0].getSimpleVT();
11645     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11646     std::optional<ISD::NodeType> AssertOp;
11647     SDValue ArgValue =
11648         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11649                          F.getCallingConv(), AssertOp);
11650 
11651     MachineFunction& MF = SDB->DAG.getMachineFunction();
11652     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11653     Register SRetReg =
11654         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11655     FuncInfo->DemoteRegister = SRetReg;
11656     NewRoot =
11657         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11658     DAG.setRoot(NewRoot);
11659 
11660     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11661     ++i;
11662   }
11663 
11664   SmallVector<SDValue, 4> Chains;
11665   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11666   for (const Argument &Arg : F.args()) {
11667     SmallVector<SDValue, 4> ArgValues;
11668     SmallVector<EVT, 4> ValueVTs;
11669     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11670     unsigned NumValues = ValueVTs.size();
11671     if (NumValues == 0)
11672       continue;
11673 
11674     bool ArgHasUses = !Arg.use_empty();
11675 
11676     // Elide the copying store if the target loaded this argument from a
11677     // suitable fixed stack object.
11678     if (Ins[i].Flags.isCopyElisionCandidate()) {
11679       unsigned NumParts = 0;
11680       for (EVT VT : ValueVTs)
11681         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11682                                                        F.getCallingConv(), VT);
11683 
11684       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11685                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11686                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11687     }
11688 
11689     // If this argument is unused then remember its value. It is used to generate
11690     // debugging information.
11691     bool isSwiftErrorArg =
11692         TLI->supportSwiftError() &&
11693         Arg.hasAttribute(Attribute::SwiftError);
11694     if (!ArgHasUses && !isSwiftErrorArg) {
11695       SDB->setUnusedArgValue(&Arg, InVals[i]);
11696 
11697       // Also remember any frame index for use in FastISel.
11698       if (FrameIndexSDNode *FI =
11699           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11700         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11701     }
11702 
11703     for (unsigned Val = 0; Val != NumValues; ++Val) {
11704       EVT VT = ValueVTs[Val];
11705       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11706                                                       F.getCallingConv(), VT);
11707       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11708           *CurDAG->getContext(), F.getCallingConv(), VT);
11709 
11710       // Even an apparent 'unused' swifterror argument needs to be returned. So
11711       // we do generate a copy for it that can be used on return from the
11712       // function.
11713       if (ArgHasUses || isSwiftErrorArg) {
11714         std::optional<ISD::NodeType> AssertOp;
11715         if (Arg.hasAttribute(Attribute::SExt))
11716           AssertOp = ISD::AssertSext;
11717         else if (Arg.hasAttribute(Attribute::ZExt))
11718           AssertOp = ISD::AssertZext;
11719 
11720         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11721                                              PartVT, VT, nullptr, NewRoot,
11722                                              F.getCallingConv(), AssertOp));
11723       }
11724 
11725       i += NumParts;
11726     }
11727 
11728     // We don't need to do anything else for unused arguments.
11729     if (ArgValues.empty())
11730       continue;
11731 
11732     // Note down frame index.
11733     if (FrameIndexSDNode *FI =
11734         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11735       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11736 
11737     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11738                                      SDB->getCurSDLoc());
11739 
11740     SDB->setValue(&Arg, Res);
11741     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11742       // We want to associate the argument with the frame index, among
11743       // involved operands, that correspond to the lowest address. The
11744       // getCopyFromParts function, called earlier, is swapping the order of
11745       // the operands to BUILD_PAIR depending on endianness. The result of
11746       // that swapping is that the least significant bits of the argument will
11747       // be in the first operand of the BUILD_PAIR node, and the most
11748       // significant bits will be in the second operand.
11749       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11750       if (LoadSDNode *LNode =
11751           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11752         if (FrameIndexSDNode *FI =
11753             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11754           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11755     }
11756 
11757     // Analyses past this point are naive and don't expect an assertion.
11758     if (Res.getOpcode() == ISD::AssertZext)
11759       Res = Res.getOperand(0);
11760 
11761     // Update the SwiftErrorVRegDefMap.
