1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 /// Minimum jump table density for normal functions. 90 static cl::opt<unsigned> 91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 92 cl::desc("Minimum density for building a jump table in " 93 "a normal function")); 94 95 /// Minimum jump table density for -Os or -Oz functions. 96 static cl::opt<unsigned> 97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 98 cl::desc("Minimum density for building a jump table in " 99 "an optsize function")); 100 101 102 // Limit the width of DAG chains. This is important in general to prevent 103 // DAG-based analysis from blowing up. For example, alias analysis and 104 // load clustering may not complete in reasonable time. It is difficult to 105 // recognize and avoid this situation within each individual analysis, and 106 // future analyses are likely to have the same behavior. Limiting DAG width is 107 // the safe approach and will be especially important with global DAGs. 108 // 109 // MaxParallelChains default is arbitrarily high to avoid affecting 110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 111 // sequence over this should have been converted to llvm.memcpy by the 112 // frontend. It easy to induce this behavior with .ll code such as: 113 // %buffer = alloca [4096 x i8] 114 // %data = load [4096 x i8]* %argPtr 115 // store [4096 x i8] %data, [4096 x i8]* %buffer 116 static const unsigned MaxParallelChains = 64; 117 118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 119 const SDValue *Parts, unsigned NumParts, 120 MVT PartVT, EVT ValueVT, const Value *V); 121 122 /// getCopyFromParts - Create a value that contains the specified legal parts 123 /// combined into the value they represent. If the parts combine to a type 124 /// larger then ValueVT then AssertOp can be used to specify whether the extra 125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 126 /// (ISD::AssertSext). 127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 128 const SDValue *Parts, 129 unsigned NumParts, MVT PartVT, EVT ValueVT, 130 const Value *V, 131 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 132 if (ValueVT.isVector()) 133 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 134 PartVT, ValueVT, V); 135 136 assert(NumParts > 0 && "No parts to assemble!"); 137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 138 SDValue Val = Parts[0]; 139 140 if (NumParts > 1) { 141 // Assemble the value from multiple parts. 142 if (ValueVT.isInteger()) { 143 unsigned PartBits = PartVT.getSizeInBits(); 144 unsigned ValueBits = ValueVT.getSizeInBits(); 145 146 // Assemble the power of 2 part. 147 unsigned RoundParts = NumParts & (NumParts - 1) ? 148 1 << Log2_32(NumParts) : NumParts; 149 unsigned RoundBits = PartBits * RoundParts; 150 EVT RoundVT = RoundBits == ValueBits ? 151 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 152 SDValue Lo, Hi; 153 154 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 155 156 if (RoundParts > 2) { 157 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 158 PartVT, HalfVT, V); 159 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 160 RoundParts / 2, PartVT, HalfVT, V); 161 } else { 162 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 164 } 165 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 170 171 if (RoundParts < NumParts) { 172 // Assemble the trailing non-power-of-2 part. 173 unsigned OddParts = NumParts - RoundParts; 174 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 175 Hi = getCopyFromParts(DAG, DL, 176 Parts + RoundParts, OddParts, PartVT, OddVT, V); 177 178 // Combine the round and odd parts. 179 Lo = Val; 180 if (DAG.getDataLayout().isBigEndian()) 181 std::swap(Lo, Hi); 182 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 183 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 184 Hi = 185 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 186 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 187 TLI.getPointerTy(DAG.getDataLayout()))); 188 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 189 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 190 } 191 } else if (PartVT.isFloatingPoint()) { 192 // FP split into multiple FP parts (for ppcf128) 193 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 194 "Unexpected split"); 195 SDValue Lo, Hi; 196 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 197 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 198 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 199 std::swap(Lo, Hi); 200 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 201 } else { 202 // FP split into integer parts (soft fp) 203 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 204 !PartVT.isVector() && "Unexpected split"); 205 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 207 } 208 } 209 210 // There is now one part, held in Val. Correct it to match ValueVT. 211 // PartEVT is the type of the register class that holds the value. 212 // ValueVT is the type of the inline asm operation. 213 EVT PartEVT = Val.getValueType(); 214 215 if (PartEVT == ValueVT) 216 return Val; 217 218 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 219 ValueVT.bitsLT(PartEVT)) { 220 // For an FP value in an integer part, we need to truncate to the right 221 // width first. 222 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 223 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 224 } 225 226 // Handle types that have the same size. 227 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 228 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 229 230 // Handle types with different sizes. 231 if (PartEVT.isInteger() && ValueVT.isInteger()) { 232 if (ValueVT.bitsLT(PartEVT)) { 233 // For a truncate, see if we have any information to 234 // indicate whether the truncated bits will always be 235 // zero or sign-extension. 236 if (AssertOp != ISD::DELETED_NODE) 237 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 238 DAG.getValueType(ValueVT)); 239 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 240 } 241 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 242 } 243 244 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 245 // FP_ROUND's are always exact here. 246 if (ValueVT.bitsLT(Val.getValueType())) 247 return DAG.getNode( 248 ISD::FP_ROUND, DL, ValueVT, Val, 249 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 250 251 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 252 } 253 254 llvm_unreachable("Unknown mismatch!"); 255 } 256 257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 258 const Twine &ErrMsg) { 259 const Instruction *I = dyn_cast_or_null<Instruction>(V); 260 if (!V) 261 return Ctx.emitError(ErrMsg); 262 263 const char *AsmError = ", possible invalid constraint for vector type"; 264 if (const CallInst *CI = dyn_cast<CallInst>(I)) 265 if (isa<InlineAsm>(CI->getCalledValue())) 266 return Ctx.emitError(I, ErrMsg + AsmError); 267 268 return Ctx.emitError(I, ErrMsg); 269 } 270 271 /// getCopyFromPartsVector - Create a value that contains the specified legal 272 /// parts combined into the value they represent. If the parts combine to a 273 /// type larger then ValueVT then AssertOp can be used to specify whether the 274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 275 /// ValueVT (ISD::AssertSext). 276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 277 const SDValue *Parts, unsigned NumParts, 278 MVT PartVT, EVT ValueVT, const Value *V) { 279 assert(ValueVT.isVector() && "Not a vector value"); 280 assert(NumParts > 0 && "No parts to assemble!"); 281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 282 SDValue Val = Parts[0]; 283 284 // Handle a multi-element vector. 285 if (NumParts > 1) { 286 EVT IntermediateVT; 287 MVT RegisterVT; 288 unsigned NumIntermediates; 289 unsigned NumRegs = 290 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 291 NumIntermediates, RegisterVT); 292 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 293 NumParts = NumRegs; // Silence a compiler warning. 294 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 295 assert(RegisterVT.getSizeInBits() == 296 Parts[0].getSimpleValueType().getSizeInBits() && 297 "Part type sizes don't match!"); 298 299 // Assemble the parts into intermediate operands. 300 SmallVector<SDValue, 8> Ops(NumIntermediates); 301 if (NumIntermediates == NumParts) { 302 // If the register was not expanded, truncate or copy the value, 303 // as appropriate. 304 for (unsigned i = 0; i != NumParts; ++i) 305 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 306 PartVT, IntermediateVT, V); 307 } else if (NumParts > 0) { 308 // If the intermediate type was expanded, build the intermediate 309 // operands from the parts. 310 assert(NumParts % NumIntermediates == 0 && 311 "Must expand into a divisible number of parts!"); 312 unsigned Factor = NumParts / NumIntermediates; 313 for (unsigned i = 0; i != NumIntermediates; ++i) 314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 315 PartVT, IntermediateVT, V); 316 } 317 318 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 319 // intermediate operands. 320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 321 : ISD::BUILD_VECTOR, 322 DL, ValueVT, Ops); 323 } 324 325 // There is now one part, held in Val. Correct it to match ValueVT. 326 EVT PartEVT = Val.getValueType(); 327 328 if (PartEVT == ValueVT) 329 return Val; 330 331 if (PartEVT.isVector()) { 332 // If the element type of the source/dest vectors are the same, but the 333 // parts vector has more elements than the value vector, then we have a 334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 335 // elements we want. 336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 338 "Cannot narrow, it would be a lossy transformation"); 339 return DAG.getNode( 340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 342 } 343 344 // Vector/Vector bitcast. 345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 349 "Cannot handle this kind of promotion"); 350 // Promoted vector extract 351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 352 353 } 354 355 // Trivial bitcast if the types are the same size and the destination 356 // vector type is legal. 357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 358 TLI.isTypeLegal(ValueVT)) 359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 360 361 // Handle cases such as i8 -> <1 x i1> 362 if (ValueVT.getVectorNumElements() != 1) { 363 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 364 "non-trivial scalar-to-vector conversion"); 365 return DAG.getUNDEF(ValueVT); 366 } 367 368 if (ValueVT.getVectorNumElements() == 1 && 369 ValueVT.getVectorElementType() != PartEVT) 370 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 371 372 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 373 } 374 375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 376 SDValue Val, SDValue *Parts, unsigned NumParts, 377 MVT PartVT, const Value *V); 378 379 /// getCopyToParts - Create a series of nodes that contain the specified value 380 /// split into legal parts. If the parts contain more bits than Val, then, for 381 /// integers, ExtendKind can be used to specify how to generate the extra bits. 382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 383 SDValue Val, SDValue *Parts, unsigned NumParts, 384 MVT PartVT, const Value *V, 385 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 386 EVT ValueVT = Val.getValueType(); 387 388 // Handle the vector case separately. 389 if (ValueVT.isVector()) 390 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 391 392 unsigned PartBits = PartVT.getSizeInBits(); 393 unsigned OrigNumParts = NumParts; 394 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 395 "Copying to an illegal type!"); 396 397 if (NumParts == 0) 398 return; 399 400 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 401 EVT PartEVT = PartVT; 402 if (PartEVT == ValueVT) { 403 assert(NumParts == 1 && "No-op copy with multiple parts!"); 404 Parts[0] = Val; 405 return; 406 } 407 408 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 409 // If the parts cover more bits than the value has, promote the value. 410 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 411 assert(NumParts == 1 && "Do not know what to promote to!"); 412 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 413 } else { 414 if (ValueVT.isFloatingPoint()) { 415 // FP values need to be bitcast, then extended if they are being put 416 // into a larger container. 417 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 418 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 421 ValueVT.isInteger() && 422 "Unknown mismatch!"); 423 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 424 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 425 if (PartVT == MVT::x86mmx) 426 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 427 } 428 } else if (PartBits == ValueVT.getSizeInBits()) { 429 // Different types of the same size. 430 assert(NumParts == 1 && PartEVT != ValueVT); 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 433 // If the parts cover less bits than value has, truncate the value. 434 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 435 ValueVT.isInteger() && 436 "Unknown mismatch!"); 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 if (PartVT == MVT::x86mmx) 440 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 441 } 442 443 // The value may have changed - recompute ValueVT. 444 ValueVT = Val.getValueType(); 445 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 446 "Failed to tile the value with PartVT!"); 447 448 if (NumParts == 1) { 449 if (PartEVT != ValueVT) 450 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 451 "scalar-to-vector conversion failed"); 452 453 Parts[0] = Val; 454 return; 455 } 456 457 // Expand the value into multiple parts. 458 if (NumParts & (NumParts - 1)) { 459 // The number of parts is not a power of 2. Split off and copy the tail. 460 assert(PartVT.isInteger() && ValueVT.isInteger() && 461 "Do not know what to expand to!"); 462 unsigned RoundParts = 1 << Log2_32(NumParts); 463 unsigned RoundBits = RoundParts * PartBits; 464 unsigned OddParts = NumParts - RoundParts; 465 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 466 DAG.getIntPtrConstant(RoundBits, DL)); 467 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 468 469 if (DAG.getDataLayout().isBigEndian()) 470 // The odd parts were reversed by getCopyToParts - unreverse them. 471 std::reverse(Parts + RoundParts, Parts + NumParts); 472 473 NumParts = RoundParts; 474 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 475 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 476 } 477 478 // The number of parts is a power of 2. Repeatedly bisect the value using 479 // EXTRACT_ELEMENT. 480 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 481 EVT::getIntegerVT(*DAG.getContext(), 482 ValueVT.getSizeInBits()), 483 Val); 484 485 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 486 for (unsigned i = 0; i < NumParts; i += StepSize) { 487 unsigned ThisBits = StepSize * PartBits / 2; 488 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 489 SDValue &Part0 = Parts[i]; 490 SDValue &Part1 = Parts[i+StepSize/2]; 491 492 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 493 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 494 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 495 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 496 497 if (ThisBits == PartBits && ThisVT != PartVT) { 498 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 499 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 500 } 501 } 502 } 503 504 if (DAG.getDataLayout().isBigEndian()) 505 std::reverse(Parts, Parts + OrigNumParts); 506 } 507 508 509 /// getCopyToPartsVector - Create a series of nodes that contain the specified 510 /// value split into legal parts. 511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 512 SDValue Val, SDValue *Parts, unsigned NumParts, 513 MVT PartVT, const Value *V) { 514 EVT ValueVT = Val.getValueType(); 515 assert(ValueVT.isVector() && "Not a vector"); 516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 517 518 if (NumParts == 1) { 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 // Nothing to do. 522 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 523 // Bitconvert vector->vector case. 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (PartVT.isVector() && 526 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 527 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 528 EVT ElementVT = PartVT.getVectorElementType(); 529 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 530 // undef elements. 531 SmallVector<SDValue, 16> Ops; 532 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 533 Ops.push_back(DAG.getNode( 534 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 535 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 536 537 for (unsigned i = ValueVT.getVectorNumElements(), 538 e = PartVT.getVectorNumElements(); i != e; ++i) 539 Ops.push_back(DAG.getUNDEF(ElementVT)); 540 541 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 542 543 // FIXME: Use CONCAT for 2x -> 4x. 544 545 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 546 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 547 } else if (PartVT.isVector() && 548 PartEVT.getVectorElementType().bitsGE( 549 ValueVT.getVectorElementType()) && 550 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 551 552 // Promoted vector extract 553 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 554 } else{ 555 // Vector -> scalar conversion. 556 assert(ValueVT.getVectorNumElements() == 1 && 557 "Only trivial vector-to-scalar conversions should get here!"); 558 Val = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 560 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 562 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 563 } 564 565 Parts[0] = Val; 566 return; 567 } 568 569 // Handle a multi-element vector. 570 EVT IntermediateVT; 571 MVT RegisterVT; 572 unsigned NumIntermediates; 573 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 574 IntermediateVT, 575 NumIntermediates, RegisterVT); 576 unsigned NumElements = ValueVT.getVectorNumElements(); 577 578 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 579 NumParts = NumRegs; // Silence a compiler warning. 580 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 581 582 // Split the vector into intermediate operands. 583 SmallVector<SDValue, 8> Ops(NumIntermediates); 584 for (unsigned i = 0; i != NumIntermediates; ++i) { 585 if (IntermediateVT.isVector()) 586 Ops[i] = 587 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 588 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 589 TLI.getVectorIdxTy(DAG.getDataLayout()))); 590 else 591 Ops[i] = DAG.getNode( 592 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 593 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 594 } 595 596 // Split the intermediate operands into legal parts. 597 if (NumParts == NumIntermediates) { 598 // If the register was not expanded, promote or copy the value, 599 // as appropriate. 600 for (unsigned i = 0; i != NumParts; ++i) 601 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 602 } else if (NumParts > 0) { 603 // If the intermediate type was expanded, split each the value into 604 // legal parts. 605 assert(NumIntermediates != 0 && "division by zero"); 606 assert(NumParts % NumIntermediates == 0 && 607 "Must expand into a divisible number of parts!"); 608 unsigned Factor = NumParts / NumIntermediates; 609 for (unsigned i = 0; i != NumIntermediates; ++i) 610 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 611 } 612 } 613 614 RegsForValue::RegsForValue() {} 615 616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 617 EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 621 const DataLayout &DL, unsigned Reg, Type *Ty) { 622 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 623 624 for (EVT ValueVT : ValueVTs) { 625 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 635 /// this value and returns the result as a ValueVT value. This uses 636 /// Chain/Flag as the input and updates them for the output Chain/Flag. 637 /// If the Flag pointer is NULL, no flag is used. 638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 639 FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V) const { 643 // A Value with type {} or [0 x %t] needs no registers. 644 if (ValueVTs.empty()) 645 return SDValue(); 646 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 649 // Assemble the legal parts into the final values. 650 SmallVector<SDValue, 4> Values(ValueVTs.size()); 651 SmallVector<SDValue, 8> Parts; 652 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 653 // Copy the legal parts from the registers. 654 EVT ValueVT = ValueVTs[Value]; 655 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 656 MVT RegisterVT = RegVTs[Value]; 657 658 Parts.resize(NumRegs); 659 for (unsigned i = 0; i != NumRegs; ++i) { 660 SDValue P; 661 if (!Flag) { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 663 } else { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 665 *Flag = P.getValue(2); 666 } 667 668 Chain = P.getValue(1); 669 Parts[i] = P; 670 671 // If the source register was virtual and if we know something about it, 672 // add an assert node. 673 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 674 !RegisterVT.isInteger() || RegisterVT.isVector()) 675 continue; 676 677 const FunctionLoweringInfo::LiveOutInfo *LOI = 678 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 679 if (!LOI) 680 continue; 681 682 unsigned RegSize = RegisterVT.getSizeInBits(); 683 unsigned NumSignBits = LOI->NumSignBits; 684 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 685 686 if (NumZeroBits == RegSize) { 687 // The current value is a zero. 688 // Explicitly express that as it would be easier for 689 // optimizations to kick in. 690 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 691 continue; 692 } 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) { 699 isSExt = true; // ASSERT SEXT 1 700 FromVT = MVT::i1; 701 } else if (NumZeroBits >= RegSize - 1) { 702 isSExt = false; // ASSERT ZEXT 1 703 FromVT = MVT::i1; 704 } else if (NumSignBits > RegSize - 8) { 705 isSExt = true; // ASSERT SEXT 8 706 FromVT = MVT::i8; 707 } else if (NumZeroBits >= RegSize - 8) { 708 isSExt = false; // ASSERT ZEXT 8 709 FromVT = MVT::i8; 710 } else if (NumSignBits > RegSize - 16) { 711 isSExt = true; // ASSERT SEXT 16 712 FromVT = MVT::i16; 713 } else if (NumZeroBits >= RegSize - 16) { 714 isSExt = false; // ASSERT ZEXT 16 715 FromVT = MVT::i16; 716 } else if (NumSignBits > RegSize - 32) { 717 isSExt = true; // ASSERT SEXT 32 718 FromVT = MVT::i32; 719 } else if (NumZeroBits >= RegSize - 32) { 720 isSExt = false; // ASSERT ZEXT 32 721 FromVT = MVT::i32; 722 } else { 723 continue; 724 } 725 // Add an assertion node. 726 assert(FromVT != MVT::Other); 727 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 728 RegisterVT, P, DAG.getValueType(FromVT)); 729 } 730 731 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 732 NumRegs, RegisterVT, ValueVT, V); 733 Part += NumRegs; 734 Parts.clear(); 735 } 736 737 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 738 } 739 740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 741 /// specified value into the registers specified by this object. This uses 742 /// Chain/Flag as the input and updates them for the output Chain/Flag. 743 /// If the Flag pointer is NULL, no flag is used. 744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 745 SDValue &Chain, SDValue *Flag, const Value *V, 746 ISD::NodeType PreferredExtendType) const { 747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 748 ISD::NodeType ExtendKind = PreferredExtendType; 749 750 // Get the list of the values's legal parts. 751 unsigned NumRegs = Regs.size(); 752 SmallVector<SDValue, 8> Parts(NumRegs); 753 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 754 EVT ValueVT = ValueVTs[Value]; 755 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 756 MVT RegisterVT = RegVTs[Value]; 757 758 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 759 ExtendKind = ISD::ZERO_EXTEND; 760 761 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 762 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 763 Part += NumParts; 764 } 765 766 // Copy the parts into the registers. 