xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 65a60670e8a8e8380284d45f831f38baf6faba60)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/GCMetadata.h"
30 #include "llvm/CodeGen/GCStrategy.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/StackMaps.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Statepoint.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MathExtras.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetFrameLowering.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetIntrinsicInfo.h"
65 #include "llvm/Target/TargetLowering.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include "llvm/Target/TargetSubtargetInfo.h"
68 #include <algorithm>
69 #include <utility>
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "isel"
73 
74 /// LimitFloatPrecision - Generate low-precision inline sequences for
75 /// some float libcalls (6, 8 or 12 bits).
76 static unsigned LimitFloatPrecision;
77 
78 static cl::opt<unsigned, true>
79 LimitFPPrecision("limit-float-precision",
80                  cl::desc("Generate low-precision inline sequences "
81                           "for some float libcalls"),
82                  cl::location(LimitFloatPrecision),
83                  cl::init(0));
84 
85 static cl::opt<bool>
86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
87                 cl::desc("Enable fast-math-flags for DAG nodes"));
88 
89 /// Minimum jump table density for normal functions.
90 static cl::opt<unsigned>
91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
92                  cl::desc("Minimum density for building a jump table in "
93                           "a normal function"));
94 
95 /// Minimum jump table density for -Os or -Oz functions.
96 static cl::opt<unsigned>
97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
98                         cl::desc("Minimum density for building a jump table in "
99                                  "an optsize function"));
100 
101 
102 // Limit the width of DAG chains. This is important in general to prevent
103 // DAG-based analysis from blowing up. For example, alias analysis and
104 // load clustering may not complete in reasonable time. It is difficult to
105 // recognize and avoid this situation within each individual analysis, and
106 // future analyses are likely to have the same behavior. Limiting DAG width is
107 // the safe approach and will be especially important with global DAGs.
108 //
109 // MaxParallelChains default is arbitrarily high to avoid affecting
110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
111 // sequence over this should have been converted to llvm.memcpy by the
112 // frontend. It easy to induce this behavior with .ll code such as:
113 // %buffer = alloca [4096 x i8]
114 // %data = load [4096 x i8]* %argPtr
115 // store [4096 x i8] %data, [4096 x i8]* %buffer
116 static const unsigned MaxParallelChains = 64;
117 
118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
119                                       const SDValue *Parts, unsigned NumParts,
120                                       MVT PartVT, EVT ValueVT, const Value *V);
121 
122 /// getCopyFromParts - Create a value that contains the specified legal parts
123 /// combined into the value they represent.  If the parts combine to a type
124 /// larger then ValueVT then AssertOp can be used to specify whether the extra
125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
126 /// (ISD::AssertSext).
127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
128                                 const SDValue *Parts,
129                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
130                                 const Value *V,
131                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp != ISD::DELETED_NODE)
237         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger then ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
383                            SDValue Val, SDValue *Parts, unsigned NumParts,
384                            MVT PartVT, const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT)
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452 
453     Parts[0] = Val;
454     return;
455   }
456 
457   // Expand the value into multiple parts.
458   if (NumParts & (NumParts - 1)) {
459     // The number of parts is not a power of 2.  Split off and copy the tail.
460     assert(PartVT.isInteger() && ValueVT.isInteger() &&
461            "Do not know what to expand to!");
462     unsigned RoundParts = 1 << Log2_32(NumParts);
463     unsigned RoundBits = RoundParts * PartBits;
464     unsigned OddParts = NumParts - RoundParts;
465     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
466                                  DAG.getIntPtrConstant(RoundBits, DL));
467     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
468 
469     if (DAG.getDataLayout().isBigEndian())
470       // The odd parts were reversed by getCopyToParts - unreverse them.
471       std::reverse(Parts + RoundParts, Parts + NumParts);
472 
473     NumParts = RoundParts;
474     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
475     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
476   }
477 
478   // The number of parts is a power of 2.  Repeatedly bisect the value using
479   // EXTRACT_ELEMENT.
480   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
481                          EVT::getIntegerVT(*DAG.getContext(),
482                                            ValueVT.getSizeInBits()),
483                          Val);
484 
485   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
486     for (unsigned i = 0; i < NumParts; i += StepSize) {
487       unsigned ThisBits = StepSize * PartBits / 2;
488       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
489       SDValue &Part0 = Parts[i];
490       SDValue &Part1 = Parts[i+StepSize/2];
491 
492       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
493                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
494       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
496 
497       if (ThisBits == PartBits && ThisVT != PartVT) {
498         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
499         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
500       }
501     }
502   }
503 
504   if (DAG.getDataLayout().isBigEndian())
505     std::reverse(Parts, Parts + OrigNumParts);
506 }
507 
508 
509 /// getCopyToPartsVector - Create a series of nodes that contain the specified
510 /// value split into legal parts.
511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
512                                  SDValue Val, SDValue *Parts, unsigned NumParts,
513                                  MVT PartVT, const Value *V) {
514   EVT ValueVT = Val.getValueType();
515   assert(ValueVT.isVector() && "Not a vector");
516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
517 
518   if (NumParts == 1) {
519     EVT PartEVT = PartVT;
520     if (PartEVT == ValueVT) {
521       // Nothing to do.
522     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
523       // Bitconvert vector->vector case.
524       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     } else if (PartVT.isVector() &&
526                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
527                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
528       EVT ElementVT = PartVT.getVectorElementType();
529       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
530       // undef elements.
531       SmallVector<SDValue, 16> Ops;
532       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
533         Ops.push_back(DAG.getNode(
534             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
535             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
536 
537       for (unsigned i = ValueVT.getVectorNumElements(),
538            e = PartVT.getVectorNumElements(); i != e; ++i)
539         Ops.push_back(DAG.getUNDEF(ElementVT));
540 
541       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
542 
543       // FIXME: Use CONCAT for 2x -> 4x.
544 
545       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
546       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
547     } else if (PartVT.isVector() &&
548                PartEVT.getVectorElementType().bitsGE(
549                  ValueVT.getVectorElementType()) &&
550                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
551 
552       // Promoted vector extract
553       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
554     } else{
555       // Vector -> scalar conversion.
556       assert(ValueVT.getVectorNumElements() == 1 &&
557              "Only trivial vector-to-scalar conversions should get here!");
558       Val = DAG.getNode(
559           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
560           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
561 
562       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
563     }
564 
565     Parts[0] = Val;
566     return;
567   }
568 
569   // Handle a multi-element vector.
570   EVT IntermediateVT;
571   MVT RegisterVT;
572   unsigned NumIntermediates;
573   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
574                                                 IntermediateVT,
575                                                 NumIntermediates, RegisterVT);
576   unsigned NumElements = ValueVT.getVectorNumElements();
577 
578   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
579   NumParts = NumRegs; // Silence a compiler warning.
580   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
581 
582   // Split the vector into intermediate operands.
583   SmallVector<SDValue, 8> Ops(NumIntermediates);
584   for (unsigned i = 0; i != NumIntermediates; ++i) {
585     if (IntermediateVT.isVector())
586       Ops[i] =
587           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
588                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
589                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
590     else
591       Ops[i] = DAG.getNode(
592           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
593           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
594   }
595 
596   // Split the intermediate operands into legal parts.
597   if (NumParts == NumIntermediates) {
598     // If the register was not expanded, promote or copy the value,
599     // as appropriate.
600     for (unsigned i = 0; i != NumParts; ++i)
601       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
602   } else if (NumParts > 0) {
603     // If the intermediate type was expanded, split each the value into
604     // legal parts.
605     assert(NumIntermediates != 0 && "division by zero");
606     assert(NumParts % NumIntermediates == 0 &&
607            "Must expand into a divisible number of parts!");
608     unsigned Factor = NumParts / NumIntermediates;
609     for (unsigned i = 0; i != NumIntermediates; ++i)
610       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
611   }
612 }
613 
614 RegsForValue::RegsForValue() {}
615 
616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
617                            EVT valuevt)
618     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
619 
620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
621                            const DataLayout &DL, unsigned Reg, Type *Ty) {
622   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
623 
624   for (EVT ValueVT : ValueVTs) {
625     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
626     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
627     for (unsigned i = 0; i != NumRegs; ++i)
628       Regs.push_back(Reg + i);
629     RegVTs.push_back(RegisterVT);
630     Reg += NumRegs;
631   }
632 }
633 
634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
635 /// this value and returns the result as a ValueVT value.  This uses
636 /// Chain/Flag as the input and updates them for the output Chain/Flag.
637 /// If the Flag pointer is NULL, no flag is used.
638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
639                                       FunctionLoweringInfo &FuncInfo,
640                                       SDLoc dl,
641                                       SDValue &Chain, SDValue *Flag,
642                                       const Value *V) const {
643   // A Value with type {} or [0 x %t] needs no registers.
644   if (ValueVTs.empty())
645     return SDValue();
646 
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648 
649   // Assemble the legal parts into the final values.
650   SmallVector<SDValue, 4> Values(ValueVTs.size());
651   SmallVector<SDValue, 8> Parts;
652   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
653     // Copy the legal parts from the registers.
654     EVT ValueVT = ValueVTs[Value];
655     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
656     MVT RegisterVT = RegVTs[Value];
657 
658     Parts.resize(NumRegs);
659     for (unsigned i = 0; i != NumRegs; ++i) {
660       SDValue P;
661       if (!Flag) {
662         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
663       } else {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
665         *Flag = P.getValue(2);
666       }
667 
668       Chain = P.getValue(1);
669       Parts[i] = P;
670 
671       // If the source register was virtual and if we know something about it,
672       // add an assert node.
673       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
674           !RegisterVT.isInteger() || RegisterVT.isVector())
675         continue;
676 
677       const FunctionLoweringInfo::LiveOutInfo *LOI =
678         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
679       if (!LOI)
680         continue;
681 
682       unsigned RegSize = RegisterVT.getSizeInBits();
683       unsigned NumSignBits = LOI->NumSignBits;
684       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
685 
686       if (NumZeroBits == RegSize) {
687         // The current value is a zero.
688         // Explicitly express that as it would be easier for
689         // optimizations to kick in.
690         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
691         continue;
692       }
693 
694       // FIXME: We capture more information than the dag can represent.  For
695       // now, just use the tightest assertzext/assertsext possible.
696       bool isSExt = true;
697       EVT FromVT(MVT::Other);
698       if (NumSignBits == RegSize) {
699         isSExt = true;   // ASSERT SEXT 1
700         FromVT = MVT::i1;
701       } else if (NumZeroBits >= RegSize - 1) {
702         isSExt = false;  // ASSERT ZEXT 1
703         FromVT = MVT::i1;
704       } else if (NumSignBits > RegSize - 8) {
705         isSExt = true;   // ASSERT SEXT 8
706         FromVT = MVT::i8;
707       } else if (NumZeroBits >= RegSize - 8) {
708         isSExt = false;  // ASSERT ZEXT 8
709         FromVT = MVT::i8;
710       } else if (NumSignBits > RegSize - 16) {
711         isSExt = true;   // ASSERT SEXT 16
712         FromVT = MVT::i16;
713       } else if (NumZeroBits >= RegSize - 16) {
714         isSExt = false;  // ASSERT ZEXT 16
715         FromVT = MVT::i16;
716       } else if (NumSignBits > RegSize - 32) {
717         isSExt = true;   // ASSERT SEXT 32
718         FromVT = MVT::i32;
719       } else if (NumZeroBits >= RegSize - 32) {
720         isSExt = false;  // ASSERT ZEXT 32
721         FromVT = MVT::i32;
722       } else {
723         continue;
724       }
725       // Add an assertion node.
726       assert(FromVT != MVT::Other);
727       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
728                              RegisterVT, P, DAG.getValueType(FromVT));
729     }
730 
731     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
732                                      NumRegs, RegisterVT, ValueVT, V);
733     Part += NumRegs;
734     Parts.clear();
735   }
736 
737   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
738 }
739 
740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
741 /// specified value into the registers specified by this object.  This uses
742 /// Chain/Flag as the input and updates them for the output Chain/Flag.
743 /// If the Flag pointer is NULL, no flag is used.
744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
745                                  SDValue &Chain, SDValue *Flag, const Value *V,
746                                  ISD::NodeType PreferredExtendType) const {
747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
748   ISD::NodeType ExtendKind = PreferredExtendType;
749 
750   // Get the list of the values's legal parts.
751   unsigned NumRegs = Regs.size();
752   SmallVector<SDValue, 8> Parts(NumRegs);
753   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
754     EVT ValueVT = ValueVTs[Value];
755     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
756     MVT RegisterVT = RegVTs[Value];
757 
758     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
759       ExtendKind = ISD::ZERO_EXTEND;
760 
761     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
762                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
763     Part += NumParts;
764   }
765 
766   // Copy the parts into the registers.
767   SmallVector<SDValue, 8> Chains(NumRegs);
768   for (unsigned i = 0; i != NumRegs; ++i) {
769     SDValue Part;
770     if (!Flag) {
771       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
772     } else {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
774       *Flag = Part.getValue(1);
775     }
776 
777     Chains[i] = Part.getValue(0);
778   }
779 
780   if (NumRegs == 1 || Flag)
781     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
782     // flagged to it. That is the CopyToReg nodes and the user are considered
783     // a single scheduling unit. If we create a TokenFactor and return it as
784     // chain, then the TokenFactor is both a predecessor (operand) of the
785     // user as well as a successor (the TF operands are flagged to the user).
786     // c1, f1 = CopyToReg
787     // c2, f2 = CopyToReg
788     // c3     = TokenFactor c1, c2
789     // ...
790     //        = op c3, ..., f2
791     Chain = Chains[NumRegs-1];
792   else
793     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
794 }
795 
796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
797 /// operand list.  This adds the code marker and includes the number of
798 /// values added into it.
799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
800                                         unsigned MatchingIdx, SDLoc dl,
801                                         SelectionDAG &DAG,
802                                         std::vector<SDValue> &Ops) const {
803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
804 
805   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
806   if (HasMatching)
807     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
808   else if (!Regs.empty() &&
809            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
810     // Put the register class of the virtual registers in the flag word.  That
811     // way, later passes can recompute register class constraints for inline
812     // assembly as well as normal instructions.
813     // Don't do this for tied operands that can use the regclass information
814     // from the def.
815     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
816     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
817     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
818   }
819 
820   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
821   Ops.push_back(Res);
822 
823   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
824   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
825     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
826     MVT RegisterVT = RegVTs[Value];
827     for (unsigned i = 0; i != NumRegs; ++i) {
828       assert(Reg < Regs.size() && "Mismatch in # registers expected");
829       unsigned TheReg = Regs[Reg++];
830       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
831 
832       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
833         // If we clobbered the stack pointer, MFI should know about it.
834         assert(DAG.getMachineFunction().getFrameInfo()->
835             hasOpaqueSPAdjustment());
836       }
837     }
838   }
839 }
840 
841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
842                                const TargetLibraryInfo *li) {
843   AA = &aa;
844   GFI = gfi;
845   LibInfo = li;
846   DL = &DAG.getDataLayout();
847   Context = DAG.getContext();
848   LPadToCallSiteMap.clear();
849 }
850 
851 /// clear - Clear out the current SelectionDAG and the associated
852 /// state and prepare this SelectionDAGBuilder object to be used
853 /// for a new block. This doesn't clear out information about
854 /// additional blocks that are needed to complete switch lowering
855 /// or PHI node updating; that information is cleared out as it is
856 /// consumed.
857 void SelectionDAGBuilder::clear() {
858   NodeMap.clear();
859   UnusedArgNodeMap.clear();
860   PendingLoads.clear();
861   PendingExports.clear();
862   CurInst = nullptr;
863   HasTailCall = false;
864   SDNodeOrder = LowestSDNodeOrder;
865   StatepointLowering.clear();
866 }
867 
868 /// clearDanglingDebugInfo - Clear the dangling debug information
869 /// map. This function is separated from the clear so that debug
870 /// information that is dangling in a basic block can be properly
871 /// resolved in a different basic block. This allows the
872 /// SelectionDAG to resolve dangling debug information attached
873 /// to PHI nodes.
874 void SelectionDAGBuilder::clearDanglingDebugInfo() {
875   DanglingDebugInfoMap.clear();
876 }
877 
878 /// getRoot - Return the current virtual root of the Selection DAG,
879 /// flushing any PendingLoad items. This must be done before emitting
880 /// a store or any other node that may need to be ordered after any
881 /// prior load instructions.
882 ///
883 SDValue SelectionDAGBuilder::getRoot() {
884   if (PendingLoads.empty())
885     return DAG.getRoot();
886 
887   if (PendingLoads.size() == 1) {
888     SDValue Root = PendingLoads[0];
889     DAG.setRoot(Root);
890     PendingLoads.clear();
891     return Root;
892   }
893 
894   // Otherwise, we have to make a token factor node.
895   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
896                              PendingLoads);
897   PendingLoads.clear();
898   DAG.setRoot(Root);
899   return Root;
900 }
901 
902 /// getControlRoot - Similar to getRoot, but instead of flushing all the
903 /// PendingLoad items, flush all the PendingExports items. It is necessary
904 /// to do this before emitting a terminator instruction.
905 ///
906 SDValue SelectionDAGBuilder::getControlRoot() {
907   SDValue Root = DAG.getRoot();
908 
909   if (PendingExports.empty())
910     return Root;
911 
912   // Turn all of the CopyToReg chains into one factored node.
913   if (Root.getOpcode() != ISD::EntryToken) {
914     unsigned i = 0, e = PendingExports.size();
915     for (; i != e; ++i) {
916       assert(PendingExports[i].getNode()->getNumOperands() > 1);
917       if (PendingExports[i].getNode()->getOperand(0) == Root)
918         break;  // Don't add the root if we already indirectly depend on it.
919     }
920 
921     if (i == e)
922       PendingExports.push_back(Root);
923   }
924 
925   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
926                      PendingExports);
927   PendingExports.clear();
928   DAG.setRoot(Root);
929   return Root;
930 }
931 
932 /// Copy swift error to the final virtual register at end of a basic block, as
933 /// specified by SwiftErrorWorklist, if necessary.
934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
935   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
936   if (!TLI.supportSwiftError())
937     return;
938 
939   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
940     return;
941 
942   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
943   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
944       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
945   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
946       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
947   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
948     unsigned WorkReg = WorklistEntry[I];
949 
950     // Find the swifterror virtual register for the value in SwiftErrorMap.
951     unsigned MapReg = MapEntry[I];
952     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
953            "Entries in SwiftErrorMap should be virtual registers");
954 
955     if (WorkReg == MapReg)
956       continue;
957 
958     // Create copy from SwiftErrorMap to SwiftWorklist.
959     auto &DL = SDB.DAG.getDataLayout();
960     SDValue CopyNode = SDB.DAG.getCopyToReg(
961         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
962         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
963     MapEntry[I] = WorkReg;
964     SDB.DAG.setRoot(CopyNode);
965   }
966 }
967 
968 void SelectionDAGBuilder::visit(const Instruction &I) {
969   // Set up outgoing PHI node register values before emitting the terminator.
970   if (isa<TerminatorInst>(&I)) {
971     copySwiftErrorsToFinalVRegs(*this);
972     HandlePHINodesInSuccessorBlocks(I.getParent());
973   }
974 
975   ++SDNodeOrder;
976 
977   CurInst = &I;
978 
979   visit(I.getOpcode(), I);
980 
981   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
982       !isStatepoint(&I)) // statepoints handle their exports internally
983     CopyToExportRegsIfNeeded(&I);
984 
985   CurInst = nullptr;
986 }
987 
988 void SelectionDAGBuilder::visitPHI(const PHINode &) {
989   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
990 }
991 
992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
993   // Note: this doesn't use InstVisitor, because it has to work with
994   // ConstantExpr's in addition to instructions.
995   switch (Opcode) {
996   default: llvm_unreachable("Unknown instruction type encountered!");
997     // Build the switch statement using the Instruction.def file.
998 #define HANDLE_INST(NUM, OPCODE, CLASS) \
999     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1000 #include "llvm/IR/Instruction.def"
1001   }
1002 }
1003 
1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1005 // generate the debug data structures now that we've seen its definition.
1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1007                                                    SDValue Val) {
1008   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1009   if (DDI.getDI()) {
1010     const DbgValueInst *DI = DDI.getDI();
1011     DebugLoc dl = DDI.getdl();
1012     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1013     DILocalVariable *Variable = DI->getVariable();
1014     DIExpression *Expr = DI->getExpression();
1015     assert(Variable->isValidLocationForIntrinsic(dl) &&
1016            "Expected inlined-at fields to agree");
1017     uint64_t Offset = DI->getOffset();
1018     SDDbgValue *SDV;
1019     if (Val.getNode()) {
1020       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1021                                     Val)) {
1022         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1023                               false, Offset, dl, DbgSDNodeOrder);
1024         DAG.AddDbgValue(SDV, Val.getNode(), false);
1025       }
1026     } else
1027       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1028     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1029   }
1030 }
1031 
1032 /// getCopyFromRegs - If there was virtual register allocated for the value V
1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1035   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1036   SDValue Result;
1037 
1038   if (It != FuncInfo.ValueMap.end()) {
1039     unsigned InReg = It->second;
1040     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1041                      DAG.getDataLayout(), InReg, Ty);
1042     SDValue Chain = DAG.getEntryNode();
1043     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1044     resolveDanglingDebugInfo(V, Result);
1045   }
1046 
1047   return Result;
1048 }
1049 
1050 /// getValue - Return an SDValue for the given Value.
1051 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1052   // If we already have an SDValue for this value, use it. It's important
1053   // to do this first, so that we don't create a CopyFromReg if we already
1054   // have a regular SDValue.
1055   SDValue &N = NodeMap[V];
1056   if (N.getNode()) return N;
1057 
1058   // If there's a virtual register allocated and initialized for this
1059   // value, use it.
1060   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1061     return copyFromReg;
1062 
1063   // Otherwise create a new SDValue and remember it.
1064   SDValue Val = getValueImpl(V);
1065   NodeMap[V] = Val;
1066   resolveDanglingDebugInfo(V, Val);
1067   return Val;
1068 }
1069 
1070 // Return true if SDValue exists for the given Value
1071 bool SelectionDAGBuilder::findValue(const Value *V) const {
1072   return (NodeMap.find(V) != NodeMap.end()) ||
1073     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1074 }
1075 
1076 /// getNonRegisterValue - Return an SDValue for the given Value, but
1077 /// don't look in FuncInfo.ValueMap for a virtual register.
1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1079   // If we already have an SDValue for this value, use it.
1080   SDValue &N = NodeMap[V];
1081   if (N.getNode()) {
1082     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1083       // Remove the debug location from the node as the node is about to be used
1084       // in a location which may differ from the original debug location.  This
1085       // is relevant to Constant and ConstantFP nodes because they can appear
1086       // as constant expressions inside PHI nodes.
1087       N->setDebugLoc(DebugLoc());
1088     }
1089     return N;
1090   }
1091 
1092   // Otherwise create a new SDValue and remember it.
1093   SDValue Val = getValueImpl(V);
1094   NodeMap[V] = Val;
1095   resolveDanglingDebugInfo(V, Val);
1096   return Val;
1097 }
1098 
1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1100 /// Create an SDValue for the given value.
1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1103 
1104   if (const Constant *C = dyn_cast<Constant>(V)) {
1105     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1106 
1107     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1108       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1109 
1110     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1111       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1112 
1113     if (isa<ConstantPointerNull>(C)) {
1114       unsigned AS = V->getType()->getPointerAddressSpace();
1115       return DAG.getConstant(0, getCurSDLoc(),
1116                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1117     }
1118 
1119     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1120       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1121 
1122     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1123       return DAG.getUNDEF(VT);
1124 
1125     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1126       visit(CE->getOpcode(), *CE);
1127       SDValue N1 = NodeMap[V];
1128       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1129       return N1;
1130     }
1131 
1132     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1133       SmallVector<SDValue, 4> Constants;
1134       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1135            OI != OE; ++OI) {
1136         SDNode *Val = getValue(*OI).getNode();
1137         // If the operand is an empty aggregate, there are no values.
1138         if (!Val) continue;
1139         // Add each leaf value from the operand to the Constants list
1140         // to form a flattened list of all the values.
1141         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1142           Constants.push_back(SDValue(Val, i));
1143       }
1144 
1145       return DAG.getMergeValues(Constants, getCurSDLoc());
1146     }
1147 
1148     if (const ConstantDataSequential *CDS =
1149           dyn_cast<ConstantDataSequential>(C)) {
1150       SmallVector<SDValue, 4> Ops;
1151       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1152         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1153         // Add each leaf value from the operand to the Constants list
1154         // to form a flattened list of all the values.
1155         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1156           Ops.push_back(SDValue(Val, i));
1157       }
1158 
1159       if (isa<ArrayType>(CDS->getType()))
1160         return DAG.getMergeValues(Ops, getCurSDLoc());
1161       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1162                                       VT, Ops);
1163     }
1164 
1165     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1166       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1167              "Unknown struct or array constant!");
1168 
1169       SmallVector<EVT, 4> ValueVTs;
1170       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1171       unsigned NumElts = ValueVTs.size();
1172       if (NumElts == 0)
1173         return SDValue(); // empty struct
1174       SmallVector<SDValue, 4> Constants(NumElts);
1175       for (unsigned i = 0; i != NumElts; ++i) {
1176         EVT EltVT = ValueVTs[i];
1177         if (isa<UndefValue>(C))
1178           Constants[i] = DAG.getUNDEF(EltVT);
1179         else if (EltVT.isFloatingPoint())
1180           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1181         else
1182           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1183       }
1184 
1185       return DAG.getMergeValues(Constants, getCurSDLoc());
1186     }
1187 
1188     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1189       return DAG.getBlockAddress(BA, VT);
1190 
1191     VectorType *VecTy = cast<VectorType>(V->getType());
1192     unsigned NumElements = VecTy->getNumElements();
1193 
1194     // Now that we know the number and type of the elements, get that number of
1195     // elements into the Ops array based on what kind of constant it is.
1196     SmallVector<SDValue, 16> Ops;
1197     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1198       for (unsigned i = 0; i != NumElements; ++i)
1199         Ops.push_back(getValue(CV->getOperand(i)));
1200     } else {
1201       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1202       EVT EltVT =
1203           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1204 
1205       SDValue Op;
1206       if (EltVT.isFloatingPoint())
1207         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1208       else
1209         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1210       Ops.assign(NumElements, Op);
1211     }
1212 
1213     // Create a BUILD_VECTOR node.
1214     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1215   }
1216 
1217   // If this is a static alloca, generate it as the frameindex instead of
1218   // computation.
1219   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1220     DenseMap<const AllocaInst*, int>::iterator SI =
1221       FuncInfo.StaticAllocaMap.find(AI);
1222     if (SI != FuncInfo.StaticAllocaMap.end())
1223       return DAG.getFrameIndex(SI->second,
1224                                TLI.getPointerTy(DAG.getDataLayout()));
1225   }
1226 
1227   // If this is an instruction which fast-isel has deferred, select it now.
1228   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1229     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1230     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1231                      Inst->getType());
1232     SDValue Chain = DAG.getEntryNode();
1233     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1234   }
1235 
1236   llvm_unreachable("Can't get register for value!");
1237 }
1238 
1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1240   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1241   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1242   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1243   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1244   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1245   if (IsMSVCCXX || IsCoreCLR)
1246     CatchPadMBB->setIsEHFuncletEntry();
1247 
1248   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1249 }
1250 
1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1252   // Update machine-CFG edge.
1253   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1254   FuncInfo.MBB->addSuccessor(TargetMBB);
1255 
1256   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1257   bool IsSEH = isAsynchronousEHPersonality(Pers);
1258   if (IsSEH) {
1259     // If this is not a fall-through branch or optimizations are switched off,
1260     // emit the branch.
1261     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1262         TM.getOptLevel() == CodeGenOpt::None)
1263       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1264                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1265     return;
1266   }
1267 
1268   // Figure out the funclet membership for the catchret's successor.
1269   // This will be used by the FuncletLayout pass to determine how to order the
1270   // BB's.
1271   // A 'catchret' returns to the outer scope's color.
1272   Value *ParentPad = I.getCatchSwitchParentPad();
1273   const BasicBlock *SuccessorColor;
1274   if (isa<ConstantTokenNone>(ParentPad))
1275     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1276   else
1277     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1278   assert(SuccessorColor && "No parent funclet for catchret!");
1279   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1280   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1281 
1282   // Create the terminator node.
1283   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1284                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1285                             DAG.getBasicBlock(SuccessorColorMBB));
1286   DAG.setRoot(Ret);
1287 }
1288 
1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1290   // Don't emit any special code for the cleanuppad instruction. It just marks
1291   // the start of a funclet.
1292   FuncInfo.MBB->setIsEHFuncletEntry();
1293   FuncInfo.MBB->setIsCleanupFuncletEntry();
1294 }
1295 
1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1297 /// many places it could ultimately go. In the IR, we have a single unwind
1298 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1299 /// This function skips over imaginary basic blocks that hold catchswitch
1300 /// instructions, and finds all the "real" machine
1301 /// basic block destinations. As those destinations may not be successors of
1302 /// EHPadBB, here we also calculate the edge probability to those destinations.
1303 /// The passed-in Prob is the edge probability to EHPadBB.
1304 static void findUnwindDestinations(
1305     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1306     BranchProbability Prob,
1307     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1308         &UnwindDests) {
1309   EHPersonality Personality =
1310     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1311   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1312   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1313 
1314   while (EHPadBB) {
1315     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1316     BasicBlock *NewEHPadBB = nullptr;
1317     if (isa<LandingPadInst>(Pad)) {
1318       // Stop on landingpads. They are not funclets.
1319       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1320       break;
1321     } else if (isa<CleanupPadInst>(Pad)) {
1322       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1323       // personalities.
1324       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1325       UnwindDests.back().first->setIsEHFuncletEntry();
1326       break;
1327     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1328       // Add the catchpad handlers to the possible destinations.
1329       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1330         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1331         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1332         if (IsMSVCCXX || IsCoreCLR)
1333           UnwindDests.back().first->setIsEHFuncletEntry();
1334       }
1335       NewEHPadBB = CatchSwitch->getUnwindDest();
1336     } else {
1337       continue;
1338     }
1339 
1340     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1341     if (BPI && NewEHPadBB)
1342       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1343     EHPadBB = NewEHPadBB;
1344   }
1345 }
1346 
1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1348   // Update successor info.
1349   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1350   auto UnwindDest = I.getUnwindDest();
1351   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1352   BranchProbability UnwindDestProb =
1353       (BPI && UnwindDest)
1354           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1355           : BranchProbability::getZero();
1356   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1357   for (auto &UnwindDest : UnwindDests) {
1358     UnwindDest.first->setIsEHPad();
1359     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1360   }
1361   FuncInfo.MBB->normalizeSuccProbs();
1362 
1363   // Create the terminator node.
1364   SDValue Ret =
1365       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1366   DAG.setRoot(Ret);
1367 }
1368 
1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1370   report_fatal_error("visitCatchSwitch not yet implemented!");
1371 }
1372 
1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1375   auto &DL = DAG.getDataLayout();
1376   SDValue Chain = getControlRoot();
1377   SmallVector<ISD::OutputArg, 8> Outs;
1378   SmallVector<SDValue, 8> OutVals;
1379 
1380   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1381   // lower
1382   //
1383   //   %val = call <ty> @llvm.experimental.deoptimize()
1384   //   ret <ty> %val
1385   //
1386   // differently.
1387   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1388     LowerDeoptimizingReturn();
1389     return;
1390   }
1391 
1392   if (!FuncInfo.CanLowerReturn) {
1393     unsigned DemoteReg = FuncInfo.DemoteRegister;
1394     const Function *F = I.getParent()->getParent();
1395 
1396     // Emit a store of the return value through the virtual register.
1397     // Leave Outs empty so that LowerReturn won't try to load return
1398     // registers the usual way.
1399     SmallVector<EVT, 1> PtrValueVTs;
1400     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1401                     PtrValueVTs);
1402 
1403     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1404                                         DemoteReg, PtrValueVTs[0]);
1405     SDValue RetOp = getValue(I.getOperand(0));
1406 
1407     SmallVector<EVT, 4> ValueVTs;
1408     SmallVector<uint64_t, 4> Offsets;
1409     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1410     unsigned NumValues = ValueVTs.size();
1411 
1412     // An aggregate return value cannot wrap around the address space, so
1413     // offsets to its parts don't wrap either.
1414     SDNodeFlags Flags;
1415     Flags.setNoUnsignedWrap(true);
1416 
1417     SmallVector<SDValue, 4> Chains(NumValues);
1418     for (unsigned i = 0; i != NumValues; ++i) {
1419       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1420                                 RetPtr.getValueType(), RetPtr,
1421                                 DAG.getIntPtrConstant(Offsets[i],
1422                                                       getCurSDLoc()),
1423                                 &Flags);
1424       Chains[i] =
1425         DAG.getStore(Chain, getCurSDLoc(),
1426                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1427                      // FIXME: better loc info would be nice.
1428                      Add, MachinePointerInfo(), false, false, 0);
1429     }
1430 
1431     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1432                         MVT::Other, Chains);
1433   } else if (I.getNumOperands() != 0) {
1434     SmallVector<EVT, 4> ValueVTs;
1435     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1436     unsigned NumValues = ValueVTs.size();
1437     if (NumValues) {
1438       SDValue RetOp = getValue(I.getOperand(0));
1439 
1440       const Function *F = I.getParent()->getParent();
1441 
1442       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1443       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1444                                           Attribute::SExt))
1445         ExtendKind = ISD::SIGN_EXTEND;
1446       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1447                                                Attribute::ZExt))
1448         ExtendKind = ISD::ZERO_EXTEND;
1449 
1450       LLVMContext &Context = F->getContext();
1451       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1452                                                       Attribute::InReg);
1453 
1454       for (unsigned j = 0; j != NumValues; ++j) {
1455         EVT VT = ValueVTs[j];
1456 
1457         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1458           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1459 
1460         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1461         MVT PartVT = TLI.getRegisterType(Context, VT);
1462         SmallVector<SDValue, 4> Parts(NumParts);
1463         getCopyToParts(DAG, getCurSDLoc(),
1464                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1465                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1466 
1467         // 'inreg' on function refers to return value
1468         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1469         if (RetInReg)
1470           Flags.setInReg();
1471 
1472         // Propagate extension type if any
1473         if (ExtendKind == ISD::SIGN_EXTEND)
1474           Flags.setSExt();
1475         else if (ExtendKind == ISD::ZERO_EXTEND)
1476           Flags.setZExt();
1477 
1478         for (unsigned i = 0; i < NumParts; ++i) {
1479           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1480                                         VT, /*isfixed=*/true, 0, 0));
1481           OutVals.push_back(Parts[i]);
1482         }
1483       }
1484     }
1485   }
1486 
1487   // Push in swifterror virtual register as the last element of Outs. This makes
1488   // sure swifterror virtual register will be returned in the swifterror
1489   // physical register.