11762     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11763       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11764       if (Register::isVirtualRegister(Reg))
11765         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11766                                    Reg);
11767     }
11768 
11769     // If this argument is live outside of the entry block, insert a copy from
11770     // wherever we got it to the vreg that other BB's will reference it as.
11771     if (Res.getOpcode() == ISD::CopyFromReg) {
11772       // If we can, though, try to skip creating an unnecessary vreg.
11773       // FIXME: This isn't very clean... it would be nice to make this more
11774       // general.
11775       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11776       if (Register::isVirtualRegister(Reg)) {
11777         FuncInfo->ValueMap[&Arg] = Reg;
11778         continue;
11779       }
11780     }
11781     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11782       FuncInfo->InitializeRegForValue(&Arg);
11783       SDB->CopyToExportRegsIfNeeded(&Arg);
11784     }
11785   }
11786 
11787   if (!Chains.empty()) {
11788     Chains.push_back(NewRoot);
11789     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11790   }
11791 
11792   DAG.setRoot(NewRoot);
11793 
11794   assert(i == InVals.size() && "Argument register count mismatch!");
11795 
11796   // If any argument copy elisions occurred and we have debug info, update the
11797   // stale frame indices used in the dbg.declare variable info table.
11798   if (!ArgCopyElisionFrameIndexMap.empty()) {
11799     for (MachineFunction::VariableDbgInfo &VI :
11800          MF->getInStackSlotVariableDbgInfo()) {
11801       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11802       if (I != ArgCopyElisionFrameIndexMap.end())
11803         VI.updateStackSlot(I->second);
11804     }
11805   }
11806 
11807   // Finally, if the target has anything special to do, allow it to do so.
11808   emitFunctionEntryCode();
11809 }
11810 
11811 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11812 /// ensure constants are generated when needed.  Remember the virtual registers
11813 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11814 /// directly add them, because expansion might result in multiple MBB's for one
11815 /// BB.  As such, the start of the BB might correspond to a different MBB than
11816 /// the end.
11817 void
11818 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11820 
11821   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11822 
11823   // Check PHI nodes in successors that expect a value to be available from this
11824   // block.
11825   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11826     if (!isa<PHINode>(SuccBB->begin())) continue;
11827     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11828 
11829     // If this terminator has multiple identical successors (common for
11830     // switches), only handle each succ once.
11831     if (!SuccsHandled.insert(SuccMBB).second)
11832       continue;
11833 
11834     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11835 
11836     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11837     // nodes and Machine PHI nodes, but the incoming operands have not been
11838     // emitted yet.
11839     for (const PHINode &PN : SuccBB->phis()) {
11840       // Ignore dead phi's.
11841       if (PN.use_empty())
11842         continue;
11843 
11844       // Skip empty types
11845       if (PN.getType()->isEmptyTy())
11846         continue;
11847 
11848       unsigned Reg;
11849       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11850 
11851       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11852         unsigned &RegOut = ConstantsOut[C];
11853         if (RegOut == 0) {
11854           RegOut = FuncInfo.CreateRegs(C);
11855           // We need to zero/sign extend ConstantInt phi operands to match
11856           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11857           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11858           if (auto *CI = dyn_cast<ConstantInt>(C))
11859             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11860                                                     : ISD::ZERO_EXTEND;
11861           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11862         }
11863         Reg = RegOut;
11864       } else {
11865         DenseMap<const Value *, Register>::iterator I =
11866           FuncInfo.ValueMap.find(PHIOp);
11867         if (I != FuncInfo.ValueMap.end())
11868           Reg = I->second;
11869         else {
11870           assert(isa<AllocaInst>(PHIOp) &&
11871                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11872                  "Didn't codegen value into a register!??");
11873           Reg = FuncInfo.CreateRegs(PHIOp);
11874           CopyValueToVirtualRegister(PHIOp, Reg);
11875         }
11876       }
11877 
11878       // Remember that this register needs to added to the machine PHI node as
11879       // the input for this MBB.