767 SmallVector<SDValue, 8> Chains(NumRegs); 768 for (unsigned i = 0; i != NumRegs; ++i) { 769 SDValue Part; 770 if (!Flag) { 771 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 772 } else { 773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 774 *Flag = Part.getValue(1); 775 } 776 777 Chains[i] = Part.getValue(0); 778 } 779 780 if (NumRegs == 1 || Flag) 781 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 782 // flagged to it. That is the CopyToReg nodes and the user are considered 783 // a single scheduling unit. If we create a TokenFactor and return it as 784 // chain, then the TokenFactor is both a predecessor (operand) of the 785 // user as well as a successor (the TF operands are flagged to the user). 786 // c1, f1 = CopyToReg 787 // c2, f2 = CopyToReg 788 // c3 = TokenFactor c1, c2 789 // ... 790 // = op c3, ..., f2 791 Chain = Chains[NumRegs-1]; 792 else 793 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 794 } 795 796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 797 /// operand list. This adds the code marker and includes the number of 798 /// values added into it. 799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 800 unsigned MatchingIdx, SDLoc dl, 801 SelectionDAG &DAG, 802 std::vector<SDValue> &Ops) const { 803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 804 805 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 806 if (HasMatching) 807 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 808 else if (!Regs.empty() && 809 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 810 // Put the register class of the virtual registers in the flag word. That 811 // way, later passes can recompute register class constraints for inline 812 // assembly as well as normal instructions. 813 // Don't do this for tied operands that can use the regclass information 814 // from the def. 815 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 816 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 817 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 818 } 819 820 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 821 Ops.push_back(Res); 822 823 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 824 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 825 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 826 MVT RegisterVT = RegVTs[Value]; 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 829 unsigned TheReg = Regs[Reg++]; 830 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 831 832 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 833 // If we clobbered the stack pointer, MFI should know about it. 834 assert(DAG.getMachineFunction().getFrameInfo()-> 835 hasOpaqueSPAdjustment()); 836 } 837 } 838 } 839 } 840 841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 842 const TargetLibraryInfo *li) { 843 AA = &aa; 844 GFI = gfi; 845 LibInfo = li; 846 DL = &DAG.getDataLayout(); 847 Context = DAG.getContext(); 848 LPadToCallSiteMap.clear(); 849 } 850 851 /// clear - Clear out the current SelectionDAG and the associated 852 /// state and prepare this SelectionDAGBuilder object to be used 853 /// for a new block. This doesn't clear out information about 854 /// additional blocks that are needed to complete switch lowering 855 /// or PHI node updating; that information is cleared out as it is 856 /// consumed. 857 void SelectionDAGBuilder::clear() { 858 NodeMap.clear(); 859 UnusedArgNodeMap.clear(); 860 PendingLoads.clear(); 861 PendingExports.clear(); 862 CurInst = nullptr; 863 HasTailCall = false; 864 SDNodeOrder = LowestSDNodeOrder; 865 StatepointLowering.clear(); 866 } 867 868 /// clearDanglingDebugInfo - Clear the dangling debug information 869 /// map. This function is separated from the clear so that debug 870 /// information that is dangling in a basic block can be properly 871 /// resolved in a different basic block. This allows the 872 /// SelectionDAG to resolve dangling debug information attached 873 /// to PHI nodes. 874 void SelectionDAGBuilder::clearDanglingDebugInfo() { 875 DanglingDebugInfoMap.clear(); 876 } 877 878 /// getRoot - Return the current virtual root of the Selection DAG, 879 /// flushing any PendingLoad items. This must be done before emitting 880 /// a store or any other node that may need to be ordered after any 881 /// prior load instructions. 882 /// 883 SDValue SelectionDAGBuilder::getRoot() { 884 if (PendingLoads.empty()) 885 return DAG.getRoot(); 886 887 if (PendingLoads.size() == 1) { 888 SDValue Root = PendingLoads[0]; 889 DAG.setRoot(Root); 890 PendingLoads.clear(); 891 return Root; 892 } 893 894 // Otherwise, we have to make a token factor node. 895 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingLoads); 897 PendingLoads.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 /// getControlRoot - Similar to getRoot, but instead of flushing all the 903 /// PendingLoad items, flush all the PendingExports items. It is necessary 904 /// to do this before emitting a terminator instruction. 905 /// 906 SDValue SelectionDAGBuilder::getControlRoot() { 907 SDValue Root = DAG.getRoot(); 908 909 if (PendingExports.empty()) 910 return Root; 911 912 // Turn all of the CopyToReg chains into one factored node. 913 if (Root.getOpcode() != ISD::EntryToken) { 914 unsigned i = 0, e = PendingExports.size(); 915 for (; i != e; ++i) { 916 assert(PendingExports[i].getNode()->getNumOperands() > 1); 917 if (PendingExports[i].getNode()->getOperand(0) == Root) 918 break; // Don't add the root if we already indirectly depend on it. 919 } 920 921 if (i == e) 922 PendingExports.push_back(Root); 923 } 924 925 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 926 PendingExports); 927 PendingExports.clear(); 928 DAG.setRoot(Root); 929 return Root; 930 } 931 932 /// Copy swift error to the final virtual register at end of a basic block, as 933 /// specified by SwiftErrorWorklist, if necessary. 934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) { 935 const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo(); 936 if (!TLI.supportSwiftError()) 937 return; 938 939 if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB)) 940 return; 941 942 // Go through entries in SwiftErrorWorklist, and create copy as necessary. 943 FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry = 944 SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB]; 945 FunctionLoweringInfo::SwiftErrorVRegs &MapEntry = 946 SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB]; 947 for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) { 948 unsigned WorkReg = WorklistEntry[I]; 949 950 // Find the swifterror virtual register for the value in SwiftErrorMap. 951 unsigned MapReg = MapEntry[I]; 952 assert(TargetRegisterInfo::isVirtualRegister(MapReg) && 953 "Entries in SwiftErrorMap should be virtual registers"); 954 955 if (WorkReg == MapReg) 956 continue; 957 958 // Create copy from SwiftErrorMap to SwiftWorklist. 959 auto &DL = SDB.DAG.getDataLayout(); 960 SDValue CopyNode = SDB.DAG.getCopyToReg( 961 SDB.getRoot(), SDB.getCurSDLoc(), WorkReg, 962 SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL)))); 963 MapEntry[I] = WorkReg; 964 SDB.DAG.setRoot(CopyNode); 965 } 966 } 967 968 void SelectionDAGBuilder::visit(const Instruction &I) { 969 // Set up outgoing PHI node register values before emitting the terminator. 970 if (isa<TerminatorInst>(&I)) { 971 copySwiftErrorsToFinalVRegs(*this); 972 HandlePHINodesInSuccessorBlocks(I.getParent()); 973 } 974 975 ++SDNodeOrder; 976 977 CurInst = &I; 978 979 visit(I.getOpcode(), I); 980 981 if (!isa<TerminatorInst>(&I) && !HasTailCall && 982 !isStatepoint(&I)) // statepoints handle their exports internally 983 CopyToExportRegsIfNeeded(&I); 984 985 CurInst = nullptr; 986 } 987 988 void SelectionDAGBuilder::visitPHI(const PHINode &) { 989 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 990 } 991 992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 993 // Note: this doesn't use InstVisitor, because it has to work with 994 // ConstantExpr's in addition to instructions. 995 switch (Opcode) { 996 default: llvm_unreachable("Unknown instruction type encountered!"); 997 // Build the switch statement using the Instruction.def file. 998 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 999 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1000 #include "llvm/IR/Instruction.def" 1001 } 1002 } 1003 1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1005 // generate the debug data structures now that we've seen its definition. 1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1007 SDValue Val) { 1008 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1009 if (DDI.getDI()) { 1010 const DbgValueInst *DI = DDI.getDI(); 1011 DebugLoc dl = DDI.getdl(); 1012 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1013 DILocalVariable *Variable = DI->getVariable(); 1014 DIExpression *Expr = DI->getExpression(); 1015 assert(Variable->isValidLocationForIntrinsic(dl) && 1016 "Expected inlined-at fields to agree"); 1017 uint64_t Offset = DI->getOffset(); 1018 SDDbgValue *SDV; 1019 if (Val.getNode()) { 1020 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 1021 Val)) { 1022 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1023 false, Offset, dl, DbgSDNodeOrder); 1024 DAG.AddDbgValue(SDV, Val.getNode(), false); 1025 } 1026 } else 1027 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1028 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1029 } 1030 } 1031 1032 /// getCopyFromRegs - If there was virtual register allocated for the value V 1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1035 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1036 SDValue Result; 1037 1038 if (It != FuncInfo.ValueMap.end()) { 1039 unsigned InReg = It->second; 1040 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1041 DAG.getDataLayout(), InReg, Ty); 1042 SDValue Chain = DAG.getEntryNode(); 1043 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1044 resolveDanglingDebugInfo(V, Result); 1045 } 1046 1047 return Result; 1048 } 1049 1050 /// getValue - Return an SDValue for the given Value. 1051 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1052 // If we already have an SDValue for this value, use it. It's important 1053 // to do this first, so that we don't create a CopyFromReg if we already 1054 // have a regular SDValue. 1055 SDValue &N = NodeMap[V]; 1056 if (N.getNode()) return N; 1057 1058 // If there's a virtual register allocated and initialized for this 1059 // value, use it. 1060 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1061 return copyFromReg; 1062 1063 // Otherwise create a new SDValue and remember it. 1064 SDValue Val = getValueImpl(V); 1065 NodeMap[V] = Val; 1066 resolveDanglingDebugInfo(V, Val); 1067 return Val; 1068 } 1069 1070 // Return true if SDValue exists for the given Value 1071 bool SelectionDAGBuilder::findValue(const Value *V) const { 1072 return (NodeMap.find(V) != NodeMap.end()) || 1073 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1074 } 1075 1076 /// getNonRegisterValue - Return an SDValue for the given Value, but 1077 /// don't look in FuncInfo.ValueMap for a virtual register. 1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1079 // If we already have an SDValue for this value, use it. 1080 SDValue &N = NodeMap[V]; 1081 if (N.getNode()) { 1082 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1083 // Remove the debug location from the node as the node is about to be used 1084 // in a location which may differ from the original debug location. This 1085 // is relevant to Constant and ConstantFP nodes because they can appear 1086 // as constant expressions inside PHI nodes. 1087 N->setDebugLoc(DebugLoc()); 1088 } 1089 return N; 1090 } 1091 1092 // Otherwise create a new SDValue and remember it. 1093 SDValue Val = getValueImpl(V); 1094 NodeMap[V] = Val; 1095 resolveDanglingDebugInfo(V, Val); 1096 return Val; 1097 } 1098 1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1100 /// Create an SDValue for the given value. 1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1103 1104 if (const Constant *C = dyn_cast<Constant>(V)) { 1105 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1106 1107 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1108 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1109 1110 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1111 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1112 1113 if (isa<ConstantPointerNull>(C)) { 1114 unsigned AS = V->getType()->getPointerAddressSpace(); 1115 return DAG.getConstant(0, getCurSDLoc(), 1116 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1117 } 1118 1119 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1120 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1121 1122 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1123 return DAG.getUNDEF(VT); 1124 1125 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1126 visit(CE->getOpcode(), *CE); 1127 SDValue N1 = NodeMap[V]; 1128 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1129 return N1; 1130 } 1131 1132 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1133 SmallVector<SDValue, 4> Constants; 1134 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1135 OI != OE; ++OI) { 1136 SDNode *Val = getValue(*OI).getNode(); 1137 // If the operand is an empty aggregate, there are no values. 1138 if (!Val) continue; 1139 // Add each leaf value from the operand to the Constants list 1140 // to form a flattened list of all the values. 1141 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1142 Constants.push_back(SDValue(Val, i)); 1143 } 1144 1145 return DAG.getMergeValues(Constants, getCurSDLoc()); 1146 } 1147 1148 if (const ConstantDataSequential *CDS = 1149 dyn_cast<ConstantDataSequential>(C)) { 1150 SmallVector<SDValue, 4> Ops; 1151 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1152 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1153 // Add each leaf value from the operand to the Constants list 1154 // to form a flattened list of all the values. 1155 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1156 Ops.push_back(SDValue(Val, i)); 1157 } 1158 1159 if (isa<ArrayType>(CDS->getType())) 1160 return DAG.getMergeValues(Ops, getCurSDLoc()); 1161 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1162 VT, Ops); 1163 } 1164 1165 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1166 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1167 "Unknown struct or array constant!"); 1168 1169 SmallVector<EVT, 4> ValueVTs; 1170 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1171 unsigned NumElts = ValueVTs.size(); 1172 if (NumElts == 0) 1173 return SDValue(); // empty struct 1174 SmallVector<SDValue, 4> Constants(NumElts); 1175 for (unsigned i = 0; i != NumElts; ++i) { 1176 EVT EltVT = ValueVTs[i]; 1177 if (isa<UndefValue>(C)) 1178 Constants[i] = DAG.getUNDEF(EltVT); 1179 else if (EltVT.isFloatingPoint()) 1180 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1181 else 1182 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1183 } 1184 1185 return DAG.getMergeValues(Constants, getCurSDLoc()); 1186 } 1187 1188 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1189 return DAG.getBlockAddress(BA, VT); 1190 1191 VectorType *VecTy = cast<VectorType>(V->getType()); 1192 unsigned NumElements = VecTy->getNumElements(); 1193 1194 // Now that we know the number and type of the elements, get that number of 1195 // elements into the Ops array based on what kind of constant it is. 1196 SmallVector<SDValue, 16> Ops; 1197 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1198 for (unsigned i = 0; i != NumElements; ++i) 1199 Ops.push_back(getValue(CV->getOperand(i))); 1200 } else { 1201 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1202 EVT EltVT = 1203 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1204 1205 SDValue Op; 1206 if (EltVT.isFloatingPoint()) 1207 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1208 else 1209 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1210 Ops.assign(NumElements, Op); 1211 } 1212 1213 // Create a BUILD_VECTOR node. 1214 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1215 } 1216 1217 // If this is a static alloca, generate it as the frameindex instead of 1218 // computation. 1219 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1220 DenseMap<const AllocaInst*, int>::iterator SI = 1221 FuncInfo.StaticAllocaMap.find(AI); 1222 if (SI != FuncInfo.StaticAllocaMap.end()) 1223 return DAG.getFrameIndex(SI->second, 1224 TLI.getPointerTy(DAG.getDataLayout())); 1225 } 1226 1227 // If this is an instruction which fast-isel has deferred, select it now. 1228 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1229 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1230 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1231 Inst->getType()); 1232 SDValue Chain = DAG.getEntryNode(); 1233 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1234 } 1235 1236 llvm_unreachable("Can't get register for value!"); 1237 } 1238 1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1240 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1241 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1242 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1243 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1244 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1245 if (IsMSVCCXX || IsCoreCLR) 1246 CatchPadMBB->setIsEHFuncletEntry(); 1247 1248 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1249 } 1250 1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1252 // Update machine-CFG edge. 1253 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1254 FuncInfo.MBB->addSuccessor(TargetMBB); 1255 1256 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1257 bool IsSEH = isAsynchronousEHPersonality(Pers); 1258 if (IsSEH) { 1259 // If this is not a fall-through branch or optimizations are switched off, 1260 // emit the branch. 1261 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1262 TM.getOptLevel() == CodeGenOpt::None) 1263 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1264 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1265 return; 1266 } 1267 1268 // Figure out the funclet membership for the catchret's successor. 1269 // This will be used by the FuncletLayout pass to determine how to order the 1270 // BB's. 1271 // A 'catchret' returns to the outer scope's color. 1272 Value *ParentPad = I.getCatchSwitchParentPad(); 1273 const BasicBlock *SuccessorColor; 1274 if (isa<ConstantTokenNone>(ParentPad)) 1275 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1276 else 1277 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1278 assert(SuccessorColor && "No parent funclet for catchret!"); 1279 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1280 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1281 1282 // Create the terminator node. 1283 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1284 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1285 DAG.getBasicBlock(SuccessorColorMBB)); 1286 DAG.setRoot(Ret); 1287 } 1288 1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1290 // Don't emit any special code for the cleanuppad instruction. It just marks 1291 // the start of a funclet. 1292 FuncInfo.MBB->setIsEHFuncletEntry(); 1293 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1294 } 1295 1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1297 /// many places it could ultimately go. In the IR, we have a single unwind 1298 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1299 /// This function skips over imaginary basic blocks that hold catchswitch 1300 /// instructions, and finds all the "real" machine 1301 /// basic block destinations. As those destinations may not be successors of 1302 /// EHPadBB, here we also calculate the edge probability to those destinations. 1303 /// The passed-in Prob is the edge probability to EHPadBB. 1304 static void findUnwindDestinations( 1305 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1306 BranchProbability Prob, 1307 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1308 &UnwindDests) { 1309 EHPersonality Personality = 1310 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1311 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1312 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1313 1314 while (EHPadBB) { 1315 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1316 BasicBlock *NewEHPadBB = nullptr; 1317 if (isa<LandingPadInst>(Pad)) { 1318 // Stop on landingpads. They are not funclets. 1319 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1320 break; 1321 } else if (isa<CleanupPadInst>(Pad)) { 1322 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1323 // personalities. 1324 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1325 UnwindDests.back().first->setIsEHFuncletEntry(); 1326 break; 1327 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1328 // Add the catchpad handlers to the possible destinations. 1329 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1330 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1331 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1332 if (IsMSVCCXX || IsCoreCLR) 1333 UnwindDests.back().first->setIsEHFuncletEntry(); 1334 } 1335 NewEHPadBB = CatchSwitch->getUnwindDest(); 1336 } else { 1337 continue; 1338 } 1339 1340 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1341 if (BPI && NewEHPadBB) 1342 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1343 EHPadBB = NewEHPadBB; 1344 } 1345 } 1346 1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1348 // Update successor info. 1349 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1350 auto UnwindDest = I.getUnwindDest(); 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 BranchProbability UnwindDestProb = 1353 (BPI && UnwindDest) 1354 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1355 : BranchProbability::getZero(); 1356 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1357 for (auto &UnwindDest : UnwindDests) { 1358 UnwindDest.first->setIsEHPad(); 1359 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1360 } 1361 FuncInfo.MBB->normalizeSuccProbs(); 1362 1363 // Create the terminator node. 1364 SDValue Ret = 1365 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1366 DAG.setRoot(Ret); 1367 } 1368 1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1370 report_fatal_error("visitCatchSwitch not yet implemented!"); 1371 } 1372 1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1375 auto &DL = DAG.getDataLayout(); 1376 SDValue Chain = getControlRoot(); 1377 SmallVector<ISD::OutputArg, 8> Outs; 1378 SmallVector<SDValue, 8> OutVals; 1379 1380 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1381 // lower 1382 // 1383 // %val = call <ty> @llvm.experimental.deoptimize() 1384 // ret <ty> %val 1385 // 1386 // differently. 1387 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1388 LowerDeoptimizingReturn(); 1389 return; 1390 } 1391 1392 if (!FuncInfo.CanLowerReturn) { 1393 unsigned DemoteReg = FuncInfo.DemoteRegister; 1394 const Function *F = I.getParent()->getParent(); 1395 1396 // Emit a store of the return value through the virtual register. 1397 // Leave Outs empty so that LowerReturn won't try to load return 1398 // registers the usual way. 1399 SmallVector<EVT, 1> PtrValueVTs; 1400 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1401 PtrValueVTs); 1402 1403 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1404 DemoteReg, PtrValueVTs[0]); 1405 SDValue RetOp = getValue(I.getOperand(0)); 1406 1407 SmallVector<EVT, 4> ValueVTs; 1408 SmallVector<uint64_t, 4> Offsets; 1409 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1410 unsigned NumValues = ValueVTs.size(); 1411 1412 // An aggregate return value cannot wrap around the address space, so 1413 // offsets to its parts don't wrap either. 