1490   const Function *F = I.getParent()->getParent();
1491   if (TLI.supportSwiftError() &&
1492       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1493     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1494     Flags.setSwiftError();
1495     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1496                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1497                                   true /*isfixed*/, 1 /*origidx*/,
1498                                   0 /*partOffs*/));
1499     // Create SDNode for the swifterror virtual register.
1500     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1501                                       EVT(TLI.getPointerTy(DL))));
1502   }
1503 
1504   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1505   CallingConv::ID CallConv =
1506     DAG.getMachineFunction().getFunction()->getCallingConv();
1507   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1508       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1509 
1510   // Verify that the target's LowerReturn behaved as expected.
1511   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1512          "LowerReturn didn't return a valid chain!");
1513 
1514   // Update the DAG with the new chain value resulting from return lowering.
1515   DAG.setRoot(Chain);
1516 }
1517 
1518 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1519 /// created for it, emit nodes to copy the value into the virtual
1520 /// registers.
1521 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1522   // Skip empty types
1523   if (V->getType()->isEmptyTy())
1524     return;
1525 
1526   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1527   if (VMI != FuncInfo.ValueMap.end()) {
1528     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1529     CopyValueToVirtualRegister(V, VMI->second);
1530   }
1531 }
1532 
1533 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1534 /// the current basic block, add it to ValueMap now so that we'll get a
1535 /// CopyTo/FromReg.
1536 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1537   // No need to export constants.
1538   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1539 
1540   // Already exported?
1541   if (FuncInfo.isExportedInst(V)) return;
1542 
1543   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1544   CopyValueToVirtualRegister(V, Reg);
1545 }
1546 
1547 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1548                                                      const BasicBlock *FromBB) {
1549   // The operands of the setcc have to be in this block.  We don't know
1550   // how to export them from some other block.
1551   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1552     // Can export from current BB.
1553     if (VI->getParent() == FromBB)
1554       return true;
1555 
1556     // Is already exported, noop.
1557     return FuncInfo.isExportedInst(V);
1558   }
1559 
1560   // If this is an argument, we can export it if the BB is the entry block or
1561   // if it is already exported.
1562   if (isa<Argument>(V)) {
1563     if (FromBB == &FromBB->getParent()->getEntryBlock())
1564       return true;
1565 
1566     // Otherwise, can only export this if it is already exported.
1567     return FuncInfo.isExportedInst(V);
1568   }
1569 
1570   // Otherwise, constants can always be exported.
1571   return true;
1572 }
1573 
1574 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1575 BranchProbability
1576 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1577                                         const MachineBasicBlock *Dst) const {
1578   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1579   const BasicBlock *SrcBB = Src->getBasicBlock();
1580   const BasicBlock *DstBB = Dst->getBasicBlock();
1581   if (!BPI) {
1582     // If BPI is not available, set the default probability as 1 / N, where N is
1583     // the number of successors.
1584     auto SuccSize = std::max<uint32_t>(
1585         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1586     return BranchProbability(1, SuccSize);
1587   }
1588   return BPI->getEdgeProbability(SrcBB, DstBB);
1589 }
1590 
1591 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1592                                                MachineBasicBlock *Dst,
1593                                                BranchProbability Prob) {
1594   if (!FuncInfo.BPI)
1595     Src->addSuccessorWithoutProb(Dst);
1596   else {
1597     if (Prob.isUnknown())
1598       Prob = getEdgeProbability(Src, Dst);
1599     Src->addSuccessor(Dst, Prob);
1600   }
1601 }
1602 
1603 static bool InBlock(const Value *V, const BasicBlock *BB) {
1604   if (const Instruction *I = dyn_cast<Instruction>(V))
1605     return I->getParent() == BB;
1606   return true;
1607 }
1608 
1609 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1610 /// This function emits a branch and is used at the leaves of an OR or an
1611 /// AND operator tree.
1612 ///
1613 void
1614 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1615                                                   MachineBasicBlock *TBB,
1616                                                   MachineBasicBlock *FBB,
1617                                                   MachineBasicBlock *CurBB,
1618                                                   MachineBasicBlock *SwitchBB,
1619                                                   BranchProbability TProb,
1620                                                   BranchProbability FProb) {
1621   const BasicBlock *BB = CurBB->getBasicBlock();
1622 
1623   // If the leaf of the tree is a comparison, merge the condition into
1624   // the caseblock.
1625   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1626     // The operands of the cmp have to be in this block.  We don't know
1627     // how to export them from some other block.  If this is the first block
1628     // of the sequence, no exporting is needed.
1629     if (CurBB == SwitchBB ||
1630         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1631          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1632       ISD::CondCode Condition;
1633       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1634         Condition = getICmpCondCode(IC->getPredicate());
1635       } else {
1636         const FCmpInst *FC = cast<FCmpInst>(Cond);
1637         Condition = getFCmpCondCode(FC->getPredicate());
1638         if (TM.Options.NoNaNsFPMath)
1639           Condition = getFCmpCodeWithoutNaN(Condition);
1640       }
1641 
1642       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1643                    TBB, FBB, CurBB, TProb, FProb);
1644       SwitchCases.push_back(CB);
1645       return;
1646     }
1647   }
1648 
1649   // Create a CaseBlock record representing this branch.
1650   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1651                nullptr, TBB, FBB, CurBB, TProb, FProb);
1652   SwitchCases.push_back(CB);
1653 }
1654 
1655 /// FindMergedConditions - If Cond is an expression like
1656 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1657                                                MachineBasicBlock *TBB,
1658                                                MachineBasicBlock *FBB,
1659                                                MachineBasicBlock *CurBB,
1660                                                MachineBasicBlock *SwitchBB,
1661                                                Instruction::BinaryOps Opc,
1662                                                BranchProbability TProb,
1663                                                BranchProbability FProb) {
1664   // If this node is not part of the or/and tree, emit it as a branch.
1665   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1666   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1667       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1668       BOp->getParent() != CurBB->getBasicBlock() ||
1669       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1670       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1671     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1672                                  TProb, FProb);
1673     return;
1674   }
1675 
1676   //  Create TmpBB after CurBB.
1677   MachineFunction::iterator BBI(CurBB);
1678   MachineFunction &MF = DAG.getMachineFunction();
1679   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1680   CurBB->getParent()->insert(++BBI, TmpBB);
1681 
1682   if (Opc == Instruction::Or) {
1683     // Codegen X | Y as:
1684     // BB1:
1685     //   jmp_if_X TBB
1686     //   jmp TmpBB
1687     // TmpBB:
1688     //   jmp_if_Y TBB
1689     //   jmp FBB
1690     //
1691 
1692     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1693     // The requirement is that
1694     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1695     //     = TrueProb for original BB.
1696     // Assuming the original probabilities are A and B, one choice is to set
1697     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1698     // A/(1+B) and 2B/(1+B). This choice assumes that
1699     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1700     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1701     // TmpBB, but the math is more complicated.
1702 
1703     auto NewTrueProb = TProb / 2;
1704     auto NewFalseProb = TProb / 2 + FProb;
1705     // Emit the LHS condition.
1706     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1707                          NewTrueProb, NewFalseProb);
1708 
1709     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1710     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1711     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1712     // Emit the RHS condition into TmpBB.
1713     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1714                          Probs[0], Probs[1]);
1715   } else {
1716     assert(Opc == Instruction::And && "Unknown merge op!");
1717     // Codegen X & Y as:
1718     // BB1:
1719     //   jmp_if_X TmpBB
1720     //   jmp FBB
1721     // TmpBB:
1722     //   jmp_if_Y TBB
1723     //   jmp FBB
1724     //
1725     //  This requires creation of TmpBB after CurBB.
1726 
1727     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1728     // The requirement is that
1729     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1730     //     = FalseProb for original BB.
1731     // Assuming the original probabilities are A and B, one choice is to set
1732     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1733     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1734     // TrueProb for BB1 * FalseProb for TmpBB.
1735 
1736     auto NewTrueProb = TProb + FProb / 2;
1737     auto NewFalseProb = FProb / 2;
1738     // Emit the LHS condition.
1739     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1740                          NewTrueProb, NewFalseProb);
1741 
1742     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1743     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1744     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1745     // Emit the RHS condition into TmpBB.
1746     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1747                          Probs[0], Probs[1]);
1748   }
1749 }
1750 
1751 /// If the set of cases should be emitted as a series of branches, return true.
1752 /// If we should emit this as a bunch of and/or'd together conditions, return
1753 /// false.
1754 bool
1755 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1756   if (Cases.size() != 2) return true;
1757 
1758   // If this is two comparisons of the same values or'd or and'd together, they
1759   // will get folded into a single comparison, so don't emit two blocks.
1760   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1761        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1762       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1763        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1764     return false;
1765   }
1766 
1767   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1768   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1769   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1770       Cases[0].CC == Cases[1].CC &&
1771       isa<Constant>(Cases[0].CmpRHS) &&
1772       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1773     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1774       return false;
1775     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1776       return false;
1777   }
1778 
1779   return true;
1780 }
1781 
1782 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1783   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1784 
1785   // Update machine-CFG edges.
1786   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1787 
1788   if (I.isUnconditional()) {
1789     // Update machine-CFG edges.
1790     BrMBB->addSuccessor(Succ0MBB);
1791 
1792     // If this is not a fall-through branch or optimizations are switched off,
1793     // emit the branch.
1794     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1795       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1796                               MVT::Other, getControlRoot(),
1797                               DAG.getBasicBlock(Succ0MBB)));
1798 
1799     return;
1800   }
1801 
1802   // If this condition is one of the special cases we handle, do special stuff
1803   // now.
1804   const Value *CondVal = I.getCondition();
1805   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1806 
1807   // If this is a series of conditions that are or'd or and'd together, emit
1808   // this as a sequence of branches instead of setcc's with and/or operations.
1809   // As long as jumps are not expensive, this should improve performance.
1810   // For example, instead of something like:
1811   //     cmp A, B
1812   //     C = seteq
1813   //     cmp D, E
1814   //     F = setle
1815   //     or C, F
1816   //     jnz foo
1817   // Emit:
1818   //     cmp A, B
1819   //     je foo
1820   //     cmp D, E
1821   //     jle foo
1822   //
1823   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1824     Instruction::BinaryOps Opcode = BOp->getOpcode();
1825     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1826         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1827         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1828       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1829                            Opcode,
1830                            getEdgeProbability(BrMBB, Succ0MBB),
1831                            getEdgeProbability(BrMBB, Succ1MBB));
1832       // If the compares in later blocks need to use values not currently
1833       // exported from this block, export them now.  This block should always
1834       // be the first entry.
1835       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1836 
1837       // Allow some cases to be rejected.
1838       if (ShouldEmitAsBranches(SwitchCases)) {
1839         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1840           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1841           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1842         }
1843 
1844         // Emit the branch for this block.
1845         visitSwitchCase(SwitchCases[0], BrMBB);
1846         SwitchCases.erase(SwitchCases.begin());
1847         return;
1848       }
1849 
1850       // Okay, we decided not to do this, remove any inserted MBB's and clear
1851       // SwitchCases.
1852       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1853         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1854 
1855       SwitchCases.clear();
1856     }
1857   }
1858 
1859   // Create a CaseBlock record representing this branch.
1860   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1861                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1862 
1863   // Use visitSwitchCase to actually insert the fast branch sequence for this
1864   // cond branch.
1865   visitSwitchCase(CB, BrMBB);
1866 }
1867 
1868 /// visitSwitchCase - Emits the necessary code to represent a single node in
1869 /// the binary search tree resulting from lowering a switch instruction.
1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1871                                           MachineBasicBlock *SwitchBB) {
1872   SDValue Cond;
1873   SDValue CondLHS = getValue(CB.CmpLHS);
1874   SDLoc dl = getCurSDLoc();
1875 
1876   // Build the setcc now.
1877   if (!CB.CmpMHS) {
1878     // Fold "(X == true)" to X and "(X == false)" to !X to
1879     // handle common cases produced by branch lowering.
1880     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1881         CB.CC == ISD::SETEQ)
1882       Cond = CondLHS;
1883     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1884              CB.CC == ISD::SETEQ) {
1885       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1886       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1887     } else
1888       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1889   } else {
1890     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1891 
1892     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1893     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1894 
1895     SDValue CmpOp = getValue(CB.CmpMHS);
1896     EVT VT = CmpOp.getValueType();
1897 
1898     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1899       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1900                           ISD::SETLE);
1901     } else {
1902       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1903                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1904       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1905                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1906     }
1907   }
1908 
1909   // Update successor info
1910   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1911   // TrueBB and FalseBB are always different unless the incoming IR is
1912   // degenerate. This only happens when running llc on weird IR.
1913   if (CB.TrueBB != CB.FalseBB)
1914     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1915   SwitchBB->normalizeSuccProbs();
1916 
1917   // If the lhs block is the next block, invert the condition so that we can
1918   // fall through to the lhs instead of the rhs block.
1919   if (CB.TrueBB == NextBlock(SwitchBB)) {
1920     std::swap(CB.TrueBB, CB.FalseBB);
1921     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1922     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1923   }
1924 
1925   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1926                                MVT::Other, getControlRoot(), Cond,
1927                                DAG.getBasicBlock(CB.TrueBB));
1928 
1929   // Insert the false branch. Do this even if it's a fall through branch,
1930   // this makes it easier to do DAG optimizations which require inverting
1931   // the branch condition.
1932   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1933                        DAG.getBasicBlock(CB.FalseBB));
1934 
1935   DAG.setRoot(BrCond);
1936 }
1937 
1938 /// visitJumpTable - Emit JumpTable node in the current MBB
1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1940   // Emit the code for the jump table
1941   assert(JT.Reg != -1U && "Should lower JT Header first!");
1942   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1943   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1944                                      JT.Reg, PTy);
1945   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1946   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1947                                     MVT::Other, Index.getValue(1),
1948                                     Table, Index);
1949   DAG.setRoot(BrJumpTable);
1950 }
1951 
1952 /// visitJumpTableHeader - This function emits necessary code to produce index
1953 /// in the JumpTable from switch case.
1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1955                                                JumpTableHeader &JTH,
1956                                                MachineBasicBlock *SwitchBB) {
1957   SDLoc dl = getCurSDLoc();
1958 
1959   // Subtract the lowest switch case value from the value being switched on and
1960   // conditional branch to default mbb if the result is greater than the
1961   // difference between smallest and largest cases.
1962   SDValue SwitchOp = getValue(JTH.SValue);
1963   EVT VT = SwitchOp.getValueType();
1964   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1965                             DAG.getConstant(JTH.First, dl, VT));
1966 
1967   // The SDNode we just created, which holds the value being switched on minus
1968   // the smallest case value, needs to be copied to a virtual register so it
1969   // can be used as an index into the jump table in a subsequent basic block.
1970   // This value may be smaller or larger than the target's pointer type, and
1971   // therefore require extension or truncating.
1972   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1973   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1974 
1975   unsigned JumpTableReg =
1976       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1977   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1978                                     JumpTableReg, SwitchOp);
1979   JT.Reg = JumpTableReg;
1980 
1981   // Emit the range check for the jump table, and branch to the default block
1982   // for the switch statement if the value being switched on exceeds the largest
1983   // case in the switch.
1984   SDValue CMP = DAG.getSetCC(
1985       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1986                                  Sub.getValueType()),
1987       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1988 
1989   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1990                                MVT::Other, CopyTo, CMP,
1991                                DAG.getBasicBlock(JT.Default));
1992 
1993   // Avoid emitting unnecessary branches to the next block.
1994   if (JT.MBB != NextBlock(SwitchBB))
1995     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1996                          DAG.getBasicBlock(JT.MBB));
1997 
1998   DAG.setRoot(BrCond);
1999 }
2000 
2001 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2002 /// tail spliced into a stack protector check success bb.
2003 ///
2004 /// For a high level explanation of how this fits into the stack protector
2005 /// generation see the comment on the declaration of class
2006 /// StackProtectorDescriptor.
2007 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2008                                                   MachineBasicBlock *ParentBB) {
2009 
2010   // First create the loads to the guard/stack slot for the comparison.
2011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2012   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2013 
2014   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
2015   int FI = MFI->getStackProtectorIndex();
2016 
2017   const Value *IRGuard = SPD.getGuard();
2018   SDValue GuardPtr = getValue(IRGuard);
2019   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2020 
2021   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
2022 
2023   SDValue Guard;
2024   SDLoc dl = getCurSDLoc();
2025 
2026   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
2027   // guard value from the virtual register holding the value. Otherwise, emit a
2028   // volatile load to retrieve the stack guard value.
2029   unsigned GuardReg = SPD.getGuardReg();
2030 
2031   if (GuardReg && TLI.useLoadStackGuardNode())
2032     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
2033                                PtrTy);
2034   else
2035     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
2036                         GuardPtr, MachinePointerInfo(IRGuard, 0),
2037                         true, false, false, Align);
2038 
2039   SDValue StackSlot = DAG.getLoad(
2040       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2041       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
2042       false, false, Align);
2043 
2044   // Perform the comparison via a subtract/getsetcc.
2045   EVT VT = Guard.getValueType();
2046   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2047 
2048   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2049                                                         *DAG.getContext(),
2050                                                         Sub.getValueType()),
2051                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2052 
2053   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2054   // branch to failure MBB.
2055   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2056                                MVT::Other, StackSlot.getOperand(0),
2057                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2058   // Otherwise branch to success MBB.
2059   SDValue Br = DAG.getNode(ISD::BR, dl,
2060                            MVT::Other, BrCond,
2061                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2062 
2063   DAG.setRoot(Br);
2064 }
2065 
2066 /// Codegen the failure basic block for a stack protector check.
2067 ///
2068 /// A failure stack protector machine basic block consists simply of a call to
2069 /// __stack_chk_fail().
2070 ///
2071 /// For a high level explanation of how this fits into the stack protector
2072 /// generation see the comment on the declaration of class
2073 /// StackProtectorDescriptor.
2074 void
2075 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2076   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2077   SDValue Chain =
2078       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2079                       None, false, getCurSDLoc(), false, false).second;
2080   DAG.setRoot(Chain);
2081 }
2082 
2083 /// visitBitTestHeader - This function emits necessary code to produce value
2084 /// suitable for "bit tests"
2085 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2086                                              MachineBasicBlock *SwitchBB) {
2087   SDLoc dl = getCurSDLoc();
2088 
2089   // Subtract the minimum value
2090   SDValue SwitchOp = getValue(B.SValue);
2091   EVT VT = SwitchOp.getValueType();
2092   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2093                             DAG.getConstant(B.First, dl, VT));
2094 
2095   // Check range
2096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2097   SDValue RangeCmp = DAG.getSetCC(
2098       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2099                                  Sub.getValueType()),
2100       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2101 
2102   // Determine the type of the test operands.
2103   bool UsePtrType = false;
2104   if (!TLI.isTypeLegal(VT))
2105     UsePtrType = true;
2106   else {
2107     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2108       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2109         // Switch table case range are encoded into series of masks.
2110         // Just use pointer type, it's guaranteed to fit.
2111         UsePtrType = true;
2112         break;
2113       }
2114   }
2115   if (UsePtrType) {
2116     VT = TLI.getPointerTy(DAG.getDataLayout());
2117     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2118   }
2119 
2120   B.RegVT = VT.getSimpleVT();
2121   B.Reg = FuncInfo.CreateReg(B.RegVT);
2122   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2123 
2124   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2125 
2126   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2127   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2128   SwitchBB->normalizeSuccProbs();
2129 
2130   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2131                                 MVT::Other, CopyTo, RangeCmp,
2132                                 DAG.getBasicBlock(B.Default));
2133 
2134   // Avoid emitting unnecessary branches to the next block.
2135   if (MBB != NextBlock(SwitchBB))
2136     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2137                           DAG.getBasicBlock(MBB));
2138 
2139   DAG.setRoot(BrRange);
2140 }
2141 
2142 /// visitBitTestCase - this function produces one "bit test"
2143 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2144                                            MachineBasicBlock* NextMBB,
2145                                            BranchProbability BranchProbToNext,
2146                                            unsigned Reg,
2147                                            BitTestCase &B,
2148                                            MachineBasicBlock *SwitchBB) {
2149   SDLoc dl = getCurSDLoc();
2150   MVT VT = BB.RegVT;
2151   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2152   SDValue Cmp;
2153   unsigned PopCount = countPopulation(B.Mask);
2154   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2155   if (PopCount == 1) {
2156     // Testing for a single bit; just compare the shift count with what it
2157     // would need to be to shift a 1 bit in that position.
2158     Cmp = DAG.getSetCC(
2159         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2160         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2161         ISD::SETEQ);
2162   } else if (PopCount == BB.Range) {
2163     // There is only one zero bit in the range, test for it directly.
2164     Cmp = DAG.getSetCC(
2165         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2166         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2167         ISD::SETNE);
2168   } else {
2169     // Make desired shift
2170     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2171                                     DAG.getConstant(1, dl, VT), ShiftOp);
2172 
2173     // Emit bit tests and jumps
2174     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2175                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2176     Cmp = DAG.getSetCC(
2177         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2178         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2179   }
2180 
2181   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2182   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2183   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2184   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2185   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2186   // one as they are relative probabilities (and thus work more like weights),
2187   // and hence we need to normalize them to let the sum of them become one.
2188   SwitchBB->normalizeSuccProbs();
2189 
2190   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2191                               MVT::Other, getControlRoot(),
2192                               Cmp, DAG.getBasicBlock(B.TargetBB));
2193 
2194   // Avoid emitting unnecessary branches to the next block.
2195   if (NextMBB != NextBlock(SwitchBB))
2196     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2197                         DAG.getBasicBlock(NextMBB));
2198 
2199   DAG.setRoot(BrAnd);
2200 }
2201 
2202 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2203   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2204 
2205   // Retrieve successors. Look through artificial IR level blocks like
2206   // catchswitch for successors.
2207   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2208   const BasicBlock *EHPadBB = I.getSuccessor(1);
2209 
2210   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2211   // have to do anything here to lower funclet bundles.
2212   assert(!I.hasOperandBundlesOtherThan(
2213              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2214          "Cannot lower invokes with arbitrary operand bundles yet!");
2215 
2216   const Value *Callee(I.getCalledValue());
2217   const Function *Fn = dyn_cast<Function>(Callee);
2218   if (isa<InlineAsm>(Callee))
2219     visitInlineAsm(&I);
2220   else if (Fn && Fn->isIntrinsic()) {
2221     switch (Fn->getIntrinsicID()) {
2222     default:
2223       llvm_unreachable("Cannot invoke this intrinsic");
2224     case Intrinsic::donothing:
2225       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2226       break;
2227     case Intrinsic::experimental_patchpoint_void:
2228     case Intrinsic::experimental_patchpoint_i64:
2229       visitPatchpoint(&I, EHPadBB);
2230       break;
2231     case Intrinsic::experimental_gc_statepoint:
2232       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2233       break;
2234     }
2235   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2236     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2237     // Eventually we will support lowering the @llvm.experimental.deoptimize
2238     // intrinsic, and right now there are no plans to support other intrinsics
2239     // with deopt state.
2240     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2241   } else {
2242     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2243   }
2244 
2245   // If the value of the invoke is used outside of its defining block, make it
2246   // available as a virtual register.
2247   // We already took care of the exported value for the statepoint instruction
2248   // during call to the LowerStatepoint.
2249   if (!isStatepoint(I)) {
2250     CopyToExportRegsIfNeeded(&I);
2251   }
2252 
2253   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2254   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2255   BranchProbability EHPadBBProb =
2256       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2257           : BranchProbability::getZero();
2258   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2259 
2260   // Update successor info.
2261   addSuccessorWithProb(InvokeMBB, Return);
2262   for (auto &UnwindDest : UnwindDests) {
2263     UnwindDest.first->setIsEHPad();
2264     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2265   }
2266   InvokeMBB->normalizeSuccProbs();
2267 
2268   // Drop into normal successor.
2269   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2270                           MVT::Other, getControlRoot(),
2271                           DAG.getBasicBlock(Return)));
2272 }
2273 
2274 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2275   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2276 }
2277 
2278 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2279   assert(FuncInfo.MBB->isEHPad() &&
2280          "Call to landingpad not in landing pad!");
2281 
2282   MachineBasicBlock *MBB = FuncInfo.MBB;
2283   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2284   AddLandingPadInfo(LP, MMI, MBB);
2285 
2286   // If there aren't registers to copy the values into (e.g., during SjLj
2287   // exceptions), then don't bother to create these DAG nodes.
2288   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2289   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2290   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2291       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2292     return;
2293 
2294   // If landingpad's return type is token type, we don't create DAG nodes
2295   // for its exception pointer and selector value. The extraction of exception
2296   // pointer or selector value from token type landingpads is not currently
2297   // supported.
2298   if (LP.getType()->isTokenTy())
2299     return;
2300 
2301   SmallVector<EVT, 2> ValueVTs;
2302   SDLoc dl = getCurSDLoc();
2303   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2304   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2305 
2306   // Get the two live-in registers as SDValues. The physregs have already been
2307   // copied into virtual registers.
2308   SDValue Ops[2];
2309   if (FuncInfo.ExceptionPointerVirtReg) {
2310     Ops[0] = DAG.getZExtOrTrunc(
2311         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2312                            FuncInfo.ExceptionPointerVirtReg,
2313                            TLI.getPointerTy(DAG.getDataLayout())),
2314         dl, ValueVTs[0]);
2315   } else {
2316     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2317   }
2318   Ops[1] = DAG.getZExtOrTrunc(
2319       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2320                          FuncInfo.ExceptionSelectorVirtReg,
2321                          TLI.getPointerTy(DAG.getDataLayout())),
2322       dl, ValueVTs[1]);
2323 
2324   // Merge into one.
2325   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2326                             DAG.getVTList(ValueVTs), Ops);
2327   setValue(&LP, Res);
2328 }
2329 
2330 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2331 #ifndef NDEBUG
2332   for (const CaseCluster &CC : Clusters)
2333     assert(CC.Low == CC.High && "Input clusters must be single-case");
2334 #endif
2335 
2336   std::sort(Clusters.begin(), Clusters.end(),
2337             [](const CaseCluster &a, const CaseCluster &b) {
2338     return a.Low->getValue().slt(b.Low->getValue());
2339   });
2340 
2341   // Merge adjacent clusters with the same destination.
2342   const unsigned N = Clusters.size();
2343   unsigned DstIndex = 0;
2344   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2345     CaseCluster &CC = Clusters[SrcIndex];
2346     const ConstantInt *CaseVal = CC.Low;
2347     MachineBasicBlock *Succ = CC.MBB;
2348 
2349     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2350         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2351       // If this case has the same successor and is a neighbour, merge it into
2352       // the previous cluster.
2353       Clusters[DstIndex - 1].High = CaseVal;
2354       Clusters[DstIndex - 1].Prob += CC.Prob;
2355     } else {
2356       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2357                    sizeof(Clusters[SrcIndex]));
2358     }
2359   }
2360   Clusters.resize(DstIndex);
2361 }
2362 
2363 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2364                                            MachineBasicBlock *Last) {
2365   // Update JTCases.
2366   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2367     if (JTCases[i].first.HeaderBB == First)
2368       JTCases[i].first.HeaderBB = Last;
2369 
2370   // Update BitTestCases.
2371   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2372     if (BitTestCases[i].Parent == First)
2373       BitTestCases[i].Parent = Last;
2374 }
2375 
2376 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2377   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2378 
2379   // Update machine-CFG edges with unique successors.
2380   SmallSet<BasicBlock*, 32> Done;
2381   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2382     BasicBlock *BB = I.getSuccessor(i);
2383     bool Inserted = Done.insert(BB).second;
2384     if (!Inserted)
2385         continue;
2386 
2387     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2388     addSuccessorWithProb(IndirectBrMBB, Succ);
2389   }
2390   IndirectBrMBB->normalizeSuccProbs();
2391 
2392   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2393                           MVT::Other, getControlRoot(),
2394                           getValue(I.getAddress())));
2395 }
2396 
2397 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2398   if (DAG.getTarget().Options.TrapUnreachable)
2399     DAG.setRoot(
2400         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2401 }
2402 
2403 void SelectionDAGBuilder::visitFSub(const User &I) {
2404   // -0.0 - X --> fneg
2405   Type *Ty = I.getType();
2406   if (isa<Constant>(I.getOperand(0)) &&
2407       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2408     SDValue Op2 = getValue(I.getOperand(1));
2409     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2410                              Op2.getValueType(), Op2));
2411     return;
2412   }
2413 
2414   visitBinary(I, ISD::FSUB);
2415 }
2416 
2417 /// Checks if the given instruction performs a vector reduction, in which case
2418 /// we have the freedom to alter the elements in the result as long as the
2419 /// reduction of them stays unchanged.
2420 static bool isVectorReductionOp(const User *I) {
2421   const Instruction *Inst = dyn_cast<Instruction>(I);
2422   if (!Inst || !Inst->getType()->isVectorTy())
2423     return false;
2424 
2425   auto OpCode = Inst->getOpcode();
2426   switch (OpCode) {
2427   case Instruction::Add:
2428   case Instruction::Mul:
2429   case Instruction::And:
2430   case Instruction::Or:
2431   case Instruction::Xor:
2432     break;
2433   case Instruction::FAdd:
2434   case Instruction::FMul:
2435     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2436       if (FPOp->getFastMathFlags().unsafeAlgebra())
2437         break;
2438     // Fall through.
2439   default:
2440     return false;
2441   }
2442 
2443   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2444   unsigned ElemNumToReduce = ElemNum;
2445 
2446   // Do DFS search on the def-use chain from the given instruction. We only
2447   // allow four kinds of operations during the search until we reach the
2448   // instruction that extracts the first element from the vector:
2449   //
2450   //   1. The reduction operation of the same opcode as the given instruction.
2451   //
2452   //   2. PHI node.
2453   //
2454   //   3. ShuffleVector instruction together with a reduction operation that
2455   //      does a partial reduction.
2456   //
2457   //   4. ExtractElement that extracts the first element from the vector, and we
2458   //      stop searching the def-use chain here.
2459   //
2460   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2461   // from 1-3 to the stack to continue the DFS. The given instruction is not
2462   // a reduction operation if we meet any other instructions other than those
2463   // listed above.
2464 
2465   SmallVector<const User *, 16> UsersToVisit{Inst};
2466   SmallPtrSet<const User *, 16> Visited;
2467   bool ReduxExtracted = false;
2468 
2469   while (!UsersToVisit.empty()) {
2470     auto User = UsersToVisit.back();
2471     UsersToVisit.pop_back();
2472     if (!Visited.insert(User).second)
2473       continue;
2474 
2475     for (const auto &U : User->users()) {
2476       auto Inst = dyn_cast<Instruction>(U);
2477       if (!Inst)
2478         return false;
2479 
2480       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2481         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2482           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2483             return false;
2484         UsersToVisit.push_back(U);
2485       } else if (const ShuffleVectorInst *ShufInst =
2486                      dyn_cast<ShuffleVectorInst>(U)) {
2487         // Detect the following pattern: A ShuffleVector instruction together
2488         // with a reduction that do partial reduction on the first and second
2489         // ElemNumToReduce / 2 elements, and store the result in
2490         // ElemNumToReduce / 2 elements in another vector.
2491 
2492         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2493         if (ResultElements < ElemNum)
2494           return false;
2495 
2496         if (ElemNumToReduce == 1)
2497           return false;
2498         if (!isa<UndefValue>(U->getOperand(1)))
2499           return false;
2500         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2501           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2502             return false;
2503         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2504           if (ShufInst->getMaskValue(i) != -1)
2505             return false;
2506 
2507         // There is only one user of this ShuffleVector instruction, which
2508         // must be a reduction operation.
2509         if (!U->hasOneUse())
2510           return false;
2511 
2512         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2513         if (!U2 || U2->getOpcode() != OpCode)
2514           return false;
2515 
2516         // Check operands of the reduction operation.
2517         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2518             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2519           UsersToVisit.push_back(U2);
2520           ElemNumToReduce /= 2;
2521         } else
2522           return false;
2523       } else if (isa<ExtractElementInst>(U)) {
2524         // At this moment we should have reduced all elements in the vector.