11880       SmallVector<EVT, 4> ValueVTs;
11881       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11882       for (EVT VT : ValueVTs) {
11883         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11884         for (unsigned i = 0; i != NumRegisters; ++i)
11885           FuncInfo.PHINodesToUpdate.push_back(
11886               std::make_pair(&*MBBI++, Reg + i));
11887         Reg += NumRegisters;
11888       }
11889     }
11890   }
11891 
11892   ConstantsOut.clear();
11893 }
11894 
11895 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11896   MachineFunction::iterator I(MBB);
11897   if (++I == FuncInfo.MF->end())
11898     return nullptr;
11899   return &*I;
11900 }
11901 
11902 /// During lowering new call nodes can be created (such as memset, etc.).
11903 /// Those will become new roots of the current DAG, but complications arise
11904 /// when they are tail calls. In such cases, the call lowering will update
11905 /// the root, but the builder still needs to know that a tail call has been
11906 /// lowered in order to avoid generating an additional return.
11907 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11908   // If the node is null, we do have a tail call.
11909   if (MaybeTC.getNode() != nullptr)
11910     DAG.setRoot(MaybeTC);
11911   else
11912     HasTailCall = true;
11913 }
11914 
11915 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11916                                         MachineBasicBlock *SwitchMBB,
11917                                         MachineBasicBlock *DefaultMBB) {
11918   MachineFunction *CurMF = FuncInfo.MF;
11919   MachineBasicBlock *NextMBB = nullptr;
11920   MachineFunction::iterator BBI(W.MBB);
11921   if (++BBI != FuncInfo.MF->end())
11922     NextMBB = &*BBI;
11923 
11924   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11925 
11926   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11927 
11928   if (Size == 2 && W.MBB == SwitchMBB) {
11929     // If any two of the cases has the same destination, and if one value
11930     // is the same as the other, but has one bit unset that the other has set,
11931     // use bit manipulation to do two compares at once.  For example:
11932     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11933     // TODO: This could be extended to merge any 2 cases in switches with 3
11934     // cases.
11935     // TODO: Handle cases where W.CaseBB != SwitchBB.
11936     CaseCluster &Small = *W.FirstCluster;
11937     CaseCluster &Big = *W.LastCluster;
11938 
11939     if (Small.Low == Small.High && Big.Low == Big.High &&
11940         Small.MBB == Big.MBB) {
11941       const APInt &SmallValue = Small.Low->getValue();
11942       const APInt &BigValue = Big.Low->getValue();
11943 
11944       // Check that there is only one bit different.
11945       APInt CommonBit = BigValue ^ SmallValue;
11946       if (CommonBit.isPowerOf2()) {
11947         SDValue CondLHS = getValue(Cond);
11948         EVT VT = CondLHS.getValueType();
11949         SDLoc DL = getCurSDLoc();
11950 
11951         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11952                                  DAG.getConstant(CommonBit, DL, VT));
11953         SDValue Cond = DAG.getSetCC(
11954             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11955             ISD::SETEQ);
11956 
11957         // Update successor info.
11958         // Both Small and Big will jump to Small.BB, so we sum up the
11959         // probabilities.
11960         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11961         if (BPI)
11962           addSuccessorWithProb(
11963               SwitchMBB, DefaultMBB,
11964               // The default destination is the first successor in IR.
11965               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11966         else
11967           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11968 
11969         // Insert the true branch.
11970         SDValue BrCond =
11971             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11972                         DAG.getBasicBlock(Small.MBB));
11973         // Insert the false branch.
11974         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11975                              DAG.getBasicBlock(DefaultMBB));
11976 
11977         DAG.setRoot(BrCond);
11978         return;
11979       }
11980     }
11981   }
11982 
11983   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11984     // Here, we order cases by probability so the most likely case will be
11985     // checked first. However, two clusters can have the same probability in
11986     // which case their relative ordering is non-deterministic. So we use Low
11987     // as a tie-breaker as clusters are guaranteed to never overlap.
11988     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11989                [](const CaseCluster &a, const CaseCluster &b) {
11990       return a.Prob != b.Prob ?
11991              a.Prob > b.Prob :
11992              a.Low->getValue().slt(b.Low->getValue());
11993     });
11994 
11995     // Rearrange the case blocks so that the last one falls through if possible
11996     // without changing the order of probabilities.
11997     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11998       --I;
11999       if (I->Prob > W.LastCluster->Prob)
12000         break;
12001       if (I->Kind == CC_Range && I->MBB == NextMBB) {
12002         std::swap(*I, *W.LastCluster);
12003         break;
12004       }
12005     }
12006   }
12007 
12008   // Compute total probability.