1414 SDNodeFlags Flags; 1415 Flags.setNoUnsignedWrap(true); 1416 1417 SmallVector<SDValue, 4> Chains(NumValues); 1418 for (unsigned i = 0; i != NumValues; ++i) { 1419 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1420 RetPtr.getValueType(), RetPtr, 1421 DAG.getIntPtrConstant(Offsets[i], 1422 getCurSDLoc()), 1423 &Flags); 1424 Chains[i] = 1425 DAG.getStore(Chain, getCurSDLoc(), 1426 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1427 // FIXME: better loc info would be nice. 1428 Add, MachinePointerInfo(), false, false, 0); 1429 } 1430 1431 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1432 MVT::Other, Chains); 1433 } else if (I.getNumOperands() != 0) { 1434 SmallVector<EVT, 4> ValueVTs; 1435 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1436 unsigned NumValues = ValueVTs.size(); 1437 if (NumValues) { 1438 SDValue RetOp = getValue(I.getOperand(0)); 1439 1440 const Function *F = I.getParent()->getParent(); 1441 1442 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1443 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1444 Attribute::SExt)) 1445 ExtendKind = ISD::SIGN_EXTEND; 1446 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1447 Attribute::ZExt)) 1448 ExtendKind = ISD::ZERO_EXTEND; 1449 1450 LLVMContext &Context = F->getContext(); 1451 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1452 Attribute::InReg); 1453 1454 for (unsigned j = 0; j != NumValues; ++j) { 1455 EVT VT = ValueVTs[j]; 1456 1457 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1458 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1459 1460 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1461 MVT PartVT = TLI.getRegisterType(Context, VT); 1462 SmallVector<SDValue, 4> Parts(NumParts); 1463 getCopyToParts(DAG, getCurSDLoc(), 1464 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1465 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1466 1467 // 'inreg' on function refers to return value 1468 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1469 if (RetInReg) 1470 Flags.setInReg(); 1471 1472 // Propagate extension type if any 1473 if (ExtendKind == ISD::SIGN_EXTEND) 1474 Flags.setSExt(); 1475 else if (ExtendKind == ISD::ZERO_EXTEND) 1476 Flags.setZExt(); 1477 1478 for (unsigned i = 0; i < NumParts; ++i) { 1479 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1480 VT, /*isfixed=*/true, 0, 0)); 1481 OutVals.push_back(Parts[i]); 1482 } 1483 } 1484 } 1485 } 1486 1487 // Push in swifterror virtual register as the last element of Outs. This makes 1488 // sure swifterror virtual register will be returned in the swifterror 1489 // physical register. 1490 const Function *F = I.getParent()->getParent(); 1491 if (TLI.supportSwiftError() && 1492 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1493 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1494 Flags.setSwiftError(); 1495 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1496 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1497 true /*isfixed*/, 1 /*origidx*/, 1498 0 /*partOffs*/)); 1499 // Create SDNode for the swifterror virtual register. 1500 OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0], 1501 EVT(TLI.getPointerTy(DL)))); 1502 } 1503 1504 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1505 CallingConv::ID CallConv = 1506 DAG.getMachineFunction().getFunction()->getCallingConv(); 1507 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1508 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1509 1510 // Verify that the target's LowerReturn behaved as expected. 1511 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1512 "LowerReturn didn't return a valid chain!"); 1513 1514 // Update the DAG with the new chain value resulting from return lowering. 1515 DAG.setRoot(Chain); 1516 } 1517 1518 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1519 /// created for it, emit nodes to copy the value into the virtual 1520 /// registers. 1521 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1522 // Skip empty types 1523 if (V->getType()->isEmptyTy()) 1524 return; 1525 1526 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1527 if (VMI != FuncInfo.ValueMap.end()) { 1528 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1529 CopyValueToVirtualRegister(V, VMI->second); 1530 } 1531 } 1532 1533 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1534 /// the current basic block, add it to ValueMap now so that we'll get a 1535 /// CopyTo/FromReg. 1536 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1537 // No need to export constants. 1538 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1539 1540 // Already exported? 1541 if (FuncInfo.isExportedInst(V)) return; 1542 1543 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1544 CopyValueToVirtualRegister(V, Reg); 1545 } 1546 1547 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1548 const BasicBlock *FromBB) { 1549 // The operands of the setcc have to be in this block. We don't know 1550 // how to export them from some other block. 1551 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1552 // Can export from current BB. 1553 if (VI->getParent() == FromBB) 1554 return true; 1555 1556 // Is already exported, noop. 1557 return FuncInfo.isExportedInst(V); 1558 } 1559 1560 // If this is an argument, we can export it if the BB is the entry block or 1561 // if it is already exported. 1562 if (isa<Argument>(V)) { 1563 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1564 return true; 1565 1566 // Otherwise, can only export this if it is already exported. 1567 return FuncInfo.isExportedInst(V); 1568 } 1569 1570 // Otherwise, constants can always be exported. 1571 return true; 1572 } 1573 1574 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1575 BranchProbability 1576 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1577 const MachineBasicBlock *Dst) const { 1578 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1579 const BasicBlock *SrcBB = Src->getBasicBlock(); 1580 const BasicBlock *DstBB = Dst->getBasicBlock(); 1581 if (!BPI) { 1582 // If BPI is not available, set the default probability as 1 / N, where N is 1583 // the number of successors. 1584 auto SuccSize = std::max<uint32_t>( 1585 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1586 return BranchProbability(1, SuccSize); 1587 } 1588 return BPI->getEdgeProbability(SrcBB, DstBB); 1589 } 1590 1591 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1592 MachineBasicBlock *Dst, 1593 BranchProbability Prob) { 1594 if (!FuncInfo.BPI) 1595 Src->addSuccessorWithoutProb(Dst); 1596 else { 1597 if (Prob.isUnknown()) 1598 Prob = getEdgeProbability(Src, Dst); 1599 Src->addSuccessor(Dst, Prob); 1600 } 1601 } 1602 1603 static bool InBlock(const Value *V, const BasicBlock *BB) { 1604 if (const Instruction *I = dyn_cast<Instruction>(V)) 1605 return I->getParent() == BB; 1606 return true; 1607 } 1608 1609 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1610 /// This function emits a branch and is used at the leaves of an OR or an 1611 /// AND operator tree. 1612 /// 1613 void 1614 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1615 MachineBasicBlock *TBB, 1616 MachineBasicBlock *FBB, 1617 MachineBasicBlock *CurBB, 1618 MachineBasicBlock *SwitchBB, 1619 BranchProbability TProb, 1620 BranchProbability FProb) { 1621 const BasicBlock *BB = CurBB->getBasicBlock(); 1622 1623 // If the leaf of the tree is a comparison, merge the condition into 1624 // the caseblock. 1625 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1626 // The operands of the cmp have to be in this block. We don't know 1627 // how to export them from some other block. If this is the first block 1628 // of the sequence, no exporting is needed. 1629 if (CurBB == SwitchBB || 1630 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1631 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1632 ISD::CondCode Condition; 1633 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1634 Condition = getICmpCondCode(IC->getPredicate()); 1635 } else { 1636 const FCmpInst *FC = cast<FCmpInst>(Cond); 1637 Condition = getFCmpCondCode(FC->getPredicate()); 1638 if (TM.Options.NoNaNsFPMath) 1639 Condition = getFCmpCodeWithoutNaN(Condition); 1640 } 1641 1642 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1643 TBB, FBB, CurBB, TProb, FProb); 1644 SwitchCases.push_back(CB); 1645 return; 1646 } 1647 } 1648 1649 // Create a CaseBlock record representing this branch. 1650 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1651 nullptr, TBB, FBB, CurBB, TProb, FProb); 1652 SwitchCases.push_back(CB); 1653 } 1654 1655 /// FindMergedConditions - If Cond is an expression like 1656 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1657 MachineBasicBlock *TBB, 1658 MachineBasicBlock *FBB, 1659 MachineBasicBlock *CurBB, 1660 MachineBasicBlock *SwitchBB, 1661 Instruction::BinaryOps Opc, 1662 BranchProbability TProb, 1663 BranchProbability FProb) { 1664 // If this node is not part of the or/and tree, emit it as a branch. 1665 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1666 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1667 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1668 BOp->getParent() != CurBB->getBasicBlock() || 1669 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1670 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1671 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1672 TProb, FProb); 1673 return; 1674 } 1675 1676 // Create TmpBB after CurBB. 1677 MachineFunction::iterator BBI(CurBB); 1678 MachineFunction &MF = DAG.getMachineFunction(); 1679 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1680 CurBB->getParent()->insert(++BBI, TmpBB); 1681 1682 if (Opc == Instruction::Or) { 1683 // Codegen X | Y as: 1684 // BB1: 1685 // jmp_if_X TBB 1686 // jmp TmpBB 1687 // TmpBB: 1688 // jmp_if_Y TBB 1689 // jmp FBB 1690 // 1691 1692 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1693 // The requirement is that 1694 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1695 // = TrueProb for original BB. 1696 // Assuming the original probabilities are A and B, one choice is to set 1697 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1698 // A/(1+B) and 2B/(1+B). This choice assumes that 1699 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1700 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1701 // TmpBB, but the math is more complicated. 1702 1703 auto NewTrueProb = TProb / 2; 1704 auto NewFalseProb = TProb / 2 + FProb; 1705 // Emit the LHS condition. 1706 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1707 NewTrueProb, NewFalseProb); 1708 1709 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1710 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1711 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1712 // Emit the RHS condition into TmpBB. 1713 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1714 Probs[0], Probs[1]); 1715 } else { 1716 assert(Opc == Instruction::And && "Unknown merge op!"); 1717 // Codegen X & Y as: 1718 // BB1: 1719 // jmp_if_X TmpBB 1720 // jmp FBB 1721 // TmpBB: 1722 // jmp_if_Y TBB 1723 // jmp FBB 1724 // 1725 // This requires creation of TmpBB after CurBB. 1726 1727 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1728 // The requirement is that 1729 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1730 // = FalseProb for original BB. 1731 // Assuming the original probabilities are A and B, one choice is to set 1732 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1733 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1734 // TrueProb for BB1 * FalseProb for TmpBB. 1735 1736 auto NewTrueProb = TProb + FProb / 2; 1737 auto NewFalseProb = FProb / 2; 1738 // Emit the LHS condition. 1739 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1740 NewTrueProb, NewFalseProb); 1741 1742 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1743 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1744 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1745 // Emit the RHS condition into TmpBB. 1746 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1747 Probs[0], Probs[1]); 1748 } 1749 } 1750 1751 /// If the set of cases should be emitted as a series of branches, return true. 1752 /// If we should emit this as a bunch of and/or'd together conditions, return 1753 /// false. 1754 bool 1755 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1756 if (Cases.size() != 2) return true; 1757 1758 // If this is two comparisons of the same values or'd or and'd together, they 1759 // will get folded into a single comparison, so don't emit two blocks. 1760 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1761 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1762 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1763 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1764 return false; 1765 } 1766 1767 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1768 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1769 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1770 Cases[0].CC == Cases[1].CC && 1771 isa<Constant>(Cases[0].CmpRHS) && 1772 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1773 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1774 return false; 1775 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1776 return false; 1777 } 1778 1779 return true; 1780 } 1781 1782 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1783 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1784 1785 // Update machine-CFG edges. 1786 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1787 1788 if (I.isUnconditional()) { 1789 // Update machine-CFG edges. 1790 BrMBB->addSuccessor(Succ0MBB); 1791 1792 // If this is not a fall-through branch or optimizations are switched off, 1793 // emit the branch. 1794 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1795 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1796 MVT::Other, getControlRoot(), 1797 DAG.getBasicBlock(Succ0MBB))); 1798 1799 return; 1800 } 1801 1802 // If this condition is one of the special cases we handle, do special stuff 1803 // now. 1804 const Value *CondVal = I.getCondition(); 1805 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1806 1807 // If this is a series of conditions that are or'd or and'd together, emit 1808 // this as a sequence of branches instead of setcc's with and/or operations. 1809 // As long as jumps are not expensive, this should improve performance. 1810 // For example, instead of something like: 1811 // cmp A, B 1812 // C = seteq 1813 // cmp D, E 1814 // F = setle 1815 // or C, F 1816 // jnz foo 1817 // Emit: 1818 // cmp A, B 1819 // je foo 1820 // cmp D, E 1821 // jle foo 1822 // 1823 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1824 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1825 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1826 !I.getMetadata(LLVMContext::MD_unpredictable) && 1827 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1828 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1829 Opcode, 1830 getEdgeProbability(BrMBB, Succ0MBB), 1831 getEdgeProbability(BrMBB, Succ1MBB)); 1832 // If the compares in later blocks need to use values not currently 1833 // exported from this block, export them now. This block should always 1834 // be the first entry. 1835 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1836 1837 // Allow some cases to be rejected. 1838 if (ShouldEmitAsBranches(SwitchCases)) { 1839 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1840 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1841 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1842 } 1843 1844 // Emit the branch for this block. 1845 visitSwitchCase(SwitchCases[0], BrMBB); 1846 SwitchCases.erase(SwitchCases.begin()); 1847 return; 1848 } 1849 1850 // Okay, we decided not to do this, remove any inserted MBB's and clear 1851 // SwitchCases. 1852 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1853 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1854 1855 SwitchCases.clear(); 1856 } 1857 } 1858 1859 // Create a CaseBlock record representing this branch. 1860 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1861 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1862 1863 // Use visitSwitchCase to actually insert the fast branch sequence for this 1864 // cond branch. 1865 visitSwitchCase(CB, BrMBB); 1866 } 1867 1868 /// visitSwitchCase - Emits the necessary code to represent a single node in 1869 /// the binary search tree resulting from lowering a switch instruction. 1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1871 MachineBasicBlock *SwitchBB) { 1872 SDValue Cond; 1873 SDValue CondLHS = getValue(CB.CmpLHS); 1874 SDLoc dl = getCurSDLoc(); 1875 1876 // Build the setcc now. 1877 if (!CB.CmpMHS) { 1878 // Fold "(X == true)" to X and "(X == false)" to !X to 1879 // handle common cases produced by branch lowering. 1880 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1881 CB.CC == ISD::SETEQ) 1882 Cond = CondLHS; 1883 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1884 CB.CC == ISD::SETEQ) { 1885 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1886 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1887 } else 1888 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1889 } else { 1890 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1891 1892 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1893 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1894 1895 SDValue CmpOp = getValue(CB.CmpMHS); 1896 EVT VT = CmpOp.getValueType(); 1897 1898 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1899 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1900 ISD::SETLE); 1901 } else { 1902 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1903 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1904 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1905 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1906 } 1907 } 1908 1909 // Update successor info 1910 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1911 // TrueBB and FalseBB are always different unless the incoming IR is 1912 // degenerate. This only happens when running llc on weird IR. 1913 if (CB.TrueBB != CB.FalseBB) 1914 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1915 SwitchBB->normalizeSuccProbs(); 1916 1917 // If the lhs block is the next block, invert the condition so that we can 1918 // fall through to the lhs instead of the rhs block. 1919 if (CB.TrueBB == NextBlock(SwitchBB)) { 1920 std::swap(CB.TrueBB, CB.FalseBB); 1921 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1922 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1923 } 1924 1925 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1926 MVT::Other, getControlRoot(), Cond, 1927 DAG.getBasicBlock(CB.TrueBB)); 1928 1929 // Insert the false branch. Do this even if it's a fall through branch, 1930 // this makes it easier to do DAG optimizations which require inverting 1931 // the branch condition. 1932 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1933 DAG.getBasicBlock(CB.FalseBB)); 1934 1935 DAG.setRoot(BrCond); 1936 } 1937 1938 /// visitJumpTable - Emit JumpTable node in the current MBB 1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1940 // Emit the code for the jump table 1941 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1942 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1943 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1944 JT.Reg, PTy); 1945 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1946 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1947 MVT::Other, Index.getValue(1), 1948 Table, Index); 1949 DAG.setRoot(BrJumpTable); 1950 } 1951 1952 /// visitJumpTableHeader - This function emits necessary code to produce index 1953 /// in the JumpTable from switch case. 1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1955 JumpTableHeader &JTH, 1956 MachineBasicBlock *SwitchBB) { 1957 SDLoc dl = getCurSDLoc(); 1958 1959 // Subtract the lowest switch case value from the value being switched on and 1960 // conditional branch to default mbb if the result is greater than the 1961 // difference between smallest and largest cases. 1962 SDValue SwitchOp = getValue(JTH.SValue); 1963 EVT VT = SwitchOp.getValueType(); 1964 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1965 DAG.getConstant(JTH.First, dl, VT)); 1966 1967 // The SDNode we just created, which holds the value being switched on minus 1968 // the smallest case value, needs to be copied to a virtual register so it 1969 // can be used as an index into the jump table in a subsequent basic block. 1970 // This value may be smaller or larger than the target's pointer type, and 1971 // therefore require extension or truncating. 1972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1973 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1974 1975 unsigned JumpTableReg = 1976 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1977 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1978 JumpTableReg, SwitchOp); 1979 JT.Reg = JumpTableReg; 1980 1981 // Emit the range check for the jump table, and branch to the default block 1982 // for the switch statement if the value being switched on exceeds the largest 1983 // case in the switch. 1984 SDValue CMP = DAG.getSetCC( 1985 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1986 Sub.getValueType()), 1987 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1988 1989 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1990 MVT::Other, CopyTo, CMP, 1991 DAG.getBasicBlock(JT.Default)); 1992 1993 // Avoid emitting unnecessary branches to the next block. 1994 if (JT.MBB != NextBlock(SwitchBB)) 1995 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1996 DAG.getBasicBlock(JT.MBB)); 1997 1998 DAG.setRoot(BrCond); 1999 } 2000 2001 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2002 /// tail spliced into a stack protector check success bb. 2003 /// 2004 /// For a high level explanation of how this fits into the stack protector 2005 /// generation see the comment on the declaration of class 2006 /// StackProtectorDescriptor. 2007 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2008 MachineBasicBlock *ParentBB) { 2009 2010 // First create the loads to the guard/stack slot for the comparison. 2011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2012 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2013 2014 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 2015 int FI = MFI->getStackProtectorIndex(); 2016 2017 const Value *IRGuard = SPD.getGuard(); 2018 SDValue GuardPtr = getValue(IRGuard); 2019 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2020 2021 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 2022 2023 SDValue Guard; 2024 SDLoc dl = getCurSDLoc(); 2025 2026 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 2027 // guard value from the virtual register holding the value. Otherwise, emit a 2028 // volatile load to retrieve the stack guard value. 2029 unsigned GuardReg = SPD.getGuardReg(); 2030 2031 if (GuardReg && TLI.useLoadStackGuardNode()) 2032 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 2033 PtrTy); 2034 else 2035 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 2036 GuardPtr, MachinePointerInfo(IRGuard, 0), 2037 true, false, false, Align); 2038 2039 SDValue StackSlot = DAG.getLoad( 2040 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2041 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 2042 false, false, Align); 2043 2044 // Perform the comparison via a subtract/getsetcc. 2045 EVT VT = Guard.getValueType(); 2046 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2047 2048 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2049 *DAG.getContext(), 2050 Sub.getValueType()), 2051 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2052 2053 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2054 // branch to failure MBB. 2055 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2056 MVT::Other, StackSlot.getOperand(0), 2057 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2058 // Otherwise branch to success MBB. 2059 SDValue Br = DAG.getNode(ISD::BR, dl, 2060 MVT::Other, BrCond, 2061 DAG.getBasicBlock(SPD.getSuccessMBB())); 2062 2063 DAG.setRoot(Br); 2064 } 2065 2066 /// Codegen the failure basic block for a stack protector check. 2067 /// 2068 /// A failure stack protector machine basic block consists simply of a call to 2069 /// __stack_chk_fail(). 2070 /// 2071 /// For a high level explanation of how this fits into the stack protector 2072 /// generation see the comment on the declaration of class 2073 /// StackProtectorDescriptor. 