2525         if (ElemNumToReduce != 1)
2526           return false;
2527 
2528         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2529         if (!Val || Val->getZExtValue() != 0)
2530           return false;
2531 
2532         ReduxExtracted = true;
2533       } else
2534         return false;
2535     }
2536   }
2537   return ReduxExtracted;
2538 }
2539 
2540 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2541   SDValue Op1 = getValue(I.getOperand(0));
2542   SDValue Op2 = getValue(I.getOperand(1));
2543 
2544   bool nuw = false;
2545   bool nsw = false;
2546   bool exact = false;
2547   bool vec_redux = false;
2548   FastMathFlags FMF;
2549 
2550   if (const OverflowingBinaryOperator *OFBinOp =
2551           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2552     nuw = OFBinOp->hasNoUnsignedWrap();
2553     nsw = OFBinOp->hasNoSignedWrap();
2554   }
2555   if (const PossiblyExactOperator *ExactOp =
2556           dyn_cast<const PossiblyExactOperator>(&I))
2557     exact = ExactOp->isExact();
2558   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2559     FMF = FPOp->getFastMathFlags();
2560 
2561   if (isVectorReductionOp(&I)) {
2562     vec_redux = true;
2563     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2564   }
2565 
2566   SDNodeFlags Flags;
2567   Flags.setExact(exact);
2568   Flags.setNoSignedWrap(nsw);
2569   Flags.setNoUnsignedWrap(nuw);
2570   Flags.setVectorReduction(vec_redux);
2571   if (EnableFMFInDAG) {
2572     Flags.setAllowReciprocal(FMF.allowReciprocal());
2573     Flags.setNoInfs(FMF.noInfs());
2574     Flags.setNoNaNs(FMF.noNaNs());
2575     Flags.setNoSignedZeros(FMF.noSignedZeros());
2576     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2577   }
2578   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2579                                      Op1, Op2, &Flags);
2580   setValue(&I, BinNodeValue);
2581 }
2582 
2583 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2584   SDValue Op1 = getValue(I.getOperand(0));
2585   SDValue Op2 = getValue(I.getOperand(1));
2586 
2587   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2588       Op2.getValueType(), DAG.getDataLayout());
2589 
2590   // Coerce the shift amount to the right type if we can.
2591   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2592     unsigned ShiftSize = ShiftTy.getSizeInBits();
2593     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2594     SDLoc DL = getCurSDLoc();
2595 
2596     // If the operand is smaller than the shift count type, promote it.
2597     if (ShiftSize > Op2Size)
2598       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2599 
2600     // If the operand is larger than the shift count type but the shift
2601     // count type has enough bits to represent any shift value, truncate
2602     // it now. This is a common case and it exposes the truncate to
2603     // optimization early.
2604     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2605       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2606     // Otherwise we'll need to temporarily settle for some other convenient
2607     // type.  Type legalization will make adjustments once the shiftee is split.
2608     else
2609       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2610   }
2611 
2612   bool nuw = false;
2613   bool nsw = false;
2614   bool exact = false;
2615 
2616   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2617 
2618     if (const OverflowingBinaryOperator *OFBinOp =
2619             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2620       nuw = OFBinOp->hasNoUnsignedWrap();
2621       nsw = OFBinOp->hasNoSignedWrap();
2622     }
2623     if (const PossiblyExactOperator *ExactOp =
2624             dyn_cast<const PossiblyExactOperator>(&I))
2625       exact = ExactOp->isExact();
2626   }
2627   SDNodeFlags Flags;
2628   Flags.setExact(exact);
2629   Flags.setNoSignedWrap(nsw);
2630   Flags.setNoUnsignedWrap(nuw);
2631   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2632                             &Flags);
2633   setValue(&I, Res);
2634 }
2635 
2636 void SelectionDAGBuilder::visitSDiv(const User &I) {
2637   SDValue Op1 = getValue(I.getOperand(0));
2638   SDValue Op2 = getValue(I.getOperand(1));
2639 
2640   SDNodeFlags Flags;
2641   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2642                  cast<PossiblyExactOperator>(&I)->isExact());
2643   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2644                            Op2, &Flags));
2645 }
2646 
2647 void SelectionDAGBuilder::visitICmp(const User &I) {
2648   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2649   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2650     predicate = IC->getPredicate();
2651   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2652     predicate = ICmpInst::Predicate(IC->getPredicate());
2653   SDValue Op1 = getValue(I.getOperand(0));
2654   SDValue Op2 = getValue(I.getOperand(1));
2655   ISD::CondCode Opcode = getICmpCondCode(predicate);
2656 
2657   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2658                                                         I.getType());
2659   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2660 }
2661 
2662 void SelectionDAGBuilder::visitFCmp(const User &I) {
2663   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2664   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2665     predicate = FC->getPredicate();
2666   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2667     predicate = FCmpInst::Predicate(FC->getPredicate());
2668   SDValue Op1 = getValue(I.getOperand(0));
2669   SDValue Op2 = getValue(I.getOperand(1));
2670   ISD::CondCode Condition = getFCmpCondCode(predicate);
2671 
2672   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2673   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2674   // further optimization, but currently FMF is only applicable to binary nodes.
2675   if (TM.Options.NoNaNsFPMath)
2676     Condition = getFCmpCodeWithoutNaN(Condition);
2677   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2678                                                         I.getType());
2679   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2680 }
2681 
2682 void SelectionDAGBuilder::visitSelect(const User &I) {
2683   SmallVector<EVT, 4> ValueVTs;
2684   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2685                   ValueVTs);
2686   unsigned NumValues = ValueVTs.size();
2687   if (NumValues == 0) return;
2688 
2689   SmallVector<SDValue, 4> Values(NumValues);
2690   SDValue Cond     = getValue(I.getOperand(0));
2691   SDValue LHSVal   = getValue(I.getOperand(1));
2692   SDValue RHSVal   = getValue(I.getOperand(2));
2693   auto BaseOps = {Cond};
2694   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2695     ISD::VSELECT : ISD::SELECT;
2696 
2697   // Min/max matching is only viable if all output VTs are the same.
2698   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2699     EVT VT = ValueVTs[0];
2700     LLVMContext &Ctx = *DAG.getContext();
2701     auto &TLI = DAG.getTargetLoweringInfo();
2702 
2703     // We care about the legality of the operation after it has been type
2704     // legalized.
2705     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2706            VT != TLI.getTypeToTransformTo(Ctx, VT))
2707       VT = TLI.getTypeToTransformTo(Ctx, VT);
2708 
2709     // If the vselect is legal, assume we want to leave this as a vector setcc +
2710     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2711     // min/max is legal on the scalar type.
2712     bool UseScalarMinMax = VT.isVector() &&
2713       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2714 
2715     Value *LHS, *RHS;
2716     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2717     ISD::NodeType Opc = ISD::DELETED_NODE;
2718     switch (SPR.Flavor) {
2719     case SPF_UMAX:    Opc = ISD::UMAX; break;
2720     case SPF_UMIN:    Opc = ISD::UMIN; break;
2721     case SPF_SMAX:    Opc = ISD::SMAX; break;
2722     case SPF_SMIN:    Opc = ISD::SMIN; break;
2723     case SPF_FMINNUM:
2724       switch (SPR.NaNBehavior) {
2725       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2726       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2727       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2728       case SPNB_RETURNS_ANY: {
2729         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2730           Opc = ISD::FMINNUM;
2731         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2732           Opc = ISD::FMINNAN;
2733         else if (UseScalarMinMax)
2734           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2735             ISD::FMINNUM : ISD::FMINNAN;
2736         break;
2737       }
2738       }
2739       break;
2740     case SPF_FMAXNUM:
2741       switch (SPR.NaNBehavior) {
2742       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2743       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2744       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2745       case SPNB_RETURNS_ANY:
2746 
2747         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2748           Opc = ISD::FMAXNUM;
2749         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2750           Opc = ISD::FMAXNAN;
2751         else if (UseScalarMinMax)
2752           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2753             ISD::FMAXNUM : ISD::FMAXNAN;
2754         break;
2755       }
2756       break;
2757     default: break;
2758     }
2759 
2760     if (Opc != ISD::DELETED_NODE &&
2761         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2762          (UseScalarMinMax &&
2763           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2764         // If the underlying comparison instruction is used by any other
2765         // instruction, the consumed instructions won't be destroyed, so it is
2766         // not profitable to convert to a min/max.
2767         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2768       OpCode = Opc;
2769       LHSVal = getValue(LHS);
2770       RHSVal = getValue(RHS);
2771       BaseOps = {};
2772     }
2773   }
2774 
2775   for (unsigned i = 0; i != NumValues; ++i) {
2776     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2777     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2778     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2779     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2780                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2781                             Ops);
2782   }
2783 
2784   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2785                            DAG.getVTList(ValueVTs), Values));
2786 }
2787 
2788 void SelectionDAGBuilder::visitTrunc(const User &I) {
2789   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2790   SDValue N = getValue(I.getOperand(0));
2791   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2792                                                         I.getType());
2793   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2794 }
2795 
2796 void SelectionDAGBuilder::visitZExt(const User &I) {
2797   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2798   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2799   SDValue N = getValue(I.getOperand(0));
2800   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2801                                                         I.getType());
2802   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2803 }
2804 
2805 void SelectionDAGBuilder::visitSExt(const User &I) {
2806   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2807   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2808   SDValue N = getValue(I.getOperand(0));
2809   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2810                                                         I.getType());
2811   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2812 }
2813 
2814 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2815   // FPTrunc is never a no-op cast, no need to check
2816   SDValue N = getValue(I.getOperand(0));
2817   SDLoc dl = getCurSDLoc();
2818   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2819   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2820   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2821                            DAG.getTargetConstant(
2822                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2823 }
2824 
2825 void SelectionDAGBuilder::visitFPExt(const User &I) {
2826   // FPExt is never a no-op cast, no need to check
2827   SDValue N = getValue(I.getOperand(0));
2828   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2829                                                         I.getType());
2830   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2831 }
2832 
2833 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2834   // FPToUI is never a no-op cast, no need to check
2835   SDValue N = getValue(I.getOperand(0));
2836   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2837                                                         I.getType());
2838   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2839 }
2840 
2841 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2842   // FPToSI is never a no-op cast, no need to check
2843   SDValue N = getValue(I.getOperand(0));
2844   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2845                                                         I.getType());
2846   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2847 }
2848 
2849 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2850   // UIToFP is never a no-op cast, no need to check
2851   SDValue N = getValue(I.getOperand(0));
2852   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2853                                                         I.getType());
2854   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2855 }
2856 
2857 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2858   // SIToFP is never a no-op cast, no need to check
2859   SDValue N = getValue(I.getOperand(0));
2860   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2861                                                         I.getType());
2862   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2863 }
2864 
2865 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2866   // What to do depends on the size of the integer and the size of the pointer.
2867   // We can either truncate, zero extend, or no-op, accordingly.
2868   SDValue N = getValue(I.getOperand(0));
2869   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2870                                                         I.getType());
2871   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2872 }
2873 
2874 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2875   // What to do depends on the size of the integer and the size of the pointer.
2876   // We can either truncate, zero extend, or no-op, accordingly.
2877   SDValue N = getValue(I.getOperand(0));
2878   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2879                                                         I.getType());
2880   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2881 }
2882 
2883 void SelectionDAGBuilder::visitBitCast(const User &I) {
2884   SDValue N = getValue(I.getOperand(0));
2885   SDLoc dl = getCurSDLoc();
2886   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2887                                                         I.getType());
2888 
2889   // BitCast assures us that source and destination are the same size so this is
2890   // either a BITCAST or a no-op.
2891   if (DestVT != N.getValueType())
2892     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2893                              DestVT, N)); // convert types.
2894   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2895   // might fold any kind of constant expression to an integer constant and that
2896   // is not what we are looking for. Only regcognize a bitcast of a genuine
2897   // constant integer as an opaque constant.
2898   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2899     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2900                                  /*isOpaque*/true));
2901   else
2902     setValue(&I, N);            // noop cast.
2903 }
2904 
2905 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2906   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2907   const Value *SV = I.getOperand(0);
2908   SDValue N = getValue(SV);
2909   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2910 
2911   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2912   unsigned DestAS = I.getType()->getPointerAddressSpace();
2913 
2914   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2915     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2916 
2917   setValue(&I, N);
2918 }
2919 
2920 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2921   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2922   SDValue InVec = getValue(I.getOperand(0));
2923   SDValue InVal = getValue(I.getOperand(1));
2924   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2925                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2926   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2927                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2928                            InVec, InVal, InIdx));
2929 }
2930 
2931 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2933   SDValue InVec = getValue(I.getOperand(0));
2934   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2935                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2936   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2937                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2938                            InVec, InIdx));
2939 }
2940 
2941 // Utility for visitShuffleVector - Return true if every element in Mask,
2942 // beginning from position Pos and ending in Pos+Size, falls within the
2943 // specified sequential range [L, L+Pos). or is undef.
2944 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2945                                 unsigned Pos, unsigned Size, int Low) {
2946   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2947     if (Mask[i] >= 0 && Mask[i] != Low)
2948       return false;
2949   return true;
2950 }
2951 
2952 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2953   SDValue Src1 = getValue(I.getOperand(0));
2954   SDValue Src2 = getValue(I.getOperand(1));
2955 
2956   SmallVector<int, 8> Mask;
2957   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2958   unsigned MaskNumElts = Mask.size();
2959 
2960   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2961   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2962   EVT SrcVT = Src1.getValueType();
2963   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2964 
2965   if (SrcNumElts == MaskNumElts) {
2966     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2967                                       &Mask[0]));
2968     return;
2969   }
2970 
2971   // Normalize the shuffle vector since mask and vector length don't match.
2972   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2973     // Mask is longer than the source vectors and is a multiple of the source
2974     // vectors.  We can use concatenate vector to make the mask and vectors
2975     // lengths match.
2976     if (SrcNumElts*2 == MaskNumElts) {
2977       // First check for Src1 in low and Src2 in high
2978       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2979           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2980         // The shuffle is concatenating two vectors together.
2981         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2982                                  VT, Src1, Src2));
2983         return;
2984       }
2985       // Then check for Src2 in low and Src1 in high
2986       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2987           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2988         // The shuffle is concatenating two vectors together.
2989         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2990                                  VT, Src2, Src1));
2991         return;
2992       }
2993     }
2994 
2995     // Pad both vectors with undefs to make them the same length as the mask.
2996     unsigned NumConcat = MaskNumElts / SrcNumElts;
2997     bool Src1U = Src1.isUndef();
2998     bool Src2U = Src2.isUndef();
2999     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3000 
3001     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3002     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3003     MOps1[0] = Src1;
3004     MOps2[0] = Src2;
3005 
3006     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3007                                                   getCurSDLoc(), VT, MOps1);
3008     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3009                                                   getCurSDLoc(), VT, MOps2);
3010 
3011     // Readjust mask for new input vector length.
3012     SmallVector<int, 8> MappedOps;
3013     for (unsigned i = 0; i != MaskNumElts; ++i) {
3014       int Idx = Mask[i];
3015       if (Idx >= (int)SrcNumElts)
3016         Idx -= SrcNumElts - MaskNumElts;
3017       MappedOps.push_back(Idx);
3018     }
3019 
3020     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3021                                       &MappedOps[0]));
3022     return;
3023   }
3024 
3025   if (SrcNumElts > MaskNumElts) {
3026     // Analyze the access pattern of the vector to see if we can extract
3027     // two subvectors and do the shuffle. The analysis is done by calculating
3028     // the range of elements the mask access on both vectors.
3029     int MinRange[2] = { static_cast<int>(SrcNumElts),
3030                         static_cast<int>(SrcNumElts)};
3031     int MaxRange[2] = {-1, -1};
3032 
3033     for (unsigned i = 0; i != MaskNumElts; ++i) {
3034       int Idx = Mask[i];
3035       unsigned Input = 0;
3036       if (Idx < 0)
3037         continue;
3038 
3039       if (Idx >= (int)SrcNumElts) {
3040         Input = 1;
3041         Idx -= SrcNumElts;
3042       }
3043       if (Idx > MaxRange[Input])
3044         MaxRange[Input] = Idx;
3045       if (Idx < MinRange[Input])
3046         MinRange[Input] = Idx;
3047     }
3048 
3049     // Check if the access is smaller than the vector size and can we find
3050     // a reasonable extract index.
3051     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3052                                    // Extract.
3053     int StartIdx[2];  // StartIdx to extract from
3054     for (unsigned Input = 0; Input < 2; ++Input) {
3055       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3056         RangeUse[Input] = 0; // Unused
3057         StartIdx[Input] = 0;
3058         continue;
3059       }
3060 
3061       // Find a good start index that is a multiple of the mask length. Then
3062       // see if the rest of the elements are in range.
3063       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3064       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3065           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3066         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3067     }
3068 
3069     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3070       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3071       return;
3072     }
3073     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3074       // Extract appropriate subvector and generate a vector shuffle
3075       for (unsigned Input = 0; Input < 2; ++Input) {
3076         SDValue &Src = Input == 0 ? Src1 : Src2;
3077         if (RangeUse[Input] == 0)
3078           Src = DAG.getUNDEF(VT);
3079         else {
3080           SDLoc dl = getCurSDLoc();
3081           Src = DAG.getNode(
3082               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
3083               DAG.getConstant(StartIdx[Input], dl,
3084                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3085         }
3086       }
3087 
3088       // Calculate new mask.
3089       SmallVector<int, 8> MappedOps;
3090       for (unsigned i = 0; i != MaskNumElts; ++i) {
3091         int Idx = Mask[i];
3092         if (Idx >= 0) {
3093           if (Idx < (int)SrcNumElts)
3094             Idx -= StartIdx[0];
3095           else
3096             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3097         }
3098         MappedOps.push_back(Idx);
3099       }
3100 
3101       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3102                                         &MappedOps[0]));
3103       return;
3104     }
3105   }
3106 
3107   // We can't use either concat vectors or extract subvectors so fall back to
3108   // replacing the shuffle with extract and build vector.
3109   // to insert and build vector.
3110   EVT EltVT = VT.getVectorElementType();
3111   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3112   SDLoc dl = getCurSDLoc();
3113   SmallVector<SDValue,8> Ops;
3114   for (unsigned i = 0; i != MaskNumElts; ++i) {
3115     int Idx = Mask[i];
3116     SDValue Res;
3117 
3118     if (Idx < 0) {
3119       Res = DAG.getUNDEF(EltVT);
3120     } else {
3121       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3122       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3123 
3124       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3125                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3126     }
3127 
3128     Ops.push_back(Res);
3129   }
3130 
3131   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3132 }
3133 
3134 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3135   const Value *Op0 = I.getOperand(0);
3136   const Value *Op1 = I.getOperand(1);
3137   Type *AggTy = I.getType();
3138   Type *ValTy = Op1->getType();
3139   bool IntoUndef = isa<UndefValue>(Op0);
3140   bool FromUndef = isa<UndefValue>(Op1);
3141 
3142   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3143 
3144   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3145   SmallVector<EVT, 4> AggValueVTs;
3146   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3147   SmallVector<EVT, 4> ValValueVTs;
3148   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3149 
3150   unsigned NumAggValues = AggValueVTs.size();
3151   unsigned NumValValues = ValValueVTs.size();
3152   SmallVector<SDValue, 4> Values(NumAggValues);
3153 
3154   // Ignore an insertvalue that produces an empty object
3155   if (!NumAggValues) {
3156     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3157     return;
3158   }
3159 
3160   SDValue Agg = getValue(Op0);
3161   unsigned i = 0;
3162   // Copy the beginning value(s) from the original aggregate.
3163   for (; i != LinearIndex; ++i)
3164     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3165                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3166   // Copy values from the inserted value(s).
3167   if (NumValValues) {
3168     SDValue Val = getValue(Op1);
3169     for (; i != LinearIndex + NumValValues; ++i)
3170       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3171                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3172   }
3173   // Copy remaining value(s) from the original aggregate.
3174   for (; i != NumAggValues; ++i)
3175     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3176                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3177 
3178   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3179                            DAG.getVTList(AggValueVTs), Values));
3180 }
3181 
3182 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3183   const Value *Op0 = I.getOperand(0);
3184   Type *AggTy = Op0->getType();
3185   Type *ValTy = I.getType();
3186   bool OutOfUndef = isa<UndefValue>(Op0);
3187 
3188   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3189 
3190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3191   SmallVector<EVT, 4> ValValueVTs;
3192   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3193 
3194   unsigned NumValValues = ValValueVTs.size();
3195 
3196   // Ignore a extractvalue that produces an empty object
3197   if (!NumValValues) {
3198     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3199     return;
3200   }
3201 
3202   SmallVector<SDValue, 4> Values(NumValValues);
3203 
3204   SDValue Agg = getValue(Op0);
3205   // Copy out the selected value(s).
3206   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3207     Values[i - LinearIndex] =
3208       OutOfUndef ?
3209         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3210         SDValue(Agg.getNode(), Agg.getResNo() + i);
3211 
3212   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3213                            DAG.getVTList(ValValueVTs), Values));
3214 }
3215 
3216 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3217   Value *Op0 = I.getOperand(0);
3218   // Note that the pointer operand may be a vector of pointers. Take the scalar
3219   // element which holds a pointer.
3220   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3221   SDValue N = getValue(Op0);
3222   SDLoc dl = getCurSDLoc();
3223 
3224   // Normalize Vector GEP - all scalar operands should be converted to the
3225   // splat vector.
3226   unsigned VectorWidth = I.getType()->isVectorTy() ?
3227     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3228 
3229   if (VectorWidth && !N.getValueType().isVector()) {
3230     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
3231     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3232     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3233   }
3234   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3235        GTI != E; ++GTI) {
3236     const Value *Idx = GTI.getOperand();
3237     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3238       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3239       if (Field) {
3240         // N = N + Offset
3241         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3242 
3243         // In an inbouds GEP with an offset that is nonnegative even when
3244         // interpreted as signed, assume there is no unsigned overflow.
3245         SDNodeFlags Flags;
3246         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3247           Flags.setNoUnsignedWrap(true);
3248 
3249         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3250                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3251       }
3252     } else {
3253       MVT PtrTy =
3254           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3255       unsigned PtrSize = PtrTy.getSizeInBits();
3256       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3257 
3258       // If this is a scalar constant or a splat vector of constants,
3259       // handle it quickly.
3260       const auto *CI = dyn_cast<ConstantInt>(Idx);
3261       if (!CI && isa<ConstantDataVector>(Idx) &&
3262           cast<ConstantDataVector>(Idx)->getSplatValue())
3263         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3264 
3265       if (CI) {
3266         if (CI->isZero())
3267           continue;
3268         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3269         SDValue OffsVal = VectorWidth ?
3270           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3271           DAG.getConstant(Offs, dl, PtrTy);
3272 
3273         // In an inbouds GEP with an offset that is nonnegative even when
3274         // interpreted as signed, assume there is no unsigned overflow.
3275         SDNodeFlags Flags;
3276         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3277           Flags.setNoUnsignedWrap(true);
3278 
3279         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3280         continue;
3281       }
3282 
3283       // N = N + Idx * ElementSize;
3284       SDValue IdxN = getValue(Idx);
3285 
3286       if (!IdxN.getValueType().isVector() && VectorWidth) {
3287         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3288         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3289         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3290       }
3291       // If the index is smaller or larger than intptr_t, truncate or extend
3292       // it.
3293       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3294 
3295       // If this is a multiply by a power of two, turn it into a shl
3296       // immediately.  This is a very common case.
3297       if (ElementSize != 1) {
3298         if (ElementSize.isPowerOf2()) {
3299           unsigned Amt = ElementSize.logBase2();
3300           IdxN = DAG.getNode(ISD::SHL, dl,
3301                              N.getValueType(), IdxN,
3302                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3303         } else {
3304           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3305           IdxN = DAG.getNode(ISD::MUL, dl,
3306                              N.getValueType(), IdxN, Scale);
3307         }
3308       }
3309 
3310       N = DAG.getNode(ISD::ADD, dl,
3311                       N.getValueType(), N, IdxN);
3312     }
3313   }
3314 
3315   setValue(&I, N);
3316 }
3317 
3318 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3319   // If this is a fixed sized alloca in the entry block of the function,
3320   // allocate it statically on the stack.
3321   if (FuncInfo.StaticAllocaMap.count(&I))
3322     return;   // getValue will auto-populate this.
3323 
3324   SDLoc dl = getCurSDLoc();
3325   Type *Ty = I.getAllocatedType();
3326   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3327   auto &DL = DAG.getDataLayout();
3328   uint64_t TySize = DL.getTypeAllocSize(Ty);
3329   unsigned Align =
3330       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3331 
3332   SDValue AllocSize = getValue(I.getArraySize());
3333 
3334   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3335   if (AllocSize.getValueType() != IntPtr)
3336     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3337 
3338   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3339                           AllocSize,
3340                           DAG.getConstant(TySize, dl, IntPtr));
3341 
3342   // Handle alignment.  If the requested alignment is less than or equal to
3343   // the stack alignment, ignore it.  If the size is greater than or equal to
3344   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3345   unsigned StackAlign =
3346       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3347   if (Align <= StackAlign)
3348     Align = 0;
3349 
3350   // Round the size of the allocation up to the stack alignment size
3351   // by add SA-1 to the size. This doesn't overflow because we're computing
3352   // an address inside an alloca.
3353   SDNodeFlags Flags;
3354   Flags.setNoUnsignedWrap(true);
3355   AllocSize = DAG.getNode(ISD::ADD, dl,
3356                           AllocSize.getValueType(), AllocSize,
3357                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3358 
3359   // Mask out the low bits for alignment purposes.
3360   AllocSize = DAG.getNode(ISD::AND, dl,
3361                           AllocSize.getValueType(), AllocSize,
3362                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3363                                                 dl));
3364 
3365   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3366   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3367   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3368   setValue(&I, DSA);
3369   DAG.setRoot(DSA.getValue(1));
3370 
3371   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3372 }
3373 
3374 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3375   if (I.isAtomic())
3376     return visitAtomicLoad(I);
3377 
3378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3379   const Value *SV = I.getOperand(0);
3380   if (TLI.supportSwiftError()) {
3381     // Swifterror values can come from either a function parameter with
3382     // swifterror attribute or an alloca with swifterror attribute.
3383     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3384       if (Arg->hasSwiftErrorAttr())
3385         return visitLoadFromSwiftError(I);
3386     }
3387 
3388     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3389       if (Alloca->isSwiftError())
3390         return visitLoadFromSwiftError(I);
3391     }
3392   }
3393 
3394   SDValue Ptr = getValue(SV);
3395 
3396   Type *Ty = I.getType();
3397 
3398   bool isVolatile = I.isVolatile();
3399   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3400 
3401   // The IR notion of invariant_load only guarantees that all *non-faulting*
3402   // invariant loads result in the same value.  The MI notion of invariant load
3403   // guarantees that the load can be legally moved to any location within its
3404   // containing function.  The MI notion of invariant_load is stronger than the
3405   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3406   // with a guarantee that the location being loaded from is dereferenceable
3407   // throughout the function's lifetime.
3408 
3409   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3410                      isDereferenceablePointer(SV, DAG.getDataLayout());
3411   unsigned Alignment = I.getAlignment();
3412 
3413   AAMDNodes AAInfo;
3414   I.getAAMetadata(AAInfo);
3415   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3416 
3417   SmallVector<EVT, 4> ValueVTs;
3418   SmallVector<uint64_t, 4> Offsets;
3419   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3420   unsigned NumValues = ValueVTs.size();
3421   if (NumValues == 0)
3422     return;
3423 
3424   SDValue Root;
3425   bool ConstantMemory = false;
3426   if (isVolatile || NumValues > MaxParallelChains)
3427     // Serialize volatile loads with other side effects.
3428     Root = getRoot();
3429   else if (AA->pointsToConstantMemory(MemoryLocation(
3430                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3431     // Do not serialize (non-volatile) loads of constant memory with anything.
3432     Root = DAG.getEntryNode();
3433     ConstantMemory = true;
3434   } else {
3435     // Do not serialize non-volatile loads against each other.
3436     Root = DAG.getRoot();
3437   }
3438 
3439   SDLoc dl = getCurSDLoc();
3440 
3441   if (isVolatile)
3442     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3443 
3444   // An aggregate load cannot wrap around the address space, so offsets to its
3445   // parts don't wrap either.
3446   SDNodeFlags Flags;
3447   Flags.setNoUnsignedWrap(true);
3448 
3449   SmallVector<SDValue, 4> Values(NumValues);
3450   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3451   EVT PtrVT = Ptr.getValueType();
3452   unsigned ChainI = 0;
3453   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3454     // Serializing loads here may result in excessive register pressure, and
3455     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3456     // could recover a bit by hoisting nodes upward in the chain by recognizing
3457     // they are side-effect free or do not alias. The optimizer should really
3458     // avoid this case by converting large object/array copies to llvm.memcpy
3459     // (MaxParallelChains should always remain as failsafe).
3460     if (ChainI == MaxParallelChains) {
3461       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3462       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3463                                   makeArrayRef(Chains.data(), ChainI));
3464       Root = Chain;
3465       ChainI = 0;
3466     }
3467     SDValue A = DAG.getNode(ISD::ADD, dl,
3468                             PtrVT, Ptr,
3469                             DAG.getConstant(Offsets[i], dl, PtrVT),
3470                             &Flags);
3471     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3472                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3473                             isNonTemporal, isInvariant, Alignment, AAInfo,
3474                             Ranges);
3475 
3476     Values[i] = L;
3477     Chains[ChainI] = L.getValue(1);
3478   }
3479 
3480   if (!ConstantMemory) {
3481     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3482                                 makeArrayRef(Chains.data(), ChainI));
3483     if (isVolatile)
3484       DAG.setRoot(Chain);
3485     else
3486       PendingLoads.push_back(Chain);
3487   }
3488 
3489   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3490                            DAG.getVTList(ValueVTs), Values));
3491 }
3492 
3493 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3495   assert(TLI.supportSwiftError() &&
3496          "call visitStoreToSwiftError when backend supports swifterror");
3497 
3498   SmallVector<EVT, 4> ValueVTs;
3499   SmallVector<uint64_t, 4> Offsets;
3500   const Value *SrcV = I.getOperand(0);
3501   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3502                   SrcV->getType(), ValueVTs, &Offsets);
3503   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3504          "expect a single EVT for swifterror");
3505 
3506   SDValue Src = getValue(SrcV);
3507   // Create a virtual register, then update the virtual register.
3508   auto &DL = DAG.getDataLayout();
3509   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3510   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3511   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3512   // Chain can be getRoot or getControlRoot.
3513   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3514                                       SDValue(Src.getNode(), Src.getResNo()));
3515   DAG.setRoot(CopyNode);
3516   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3517 }
3518 
3519 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3520   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3521          "call visitLoadFromSwiftError when backend supports swifterror");
3522 
3523   assert(!I.isVolatile() &&
3524          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3525          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3526          "Support volatile, non temporal, invariant for load_from_swift_error");
3527 
3528   const Value *SV = I.getOperand(0);
3529   Type *Ty = I.getType();
3530   AAMDNodes AAInfo;
3531   I.getAAMetadata(AAInfo);
3532   assert(!AA->pointsToConstantMemory(MemoryLocation(
3533              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3534          "load_from_swift_error should not be constant memory");
3535 
3536   SmallVector<EVT, 4> ValueVTs;
3537   SmallVector<uint64_t, 4> Offsets;
3538   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3539                   ValueVTs, &Offsets);
3540   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3541          "expect a single EVT for swifterror");
3542 
3543   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3544   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3545                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3546                                  ValueVTs[0]);
3547 
3548   setValue(&I, L);
3549 }
3550 
3551 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3552   if (I.isAtomic())
3553     return visitAtomicStore(I);
3554 
3555   const Value *SrcV = I.getOperand(0);
3556   const Value *PtrV = I.getOperand(1);
3557 
3558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3559   if (TLI.supportSwiftError()) {
3560     // Swifterror values can come from either a function parameter with
3561     // swifterror attribute or an alloca with swifterror attribute.
3562     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3563       if (Arg->hasSwiftErrorAttr())
3564         return visitStoreToSwiftError(I);
3565     }
3566 
3567     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3568       if (Alloca->isSwiftError())
3569         return visitStoreToSwiftError(I);
3570     }
3571   }
3572 
3573   SmallVector<EVT, 4> ValueVTs;
3574   SmallVector<uint64_t, 4> Offsets;
3575   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3576                   SrcV->getType(), ValueVTs, &Offsets);
3577   unsigned NumValues = ValueVTs.size();
3578   if (NumValues == 0)
3579     return;
3580 
3581   // Get the lowered operands. Note that we do this after
3582   // checking if NumResults is zero, because with zero results
3583   // the operands won't have values in the map.
3584   SDValue Src = getValue(SrcV);
3585   SDValue Ptr = getValue(PtrV);
3586 
3587   SDValue Root = getRoot();
3588   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3589   EVT PtrVT = Ptr.getValueType();
3590   bool isVolatile = I.isVolatile();
3591   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3592   unsigned Alignment = I.getAlignment();
3593   SDLoc dl = getCurSDLoc();
3594 
3595   AAMDNodes AAInfo;
3596   I.getAAMetadata(AAInfo);
3597 
3598   // An aggregate load cannot wrap around the address space, so offsets to its
3599   // parts don't wrap either.
3600   SDNodeFlags Flags;
3601   Flags.setNoUnsignedWrap(true);
3602 
3603   unsigned ChainI = 0;
3604   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3605     // See visitLoad comments.
3606     if (ChainI == MaxParallelChains) {
3607       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3608                                   makeArrayRef(Chains.data(), ChainI));
3609       Root = Chain;
3610       ChainI = 0;
3611     }
3612     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3613                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3614     SDValue St = DAG.getStore(Root, dl,
3615                               SDValue(Src.getNode(), Src.getResNo() + i),
3616                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3617                               isVolatile, isNonTemporal, Alignment, AAInfo);
3618     Chains[ChainI] = St;
3619   }
3620 
3621   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3622                                   makeArrayRef(Chains.data(), ChainI));
3623   DAG.setRoot(StoreNode);
3624 }
3625 
3626 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3627   SDLoc sdl = getCurSDLoc();
3628 
3629   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3630   Value  *PtrOperand = I.getArgOperand(1);
3631   SDValue Ptr = getValue(PtrOperand);
3632   SDValue Src0 = getValue(I.getArgOperand(0));
3633   SDValue Mask = getValue(I.getArgOperand(3));
3634   EVT VT = Src0.getValueType();
3635   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3636   if (!Alignment)
3637     Alignment = DAG.getEVTAlignment(VT);
3638 
3639   AAMDNodes AAInfo;
3640   I.getAAMetadata(AAInfo);
3641 
3642   MachineMemOperand *MMO =
3643     DAG.getMachineFunction().
3644     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3645                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3646                           Alignment, AAInfo);
3647   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3648                                          MMO, false);
3649   DAG.setRoot(StoreNode);
3650   setValue(&I, StoreNode);
3651 }
3652 
3653 // Get a uniform base for the Gather/Scatter intrinsic.