12009   BranchProbability DefaultProb = W.DefaultProb;
12010   BranchProbability UnhandledProbs = DefaultProb;
12011   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12012     UnhandledProbs += I->Prob;
12013 
12014   MachineBasicBlock *CurMBB = W.MBB;
12015   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12016     bool FallthroughUnreachable = false;
12017     MachineBasicBlock *Fallthrough;
12018     if (I == W.LastCluster) {
12019       // For the last cluster, fall through to the default destination.
12020       Fallthrough = DefaultMBB;
12021       FallthroughUnreachable = isa<UnreachableInst>(
12022           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12023     } else {
12024       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12025       CurMF->insert(BBI, Fallthrough);
12026       // Put Cond in a virtual register to make it available from the new blocks.
12027       ExportFromCurrentBlock(Cond);
12028     }
12029     UnhandledProbs -= I->Prob;
12030 
12031     switch (I->Kind) {
12032       case CC_JumpTable: {
12033         // FIXME: Optimize away range check based on pivot comparisons.
12034         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12035         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12036 
12037         // The jump block hasn't been inserted yet; insert it here.
12038         MachineBasicBlock *JumpMBB = JT->MBB;
12039         CurMF->insert(BBI, JumpMBB);
12040 
12041         auto JumpProb = I->Prob;
12042         auto FallthroughProb = UnhandledProbs;
12043 
12044         // If the default statement is a target of the jump table, we evenly
12045         // distribute the default probability to successors of CurMBB. Also
12046         // update the probability on the edge from JumpMBB to Fallthrough.
12047         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12048                                               SE = JumpMBB->succ_end();
12049              SI != SE; ++SI) {
12050           if (*SI == DefaultMBB) {
12051             JumpProb += DefaultProb / 2;
12052             FallthroughProb -= DefaultProb / 2;
12053             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12054             JumpMBB->normalizeSuccProbs();
12055             break;
12056           }
12057         }
12058 
12059         // If the default clause is unreachable, propagate that knowledge into
12060         // JTH->FallthroughUnreachable which will use it to suppress the range
12061         // check.
12062         //
12063         // However, don't do this if we're doing branch target enforcement,
12064         // because a table branch _without_ a range check can be a tempting JOP
12065         // gadget - out-of-bounds inputs that are impossible in correct
12066         // execution become possible again if an attacker can influence the
12067         // control flow. So if an attacker doesn't already have a BTI bypass
12068         // available, we don't want them to be able to get one out of this
12069         // table branch.
12070         if (FallthroughUnreachable) {
12071           Function &CurFunc = CurMF->getFunction();
12072           if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12073             JTH->FallthroughUnreachable = true;
12074         }
12075 
12076         if (!JTH->FallthroughUnreachable)
12077           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12078         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12079         CurMBB->normalizeSuccProbs();
12080 
12081         // The jump table header will be inserted in our current block, do the
12082         // range check, and fall through to our fallthrough block.
12083         JTH->HeaderBB = CurMBB;
12084         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12085 
12086         // If we're in the right place, emit the jump table header right now.
12087         if (CurMBB == SwitchMBB) {
12088           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12089           JTH->Emitted = true;
12090         }
12091         break;
12092       }
12093       case CC_BitTests: {
12094         // FIXME: Optimize away range check based on pivot comparisons.
12095         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12096 
12097         // The bit test blocks haven't been inserted yet; insert them here.
12098         for (BitTestCase &BTC : BTB->Cases)
12099           CurMF->insert(BBI, BTC.ThisBB);
12100 
12101         // Fill in fields of the BitTestBlock.
12102         BTB->Parent = CurMBB;
12103         BTB->Default = Fallthrough;
12104 
12105         BTB->DefaultProb = UnhandledProbs;
12106         // If the cases in bit test don't form a contiguous range, we evenly
12107         // distribute the probability on the edge to Fallthrough to two
12108         // successors of CurMBB.