2074 void 2075 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2077 SDValue Chain = 2078 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2079 None, false, getCurSDLoc(), false, false).second; 2080 DAG.setRoot(Chain); 2081 } 2082 2083 /// visitBitTestHeader - This function emits necessary code to produce value 2084 /// suitable for "bit tests" 2085 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2086 MachineBasicBlock *SwitchBB) { 2087 SDLoc dl = getCurSDLoc(); 2088 2089 // Subtract the minimum value 2090 SDValue SwitchOp = getValue(B.SValue); 2091 EVT VT = SwitchOp.getValueType(); 2092 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2093 DAG.getConstant(B.First, dl, VT)); 2094 2095 // Check range 2096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2097 SDValue RangeCmp = DAG.getSetCC( 2098 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2099 Sub.getValueType()), 2100 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2101 2102 // Determine the type of the test operands. 2103 bool UsePtrType = false; 2104 if (!TLI.isTypeLegal(VT)) 2105 UsePtrType = true; 2106 else { 2107 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2108 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2109 // Switch table case range are encoded into series of masks. 2110 // Just use pointer type, it's guaranteed to fit. 2111 UsePtrType = true; 2112 break; 2113 } 2114 } 2115 if (UsePtrType) { 2116 VT = TLI.getPointerTy(DAG.getDataLayout()); 2117 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2118 } 2119 2120 B.RegVT = VT.getSimpleVT(); 2121 B.Reg = FuncInfo.CreateReg(B.RegVT); 2122 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2123 2124 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2125 2126 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2127 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2128 SwitchBB->normalizeSuccProbs(); 2129 2130 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2131 MVT::Other, CopyTo, RangeCmp, 2132 DAG.getBasicBlock(B.Default)); 2133 2134 // Avoid emitting unnecessary branches to the next block. 2135 if (MBB != NextBlock(SwitchBB)) 2136 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2137 DAG.getBasicBlock(MBB)); 2138 2139 DAG.setRoot(BrRange); 2140 } 2141 2142 /// visitBitTestCase - this function produces one "bit test" 2143 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2144 MachineBasicBlock* NextMBB, 2145 BranchProbability BranchProbToNext, 2146 unsigned Reg, 2147 BitTestCase &B, 2148 MachineBasicBlock *SwitchBB) { 2149 SDLoc dl = getCurSDLoc(); 2150 MVT VT = BB.RegVT; 2151 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2152 SDValue Cmp; 2153 unsigned PopCount = countPopulation(B.Mask); 2154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2155 if (PopCount == 1) { 2156 // Testing for a single bit; just compare the shift count with what it 2157 // would need to be to shift a 1 bit in that position. 2158 Cmp = DAG.getSetCC( 2159 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2160 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2161 ISD::SETEQ); 2162 } else if (PopCount == BB.Range) { 2163 // There is only one zero bit in the range, test for it directly. 2164 Cmp = DAG.getSetCC( 2165 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2166 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2167 ISD::SETNE); 2168 } else { 2169 // Make desired shift 2170 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2171 DAG.getConstant(1, dl, VT), ShiftOp); 2172 2173 // Emit bit tests and jumps 2174 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2175 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2176 Cmp = DAG.getSetCC( 2177 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2178 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2179 } 2180 2181 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2182 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2183 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2184 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2185 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2186 // one as they are relative probabilities (and thus work more like weights), 2187 // and hence we need to normalize them to let the sum of them become one. 2188 SwitchBB->normalizeSuccProbs(); 2189 2190 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2191 MVT::Other, getControlRoot(), 2192 Cmp, DAG.getBasicBlock(B.TargetBB)); 2193 2194 // Avoid emitting unnecessary branches to the next block. 2195 if (NextMBB != NextBlock(SwitchBB)) 2196 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2197 DAG.getBasicBlock(NextMBB)); 2198 2199 DAG.setRoot(BrAnd); 2200 } 2201 2202 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2203 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2204 2205 // Retrieve successors. Look through artificial IR level blocks like 2206 // catchswitch for successors. 2207 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2208 const BasicBlock *EHPadBB = I.getSuccessor(1); 2209 2210 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2211 // have to do anything here to lower funclet bundles. 2212 assert(!I.hasOperandBundlesOtherThan( 2213 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2214 "Cannot lower invokes with arbitrary operand bundles yet!"); 2215 2216 const Value *Callee(I.getCalledValue()); 2217 const Function *Fn = dyn_cast<Function>(Callee); 2218 if (isa<InlineAsm>(Callee)) 2219 visitInlineAsm(&I); 2220 else if (Fn && Fn->isIntrinsic()) { 2221 switch (Fn->getIntrinsicID()) { 2222 default: 2223 llvm_unreachable("Cannot invoke this intrinsic"); 2224 case Intrinsic::donothing: 2225 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2226 break; 2227 case Intrinsic::experimental_patchpoint_void: 2228 case Intrinsic::experimental_patchpoint_i64: 2229 visitPatchpoint(&I, EHPadBB); 2230 break; 2231 case Intrinsic::experimental_gc_statepoint: 2232 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2233 break; 2234 } 2235 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2236 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2237 // Eventually we will support lowering the @llvm.experimental.deoptimize 2238 // intrinsic, and right now there are no plans to support other intrinsics 2239 // with deopt state. 2240 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2241 } else { 2242 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2243 } 2244 2245 // If the value of the invoke is used outside of its defining block, make it 2246 // available as a virtual register. 2247 // We already took care of the exported value for the statepoint instruction 2248 // during call to the LowerStatepoint. 2249 if (!isStatepoint(I)) { 2250 CopyToExportRegsIfNeeded(&I); 2251 } 2252 2253 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2254 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2255 BranchProbability EHPadBBProb = 2256 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2257 : BranchProbability::getZero(); 2258 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2259 2260 // Update successor info. 2261 addSuccessorWithProb(InvokeMBB, Return); 2262 for (auto &UnwindDest : UnwindDests) { 2263 UnwindDest.first->setIsEHPad(); 2264 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2265 } 2266 InvokeMBB->normalizeSuccProbs(); 2267 2268 // Drop into normal successor. 2269 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2270 MVT::Other, getControlRoot(), 2271 DAG.getBasicBlock(Return))); 2272 } 2273 2274 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2275 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2276 } 2277 2278 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2279 assert(FuncInfo.MBB->isEHPad() && 2280 "Call to landingpad not in landing pad!"); 2281 2282 MachineBasicBlock *MBB = FuncInfo.MBB; 2283 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2284 AddLandingPadInfo(LP, MMI, MBB); 2285 2286 // If there aren't registers to copy the values into (e.g., during SjLj 2287 // exceptions), then don't bother to create these DAG nodes. 2288 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2289 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2290 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2291 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2292 return; 2293 2294 // If landingpad's return type is token type, we don't create DAG nodes 2295 // for its exception pointer and selector value. The extraction of exception 2296 // pointer or selector value from token type landingpads is not currently 2297 // supported. 2298 if (LP.getType()->isTokenTy()) 2299 return; 2300 2301 SmallVector<EVT, 2> ValueVTs; 2302 SDLoc dl = getCurSDLoc(); 2303 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2304 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2305 2306 // Get the two live-in registers as SDValues. The physregs have already been 2307 // copied into virtual registers. 2308 SDValue Ops[2]; 2309 if (FuncInfo.ExceptionPointerVirtReg) { 2310 Ops[0] = DAG.getZExtOrTrunc( 2311 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2312 FuncInfo.ExceptionPointerVirtReg, 2313 TLI.getPointerTy(DAG.getDataLayout())), 2314 dl, ValueVTs[0]); 2315 } else { 2316 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2317 } 2318 Ops[1] = DAG.getZExtOrTrunc( 2319 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2320 FuncInfo.ExceptionSelectorVirtReg, 2321 TLI.getPointerTy(DAG.getDataLayout())), 2322 dl, ValueVTs[1]); 2323 2324 // Merge into one. 2325 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2326 DAG.getVTList(ValueVTs), Ops); 2327 setValue(&LP, Res); 2328 } 2329 2330 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2331 #ifndef NDEBUG 2332 for (const CaseCluster &CC : Clusters) 2333 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2334 #endif 2335 2336 std::sort(Clusters.begin(), Clusters.end(), 2337 [](const CaseCluster &a, const CaseCluster &b) { 2338 return a.Low->getValue().slt(b.Low->getValue()); 2339 }); 2340 2341 // Merge adjacent clusters with the same destination. 2342 const unsigned N = Clusters.size(); 2343 unsigned DstIndex = 0; 2344 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2345 CaseCluster &CC = Clusters[SrcIndex]; 2346 const ConstantInt *CaseVal = CC.Low; 2347 MachineBasicBlock *Succ = CC.MBB; 2348 2349 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2350 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2351 // If this case has the same successor and is a neighbour, merge it into 2352 // the previous cluster. 2353 Clusters[DstIndex - 1].High = CaseVal; 2354 Clusters[DstIndex - 1].Prob += CC.Prob; 2355 } else { 2356 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2357 sizeof(Clusters[SrcIndex])); 2358 } 2359 } 2360 Clusters.resize(DstIndex); 2361 } 2362 2363 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2364 MachineBasicBlock *Last) { 2365 // Update JTCases. 2366 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2367 if (JTCases[i].first.HeaderBB == First) 2368 JTCases[i].first.HeaderBB = Last; 2369 2370 // Update BitTestCases. 2371 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2372 if (BitTestCases[i].Parent == First) 2373 BitTestCases[i].Parent = Last; 2374 } 2375 2376 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2377 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2378 2379 // Update machine-CFG edges with unique successors. 2380 SmallSet<BasicBlock*, 32> Done; 2381 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2382 BasicBlock *BB = I.getSuccessor(i); 2383 bool Inserted = Done.insert(BB).second; 2384 if (!Inserted) 2385 continue; 2386 2387 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2388 addSuccessorWithProb(IndirectBrMBB, Succ); 2389 } 2390 IndirectBrMBB->normalizeSuccProbs(); 2391 2392 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2393 MVT::Other, getControlRoot(), 2394 getValue(I.getAddress()))); 2395 } 2396 2397 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2398 if (DAG.getTarget().Options.TrapUnreachable) 2399 DAG.setRoot( 2400 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2401 } 2402 2403 void SelectionDAGBuilder::visitFSub(const User &I) { 2404 // -0.0 - X --> fneg 2405 Type *Ty = I.getType(); 2406 if (isa<Constant>(I.getOperand(0)) && 2407 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2408 SDValue Op2 = getValue(I.getOperand(1)); 2409 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2410 Op2.getValueType(), Op2)); 2411 return; 2412 } 2413 2414 visitBinary(I, ISD::FSUB); 2415 } 2416 2417 /// Checks if the given instruction performs a vector reduction, in which case 2418 /// we have the freedom to alter the elements in the result as long as the 2419 /// reduction of them stays unchanged. 2420 static bool isVectorReductionOp(const User *I) { 2421 const Instruction *Inst = dyn_cast<Instruction>(I); 2422 if (!Inst || !Inst->getType()->isVectorTy()) 2423 return false; 2424 2425 auto OpCode = Inst->getOpcode(); 2426 switch (OpCode) { 2427 case Instruction::Add: 2428 case Instruction::Mul: 2429 case Instruction::And: 2430 case Instruction::Or: 2431 case Instruction::Xor: 2432 break; 2433 case Instruction::FAdd: 2434 case Instruction::FMul: 2435 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2436 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2437 break; 2438 // Fall through. 2439 default: 2440 return false; 2441 } 2442 2443 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2444 unsigned ElemNumToReduce = ElemNum; 2445 2446 // Do DFS search on the def-use chain from the given instruction. We only 2447 // allow four kinds of operations during the search until we reach the 2448 // instruction that extracts the first element from the vector: 2449 // 2450 // 1. The reduction operation of the same opcode as the given instruction. 2451 // 2452 // 2. PHI node. 2453 // 2454 // 3. ShuffleVector instruction together with a reduction operation that 2455 // does a partial reduction. 2456 // 2457 // 4. ExtractElement that extracts the first element from the vector, and we 2458 // stop searching the def-use chain here. 2459 // 2460 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2461 // from 1-3 to the stack to continue the DFS. The given instruction is not 2462 // a reduction operation if we meet any other instructions other than those 2463 // listed above. 2464 2465 SmallVector<const User *, 16> UsersToVisit{Inst}; 2466 SmallPtrSet<const User *, 16> Visited; 2467 bool ReduxExtracted = false; 2468 2469 while (!UsersToVisit.empty()) { 2470 auto User = UsersToVisit.back(); 2471 UsersToVisit.pop_back(); 2472 if (!Visited.insert(User).second) 2473 continue; 2474 2475 for (const auto &U : User->users()) { 2476 auto Inst = dyn_cast<Instruction>(U); 2477 if (!Inst) 2478 return false; 2479 2480 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2481 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2482 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2483 return false; 2484 UsersToVisit.push_back(U); 2485 } else if (const ShuffleVectorInst *ShufInst = 2486 dyn_cast<ShuffleVectorInst>(U)) { 2487 // Detect the following pattern: A ShuffleVector instruction together 2488 // with a reduction that do partial reduction on the first and second 2489 // ElemNumToReduce / 2 elements, and store the result in 2490 // ElemNumToReduce / 2 elements in another vector. 2491 2492 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2493 if (ResultElements < ElemNum) 2494 return false; 2495 2496 if (ElemNumToReduce == 1) 2497 return false; 2498 if (!isa<UndefValue>(U->getOperand(1))) 2499 return false; 2500 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2501 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2502 return false; 2503 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2504 if (ShufInst->getMaskValue(i) != -1) 2505 return false; 2506 2507 // There is only one user of this ShuffleVector instruction, which 2508 // must be a reduction operation. 2509 if (!U->hasOneUse()) 2510 return false; 2511 2512 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2513 if (!U2 || U2->getOpcode() != OpCode) 2514 return false; 2515 2516 // Check operands of the reduction operation. 2517 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2518 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2519 UsersToVisit.push_back(U2); 2520 ElemNumToReduce /= 2; 2521 } else 2522 return false; 2523 } else if (isa<ExtractElementInst>(U)) { 2524 // At this moment we should have reduced all elements in the vector. 2525 if (ElemNumToReduce != 1) 2526 return false; 2527 2528 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2529 if (!Val || Val->getZExtValue() != 0) 2530 return false; 2531 2532 ReduxExtracted = true; 2533 } else 2534 return false; 2535 } 2536 } 2537 return ReduxExtracted; 2538 } 2539 2540 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2541 SDValue Op1 = getValue(I.getOperand(0)); 2542 SDValue Op2 = getValue(I.getOperand(1)); 2543 2544 bool nuw = false; 2545 bool nsw = false; 2546 bool exact = false; 2547 bool vec_redux = false; 2548 FastMathFlags FMF; 2549 2550 if (const OverflowingBinaryOperator *OFBinOp = 2551 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2552 nuw = OFBinOp->hasNoUnsignedWrap(); 2553 nsw = OFBinOp->hasNoSignedWrap(); 2554 } 2555 if (const PossiblyExactOperator *ExactOp = 2556 dyn_cast<const PossiblyExactOperator>(&I)) 2557 exact = ExactOp->isExact(); 2558 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2559 FMF = FPOp->getFastMathFlags(); 2560 2561 if (isVectorReductionOp(&I)) { 2562 vec_redux = true; 2563 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2564 } 2565 2566 SDNodeFlags Flags; 2567 Flags.setExact(exact); 2568 Flags.setNoSignedWrap(nsw); 2569 Flags.setNoUnsignedWrap(nuw); 2570 Flags.setVectorReduction(vec_redux); 2571 if (EnableFMFInDAG) { 2572 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2573 Flags.setNoInfs(FMF.noInfs()); 2574 Flags.setNoNaNs(FMF.noNaNs()); 2575 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2576 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2577 } 2578 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2579 Op1, Op2, &Flags); 2580 setValue(&I, BinNodeValue); 2581 } 2582 2583 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2584 SDValue Op1 = getValue(I.getOperand(0)); 2585 SDValue Op2 = getValue(I.getOperand(1)); 2586 2587 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2588 Op2.getValueType(), DAG.getDataLayout()); 2589 2590 // Coerce the shift amount to the right type if we can. 2591 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2592 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2593 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2594 SDLoc DL = getCurSDLoc(); 2595 2596 // If the operand is smaller than the shift count type, promote it. 2597 if (ShiftSize > Op2Size) 2598 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2599 2600 // If the operand is larger than the shift count type but the shift 2601 // count type has enough bits to represent any shift value, truncate 2602 // it now. This is a common case and it exposes the truncate to 2603 // optimization early. 2604 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2605 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2606 // Otherwise we'll need to temporarily settle for some other convenient 2607 // type. Type legalization will make adjustments once the shiftee is split. 2608 else 2609 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2610 } 2611 2612 bool nuw = false; 2613 bool nsw = false; 2614 bool exact = false; 2615 2616 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2617 2618 if (const OverflowingBinaryOperator *OFBinOp = 2619 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2620 nuw = OFBinOp->hasNoUnsignedWrap(); 2621 nsw = OFBinOp->hasNoSignedWrap(); 2622 } 2623 if (const PossiblyExactOperator *ExactOp = 2624 dyn_cast<const PossiblyExactOperator>(&I)) 2625 exact = ExactOp->isExact(); 2626 } 2627 SDNodeFlags Flags; 2628 Flags.setExact(exact); 2629 Flags.setNoSignedWrap(nsw); 2630 Flags.setNoUnsignedWrap(nuw); 2631 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2632 &Flags); 2633 setValue(&I, Res); 2634 } 2635 2636 void SelectionDAGBuilder::visitSDiv(const User &I) { 2637 SDValue Op1 = getValue(I.getOperand(0)); 2638 SDValue Op2 = getValue(I.getOperand(1)); 2639 2640 SDNodeFlags Flags; 2641 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2642 cast<PossiblyExactOperator>(&I)->isExact()); 2643 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2644 Op2, &Flags)); 2645 } 2646 2647 void SelectionDAGBuilder::visitICmp(const User &I) { 2648 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2649 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2650 predicate = IC->getPredicate(); 2651 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2652 predicate = ICmpInst::Predicate(IC->getPredicate()); 2653 SDValue Op1 = getValue(I.getOperand(0)); 2654 SDValue Op2 = getValue(I.getOperand(1)); 2655 ISD::CondCode Opcode = getICmpCondCode(predicate); 2656 2657 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2658 I.getType()); 2659 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2660 } 2661 2662 void SelectionDAGBuilder::visitFCmp(const User &I) { 2663 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2664 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2665 predicate = FC->getPredicate(); 2666 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2667 predicate = FCmpInst::Predicate(FC->getPredicate()); 2668 SDValue Op1 = getValue(I.getOperand(0)); 2669 SDValue Op2 = getValue(I.getOperand(1)); 2670 ISD::CondCode Condition = getFCmpCondCode(predicate); 2671 2672 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2673 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2674 // further optimization, but currently FMF is only applicable to binary nodes. 2675 if (TM.Options.NoNaNsFPMath) 2676 Condition = getFCmpCodeWithoutNaN(Condition); 2677 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2678 I.getType()); 2679 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2680 } 2681 2682 void SelectionDAGBuilder::visitSelect(const User &I) { 2683 SmallVector<EVT, 4> ValueVTs; 2684 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2685 ValueVTs); 2686 unsigned NumValues = ValueVTs.size(); 2687 if (NumValues == 0) return; 2688 2689 SmallVector<SDValue, 4> Values(NumValues); 2690 SDValue Cond = getValue(I.getOperand(0)); 2691 SDValue LHSVal = getValue(I.getOperand(1)); 2692 SDValue RHSVal = getValue(I.getOperand(2)); 2693 auto BaseOps = {Cond}; 2694 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2695 ISD::VSELECT : ISD::SELECT; 2696 2697 // Min/max matching is only viable if all output VTs are the same. 2698 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2699 EVT VT = ValueVTs[0]; 2700 LLVMContext &Ctx = *DAG.getContext(); 2701 auto &TLI = DAG.getTargetLoweringInfo(); 2702 2703 // We care about the legality of the operation after it has been type 2704 // legalized. 