3654 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3655 // We try to represent it as a base pointer + vector of indices.
3656 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3657 // The first operand of the GEP may be a single pointer or a vector of pointers
3658 // Example:
3659 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3660 //  or
3661 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3662 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3663 //
3664 // When the first GEP operand is a single pointer - it is the uniform base we
3665 // are looking for. If first operand of the GEP is a splat vector - we
3666 // extract the spalt value and use it as a uniform base.
3667 // In all other cases the function returns 'false'.
3668 //
3669 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3670                            SelectionDAGBuilder* SDB) {
3671 
3672   SelectionDAG& DAG = SDB->DAG;
3673   LLVMContext &Context = *DAG.getContext();
3674 
3675   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3676   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3677   if (!GEP || GEP->getNumOperands() > 2)
3678     return false;
3679 
3680   const Value *GEPPtr = GEP->getPointerOperand();
3681   if (!GEPPtr->getType()->isVectorTy())
3682     Ptr = GEPPtr;
3683   else if (!(Ptr = getSplatValue(GEPPtr)))
3684     return false;
3685 
3686   Value *IndexVal = GEP->getOperand(1);
3687 
3688   // The operands of the GEP may be defined in another basic block.
3689   // In this case we'll not find nodes for the operands.
3690   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3691     return false;
3692 
3693   Base = SDB->getValue(Ptr);
3694   Index = SDB->getValue(IndexVal);
3695 
3696   // Suppress sign extension.
3697   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3698     if (SDB->findValue(Sext->getOperand(0))) {
3699       IndexVal = Sext->getOperand(0);
3700       Index = SDB->getValue(IndexVal);
3701     }
3702   }
3703   if (!Index.getValueType().isVector()) {
3704     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3705     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3706     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3707     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3708   }
3709   return true;
3710 }
3711 
3712 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3713   SDLoc sdl = getCurSDLoc();
3714 
3715   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3716   const Value *Ptr = I.getArgOperand(1);
3717   SDValue Src0 = getValue(I.getArgOperand(0));
3718   SDValue Mask = getValue(I.getArgOperand(3));
3719   EVT VT = Src0.getValueType();
3720   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3721   if (!Alignment)
3722     Alignment = DAG.getEVTAlignment(VT);
3723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3724 
3725   AAMDNodes AAInfo;
3726   I.getAAMetadata(AAInfo);
3727 
3728   SDValue Base;
3729   SDValue Index;
3730   const Value *BasePtr = Ptr;
3731   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3732 
3733   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3734   MachineMemOperand *MMO = DAG.getMachineFunction().
3735     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3736                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3737                          Alignment, AAInfo);
3738   if (!UniformBase) {
3739     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3740     Index = getValue(Ptr);
3741   }
3742   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3743   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3744                                          Ops, MMO);
3745   DAG.setRoot(Scatter);
3746   setValue(&I, Scatter);
3747 }
3748 
3749 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3750   SDLoc sdl = getCurSDLoc();
3751 
3752   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3753   Value  *PtrOperand = I.getArgOperand(0);
3754   SDValue Ptr = getValue(PtrOperand);
3755   SDValue Src0 = getValue(I.getArgOperand(3));
3756   SDValue Mask = getValue(I.getArgOperand(2));
3757 
3758   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3759   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3760   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3761   if (!Alignment)
3762     Alignment = DAG.getEVTAlignment(VT);
3763 
3764   AAMDNodes AAInfo;
3765   I.getAAMetadata(AAInfo);
3766   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3767 
3768   SDValue InChain = DAG.getRoot();
3769   if (AA->pointsToConstantMemory(MemoryLocation(
3770           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3771           AAInfo))) {
3772     // Do not serialize (non-volatile) loads of constant memory with anything.
3773     InChain = DAG.getEntryNode();
3774   }
3775 
3776   MachineMemOperand *MMO =
3777     DAG.getMachineFunction().
3778     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3779                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3780                           Alignment, AAInfo, Ranges);
3781 
3782   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3783                                    ISD::NON_EXTLOAD);
3784   SDValue OutChain = Load.getValue(1);
3785   DAG.setRoot(OutChain);
3786   setValue(&I, Load);
3787 }
3788 
3789 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3790   SDLoc sdl = getCurSDLoc();
3791 
3792   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3793   const Value *Ptr = I.getArgOperand(0);
3794   SDValue Src0 = getValue(I.getArgOperand(3));
3795   SDValue Mask = getValue(I.getArgOperand(2));
3796 
3797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3798   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3799   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3800   if (!Alignment)
3801     Alignment = DAG.getEVTAlignment(VT);
3802 
3803   AAMDNodes AAInfo;
3804   I.getAAMetadata(AAInfo);
3805   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3806 
3807   SDValue Root = DAG.getRoot();
3808   SDValue Base;
3809   SDValue Index;
3810   const Value *BasePtr = Ptr;
3811   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3812   bool ConstantMemory = false;
3813   if (UniformBase &&
3814       AA->pointsToConstantMemory(MemoryLocation(
3815           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3816           AAInfo))) {
3817     // Do not serialize (non-volatile) loads of constant memory with anything.
3818     Root = DAG.getEntryNode();
3819     ConstantMemory = true;
3820   }
3821 
3822   MachineMemOperand *MMO =
3823     DAG.getMachineFunction().
3824     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3825                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3826                          Alignment, AAInfo, Ranges);
3827 
3828   if (!UniformBase) {
3829     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3830     Index = getValue(Ptr);
3831   }
3832   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3833   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3834                                        Ops, MMO);
3835 
3836   SDValue OutChain = Gather.getValue(1);
3837   if (!ConstantMemory)
3838     PendingLoads.push_back(OutChain);
3839   setValue(&I, Gather);
3840 }
3841 
3842 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3843   SDLoc dl = getCurSDLoc();
3844   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3845   AtomicOrdering FailureOrder = I.getFailureOrdering();
3846   SynchronizationScope Scope = I.getSynchScope();
3847 
3848   SDValue InChain = getRoot();
3849 
3850   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3851   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3852   SDValue L = DAG.getAtomicCmpSwap(
3853       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3854       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3855       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3856       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3857 
3858   SDValue OutChain = L.getValue(2);
3859 
3860   setValue(&I, L);
3861   DAG.setRoot(OutChain);
3862 }
3863 
3864 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3865   SDLoc dl = getCurSDLoc();
3866   ISD::NodeType NT;
3867   switch (I.getOperation()) {
3868   default: llvm_unreachable("Unknown atomicrmw operation");
3869   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3870   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3871   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3872   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3873   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3874   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3875   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3876   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3877   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3878   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3879   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3880   }
3881   AtomicOrdering Order = I.getOrdering();
3882   SynchronizationScope Scope = I.getSynchScope();
3883 
3884   SDValue InChain = getRoot();
3885 
3886   SDValue L =
3887     DAG.getAtomic(NT, dl,
3888                   getValue(I.getValOperand()).getSimpleValueType(),
3889                   InChain,
3890                   getValue(I.getPointerOperand()),
3891                   getValue(I.getValOperand()),
3892                   I.getPointerOperand(),
3893                   /* Alignment=*/ 0, Order, Scope);
3894 
3895   SDValue OutChain = L.getValue(1);
3896 
3897   setValue(&I, L);
3898   DAG.setRoot(OutChain);
3899 }
3900 
3901 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3902   SDLoc dl = getCurSDLoc();
3903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3904   SDValue Ops[3];
3905   Ops[0] = getRoot();
3906   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3907                            TLI.getPointerTy(DAG.getDataLayout()));
3908   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3909                            TLI.getPointerTy(DAG.getDataLayout()));
3910   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3911 }
3912 
3913 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3914   SDLoc dl = getCurSDLoc();
3915   AtomicOrdering Order = I.getOrdering();
3916   SynchronizationScope Scope = I.getSynchScope();
3917 
3918   SDValue InChain = getRoot();
3919 
3920   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3921   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3922 
3923   if (I.getAlignment() < VT.getSizeInBits() / 8)
3924     report_fatal_error("Cannot generate unaligned atomic load");
3925 
3926   MachineMemOperand *MMO =
3927       DAG.getMachineFunction().
3928       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3929                            MachineMemOperand::MOVolatile |
3930                            MachineMemOperand::MOLoad,
3931                            VT.getStoreSize(),
3932                            I.getAlignment() ? I.getAlignment() :
3933                                               DAG.getEVTAlignment(VT));
3934 
3935   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3936   SDValue L =
3937       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3938                     getValue(I.getPointerOperand()), MMO,
3939                     Order, Scope);
3940 
3941   SDValue OutChain = L.getValue(1);
3942 
3943   setValue(&I, L);
3944   DAG.setRoot(OutChain);
3945 }
3946 
3947 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3948   SDLoc dl = getCurSDLoc();
3949 
3950   AtomicOrdering Order = I.getOrdering();
3951   SynchronizationScope Scope = I.getSynchScope();
3952 
3953   SDValue InChain = getRoot();
3954 
3955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3956   EVT VT =
3957       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3958 
3959   if (I.getAlignment() < VT.getSizeInBits() / 8)
3960     report_fatal_error("Cannot generate unaligned atomic store");
3961 
3962   SDValue OutChain =
3963     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3964                   InChain,
3965                   getValue(I.getPointerOperand()),
3966                   getValue(I.getValueOperand()),
3967                   I.getPointerOperand(), I.getAlignment(),
3968                   Order, Scope);
3969 
3970   DAG.setRoot(OutChain);
3971 }
3972 
3973 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3974 /// node.
3975 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3976                                                unsigned Intrinsic) {
3977   bool HasChain = !I.doesNotAccessMemory();
3978   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3979 
3980   // Build the operand list.
3981   SmallVector<SDValue, 8> Ops;
3982   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3983     if (OnlyLoad) {
3984       // We don't need to serialize loads against other loads.
3985       Ops.push_back(DAG.getRoot());
3986     } else {
3987       Ops.push_back(getRoot());
3988     }
3989   }
3990 
3991   // Info is set by getTgtMemInstrinsic
3992   TargetLowering::IntrinsicInfo Info;
3993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3994   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3995 
3996   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3997   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3998       Info.opc == ISD::INTRINSIC_W_CHAIN)
3999     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4000                                         TLI.getPointerTy(DAG.getDataLayout())));
4001 
4002   // Add all operands of the call to the operand list.
4003   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4004     SDValue Op = getValue(I.getArgOperand(i));
4005     Ops.push_back(Op);
4006   }
4007 
4008   SmallVector<EVT, 4> ValueVTs;
4009   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4010 
4011   if (HasChain)
4012     ValueVTs.push_back(MVT::Other);
4013 
4014   SDVTList VTs = DAG.getVTList(ValueVTs);
4015 
4016   // Create the node.
4017   SDValue Result;
4018   if (IsTgtIntrinsic) {
4019     // This is target intrinsic that touches memory
4020     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4021                                      VTs, Ops, Info.memVT,
4022                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4023                                      Info.align, Info.vol,
4024                                      Info.readMem, Info.writeMem, Info.size);
4025   } else if (!HasChain) {
4026     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4027   } else if (!I.getType()->isVoidTy()) {
4028     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4029   } else {
4030     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4031   }
4032 
4033   if (HasChain) {
4034     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4035     if (OnlyLoad)
4036       PendingLoads.push_back(Chain);
4037     else
4038       DAG.setRoot(Chain);
4039   }
4040 
4041   if (!I.getType()->isVoidTy()) {
4042     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4043       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4044       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4045     } else
4046       Result = lowerRangeToAssertZExt(DAG, I, Result);
4047 
4048     setValue(&I, Result);
4049   }
4050 }
4051 
4052 /// GetSignificand - Get the significand and build it into a floating-point
4053 /// number with exponent of 1:
4054 ///
4055 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4056 ///
4057 /// where Op is the hexadecimal representation of floating point value.
4058 static SDValue
4059 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
4060   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4061                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4062   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4063                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4064   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4065 }
4066 
4067 /// GetExponent - Get the exponent:
4068 ///
4069 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4070 ///
4071 /// where Op is the hexadecimal representation of floating point value.
4072 static SDValue
4073 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
4074             SDLoc dl) {
4075   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4076                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4077   SDValue t1 = DAG.getNode(
4078       ISD::SRL, dl, MVT::i32, t0,
4079       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4080   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4081                            DAG.getConstant(127, dl, MVT::i32));
4082   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4083 }
4084 
4085 /// getF32Constant - Get 32-bit floating point constant.
4086 static SDValue
4087 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
4088   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4089                            MVT::f32);
4090 }
4091 
4092 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
4093                                        SelectionDAG &DAG) {
4094   // TODO: What fast-math-flags should be set on the floating-point nodes?
4095 
4096   //   IntegerPartOfX = ((int32_t)(t0);
4097   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4098 
4099   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4100   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4101   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4102 
4103   //   IntegerPartOfX <<= 23;
4104   IntegerPartOfX = DAG.getNode(
4105       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4106       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4107                                   DAG.getDataLayout())));
4108 
4109   SDValue TwoToFractionalPartOfX;
4110   if (LimitFloatPrecision <= 6) {
4111     // For floating-point precision of 6:
4112     //
4113     //   TwoToFractionalPartOfX =
4114     //     0.997535578f +
4115     //       (0.735607626f + 0.252464424f * x) * x;
4116     //
4117     // error 0.0144103317, which is 6 bits
4118     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4119                              getF32Constant(DAG, 0x3e814304, dl));
4120     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4121                              getF32Constant(DAG, 0x3f3c50c8, dl));
4122     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4123     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4124                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4125   } else if (LimitFloatPrecision <= 12) {
4126     // For floating-point precision of 12:
4127     //
4128     //   TwoToFractionalPartOfX =
4129     //     0.999892986f +
4130     //       (0.696457318f +
4131     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4132     //
4133     // error 0.000107046256, which is 13 to 14 bits
4134     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4135                              getF32Constant(DAG, 0x3da235e3, dl));
4136     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4137                              getF32Constant(DAG, 0x3e65b8f3, dl));
4138     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4139     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4140                              getF32Constant(DAG, 0x3f324b07, dl));
4141     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4142     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4143                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4144   } else { // LimitFloatPrecision <= 18
4145     // For floating-point precision of 18:
4146     //
4147     //   TwoToFractionalPartOfX =
4148     //     0.999999982f +
4149     //       (0.693148872f +
4150     //         (0.240227044f +
4151     //           (0.554906021e-1f +
4152     //             (0.961591928e-2f +
4153     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4154     // error 2.47208000*10^(-7), which is better than 18 bits
4155     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4156                              getF32Constant(DAG, 0x3924b03e, dl));
4157     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4158                              getF32Constant(DAG, 0x3ab24b87, dl));
4159     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4160     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4161                              getF32Constant(DAG, 0x3c1d8c17, dl));
4162     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4163     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4164                              getF32Constant(DAG, 0x3d634a1d, dl));
4165     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4166     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4167                              getF32Constant(DAG, 0x3e75fe14, dl));
4168     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4169     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4170                               getF32Constant(DAG, 0x3f317234, dl));
4171     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4172     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4173                                          getF32Constant(DAG, 0x3f800000, dl));
4174   }
4175 
4176   // Add the exponent into the result in integer domain.
4177   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4178   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4179                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4180 }
4181 
4182 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4183 /// limited-precision mode.
4184 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4185                          const TargetLowering &TLI) {
4186   if (Op.getValueType() == MVT::f32 &&
4187       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4188 
4189     // Put the exponent in the right bit position for later addition to the
4190     // final result:
4191     //
4192     //   #define LOG2OFe 1.4426950f
4193     //   t0 = Op * LOG2OFe
4194 
4195     // TODO: What fast-math-flags should be set here?
4196     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4197                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4198     return getLimitedPrecisionExp2(t0, dl, DAG);
4199   }
4200 
4201   // No special expansion.
4202   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4203 }
4204 
4205 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4206 /// limited-precision mode.
4207 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4208                          const TargetLowering &TLI) {
4209 
4210   // TODO: What fast-math-flags should be set on the floating-point nodes?
4211 
4212   if (Op.getValueType() == MVT::f32 &&
4213       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4214     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4215 
4216     // Scale the exponent by log(2) [0.69314718f].
4217     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4218     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4219                                         getF32Constant(DAG, 0x3f317218, dl));
4220 
4221     // Get the significand and build it into a floating-point number with
4222     // exponent of 1.
4223     SDValue X = GetSignificand(DAG, Op1, dl);
4224 
4225     SDValue LogOfMantissa;
4226     if (LimitFloatPrecision <= 6) {
4227       // For floating-point precision of 6:
4228       //
4229       //   LogofMantissa =
4230       //     -1.1609546f +
4231       //       (1.4034025f - 0.23903021f * x) * x;
4232       //
4233       // error 0.0034276066, which is better than 8 bits
4234       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4235                                getF32Constant(DAG, 0xbe74c456, dl));
4236       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4237                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4238       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4239       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4240                                   getF32Constant(DAG, 0x3f949a29, dl));
4241     } else if (LimitFloatPrecision <= 12) {
4242       // For floating-point precision of 12:
4243       //
4244       //   LogOfMantissa =
4245       //     -1.7417939f +
4246       //       (2.8212026f +
4247       //         (-1.4699568f +
4248       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4249       //
4250       // error 0.000061011436, which is 14 bits
4251       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4252                                getF32Constant(DAG, 0xbd67b6d6, dl));
4253       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4254                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4255       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4256       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4257                                getF32Constant(DAG, 0x3fbc278b, dl));
4258       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4259       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4260                                getF32Constant(DAG, 0x40348e95, dl));
4261       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4262       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4263                                   getF32Constant(DAG, 0x3fdef31a, dl));
4264     } else { // LimitFloatPrecision <= 18
4265       // For floating-point precision of 18:
4266       //
4267       //   LogOfMantissa =
4268       //     -2.1072184f +
4269       //       (4.2372794f +
4270       //         (-3.7029485f +
4271       //           (2.2781945f +
4272       //             (-0.87823314f +
4273       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4274       //
4275       // error 0.0000023660568, which is better than 18 bits
4276       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4277                                getF32Constant(DAG, 0xbc91e5ac, dl));
4278       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4279                                getF32Constant(DAG, 0x3e4350aa, dl));
4280       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4281       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4282                                getF32Constant(DAG, 0x3f60d3e3, dl));
4283       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4284       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4285                                getF32Constant(DAG, 0x4011cdf0, dl));
4286       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4287       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4288                                getF32Constant(DAG, 0x406cfd1c, dl));
4289       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4290       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4291                                getF32Constant(DAG, 0x408797cb, dl));
4292       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4293       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4294                                   getF32Constant(DAG, 0x4006dcab, dl));
4295     }
4296 
4297     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4298   }
4299 
4300   // No special expansion.
4301   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4302 }
4303 
4304 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4305 /// limited-precision mode.
4306 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4307                           const TargetLowering &TLI) {
4308 
4309   // TODO: What fast-math-flags should be set on the floating-point nodes?
4310 
4311   if (Op.getValueType() == MVT::f32 &&
4312       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4313     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4314 
4315     // Get the exponent.
4316     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4317 
4318     // Get the significand and build it into a floating-point number with
4319     // exponent of 1.
4320     SDValue X = GetSignificand(DAG, Op1, dl);
4321 
4322     // Different possible minimax approximations of significand in
4323     // floating-point for various degrees of accuracy over [1,2].
4324     SDValue Log2ofMantissa;
4325     if (LimitFloatPrecision <= 6) {
4326       // For floating-point precision of 6:
4327       //
4328       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4329       //
4330       // error 0.0049451742, which is more than 7 bits
4331       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4332                                getF32Constant(DAG, 0xbeb08fe0, dl));
4333       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4334                                getF32Constant(DAG, 0x40019463, dl));
4335       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4336       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4337                                    getF32Constant(DAG, 0x3fd6633d, dl));
4338     } else if (LimitFloatPrecision <= 12) {
4339       // For floating-point precision of 12:
4340       //
4341       //   Log2ofMantissa =
4342       //     -2.51285454f +
4343       //       (4.07009056f +
4344       //         (-2.12067489f +
4345       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4346       //
4347       // error 0.0000876136000, which is better than 13 bits
4348       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4349                                getF32Constant(DAG, 0xbda7262e, dl));
4350       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4351                                getF32Constant(DAG, 0x3f25280b, dl));
4352       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4353       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4354                                getF32Constant(DAG, 0x4007b923, dl));
4355       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4356       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4357                                getF32Constant(DAG, 0x40823e2f, dl));
4358       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4359       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4360                                    getF32Constant(DAG, 0x4020d29c, dl));
4361     } else { // LimitFloatPrecision <= 18
4362       // For floating-point precision of 18:
4363       //
4364       //   Log2ofMantissa =
4365       //     -3.0400495f +
4366       //       (6.1129976f +
4367       //         (-5.3420409f +
4368       //           (3.2865683f +
4369       //             (-1.2669343f +
4370       //               (0.27515199f -
4371       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4372       //
4373       // error 0.0000018516, which is better than 18 bits
4374       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4375                                getF32Constant(DAG, 0xbcd2769e, dl));
4376       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4377                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4378       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4379       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4380                                getF32Constant(DAG, 0x3fa22ae7, dl));
4381       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4382       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4383                                getF32Constant(DAG, 0x40525723, dl));
4384       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4385       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4386                                getF32Constant(DAG, 0x40aaf200, dl));
4387       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4388       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4389                                getF32Constant(DAG, 0x40c39dad, dl));
4390       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4391       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4392                                    getF32Constant(DAG, 0x4042902c, dl));
4393     }
4394 
4395     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4396   }
4397 
4398   // No special expansion.
4399   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4400 }
4401 
4402 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4403 /// limited-precision mode.
4404 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4405                            const TargetLowering &TLI) {
4406 
4407   // TODO: What fast-math-flags should be set on the floating-point nodes?
4408 
4409   if (Op.getValueType() == MVT::f32 &&
4410       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4411     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4412 
4413     // Scale the exponent by log10(2) [0.30102999f].
4414     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4415     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4416                                         getF32Constant(DAG, 0x3e9a209a, dl));
4417 
4418     // Get the significand and build it into a floating-point number with
4419     // exponent of 1.
4420     SDValue X = GetSignificand(DAG, Op1, dl);
4421 
4422     SDValue Log10ofMantissa;
4423     if (LimitFloatPrecision <= 6) {
4424       // For floating-point precision of 6:
4425       //
4426       //   Log10ofMantissa =
4427       //     -0.50419619f +
4428       //       (0.60948995f - 0.10380950f * x) * x;
4429       //
4430       // error 0.0014886165, which is 6 bits
4431       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4432                                getF32Constant(DAG, 0xbdd49a13, dl));
4433       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4434                                getF32Constant(DAG, 0x3f1c0789, dl));
4435       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4436       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4437                                     getF32Constant(DAG, 0x3f011300, dl));
4438     } else if (LimitFloatPrecision <= 12) {
4439       // For floating-point precision of 12:
4440       //
4441       //   Log10ofMantissa =
4442       //     -0.64831180f +
4443       //       (0.91751397f +
4444       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4445       //
4446       // error 0.00019228036, which is better than 12 bits
4447       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4448                                getF32Constant(DAG, 0x3d431f31, dl));
4449       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4450                                getF32Constant(DAG, 0x3ea21fb2, dl));
4451       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4452       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4453                                getF32Constant(DAG, 0x3f6ae232, dl));
4454       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4455       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4456                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4457     } else { // LimitFloatPrecision <= 18
4458       // For floating-point precision of 18:
4459       //
4460       //   Log10ofMantissa =
4461       //     -0.84299375f +
4462       //       (1.5327582f +
4463       //         (-1.0688956f +
4464       //           (0.49102474f +
4465       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4466       //
4467       // error 0.0000037995730, which is better than 18 bits
4468       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4469                                getF32Constant(DAG, 0x3c5d51ce, dl));
4470       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4471                                getF32Constant(DAG, 0x3e00685a, dl));
4472       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4473       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4474                                getF32Constant(DAG, 0x3efb6798, dl));
4475       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4476       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4477                                getF32Constant(DAG, 0x3f88d192, dl));
4478       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4479       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4480                                getF32Constant(DAG, 0x3fc4316c, dl));
4481       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4482       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4483                                     getF32Constant(DAG, 0x3f57ce70, dl));
4484     }
4485 
4486     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4487   }
4488 
4489   // No special expansion.
4490   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4491 }
4492 
4493 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4494 /// limited-precision mode.
4495 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4496                           const TargetLowering &TLI) {
4497   if (Op.getValueType() == MVT::f32 &&
4498       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4499     return getLimitedPrecisionExp2(Op, dl, DAG);
4500 
4501   // No special expansion.
4502   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4503 }
4504 
4505 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4506 /// limited-precision mode with x == 10.0f.
4507 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4508                          SelectionDAG &DAG, const TargetLowering &TLI) {
4509   bool IsExp10 = false;
4510   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4511       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4512     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4513       APFloat Ten(10.0f);
4514       IsExp10 = LHSC->isExactlyValue(Ten);
4515     }
4516   }
4517 
4518   // TODO: What fast-math-flags should be set on the FMUL node?
4519   if (IsExp10) {
4520     // Put the exponent in the right bit position for later addition to the
4521     // final result:
4522     //
4523     //   #define LOG2OF10 3.3219281f
4524     //   t0 = Op * LOG2OF10;
4525     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4526                              getF32Constant(DAG, 0x40549a78, dl));
4527     return getLimitedPrecisionExp2(t0, dl, DAG);
4528   }
4529 
4530   // No special expansion.
4531   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4532 }
4533 
4534 
4535 /// ExpandPowI - Expand a llvm.powi intrinsic.
4536 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4537                           SelectionDAG &DAG) {
4538   // If RHS is a constant, we can expand this out to a multiplication tree,
4539   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4540   // optimizing for size, we only want to do this if the expansion would produce
4541   // a small number of multiplies, otherwise we do the full expansion.
4542   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4543     // Get the exponent as a positive value.
4544     unsigned Val = RHSC->getSExtValue();
4545     if ((int)Val < 0) Val = -Val;
4546 
4547     // powi(x, 0) -> 1.0
4548     if (Val == 0)
4549       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4550 
4551     const Function *F = DAG.getMachineFunction().getFunction();
4552     if (!F->optForSize() ||
4553         // If optimizing for size, don't insert too many multiplies.
4554         // This inserts up to 5 multiplies.
4555         countPopulation(Val) + Log2_32(Val) < 7) {
4556       // We use the simple binary decomposition method to generate the multiply
4557       // sequence.  There are more optimal ways to do this (for example,
4558       // powi(x,15) generates one more multiply than it should), but this has
4559       // the benefit of being both really simple and much better than a libcall.
4560       SDValue Res;  // Logically starts equal to 1.0
4561       SDValue CurSquare = LHS;
4562       // TODO: Intrinsics should have fast-math-flags that propagate to these
4563       // nodes.
4564       while (Val) {
4565         if (Val & 1) {
4566           if (Res.getNode())
4567             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4568           else
4569             Res = CurSquare;  // 1.0*CurSquare.
4570         }
4571 
4572         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4573                                 CurSquare, CurSquare);
4574         Val >>= 1;
4575       }
4576 
4577       // If the original was negative, invert the result, producing 1/(x*x*x).
4578       if (RHSC->getSExtValue() < 0)
4579         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4580                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4581       return Res;
4582     }
4583   }
4584 
4585   // Otherwise, expand to a libcall.
4586   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4587 }
4588 
4589 // getUnderlyingArgReg - Find underlying register used for a truncated or
4590 // bitcasted argument.
4591 static unsigned getUnderlyingArgReg(const SDValue &N) {
4592   switch (N.getOpcode()) {
4593   case ISD::CopyFromReg:
4594     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4595   case ISD::BITCAST:
4596   case ISD::AssertZext:
4597   case ISD::AssertSext:
4598   case ISD::TRUNCATE:
4599     return getUnderlyingArgReg(N.getOperand(0));
4600   default:
4601     return 0;
4602   }
4603 }
4604 
4605 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4606 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4607 /// At the end of instruction selection, they will be inserted to the entry BB.
4608 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4609     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4610     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4611   const Argument *Arg = dyn_cast<Argument>(V);
4612   if (!Arg)
4613     return false;
4614 
4615   MachineFunction &MF = DAG.getMachineFunction();
4616   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4617 
4618   // Ignore inlined function arguments here.
4619   //
4620   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4621   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4622     return false;
4623 
4624   Optional<MachineOperand> Op;
4625   // Some arguments' frame index is recorded during argument lowering.
4626   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4627     Op = MachineOperand::CreateFI(FI);
4628 
4629   if (!Op && N.getNode()) {
4630     unsigned Reg = getUnderlyingArgReg(N);
4631     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4632       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4633       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4634       if (PR)
4635         Reg = PR;
4636     }
4637     if (Reg)
4638       Op = MachineOperand::CreateReg(Reg, false);
4639   }
4640 
4641   if (!Op) {
4642     // Check if ValueMap has reg number.
4643     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4644     if (VMI != FuncInfo.ValueMap.end())
4645       Op = MachineOperand::CreateReg(VMI->second, false);
4646   }
4647 
4648   if (!Op && N.getNode())
4649     // Check if frame index is available.
4650     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4651       if (FrameIndexSDNode *FINode =
4652           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4653         Op = MachineOperand::CreateFI(FINode->getIndex());
4654 
4655   if (!Op)
4656     return false;
4657 
4658   assert(Variable->isValidLocationForIntrinsic(DL) &&
4659          "Expected inlined-at fields to agree");
4660   if (Op->isReg())
4661     FuncInfo.ArgDbgValues.push_back(
4662         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4663                 Op->getReg(), Offset, Variable, Expr));
4664   else
4665     FuncInfo.ArgDbgValues.push_back(
4666         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4667             .addOperand(*Op)
4668             .addImm(Offset)
4669             .addMetadata(Variable)
4670             .addMetadata(Expr));
4671 
4672   return true;
4673 }
4674 
4675 // VisualStudio defines setjmp as _setjmp
4676 #if defined(_MSC_VER) && defined(setjmp) && \
4677                          !defined(setjmp_undefined_for_msvc)
4678 #  pragma push_macro("setjmp")
4679 #  undef setjmp
4680 #  define setjmp_undefined_for_msvc
4681 #endif
4682 
4683 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4684 /// we want to emit this as a call to a named external function, return the name
4685 /// otherwise lower it and return null.
4686 const char *
4687 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4689   SDLoc sdl = getCurSDLoc();
4690   DebugLoc dl = getCurDebugLoc();
4691   SDValue Res;
4692 
4693   switch (Intrinsic) {
4694   default:
4695     // By default, turn this into a target intrinsic node.
4696     visitTargetIntrinsic(I, Intrinsic);
4697     return nullptr;
4698   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4699   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4700   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4701   case Intrinsic::returnaddress:
4702     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4703                              TLI.getPointerTy(DAG.getDataLayout()),
4704                              getValue(I.getArgOperand(0))));
4705     return nullptr;
4706   case Intrinsic::frameaddress:
4707     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4708                              TLI.getPointerTy(DAG.getDataLayout()),
4709                              getValue(I.getArgOperand(0))));
4710     return nullptr;
4711   case Intrinsic::read_register: {
4712     Value *Reg = I.getArgOperand(0);
4713     SDValue Chain = getRoot();
4714     SDValue RegName =
4715         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4716     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4717     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4718       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4719     setValue(&I, Res);
4720     DAG.setRoot(Res.getValue(1));
4721     return nullptr;
4722   }
4723   case Intrinsic::write_register: {
4724     Value *Reg = I.getArgOperand(0);
4725     Value *RegValue = I.getArgOperand(1);
4726     SDValue Chain = getRoot();
4727     SDValue RegName =
4728         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4729     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4730                             RegName, getValue(RegValue)));
4731     return nullptr;
4732   }
4733   case Intrinsic::setjmp:
4734     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4735   case Intrinsic::longjmp:
4736     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4737   case Intrinsic::memcpy: {
4738     SDValue Op1 = getValue(I.getArgOperand(0));
4739     SDValue Op2 = getValue(I.getArgOperand(1));
4740     SDValue Op3 = getValue(I.getArgOperand(2));
4741     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4742     if (!Align)
4743       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4744     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4745     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4746     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4747                                false, isTC,
4748                                MachinePointerInfo(I.getArgOperand(0)),
4749                                MachinePointerInfo(I.getArgOperand(1)));
4750     updateDAGForMaybeTailCall(MC);
4751     return nullptr;
4752   }
4753   case Intrinsic::memset: {
4754     SDValue Op1 = getValue(I.getArgOperand(0));
4755     SDValue Op2 = getValue(I.getArgOperand(1));
4756     SDValue Op3 = getValue(I.getArgOperand(2));
4757     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4758     if (!Align)
4759       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4760     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4761     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4762     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4763                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4764     updateDAGForMaybeTailCall(MS);
4765     return nullptr;
4766   }
4767   case Intrinsic::memmove: {
4768     SDValue Op1 = getValue(I.getArgOperand(0));
4769     SDValue Op2 = getValue(I.getArgOperand(1));
4770     SDValue Op3 = getValue(I.getArgOperand(2));
4771     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4772     if (!Align)
4773       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4774     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4775     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4776     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4777                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4778                                 MachinePointerInfo(I.getArgOperand(1)));
4779     updateDAGForMaybeTailCall(MM);
4780     return nullptr;
4781   }
4782   case Intrinsic::dbg_declare: {
4783     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4784     DILocalVariable *Variable = DI.getVariable();
4785     DIExpression *Expression = DI.getExpression();
4786     const Value *Address = DI.getAddress();
4787     assert(Variable && "Missing variable");
4788     if (!Address) {
4789       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4790       return nullptr;
4791     }
4792 
4793     // Check if address has undef value.