12109         if (!BTB->ContiguousRange) {
12110           BTB->Prob += DefaultProb / 2;
12111           BTB->DefaultProb -= DefaultProb / 2;
12112         }
12113 
12114         if (FallthroughUnreachable)
12115           BTB->FallthroughUnreachable = true;
12116 
12117         // If we're in the right place, emit the bit test header right now.
12118         if (CurMBB == SwitchMBB) {
12119           visitBitTestHeader(*BTB, SwitchMBB);
12120           BTB->Emitted = true;
12121         }
12122         break;
12123       }
12124       case CC_Range: {
12125         const Value *RHS, *LHS, *MHS;
12126         ISD::CondCode CC;
12127         if (I->Low == I->High) {
12128           // Check Cond == I->Low.
12129           CC = ISD::SETEQ;
12130           LHS = Cond;
12131           RHS=I->Low;
12132           MHS = nullptr;
12133         } else {
12134           // Check I->Low <= Cond <= I->High.
12135           CC = ISD::SETLE;
12136           LHS = I->Low;
12137           MHS = Cond;
12138           RHS = I->High;
12139         }
12140 
12141         // If Fallthrough is unreachable, fold away the comparison.
12142         if (FallthroughUnreachable)
12143           CC = ISD::SETTRUE;
12144 
12145         // The false probability is the sum of all unhandled cases.
12146         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12147                      getCurSDLoc(), I->Prob, UnhandledProbs);
12148 
12149         if (CurMBB == SwitchMBB)
12150           visitSwitchCase(CB, SwitchMBB);
12151         else
12152           SL->SwitchCases.push_back(CB);
12153 
12154         break;
12155       }
12156     }
12157     CurMBB = Fallthrough;
12158   }
12159 }
12160 
12161 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12162                                         const SwitchWorkListItem &W,
12163                                         Value *Cond,
12164                                         MachineBasicBlock *SwitchMBB) {
12165   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12166          "Clusters not sorted?");
12167   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12168 
12169   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12170       SL->computeSplitWorkItemInfo(W);
12171 
12172   // Use the first element on the right as pivot since we will make less-than
12173   // comparisons against it.
12174   CaseClusterIt PivotCluster = FirstRight;
12175   assert(PivotCluster > W.FirstCluster);
12176   assert(PivotCluster <= W.LastCluster);
12177 
12178   CaseClusterIt FirstLeft = W.FirstCluster;
12179   CaseClusterIt LastRight = W.LastCluster;
12180 
12181   const ConstantInt *Pivot = PivotCluster->Low;
12182 
12183   // New blocks will be inserted immediately after the current one.
12184   MachineFunction::iterator BBI(W.MBB);
12185   ++BBI;
12186 
12187   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12188   // we can branch to its destination directly if it's squeezed exactly in
12189   // between the known lower bound and Pivot - 1.
12190   MachineBasicBlock *LeftMBB;
12191   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12192       FirstLeft->Low == W.GE &&
12193       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12194     LeftMBB = FirstLeft->MBB;
12195   } else {
12196     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12197     FuncInfo.MF->insert(BBI, LeftMBB);
12198     WorkList.push_back(
12199         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12200     // Put Cond in a virtual register to make it available from the new blocks.
12201     ExportFromCurrentBlock(Cond);
12202   }
12203 
12204   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12205   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12206   // directly if RHS.High equals the current upper bound.
12207   MachineBasicBlock *RightMBB;
12208   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12209       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12210     RightMBB = FirstRight->MBB;
12211   } else {
12212     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12213     FuncInfo.MF->insert(BBI, RightMBB);
12214     WorkList.push_back(
12215         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12216     // Put Cond in a virtual register to make it available from the new blocks.
12217     ExportFromCurrentBlock(Cond);
12218   }
12219 
12220   // Create the CaseBlock record that will be used to lower the branch.
12221   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12222                getCurSDLoc(), LeftProb, RightProb);
12223 
12224   if (W.MBB == SwitchMBB)
12225     visitSwitchCase(CB, SwitchMBB);
12226   else
12227     SL->SwitchCases.push_back(CB);
12228 }
12229 
12230 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12231 // from the swith statement.