2705 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2706 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2707 VT = TLI.getTypeToTransformTo(Ctx, VT); 2708 2709 // If the vselect is legal, assume we want to leave this as a vector setcc + 2710 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2711 // min/max is legal on the scalar type. 2712 bool UseScalarMinMax = VT.isVector() && 2713 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2714 2715 Value *LHS, *RHS; 2716 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2717 ISD::NodeType Opc = ISD::DELETED_NODE; 2718 switch (SPR.Flavor) { 2719 case SPF_UMAX: Opc = ISD::UMAX; break; 2720 case SPF_UMIN: Opc = ISD::UMIN; break; 2721 case SPF_SMAX: Opc = ISD::SMAX; break; 2722 case SPF_SMIN: Opc = ISD::SMIN; break; 2723 case SPF_FMINNUM: 2724 switch (SPR.NaNBehavior) { 2725 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2726 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2727 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2728 case SPNB_RETURNS_ANY: { 2729 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2730 Opc = ISD::FMINNUM; 2731 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2732 Opc = ISD::FMINNAN; 2733 else if (UseScalarMinMax) 2734 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2735 ISD::FMINNUM : ISD::FMINNAN; 2736 break; 2737 } 2738 } 2739 break; 2740 case SPF_FMAXNUM: 2741 switch (SPR.NaNBehavior) { 2742 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2743 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2744 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2745 case SPNB_RETURNS_ANY: 2746 2747 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2748 Opc = ISD::FMAXNUM; 2749 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2750 Opc = ISD::FMAXNAN; 2751 else if (UseScalarMinMax) 2752 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2753 ISD::FMAXNUM : ISD::FMAXNAN; 2754 break; 2755 } 2756 break; 2757 default: break; 2758 } 2759 2760 if (Opc != ISD::DELETED_NODE && 2761 (TLI.isOperationLegalOrCustom(Opc, VT) || 2762 (UseScalarMinMax && 2763 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2764 // If the underlying comparison instruction is used by any other 2765 // instruction, the consumed instructions won't be destroyed, so it is 2766 // not profitable to convert to a min/max. 2767 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2768 OpCode = Opc; 2769 LHSVal = getValue(LHS); 2770 RHSVal = getValue(RHS); 2771 BaseOps = {}; 2772 } 2773 } 2774 2775 for (unsigned i = 0; i != NumValues; ++i) { 2776 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2777 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2778 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2779 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2780 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2781 Ops); 2782 } 2783 2784 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2785 DAG.getVTList(ValueVTs), Values)); 2786 } 2787 2788 void SelectionDAGBuilder::visitTrunc(const User &I) { 2789 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2790 SDValue N = getValue(I.getOperand(0)); 2791 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2792 I.getType()); 2793 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2794 } 2795 2796 void SelectionDAGBuilder::visitZExt(const User &I) { 2797 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2798 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2799 SDValue N = getValue(I.getOperand(0)); 2800 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2801 I.getType()); 2802 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2803 } 2804 2805 void SelectionDAGBuilder::visitSExt(const User &I) { 2806 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2807 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2808 SDValue N = getValue(I.getOperand(0)); 2809 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2810 I.getType()); 2811 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2812 } 2813 2814 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2815 // FPTrunc is never a no-op cast, no need to check 2816 SDValue N = getValue(I.getOperand(0)); 2817 SDLoc dl = getCurSDLoc(); 2818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2819 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2820 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2821 DAG.getTargetConstant( 2822 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2823 } 2824 2825 void SelectionDAGBuilder::visitFPExt(const User &I) { 2826 // FPExt is never a no-op cast, no need to check 2827 SDValue N = getValue(I.getOperand(0)); 2828 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2829 I.getType()); 2830 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2831 } 2832 2833 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2834 // FPToUI is never a no-op cast, no need to check 2835 SDValue N = getValue(I.getOperand(0)); 2836 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2837 I.getType()); 2838 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2839 } 2840 2841 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2842 // FPToSI is never a no-op cast, no need to check 2843 SDValue N = getValue(I.getOperand(0)); 2844 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2845 I.getType()); 2846 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2847 } 2848 2849 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2850 // UIToFP is never a no-op cast, no need to check 2851 SDValue N = getValue(I.getOperand(0)); 2852 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2853 I.getType()); 2854 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2855 } 2856 2857 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2858 // SIToFP is never a no-op cast, no need to check 2859 SDValue N = getValue(I.getOperand(0)); 2860 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2861 I.getType()); 2862 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2863 } 2864 2865 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2866 // What to do depends on the size of the integer and the size of the pointer. 2867 // We can either truncate, zero extend, or no-op, accordingly. 2868 SDValue N = getValue(I.getOperand(0)); 2869 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2870 I.getType()); 2871 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2872 } 2873 2874 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2875 // What to do depends on the size of the integer and the size of the pointer. 2876 // We can either truncate, zero extend, or no-op, accordingly. 2877 SDValue N = getValue(I.getOperand(0)); 2878 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2879 I.getType()); 2880 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2881 } 2882 2883 void SelectionDAGBuilder::visitBitCast(const User &I) { 2884 SDValue N = getValue(I.getOperand(0)); 2885 SDLoc dl = getCurSDLoc(); 2886 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2887 I.getType()); 2888 2889 // BitCast assures us that source and destination are the same size so this is 2890 // either a BITCAST or a no-op. 2891 if (DestVT != N.getValueType()) 2892 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2893 DestVT, N)); // convert types. 2894 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2895 // might fold any kind of constant expression to an integer constant and that 2896 // is not what we are looking for. Only regcognize a bitcast of a genuine 2897 // constant integer as an opaque constant. 2898 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2899 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2900 /*isOpaque*/true)); 2901 else 2902 setValue(&I, N); // noop cast. 2903 } 2904 2905 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2907 const Value *SV = I.getOperand(0); 2908 SDValue N = getValue(SV); 2909 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2910 2911 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2912 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2913 2914 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2915 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2916 2917 setValue(&I, N); 2918 } 2919 2920 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2922 SDValue InVec = getValue(I.getOperand(0)); 2923 SDValue InVal = getValue(I.getOperand(1)); 2924 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2925 TLI.getVectorIdxTy(DAG.getDataLayout())); 2926 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2927 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2928 InVec, InVal, InIdx)); 2929 } 2930 2931 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2933 SDValue InVec = getValue(I.getOperand(0)); 2934 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2935 TLI.getVectorIdxTy(DAG.getDataLayout())); 2936 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2937 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2938 InVec, InIdx)); 2939 } 2940 2941 // Utility for visitShuffleVector - Return true if every element in Mask, 2942 // beginning from position Pos and ending in Pos+Size, falls within the 2943 // specified sequential range [L, L+Pos). or is undef. 2944 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2945 unsigned Pos, unsigned Size, int Low) { 2946 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2947 if (Mask[i] >= 0 && Mask[i] != Low) 2948 return false; 2949 return true; 2950 } 2951 2952 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2953 SDValue Src1 = getValue(I.getOperand(0)); 2954 SDValue Src2 = getValue(I.getOperand(1)); 2955 2956 SmallVector<int, 8> Mask; 2957 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2958 unsigned MaskNumElts = Mask.size(); 2959 2960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2961 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2962 EVT SrcVT = Src1.getValueType(); 2963 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2964 2965 if (SrcNumElts == MaskNumElts) { 2966 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2967 &Mask[0])); 2968 return; 2969 } 2970 2971 // Normalize the shuffle vector since mask and vector length don't match. 2972 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2973 // Mask is longer than the source vectors and is a multiple of the source 2974 // vectors. We can use concatenate vector to make the mask and vectors 2975 // lengths match. 2976 if (SrcNumElts*2 == MaskNumElts) { 2977 // First check for Src1 in low and Src2 in high 2978 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2979 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2980 // The shuffle is concatenating two vectors together. 2981 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2982 VT, Src1, Src2)); 2983 return; 2984 } 2985 // Then check for Src2 in low and Src1 in high 2986 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2987 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2988 // The shuffle is concatenating two vectors together. 2989 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2990 VT, Src2, Src1)); 2991 return; 2992 } 2993 } 2994 2995 // Pad both vectors with undefs to make them the same length as the mask. 2996 unsigned NumConcat = MaskNumElts / SrcNumElts; 2997 bool Src1U = Src1.isUndef(); 2998 bool Src2U = Src2.isUndef(); 2999 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3000 3001 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3002 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3003 MOps1[0] = Src1; 3004 MOps2[0] = Src2; 3005 3006 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3007 getCurSDLoc(), VT, MOps1); 3008 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3009 getCurSDLoc(), VT, MOps2); 3010 3011 // Readjust mask for new input vector length. 3012 SmallVector<int, 8> MappedOps; 3013 for (unsigned i = 0; i != MaskNumElts; ++i) { 3014 int Idx = Mask[i]; 3015 if (Idx >= (int)SrcNumElts) 3016 Idx -= SrcNumElts - MaskNumElts; 3017 MappedOps.push_back(Idx); 3018 } 3019 3020 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3021 &MappedOps[0])); 3022 return; 3023 } 3024 3025 if (SrcNumElts > MaskNumElts) { 3026 // Analyze the access pattern of the vector to see if we can extract 3027 // two subvectors and do the shuffle. The analysis is done by calculating 3028 // the range of elements the mask access on both vectors. 3029 int MinRange[2] = { static_cast<int>(SrcNumElts), 3030 static_cast<int>(SrcNumElts)}; 3031 int MaxRange[2] = {-1, -1}; 3032 3033 for (unsigned i = 0; i != MaskNumElts; ++i) { 3034 int Idx = Mask[i]; 3035 unsigned Input = 0; 3036 if (Idx < 0) 3037 continue; 3038 3039 if (Idx >= (int)SrcNumElts) { 3040 Input = 1; 3041 Idx -= SrcNumElts; 3042 } 3043 if (Idx > MaxRange[Input]) 3044 MaxRange[Input] = Idx; 3045 if (Idx < MinRange[Input]) 3046 MinRange[Input] = Idx; 3047 } 3048 3049 // Check if the access is smaller than the vector size and can we find 3050 // a reasonable extract index. 3051 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3052 // Extract. 3053 int StartIdx[2]; // StartIdx to extract from 3054 for (unsigned Input = 0; Input < 2; ++Input) { 3055 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3056 RangeUse[Input] = 0; // Unused 3057 StartIdx[Input] = 0; 3058 continue; 3059 } 3060 3061 // Find a good start index that is a multiple of the mask length. Then 3062 // see if the rest of the elements are in range. 3063 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3064 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3065 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3066 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3067 } 3068 3069 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3070 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3071 return; 3072 } 3073 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3074 // Extract appropriate subvector and generate a vector shuffle 3075 for (unsigned Input = 0; Input < 2; ++Input) { 3076 SDValue &Src = Input == 0 ? Src1 : Src2; 3077 if (RangeUse[Input] == 0) 3078 Src = DAG.getUNDEF(VT); 3079 else { 3080 SDLoc dl = getCurSDLoc(); 3081 Src = DAG.getNode( 3082 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3083 DAG.getConstant(StartIdx[Input], dl, 3084 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3085 } 3086 } 3087 3088 // Calculate new mask. 3089 SmallVector<int, 8> MappedOps; 3090 for (unsigned i = 0; i != MaskNumElts; ++i) { 3091 int Idx = Mask[i]; 3092 if (Idx >= 0) { 3093 if (Idx < (int)SrcNumElts) 3094 Idx -= StartIdx[0]; 3095 else 3096 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3097 } 3098 MappedOps.push_back(Idx); 3099 } 3100 3101 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3102 &MappedOps[0])); 3103 return; 3104 } 3105 } 3106 3107 // We can't use either concat vectors or extract subvectors so fall back to 3108 // replacing the shuffle with extract and build vector. 3109 // to insert and build vector. 3110 EVT EltVT = VT.getVectorElementType(); 3111 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3112 SDLoc dl = getCurSDLoc(); 3113 SmallVector<SDValue,8> Ops; 3114 for (unsigned i = 0; i != MaskNumElts; ++i) { 3115 int Idx = Mask[i]; 3116 SDValue Res; 3117 3118 if (Idx < 0) { 3119 Res = DAG.getUNDEF(EltVT); 3120 } else { 3121 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3122 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3123 3124 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3125 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3126 } 3127 3128 Ops.push_back(Res); 3129 } 3130 3131 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3132 } 3133 3134 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3135 const Value *Op0 = I.getOperand(0); 3136 const Value *Op1 = I.getOperand(1); 3137 Type *AggTy = I.getType(); 3138 Type *ValTy = Op1->getType(); 3139 bool IntoUndef = isa<UndefValue>(Op0); 3140 bool FromUndef = isa<UndefValue>(Op1); 3141 3142 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3143 3144 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3145 SmallVector<EVT, 4> AggValueVTs; 3146 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3147 SmallVector<EVT, 4> ValValueVTs; 3148 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3149 3150 unsigned NumAggValues = AggValueVTs.size(); 3151 unsigned NumValValues = ValValueVTs.size(); 3152 SmallVector<SDValue, 4> Values(NumAggValues); 3153 3154 // Ignore an insertvalue that produces an empty object 3155 if (!NumAggValues) { 3156 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3157 return; 3158 } 3159 3160 SDValue Agg = getValue(Op0); 3161 unsigned i = 0; 3162 // Copy the beginning value(s) from the original aggregate. 3163 for (; i != LinearIndex; ++i) 3164 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3165 SDValue(Agg.getNode(), Agg.getResNo() + i); 3166 // Copy values from the inserted value(s). 3167 if (NumValValues) { 3168 SDValue Val = getValue(Op1); 3169 for (; i != LinearIndex + NumValValues; ++i) 3170 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3171 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3172 } 3173 // Copy remaining value(s) from the original aggregate. 3174 for (; i != NumAggValues; ++i) 3175 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3176 SDValue(Agg.getNode(), Agg.getResNo() + i); 3177 3178 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3179 DAG.getVTList(AggValueVTs), Values)); 3180 } 3181 3182 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3183 const Value *Op0 = I.getOperand(0); 3184 Type *AggTy = Op0->getType(); 3185 Type *ValTy = I.getType(); 3186 bool OutOfUndef = isa<UndefValue>(Op0); 3187 3188 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3189 3190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3191 SmallVector<EVT, 4> ValValueVTs; 3192 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3193 3194 unsigned NumValValues = ValValueVTs.size(); 3195 3196 // Ignore a extractvalue that produces an empty object 3197 if (!NumValValues) { 3198 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3199 return; 3200 } 3201 3202 SmallVector<SDValue, 4> Values(NumValValues); 3203 3204 SDValue Agg = getValue(Op0); 3205 // Copy out the selected value(s). 3206 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3207 Values[i - LinearIndex] = 3208 OutOfUndef ? 3209 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3210 SDValue(Agg.getNode(), Agg.getResNo() + i); 3211 3212 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3213 DAG.getVTList(ValValueVTs), Values)); 3214 } 3215 3216 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3217 Value *Op0 = I.getOperand(0); 3218 // Note that the pointer operand may be a vector of pointers. Take the scalar 3219 // element which holds a pointer. 3220 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3221 SDValue N = getValue(Op0); 3222 SDLoc dl = getCurSDLoc(); 3223 3224 // Normalize Vector GEP - all scalar operands should be converted to the 3225 // splat vector. 3226 unsigned VectorWidth = I.getType()->isVectorTy() ? 3227 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3228 3229 if (VectorWidth && !N.getValueType().isVector()) { 3230 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3231 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3232 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3233 } 3234 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3235 GTI != E; ++GTI) { 3236 const Value *Idx = GTI.getOperand(); 3237 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3238 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3239 if (Field) { 3240 // N = N + Offset 3241 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3242 3243 // In an inbouds GEP with an offset that is nonnegative even when 3244 // interpreted as signed, assume there is no unsigned overflow. 3245 SDNodeFlags Flags; 3246 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3247 Flags.setNoUnsignedWrap(true); 3248 3249 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3250 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3251 } 3252 } else { 3253 MVT PtrTy = 3254 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3255 unsigned PtrSize = PtrTy.getSizeInBits(); 3256 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3257 3258 // If this is a scalar constant or a splat vector of constants, 3259 // handle it quickly. 3260 const auto *CI = dyn_cast<ConstantInt>(Idx); 3261 if (!CI && isa<ConstantDataVector>(Idx) && 3262 cast<ConstantDataVector>(Idx)->getSplatValue()) 3263 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3264 3265 if (CI) { 3266 if (CI->isZero()) 3267 continue; 3268 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3269 SDValue OffsVal = VectorWidth ? 3270 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3271 DAG.getConstant(Offs, dl, PtrTy); 3272 3273 // In an inbouds GEP with an offset that is nonnegative even when 3274 // interpreted as signed, assume there is no unsigned overflow. 3275 SDNodeFlags Flags; 3276 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3277 Flags.setNoUnsignedWrap(true); 3278 3279 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3280 continue; 3281 } 3282 3283 // N = N + Idx * ElementSize; 3284 SDValue IdxN = getValue(Idx); 3285 3286 if (!IdxN.getValueType().isVector() && VectorWidth) { 3287 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3288 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3289 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3290 } 3291 // If the index is smaller or larger than intptr_t, truncate or extend 3292 // it. 3293 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3294 3295 // If this is a multiply by a power of two, turn it into a shl 3296 // immediately. This is a very common case. 3297 if (ElementSize != 1) { 3298 if (ElementSize.isPowerOf2()) { 3299 unsigned Amt = ElementSize.logBase2(); 3300 IdxN = DAG.getNode(ISD::SHL, dl, 3301 N.getValueType(), IdxN, 3302 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3303 } else { 3304 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3305 IdxN = DAG.getNode(ISD::MUL, dl, 3306 N.getValueType(), IdxN, Scale); 3307 } 3308 } 3309 3310 N = DAG.getNode(ISD::ADD, dl, 3311 N.getValueType(), N, IdxN); 3312 } 3313 } 3314 3315 setValue(&I, N); 3316 } 3317 3318 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3319 // If this is a fixed sized alloca in the entry block of the function, 3320 // allocate it statically on the stack. 3321 if (FuncInfo.StaticAllocaMap.count(&I)) 3322 return; // getValue will auto-populate this. 3323 3324 SDLoc dl = getCurSDLoc(); 3325 Type *Ty = I.getAllocatedType(); 3326 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3327 auto &DL = DAG.getDataLayout(); 3328 uint64_t TySize = DL.getTypeAllocSize(Ty); 3329 unsigned Align = 3330 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3331 3332 SDValue AllocSize = getValue(I.getArraySize()); 3333 3334 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3335 if (AllocSize.getValueType() != IntPtr) 3336 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3337 3338 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3339 AllocSize, 3340 DAG.getConstant(TySize, dl, IntPtr)); 3341 3342 // Handle alignment. If the requested alignment is less than or equal to 3343 // the stack alignment, ignore it. If the size is greater than or equal to 3344 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3345 unsigned StackAlign = 3346 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3347 if (Align <= StackAlign) 3348 Align = 0; 3349 3350 // Round the size of the allocation up to the stack alignment size 3351 // by add SA-1 to the size. This doesn't overflow because we're computing 3352 // an address inside an alloca. 3353 SDNodeFlags Flags; 3354 Flags.setNoUnsignedWrap(true); 3355 AllocSize = DAG.getNode(ISD::ADD, dl, 3356 AllocSize.getValueType(), AllocSize, 3357 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3358 3359 // Mask out the low bits for alignment purposes. 3360 AllocSize = DAG.getNode(ISD::AND, dl, 3361 AllocSize.getValueType(), AllocSize, 3362 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3363 dl)); 3364 3365 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3366 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3367 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3368 setValue(&I, DSA); 3369 DAG.setRoot(DSA.getValue(1)); 3370 3371 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3372 } 3373 3374 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3375 if (I.isAtomic()) 3376 return visitAtomicLoad(I); 3377 3378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3379 const Value *SV = I.getOperand(0); 3380 if (TLI.supportSwiftError()) { 3381 // Swifterror values can come from either a function parameter with 3382 // swifterror attribute or an alloca with swifterror attribute. 3383 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3384 if (Arg->hasSwiftErrorAttr()) 3385 return visitLoadFromSwiftError(I); 3386 } 3387 3388 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3389 if (Alloca->isSwiftError()) 3390 return visitLoadFromSwiftError(I); 3391 } 3392 } 3393 3394 SDValue Ptr = getValue(SV); 3395 3396 Type *Ty = I.getType(); 3397 3398 bool isVolatile = I.isVolatile(); 3399 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3400 3401 // The IR notion of invariant_load only guarantees that all *non-faulting* 3402 // invariant loads result in the same value. The MI notion of invariant load 3403 // guarantees that the load can be legally moved to any location within its 3404 // containing function. The MI notion of invariant_load is stronger than the 3405 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3406 // with a guarantee that the location being loaded from is dereferenceable 3407 // throughout the function's lifetime. 3408 3409 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3410 isDereferenceablePointer(SV, DAG.getDataLayout()); 3411 unsigned Alignment = I.getAlignment(); 3412 3413 AAMDNodes AAInfo; 3414 I.getAAMetadata(AAInfo); 3415 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3416 3417 SmallVector<EVT, 4> ValueVTs; 3418 SmallVector<uint64_t, 4> Offsets; 3419 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3420 unsigned NumValues = ValueVTs.size(); 3421 if (NumValues == 0) 3422 return; 3423 3424 SDValue Root; 3425 bool ConstantMemory = false; 3426 if (isVolatile || NumValues > MaxParallelChains) 3427 // Serialize volatile loads with other side effects. 