4794     if (isa<UndefValue>(Address) ||
4795         (Address->use_empty() && !isa<Argument>(Address))) {
4796       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4797       return nullptr;
4798     }
4799 
4800     SDValue &N = NodeMap[Address];
4801     if (!N.getNode() && isa<Argument>(Address))
4802       // Check unused arguments map.
4803       N = UnusedArgNodeMap[Address];
4804     SDDbgValue *SDV;
4805     if (N.getNode()) {
4806       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4807         Address = BCI->getOperand(0);
4808       // Parameters are handled specially.
4809       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4810       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4811       if (isParameter && FINode) {
4812         // Byval parameter. We have a frame index at this point.
4813         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4814                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4815       } else if (isa<Argument>(Address)) {
4816         // Address is an argument, so try to emit its dbg value using
4817         // virtual register info from the FuncInfo.ValueMap.
4818         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4819                                  N);
4820         return nullptr;
4821       } else {
4822         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4823                               true, 0, dl, SDNodeOrder);
4824       }
4825       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4826     } else {
4827       // If Address is an argument then try to emit its dbg value using
4828       // virtual register info from the FuncInfo.ValueMap.
4829       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4830                                     N)) {
4831         // If variable is pinned by a alloca in dominating bb then
4832         // use StaticAllocaMap.
4833         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4834           if (AI->getParent() != DI.getParent()) {
4835             DenseMap<const AllocaInst*, int>::iterator SI =
4836               FuncInfo.StaticAllocaMap.find(AI);
4837             if (SI != FuncInfo.StaticAllocaMap.end()) {
4838               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4839                                               0, dl, SDNodeOrder);
4840               DAG.AddDbgValue(SDV, nullptr, false);
4841               return nullptr;
4842             }
4843           }
4844         }
4845         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4846       }
4847     }
4848     return nullptr;
4849   }
4850   case Intrinsic::dbg_value: {
4851     const DbgValueInst &DI = cast<DbgValueInst>(I);
4852     assert(DI.getVariable() && "Missing variable");
4853 
4854     DILocalVariable *Variable = DI.getVariable();
4855     DIExpression *Expression = DI.getExpression();
4856     uint64_t Offset = DI.getOffset();
4857     const Value *V = DI.getValue();
4858     if (!V)
4859       return nullptr;
4860 
4861     SDDbgValue *SDV;
4862     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4863       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4864                                     SDNodeOrder);
4865       DAG.AddDbgValue(SDV, nullptr, false);
4866     } else {
4867       // Do not use getValue() in here; we don't want to generate code at
4868       // this point if it hasn't been done yet.
4869       SDValue N = NodeMap[V];
4870       if (!N.getNode() && isa<Argument>(V))
4871         // Check unused arguments map.
4872         N = UnusedArgNodeMap[V];
4873       if (N.getNode()) {
4874         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4875                                       false, N)) {
4876           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4877                                 false, Offset, dl, SDNodeOrder);
4878           DAG.AddDbgValue(SDV, N.getNode(), false);
4879         }
4880       } else if (!V->use_empty() ) {
4881         // Do not call getValue(V) yet, as we don't want to generate code.
4882         // Remember it for later.
4883         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4884         DanglingDebugInfoMap[V] = DDI;
4885       } else {
4886         // We may expand this to cover more cases.  One case where we have no
4887         // data available is an unreferenced parameter.
4888         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4889       }
4890     }
4891 
4892     // Build a debug info table entry.
4893     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4894       V = BCI->getOperand(0);
4895     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4896     // Don't handle byval struct arguments or VLAs, for example.
4897     if (!AI) {
4898       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4899       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4900       return nullptr;
4901     }
4902     DenseMap<const AllocaInst*, int>::iterator SI =
4903       FuncInfo.StaticAllocaMap.find(AI);
4904     if (SI == FuncInfo.StaticAllocaMap.end())
4905       return nullptr; // VLAs.
4906     return nullptr;
4907   }
4908 
4909   case Intrinsic::eh_typeid_for: {
4910     // Find the type id for the given typeinfo.
4911     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4912     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4913     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4914     setValue(&I, Res);
4915     return nullptr;
4916   }
4917 
4918   case Intrinsic::eh_return_i32:
4919   case Intrinsic::eh_return_i64:
4920     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4921     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4922                             MVT::Other,
4923                             getControlRoot(),
4924                             getValue(I.getArgOperand(0)),
4925                             getValue(I.getArgOperand(1))));
4926     return nullptr;
4927   case Intrinsic::eh_unwind_init:
4928     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4929     return nullptr;
4930   case Intrinsic::eh_dwarf_cfa: {
4931     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4932                                         TLI.getPointerTy(DAG.getDataLayout()));
4933     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4934                                  CfaArg.getValueType(),
4935                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4936                                              CfaArg.getValueType()),
4937                                  CfaArg);
4938     SDValue FA = DAG.getNode(
4939         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4940         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4941     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4942                              FA, Offset));
4943     return nullptr;
4944   }
4945   case Intrinsic::eh_sjlj_callsite: {
4946     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4947     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4948     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4949     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4950 
4951     MMI.setCurrentCallSite(CI->getZExtValue());
4952     return nullptr;
4953   }
4954   case Intrinsic::eh_sjlj_functioncontext: {
4955     // Get and store the index of the function context.
4956     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4957     AllocaInst *FnCtx =
4958       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4959     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4960     MFI->setFunctionContextIndex(FI);
4961     return nullptr;
4962   }
4963   case Intrinsic::eh_sjlj_setjmp: {
4964     SDValue Ops[2];
4965     Ops[0] = getRoot();
4966     Ops[1] = getValue(I.getArgOperand(0));
4967     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4968                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4969     setValue(&I, Op.getValue(0));
4970     DAG.setRoot(Op.getValue(1));
4971     return nullptr;
4972   }
4973   case Intrinsic::eh_sjlj_longjmp: {
4974     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4975                             getRoot(), getValue(I.getArgOperand(0))));
4976     return nullptr;
4977   }
4978   case Intrinsic::eh_sjlj_setup_dispatch: {
4979     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4980                             getRoot()));
4981     return nullptr;
4982   }
4983 
4984   case Intrinsic::masked_gather:
4985     visitMaskedGather(I);
4986     return nullptr;
4987   case Intrinsic::masked_load:
4988     visitMaskedLoad(I);
4989     return nullptr;
4990   case Intrinsic::masked_scatter:
4991     visitMaskedScatter(I);
4992     return nullptr;
4993   case Intrinsic::masked_store:
4994     visitMaskedStore(I);
4995     return nullptr;
4996   case Intrinsic::x86_mmx_pslli_w:
4997   case Intrinsic::x86_mmx_pslli_d:
4998   case Intrinsic::x86_mmx_pslli_q:
4999   case Intrinsic::x86_mmx_psrli_w:
5000   case Intrinsic::x86_mmx_psrli_d:
5001   case Intrinsic::x86_mmx_psrli_q:
5002   case Intrinsic::x86_mmx_psrai_w:
5003   case Intrinsic::x86_mmx_psrai_d: {
5004     SDValue ShAmt = getValue(I.getArgOperand(1));
5005     if (isa<ConstantSDNode>(ShAmt)) {
5006       visitTargetIntrinsic(I, Intrinsic);
5007       return nullptr;
5008     }
5009     unsigned NewIntrinsic = 0;
5010     EVT ShAmtVT = MVT::v2i32;
5011     switch (Intrinsic) {
5012     case Intrinsic::x86_mmx_pslli_w:
5013       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5014       break;
5015     case Intrinsic::x86_mmx_pslli_d:
5016       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5017       break;
5018     case Intrinsic::x86_mmx_pslli_q:
5019       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5020       break;
5021     case Intrinsic::x86_mmx_psrli_w:
5022       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5023       break;
5024     case Intrinsic::x86_mmx_psrli_d:
5025       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5026       break;
5027     case Intrinsic::x86_mmx_psrli_q:
5028       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5029       break;
5030     case Intrinsic::x86_mmx_psrai_w:
5031       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5032       break;
5033     case Intrinsic::x86_mmx_psrai_d:
5034       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5035       break;
5036     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5037     }
5038 
5039     // The vector shift intrinsics with scalars uses 32b shift amounts but
5040     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5041     // to be zero.
5042     // We must do this early because v2i32 is not a legal type.
5043     SDValue ShOps[2];
5044     ShOps[0] = ShAmt;
5045     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5046     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5047     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5048     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5049     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5050                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5051                        getValue(I.getArgOperand(0)), ShAmt);
5052     setValue(&I, Res);
5053     return nullptr;
5054   }
5055   case Intrinsic::convertff:
5056   case Intrinsic::convertfsi:
5057   case Intrinsic::convertfui:
5058   case Intrinsic::convertsif:
5059   case Intrinsic::convertuif:
5060   case Intrinsic::convertss:
5061   case Intrinsic::convertsu:
5062   case Intrinsic::convertus:
5063   case Intrinsic::convertuu: {
5064     ISD::CvtCode Code = ISD::CVT_INVALID;
5065     switch (Intrinsic) {
5066     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5067     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5068     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5069     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5070     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5071     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5072     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5073     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5074     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5075     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5076     }
5077     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5078     const Value *Op1 = I.getArgOperand(0);
5079     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5080                                DAG.getValueType(DestVT),
5081                                DAG.getValueType(getValue(Op1).getValueType()),
5082                                getValue(I.getArgOperand(1)),
5083                                getValue(I.getArgOperand(2)),
5084                                Code);
5085     setValue(&I, Res);
5086     return nullptr;
5087   }
5088   case Intrinsic::powi:
5089     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5090                             getValue(I.getArgOperand(1)), DAG));
5091     return nullptr;
5092   case Intrinsic::log:
5093     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5094     return nullptr;
5095   case Intrinsic::log2:
5096     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5097     return nullptr;
5098   case Intrinsic::log10:
5099     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5100     return nullptr;
5101   case Intrinsic::exp:
5102     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5103     return nullptr;
5104   case Intrinsic::exp2:
5105     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5106     return nullptr;
5107   case Intrinsic::pow:
5108     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5109                            getValue(I.getArgOperand(1)), DAG, TLI));
5110     return nullptr;
5111   case Intrinsic::sqrt:
5112   case Intrinsic::fabs:
5113   case Intrinsic::sin:
5114   case Intrinsic::cos:
5115   case Intrinsic::floor:
5116   case Intrinsic::ceil:
5117   case Intrinsic::trunc:
5118   case Intrinsic::rint:
5119   case Intrinsic::nearbyint:
5120   case Intrinsic::round: {
5121     unsigned Opcode;
5122     switch (Intrinsic) {
5123     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5124     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5125     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5126     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5127     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5128     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5129     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5130     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5131     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5132     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5133     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5134     }
5135 
5136     setValue(&I, DAG.getNode(Opcode, sdl,
5137                              getValue(I.getArgOperand(0)).getValueType(),
5138                              getValue(I.getArgOperand(0))));
5139     return nullptr;
5140   }
5141   case Intrinsic::minnum:
5142     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
5143                              getValue(I.getArgOperand(0)).getValueType(),
5144                              getValue(I.getArgOperand(0)),
5145                              getValue(I.getArgOperand(1))));
5146     return nullptr;
5147   case Intrinsic::maxnum:
5148     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
5149                              getValue(I.getArgOperand(0)).getValueType(),
5150                              getValue(I.getArgOperand(0)),
5151                              getValue(I.getArgOperand(1))));
5152     return nullptr;
5153   case Intrinsic::copysign:
5154     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5155                              getValue(I.getArgOperand(0)).getValueType(),
5156                              getValue(I.getArgOperand(0)),
5157                              getValue(I.getArgOperand(1))));
5158     return nullptr;
5159   case Intrinsic::fma:
5160     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5161                              getValue(I.getArgOperand(0)).getValueType(),
5162                              getValue(I.getArgOperand(0)),
5163                              getValue(I.getArgOperand(1)),
5164                              getValue(I.getArgOperand(2))));
5165     return nullptr;
5166   case Intrinsic::fmuladd: {
5167     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5168     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5169         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5170       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5171                                getValue(I.getArgOperand(0)).getValueType(),
5172                                getValue(I.getArgOperand(0)),
5173                                getValue(I.getArgOperand(1)),
5174                                getValue(I.getArgOperand(2))));
5175     } else {
5176       // TODO: Intrinsic calls should have fast-math-flags.
5177       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5178                                 getValue(I.getArgOperand(0)).getValueType(),
5179                                 getValue(I.getArgOperand(0)),
5180                                 getValue(I.getArgOperand(1)));
5181       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5182                                 getValue(I.getArgOperand(0)).getValueType(),
5183                                 Mul,
5184                                 getValue(I.getArgOperand(2)));
5185       setValue(&I, Add);
5186     }
5187     return nullptr;
5188   }
5189   case Intrinsic::convert_to_fp16:
5190     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5191                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5192                                          getValue(I.getArgOperand(0)),
5193                                          DAG.getTargetConstant(0, sdl,
5194                                                                MVT::i32))));
5195     return nullptr;
5196   case Intrinsic::convert_from_fp16:
5197     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5198                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5199                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5200                                          getValue(I.getArgOperand(0)))));
5201     return nullptr;
5202   case Intrinsic::pcmarker: {
5203     SDValue Tmp = getValue(I.getArgOperand(0));
5204     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5205     return nullptr;
5206   }
5207   case Intrinsic::readcyclecounter: {
5208     SDValue Op = getRoot();
5209     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5210                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5211     setValue(&I, Res);
5212     DAG.setRoot(Res.getValue(1));
5213     return nullptr;
5214   }
5215   case Intrinsic::bitreverse:
5216     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5217                              getValue(I.getArgOperand(0)).getValueType(),
5218                              getValue(I.getArgOperand(0))));
5219     return nullptr;
5220   case Intrinsic::bswap:
5221     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5222                              getValue(I.getArgOperand(0)).getValueType(),
5223                              getValue(I.getArgOperand(0))));
5224     return nullptr;
5225   case Intrinsic::cttz: {
5226     SDValue Arg = getValue(I.getArgOperand(0));
5227     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5228     EVT Ty = Arg.getValueType();
5229     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5230                              sdl, Ty, Arg));
5231     return nullptr;
5232   }
5233   case Intrinsic::ctlz: {
5234     SDValue Arg = getValue(I.getArgOperand(0));
5235     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5236     EVT Ty = Arg.getValueType();
5237     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5238                              sdl, Ty, Arg));
5239     return nullptr;
5240   }
5241   case Intrinsic::ctpop: {
5242     SDValue Arg = getValue(I.getArgOperand(0));
5243     EVT Ty = Arg.getValueType();
5244     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5245     return nullptr;
5246   }
5247   case Intrinsic::stacksave: {
5248     SDValue Op = getRoot();
5249     Res = DAG.getNode(
5250         ISD::STACKSAVE, sdl,
5251         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5252     setValue(&I, Res);
5253     DAG.setRoot(Res.getValue(1));
5254     return nullptr;
5255   }
5256   case Intrinsic::stackrestore: {
5257     Res = getValue(I.getArgOperand(0));
5258     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5259     return nullptr;
5260   }
5261   case Intrinsic::get_dynamic_area_offset: {
5262     SDValue Op = getRoot();
5263     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5264     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5265     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5266     // target.
5267     if (PtrTy != ResTy)
5268       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5269                          " intrinsic!");
5270     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5271                       Op);
5272     DAG.setRoot(Op);
5273     setValue(&I, Res);
5274     return nullptr;
5275   }
5276   case Intrinsic::stackprotector: {
5277     // Emit code into the DAG to store the stack guard onto the stack.
5278     MachineFunction &MF = DAG.getMachineFunction();
5279     MachineFrameInfo *MFI = MF.getFrameInfo();
5280     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5281     SDValue Src, Chain = getRoot();
5282     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5283     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5284 
5285     // See if Ptr is a bitcast. If it is, look through it and see if we can get
5286     // global variable __stack_chk_guard.
5287     if (!GV)
5288       if (const Operator *BC = dyn_cast<Operator>(Ptr))
5289         if (BC->getOpcode() == Instruction::BitCast)
5290           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5291 
5292     if (GV && TLI.useLoadStackGuardNode()) {
5293       // Emit a LOAD_STACK_GUARD node.
5294       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5295                                                sdl, PtrTy, Chain);
5296       MachinePointerInfo MPInfo(GV);
5297       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5298       unsigned Flags = MachineMemOperand::MOLoad |
5299                        MachineMemOperand::MOInvariant;
5300       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5301                                          PtrTy.getSizeInBits() / 8,
5302                                          DAG.getEVTAlignment(PtrTy));
5303       Node->setMemRefs(MemRefs, MemRefs + 1);
5304 
5305       // Copy the guard value to a virtual register so that it can be
5306       // retrieved in the epilogue.
5307       Src = SDValue(Node, 0);
5308       const TargetRegisterClass *RC =
5309           TLI.getRegClassFor(Src.getSimpleValueType());
5310       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5311 
5312       SPDescriptor.setGuardReg(Reg);
5313       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5314     } else {
5315       Src = getValue(I.getArgOperand(0));   // The guard's value.
5316     }
5317 
5318     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5319 
5320     int FI = FuncInfo.StaticAllocaMap[Slot];
5321     MFI->setStackProtectorIndex(FI);
5322 
5323     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5324 
5325     // Store the stack protector onto the stack.
5326     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5327                                                  DAG.getMachineFunction(), FI),
5328                        true, false, 0);
5329     setValue(&I, Res);
5330     DAG.setRoot(Res);
5331     return nullptr;
5332   }
5333   case Intrinsic::objectsize: {
5334     // If we don't know by now, we're never going to know.
5335     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5336 
5337     assert(CI && "Non-constant type in __builtin_object_size?");
5338 
5339     SDValue Arg = getValue(I.getCalledValue());
5340     EVT Ty = Arg.getValueType();
5341 
5342     if (CI->isZero())
5343       Res = DAG.getConstant(-1ULL, sdl, Ty);
5344     else
5345       Res = DAG.getConstant(0, sdl, Ty);
5346 
5347     setValue(&I, Res);
5348     return nullptr;
5349   }
5350   case Intrinsic::annotation:
5351   case Intrinsic::ptr_annotation:
5352     // Drop the intrinsic, but forward the value
5353     setValue(&I, getValue(I.getOperand(0)));
5354     return nullptr;
5355   case Intrinsic::assume:
5356   case Intrinsic::var_annotation:
5357     // Discard annotate attributes and assumptions
5358     return nullptr;
5359 
5360   case Intrinsic::init_trampoline: {
5361     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5362 
5363     SDValue Ops[6];
5364     Ops[0] = getRoot();
5365     Ops[1] = getValue(I.getArgOperand(0));
5366     Ops[2] = getValue(I.getArgOperand(1));
5367     Ops[3] = getValue(I.getArgOperand(2));
5368     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5369     Ops[5] = DAG.getSrcValue(F);
5370 
5371     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5372 
5373     DAG.setRoot(Res);
5374     return nullptr;
5375   }
5376   case Intrinsic::adjust_trampoline: {
5377     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5378                              TLI.getPointerTy(DAG.getDataLayout()),
5379                              getValue(I.getArgOperand(0))));
5380     return nullptr;
5381   }
5382   case Intrinsic::gcroot: {
5383     MachineFunction &MF = DAG.getMachineFunction();
5384     const Function *F = MF.getFunction();
5385     (void)F;
5386     assert(F->hasGC() &&
5387            "only valid in functions with gc specified, enforced by Verifier");
5388     assert(GFI && "implied by previous");
5389     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5390     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5391 
5392     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5393     GFI->addStackRoot(FI->getIndex(), TypeMap);
5394     return nullptr;
5395   }
5396   case Intrinsic::gcread:
5397   case Intrinsic::gcwrite:
5398     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5399   case Intrinsic::flt_rounds:
5400     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5401     return nullptr;
5402 
5403   case Intrinsic::expect: {
5404     // Just replace __builtin_expect(exp, c) with EXP.
5405     setValue(&I, getValue(I.getArgOperand(0)));
5406     return nullptr;
5407   }
5408 
5409   case Intrinsic::debugtrap:
5410   case Intrinsic::trap: {
5411     StringRef TrapFuncName =
5412         I.getAttributes()
5413             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5414             .getValueAsString();
5415     if (TrapFuncName.empty()) {
5416       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5417         ISD::TRAP : ISD::DEBUGTRAP;
5418       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5419       return nullptr;
5420     }
5421     TargetLowering::ArgListTy Args;
5422 
5423     TargetLowering::CallLoweringInfo CLI(DAG);
5424     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5425         CallingConv::C, I.getType(),
5426         DAG.getExternalSymbol(TrapFuncName.data(),
5427                               TLI.getPointerTy(DAG.getDataLayout())),
5428         std::move(Args), 0);
5429 
5430     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5431     DAG.setRoot(Result.second);
5432     return nullptr;
5433   }
5434 
5435   case Intrinsic::uadd_with_overflow:
5436   case Intrinsic::sadd_with_overflow:
5437   case Intrinsic::usub_with_overflow:
5438   case Intrinsic::ssub_with_overflow:
5439   case Intrinsic::umul_with_overflow:
5440   case Intrinsic::smul_with_overflow: {
5441     ISD::NodeType Op;
5442     switch (Intrinsic) {
5443     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5444     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5445     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5446     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5447     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5448     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5449     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5450     }
5451     SDValue Op1 = getValue(I.getArgOperand(0));
5452     SDValue Op2 = getValue(I.getArgOperand(1));
5453 
5454     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5455     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5456     return nullptr;
5457   }
5458   case Intrinsic::prefetch: {
5459     SDValue Ops[5];
5460     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5461     Ops[0] = getRoot();
5462     Ops[1] = getValue(I.getArgOperand(0));
5463     Ops[2] = getValue(I.getArgOperand(1));
5464     Ops[3] = getValue(I.getArgOperand(2));
5465     Ops[4] = getValue(I.getArgOperand(3));
5466     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5467                                         DAG.getVTList(MVT::Other), Ops,
5468                                         EVT::getIntegerVT(*Context, 8),
5469                                         MachinePointerInfo(I.getArgOperand(0)),
5470                                         0, /* align */
5471                                         false, /* volatile */
5472                                         rw==0, /* read */
5473                                         rw==1)); /* write */
5474     return nullptr;
5475   }
5476   case Intrinsic::lifetime_start:
5477   case Intrinsic::lifetime_end: {
5478     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5479     // Stack coloring is not enabled in O0, discard region information.
5480     if (TM.getOptLevel() == CodeGenOpt::None)
5481       return nullptr;
5482 
5483     SmallVector<Value *, 4> Allocas;
5484     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5485 
5486     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5487            E = Allocas.end(); Object != E; ++Object) {
5488       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5489 
5490       // Could not find an Alloca.
5491       if (!LifetimeObject)
5492         continue;
5493 
5494       // First check that the Alloca is static, otherwise it won't have a
5495       // valid frame index.
5496       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5497       if (SI == FuncInfo.StaticAllocaMap.end())
5498         return nullptr;
5499 
5500       int FI = SI->second;
5501 
5502       SDValue Ops[2];
5503       Ops[0] = getRoot();
5504       Ops[1] =
5505           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5506       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5507 
5508       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5509       DAG.setRoot(Res);
5510     }
5511     return nullptr;
5512   }
5513   case Intrinsic::invariant_start:
5514     // Discard region information.
5515     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5516     return nullptr;
5517   case Intrinsic::invariant_end:
5518     // Discard region information.
5519     return nullptr;
5520   case Intrinsic::stackprotectorcheck: {
5521     // Do not actually emit anything for this basic block. Instead we initialize
5522     // the stack protector descriptor and export the guard variable so we can
5523     // access it in FinishBasicBlock.
5524     const BasicBlock *BB = I.getParent();
5525     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5526     ExportFromCurrentBlock(SPDescriptor.getGuard());
5527 
5528     // Flush our exports since we are going to process a terminator.
5529     (void)getControlRoot();
5530     return nullptr;
5531   }
5532   case Intrinsic::clear_cache:
5533     return TLI.getClearCacheBuiltinName();
5534   case Intrinsic::donothing:
5535     // ignore
5536     return nullptr;
5537   case Intrinsic::experimental_stackmap: {
5538     visitStackmap(I);
5539     return nullptr;
5540   }
5541   case Intrinsic::experimental_patchpoint_void:
5542   case Intrinsic::experimental_patchpoint_i64: {
5543     visitPatchpoint(&I);
5544     return nullptr;
5545   }
5546   case Intrinsic::experimental_gc_statepoint: {
5547     LowerStatepoint(ImmutableStatepoint(&I));
5548     return nullptr;
5549   }
5550   case Intrinsic::experimental_gc_result: {
5551     visitGCResult(I);
5552     return nullptr;
5553   }
5554   case Intrinsic::experimental_gc_relocate: {
5555     visitGCRelocate(cast<GCRelocateInst>(I));
5556     return nullptr;
5557   }
5558   case Intrinsic::instrprof_increment:
5559     llvm_unreachable("instrprof failed to lower an increment");
5560   case Intrinsic::instrprof_value_profile:
5561     llvm_unreachable("instrprof failed to lower a value profiling call");
5562   case Intrinsic::localescape: {
5563     MachineFunction &MF = DAG.getMachineFunction();
5564     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5565 
5566     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5567     // is the same on all targets.
5568     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5569       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5570       if (isa<ConstantPointerNull>(Arg))
5571         continue; // Skip null pointers. They represent a hole in index space.
5572       AllocaInst *Slot = cast<AllocaInst>(Arg);
5573       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5574              "can only escape static allocas");
5575       int FI = FuncInfo.StaticAllocaMap[Slot];
5576       MCSymbol *FrameAllocSym =
5577           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5578               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5579       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5580               TII->get(TargetOpcode::LOCAL_ESCAPE))
5581           .addSym(FrameAllocSym)
5582           .addFrameIndex(FI);
5583     }
5584 
5585     return nullptr;
5586   }
5587 
5588   case Intrinsic::localrecover: {
5589     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5590     MachineFunction &MF = DAG.getMachineFunction();
5591     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5592 
5593     // Get the symbol that defines the frame offset.
5594     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5595     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5596     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5597     MCSymbol *FrameAllocSym =
5598         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5599             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5600 
5601     // Create a MCSymbol for the label to avoid any target lowering
5602     // that would make this PC relative.
5603     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5604     SDValue OffsetVal =
5605         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5606 
5607     // Add the offset to the FP.
5608     Value *FP = I.getArgOperand(1);
5609     SDValue FPVal = getValue(FP);
5610     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5611     setValue(&I, Add);
5612 
5613     return nullptr;
5614   }
5615 
5616   case Intrinsic::eh_exceptionpointer:
5617   case Intrinsic::eh_exceptioncode: {
5618     // Get the exception pointer vreg, copy from it, and resize it to fit.
5619     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5620     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5621     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5622     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5623     SDValue N =
5624         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5625     if (Intrinsic == Intrinsic::eh_exceptioncode)
5626       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5627     setValue(&I, N);
5628     return nullptr;
5629   }
5630 
5631   case Intrinsic::experimental_deoptimize:
5632     LowerDeoptimizeCall(&I);
5633     return nullptr;
5634   }
5635 }
5636 
5637 std::pair<SDValue, SDValue>
5638 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5639                                     const BasicBlock *EHPadBB) {
5640   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5641   MCSymbol *BeginLabel = nullptr;
5642 
5643   if (EHPadBB) {
5644     // Insert a label before the invoke call to mark the try range.  This can be
5645     // used to detect deletion of the invoke via the MachineModuleInfo.
5646     BeginLabel = MMI.getContext().createTempSymbol();
5647 
5648     // For SjLj, keep track of which landing pads go with which invokes
5649     // so as to maintain the ordering of pads in the LSDA.
5650     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5651     if (CallSiteIndex) {
5652       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5653       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5654 
5655       // Now that the call site is handled, stop tracking it.
5656       MMI.setCurrentCallSite(0);
5657     }
5658 
5659     // Both PendingLoads and PendingExports must be flushed here;
5660     // this call might not return.
5661     (void)getRoot();
5662     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5663 
5664     CLI.setChain(getRoot());
5665   }
5666   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5667   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5668 
5669   assert((CLI.IsTailCall || Result.second.getNode()) &&
5670          "Non-null chain expected with non-tail call!");
5671   assert((Result.second.getNode() || !Result.first.getNode()) &&
5672          "Null value expected with tail call!");
5673 
5674   if (!Result.second.getNode()) {
5675     // As a special case, a null chain means that a tail call has been emitted
5676     // and the DAG root is already updated.
5677     HasTailCall = true;
5678 
5679     // Since there's no actual continuation from this block, nothing can be
5680     // relying on us setting vregs for them.
5681     PendingExports.clear();
5682   } else {
5683     DAG.setRoot(Result.second);
5684   }
5685 
5686   if (EHPadBB) {
5687     // Insert a label at the end of the invoke call to mark the try range.  This
5688     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5689     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5690     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5691 
5692     // Inform MachineModuleInfo of range.
5693     if (MMI.hasEHFunclets()) {
5694       assert(CLI.CS);
5695       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5696       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5697                                 BeginLabel, EndLabel);
5698     } else {
5699       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5700     }
5701   }
5702 
5703   return Result;
5704 }
5705 
5706 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5707                                       bool isTailCall,
5708                                       const BasicBlock *EHPadBB) {
5709   auto &DL = DAG.getDataLayout();
5710   FunctionType *FTy = CS.getFunctionType();
5711   Type *RetTy = CS.getType();
5712 
5713   TargetLowering::ArgListTy Args;
5714   TargetLowering::ArgListEntry Entry;
5715   Args.reserve(CS.arg_size());
5716 
5717   const Value *SwiftErrorVal = nullptr;
5718   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5719   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5720        i != e; ++i) {
5721     const Value *V = *i;
5722 
5723     // Skip empty types
5724     if (V->getType()->isEmptyTy())
5725       continue;
5726 
5727     SDValue ArgNode = getValue(V);
5728     Entry.Node = ArgNode; Entry.Ty = V->getType();
5729 
5730     // Skip the first return-type Attribute to get to params.
5731     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5732 
5733     // Use swifterror virtual register as input to the call.
5734     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5735       SwiftErrorVal = V;
5736       // We find the virtual register for the actual swifterror argument.
5737       // Instead of using the Value, we use the virtual register instead.
5738       Entry.Node = DAG.getRegister(
5739           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5740           EVT(TLI.getPointerTy(DL)));
5741     }
5742 
5743     Args.push_back(Entry);
5744 
5745     // If we have an explicit sret argument that is an Instruction, (i.e., it
5746     // might point to function-local memory), we can't meaningfully tail-call.
5747     if (Entry.isSRet && isa<Instruction>(V))
5748       isTailCall = false;
5749   }
5750 
5751   // Check if target-independent constraints permit a tail call here.
5752   // Target-dependent constraints are checked within TLI->LowerCallTo.
5753   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5754     isTailCall = false;
5755 
5756   TargetLowering::CallLoweringInfo CLI(DAG);
5757   CLI.setDebugLoc(getCurSDLoc())
5758       .setChain(getRoot())
5759       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5760       .setTailCall(isTailCall)
5761       .setConvergent(CS.isConvergent());
5762   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5763 
5764   if (Result.first.getNode()) {
5765     const Instruction *Inst = CS.getInstruction();
5766     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5767     setValue(Inst, Result.first);
5768   }
5769 
5770   // The last element of CLI.InVals has the SDValue for swifterror return.
5771   // Here we copy it to a virtual register and update SwiftErrorMap for
5772   // book-keeping.
5773   if (SwiftErrorVal && TLI.supportSwiftError()) {
5774     // Get the last element of InVals.
5775     SDValue Src = CLI.InVals.back();
5776     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5777     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5778     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5779     // We update the virtual register for the actual swifterror argument.
5780     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5781     DAG.setRoot(CopyNode);
5782   }
5783 }
5784 
5785 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5786 /// value is equal or not-equal to zero.
5787 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5788   for (const User *U : V->users()) {
5789     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5790       if (IC->isEquality())
5791         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5792           if (C->isNullValue())
5793             continue;
5794     // Unknown instruction.
5795     return false;
5796   }
5797   return true;
5798 }
5799 
5800 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5801                              Type *LoadTy,
5802                              SelectionDAGBuilder &Builder) {
5803 
5804   // Check to see if this load can be trivially constant folded, e.g. if the
5805   // input is from a string literal.
5806   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5807     // Cast pointer to the type we really want to load.
5808     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5809                                          PointerType::getUnqual(LoadTy));
5810 
5811     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5812             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5813       return Builder.getValue(LoadCst);
5814   }
5815 
5816   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5817   // still constant memory, the input chain can be the entry node.
5818   SDValue Root;
5819   bool ConstantMemory = false;
5820 
5821   // Do not serialize (non-volatile) loads of constant memory with anything.
5822   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5823     Root = Builder.DAG.getEntryNode();
5824     ConstantMemory = true;
5825   } else {
5826     // Do not serialize non-volatile loads against each other.
5827     Root = Builder.DAG.getRoot();
5828   }
5829 
5830   SDValue Ptr = Builder.getValue(PtrVal);
5831   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5832                                         Ptr, MachinePointerInfo(PtrVal),
5833                                         false /*volatile*/,
5834                                         false /*nontemporal*/,
5835                                         false /*isinvariant*/, 1 /* align=1 */);
5836 
5837   if (!ConstantMemory)
5838     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5839   return LoadVal;
5840 }
5841 
5842 /// processIntegerCallValue - Record the value for an instruction that
5843 /// produces an integer result, converting the type where necessary.
5844 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5845                                                   SDValue Value,
5846                                                   bool IsSigned) {
5847   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5848                                                     I.getType(), true);
5849   if (IsSigned)
5850     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5851   else
5852     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5853   setValue(&I, Value);
5854 }
5855 
5856 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5857 /// If so, return true and lower it, otherwise return false and it will be
5858 /// lowered like a normal call.