12232 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12233                                             BranchProbability PeeledCaseProb) {
12234   if (PeeledCaseProb == BranchProbability::getOne())
12235     return BranchProbability::getZero();
12236   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12237 
12238   uint32_t Numerator = CaseProb.getNumerator();
12239   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12240   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12241 }
12242 
12243 // Try to peel the top probability case if it exceeds the threshold.
12244 // Return current MachineBasicBlock for the switch statement if the peeling
12245 // does not occur.
12246 // If the peeling is performed, return the newly created MachineBasicBlock
12247 // for the peeled switch statement. Also update Clusters to remove the peeled
12248 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12249 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12250     const SwitchInst &SI, CaseClusterVector &Clusters,
12251     BranchProbability &PeeledCaseProb) {
12252   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12253   // Don't perform if there is only one cluster or optimizing for size.
12254   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12255       TM.getOptLevel() == CodeGenOptLevel::None ||
12256       SwitchMBB->getParent()->getFunction().hasMinSize())
12257     return SwitchMBB;
12258 
12259   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12260   unsigned PeeledCaseIndex = 0;
12261   bool SwitchPeeled = false;
12262   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12263     CaseCluster &CC = Clusters[Index];
12264     if (CC.Prob < TopCaseProb)
12265       continue;
12266     TopCaseProb = CC.Prob;
12267     PeeledCaseIndex = Index;
12268     SwitchPeeled = true;
12269   }
12270   if (!SwitchPeeled)
12271     return SwitchMBB;
12272 
12273   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12274                     << TopCaseProb << "\n");
12275 
12276   // Record the MBB for the peeled switch statement.
12277   MachineFunction::iterator BBI(SwitchMBB);
12278   ++BBI;
12279   MachineBasicBlock *PeeledSwitchMBB =
12280       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12281   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12282 
12283   ExportFromCurrentBlock(SI.getCondition());
12284   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12285   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12286                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12287   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12288 
12289   Clusters.erase(PeeledCaseIt);
12290   for (CaseCluster &CC : Clusters) {
12291     LLVM_DEBUG(
12292         dbgs() << "Scale the probablity for one cluster, before scaling: "
12293                << CC.Prob << "\n");
12294     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12295     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12296   }
12297   PeeledCaseProb = TopCaseProb;
12298   return PeeledSwitchMBB;
12299 }
12300 
12301 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12302   // Extract cases from the switch.
12303   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12304   CaseClusterVector Clusters;
12305   Clusters.reserve(SI.getNumCases());
12306   for (auto I : SI.cases()) {
12307     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12308     const ConstantInt *CaseVal = I.getCaseValue();
12309     BranchProbability Prob =
12310         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12311             : BranchProbability(1, SI.getNumCases() + 1);
12312     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12313   }
12314 
12315   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12316 
12317   // Cluster adjacent cases with the same destination. We do this at all
12318   // optimization levels because it's cheap to do and will make codegen faster
12319   // if there are many clusters.
12320   sortAndRangeify(Clusters);
12321 
12322   // The branch probablity of the peeled case.
12323   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12324   MachineBasicBlock *PeeledSwitchMBB =
12325       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12326 
12327   // If there is only the default destination, jump there directly.
12328   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12329   if (Clusters.empty()) {
12330     assert(PeeledSwitchMBB == SwitchMBB);
12331     SwitchMBB->addSuccessor(DefaultMBB);
12332     if (DefaultMBB != NextBlock(SwitchMBB)) {
12333       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12334                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12335     }
12336     return;
12337   }
12338 
12339   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12340                      DAG.getBFI());
12341   SL->findBitTestClusters(Clusters, &SI);
12342 
12343   LLVM_DEBUG({
12344     dbgs() << "Case clusters: ";
12345     for (const CaseCluster &C : Clusters) {
12346       if (C.Kind == CC_JumpTable)
12347         dbgs() << "JT:";
12348       if (C.Kind == CC_BitTests)
12349         dbgs() << "BT:";
12350 
12351       C.Low->getValue().print(dbgs(), true);
12352       if (C.Low != C.High) {
12353         dbgs() << '-';
12354         C.High->getValue().print(dbgs(), true);
12355       }
12356       dbgs() << ' ';
12357     }
12358     dbgs() << '\n';
12359   });
12360 
12361   assert(!Clusters.empty());
12362   SwitchWorkList WorkList;
12363   CaseClusterIt First = Clusters.begin();
12364   CaseClusterIt Last = Clusters.end() - 1;
12365   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12366   // Scale the branchprobability for DefaultMBB if the peel occurs and
12367   // DefaultMBB is not replaced.