3428 Root = getRoot(); 3429 else if (AA->pointsToConstantMemory(MemoryLocation( 3430 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3431 // Do not serialize (non-volatile) loads of constant memory with anything. 3432 Root = DAG.getEntryNode(); 3433 ConstantMemory = true; 3434 } else { 3435 // Do not serialize non-volatile loads against each other. 3436 Root = DAG.getRoot(); 3437 } 3438 3439 SDLoc dl = getCurSDLoc(); 3440 3441 if (isVolatile) 3442 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3443 3444 // An aggregate load cannot wrap around the address space, so offsets to its 3445 // parts don't wrap either. 3446 SDNodeFlags Flags; 3447 Flags.setNoUnsignedWrap(true); 3448 3449 SmallVector<SDValue, 4> Values(NumValues); 3450 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3451 EVT PtrVT = Ptr.getValueType(); 3452 unsigned ChainI = 0; 3453 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3454 // Serializing loads here may result in excessive register pressure, and 3455 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3456 // could recover a bit by hoisting nodes upward in the chain by recognizing 3457 // they are side-effect free or do not alias. The optimizer should really 3458 // avoid this case by converting large object/array copies to llvm.memcpy 3459 // (MaxParallelChains should always remain as failsafe). 3460 if (ChainI == MaxParallelChains) { 3461 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3462 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3463 makeArrayRef(Chains.data(), ChainI)); 3464 Root = Chain; 3465 ChainI = 0; 3466 } 3467 SDValue A = DAG.getNode(ISD::ADD, dl, 3468 PtrVT, Ptr, 3469 DAG.getConstant(Offsets[i], dl, PtrVT), 3470 &Flags); 3471 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3472 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3473 isNonTemporal, isInvariant, Alignment, AAInfo, 3474 Ranges); 3475 3476 Values[i] = L; 3477 Chains[ChainI] = L.getValue(1); 3478 } 3479 3480 if (!ConstantMemory) { 3481 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3482 makeArrayRef(Chains.data(), ChainI)); 3483 if (isVolatile) 3484 DAG.setRoot(Chain); 3485 else 3486 PendingLoads.push_back(Chain); 3487 } 3488 3489 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3490 DAG.getVTList(ValueVTs), Values)); 3491 } 3492 3493 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3495 assert(TLI.supportSwiftError() && 3496 "call visitStoreToSwiftError when backend supports swifterror"); 3497 3498 SmallVector<EVT, 4> ValueVTs; 3499 SmallVector<uint64_t, 4> Offsets; 3500 const Value *SrcV = I.getOperand(0); 3501 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3502 SrcV->getType(), ValueVTs, &Offsets); 3503 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3504 "expect a single EVT for swifterror"); 3505 3506 SDValue Src = getValue(SrcV); 3507 // Create a virtual register, then update the virtual register. 3508 auto &DL = DAG.getDataLayout(); 3509 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3510 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3511 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3512 // Chain can be getRoot or getControlRoot. 3513 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3514 SDValue(Src.getNode(), Src.getResNo())); 3515 DAG.setRoot(CopyNode); 3516 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3517 } 3518 3519 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3520 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3521 "call visitLoadFromSwiftError when backend supports swifterror"); 3522 3523 assert(!I.isVolatile() && 3524 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3525 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3526 "Support volatile, non temporal, invariant for load_from_swift_error"); 3527 3528 const Value *SV = I.getOperand(0); 3529 Type *Ty = I.getType(); 3530 AAMDNodes AAInfo; 3531 I.getAAMetadata(AAInfo); 3532 assert(!AA->pointsToConstantMemory(MemoryLocation( 3533 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3534 "load_from_swift_error should not be constant memory"); 3535 3536 SmallVector<EVT, 4> ValueVTs; 3537 SmallVector<uint64_t, 4> Offsets; 3538 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3539 ValueVTs, &Offsets); 3540 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3541 "expect a single EVT for swifterror"); 3542 3543 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3544 SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(), 3545 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV), 3546 ValueVTs[0]); 3547 3548 setValue(&I, L); 3549 } 3550 3551 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3552 if (I.isAtomic()) 3553 return visitAtomicStore(I); 3554 3555 const Value *SrcV = I.getOperand(0); 3556 const Value *PtrV = I.getOperand(1); 3557 3558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3559 if (TLI.supportSwiftError()) { 3560 // Swifterror values can come from either a function parameter with 3561 // swifterror attribute or an alloca with swifterror attribute. 3562 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3563 if (Arg->hasSwiftErrorAttr()) 3564 return visitStoreToSwiftError(I); 3565 } 3566 3567 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3568 if (Alloca->isSwiftError()) 3569 return visitStoreToSwiftError(I); 3570 } 3571 } 3572 3573 SmallVector<EVT, 4> ValueVTs; 3574 SmallVector<uint64_t, 4> Offsets; 3575 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3576 SrcV->getType(), ValueVTs, &Offsets); 3577 unsigned NumValues = ValueVTs.size(); 3578 if (NumValues == 0) 3579 return; 3580 3581 // Get the lowered operands. Note that we do this after 3582 // checking if NumResults is zero, because with zero results 3583 // the operands won't have values in the map. 3584 SDValue Src = getValue(SrcV); 3585 SDValue Ptr = getValue(PtrV); 3586 3587 SDValue Root = getRoot(); 3588 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3589 EVT PtrVT = Ptr.getValueType(); 3590 bool isVolatile = I.isVolatile(); 3591 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3592 unsigned Alignment = I.getAlignment(); 3593 SDLoc dl = getCurSDLoc(); 3594 3595 AAMDNodes AAInfo; 3596 I.getAAMetadata(AAInfo); 3597 3598 // An aggregate load cannot wrap around the address space, so offsets to its 3599 // parts don't wrap either. 3600 SDNodeFlags Flags; 3601 Flags.setNoUnsignedWrap(true); 3602 3603 unsigned ChainI = 0; 3604 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3605 // See visitLoad comments. 3606 if (ChainI == MaxParallelChains) { 3607 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3608 makeArrayRef(Chains.data(), ChainI)); 3609 Root = Chain; 3610 ChainI = 0; 3611 } 3612 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3613 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3614 SDValue St = DAG.getStore(Root, dl, 3615 SDValue(Src.getNode(), Src.getResNo() + i), 3616 Add, MachinePointerInfo(PtrV, Offsets[i]), 3617 isVolatile, isNonTemporal, Alignment, AAInfo); 3618 Chains[ChainI] = St; 3619 } 3620 3621 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3622 makeArrayRef(Chains.data(), ChainI)); 3623 DAG.setRoot(StoreNode); 3624 } 3625 3626 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3627 SDLoc sdl = getCurSDLoc(); 3628 3629 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3630 Value *PtrOperand = I.getArgOperand(1); 3631 SDValue Ptr = getValue(PtrOperand); 3632 SDValue Src0 = getValue(I.getArgOperand(0)); 3633 SDValue Mask = getValue(I.getArgOperand(3)); 3634 EVT VT = Src0.getValueType(); 3635 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3636 if (!Alignment) 3637 Alignment = DAG.getEVTAlignment(VT); 3638 3639 AAMDNodes AAInfo; 3640 I.getAAMetadata(AAInfo); 3641 3642 MachineMemOperand *MMO = 3643 DAG.getMachineFunction(). 3644 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3645 MachineMemOperand::MOStore, VT.getStoreSize(), 3646 Alignment, AAInfo); 3647 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3648 MMO, false); 3649 DAG.setRoot(StoreNode); 3650 setValue(&I, StoreNode); 3651 } 3652 3653 // Get a uniform base for the Gather/Scatter intrinsic. 3654 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3655 // We try to represent it as a base pointer + vector of indices. 3656 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3657 // The first operand of the GEP may be a single pointer or a vector of pointers 3658 // Example: 3659 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3660 // or 3661 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3662 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3663 // 3664 // When the first GEP operand is a single pointer - it is the uniform base we 3665 // are looking for. If first operand of the GEP is a splat vector - we 3666 // extract the spalt value and use it as a uniform base. 3667 // In all other cases the function returns 'false'. 3668 // 3669 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3670 SelectionDAGBuilder* SDB) { 3671 3672 SelectionDAG& DAG = SDB->DAG; 3673 LLVMContext &Context = *DAG.getContext(); 3674 3675 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3676 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3677 if (!GEP || GEP->getNumOperands() > 2) 3678 return false; 3679 3680 const Value *GEPPtr = GEP->getPointerOperand(); 3681 if (!GEPPtr->getType()->isVectorTy()) 3682 Ptr = GEPPtr; 3683 else if (!(Ptr = getSplatValue(GEPPtr))) 3684 return false; 3685 3686 Value *IndexVal = GEP->getOperand(1); 3687 3688 // The operands of the GEP may be defined in another basic block. 3689 // In this case we'll not find nodes for the operands. 3690 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3691 return false; 3692 3693 Base = SDB->getValue(Ptr); 3694 Index = SDB->getValue(IndexVal); 3695 3696 // Suppress sign extension. 3697 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3698 if (SDB->findValue(Sext->getOperand(0))) { 3699 IndexVal = Sext->getOperand(0); 3700 Index = SDB->getValue(IndexVal); 3701 } 3702 } 3703 if (!Index.getValueType().isVector()) { 3704 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3705 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3706 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3707 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3708 } 3709 return true; 3710 } 3711 3712 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3713 SDLoc sdl = getCurSDLoc(); 3714 3715 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3716 const Value *Ptr = I.getArgOperand(1); 3717 SDValue Src0 = getValue(I.getArgOperand(0)); 3718 SDValue Mask = getValue(I.getArgOperand(3)); 3719 EVT VT = Src0.getValueType(); 3720 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3721 if (!Alignment) 3722 Alignment = DAG.getEVTAlignment(VT); 3723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3724 3725 AAMDNodes AAInfo; 3726 I.getAAMetadata(AAInfo); 3727 3728 SDValue Base; 3729 SDValue Index; 3730 const Value *BasePtr = Ptr; 3731 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3732 3733 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3734 MachineMemOperand *MMO = DAG.getMachineFunction(). 3735 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3736 MachineMemOperand::MOStore, VT.getStoreSize(), 3737 Alignment, AAInfo); 3738 if (!UniformBase) { 3739 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3740 Index = getValue(Ptr); 3741 } 3742 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3743 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3744 Ops, MMO); 3745 DAG.setRoot(Scatter); 3746 setValue(&I, Scatter); 3747 } 3748 3749 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3750 SDLoc sdl = getCurSDLoc(); 3751 3752 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3753 Value *PtrOperand = I.getArgOperand(0); 3754 SDValue Ptr = getValue(PtrOperand); 3755 SDValue Src0 = getValue(I.getArgOperand(3)); 3756 SDValue Mask = getValue(I.getArgOperand(2)); 3757 3758 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3759 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3760 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3761 if (!Alignment) 3762 Alignment = DAG.getEVTAlignment(VT); 3763 3764 AAMDNodes AAInfo; 3765 I.getAAMetadata(AAInfo); 3766 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3767 3768 SDValue InChain = DAG.getRoot(); 3769 if (AA->pointsToConstantMemory(MemoryLocation( 3770 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3771 AAInfo))) { 3772 // Do not serialize (non-volatile) loads of constant memory with anything. 3773 InChain = DAG.getEntryNode(); 3774 } 3775 3776 MachineMemOperand *MMO = 3777 DAG.getMachineFunction(). 3778 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3779 MachineMemOperand::MOLoad, VT.getStoreSize(), 3780 Alignment, AAInfo, Ranges); 3781 3782 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3783 ISD::NON_EXTLOAD); 3784 SDValue OutChain = Load.getValue(1); 3785 DAG.setRoot(OutChain); 3786 setValue(&I, Load); 3787 } 3788 3789 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3790 SDLoc sdl = getCurSDLoc(); 3791 3792 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3793 const Value *Ptr = I.getArgOperand(0); 3794 SDValue Src0 = getValue(I.getArgOperand(3)); 3795 SDValue Mask = getValue(I.getArgOperand(2)); 3796 3797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3798 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3799 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3800 if (!Alignment) 3801 Alignment = DAG.getEVTAlignment(VT); 3802 3803 AAMDNodes AAInfo; 3804 I.getAAMetadata(AAInfo); 3805 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3806 3807 SDValue Root = DAG.getRoot(); 3808 SDValue Base; 3809 SDValue Index; 3810 const Value *BasePtr = Ptr; 3811 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3812 bool ConstantMemory = false; 3813 if (UniformBase && 3814 AA->pointsToConstantMemory(MemoryLocation( 3815 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3816 AAInfo))) { 3817 // Do not serialize (non-volatile) loads of constant memory with anything. 3818 Root = DAG.getEntryNode(); 3819 ConstantMemory = true; 3820 } 3821 3822 MachineMemOperand *MMO = 3823 DAG.getMachineFunction(). 3824 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3825 MachineMemOperand::MOLoad, VT.getStoreSize(), 3826 Alignment, AAInfo, Ranges); 3827 3828 if (!UniformBase) { 3829 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3830 Index = getValue(Ptr); 3831 } 3832 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3833 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3834 Ops, MMO); 3835 3836 SDValue OutChain = Gather.getValue(1); 3837 if (!ConstantMemory) 3838 PendingLoads.push_back(OutChain); 3839 setValue(&I, Gather); 3840 } 3841 3842 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3843 SDLoc dl = getCurSDLoc(); 3844 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3845 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3846 SynchronizationScope Scope = I.getSynchScope(); 3847 3848 SDValue InChain = getRoot(); 3849 3850 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3851 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3852 SDValue L = DAG.getAtomicCmpSwap( 3853 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3854 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3855 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3856 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3857 3858 SDValue OutChain = L.getValue(2); 3859 3860 setValue(&I, L); 3861 DAG.setRoot(OutChain); 3862 } 3863 3864 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3865 SDLoc dl = getCurSDLoc(); 3866 ISD::NodeType NT; 3867 switch (I.getOperation()) { 3868 default: llvm_unreachable("Unknown atomicrmw operation"); 3869 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3870 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3871 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3872 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3873 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3874 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3875 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3876 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3877 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3878 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3879 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3880 } 3881 AtomicOrdering Order = I.getOrdering(); 3882 SynchronizationScope Scope = I.getSynchScope(); 3883 3884 SDValue InChain = getRoot(); 3885 3886 SDValue L = 3887 DAG.getAtomic(NT, dl, 3888 getValue(I.getValOperand()).getSimpleValueType(), 3889 InChain, 3890 getValue(I.getPointerOperand()), 3891 getValue(I.getValOperand()), 3892 I.getPointerOperand(), 3893 /* Alignment=*/ 0, Order, Scope); 3894 3895 SDValue OutChain = L.getValue(1); 3896 3897 setValue(&I, L); 3898 DAG.setRoot(OutChain); 3899 } 3900 3901 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3902 SDLoc dl = getCurSDLoc(); 3903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3904 SDValue Ops[3]; 3905 Ops[0] = getRoot(); 3906 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3907 TLI.getPointerTy(DAG.getDataLayout())); 3908 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3909 TLI.getPointerTy(DAG.getDataLayout())); 3910 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3911 } 3912 3913 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3914 SDLoc dl = getCurSDLoc(); 3915 AtomicOrdering Order = I.getOrdering(); 3916 SynchronizationScope Scope = I.getSynchScope(); 3917 3918 SDValue InChain = getRoot(); 3919 3920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3921 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3922 3923 if (I.getAlignment() < VT.getSizeInBits() / 8) 3924 report_fatal_error("Cannot generate unaligned atomic load"); 3925 3926 MachineMemOperand *MMO = 3927 DAG.getMachineFunction(). 3928 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3929 MachineMemOperand::MOVolatile | 3930 MachineMemOperand::MOLoad, 3931 VT.getStoreSize(), 3932 I.getAlignment() ? I.getAlignment() : 3933 DAG.getEVTAlignment(VT)); 3934 3935 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3936 SDValue L = 3937 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3938 getValue(I.getPointerOperand()), MMO, 3939 Order, Scope); 3940 3941 SDValue OutChain = L.getValue(1); 3942 3943 setValue(&I, L); 3944 DAG.setRoot(OutChain); 3945 } 3946 3947 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3948 SDLoc dl = getCurSDLoc(); 3949 3950 AtomicOrdering Order = I.getOrdering(); 3951 SynchronizationScope Scope = I.getSynchScope(); 3952 3953 SDValue InChain = getRoot(); 3954 3955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3956 EVT VT = 3957 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3958 3959 if (I.getAlignment() < VT.getSizeInBits() / 8) 3960 report_fatal_error("Cannot generate unaligned atomic store"); 3961 3962 SDValue OutChain = 3963 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3964 InChain, 3965 getValue(I.getPointerOperand()), 3966 getValue(I.getValueOperand()), 3967 I.getPointerOperand(), I.getAlignment(), 3968 Order, Scope); 3969 3970 DAG.setRoot(OutChain); 3971 } 3972 3973 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3974 /// node. 3975 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3976 unsigned Intrinsic) { 3977 bool HasChain = !I.doesNotAccessMemory(); 3978 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3979 3980 // Build the operand list. 3981 SmallVector<SDValue, 8> Ops; 3982 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3983 if (OnlyLoad) { 3984 // We don't need to serialize loads against other loads. 3985 Ops.push_back(DAG.getRoot()); 3986 } else { 3987 Ops.push_back(getRoot()); 3988 } 3989 } 3990 3991 // Info is set by getTgtMemInstrinsic 3992 TargetLowering::IntrinsicInfo Info; 3993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3994 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3995 3996 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3997 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3998 Info.opc == ISD::INTRINSIC_W_CHAIN) 3999 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4000 TLI.getPointerTy(DAG.getDataLayout()))); 4001 4002 // Add all operands of the call to the operand list. 4003 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4004 SDValue Op = getValue(I.getArgOperand(i)); 4005 Ops.push_back(Op); 4006 } 4007 4008 SmallVector<EVT, 4> ValueVTs; 4009 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4010 4011 if (HasChain) 4012 ValueVTs.push_back(MVT::Other); 4013 4014 SDVTList VTs = DAG.getVTList(ValueVTs); 4015 4016 // Create the node. 4017 SDValue Result; 4018 if (IsTgtIntrinsic) { 4019 // This is target intrinsic that touches memory 4020 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4021 VTs, Ops, Info.memVT, 4022 MachinePointerInfo(Info.ptrVal, Info.offset), 4023 Info.align, Info.vol, 4024 Info.readMem, Info.writeMem, Info.size); 4025 } else if (!HasChain) { 4026 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4027 } else if (!I.getType()->isVoidTy()) { 4028 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4029 } else { 4030 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4031 } 4032 4033 if (HasChain) { 4034 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4035 if (OnlyLoad) 4036 PendingLoads.push_back(Chain); 4037 else 4038 DAG.setRoot(Chain); 4039 } 4040 4041 if (!I.getType()->isVoidTy()) { 4042 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4043 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4044 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4045 } else 4046 Result = lowerRangeToAssertZExt(DAG, I, Result); 4047 4048 setValue(&I, Result); 4049 } 4050 } 4051 4052 /// GetSignificand - Get the significand and build it into a floating-point 4053 /// number with exponent of 1: 4054 /// 4055 /// Op = (Op & 0x007fffff) | 0x3f800000; 4056 /// 4057 /// where Op is the hexadecimal representation of floating point value. 4058 static SDValue 4059 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 4060 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4061 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4062 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4063 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4064 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4065 } 4066 4067 /// GetExponent - Get the exponent: 4068 /// 4069 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4070 /// 4071 /// where Op is the hexadecimal representation of floating point value. 4072 static SDValue 4073 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 4074 SDLoc dl) { 4075 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4076 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4077 SDValue t1 = DAG.getNode( 4078 ISD::SRL, dl, MVT::i32, t0, 4079 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4080 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4081 DAG.getConstant(127, dl, MVT::i32)); 4082 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4083 } 4084 4085 /// getF32Constant - Get 32-bit floating point constant. 4086 static SDValue 4087 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 4088 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 4089 MVT::f32); 4090 } 4091 4092 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 4093 SelectionDAG &DAG) { 4094 // TODO: What fast-math-flags should be set on the floating-point nodes? 