5859 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5860   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5861   if (I.getNumArgOperands() != 3)
5862     return false;
5863 
5864   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5865   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5866       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5867       !I.getType()->isIntegerTy())
5868     return false;
5869 
5870   const Value *Size = I.getArgOperand(2);
5871   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5872   if (CSize && CSize->getZExtValue() == 0) {
5873     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5874                                                           I.getType(), true);
5875     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5876     return true;
5877   }
5878 
5879   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5880   std::pair<SDValue, SDValue> Res =
5881     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5882                                 getValue(LHS), getValue(RHS), getValue(Size),
5883                                 MachinePointerInfo(LHS),
5884                                 MachinePointerInfo(RHS));
5885   if (Res.first.getNode()) {
5886     processIntegerCallValue(I, Res.first, true);
5887     PendingLoads.push_back(Res.second);
5888     return true;
5889   }
5890 
5891   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5892   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5893   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5894     bool ActuallyDoIt = true;
5895     MVT LoadVT;
5896     Type *LoadTy;
5897     switch (CSize->getZExtValue()) {
5898     default:
5899       LoadVT = MVT::Other;
5900       LoadTy = nullptr;
5901       ActuallyDoIt = false;
5902       break;
5903     case 2:
5904       LoadVT = MVT::i16;
5905       LoadTy = Type::getInt16Ty(CSize->getContext());
5906       break;
5907     case 4:
5908       LoadVT = MVT::i32;
5909       LoadTy = Type::getInt32Ty(CSize->getContext());
5910       break;
5911     case 8:
5912       LoadVT = MVT::i64;
5913       LoadTy = Type::getInt64Ty(CSize->getContext());
5914       break;
5915         /*
5916     case 16:
5917       LoadVT = MVT::v4i32;
5918       LoadTy = Type::getInt32Ty(CSize->getContext());
5919       LoadTy = VectorType::get(LoadTy, 4);
5920       break;
5921          */
5922     }
5923 
5924     // This turns into unaligned loads.  We only do this if the target natively
5925     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5926     // we'll only produce a small number of byte loads.
5927 
5928     // Require that we can find a legal MVT, and only do this if the target
5929     // supports unaligned loads of that type.  Expanding into byte loads would
5930     // bloat the code.
5931     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5932     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5933       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5934       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5935       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5936       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5937       // TODO: Check alignment of src and dest ptrs.
5938       if (!TLI.isTypeLegal(LoadVT) ||
5939           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5940           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5941         ActuallyDoIt = false;
5942     }
5943 
5944     if (ActuallyDoIt) {
5945       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5946       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5947 
5948       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5949                                  ISD::SETNE);
5950       processIntegerCallValue(I, Res, false);
5951       return true;
5952     }
5953   }
5954 
5955 
5956   return false;
5957 }
5958 
5959 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5960 /// form.  If so, return true and lower it, otherwise return false and it
5961 /// will be lowered like a normal call.
5962 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5963   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5964   if (I.getNumArgOperands() != 3)
5965     return false;
5966 
5967   const Value *Src = I.getArgOperand(0);
5968   const Value *Char = I.getArgOperand(1);
5969   const Value *Length = I.getArgOperand(2);
5970   if (!Src->getType()->isPointerTy() ||
5971       !Char->getType()->isIntegerTy() ||
5972       !Length->getType()->isIntegerTy() ||
5973       !I.getType()->isPointerTy())
5974     return false;
5975 
5976   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5977   std::pair<SDValue, SDValue> Res =
5978     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5979                                 getValue(Src), getValue(Char), getValue(Length),
5980                                 MachinePointerInfo(Src));
5981   if (Res.first.getNode()) {
5982     setValue(&I, Res.first);
5983     PendingLoads.push_back(Res.second);
5984     return true;
5985   }
5986 
5987   return false;
5988 }
5989 
5990 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5991 /// optimized form.  If so, return true and lower it, otherwise return false
5992 /// and it will be lowered like a normal call.
5993 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5994   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5995   if (I.getNumArgOperands() != 2)
5996     return false;
5997 
5998   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5999   if (!Arg0->getType()->isPointerTy() ||
6000       !Arg1->getType()->isPointerTy() ||
6001       !I.getType()->isPointerTy())
6002     return false;
6003 
6004   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6005   std::pair<SDValue, SDValue> Res =
6006     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6007                                 getValue(Arg0), getValue(Arg1),
6008                                 MachinePointerInfo(Arg0),
6009                                 MachinePointerInfo(Arg1), isStpcpy);
6010   if (Res.first.getNode()) {
6011     setValue(&I, Res.first);
6012     DAG.setRoot(Res.second);
6013     return true;
6014   }
6015 
6016   return false;
6017 }
6018 
6019 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6020 /// If so, return true and lower it, otherwise return false and it will be
6021 /// lowered like a normal call.
6022 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6023   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6024   if (I.getNumArgOperands() != 2)
6025     return false;
6026 
6027   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6028   if (!Arg0->getType()->isPointerTy() ||
6029       !Arg1->getType()->isPointerTy() ||
6030       !I.getType()->isIntegerTy())
6031     return false;
6032 
6033   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6034   std::pair<SDValue, SDValue> Res =
6035     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6036                                 getValue(Arg0), getValue(Arg1),
6037                                 MachinePointerInfo(Arg0),
6038                                 MachinePointerInfo(Arg1));
6039   if (Res.first.getNode()) {
6040     processIntegerCallValue(I, Res.first, true);
6041     PendingLoads.push_back(Res.second);
6042     return true;
6043   }
6044 
6045   return false;
6046 }
6047 
6048 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6049 /// form.  If so, return true and lower it, otherwise return false and it
6050 /// will be lowered like a normal call.
6051 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6052   // Verify that the prototype makes sense.  size_t strlen(char *)
6053   if (I.getNumArgOperands() != 1)
6054     return false;
6055 
6056   const Value *Arg0 = I.getArgOperand(0);
6057   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6058     return false;
6059 
6060   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6061   std::pair<SDValue, SDValue> Res =
6062     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6063                                 getValue(Arg0), MachinePointerInfo(Arg0));
6064   if (Res.first.getNode()) {
6065     processIntegerCallValue(I, Res.first, false);
6066     PendingLoads.push_back(Res.second);
6067     return true;
6068   }
6069 
6070   return false;
6071 }
6072 
6073 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6074 /// form.  If so, return true and lower it, otherwise return false and it
6075 /// will be lowered like a normal call.
6076 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6077   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6078   if (I.getNumArgOperands() != 2)
6079     return false;
6080 
6081   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6082   if (!Arg0->getType()->isPointerTy() ||
6083       !Arg1->getType()->isIntegerTy() ||
6084       !I.getType()->isIntegerTy())
6085     return false;
6086 
6087   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6088   std::pair<SDValue, SDValue> Res =
6089     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6090                                  getValue(Arg0), getValue(Arg1),
6091                                  MachinePointerInfo(Arg0));
6092   if (Res.first.getNode()) {
6093     processIntegerCallValue(I, Res.first, false);
6094     PendingLoads.push_back(Res.second);
6095     return true;
6096   }
6097 
6098   return false;
6099 }
6100 
6101 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6102 /// operation (as expected), translate it to an SDNode with the specified opcode
6103 /// and return true.
6104 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6105                                               unsigned Opcode) {
6106   // Sanity check that it really is a unary floating-point call.
6107   if (I.getNumArgOperands() != 1 ||
6108       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6109       I.getType() != I.getArgOperand(0)->getType() ||
6110       !I.onlyReadsMemory())
6111     return false;
6112 
6113   SDValue Tmp = getValue(I.getArgOperand(0));
6114   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6115   return true;
6116 }
6117 
6118 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6119 /// operation (as expected), translate it to an SDNode with the specified opcode
6120 /// and return true.
6121 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6122                                                unsigned Opcode) {
6123   // Sanity check that it really is a binary floating-point call.
6124   if (I.getNumArgOperands() != 2 ||
6125       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6126       I.getType() != I.getArgOperand(0)->getType() ||
6127       I.getType() != I.getArgOperand(1)->getType() ||
6128       !I.onlyReadsMemory())
6129     return false;
6130 
6131   SDValue Tmp0 = getValue(I.getArgOperand(0));
6132   SDValue Tmp1 = getValue(I.getArgOperand(1));
6133   EVT VT = Tmp0.getValueType();
6134   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6135   return true;
6136 }
6137 
6138 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6139   // Handle inline assembly differently.
6140   if (isa<InlineAsm>(I.getCalledValue())) {
6141     visitInlineAsm(&I);
6142     return;
6143   }
6144 
6145   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6146   ComputeUsesVAFloatArgument(I, &MMI);
6147 
6148   const char *RenameFn = nullptr;
6149   if (Function *F = I.getCalledFunction()) {
6150     if (F->isDeclaration()) {
6151       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6152         if (unsigned IID = II->getIntrinsicID(F)) {
6153           RenameFn = visitIntrinsicCall(I, IID);
6154           if (!RenameFn)
6155             return;
6156         }
6157       }
6158       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6159         RenameFn = visitIntrinsicCall(I, IID);
6160         if (!RenameFn)
6161           return;
6162       }
6163     }
6164 
6165     // Check for well-known libc/libm calls.  If the function is internal, it
6166     // can't be a library call.
6167     LibFunc::Func Func;
6168     if (!F->hasLocalLinkage() && F->hasName() &&
6169         LibInfo->getLibFunc(F->getName(), Func) &&
6170         LibInfo->hasOptimizedCodeGen(Func)) {
6171       switch (Func) {
6172       default: break;
6173       case LibFunc::copysign:
6174       case LibFunc::copysignf:
6175       case LibFunc::copysignl:
6176         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6177             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6178             I.getType() == I.getArgOperand(0)->getType() &&
6179             I.getType() == I.getArgOperand(1)->getType() &&
6180             I.onlyReadsMemory()) {
6181           SDValue LHS = getValue(I.getArgOperand(0));
6182           SDValue RHS = getValue(I.getArgOperand(1));
6183           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6184                                    LHS.getValueType(), LHS, RHS));
6185           return;
6186         }
6187         break;
6188       case LibFunc::fabs:
6189       case LibFunc::fabsf:
6190       case LibFunc::fabsl:
6191         if (visitUnaryFloatCall(I, ISD::FABS))
6192           return;
6193         break;
6194       case LibFunc::fmin:
6195       case LibFunc::fminf:
6196       case LibFunc::fminl:
6197         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6198           return;
6199         break;
6200       case LibFunc::fmax:
6201       case LibFunc::fmaxf:
6202       case LibFunc::fmaxl:
6203         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6204           return;
6205         break;
6206       case LibFunc::sin:
6207       case LibFunc::sinf:
6208       case LibFunc::sinl:
6209         if (visitUnaryFloatCall(I, ISD::FSIN))
6210           return;
6211         break;
6212       case LibFunc::cos:
6213       case LibFunc::cosf:
6214       case LibFunc::cosl:
6215         if (visitUnaryFloatCall(I, ISD::FCOS))
6216           return;
6217         break;
6218       case LibFunc::sqrt:
6219       case LibFunc::sqrtf:
6220       case LibFunc::sqrtl:
6221       case LibFunc::sqrt_finite:
6222       case LibFunc::sqrtf_finite:
6223       case LibFunc::sqrtl_finite:
6224         if (visitUnaryFloatCall(I, ISD::FSQRT))
6225           return;
6226         break;
6227       case LibFunc::floor:
6228       case LibFunc::floorf:
6229       case LibFunc::floorl:
6230         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6231           return;
6232         break;
6233       case LibFunc::nearbyint:
6234       case LibFunc::nearbyintf:
6235       case LibFunc::nearbyintl:
6236         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6237           return;
6238         break;
6239       case LibFunc::ceil:
6240       case LibFunc::ceilf:
6241       case LibFunc::ceill:
6242         if (visitUnaryFloatCall(I, ISD::FCEIL))
6243           return;
6244         break;
6245       case LibFunc::rint:
6246       case LibFunc::rintf:
6247       case LibFunc::rintl:
6248         if (visitUnaryFloatCall(I, ISD::FRINT))
6249           return;
6250         break;
6251       case LibFunc::round:
6252       case LibFunc::roundf:
6253       case LibFunc::roundl:
6254         if (visitUnaryFloatCall(I, ISD::FROUND))
6255           return;
6256         break;
6257       case LibFunc::trunc:
6258       case LibFunc::truncf:
6259       case LibFunc::truncl:
6260         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6261           return;
6262         break;
6263       case LibFunc::log2:
6264       case LibFunc::log2f:
6265       case LibFunc::log2l:
6266         if (visitUnaryFloatCall(I, ISD::FLOG2))
6267           return;
6268         break;
6269       case LibFunc::exp2:
6270       case LibFunc::exp2f:
6271       case LibFunc::exp2l:
6272         if (visitUnaryFloatCall(I, ISD::FEXP2))
6273           return;
6274         break;
6275       case LibFunc::memcmp:
6276         if (visitMemCmpCall(I))
6277           return;
6278         break;
6279       case LibFunc::memchr:
6280         if (visitMemChrCall(I))
6281           return;
6282         break;
6283       case LibFunc::strcpy:
6284         if (visitStrCpyCall(I, false))
6285           return;
6286         break;
6287       case LibFunc::stpcpy:
6288         if (visitStrCpyCall(I, true))
6289           return;
6290         break;
6291       case LibFunc::strcmp:
6292         if (visitStrCmpCall(I))
6293           return;
6294         break;
6295       case LibFunc::strlen:
6296         if (visitStrLenCall(I))
6297           return;
6298         break;
6299       case LibFunc::strnlen:
6300         if (visitStrNLenCall(I))
6301           return;
6302         break;
6303       }
6304     }
6305   }
6306 
6307   SDValue Callee;
6308   if (!RenameFn)
6309     Callee = getValue(I.getCalledValue());
6310   else
6311     Callee = DAG.getExternalSymbol(
6312         RenameFn,
6313         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6314 
6315   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6316   // have to do anything here to lower funclet bundles.
6317   assert(!I.hasOperandBundlesOtherThan(
6318              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6319          "Cannot lower calls with arbitrary operand bundles!");
6320 
6321   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6322     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6323   else
6324     // Check if we can potentially perform a tail call. More detailed checking
6325     // is be done within LowerCallTo, after more information about the call is
6326     // known.
6327     LowerCallTo(&I, Callee, I.isTailCall());
6328 }
6329 
6330 namespace {
6331 
6332 /// AsmOperandInfo - This contains information for each constraint that we are
6333 /// lowering.
6334 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6335 public:
6336   /// CallOperand - If this is the result output operand or a clobber
6337   /// this is null, otherwise it is the incoming operand to the CallInst.
6338   /// This gets modified as the asm is processed.
6339   SDValue CallOperand;
6340 
6341   /// AssignedRegs - If this is a register or register class operand, this
6342   /// contains the set of register corresponding to the operand.
6343   RegsForValue AssignedRegs;
6344 
6345   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6346     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6347   }
6348 
6349   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6350   /// corresponds to.  If there is no Value* for this operand, it returns
6351   /// MVT::Other.
6352   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6353                            const DataLayout &DL) const {
6354     if (!CallOperandVal) return MVT::Other;
6355 
6356     if (isa<BasicBlock>(CallOperandVal))
6357       return TLI.getPointerTy(DL);
6358 
6359     llvm::Type *OpTy = CallOperandVal->getType();
6360 
6361     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6362     // If this is an indirect operand, the operand is a pointer to the
6363     // accessed type.
6364     if (isIndirect) {
6365       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6366       if (!PtrTy)
6367         report_fatal_error("Indirect operand for inline asm not a pointer!");
6368       OpTy = PtrTy->getElementType();
6369     }
6370 
6371     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6372     if (StructType *STy = dyn_cast<StructType>(OpTy))
6373       if (STy->getNumElements() == 1)
6374         OpTy = STy->getElementType(0);
6375 
6376     // If OpTy is not a single value, it may be a struct/union that we
6377     // can tile with integers.
6378     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6379       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6380       switch (BitSize) {
6381       default: break;
6382       case 1:
6383       case 8:
6384       case 16:
6385       case 32:
6386       case 64:
6387       case 128:
6388         OpTy = IntegerType::get(Context, BitSize);
6389         break;
6390       }
6391     }
6392 
6393     return TLI.getValueType(DL, OpTy, true);
6394   }
6395 };
6396 
6397 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6398 
6399 } // end anonymous namespace
6400 
6401 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6402 /// specified operand.  We prefer to assign virtual registers, to allow the
6403 /// register allocator to handle the assignment process.  However, if the asm
6404 /// uses features that we can't model on machineinstrs, we have SDISel do the
6405 /// allocation.  This produces generally horrible, but correct, code.
6406 ///
6407 ///   OpInfo describes the operand.
6408 ///
6409 static void GetRegistersForValue(SelectionDAG &DAG,
6410                                  const TargetLowering &TLI,
6411                                  SDLoc DL,
6412                                  SDISelAsmOperandInfo &OpInfo) {
6413   LLVMContext &Context = *DAG.getContext();
6414 
6415   MachineFunction &MF = DAG.getMachineFunction();
6416   SmallVector<unsigned, 4> Regs;
6417 
6418   // If this is a constraint for a single physreg, or a constraint for a
6419   // register class, find it.
6420   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6421       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6422                                        OpInfo.ConstraintCode,
6423                                        OpInfo.ConstraintVT);
6424 
6425   unsigned NumRegs = 1;
6426   if (OpInfo.ConstraintVT != MVT::Other) {
6427     // If this is a FP input in an integer register (or visa versa) insert a bit
6428     // cast of the input value.  More generally, handle any case where the input
6429     // value disagrees with the register class we plan to stick this in.
6430     if (OpInfo.Type == InlineAsm::isInput &&
6431         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6432       // Try to convert to the first EVT that the reg class contains.  If the
6433       // types are identical size, use a bitcast to convert (e.g. two differing
6434       // vector types).
6435       MVT RegVT = *PhysReg.second->vt_begin();
6436       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6437         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6438                                          RegVT, OpInfo.CallOperand);
6439         OpInfo.ConstraintVT = RegVT;
6440       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6441         // If the input is a FP value and we want it in FP registers, do a
6442         // bitcast to the corresponding integer type.  This turns an f64 value
6443         // into i64, which can be passed with two i32 values on a 32-bit
6444         // machine.
6445         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6446         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6447                                          RegVT, OpInfo.CallOperand);
6448         OpInfo.ConstraintVT = RegVT;
6449       }
6450     }
6451 
6452     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6453   }
6454 
6455   MVT RegVT;
6456   EVT ValueVT = OpInfo.ConstraintVT;
6457 
6458   // If this is a constraint for a specific physical register, like {r17},
6459   // assign it now.
6460   if (unsigned AssignedReg = PhysReg.first) {
6461     const TargetRegisterClass *RC = PhysReg.second;
6462     if (OpInfo.ConstraintVT == MVT::Other)
6463       ValueVT = *RC->vt_begin();
6464 
6465     // Get the actual register value type.  This is important, because the user
6466     // may have asked for (e.g.) the AX register in i32 type.  We need to
6467     // remember that AX is actually i16 to get the right extension.
6468     RegVT = *RC->vt_begin();
6469 
6470     // This is a explicit reference to a physical register.
6471     Regs.push_back(AssignedReg);
6472 
6473     // If this is an expanded reference, add the rest of the regs to Regs.
6474     if (NumRegs != 1) {
6475       TargetRegisterClass::iterator I = RC->begin();
6476       for (; *I != AssignedReg; ++I)
6477         assert(I != RC->end() && "Didn't find reg!");
6478 
6479       // Already added the first reg.
6480       --NumRegs; ++I;
6481       for (; NumRegs; --NumRegs, ++I) {
6482         assert(I != RC->end() && "Ran out of registers to allocate!");
6483         Regs.push_back(*I);
6484       }
6485     }
6486 
6487     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6488     return;
6489   }
6490 
6491   // Otherwise, if this was a reference to an LLVM register class, create vregs
6492   // for this reference.
6493   if (const TargetRegisterClass *RC = PhysReg.second) {
6494     RegVT = *RC->vt_begin();
6495     if (OpInfo.ConstraintVT == MVT::Other)
6496       ValueVT = RegVT;
6497 
6498     // Create the appropriate number of virtual registers.
6499     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6500     for (; NumRegs; --NumRegs)
6501       Regs.push_back(RegInfo.createVirtualRegister(RC));
6502 
6503     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6504     return;
6505   }
6506 
6507   // Otherwise, we couldn't allocate enough registers for this.
6508 }
6509 
6510 /// visitInlineAsm - Handle a call to an InlineAsm object.
6511 ///
6512 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6513   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6514 
6515   /// ConstraintOperands - Information about all of the constraints.
6516   SDISelAsmOperandInfoVector ConstraintOperands;
6517 
6518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6519   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6520       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6521 
6522   bool hasMemory = false;
6523 
6524   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6525   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6526   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6527     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6528     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6529 
6530     MVT OpVT = MVT::Other;
6531 
6532     // Compute the value type for each operand.
6533     switch (OpInfo.Type) {
6534     case InlineAsm::isOutput:
6535       // Indirect outputs just consume an argument.
6536       if (OpInfo.isIndirect) {
6537         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6538         break;
6539       }
6540 
6541       // The return value of the call is this value.  As such, there is no
6542       // corresponding argument.
6543       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6544       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6545         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6546                                       STy->getElementType(ResNo));
6547       } else {
6548         assert(ResNo == 0 && "Asm only has one result!");
6549         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6550       }
6551       ++ResNo;
6552       break;
6553     case InlineAsm::isInput:
6554       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6555       break;
6556     case InlineAsm::isClobber:
6557       // Nothing to do.
6558       break;
6559     }
6560 
6561     // If this is an input or an indirect output, process the call argument.
6562     // BasicBlocks are labels, currently appearing only in asm's.
6563     if (OpInfo.CallOperandVal) {
6564       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6565         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6566       } else {
6567         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6568       }
6569 
6570       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6571                                          DAG.getDataLayout()).getSimpleVT();
6572     }
6573 
6574     OpInfo.ConstraintVT = OpVT;
6575 
6576     // Indirect operand accesses access memory.
6577     if (OpInfo.isIndirect)
6578       hasMemory = true;
6579     else {
6580       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6581         TargetLowering::ConstraintType
6582           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6583         if (CType == TargetLowering::C_Memory) {
6584           hasMemory = true;
6585           break;
6586         }
6587       }
6588     }
6589   }
6590 
6591   SDValue Chain, Flag;
6592 
6593   // We won't need to flush pending loads if this asm doesn't touch
6594   // memory and is nonvolatile.
6595   if (hasMemory || IA->hasSideEffects())
6596     Chain = getRoot();
6597   else
6598     Chain = DAG.getRoot();
6599 
6600   // Second pass over the constraints: compute which constraint option to use
6601   // and assign registers to constraints that want a specific physreg.
6602   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6603     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6604 
6605     // If this is an output operand with a matching input operand, look up the
6606     // matching input. If their types mismatch, e.g. one is an integer, the
6607     // other is floating point, or their sizes are different, flag it as an
6608     // error.
6609     if (OpInfo.hasMatchingInput()) {
6610       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6611 
6612       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6613         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6614         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6615             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6616                                              OpInfo.ConstraintVT);
6617         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6618             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6619                                              Input.ConstraintVT);
6620         if ((OpInfo.ConstraintVT.isInteger() !=
6621              Input.ConstraintVT.isInteger()) ||
6622             (MatchRC.second != InputRC.second)) {
6623           report_fatal_error("Unsupported asm: input constraint"
6624                              " with a matching output constraint of"
6625                              " incompatible type!");
6626         }
6627         Input.ConstraintVT = OpInfo.ConstraintVT;
6628       }
6629     }
6630 
6631     // Compute the constraint code and ConstraintType to use.
6632     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6633 
6634     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6635         OpInfo.Type == InlineAsm::isClobber)
6636       continue;
6637 
6638     // If this is a memory input, and if the operand is not indirect, do what we
6639     // need to to provide an address for the memory input.
6640     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6641         !OpInfo.isIndirect) {
6642       assert((OpInfo.isMultipleAlternative ||
6643               (OpInfo.Type == InlineAsm::isInput)) &&
6644              "Can only indirectify direct input operands!");
6645 
6646       // Memory operands really want the address of the value.  If we don't have
6647       // an indirect input, put it in the constpool if we can, otherwise spill
6648       // it to a stack slot.
6649       // TODO: This isn't quite right. We need to handle these according to
6650       // the addressing mode that the constraint wants. Also, this may take
6651       // an additional register for the computation and we don't want that
6652       // either.
6653 
6654       // If the operand is a float, integer, or vector constant, spill to a
6655       // constant pool entry to get its address.
6656       const Value *OpVal = OpInfo.CallOperandVal;
6657       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6658           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6659         OpInfo.CallOperand = DAG.getConstantPool(
6660             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6661       } else {
6662         // Otherwise, create a stack slot and emit a store to it before the
6663         // asm.
6664         Type *Ty = OpVal->getType();
6665         auto &DL = DAG.getDataLayout();
6666         uint64_t TySize = DL.getTypeAllocSize(Ty);
6667         unsigned Align = DL.getPrefTypeAlignment(Ty);
6668         MachineFunction &MF = DAG.getMachineFunction();
6669         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6670         SDValue StackSlot =
6671             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6672         Chain = DAG.getStore(
6673             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6674             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6675             false, false, 0);
6676         OpInfo.CallOperand = StackSlot;
6677       }
6678 
6679       // There is no longer a Value* corresponding to this operand.
6680       OpInfo.CallOperandVal = nullptr;
6681 
6682       // It is now an indirect operand.
6683       OpInfo.isIndirect = true;
6684     }
6685 
6686     // If this constraint is for a specific register, allocate it before
6687     // anything else.
6688     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6689       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6690   }
6691 
6692   // Second pass - Loop over all of the operands, assigning virtual or physregs
6693   // to register class operands.
6694   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6695     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6696 
6697     // C_Register operands have already been allocated, Other/Memory don't need
6698     // to be.
6699     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6700       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6701   }
6702 
6703   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6704   std::vector<SDValue> AsmNodeOperands;
6705   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6706   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6707       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6708 
6709   // If we have a !srcloc metadata node associated with it, we want to attach
6710   // this to the ultimately generated inline asm machineinstr.  To do this, we
6711   // pass in the third operand as this (potentially null) inline asm MDNode.
6712   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6713   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6714 
6715   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6716   // bits as operand 3.
6717   unsigned ExtraInfo = 0;
6718   if (IA->hasSideEffects())
6719     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6720   if (IA->isAlignStack())
6721     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6722   // Set the asm dialect.
6723   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6724 
6725   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6726   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6727     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6728 
6729     // Compute the constraint code and ConstraintType to use.
6730     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6731 
6732     // Ideally, we would only check against memory constraints.  However, the
6733     // meaning of an other constraint can be target-specific and we can't easily
6734     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6735     // for other constriants as well.
6736     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6737         OpInfo.ConstraintType == TargetLowering::C_Other) {
6738       if (OpInfo.Type == InlineAsm::isInput)
6739         ExtraInfo |= InlineAsm::Extra_MayLoad;
6740       else if (OpInfo.Type == InlineAsm::isOutput)
6741         ExtraInfo |= InlineAsm::Extra_MayStore;
6742       else if (OpInfo.Type == InlineAsm::isClobber)
6743         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6744     }
6745   }
6746 
6747   AsmNodeOperands.push_back(DAG.getTargetConstant(
6748       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6749 
6750   // Loop over all of the inputs, copying the operand values into the
6751   // appropriate registers and processing the output regs.
6752   RegsForValue RetValRegs;
6753 
6754   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6755   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6756 
6757   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6758     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6759 
6760     switch (OpInfo.Type) {
6761     case InlineAsm::isOutput: {
6762       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6763           OpInfo.ConstraintType != TargetLowering::C_Register) {
6764         // Memory output, or 'other' output (e.g. 'X' constraint).
6765         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6766 
6767         unsigned ConstraintID =
6768             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6769         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6770                "Failed to convert memory constraint code to constraint id.");
6771 
6772         // Add information to the INLINEASM node to know about this output.
6773         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6774         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6775         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6776                                                         MVT::i32));
6777         AsmNodeOperands.push_back(OpInfo.CallOperand);
6778         break;
6779       }
6780 
6781       // Otherwise, this is a register or register class output.
6782 
6783       // Copy the output from the appropriate register.  Find a register that
6784       // we can use.
6785       if (OpInfo.AssignedRegs.Regs.empty()) {
6786         LLVMContext &Ctx = *DAG.getContext();
6787         Ctx.emitError(CS.getInstruction(),
6788                       "couldn't allocate output register for constraint '" +
6789                           Twine(OpInfo.ConstraintCode) + "'");
6790         return;
6791       }
6792 
6793       // If this is an indirect operand, store through the pointer after the
6794       // asm.
6795       if (OpInfo.isIndirect) {
6796         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6797                                                       OpInfo.CallOperandVal));
6798       } else {
6799         // This is the result value of the call.
6800         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6801         // Concatenate this output onto the outputs list.
6802         RetValRegs.append(OpInfo.AssignedRegs);
6803       }
6804 
6805       // Add information to the INLINEASM node to know that this register is
6806       // set.
6807       OpInfo.AssignedRegs
6808           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6809                                     ? InlineAsm::Kind_RegDefEarlyClobber
6810                                     : InlineAsm::Kind_RegDef,
6811                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6812       break;
6813     }
6814     case InlineAsm::isInput: {
6815       SDValue InOperandVal = OpInfo.CallOperand;
6816 
6817       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6818         // If this is required to match an output register we have already set,
6819         // just use its register.
6820         unsigned OperandNo = OpInfo.getMatchedOperand();
6821 
6822         // Scan until we find the definition we already emitted of this operand.
6823         // When we find it, create a RegsForValue operand.
6824         unsigned CurOp = InlineAsm::Op_FirstOperand;
6825         for (; OperandNo; --OperandNo) {
6826           // Advance to the next operand.
6827           unsigned OpFlag =
6828             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6829           assert((InlineAsm::isRegDefKind(OpFlag) ||
6830                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6831                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6832           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6833         }
6834 
6835         unsigned OpFlag =
6836           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6837         if (InlineAsm::isRegDefKind(OpFlag) ||
6838             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6839           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6840           if (OpInfo.isIndirect) {
6841             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6842             LLVMContext &Ctx = *DAG.getContext();
6843             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6844                                                " don't know how to handle tied "
6845                                                "indirect register inputs");
6846             return;
6847           }
6848 
6849           RegsForValue MatchedRegs;
6850           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6851           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6852           MatchedRegs.RegVTs.push_back(RegVT);
6853           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6854           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6855                i != e; ++i) {
6856             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6857               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6858             else {
6859               LLVMContext &Ctx = *DAG.getContext();
6860               Ctx.emitError(CS.getInstruction(),
6861                             "inline asm error: This value"
6862                             " type register class is not natively supported!");
6863               return;
6864             }
6865           }
6866           SDLoc dl = getCurSDLoc();
6867           // Use the produced MatchedRegs object to
6868           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6869                                     Chain, &Flag, CS.getInstruction());
6870           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6871                                            true, OpInfo.getMatchedOperand(), dl,
6872                                            DAG, AsmNodeOperands);
6873           break;
6874         }
6875 
6876         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6877         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6878                "Unexpected number of operands");
6879         // Add information to the INLINEASM node to know about this input.
6880         // See InlineAsm.h isUseOperandTiedToDef.
6881         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6882         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6883                                                     OpInfo.getMatchedOperand());
6884         AsmNodeOperands.push_back(DAG.getTargetConstant(
6885             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6886         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6887         break;
6888       }
6889 
6890       // Treat indirect 'X' constraint as memory.
6891       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6892           OpInfo.isIndirect)
6893         OpInfo.ConstraintType = TargetLowering::C_Memory;
6894 
6895       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6896         std::vector<SDValue> Ops;
6897         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6898                                           Ops, DAG);
6899         if (Ops.empty()) {
6900           LLVMContext &Ctx = *DAG.getContext();
6901           Ctx.emitError(CS.getInstruction(),
6902                         "invalid operand for inline asm constraint '" +
6903                             Twine(OpInfo.ConstraintCode) + "'");
6904           return;
6905         }
6906 
6907         // Add information to the INLINEASM node to know about this input.
6908         unsigned ResOpType =
6909           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6910         AsmNodeOperands.push_back(DAG.getTargetConstant(
6911             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6912         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6913         break;
6914       }
6915 
6916       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6917         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6918         assert(InOperandVal.getValueType() ==
6919                    TLI.getPointerTy(DAG.getDataLayout()) &&
6920                "Memory operands expect pointer values");
6921 
6922         unsigned ConstraintID =
6923             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6924         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6925                "Failed to convert memory constraint code to constraint id.");
6926 
6927         // Add information to the INLINEASM node to know about this input.
6928         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6929         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6930         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6931                                                         getCurSDLoc(),
6932                                                         MVT::i32));
6933         AsmNodeOperands.push_back(InOperandVal);
6934         break;
6935       }
6936 
6937       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6938               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6939              "Unknown constraint type!");
6940 
6941       // TODO: Support this.
6942       if (OpInfo.isIndirect) {
6943         LLVMContext &Ctx = *DAG.getContext();
6944         Ctx.emitError(CS.getInstruction(),
6945                       "Don't know how to handle indirect register inputs yet "
6946                       "for constraint '" +
6947                           Twine(OpInfo.ConstraintCode) + "'");
6948         return;
6949       }
6950 
6951       // Copy the input into the appropriate registers.
6952       if (OpInfo.AssignedRegs.Regs.empty()) {
6953         LLVMContext &Ctx = *DAG.getContext();
6954         Ctx.emitError(CS.getInstruction(),
6955                       "couldn't allocate input reg for constraint '" +
6956                           Twine(OpInfo.ConstraintCode) + "'");
6957         return;
6958       }
6959 
6960       SDLoc dl = getCurSDLoc();
6961 
6962       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6963                                         Chain, &Flag, CS.getInstruction());
6964 
6965       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6966                                                dl, DAG, AsmNodeOperands);
6967       break;
6968     }
6969     case InlineAsm::isClobber: {
6970       // Add the clobbered value to the operand list, so that the register
6971       // allocator is aware that the physreg got clobbered.