12368   if (PeeledCaseProb != BranchProbability::getZero() &&
12369       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12370     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12371   WorkList.push_back(
12372       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12373 
12374   while (!WorkList.empty()) {
12375     SwitchWorkListItem W = WorkList.pop_back_val();
12376     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12377 
12378     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12379         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12380       // For optimized builds, lower large range as a balanced binary tree.
12381       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12382       continue;
12383     }
12384 
12385     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12386   }
12387 }
12388 
12389 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12391   auto DL = getCurSDLoc();
12392   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12393   setValue(&I, DAG.getStepVector(DL, ResultVT));
12394 }
12395 
12396 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12398   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12399 
12400   SDLoc DL = getCurSDLoc();
12401   SDValue V = getValue(I.getOperand(0));
12402   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12403 
12404   if (VT.isScalableVector()) {
12405     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12406     return;
12407   }
12408 
12409   // Use VECTOR_SHUFFLE for the fixed-length vector
12410   // to maintain existing behavior.
12411   SmallVector<int, 8> Mask;
12412   unsigned NumElts = VT.getVectorMinNumElements();
12413   for (unsigned i = 0; i != NumElts; ++i)
12414     Mask.push_back(NumElts - 1 - i);
12415 
12416   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12417 }
12418 
12419 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12420   auto DL = getCurSDLoc();
12421   SDValue InVec = getValue(I.getOperand(0));
12422   EVT OutVT =
12423       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12424 
12425   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12426 
12427   // ISD Node needs the input vectors split into two equal parts
12428   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12429                            DAG.getVectorIdxConstant(0, DL));
12430   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12431                            DAG.getVectorIdxConstant(OutNumElts, DL));
12432 
12433   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12434   // legalisation and combines.
12435   if (OutVT.isFixedLengthVector()) {
12436     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12437                                         createStrideMask(0, 2, OutNumElts));
12438     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12439                                        createStrideMask(1, 2, OutNumElts));
12440     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12441     setValue(&I, Res);
12442     return;
12443   }
12444 
12445   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12446                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12447   setValue(&I, Res);
12448 }
12449 
12450 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12451   auto DL = getCurSDLoc();
12452   EVT InVT = getValue(I.getOperand(0)).getValueType();
12453   SDValue InVec0 = getValue(I.getOperand(0));
12454   SDValue InVec1 = getValue(I.getOperand(1));
12455   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12456   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12457 
12458   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12459   // legalisation and combines.
12460   if (OutVT.isFixedLengthVector()) {
12461     unsigned NumElts = InVT.getVectorMinNumElements();
12462     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12463     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12464                                       createInterleaveMask(NumElts, 2)));
12465     return;
12466   }
12467 
12468   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12469                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12470   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12471                     Res.getValue(1));
12472   setValue(&I, Res);
12473 }
12474 
12475 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12476   SmallVector<EVT, 4> ValueVTs;
12477   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12478                   ValueVTs);
12479   unsigned NumValues = ValueVTs.size();
12480   if (NumValues == 0) return;
12481 
12482   SmallVector<SDValue, 4> Values(NumValues);
12483   SDValue Op = getValue(I.getOperand(0));
12484 
12485   for (unsigned i = 0; i != NumValues; ++i)
12486     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12487                             SDValue(Op.getNode(), Op.getResNo() + i));
12488 
12489   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12490                            DAG.getVTList(ValueVTs), Values));
12491 }
12492 
12493 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12495   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12496 
12497   SDLoc DL = getCurSDLoc();
12498   SDValue V1 = getValue(I.getOperand(0));
12499   SDValue V2 = getValue(I.getOperand(1));
12500   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12501 
12502   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12503   if (VT.isScalableVector()) {
12504     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12505                              DAG.getVectorIdxConstant(Imm, DL)));
12506     return;
12507   }
12508 
12509   unsigned NumElts = VT.getVectorNumElements();
12510 
12511   uint64_t Idx = (NumElts + Imm) % NumElts;
12512 
12513   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12514   SmallVector<int, 8> Mask;
12515   for (unsigned i = 0; i < NumElts; ++i)
12516     Mask.push_back(Idx + i);
12517   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12518 }
12519 
12520 // Consider the following MIR after SelectionDAG, which produces output in
12521 // phyregs in the first case or virtregs in the second case.