4095 4096 // IntegerPartOfX = ((int32_t)(t0); 4097 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4098 4099 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4100 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4101 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4102 4103 // IntegerPartOfX <<= 23; 4104 IntegerPartOfX = DAG.getNode( 4105 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4106 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4107 DAG.getDataLayout()))); 4108 4109 SDValue TwoToFractionalPartOfX; 4110 if (LimitFloatPrecision <= 6) { 4111 // For floating-point precision of 6: 4112 // 4113 // TwoToFractionalPartOfX = 4114 // 0.997535578f + 4115 // (0.735607626f + 0.252464424f * x) * x; 4116 // 4117 // error 0.0144103317, which is 6 bits 4118 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4119 getF32Constant(DAG, 0x3e814304, dl)); 4120 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4121 getF32Constant(DAG, 0x3f3c50c8, dl)); 4122 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4123 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4124 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4125 } else if (LimitFloatPrecision <= 12) { 4126 // For floating-point precision of 12: 4127 // 4128 // TwoToFractionalPartOfX = 4129 // 0.999892986f + 4130 // (0.696457318f + 4131 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4132 // 4133 // error 0.000107046256, which is 13 to 14 bits 4134 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4135 getF32Constant(DAG, 0x3da235e3, dl)); 4136 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4137 getF32Constant(DAG, 0x3e65b8f3, dl)); 4138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4139 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4140 getF32Constant(DAG, 0x3f324b07, dl)); 4141 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4142 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4143 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4144 } else { // LimitFloatPrecision <= 18 4145 // For floating-point precision of 18: 4146 // 4147 // TwoToFractionalPartOfX = 4148 // 0.999999982f + 4149 // (0.693148872f + 4150 // (0.240227044f + 4151 // (0.554906021e-1f + 4152 // (0.961591928e-2f + 4153 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4154 // error 2.47208000*10^(-7), which is better than 18 bits 4155 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4156 getF32Constant(DAG, 0x3924b03e, dl)); 4157 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4158 getF32Constant(DAG, 0x3ab24b87, dl)); 4159 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4160 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4161 getF32Constant(DAG, 0x3c1d8c17, dl)); 4162 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4163 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4164 getF32Constant(DAG, 0x3d634a1d, dl)); 4165 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4166 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4167 getF32Constant(DAG, 0x3e75fe14, dl)); 4168 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4169 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4170 getF32Constant(DAG, 0x3f317234, dl)); 4171 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4172 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4173 getF32Constant(DAG, 0x3f800000, dl)); 4174 } 4175 4176 // Add the exponent into the result in integer domain. 4177 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4178 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4179 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4180 } 4181 4182 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4183 /// limited-precision mode. 4184 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4185 const TargetLowering &TLI) { 4186 if (Op.getValueType() == MVT::f32 && 4187 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4188 4189 // Put the exponent in the right bit position for later addition to the 4190 // final result: 4191 // 4192 // #define LOG2OFe 1.4426950f 4193 // t0 = Op * LOG2OFe 4194 4195 // TODO: What fast-math-flags should be set here? 4196 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4197 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4198 return getLimitedPrecisionExp2(t0, dl, DAG); 4199 } 4200 4201 // No special expansion. 4202 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4203 } 4204 4205 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4206 /// limited-precision mode. 4207 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4208 const TargetLowering &TLI) { 4209 4210 // TODO: What fast-math-flags should be set on the floating-point nodes? 4211 4212 if (Op.getValueType() == MVT::f32 && 4213 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4214 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4215 4216 // Scale the exponent by log(2) [0.69314718f]. 4217 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4218 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4219 getF32Constant(DAG, 0x3f317218, dl)); 4220 4221 // Get the significand and build it into a floating-point number with 4222 // exponent of 1. 4223 SDValue X = GetSignificand(DAG, Op1, dl); 4224 4225 SDValue LogOfMantissa; 4226 if (LimitFloatPrecision <= 6) { 4227 // For floating-point precision of 6: 4228 // 4229 // LogofMantissa = 4230 // -1.1609546f + 4231 // (1.4034025f - 0.23903021f * x) * x; 4232 // 4233 // error 0.0034276066, which is better than 8 bits 4234 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4235 getF32Constant(DAG, 0xbe74c456, dl)); 4236 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4237 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4238 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4239 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4240 getF32Constant(DAG, 0x3f949a29, dl)); 4241 } else if (LimitFloatPrecision <= 12) { 4242 // For floating-point precision of 12: 4243 // 4244 // LogOfMantissa = 4245 // -1.7417939f + 4246 // (2.8212026f + 4247 // (-1.4699568f + 4248 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4249 // 4250 // error 0.000061011436, which is 14 bits 4251 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4252 getF32Constant(DAG, 0xbd67b6d6, dl)); 4253 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4254 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4255 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4256 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4257 getF32Constant(DAG, 0x3fbc278b, dl)); 4258 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4259 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4260 getF32Constant(DAG, 0x40348e95, dl)); 4261 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4262 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4263 getF32Constant(DAG, 0x3fdef31a, dl)); 4264 } else { // LimitFloatPrecision <= 18 4265 // For floating-point precision of 18: 4266 // 4267 // LogOfMantissa = 4268 // -2.1072184f + 4269 // (4.2372794f + 4270 // (-3.7029485f + 4271 // (2.2781945f + 4272 // (-0.87823314f + 4273 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4274 // 4275 // error 0.0000023660568, which is better than 18 bits 4276 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4277 getF32Constant(DAG, 0xbc91e5ac, dl)); 4278 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4279 getF32Constant(DAG, 0x3e4350aa, dl)); 4280 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4281 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4282 getF32Constant(DAG, 0x3f60d3e3, dl)); 4283 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4284 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4285 getF32Constant(DAG, 0x4011cdf0, dl)); 4286 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4287 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4288 getF32Constant(DAG, 0x406cfd1c, dl)); 4289 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4290 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4291 getF32Constant(DAG, 0x408797cb, dl)); 4292 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4293 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4294 getF32Constant(DAG, 0x4006dcab, dl)); 4295 } 4296 4297 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4298 } 4299 4300 // No special expansion. 4301 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4302 } 4303 4304 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4305 /// limited-precision mode. 4306 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4307 const TargetLowering &TLI) { 4308 4309 // TODO: What fast-math-flags should be set on the floating-point nodes? 4310 4311 if (Op.getValueType() == MVT::f32 && 4312 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4313 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4314 4315 // Get the exponent. 4316 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4317 4318 // Get the significand and build it into a floating-point number with 4319 // exponent of 1. 4320 SDValue X = GetSignificand(DAG, Op1, dl); 4321 4322 // Different possible minimax approximations of significand in 4323 // floating-point for various degrees of accuracy over [1,2]. 4324 SDValue Log2ofMantissa; 4325 if (LimitFloatPrecision <= 6) { 4326 // For floating-point precision of 6: 4327 // 4328 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4329 // 4330 // error 0.0049451742, which is more than 7 bits 4331 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4332 getF32Constant(DAG, 0xbeb08fe0, dl)); 4333 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4334 getF32Constant(DAG, 0x40019463, dl)); 4335 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4336 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4337 getF32Constant(DAG, 0x3fd6633d, dl)); 4338 } else if (LimitFloatPrecision <= 12) { 4339 // For floating-point precision of 12: 4340 // 4341 // Log2ofMantissa = 4342 // -2.51285454f + 4343 // (4.07009056f + 4344 // (-2.12067489f + 4345 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4346 // 4347 // error 0.0000876136000, which is better than 13 bits 4348 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4349 getF32Constant(DAG, 0xbda7262e, dl)); 4350 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4351 getF32Constant(DAG, 0x3f25280b, dl)); 4352 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4353 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4354 getF32Constant(DAG, 0x4007b923, dl)); 4355 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4356 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4357 getF32Constant(DAG, 0x40823e2f, dl)); 4358 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4359 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4360 getF32Constant(DAG, 0x4020d29c, dl)); 4361 } else { // LimitFloatPrecision <= 18 4362 // For floating-point precision of 18: 4363 // 4364 // Log2ofMantissa = 4365 // -3.0400495f + 4366 // (6.1129976f + 4367 // (-5.3420409f + 4368 // (3.2865683f + 4369 // (-1.2669343f + 4370 // (0.27515199f - 4371 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4372 // 4373 // error 0.0000018516, which is better than 18 bits 4374 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4375 getF32Constant(DAG, 0xbcd2769e, dl)); 4376 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4377 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4378 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4379 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4380 getF32Constant(DAG, 0x3fa22ae7, dl)); 4381 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4382 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4383 getF32Constant(DAG, 0x40525723, dl)); 4384 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4385 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4386 getF32Constant(DAG, 0x40aaf200, dl)); 4387 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4388 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4389 getF32Constant(DAG, 0x40c39dad, dl)); 4390 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4391 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4392 getF32Constant(DAG, 0x4042902c, dl)); 4393 } 4394 4395 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4396 } 4397 4398 // No special expansion. 4399 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4400 } 4401 4402 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4403 /// limited-precision mode. 4404 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4405 const TargetLowering &TLI) { 4406 4407 // TODO: What fast-math-flags should be set on the floating-point nodes? 4408 4409 if (Op.getValueType() == MVT::f32 && 4410 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4411 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4412 4413 // Scale the exponent by log10(2) [0.30102999f]. 4414 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4415 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4416 getF32Constant(DAG, 0x3e9a209a, dl)); 4417 4418 // Get the significand and build it into a floating-point number with 4419 // exponent of 1. 4420 SDValue X = GetSignificand(DAG, Op1, dl); 4421 4422 SDValue Log10ofMantissa; 4423 if (LimitFloatPrecision <= 6) { 4424 // For floating-point precision of 6: 4425 // 4426 // Log10ofMantissa = 4427 // -0.50419619f + 4428 // (0.60948995f - 0.10380950f * x) * x; 4429 // 4430 // error 0.0014886165, which is 6 bits 4431 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4432 getF32Constant(DAG, 0xbdd49a13, dl)); 4433 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4434 getF32Constant(DAG, 0x3f1c0789, dl)); 4435 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4436 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4437 getF32Constant(DAG, 0x3f011300, dl)); 4438 } else if (LimitFloatPrecision <= 12) { 4439 // For floating-point precision of 12: 4440 // 4441 // Log10ofMantissa = 4442 // -0.64831180f + 4443 // (0.91751397f + 4444 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4445 // 4446 // error 0.00019228036, which is better than 12 bits 4447 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4448 getF32Constant(DAG, 0x3d431f31, dl)); 4449 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4450 getF32Constant(DAG, 0x3ea21fb2, dl)); 4451 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4452 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4453 getF32Constant(DAG, 0x3f6ae232, dl)); 4454 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4455 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4456 getF32Constant(DAG, 0x3f25f7c3, dl)); 4457 } else { // LimitFloatPrecision <= 18 4458 // For floating-point precision of 18: 4459 // 4460 // Log10ofMantissa = 4461 // -0.84299375f + 4462 // (1.5327582f + 4463 // (-1.0688956f + 4464 // (0.49102474f + 4465 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4466 // 4467 // error 0.0000037995730, which is better than 18 bits 4468 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4469 getF32Constant(DAG, 0x3c5d51ce, dl)); 4470 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4471 getF32Constant(DAG, 0x3e00685a, dl)); 4472 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4473 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4474 getF32Constant(DAG, 0x3efb6798, dl)); 4475 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4476 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4477 getF32Constant(DAG, 0x3f88d192, dl)); 4478 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4479 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4480 getF32Constant(DAG, 0x3fc4316c, dl)); 4481 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4482 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4483 getF32Constant(DAG, 0x3f57ce70, dl)); 4484 } 4485 4486 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4487 } 4488 4489 // No special expansion. 4490 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4491 } 4492 4493 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4494 /// limited-precision mode. 4495 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4496 const TargetLowering &TLI) { 4497 if (Op.getValueType() == MVT::f32 && 4498 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4499 return getLimitedPrecisionExp2(Op, dl, DAG); 4500 4501 // No special expansion. 4502 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4503 } 4504 4505 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4506 /// limited-precision mode with x == 10.0f. 4507 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4508 SelectionDAG &DAG, const TargetLowering &TLI) { 4509 bool IsExp10 = false; 4510 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4511 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4512 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4513 APFloat Ten(10.0f); 4514 IsExp10 = LHSC->isExactlyValue(Ten); 4515 } 4516 } 4517 4518 // TODO: What fast-math-flags should be set on the FMUL node? 4519 if (IsExp10) { 4520 // Put the exponent in the right bit position for later addition to the 4521 // final result: 4522 // 4523 // #define LOG2OF10 3.3219281f 4524 // t0 = Op * LOG2OF10; 4525 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4526 getF32Constant(DAG, 0x40549a78, dl)); 4527 return getLimitedPrecisionExp2(t0, dl, DAG); 4528 } 4529 4530 // No special expansion. 4531 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4532 } 4533 4534 4535 /// ExpandPowI - Expand a llvm.powi intrinsic. 4536 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4537 SelectionDAG &DAG) { 4538 // If RHS is a constant, we can expand this out to a multiplication tree, 4539 // otherwise we end up lowering to a call to __powidf2 (for example). When 4540 // optimizing for size, we only want to do this if the expansion would produce 4541 // a small number of multiplies, otherwise we do the full expansion. 4542 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4543 // Get the exponent as a positive value. 4544 unsigned Val = RHSC->getSExtValue(); 4545 if ((int)Val < 0) Val = -Val; 4546 4547 // powi(x, 0) -> 1.0 4548 if (Val == 0) 4549 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4550 4551 const Function *F = DAG.getMachineFunction().getFunction(); 4552 if (!F->optForSize() || 4553 // If optimizing for size, don't insert too many multiplies. 4554 // This inserts up to 5 multiplies. 4555 countPopulation(Val) + Log2_32(Val) < 7) { 4556 // We use the simple binary decomposition method to generate the multiply 4557 // sequence. There are more optimal ways to do this (for example, 4558 // powi(x,15) generates one more multiply than it should), but this has 4559 // the benefit of being both really simple and much better than a libcall. 4560 SDValue Res; // Logically starts equal to 1.0 4561 SDValue CurSquare = LHS; 4562 // TODO: Intrinsics should have fast-math-flags that propagate to these 4563 // nodes. 4564 while (Val) { 4565 if (Val & 1) { 4566 if (Res.getNode()) 4567 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4568 else 4569 Res = CurSquare; // 1.0*CurSquare. 4570 } 4571 4572 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4573 CurSquare, CurSquare); 4574 Val >>= 1; 4575 } 4576 4577 // If the original was negative, invert the result, producing 1/(x*x*x). 4578 if (RHSC->getSExtValue() < 0) 4579 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4580 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4581 return Res; 4582 } 4583 } 4584 4585 // Otherwise, expand to a libcall. 4586 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4587 } 4588 4589 // getUnderlyingArgReg - Find underlying register used for a truncated or 4590 // bitcasted argument. 4591 static unsigned getUnderlyingArgReg(const SDValue &N) { 4592 switch (N.getOpcode()) { 4593 case ISD::CopyFromReg: 4594 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4595 case ISD::BITCAST: 4596 case ISD::AssertZext: 4597 case ISD::AssertSext: 4598 case ISD::TRUNCATE: 4599 return getUnderlyingArgReg(N.getOperand(0)); 4600 default: 4601 return 0; 4602 } 4603 } 4604 4605 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4606 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4607 /// At the end of instruction selection, they will be inserted to the entry BB. 4608 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4609 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4610 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4611 const Argument *Arg = dyn_cast<Argument>(V); 4612 if (!Arg) 4613 return false; 4614 4615 MachineFunction &MF = DAG.getMachineFunction(); 4616 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4617 4618 // Ignore inlined function arguments here. 4619 // 4620 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4621 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4622 return false; 4623 4624 Optional<MachineOperand> Op; 4625 // Some arguments' frame index is recorded during argument lowering. 4626 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4627 Op = MachineOperand::CreateFI(FI); 4628 4629 if (!Op && N.getNode()) { 4630 unsigned Reg = getUnderlyingArgReg(N); 4631 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4632 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4633 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4634 if (PR) 4635 Reg = PR; 4636 } 4637 if (Reg) 4638 Op = MachineOperand::CreateReg(Reg, false); 4639 } 4640 4641 if (!Op) { 4642 // Check if ValueMap has reg number. 4643 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4644 if (VMI != FuncInfo.ValueMap.end()) 4645 Op = MachineOperand::CreateReg(VMI->second, false); 4646 } 4647 4648 if (!Op && N.getNode()) 4649 // Check if frame index is available. 4650 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4651 if (FrameIndexSDNode *FINode = 4652 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4653 Op = MachineOperand::CreateFI(FINode->getIndex()); 4654 4655 if (!Op) 4656 return false; 4657 4658 assert(Variable->isValidLocationForIntrinsic(DL) && 4659 "Expected inlined-at fields to agree"); 4660 if (Op->isReg()) 4661 FuncInfo.ArgDbgValues.push_back( 4662 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4663 Op->getReg(), Offset, Variable, Expr)); 4664 else 4665 FuncInfo.ArgDbgValues.push_back( 4666 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4667 .addOperand(*Op) 4668 .addImm(Offset) 4669 .addMetadata(Variable) 4670 .addMetadata(Expr)); 4671 4672 return true; 4673 } 4674 4675 // VisualStudio defines setjmp as _setjmp 4676 #if defined(_MSC_VER) && defined(setjmp) && \ 4677 !defined(setjmp_undefined_for_msvc) 4678 # pragma push_macro("setjmp") 4679 # undef setjmp 4680 # define setjmp_undefined_for_msvc 4681 #endif 4682 4683 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4684 /// we want to emit this as a call to a named external function, return the name 4685 /// otherwise lower it and return null. 4686 const char * 4687 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4689 SDLoc sdl = getCurSDLoc(); 4690 DebugLoc dl = getCurDebugLoc(); 4691 SDValue Res; 4692 4693 switch (Intrinsic) { 4694 default: 4695 // By default, turn this into a target intrinsic node. 4696 visitTargetIntrinsic(I, Intrinsic); 4697 return nullptr; 4698 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4699 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4700 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4701 case Intrinsic::returnaddress: 4702 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4703 TLI.getPointerTy(DAG.getDataLayout()), 4704 getValue(I.getArgOperand(0)))); 4705 return nullptr; 4706 case Intrinsic::frameaddress: 4707 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4708 TLI.getPointerTy(DAG.getDataLayout()), 4709 getValue(I.getArgOperand(0)))); 4710 return nullptr; 4711 case Intrinsic::read_register: { 4712 Value *Reg = I.getArgOperand(0); 4713 SDValue Chain = getRoot(); 4714 SDValue RegName = 4715 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4716 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4717 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4718 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4719 setValue(&I, Res); 4720 DAG.setRoot(Res.getValue(1)); 4721 return nullptr; 4722 } 4723 case Intrinsic::write_register: { 4724 Value *Reg = I.getArgOperand(0); 4725 Value *RegValue = I.getArgOperand(1); 4726 SDValue Chain = getRoot(); 4727 SDValue RegName = 4728 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4729 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4730 RegName, getValue(RegValue))); 4731 return nullptr; 4732 } 4733 case Intrinsic::setjmp: 4734 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4735 case Intrinsic::longjmp: 4736 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4737 case Intrinsic::memcpy: { 4738 SDValue Op1 = getValue(I.getArgOperand(0)); 4739 SDValue Op2 = getValue(I.getArgOperand(1)); 4740 SDValue Op3 = getValue(I.getArgOperand(2)); 4741 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4742 if (!Align) 4743 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4744 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4745 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4746 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4747 false, isTC, 4748 MachinePointerInfo(I.getArgOperand(0)), 4749 MachinePointerInfo(I.getArgOperand(1))); 4750 updateDAGForMaybeTailCall(MC); 4751 return nullptr; 4752 } 4753 case Intrinsic::memset: { 4754 SDValue Op1 = getValue(I.getArgOperand(0)); 4755 SDValue Op2 = getValue(I.getArgOperand(1)); 4756 SDValue Op3 = getValue(I.getArgOperand(2)); 4757 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4758 if (!Align) 4759 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4760 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4761 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4762 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4763 isTC, MachinePointerInfo(I.getArgOperand(0))); 4764 updateDAGForMaybeTailCall(MS); 4765 return nullptr; 4766 } 4767 case Intrinsic::memmove: { 4768 SDValue Op1 = getValue(I.getArgOperand(0)); 4769 SDValue Op2 = getValue(I.getArgOperand(1)); 4770 SDValue Op3 = getValue(I.getArgOperand(2)); 4771 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4772 if (!Align) 4773 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4774 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4775 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4776 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4777 isTC, MachinePointerInfo(I.getArgOperand(0)), 4778 MachinePointerInfo(I.getArgOperand(1))); 4779 updateDAGForMaybeTailCall(MM); 4780 return nullptr; 4781 } 4782 case Intrinsic::dbg_declare: { 4783 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4784 DILocalVariable *Variable = DI.getVariable(); 4785 DIExpression *Expression = DI.getExpression(); 4786 const Value *Address = DI.getAddress(); 4787 assert(Variable && "Missing variable"); 4788 if (!Address) { 4789 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4790 return nullptr; 4791 } 4792 4793 // Check if address has undef value. 