6972       if (!OpInfo.AssignedRegs.Regs.empty())
6973         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6974                                                  false, 0, getCurSDLoc(), DAG,
6975                                                  AsmNodeOperands);
6976       break;
6977     }
6978     }
6979   }
6980 
6981   // Finish up input operands.  Set the input chain and add the flag last.
6982   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6983   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6984 
6985   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6986                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6987   Flag = Chain.getValue(1);
6988 
6989   // If this asm returns a register value, copy the result from that register
6990   // and set it as the value of the call.
6991   if (!RetValRegs.Regs.empty()) {
6992     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6993                                              Chain, &Flag, CS.getInstruction());
6994 
6995     // FIXME: Why don't we do this for inline asms with MRVs?
6996     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6997       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6998 
6999       // If any of the results of the inline asm is a vector, it may have the
7000       // wrong width/num elts.  This can happen for register classes that can
7001       // contain multiple different value types.  The preg or vreg allocated may
7002       // not have the same VT as was expected.  Convert it to the right type
7003       // with bit_convert.
7004       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7005         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7006                           ResultType, Val);
7007 
7008       } else if (ResultType != Val.getValueType() &&
7009                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7010         // If a result value was tied to an input value, the computed result may
7011         // have a wider width than the expected result.  Extract the relevant
7012         // portion.
7013         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7014       }
7015 
7016       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7017     }
7018 
7019     setValue(CS.getInstruction(), Val);
7020     // Don't need to use this as a chain in this case.
7021     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7022       return;
7023   }
7024 
7025   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7026 
7027   // Process indirect outputs, first output all of the flagged copies out of
7028   // physregs.
7029   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7030     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7031     const Value *Ptr = IndirectStoresToEmit[i].second;
7032     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7033                                              Chain, &Flag, IA);
7034     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7035   }
7036 
7037   // Emit the non-flagged stores from the physregs.
7038   SmallVector<SDValue, 8> OutChains;
7039   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7040     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
7041                                StoresToEmit[i].first,
7042                                getValue(StoresToEmit[i].second),
7043                                MachinePointerInfo(StoresToEmit[i].second),
7044                                false, false, 0);
7045     OutChains.push_back(Val);
7046   }
7047 
7048   if (!OutChains.empty())
7049     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7050 
7051   DAG.setRoot(Chain);
7052 }
7053 
7054 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7055   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7056                           MVT::Other, getRoot(),
7057                           getValue(I.getArgOperand(0)),
7058                           DAG.getSrcValue(I.getArgOperand(0))));
7059 }
7060 
7061 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7062   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7063   const DataLayout &DL = DAG.getDataLayout();
7064   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7065                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7066                            DAG.getSrcValue(I.getOperand(0)),
7067                            DL.getABITypeAlignment(I.getType()));
7068   setValue(&I, V);
7069   DAG.setRoot(V.getValue(1));
7070 }
7071 
7072 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7073   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7074                           MVT::Other, getRoot(),
7075                           getValue(I.getArgOperand(0)),
7076                           DAG.getSrcValue(I.getArgOperand(0))));
7077 }
7078 
7079 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7080   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7081                           MVT::Other, getRoot(),
7082                           getValue(I.getArgOperand(0)),
7083                           getValue(I.getArgOperand(1)),
7084                           DAG.getSrcValue(I.getArgOperand(0)),
7085                           DAG.getSrcValue(I.getArgOperand(1))));
7086 }
7087 
7088 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7089                                                     const Instruction &I,
7090                                                     SDValue Op) {
7091   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7092   if (!Range)
7093     return Op;
7094 
7095   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7096   if (!Lo->isNullValue())
7097     return Op;
7098 
7099   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7100   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7101 
7102   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7103 
7104   SDLoc SL = getCurSDLoc();
7105 
7106   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7107                              Op, DAG.getValueType(SmallVT));
7108   unsigned NumVals = Op.getNode()->getNumValues();
7109   if (NumVals == 1)
7110     return ZExt;
7111 
7112   SmallVector<SDValue, 4> Ops;
7113 
7114   Ops.push_back(ZExt);
7115   for (unsigned I = 1; I != NumVals; ++I)
7116     Ops.push_back(Op.getValue(I));
7117 
7118   return DAG.getMergeValues(Ops, SL);
7119 }
7120 
7121 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7122 /// the call being lowered.
7123 ///
7124 /// This is a helper for lowering intrinsics that follow a target calling
7125 /// convention or require stack pointer adjustment. Only a subset of the
7126 /// intrinsic's operands need to participate in the calling convention.
7127 void SelectionDAGBuilder::populateCallLoweringInfo(
7128     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7129     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7130     bool IsPatchPoint) {
7131   TargetLowering::ArgListTy Args;
7132   Args.reserve(NumArgs);
7133 
7134   // Populate the argument list.
7135   // Attributes for args start at offset 1, after the return attribute.
7136   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7137        ArgI != ArgE; ++ArgI) {
7138     const Value *V = CS->getOperand(ArgI);
7139 
7140     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7141 
7142     TargetLowering::ArgListEntry Entry;
7143     Entry.Node = getValue(V);
7144     Entry.Ty = V->getType();
7145     Entry.setAttributes(&CS, AttrI);
7146     Args.push_back(Entry);
7147   }
7148 
7149   CLI.setDebugLoc(getCurSDLoc())
7150       .setChain(getRoot())
7151       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args),
7152                  NumArgs)
7153       .setDiscardResult(CS->use_empty())
7154       .setIsPatchPoint(IsPatchPoint);
7155 }
7156 
7157 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7158 /// or patchpoint target node's operand list.
7159 ///
7160 /// Constants are converted to TargetConstants purely as an optimization to
7161 /// avoid constant materialization and register allocation.
7162 ///
7163 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7164 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7165 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7166 /// address materialization and register allocation, but may also be required
7167 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7168 /// alloca in the entry block, then the runtime may assume that the alloca's
7169 /// StackMap location can be read immediately after compilation and that the
7170 /// location is valid at any point during execution (this is similar to the
7171 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7172 /// only available in a register, then the runtime would need to trap when
7173 /// execution reaches the StackMap in order to read the alloca's location.
7174 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7175                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
7176                                 SelectionDAGBuilder &Builder) {
7177   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7178     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7179     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7180       Ops.push_back(
7181         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7182       Ops.push_back(
7183         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7184     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7185       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7186       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7187           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7188     } else
7189       Ops.push_back(OpVal);
7190   }
7191 }
7192 
7193 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7194 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7195   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7196   //                                  [live variables...])
7197 
7198   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7199 
7200   SDValue Chain, InFlag, Callee, NullPtr;
7201   SmallVector<SDValue, 32> Ops;
7202 
7203   SDLoc DL = getCurSDLoc();
7204   Callee = getValue(CI.getCalledValue());
7205   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7206 
7207   // The stackmap intrinsic only records the live variables (the arguemnts
7208   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7209   // intrinsic, this won't be lowered to a function call. This means we don't
7210   // have to worry about calling conventions and target specific lowering code.
7211   // Instead we perform the call lowering right here.
7212   //
7213   // chain, flag = CALLSEQ_START(chain, 0)
7214   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7215   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7216   //
7217   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7218   InFlag = Chain.getValue(1);
7219 
7220   // Add the <id> and <numBytes> constants.
7221   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7222   Ops.push_back(DAG.getTargetConstant(
7223                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7224   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7225   Ops.push_back(DAG.getTargetConstant(
7226                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7227                   MVT::i32));
7228 
7229   // Push live variables for the stack map.
7230   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7231 
7232   // We are not pushing any register mask info here on the operands list,
7233   // because the stackmap doesn't clobber anything.
7234 
7235   // Push the chain and the glue flag.
7236   Ops.push_back(Chain);
7237   Ops.push_back(InFlag);
7238 
7239   // Create the STACKMAP node.
7240   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7241   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7242   Chain = SDValue(SM, 0);
7243   InFlag = Chain.getValue(1);
7244 
7245   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7246 
7247   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7248 
7249   // Set the root to the target-lowered call chain.
7250   DAG.setRoot(Chain);
7251 
7252   // Inform the Frame Information that we have a stackmap in this function.
7253   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7254 }
7255 
7256 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7257 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7258                                           const BasicBlock *EHPadBB) {
7259   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7260   //                                                 i32 <numBytes>,
7261   //                                                 i8* <target>,
7262   //                                                 i32 <numArgs>,
7263   //                                                 [Args...],
7264   //                                                 [live variables...])
7265 
7266   CallingConv::ID CC = CS.getCallingConv();
7267   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7268   bool HasDef = !CS->getType()->isVoidTy();
7269   SDLoc dl = getCurSDLoc();
7270   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7271 
7272   // Handle immediate and symbolic callees.
7273   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7274     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7275                                    /*isTarget=*/true);
7276   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7277     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7278                                          SDLoc(SymbolicCallee),
7279                                          SymbolicCallee->getValueType(0));
7280 
7281   // Get the real number of arguments participating in the call <numArgs>
7282   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7283   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7284 
7285   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7286   // Intrinsics include all meta-operands up to but not including CC.
7287   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7288   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7289          "Not enough arguments provided to the patchpoint intrinsic");
7290 
7291   // For AnyRegCC the arguments are lowered later on manually.
7292   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7293   Type *ReturnTy =
7294     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7295 
7296   TargetLowering::CallLoweringInfo CLI(DAG);
7297   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7298                            true);
7299   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7300 
7301   SDNode *CallEnd = Result.second.getNode();
7302   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7303     CallEnd = CallEnd->getOperand(0).getNode();
7304 
7305   /// Get a call instruction from the call sequence chain.
7306   /// Tail calls are not allowed.
7307   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7308          "Expected a callseq node.");
7309   SDNode *Call = CallEnd->getOperand(0).getNode();
7310   bool HasGlue = Call->getGluedNode();
7311 
7312   // Replace the target specific call node with the patchable intrinsic.
7313   SmallVector<SDValue, 8> Ops;
7314 
7315   // Add the <id> and <numBytes> constants.
7316   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7317   Ops.push_back(DAG.getTargetConstant(
7318                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7319   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7320   Ops.push_back(DAG.getTargetConstant(
7321                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7322                   MVT::i32));
7323 
7324   // Add the callee.
7325   Ops.push_back(Callee);
7326 
7327   // Adjust <numArgs> to account for any arguments that have been passed on the
7328   // stack instead.
7329   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7330   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7331   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7332   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7333 
7334   // Add the calling convention
7335   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7336 
7337   // Add the arguments we omitted previously. The register allocator should
7338   // place these in any free register.
7339   if (IsAnyRegCC)
7340     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7341       Ops.push_back(getValue(CS.getArgument(i)));
7342 
7343   // Push the arguments from the call instruction up to the register mask.
7344   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7345   Ops.append(Call->op_begin() + 2, e);
7346 
7347   // Push live variables for the stack map.
7348   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7349 
7350   // Push the register mask info.
7351   if (HasGlue)
7352     Ops.push_back(*(Call->op_end()-2));
7353   else
7354     Ops.push_back(*(Call->op_end()-1));
7355 
7356   // Push the chain (this is originally the first operand of the call, but
7357   // becomes now the last or second to last operand).
7358   Ops.push_back(*(Call->op_begin()));
7359 
7360   // Push the glue flag (last operand).
7361   if (HasGlue)
7362     Ops.push_back(*(Call->op_end()-1));
7363 
7364   SDVTList NodeTys;
7365   if (IsAnyRegCC && HasDef) {
7366     // Create the return types based on the intrinsic definition
7367     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7368     SmallVector<EVT, 3> ValueVTs;
7369     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7370     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7371 
7372     // There is always a chain and a glue type at the end
7373     ValueVTs.push_back(MVT::Other);
7374     ValueVTs.push_back(MVT::Glue);
7375     NodeTys = DAG.getVTList(ValueVTs);
7376   } else
7377     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7378 
7379   // Replace the target specific call node with a PATCHPOINT node.
7380   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7381                                          dl, NodeTys, Ops);
7382 
7383   // Update the NodeMap.
7384   if (HasDef) {
7385     if (IsAnyRegCC)
7386       setValue(CS.getInstruction(), SDValue(MN, 0));
7387     else
7388       setValue(CS.getInstruction(), Result.first);
7389   }
7390 
7391   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7392   // call sequence. Furthermore the location of the chain and glue can change
7393   // when the AnyReg calling convention is used and the intrinsic returns a
7394   // value.
7395   if (IsAnyRegCC && HasDef) {
7396     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7397     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7398     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7399   } else
7400     DAG.ReplaceAllUsesWith(Call, MN);
7401   DAG.DeleteNode(Call);
7402 
7403   // Inform the Frame Information that we have a patchpoint in this function.
7404   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7405 }
7406 
7407 /// Returns an AttributeSet representing the attributes applied to the return
7408 /// value of the given call.
7409 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7410   SmallVector<Attribute::AttrKind, 2> Attrs;
7411   if (CLI.RetSExt)
7412     Attrs.push_back(Attribute::SExt);
7413   if (CLI.RetZExt)
7414     Attrs.push_back(Attribute::ZExt);
7415   if (CLI.IsInReg)
7416     Attrs.push_back(Attribute::InReg);
7417 
7418   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7419                            Attrs);
7420 }
7421 
7422 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7423 /// implementation, which just calls LowerCall.
7424 /// FIXME: When all targets are
7425 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7426 std::pair<SDValue, SDValue>
7427 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7428   // Handle the incoming return values from the call.
7429   CLI.Ins.clear();
7430   Type *OrigRetTy = CLI.RetTy;
7431   SmallVector<EVT, 4> RetTys;
7432   SmallVector<uint64_t, 4> Offsets;
7433   auto &DL = CLI.DAG.getDataLayout();
7434   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7435 
7436   SmallVector<ISD::OutputArg, 4> Outs;
7437   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7438 
7439   bool CanLowerReturn =
7440       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7441                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7442 
7443   SDValue DemoteStackSlot;
7444   int DemoteStackIdx = -100;
7445   if (!CanLowerReturn) {
7446     // FIXME: equivalent assert?
7447     // assert(!CS.hasInAllocaArgument() &&
7448     //        "sret demotion is incompatible with inalloca");
7449     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7450     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7451     MachineFunction &MF = CLI.DAG.getMachineFunction();
7452     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7453     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7454 
7455     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7456     ArgListEntry Entry;
7457     Entry.Node = DemoteStackSlot;
7458     Entry.Ty = StackSlotPtrType;
7459     Entry.isSExt = false;
7460     Entry.isZExt = false;
7461     Entry.isInReg = false;
7462     Entry.isSRet = true;
7463     Entry.isNest = false;
7464     Entry.isByVal = false;
7465     Entry.isReturned = false;
7466     Entry.isSwiftSelf = false;
7467     Entry.isSwiftError = false;
7468     Entry.Alignment = Align;
7469     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7470     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7471 
7472     // sret demotion isn't compatible with tail-calls, since the sret argument
7473     // points into the callers stack frame.
7474     CLI.IsTailCall = false;
7475   } else {
7476     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7477       EVT VT = RetTys[I];
7478       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7479       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7480       for (unsigned i = 0; i != NumRegs; ++i) {
7481         ISD::InputArg MyFlags;
7482         MyFlags.VT = RegisterVT;
7483         MyFlags.ArgVT = VT;
7484         MyFlags.Used = CLI.IsReturnValueUsed;
7485         if (CLI.RetSExt)
7486           MyFlags.Flags.setSExt();
7487         if (CLI.RetZExt)
7488           MyFlags.Flags.setZExt();
7489         if (CLI.IsInReg)
7490           MyFlags.Flags.setInReg();
7491         CLI.Ins.push_back(MyFlags);
7492       }
7493     }
7494   }
7495 
7496   // We push in swifterror return as the last element of CLI.Ins.
7497   ArgListTy &Args = CLI.getArgs();
7498   if (supportSwiftError()) {
7499     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7500       if (Args[i].isSwiftError) {
7501         ISD::InputArg MyFlags;
7502         MyFlags.VT = getPointerTy(DL);
7503         MyFlags.ArgVT = EVT(getPointerTy(DL));
7504         MyFlags.Flags.setSwiftError();
7505         CLI.Ins.push_back(MyFlags);
7506       }
7507     }
7508   }
7509 
7510   // Handle all of the outgoing arguments.
7511   CLI.Outs.clear();
7512   CLI.OutVals.clear();
7513   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7514     SmallVector<EVT, 4> ValueVTs;
7515     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7516     Type *FinalType = Args[i].Ty;
7517     if (Args[i].isByVal)
7518       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7519     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7520         FinalType, CLI.CallConv, CLI.IsVarArg);
7521     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7522          ++Value) {
7523       EVT VT = ValueVTs[Value];
7524       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7525       SDValue Op = SDValue(Args[i].Node.getNode(),
7526                            Args[i].Node.getResNo() + Value);
7527       ISD::ArgFlagsTy Flags;
7528       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7529 
7530       if (Args[i].isZExt)
7531         Flags.setZExt();
7532       if (Args[i].isSExt)
7533         Flags.setSExt();
7534       if (Args[i].isInReg)
7535         Flags.setInReg();
7536       if (Args[i].isSRet)
7537         Flags.setSRet();
7538       if (Args[i].isSwiftSelf)
7539         Flags.setSwiftSelf();
7540       if (Args[i].isSwiftError)
7541         Flags.setSwiftError();
7542       if (Args[i].isByVal)
7543         Flags.setByVal();
7544       if (Args[i].isInAlloca) {
7545         Flags.setInAlloca();
7546         // Set the byval flag for CCAssignFn callbacks that don't know about
7547         // inalloca.  This way we can know how many bytes we should've allocated
7548         // and how many bytes a callee cleanup function will pop.  If we port
7549         // inalloca to more targets, we'll have to add custom inalloca handling
7550         // in the various CC lowering callbacks.
7551         Flags.setByVal();
7552       }
7553       if (Args[i].isByVal || Args[i].isInAlloca) {
7554         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7555         Type *ElementTy = Ty->getElementType();
7556         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7557         // For ByVal, alignment should come from FE.  BE will guess if this
7558         // info is not there but there are cases it cannot get right.
7559         unsigned FrameAlign;
7560         if (Args[i].Alignment)
7561           FrameAlign = Args[i].Alignment;
7562         else
7563           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7564         Flags.setByValAlign(FrameAlign);
7565       }
7566       if (Args[i].isNest)
7567         Flags.setNest();
7568       if (NeedsRegBlock)
7569         Flags.setInConsecutiveRegs();
7570       Flags.setOrigAlign(OriginalAlignment);
7571 
7572       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7573       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7574       SmallVector<SDValue, 4> Parts(NumParts);
7575       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7576 
7577       if (Args[i].isSExt)
7578         ExtendKind = ISD::SIGN_EXTEND;
7579       else if (Args[i].isZExt)
7580         ExtendKind = ISD::ZERO_EXTEND;
7581 
7582       // Conservatively only handle 'returned' on non-vectors for now
7583       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7584         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7585                "unexpected use of 'returned'");
7586         // Before passing 'returned' to the target lowering code, ensure that
7587         // either the register MVT and the actual EVT are the same size or that
7588         // the return value and argument are extended in the same way; in these
7589         // cases it's safe to pass the argument register value unchanged as the
7590         // return register value (although it's at the target's option whether
7591         // to do so)
7592         // TODO: allow code generation to take advantage of partially preserved
7593         // registers rather than clobbering the entire register when the
7594         // parameter extension method is not compatible with the return
7595         // extension method
7596         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7597             (ExtendKind != ISD::ANY_EXTEND &&
7598              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7599         Flags.setReturned();
7600       }
7601 
7602       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7603                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7604 
7605       for (unsigned j = 0; j != NumParts; ++j) {
7606         // if it isn't first piece, alignment must be 1
7607         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7608                                i < CLI.NumFixedArgs,
7609                                i, j*Parts[j].getValueType().getStoreSize());
7610         if (NumParts > 1 && j == 0)
7611           MyFlags.Flags.setSplit();
7612         else if (j != 0) {
7613           MyFlags.Flags.setOrigAlign(1);
7614           if (j == NumParts - 1)
7615             MyFlags.Flags.setSplitEnd();
7616         }
7617 
7618         CLI.Outs.push_back(MyFlags);
7619         CLI.OutVals.push_back(Parts[j]);
7620       }
7621 
7622       if (NeedsRegBlock && Value == NumValues - 1)
7623         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7624     }
7625   }
7626 
7627   SmallVector<SDValue, 4> InVals;
7628   CLI.Chain = LowerCall(CLI, InVals);
7629 
7630   // Update CLI.InVals to use outside of this function.
7631   CLI.InVals = InVals;
7632 
7633   // Verify that the target's LowerCall behaved as expected.
7634   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7635          "LowerCall didn't return a valid chain!");
7636   assert((!CLI.IsTailCall || InVals.empty()) &&
7637          "LowerCall emitted a return value for a tail call!");
7638   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7639          "LowerCall didn't emit the correct number of values!");
7640 
7641   // For a tail call, the return value is merely live-out and there aren't
7642   // any nodes in the DAG representing it. Return a special value to
7643   // indicate that a tail call has been emitted and no more Instructions
7644   // should be processed in the current block.
7645   if (CLI.IsTailCall) {
7646     CLI.DAG.setRoot(CLI.Chain);
7647     return std::make_pair(SDValue(), SDValue());
7648   }
7649 
7650 #ifndef NDEBUG
7651   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7652     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7653     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7654            "LowerCall emitted a value with the wrong type!");
7655   }
7656 #endif
7657 
7658   SmallVector<SDValue, 4> ReturnValues;
7659   if (!CanLowerReturn) {
7660     // The instruction result is the result of loading from the
7661     // hidden sret parameter.
7662     SmallVector<EVT, 1> PVTs;
7663     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7664 
7665     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7666     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7667     EVT PtrVT = PVTs[0];
7668 
7669     unsigned NumValues = RetTys.size();
7670     ReturnValues.resize(NumValues);
7671     SmallVector<SDValue, 4> Chains(NumValues);
7672 
7673     // An aggregate return value cannot wrap around the address space, so
7674     // offsets to its parts don't wrap either.
7675     SDNodeFlags Flags;
7676     Flags.setNoUnsignedWrap(true);
7677 
7678     for (unsigned i = 0; i < NumValues; ++i) {
7679       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7680                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7681                                                         PtrVT), &Flags);
7682       SDValue L = CLI.DAG.getLoad(
7683           RetTys[i], CLI.DL, CLI.Chain, Add,
7684           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7685                                             DemoteStackIdx, Offsets[i]),
7686           false, false, false, 1);
7687       ReturnValues[i] = L;
7688       Chains[i] = L.getValue(1);
7689     }
7690 
7691     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7692   } else {
7693     // Collect the legal value parts into potentially illegal values
7694     // that correspond to the original function's return values.
7695     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7696     if (CLI.RetSExt)
7697       AssertOp = ISD::AssertSext;
7698     else if (CLI.RetZExt)
7699       AssertOp = ISD::AssertZext;
7700     unsigned CurReg = 0;
7701     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7702       EVT VT = RetTys[I];
7703       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7704       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7705 
7706       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7707                                               NumRegs, RegisterVT, VT, nullptr,
7708                                               AssertOp));
7709       CurReg += NumRegs;
7710     }
7711 
7712     // For a function returning void, there is no return value. We can't create
7713     // such a node, so we just return a null return value in that case. In
7714     // that case, nothing will actually look at the value.
7715     if (ReturnValues.empty())
7716       return std::make_pair(SDValue(), CLI.Chain);
7717   }
7718 
7719   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7720                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7721   return std::make_pair(Res, CLI.Chain);
7722 }
7723 
7724 void TargetLowering::LowerOperationWrapper(SDNode *N,
7725                                            SmallVectorImpl<SDValue> &Results,
7726                                            SelectionDAG &DAG) const {
7727   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7728     Results.push_back(Res);
7729 }
7730 
7731 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7732   llvm_unreachable("LowerOperation not implemented for this target!");
7733 }
7734 
7735 void
7736 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7737   SDValue Op = getNonRegisterValue(V);
7738   assert((Op.getOpcode() != ISD::CopyFromReg ||
7739           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7740          "Copy from a reg to the same reg!");
7741   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7742 
7743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7744   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7745                    V->getType());
7746   SDValue Chain = DAG.getEntryNode();
7747 
7748   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7749                               FuncInfo.PreferredExtendType.end())
7750                                  ? ISD::ANY_EXTEND
7751                                  : FuncInfo.PreferredExtendType[V];
7752   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7753   PendingExports.push_back(Chain);
7754 }
7755 
7756 #include "llvm/CodeGen/SelectionDAGISel.h"
7757 
7758 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7759 /// entry block, return true.  This includes arguments used by switches, since
7760 /// the switch may expand into multiple basic blocks.
7761 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7762   // With FastISel active, we may be splitting blocks, so force creation
7763   // of virtual registers for all non-dead arguments.
7764   if (FastISel)
7765     return A->use_empty();
7766 
7767   const BasicBlock &Entry = A->getParent()->front();
7768   for (const User *U : A->users())
7769     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7770       return false;  // Use not in entry block.
7771 
7772   return true;
7773 }
7774 
7775 void SelectionDAGISel::LowerArguments(const Function &F) {
7776   SelectionDAG &DAG = SDB->DAG;
7777   SDLoc dl = SDB->getCurSDLoc();
7778   const DataLayout &DL = DAG.getDataLayout();
7779   SmallVector<ISD::InputArg, 16> Ins;
7780 
7781   if (!FuncInfo->CanLowerReturn) {
7782     // Put in an sret pointer parameter before all the other parameters.
7783     SmallVector<EVT, 1> ValueVTs;
7784     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7785                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7786 
7787     // NOTE: Assuming that a pointer will never break down to more than one VT
7788     // or one register.
7789     ISD::ArgFlagsTy Flags;
7790     Flags.setSRet();
7791     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7792     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7793                          ISD::InputArg::NoArgIndex, 0);
7794     Ins.push_back(RetArg);
7795   }
7796 
7797   // Set up the incoming argument description vector.
7798   unsigned Idx = 1;
7799   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7800        I != E; ++I, ++Idx) {
7801     SmallVector<EVT, 4> ValueVTs;
7802     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7803     bool isArgValueUsed = !I->use_empty();
7804     unsigned PartBase = 0;
7805     Type *FinalType = I->getType();
7806     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7807       FinalType = cast<PointerType>(FinalType)->getElementType();
7808     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7809         FinalType, F.getCallingConv(), F.isVarArg());
7810     for (unsigned Value = 0, NumValues = ValueVTs.size();
7811          Value != NumValues; ++Value) {
7812       EVT VT = ValueVTs[Value];
7813       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7814       ISD::ArgFlagsTy Flags;
7815       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7816 
7817       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7818         Flags.setZExt();
7819       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7820         Flags.setSExt();
7821       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7822         Flags.setInReg();
7823       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7824         Flags.setSRet();
7825       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7826         Flags.setSwiftSelf();
7827       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7828         Flags.setSwiftError();
7829       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7830         Flags.setByVal();
7831       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7832         Flags.setInAlloca();
7833         // Set the byval flag for CCAssignFn callbacks that don't know about
7834         // inalloca.  This way we can know how many bytes we should've allocated
7835         // and how many bytes a callee cleanup function will pop.  If we port
7836         // inalloca to more targets, we'll have to add custom inalloca handling
7837         // in the various CC lowering callbacks.
7838         Flags.setByVal();
7839       }
7840       if (F.getCallingConv() == CallingConv::X86_INTR) {
7841         // IA Interrupt passes frame (1st parameter) by value in the stack.
7842         if (Idx == 1)
7843           Flags.setByVal();
7844       }
7845       if (Flags.isByVal() || Flags.isInAlloca()) {
7846         PointerType *Ty = cast<PointerType>(I->getType());
7847         Type *ElementTy = Ty->getElementType();
7848         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7849         // For ByVal, alignment should be passed from FE.  BE will guess if
7850         // this info is not there but there are cases it cannot get right.
7851         unsigned FrameAlign;
7852         if (F.getParamAlignment(Idx))
7853           FrameAlign = F.getParamAlignment(Idx);
7854         else
7855           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7856         Flags.setByValAlign(FrameAlign);
7857       }
7858       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7859         Flags.setNest();
7860       if (NeedsRegBlock)
7861         Flags.setInConsecutiveRegs();
7862       Flags.setOrigAlign(OriginalAlignment);
7863 
7864       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7865       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7866       for (unsigned i = 0; i != NumRegs; ++i) {
7867         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7868                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7869         if (NumRegs > 1 && i == 0)
7870           MyFlags.Flags.setSplit();
7871         // if it isn't first piece, alignment must be 1
7872         else if (i > 0) {
7873           MyFlags.Flags.setOrigAlign(1);
7874           if (i == NumRegs - 1)
7875             MyFlags.Flags.setSplitEnd();
7876         }
7877         Ins.push_back(MyFlags);
7878       }
7879       if (NeedsRegBlock && Value == NumValues - 1)
7880         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7881       PartBase += VT.getStoreSize();
7882     }
7883   }
7884 
7885   // Call the target to set up the argument values.
7886   SmallVector<SDValue, 8> InVals;
7887   SDValue NewRoot = TLI->LowerFormalArguments(
7888       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7889 
7890   // Verify that the target's LowerFormalArguments behaved as expected.
7891   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7892          "LowerFormalArguments didn't return a valid chain!");
7893   assert(InVals.size() == Ins.size() &&
7894          "LowerFormalArguments didn't emit the correct number of values!");
7895   DEBUG({
7896       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7897         assert(InVals[i].getNode() &&
7898                "LowerFormalArguments emitted a null value!");
7899         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7900                "LowerFormalArguments emitted a value with the wrong type!");
7901       }
7902     });
7903 
7904   // Update the DAG with the new chain value resulting from argument lowering.
7905   DAG.setRoot(NewRoot);
7906 
7907   // Set up the argument values.
7908   unsigned i = 0;
7909   Idx = 1;
7910   if (!FuncInfo->CanLowerReturn) {
7911     // Create a virtual register for the sret pointer, and put in a copy
7912     // from the sret argument into it.
7913     SmallVector<EVT, 1> ValueVTs;
7914     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7915                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7916     MVT VT = ValueVTs[0].getSimpleVT();
7917     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7918     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7919     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7920                                         RegVT, VT, nullptr, AssertOp);
7921 
7922     MachineFunction& MF = SDB->DAG.getMachineFunction();
7923     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7924     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7925     FuncInfo->DemoteRegister = SRetReg;
7926     NewRoot =
7927         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7928     DAG.setRoot(NewRoot);
7929 
7930     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7931     // Idx indexes LLVM arguments.  Don't touch it.
7932     ++i;
7933   }
7934 
7935   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7936       ++I, ++Idx) {
7937     SmallVector<SDValue, 4> ArgValues;
7938     SmallVector<EVT, 4> ValueVTs;
7939     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7940     unsigned NumValues = ValueVTs.size();
7941 
7942     // If this argument is unused then remember its value. It is used to generate
7943     // debugging information.
7944     if (I->use_empty() && NumValues) {
7945       SDB->setUnusedArgValue(&*I, InVals[i]);
7946 
7947       // Also remember any frame index for use in FastISel.
7948       if (FrameIndexSDNode *FI =
7949           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7950         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7951     }
7952 
7953     for (unsigned Val = 0; Val != NumValues; ++Val) {
7954       EVT VT = ValueVTs[Val];
7955       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7956       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7957 
7958       if (!I->use_empty()) {
7959         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7960         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7961           AssertOp = ISD::AssertSext;
7962         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7963           AssertOp = ISD::AssertZext;
7964 
7965         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7966                                              NumParts, PartVT, VT,
7967                                              nullptr, AssertOp));
7968       }
7969 
7970       i += NumParts;
7971     }
7972 
7973     // We don't need to do anything else for unused arguments.
7974     if (ArgValues.empty())
7975       continue;
7976 
7977     // Note down frame index.
7978     if (FrameIndexSDNode *FI =
7979         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7980       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7981 
7982     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7983                                      SDB->getCurSDLoc());
7984 
7985     SDB->setValue(&*I, Res);
7986     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7987       if (LoadSDNode *LNode =
7988           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7989         if (FrameIndexSDNode *FI =
7990             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7991         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7992     }
7993 
7994     // Update SwiftErrorMap.
7995     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
7996         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
7997       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7998       if (TargetRegisterInfo::isVirtualRegister(Reg))
7999         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8000     }
8001 
8002     // If this argument is live outside of the entry block, insert a copy from
8003     // wherever we got it to the vreg that other BB's will reference it as.
8004     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8005       // If we can, though, try to skip creating an unnecessary vreg.
8006       // FIXME: This isn't very clean... it would be nice to make this more
8007       // general.  It's also subtly incompatible with the hacks FastISel
8008       // uses with vregs.
8009       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8010       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8011         FuncInfo->ValueMap[&*I] = Reg;
8012         continue;
8013       }
8014     }
8015     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8016       FuncInfo->InitializeRegForValue(&*I);
8017       SDB->CopyToExportRegsIfNeeded(&*I);
8018     }
8019   }
8020 
8021   assert(i == InVals.size() && "Argument register count mismatch!");
8022 
8023   // Finally, if the target has anything special to do, allow it to do so.
8024   EmitFunctionEntryCode();
8025 }
8026 
8027 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8028 /// ensure constants are generated when needed.  Remember the virtual registers
8029 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8030 /// directly add them, because expansion might result in multiple MBB's for one
8031 /// BB.  As such, the start of the BB might correspond to a different MBB than
8032 /// the end.
8033 ///
8034 void
8035 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8036   const TerminatorInst *TI = LLVMBB->getTerminator();
8037 
8038   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8039 
8040   // Check PHI nodes in successors that expect a value to be available from this
8041   // block.
8042   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8043     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8044     if (!isa<PHINode>(SuccBB->begin())) continue;
8045     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8046 
8047     // If this terminator has multiple identical successors (common for
8048     // switches), only handle each succ once.