12522 //
12523 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12524 // %5:gr32 = COPY $ebx
12525 // %6:gr32 = COPY $edx
12526 // %1:gr32 = COPY %6:gr32
12527 // %0:gr32 = COPY %5:gr32
12528 //
12529 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12530 // %1:gr32 = COPY %6:gr32
12531 // %0:gr32 = COPY %5:gr32
12532 //
12533 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12534 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12535 //
12536 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12537 // to a single virtreg (such as %0). The remaining outputs monotonically
12538 // increase in virtreg number from there. If a callbr has no outputs, then it
12539 // should not have a corresponding callbr landingpad; in fact, the callbr
12540 // landingpad would not even be able to refer to such a callbr.
12541 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12542   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12543   // There is definitely at least one copy.
12544   assert(MI->getOpcode() == TargetOpcode::COPY &&
12545          "start of copy chain MUST be COPY");
12546   Reg = MI->getOperand(1).getReg();
12547   MI = MRI.def_begin(Reg)->getParent();
12548   // There may be an optional second copy.
12549   if (MI->getOpcode() == TargetOpcode::COPY) {
12550     assert(Reg.isVirtual() && "expected COPY of virtual register");
12551     Reg = MI->getOperand(1).getReg();
12552     assert(Reg.isPhysical() && "expected COPY of physical register");
12553     MI = MRI.def_begin(Reg)->getParent();
12554   }
12555   // The start of the chain must be an INLINEASM_BR.
12556   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12557          "end of copy chain MUST be INLINEASM_BR");
12558   return Reg;
12559 }
12560 
12561 // We must do this walk rather than the simpler
12562 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12563 // otherwise we will end up with copies of virtregs only valid along direct
12564 // edges.
12565 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12566   SmallVector<EVT, 8> ResultVTs;
12567   SmallVector<SDValue, 8> ResultValues;
12568   const auto *CBR =
12569       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12570 
12571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12572   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12573   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12574 
12575   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12576   SDValue Chain = DAG.getRoot();
12577 
12578   // Re-parse the asm constraints string.
12579   TargetLowering::AsmOperandInfoVector TargetConstraints =
12580       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12581   for (auto &T : TargetConstraints) {
12582     SDISelAsmOperandInfo OpInfo(T);
12583     if (OpInfo.Type != InlineAsm::isOutput)
12584       continue;
12585 
12586     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12587     // individual constraint.
12588     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12589 
12590     switch (OpInfo.ConstraintType) {
12591     case TargetLowering::C_Register:
12592     case TargetLowering::C_RegisterClass: {
12593       // Fill in OpInfo.AssignedRegs.Regs.
12594       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12595 
12596       // getRegistersForValue may produce 1 to many registers based on whether
12597       // the OpInfo.ConstraintVT is legal on the target or not.
12598       for (unsigned &Reg : OpInfo.AssignedRegs.Regs) {
12599         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12600         if (Register::isPhysicalRegister(OriginalDef))
12601           FuncInfo.MBB->addLiveIn(OriginalDef);
12602         // Update the assigned registers to use the original defs.
12603         Reg = OriginalDef;
12604       }
12605 
12606       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12607           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12608       ResultValues.push_back(V);
12609       ResultVTs.push_back(OpInfo.ConstraintVT);
12610       break;
12611     }
12612     case TargetLowering::C_Other: {
12613       SDValue Flag;
12614       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12615                                                   OpInfo, DAG);
12616       ++InitialDef;
12617       ResultValues.push_back(V);
12618       ResultVTs.push_back(OpInfo.ConstraintVT);
12619       break;
12620     }
12621     default:
12622       break;
12623     }
12624   }
12625   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12626                           DAG.getVTList(ResultVTs), ResultValues);
12627   setValue(&I, V);
12628 }
12629