8049     if (!SuccsHandled.insert(SuccMBB).second)
8050       continue;
8051 
8052     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8053 
8054     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8055     // nodes and Machine PHI nodes, but the incoming operands have not been
8056     // emitted yet.
8057     for (BasicBlock::const_iterator I = SuccBB->begin();
8058          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8059       // Ignore dead phi's.
8060       if (PN->use_empty()) continue;
8061 
8062       // Skip empty types
8063       if (PN->getType()->isEmptyTy())
8064         continue;
8065 
8066       unsigned Reg;
8067       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8068 
8069       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8070         unsigned &RegOut = ConstantsOut[C];
8071         if (RegOut == 0) {
8072           RegOut = FuncInfo.CreateRegs(C->getType());
8073           CopyValueToVirtualRegister(C, RegOut);
8074         }
8075         Reg = RegOut;
8076       } else {
8077         DenseMap<const Value *, unsigned>::iterator I =
8078           FuncInfo.ValueMap.find(PHIOp);
8079         if (I != FuncInfo.ValueMap.end())
8080           Reg = I->second;
8081         else {
8082           assert(isa<AllocaInst>(PHIOp) &&
8083                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8084                  "Didn't codegen value into a register!??");
8085           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8086           CopyValueToVirtualRegister(PHIOp, Reg);
8087         }
8088       }
8089 
8090       // Remember that this register needs to added to the machine PHI node as
8091       // the input for this MBB.
8092       SmallVector<EVT, 4> ValueVTs;
8093       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8094       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8095       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8096         EVT VT = ValueVTs[vti];
8097         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8098         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8099           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
8100         Reg += NumRegisters;
8101       }
8102     }
8103   }
8104 
8105   ConstantsOut.clear();
8106 }
8107 
8108 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8109 /// is 0.
8110 MachineBasicBlock *
8111 SelectionDAGBuilder::StackProtectorDescriptor::
8112 AddSuccessorMBB(const BasicBlock *BB,
8113                 MachineBasicBlock *ParentMBB,
8114                 bool IsLikely,
8115                 MachineBasicBlock *SuccMBB) {
8116   // If SuccBB has not been created yet, create it.
8117   if (!SuccMBB) {
8118     MachineFunction *MF = ParentMBB->getParent();
8119     MachineFunction::iterator BBI(ParentMBB);
8120     SuccMBB = MF->CreateMachineBasicBlock(BB);
8121     MF->insert(++BBI, SuccMBB);
8122   }
8123   // Add it as a successor of ParentMBB.
8124   ParentMBB->addSuccessor(
8125       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8126   return SuccMBB;
8127 }
8128 
8129 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8130   MachineFunction::iterator I(MBB);
8131   if (++I == FuncInfo.MF->end())
8132     return nullptr;
8133   return &*I;
8134 }
8135 
8136 /// During lowering new call nodes can be created (such as memset, etc.).
8137 /// Those will become new roots of the current DAG, but complications arise
8138 /// when they are tail calls. In such cases, the call lowering will update
8139 /// the root, but the builder still needs to know that a tail call has been
8140 /// lowered in order to avoid generating an additional return.
8141 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8142   // If the node is null, we do have a tail call.
8143   if (MaybeTC.getNode() != nullptr)
8144     DAG.setRoot(MaybeTC);
8145   else
8146     HasTailCall = true;
8147 }
8148 
8149 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8150                                   unsigned *TotalCases, unsigned First,
8151                                   unsigned Last,
8152                                   unsigned Density) {
8153   assert(Last >= First);
8154   assert(TotalCases[Last] >= TotalCases[First]);
8155 
8156   APInt LowCase = Clusters[First].Low->getValue();
8157   APInt HighCase = Clusters[Last].High->getValue();
8158   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8159 
8160   // FIXME: A range of consecutive cases has 100% density, but only requires one
8161   // comparison to lower. We should discriminate against such consecutive ranges
8162   // in jump tables.
8163 
8164   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8165   uint64_t Range = Diff + 1;
8166 
8167   uint64_t NumCases =
8168       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8169 
8170   assert(NumCases < UINT64_MAX / 100);
8171   assert(Range >= NumCases);
8172 
8173   return NumCases * 100 >= Range * Density;
8174 }
8175 
8176 static inline bool areJTsAllowed(const TargetLowering &TLI,
8177                                  const SwitchInst *SI) {
8178   const Function *Fn = SI->getParent()->getParent();
8179   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8180     return false;
8181 
8182   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8183          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8184 }
8185 
8186 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8187                                          unsigned First, unsigned Last,
8188                                          const SwitchInst *SI,
8189                                          MachineBasicBlock *DefaultMBB,
8190                                          CaseCluster &JTCluster) {
8191   assert(First <= Last);
8192 
8193   auto Prob = BranchProbability::getZero();
8194   unsigned NumCmps = 0;
8195   std::vector<MachineBasicBlock*> Table;
8196   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8197 
8198   // Initialize probabilities in JTProbs.
8199   for (unsigned I = First; I <= Last; ++I)
8200     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8201 
8202   for (unsigned I = First; I <= Last; ++I) {
8203     assert(Clusters[I].Kind == CC_Range);
8204     Prob += Clusters[I].Prob;
8205     APInt Low = Clusters[I].Low->getValue();
8206     APInt High = Clusters[I].High->getValue();
8207     NumCmps += (Low == High) ? 1 : 2;
8208     if (I != First) {
8209       // Fill the gap between this and the previous cluster.
8210       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8211       assert(PreviousHigh.slt(Low));
8212       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8213       for (uint64_t J = 0; J < Gap; J++)
8214         Table.push_back(DefaultMBB);
8215     }
8216     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8217     for (uint64_t J = 0; J < ClusterSize; ++J)
8218       Table.push_back(Clusters[I].MBB);
8219     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8220   }
8221 
8222   unsigned NumDests = JTProbs.size();
8223   if (isSuitableForBitTests(NumDests, NumCmps,
8224                             Clusters[First].Low->getValue(),
8225                             Clusters[Last].High->getValue())) {
8226     // Clusters[First..Last] should be lowered as bit tests instead.
8227     return false;
8228   }
8229 
8230   // Create the MBB that will load from and jump through the table.
8231   // Note: We create it here, but it's not inserted into the function yet.
8232   MachineFunction *CurMF = FuncInfo.MF;
8233   MachineBasicBlock *JumpTableMBB =
8234       CurMF->CreateMachineBasicBlock(SI->getParent());
8235 
8236   // Add successors. Note: use table order for determinism.
8237   SmallPtrSet<MachineBasicBlock *, 8> Done;
8238   for (MachineBasicBlock *Succ : Table) {
8239     if (Done.count(Succ))
8240       continue;
8241     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8242     Done.insert(Succ);
8243   }
8244   JumpTableMBB->normalizeSuccProbs();
8245 
8246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8247   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8248                      ->createJumpTableIndex(Table);
8249 
8250   // Set up the jump table info.
8251   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8252   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8253                       Clusters[Last].High->getValue(), SI->getCondition(),
8254                       nullptr, false);
8255   JTCases.emplace_back(std::move(JTH), std::move(JT));
8256 
8257   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8258                                      JTCases.size() - 1, Prob);
8259   return true;
8260 }
8261 
8262 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8263                                          const SwitchInst *SI,
8264                                          MachineBasicBlock *DefaultMBB) {
8265 #ifndef NDEBUG
8266   // Clusters must be non-empty, sorted, and only contain Range clusters.
8267   assert(!Clusters.empty());
8268   for (CaseCluster &C : Clusters)
8269     assert(C.Kind == CC_Range);
8270   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8271     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8272 #endif
8273 
8274   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8275   if (!areJTsAllowed(TLI, SI))
8276     return;
8277 
8278   const int64_t N = Clusters.size();
8279   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8280 
8281   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8282   SmallVector<unsigned, 8> TotalCases(N);
8283 
8284   for (unsigned i = 0; i < N; ++i) {
8285     APInt Hi = Clusters[i].High->getValue();
8286     APInt Lo = Clusters[i].Low->getValue();
8287     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8288     if (i != 0)
8289       TotalCases[i] += TotalCases[i - 1];
8290   }
8291 
8292   unsigned MinDensity = JumpTableDensity;
8293   if (DefaultMBB->getParent()->getFunction()->optForSize())
8294     MinDensity = OptsizeJumpTableDensity;
8295   if (N >= MinJumpTableSize
8296       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8297     // Cheap case: the whole range might be suitable for jump table.
8298     CaseCluster JTCluster;
8299     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8300       Clusters[0] = JTCluster;
8301       Clusters.resize(1);
8302       return;
8303     }
8304   }
8305 
8306   // The algorithm below is not suitable for -O0.
8307   if (TM.getOptLevel() == CodeGenOpt::None)
8308     return;
8309 
8310   // Split Clusters into minimum number of dense partitions. The algorithm uses
8311   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8312   // for the Case Statement'" (1994), but builds the MinPartitions array in
8313   // reverse order to make it easier to reconstruct the partitions in ascending
8314   // order. In the choice between two optimal partitionings, it picks the one
8315   // which yields more jump tables.
8316 
8317   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8318   SmallVector<unsigned, 8> MinPartitions(N);
8319   // LastElement[i] is the last element of the partition starting at i.
8320   SmallVector<unsigned, 8> LastElement(N);
8321   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8322   SmallVector<unsigned, 8> NumTables(N);
8323 
8324   // Base case: There is only one way to partition Clusters[N-1].
8325   MinPartitions[N - 1] = 1;
8326   LastElement[N - 1] = N - 1;
8327   assert(MinJumpTableSize > 1);
8328   NumTables[N - 1] = 0;
8329 
8330   // Note: loop indexes are signed to avoid underflow.
8331   for (int64_t i = N - 2; i >= 0; i--) {
8332     // Find optimal partitioning of Clusters[i..N-1].
8333     // Baseline: Put Clusters[i] into a partition on its own.
8334     MinPartitions[i] = MinPartitions[i + 1] + 1;
8335     LastElement[i] = i;
8336     NumTables[i] = NumTables[i + 1];
8337 
8338     // Search for a solution that results in fewer partitions.
8339     for (int64_t j = N - 1; j > i; j--) {
8340       // Try building a partition from Clusters[i..j].
8341       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8342         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8343         bool IsTable = j - i + 1 >= MinJumpTableSize;
8344         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8345 
8346         // If this j leads to fewer partitions, or same number of partitions
8347         // with more lookup tables, it is a better partitioning.
8348         if (NumPartitions < MinPartitions[i] ||
8349             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8350           MinPartitions[i] = NumPartitions;
8351           LastElement[i] = j;
8352           NumTables[i] = Tables;
8353         }
8354       }
8355     }
8356   }
8357 
8358   // Iterate over the partitions, replacing some with jump tables in-place.
8359   unsigned DstIndex = 0;
8360   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8361     Last = LastElement[First];
8362     assert(Last >= First);
8363     assert(DstIndex <= First);
8364     unsigned NumClusters = Last - First + 1;
8365 
8366     CaseCluster JTCluster;
8367     if (NumClusters >= MinJumpTableSize &&
8368         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8369       Clusters[DstIndex++] = JTCluster;
8370     } else {
8371       for (unsigned I = First; I <= Last; ++I)
8372         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8373     }
8374   }
8375   Clusters.resize(DstIndex);
8376 }
8377 
8378 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8379   // FIXME: Using the pointer type doesn't seem ideal.
8380   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8381   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8382   return Range <= BW;
8383 }
8384 
8385 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8386                                                 unsigned NumCmps,
8387                                                 const APInt &Low,
8388                                                 const APInt &High) {
8389   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8390   // range of cases both require only one branch to lower. Just looking at the
8391   // number of clusters and destinations should be enough to decide whether to
8392   // build bit tests.
8393 
8394   // To lower a range with bit tests, the range must fit the bitwidth of a
8395   // machine word.
8396   if (!rangeFitsInWord(Low, High))
8397     return false;
8398 
8399   // Decide whether it's profitable to lower this range with bit tests. Each
8400   // destination requires a bit test and branch, and there is an overall range
8401   // check branch. For a small number of clusters, separate comparisons might be
8402   // cheaper, and for many destinations, splitting the range might be better.
8403   return (NumDests == 1 && NumCmps >= 3) ||
8404          (NumDests == 2 && NumCmps >= 5) ||
8405          (NumDests == 3 && NumCmps >= 6);
8406 }
8407 
8408 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8409                                         unsigned First, unsigned Last,
8410                                         const SwitchInst *SI,
8411                                         CaseCluster &BTCluster) {
8412   assert(First <= Last);
8413   if (First == Last)
8414     return false;
8415 
8416   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8417   unsigned NumCmps = 0;
8418   for (int64_t I = First; I <= Last; ++I) {
8419     assert(Clusters[I].Kind == CC_Range);
8420     Dests.set(Clusters[I].MBB->getNumber());
8421     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8422   }
8423   unsigned NumDests = Dests.count();
8424 
8425   APInt Low = Clusters[First].Low->getValue();
8426   APInt High = Clusters[Last].High->getValue();
8427   assert(Low.slt(High));
8428 
8429   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8430     return false;
8431 
8432   APInt LowBound;
8433   APInt CmpRange;
8434 
8435   const int BitWidth = DAG.getTargetLoweringInfo()
8436                            .getPointerTy(DAG.getDataLayout())
8437                            .getSizeInBits();
8438   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8439 
8440   // Check if the clusters cover a contiguous range such that no value in the
8441   // range will jump to the default statement.
8442   bool ContiguousRange = true;
8443   for (int64_t I = First + 1; I <= Last; ++I) {
8444     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8445       ContiguousRange = false;
8446       break;
8447     }
8448   }
8449 
8450   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8451     // Optimize the case where all the case values fit in a word without having
8452     // to subtract minValue. In this case, we can optimize away the subtraction.
8453     LowBound = APInt::getNullValue(Low.getBitWidth());
8454     CmpRange = High;
8455     ContiguousRange = false;
8456   } else {
8457     LowBound = Low;
8458     CmpRange = High - Low;
8459   }
8460 
8461   CaseBitsVector CBV;
8462   auto TotalProb = BranchProbability::getZero();
8463   for (unsigned i = First; i <= Last; ++i) {
8464     // Find the CaseBits for this destination.
8465     unsigned j;
8466     for (j = 0; j < CBV.size(); ++j)
8467       if (CBV[j].BB == Clusters[i].MBB)
8468         break;
8469     if (j == CBV.size())
8470       CBV.push_back(
8471           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8472     CaseBits *CB = &CBV[j];
8473 
8474     // Update Mask, Bits and ExtraProb.
8475     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8476     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8477     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8478     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8479     CB->Bits += Hi - Lo + 1;
8480     CB->ExtraProb += Clusters[i].Prob;
8481     TotalProb += Clusters[i].Prob;
8482   }
8483 
8484   BitTestInfo BTI;
8485   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8486     // Sort by probability first, number of bits second.
8487     if (a.ExtraProb != b.ExtraProb)
8488       return a.ExtraProb > b.ExtraProb;
8489     return a.Bits > b.Bits;
8490   });
8491 
8492   for (auto &CB : CBV) {
8493     MachineBasicBlock *BitTestBB =
8494         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8495     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8496   }
8497   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8498                             SI->getCondition(), -1U, MVT::Other, false,
8499                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8500                             TotalProb);
8501 
8502   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8503                                     BitTestCases.size() - 1, TotalProb);
8504   return true;
8505 }
8506 
8507 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8508                                               const SwitchInst *SI) {
8509 // Partition Clusters into as few subsets as possible, where each subset has a
8510 // range that fits in a machine word and has <= 3 unique destinations.
8511 
8512 #ifndef NDEBUG
8513   // Clusters must be sorted and contain Range or JumpTable clusters.
8514   assert(!Clusters.empty());
8515   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8516   for (const CaseCluster &C : Clusters)
8517     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8518   for (unsigned i = 1; i < Clusters.size(); ++i)
8519     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8520 #endif
8521 
8522   // The algorithm below is not suitable for -O0.
8523   if (TM.getOptLevel() == CodeGenOpt::None)
8524     return;
8525 
8526   // If target does not have legal shift left, do not emit bit tests at all.
8527   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8528   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8529   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8530     return;
8531 
8532   int BitWidth = PTy.getSizeInBits();
8533   const int64_t N = Clusters.size();
8534 
8535   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8536   SmallVector<unsigned, 8> MinPartitions(N);
8537   // LastElement[i] is the last element of the partition starting at i.
8538   SmallVector<unsigned, 8> LastElement(N);
8539 
8540   // FIXME: This might not be the best algorithm for finding bit test clusters.
8541 
8542   // Base case: There is only one way to partition Clusters[N-1].
8543   MinPartitions[N - 1] = 1;
8544   LastElement[N - 1] = N - 1;
8545 
8546   // Note: loop indexes are signed to avoid underflow.
8547   for (int64_t i = N - 2; i >= 0; --i) {
8548     // Find optimal partitioning of Clusters[i..N-1].
8549     // Baseline: Put Clusters[i] into a partition on its own.
8550     MinPartitions[i] = MinPartitions[i + 1] + 1;
8551     LastElement[i] = i;
8552 
8553     // Search for a solution that results in fewer partitions.
8554     // Note: the search is limited by BitWidth, reducing time complexity.
8555     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8556       // Try building a partition from Clusters[i..j].
8557 
8558       // Check the range.
8559       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8560                            Clusters[j].High->getValue()))
8561         continue;
8562 
8563       // Check nbr of destinations and cluster types.
8564       // FIXME: This works, but doesn't seem very efficient.
8565       bool RangesOnly = true;
8566       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8567       for (int64_t k = i; k <= j; k++) {
8568         if (Clusters[k].Kind != CC_Range) {
8569           RangesOnly = false;
8570           break;
8571         }
8572         Dests.set(Clusters[k].MBB->getNumber());
8573       }
8574       if (!RangesOnly || Dests.count() > 3)
8575         break;
8576 
8577       // Check if it's a better partition.
8578       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8579       if (NumPartitions < MinPartitions[i]) {
8580         // Found a better partition.
8581         MinPartitions[i] = NumPartitions;
8582         LastElement[i] = j;
8583       }
8584     }
8585   }
8586 
8587   // Iterate over the partitions, replacing with bit-test clusters in-place.
8588   unsigned DstIndex = 0;
8589   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8590     Last = LastElement[First];
8591     assert(First <= Last);
8592     assert(DstIndex <= First);
8593 
8594     CaseCluster BitTestCluster;
8595     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8596       Clusters[DstIndex++] = BitTestCluster;
8597     } else {
8598       size_t NumClusters = Last - First + 1;
8599       std::memmove(&Clusters[DstIndex], &Clusters[First],
8600                    sizeof(Clusters[0]) * NumClusters);
8601       DstIndex += NumClusters;
8602     }
8603   }
8604   Clusters.resize(DstIndex);
8605 }
8606 
8607 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8608                                         MachineBasicBlock *SwitchMBB,
8609                                         MachineBasicBlock *DefaultMBB) {
8610   MachineFunction *CurMF = FuncInfo.MF;
8611   MachineBasicBlock *NextMBB = nullptr;
8612   MachineFunction::iterator BBI(W.MBB);
8613   if (++BBI != FuncInfo.MF->end())
8614     NextMBB = &*BBI;
8615 
8616   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8617 
8618   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8619 
8620   if (Size == 2 && W.MBB == SwitchMBB) {
8621     // If any two of the cases has the same destination, and if one value
8622     // is the same as the other, but has one bit unset that the other has set,
8623     // use bit manipulation to do two compares at once.  For example:
8624     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8625     // TODO: This could be extended to merge any 2 cases in switches with 3
8626     // cases.
8627     // TODO: Handle cases where W.CaseBB != SwitchBB.
8628     CaseCluster &Small = *W.FirstCluster;
8629     CaseCluster &Big = *W.LastCluster;
8630 
8631     if (Small.Low == Small.High && Big.Low == Big.High &&
8632         Small.MBB == Big.MBB) {
8633       const APInt &SmallValue = Small.Low->getValue();
8634       const APInt &BigValue = Big.Low->getValue();
8635 
8636       // Check that there is only one bit different.
8637       APInt CommonBit = BigValue ^ SmallValue;
8638       if (CommonBit.isPowerOf2()) {
8639         SDValue CondLHS = getValue(Cond);
8640         EVT VT = CondLHS.getValueType();
8641         SDLoc DL = getCurSDLoc();
8642 
8643         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8644                                  DAG.getConstant(CommonBit, DL, VT));
8645         SDValue Cond = DAG.getSetCC(
8646             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8647             ISD::SETEQ);
8648 
8649         // Update successor info.
8650         // Both Small and Big will jump to Small.BB, so we sum up the
8651         // probabilities.
8652         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8653         if (BPI)
8654           addSuccessorWithProb(
8655               SwitchMBB, DefaultMBB,
8656               // The default destination is the first successor in IR.
8657               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8658         else
8659           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8660 
8661         // Insert the true branch.
8662         SDValue BrCond =
8663             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8664                         DAG.getBasicBlock(Small.MBB));
8665         // Insert the false branch.
8666         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8667                              DAG.getBasicBlock(DefaultMBB));
8668 
8669         DAG.setRoot(BrCond);
8670         return;
8671       }
8672     }
8673   }
8674 
8675   if (TM.getOptLevel() != CodeGenOpt::None) {
8676     // Order cases by probability so the most likely case will be checked first.
8677     std::sort(W.FirstCluster, W.LastCluster + 1,
8678               [](const CaseCluster &a, const CaseCluster &b) {
8679       return a.Prob > b.Prob;
8680     });
8681 
8682     // Rearrange the case blocks so that the last one falls through if possible
8683     // without without changing the order of probabilities.
8684     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8685       --I;
8686       if (I->Prob > W.LastCluster->Prob)
8687         break;
8688       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8689         std::swap(*I, *W.LastCluster);
8690         break;
8691       }
8692     }
8693   }
8694 
8695   // Compute total probability.
8696   BranchProbability DefaultProb = W.DefaultProb;
8697   BranchProbability UnhandledProbs = DefaultProb;
8698   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8699     UnhandledProbs += I->Prob;
8700 
8701   MachineBasicBlock *CurMBB = W.MBB;
8702   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8703     MachineBasicBlock *Fallthrough;
8704     if (I == W.LastCluster) {
8705       // For the last cluster, fall through to the default destination.
8706       Fallthrough = DefaultMBB;
8707     } else {
8708       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8709       CurMF->insert(BBI, Fallthrough);
8710       // Put Cond in a virtual register to make it available from the new blocks.
8711       ExportFromCurrentBlock(Cond);
8712     }
8713     UnhandledProbs -= I->Prob;
8714 
8715     switch (I->Kind) {
8716       case CC_JumpTable: {
8717         // FIXME: Optimize away range check based on pivot comparisons.
8718         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8719         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8720 
8721         // The jump block hasn't been inserted yet; insert it here.
8722         MachineBasicBlock *JumpMBB = JT->MBB;
8723         CurMF->insert(BBI, JumpMBB);
8724 
8725         auto JumpProb = I->Prob;
8726         auto FallthroughProb = UnhandledProbs;
8727 
8728         // If the default statement is a target of the jump table, we evenly
8729         // distribute the default probability to successors of CurMBB. Also
8730         // update the probability on the edge from JumpMBB to Fallthrough.
8731         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8732                                               SE = JumpMBB->succ_end();
8733              SI != SE; ++SI) {
8734           if (*SI == DefaultMBB) {
8735             JumpProb += DefaultProb / 2;
8736             FallthroughProb -= DefaultProb / 2;
8737             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8738             JumpMBB->normalizeSuccProbs();
8739             break;
8740           }
8741         }
8742 
8743         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8744         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8745         CurMBB->normalizeSuccProbs();
8746 
8747         // The jump table header will be inserted in our current block, do the
8748         // range check, and fall through to our fallthrough block.
8749         JTH->HeaderBB = CurMBB;
8750         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8751 
8752         // If we're in the right place, emit the jump table header right now.
8753         if (CurMBB == SwitchMBB) {
8754           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8755           JTH->Emitted = true;
8756         }
8757         break;
8758       }
8759       case CC_BitTests: {
8760         // FIXME: Optimize away range check based on pivot comparisons.
8761         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8762 
8763         // The bit test blocks haven't been inserted yet; insert them here.
8764         for (BitTestCase &BTC : BTB->Cases)
8765           CurMF->insert(BBI, BTC.ThisBB);
8766 
8767         // Fill in fields of the BitTestBlock.
8768         BTB->Parent = CurMBB;
8769         BTB->Default = Fallthrough;
8770 
8771         BTB->DefaultProb = UnhandledProbs;
8772         // If the cases in bit test don't form a contiguous range, we evenly
8773         // distribute the probability on the edge to Fallthrough to two
8774         // successors of CurMBB.
8775         if (!BTB->ContiguousRange) {
8776           BTB->Prob += DefaultProb / 2;
8777           BTB->DefaultProb -= DefaultProb / 2;
8778         }
8779 
8780         // If we're in the right place, emit the bit test header right now.
8781         if (CurMBB == SwitchMBB) {
8782           visitBitTestHeader(*BTB, SwitchMBB);
8783           BTB->Emitted = true;
8784         }
8785         break;
8786       }
8787       case CC_Range: {
8788         const Value *RHS, *LHS, *MHS;
8789         ISD::CondCode CC;
8790         if (I->Low == I->High) {
8791           // Check Cond == I->Low.
8792           CC = ISD::SETEQ;
8793           LHS = Cond;
8794           RHS=I->Low;
8795           MHS = nullptr;
8796         } else {
8797           // Check I->Low <= Cond <= I->High.
8798           CC = ISD::SETLE;
8799           LHS = I->Low;
8800           MHS = Cond;
8801           RHS = I->High;
8802         }
8803 
8804         // The false probability is the sum of all unhandled cases.
8805         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8806                      UnhandledProbs);
8807 
8808         if (CurMBB == SwitchMBB)
8809           visitSwitchCase(CB, SwitchMBB);
8810         else
8811           SwitchCases.push_back(CB);
8812 
8813         break;
8814       }
8815     }
8816     CurMBB = Fallthrough;
8817   }
8818 }
8819 
8820 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8821                                               CaseClusterIt First,
8822                                               CaseClusterIt Last) {
8823   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8824     if (X.Prob != CC.Prob)
8825       return X.Prob > CC.Prob;
8826 
8827     // Ties are broken by comparing the case value.
8828     return X.Low->getValue().slt(CC.Low->getValue());
8829   });
8830 }
8831 
8832 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8833                                         const SwitchWorkListItem &W,
8834                                         Value *Cond,
8835                                         MachineBasicBlock *SwitchMBB) {
8836   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8837          "Clusters not sorted?");
8838 
8839   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8840 
8841   // Balance the tree based on branch probabilities to create a near-optimal (in
8842   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8843   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8844   CaseClusterIt LastLeft = W.FirstCluster;
8845   CaseClusterIt FirstRight = W.LastCluster;
8846   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8847   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8848 
8849   // Move LastLeft and FirstRight towards each other from opposite directions to
8850   // find a partitioning of the clusters which balances the probability on both
8851   // sides. If LeftProb and RightProb are equal, alternate which side is
8852   // taken to ensure 0-probability nodes are distributed evenly.
8853   unsigned I = 0;
8854   while (LastLeft + 1 < FirstRight) {
8855     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8856       LeftProb += (++LastLeft)->Prob;
8857     else
8858       RightProb += (--FirstRight)->Prob;
8859     I++;
8860   }
8861 
8862   for (;;) {
8863     // Our binary search tree differs from a typical BST in that ours can have up
8864     // to three values in each leaf. The pivot selection above doesn't take that
8865     // into account, which means the tree might require more nodes and be less
8866     // efficient. We compensate for this here.
8867 
8868     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8869     unsigned NumRight = W.LastCluster - FirstRight + 1;
8870 
8871     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8872       // If one side has less than 3 clusters, and the other has more than 3,
8873       // consider taking a cluster from the other side.
8874 
8875       if (NumLeft < NumRight) {
8876         // Consider moving the first cluster on the right to the left side.
8877         CaseCluster &CC = *FirstRight;
8878         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8879         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8880         if (LeftSideRank <= RightSideRank) {
8881           // Moving the cluster to the left does not demote it.
8882           ++LastLeft;
8883           ++FirstRight;
8884           continue;
8885         }
8886       } else {
8887         assert(NumRight < NumLeft);
8888         // Consider moving the last element on the left to the right side.
8889         CaseCluster &CC = *LastLeft;
8890         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8891         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8892         if (RightSideRank <= LeftSideRank) {
8893           // Moving the cluster to the right does not demot it.
8894           --LastLeft;
8895           --FirstRight;
8896           continue;
8897         }
8898       }
8899     }
8900     break;
8901   }
8902 
8903   assert(LastLeft + 1 == FirstRight);
8904   assert(LastLeft >= W.FirstCluster);
8905   assert(FirstRight <= W.LastCluster);
8906 
8907   // Use the first element on the right as pivot since we will make less-than
8908   // comparisons against it.
8909   CaseClusterIt PivotCluster = FirstRight;
8910   assert(PivotCluster > W.FirstCluster);
8911   assert(PivotCluster <= W.LastCluster);
8912 
8913   CaseClusterIt FirstLeft = W.FirstCluster;
8914   CaseClusterIt LastRight = W.LastCluster;
8915 
8916   const ConstantInt *Pivot = PivotCluster->Low;
8917 
8918   // New blocks will be inserted immediately after the current one.
8919   MachineFunction::iterator BBI(W.MBB);
8920   ++BBI;
8921 
8922   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8923   // we can branch to its destination directly if it's squeezed exactly in
8924   // between the known lower bound and Pivot - 1.
8925   MachineBasicBlock *LeftMBB;
8926   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8927       FirstLeft->Low == W.GE &&
8928       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8929     LeftMBB = FirstLeft->MBB;
8930   } else {
8931     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8932     FuncInfo.MF->insert(BBI, LeftMBB);
8933     WorkList.push_back(
8934         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8935     // Put Cond in a virtual register to make it available from the new blocks.
8936     ExportFromCurrentBlock(Cond);
8937   }
8938 
8939   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8940   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8941   // directly if RHS.High equals the current upper bound.
8942   MachineBasicBlock *RightMBB;
8943   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8944       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8945     RightMBB = FirstRight->MBB;
8946   } else {
8947     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8948     FuncInfo.MF->insert(BBI, RightMBB);
8949     WorkList.push_back(
8950         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8951     // Put Cond in a virtual register to make it available from the new blocks.
8952     ExportFromCurrentBlock(Cond);
8953   }
8954 
8955   // Create the CaseBlock record that will be used to lower the branch.
8956   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8957                LeftProb, RightProb);
8958 
8959   if (W.MBB == SwitchMBB)
8960     visitSwitchCase(CB, SwitchMBB);
8961   else
8962     SwitchCases.push_back(CB);
8963 }
8964 
8965 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8966   // Extract cases from the switch.
8967   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8968   CaseClusterVector Clusters;
8969   Clusters.reserve(SI.getNumCases());
8970   for (auto I : SI.cases()) {
8971     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8972     const ConstantInt *CaseVal = I.getCaseValue();
8973     BranchProbability Prob =
8974         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8975             : BranchProbability(1, SI.getNumCases() + 1);
8976     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8977   }
8978 
8979   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8980 
8981   // Cluster adjacent cases with the same destination. We do this at all
8982   // optimization levels because it's cheap to do and will make codegen faster
8983   // if there are many clusters.
8984   sortAndRangeify(Clusters);
8985 
8986   if (TM.getOptLevel() != CodeGenOpt::None) {
8987     // Replace an unreachable default with the most popular destination.
8988     // FIXME: Exploit unreachable default more aggressively.
8989     bool UnreachableDefault =
8990         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8991     if (UnreachableDefault && !Clusters.empty()) {
8992       DenseMap<const BasicBlock *, unsigned> Popularity;
8993       unsigned MaxPop = 0;
8994       const BasicBlock *MaxBB = nullptr;
8995       for (auto I : SI.cases()) {
8996         const BasicBlock *BB = I.getCaseSuccessor();
8997         if (++Popularity[BB] > MaxPop) {
8998           MaxPop = Popularity[BB];
8999           MaxBB = BB;
9000         }
9001       }
9002       // Set new default.
9003       assert(MaxPop > 0 && MaxBB);
9004       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9005 
9006       // Remove cases that were pointing to the destination that is now the
9007       // default.
9008       CaseClusterVector New;
9009       New.reserve(Clusters.size());
9010       for (CaseCluster &CC : Clusters) {
9011         if (CC.MBB != DefaultMBB)
9012           New.push_back(CC);
9013       }
9014       Clusters = std::move(New);
9015     }
9016   }
9017 
9018   // If there is only the default destination, jump there directly.
9019   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9020   if (Clusters.empty()) {
9021     SwitchMBB->addSuccessor(DefaultMBB);
9022     if (DefaultMBB != NextBlock(SwitchMBB)) {
9023       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9024                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9025     }
9026     return;
9027   }
9028 
9029   findJumpTables(Clusters, &SI, DefaultMBB);
9030   findBitTestClusters(Clusters, &SI);
9031 
9032   DEBUG({
9033     dbgs() << "Case clusters: ";
9034     for (const CaseCluster &C : Clusters) {
9035       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9036       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9037 
9038       C.Low->getValue().print(dbgs(), true);
9039       if (C.Low != C.High) {
9040         dbgs() << '-';
9041         C.High->getValue().print(dbgs(), true);
9042       }
9043       dbgs() << ' ';
9044     }
9045     dbgs() << '\n';
9046   });
9047 
9048   assert(!Clusters.empty());
9049   SwitchWorkList WorkList;
9050   CaseClusterIt First = Clusters.begin();
9051   CaseClusterIt Last = Clusters.end() - 1;
9052   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9053   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9054 
9055   while (!WorkList.empty()) {
9056     SwitchWorkListItem W = WorkList.back();
9057     WorkList.pop_back();
9058     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9059 
9060     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9061       // For optimized builds, lower large range as a balanced binary tree.
9062       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9063       continue;
9064     }
9065 
9066     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9067   }
9068 }
9069