4794 if (isa<UndefValue>(Address) || 4795 (Address->use_empty() && !isa<Argument>(Address))) { 4796 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4797 return nullptr; 4798 } 4799 4800 SDValue &N = NodeMap[Address]; 4801 if (!N.getNode() && isa<Argument>(Address)) 4802 // Check unused arguments map. 4803 N = UnusedArgNodeMap[Address]; 4804 SDDbgValue *SDV; 4805 if (N.getNode()) { 4806 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4807 Address = BCI->getOperand(0); 4808 // Parameters are handled specially. 4809 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4810 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4811 if (isParameter && FINode) { 4812 // Byval parameter. We have a frame index at this point. 4813 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4814 FINode->getIndex(), 0, dl, SDNodeOrder); 4815 } else if (isa<Argument>(Address)) { 4816 // Address is an argument, so try to emit its dbg value using 4817 // virtual register info from the FuncInfo.ValueMap. 4818 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4819 N); 4820 return nullptr; 4821 } else { 4822 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4823 true, 0, dl, SDNodeOrder); 4824 } 4825 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4826 } else { 4827 // If Address is an argument then try to emit its dbg value using 4828 // virtual register info from the FuncInfo.ValueMap. 4829 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4830 N)) { 4831 // If variable is pinned by a alloca in dominating bb then 4832 // use StaticAllocaMap. 4833 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4834 if (AI->getParent() != DI.getParent()) { 4835 DenseMap<const AllocaInst*, int>::iterator SI = 4836 FuncInfo.StaticAllocaMap.find(AI); 4837 if (SI != FuncInfo.StaticAllocaMap.end()) { 4838 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4839 0, dl, SDNodeOrder); 4840 DAG.AddDbgValue(SDV, nullptr, false); 4841 return nullptr; 4842 } 4843 } 4844 } 4845 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4846 } 4847 } 4848 return nullptr; 4849 } 4850 case Intrinsic::dbg_value: { 4851 const DbgValueInst &DI = cast<DbgValueInst>(I); 4852 assert(DI.getVariable() && "Missing variable"); 4853 4854 DILocalVariable *Variable = DI.getVariable(); 4855 DIExpression *Expression = DI.getExpression(); 4856 uint64_t Offset = DI.getOffset(); 4857 const Value *V = DI.getValue(); 4858 if (!V) 4859 return nullptr; 4860 4861 SDDbgValue *SDV; 4862 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4863 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4864 SDNodeOrder); 4865 DAG.AddDbgValue(SDV, nullptr, false); 4866 } else { 4867 // Do not use getValue() in here; we don't want to generate code at 4868 // this point if it hasn't been done yet. 4869 SDValue N = NodeMap[V]; 4870 if (!N.getNode() && isa<Argument>(V)) 4871 // Check unused arguments map. 4872 N = UnusedArgNodeMap[V]; 4873 if (N.getNode()) { 4874 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4875 false, N)) { 4876 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4877 false, Offset, dl, SDNodeOrder); 4878 DAG.AddDbgValue(SDV, N.getNode(), false); 4879 } 4880 } else if (!V->use_empty() ) { 4881 // Do not call getValue(V) yet, as we don't want to generate code. 4882 // Remember it for later. 4883 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4884 DanglingDebugInfoMap[V] = DDI; 4885 } else { 4886 // We may expand this to cover more cases. One case where we have no 4887 // data available is an unreferenced parameter. 4888 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4889 } 4890 } 4891 4892 // Build a debug info table entry. 4893 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4894 V = BCI->getOperand(0); 4895 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4896 // Don't handle byval struct arguments or VLAs, for example. 4897 if (!AI) { 4898 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4899 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4900 return nullptr; 4901 } 4902 DenseMap<const AllocaInst*, int>::iterator SI = 4903 FuncInfo.StaticAllocaMap.find(AI); 4904 if (SI == FuncInfo.StaticAllocaMap.end()) 4905 return nullptr; // VLAs. 4906 return nullptr; 4907 } 4908 4909 case Intrinsic::eh_typeid_for: { 4910 // Find the type id for the given typeinfo. 4911 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4912 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4913 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4914 setValue(&I, Res); 4915 return nullptr; 4916 } 4917 4918 case Intrinsic::eh_return_i32: 4919 case Intrinsic::eh_return_i64: 4920 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4921 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4922 MVT::Other, 4923 getControlRoot(), 4924 getValue(I.getArgOperand(0)), 4925 getValue(I.getArgOperand(1)))); 4926 return nullptr; 4927 case Intrinsic::eh_unwind_init: 4928 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4929 return nullptr; 4930 case Intrinsic::eh_dwarf_cfa: { 4931 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4932 TLI.getPointerTy(DAG.getDataLayout())); 4933 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4934 CfaArg.getValueType(), 4935 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4936 CfaArg.getValueType()), 4937 CfaArg); 4938 SDValue FA = DAG.getNode( 4939 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4940 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4941 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4942 FA, Offset)); 4943 return nullptr; 4944 } 4945 case Intrinsic::eh_sjlj_callsite: { 4946 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4947 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4948 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4949 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4950 4951 MMI.setCurrentCallSite(CI->getZExtValue()); 4952 return nullptr; 4953 } 4954 case Intrinsic::eh_sjlj_functioncontext: { 4955 // Get and store the index of the function context. 4956 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4957 AllocaInst *FnCtx = 4958 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4959 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4960 MFI->setFunctionContextIndex(FI); 4961 return nullptr; 4962 } 4963 case Intrinsic::eh_sjlj_setjmp: { 4964 SDValue Ops[2]; 4965 Ops[0] = getRoot(); 4966 Ops[1] = getValue(I.getArgOperand(0)); 4967 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4968 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4969 setValue(&I, Op.getValue(0)); 4970 DAG.setRoot(Op.getValue(1)); 4971 return nullptr; 4972 } 4973 case Intrinsic::eh_sjlj_longjmp: { 4974 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4975 getRoot(), getValue(I.getArgOperand(0)))); 4976 return nullptr; 4977 } 4978 case Intrinsic::eh_sjlj_setup_dispatch: { 4979 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4980 getRoot())); 4981 return nullptr; 4982 } 4983 4984 case Intrinsic::masked_gather: 4985 visitMaskedGather(I); 4986 return nullptr; 4987 case Intrinsic::masked_load: 4988 visitMaskedLoad(I); 4989 return nullptr; 4990 case Intrinsic::masked_scatter: 4991 visitMaskedScatter(I); 4992 return nullptr; 4993 case Intrinsic::masked_store: 4994 visitMaskedStore(I); 4995 return nullptr; 4996 case Intrinsic::x86_mmx_pslli_w: 4997 case Intrinsic::x86_mmx_pslli_d: 4998 case Intrinsic::x86_mmx_pslli_q: 4999 case Intrinsic::x86_mmx_psrli_w: 5000 case Intrinsic::x86_mmx_psrli_d: 5001 case Intrinsic::x86_mmx_psrli_q: 5002 case Intrinsic::x86_mmx_psrai_w: 5003 case Intrinsic::x86_mmx_psrai_d: { 5004 SDValue ShAmt = getValue(I.getArgOperand(1)); 5005 if (isa<ConstantSDNode>(ShAmt)) { 5006 visitTargetIntrinsic(I, Intrinsic); 5007 return nullptr; 5008 } 5009 unsigned NewIntrinsic = 0; 5010 EVT ShAmtVT = MVT::v2i32; 5011 switch (Intrinsic) { 5012 case Intrinsic::x86_mmx_pslli_w: 5013 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5014 break; 5015 case Intrinsic::x86_mmx_pslli_d: 5016 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5017 break; 5018 case Intrinsic::x86_mmx_pslli_q: 5019 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5020 break; 5021 case Intrinsic::x86_mmx_psrli_w: 5022 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5023 break; 5024 case Intrinsic::x86_mmx_psrli_d: 5025 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5026 break; 5027 case Intrinsic::x86_mmx_psrli_q: 5028 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5029 break; 5030 case Intrinsic::x86_mmx_psrai_w: 5031 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5032 break; 5033 case Intrinsic::x86_mmx_psrai_d: 5034 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5035 break; 5036 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5037 } 5038 5039 // The vector shift intrinsics with scalars uses 32b shift amounts but 5040 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5041 // to be zero. 5042 // We must do this early because v2i32 is not a legal type. 5043 SDValue ShOps[2]; 5044 ShOps[0] = ShAmt; 5045 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5046 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5047 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5048 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5049 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5050 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5051 getValue(I.getArgOperand(0)), ShAmt); 5052 setValue(&I, Res); 5053 return nullptr; 5054 } 5055 case Intrinsic::convertff: 5056 case Intrinsic::convertfsi: 5057 case Intrinsic::convertfui: 5058 case Intrinsic::convertsif: 5059 case Intrinsic::convertuif: 5060 case Intrinsic::convertss: 5061 case Intrinsic::convertsu: 5062 case Intrinsic::convertus: 5063 case Intrinsic::convertuu: { 5064 ISD::CvtCode Code = ISD::CVT_INVALID; 5065 switch (Intrinsic) { 5066 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5067 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5068 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5069 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5070 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5071 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5072 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5073 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5074 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5075 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5076 } 5077 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5078 const Value *Op1 = I.getArgOperand(0); 5079 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5080 DAG.getValueType(DestVT), 5081 DAG.getValueType(getValue(Op1).getValueType()), 5082 getValue(I.getArgOperand(1)), 5083 getValue(I.getArgOperand(2)), 5084 Code); 5085 setValue(&I, Res); 5086 return nullptr; 5087 } 5088 case Intrinsic::powi: 5089 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5090 getValue(I.getArgOperand(1)), DAG)); 5091 return nullptr; 5092 case Intrinsic::log: 5093 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5094 return nullptr; 5095 case Intrinsic::log2: 5096 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5097 return nullptr; 5098 case Intrinsic::log10: 5099 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5100 return nullptr; 5101 case Intrinsic::exp: 5102 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5103 return nullptr; 5104 case Intrinsic::exp2: 5105 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5106 return nullptr; 5107 case Intrinsic::pow: 5108 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5109 getValue(I.getArgOperand(1)), DAG, TLI)); 5110 return nullptr; 5111 case Intrinsic::sqrt: 5112 case Intrinsic::fabs: 5113 case Intrinsic::sin: 5114 case Intrinsic::cos: 5115 case Intrinsic::floor: 5116 case Intrinsic::ceil: 5117 case Intrinsic::trunc: 5118 case Intrinsic::rint: 5119 case Intrinsic::nearbyint: 5120 case Intrinsic::round: { 5121 unsigned Opcode; 5122 switch (Intrinsic) { 5123 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5124 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5125 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5126 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5127 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5128 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5129 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5130 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5131 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5132 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5133 case Intrinsic::round: Opcode = ISD::FROUND; break; 5134 } 5135 5136 setValue(&I, DAG.getNode(Opcode, sdl, 5137 getValue(I.getArgOperand(0)).getValueType(), 5138 getValue(I.getArgOperand(0)))); 5139 return nullptr; 5140 } 5141 case Intrinsic::minnum: 5142 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5143 getValue(I.getArgOperand(0)).getValueType(), 5144 getValue(I.getArgOperand(0)), 5145 getValue(I.getArgOperand(1)))); 5146 return nullptr; 5147 case Intrinsic::maxnum: 5148 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5149 getValue(I.getArgOperand(0)).getValueType(), 5150 getValue(I.getArgOperand(0)), 5151 getValue(I.getArgOperand(1)))); 5152 return nullptr; 5153 case Intrinsic::copysign: 5154 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5155 getValue(I.getArgOperand(0)).getValueType(), 5156 getValue(I.getArgOperand(0)), 5157 getValue(I.getArgOperand(1)))); 5158 return nullptr; 5159 case Intrinsic::fma: 5160 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5161 getValue(I.getArgOperand(0)).getValueType(), 5162 getValue(I.getArgOperand(0)), 5163 getValue(I.getArgOperand(1)), 5164 getValue(I.getArgOperand(2)))); 5165 return nullptr; 5166 case Intrinsic::fmuladd: { 5167 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5168 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5169 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5170 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5171 getValue(I.getArgOperand(0)).getValueType(), 5172 getValue(I.getArgOperand(0)), 5173 getValue(I.getArgOperand(1)), 5174 getValue(I.getArgOperand(2)))); 5175 } else { 5176 // TODO: Intrinsic calls should have fast-math-flags. 5177 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5178 getValue(I.getArgOperand(0)).getValueType(), 5179 getValue(I.getArgOperand(0)), 5180 getValue(I.getArgOperand(1))); 5181 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5182 getValue(I.getArgOperand(0)).getValueType(), 5183 Mul, 5184 getValue(I.getArgOperand(2))); 5185 setValue(&I, Add); 5186 } 5187 return nullptr; 5188 } 5189 case Intrinsic::convert_to_fp16: 5190 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5191 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5192 getValue(I.getArgOperand(0)), 5193 DAG.getTargetConstant(0, sdl, 5194 MVT::i32)))); 5195 return nullptr; 5196 case Intrinsic::convert_from_fp16: 5197 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5198 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5199 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5200 getValue(I.getArgOperand(0))))); 5201 return nullptr; 5202 case Intrinsic::pcmarker: { 5203 SDValue Tmp = getValue(I.getArgOperand(0)); 5204 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5205 return nullptr; 5206 } 5207 case Intrinsic::readcyclecounter: { 5208 SDValue Op = getRoot(); 5209 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5210 DAG.getVTList(MVT::i64, MVT::Other), Op); 5211 setValue(&I, Res); 5212 DAG.setRoot(Res.getValue(1)); 5213 return nullptr; 5214 } 5215 case Intrinsic::bitreverse: 5216 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5217 getValue(I.getArgOperand(0)).getValueType(), 5218 getValue(I.getArgOperand(0)))); 5219 return nullptr; 5220 case Intrinsic::bswap: 5221 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5222 getValue(I.getArgOperand(0)).getValueType(), 5223 getValue(I.getArgOperand(0)))); 5224 return nullptr; 5225 case Intrinsic::cttz: { 5226 SDValue Arg = getValue(I.getArgOperand(0)); 5227 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5228 EVT Ty = Arg.getValueType(); 5229 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5230 sdl, Ty, Arg)); 5231 return nullptr; 5232 } 5233 case Intrinsic::ctlz: { 5234 SDValue Arg = getValue(I.getArgOperand(0)); 5235 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5236 EVT Ty = Arg.getValueType(); 5237 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5238 sdl, Ty, Arg)); 5239 return nullptr; 5240 } 5241 case Intrinsic::ctpop: { 5242 SDValue Arg = getValue(I.getArgOperand(0)); 5243 EVT Ty = Arg.getValueType(); 5244 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5245 return nullptr; 5246 } 5247 case Intrinsic::stacksave: { 5248 SDValue Op = getRoot(); 5249 Res = DAG.getNode( 5250 ISD::STACKSAVE, sdl, 5251 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5252 setValue(&I, Res); 5253 DAG.setRoot(Res.getValue(1)); 5254 return nullptr; 5255 } 5256 case Intrinsic::stackrestore: { 5257 Res = getValue(I.getArgOperand(0)); 5258 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5259 return nullptr; 5260 } 5261 case Intrinsic::get_dynamic_area_offset: { 5262 SDValue Op = getRoot(); 5263 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5264 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5265 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5266 // target. 5267 if (PtrTy != ResTy) 5268 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5269 " intrinsic!"); 5270 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5271 Op); 5272 DAG.setRoot(Op); 5273 setValue(&I, Res); 5274 return nullptr; 5275 } 5276 case Intrinsic::stackprotector: { 5277 // Emit code into the DAG to store the stack guard onto the stack. 5278 MachineFunction &MF = DAG.getMachineFunction(); 5279 MachineFrameInfo *MFI = MF.getFrameInfo(); 5280 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5281 SDValue Src, Chain = getRoot(); 5282 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5283 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5284 5285 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5286 // global variable __stack_chk_guard. 5287 if (!GV) 5288 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5289 if (BC->getOpcode() == Instruction::BitCast) 5290 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5291 5292 if (GV && TLI.useLoadStackGuardNode()) { 5293 // Emit a LOAD_STACK_GUARD node. 5294 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5295 sdl, PtrTy, Chain); 5296 MachinePointerInfo MPInfo(GV); 5297 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5298 unsigned Flags = MachineMemOperand::MOLoad | 5299 MachineMemOperand::MOInvariant; 5300 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5301 PtrTy.getSizeInBits() / 8, 5302 DAG.getEVTAlignment(PtrTy)); 5303 Node->setMemRefs(MemRefs, MemRefs + 1); 5304 5305 // Copy the guard value to a virtual register so that it can be 5306 // retrieved in the epilogue. 5307 Src = SDValue(Node, 0); 5308 const TargetRegisterClass *RC = 5309 TLI.getRegClassFor(Src.getSimpleValueType()); 5310 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5311 5312 SPDescriptor.setGuardReg(Reg); 5313 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5314 } else { 5315 Src = getValue(I.getArgOperand(0)); // The guard's value. 5316 } 5317 5318 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5319 5320 int FI = FuncInfo.StaticAllocaMap[Slot]; 5321 MFI->setStackProtectorIndex(FI); 5322 5323 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5324 5325 // Store the stack protector onto the stack. 5326 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5327 DAG.getMachineFunction(), FI), 5328 true, false, 0); 5329 setValue(&I, Res); 5330 DAG.setRoot(Res); 5331 return nullptr; 5332 } 5333 case Intrinsic::objectsize: { 5334 // If we don't know by now, we're never going to know. 5335 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5336 5337 assert(CI && "Non-constant type in __builtin_object_size?"); 5338 5339 SDValue Arg = getValue(I.getCalledValue()); 5340 EVT Ty = Arg.getValueType(); 5341 5342 if (CI->isZero()) 5343 Res = DAG.getConstant(-1ULL, sdl, Ty); 5344 else 5345 Res = DAG.getConstant(0, sdl, Ty); 5346 5347 setValue(&I, Res); 5348 return nullptr; 5349 } 5350 case Intrinsic::annotation: 5351 case Intrinsic::ptr_annotation: 5352 // Drop the intrinsic, but forward the value 5353 setValue(&I, getValue(I.getOperand(0))); 5354 return nullptr; 5355 case Intrinsic::assume: 5356 case Intrinsic::var_annotation: 5357 // Discard annotate attributes and assumptions 5358 return nullptr; 5359 5360 case Intrinsic::init_trampoline: { 5361 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5362 5363 SDValue Ops[6]; 5364 Ops[0] = getRoot(); 5365 Ops[1] = getValue(I.getArgOperand(0)); 5366 Ops[2] = getValue(I.getArgOperand(1)); 5367 Ops[3] = getValue(I.getArgOperand(2)); 5368 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5369 Ops[5] = DAG.getSrcValue(F); 5370 5371 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5372 5373 DAG.setRoot(Res); 5374 return nullptr; 5375 } 5376 case Intrinsic::adjust_trampoline: { 5377 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5378 TLI.getPointerTy(DAG.getDataLayout()), 5379 getValue(I.getArgOperand(0)))); 5380 return nullptr; 5381 } 5382 case Intrinsic::gcroot: { 5383 MachineFunction &MF = DAG.getMachineFunction(); 5384 const Function *F = MF.getFunction(); 5385 (void)F; 5386 assert(F->hasGC() && 5387 "only valid in functions with gc specified, enforced by Verifier"); 5388 assert(GFI && "implied by previous"); 5389 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5390 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5391 5392 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5393 GFI->addStackRoot(FI->getIndex(), TypeMap); 5394 return nullptr; 5395 } 5396 case Intrinsic::gcread: 5397 case Intrinsic::gcwrite: 5398 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5399 case Intrinsic::flt_rounds: 5400 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5401 return nullptr; 5402 5403 case Intrinsic::expect: { 5404 // Just replace __builtin_expect(exp, c) with EXP. 5405 setValue(&I, getValue(I.getArgOperand(0))); 5406 return nullptr; 5407 } 5408 5409 case Intrinsic::debugtrap: 5410 case Intrinsic::trap: { 5411 StringRef TrapFuncName = 5412 I.getAttributes() 5413 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5414 .getValueAsString(); 5415 if (TrapFuncName.empty()) { 5416 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5417 ISD::TRAP : ISD::DEBUGTRAP; 5418 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5419 return nullptr; 5420 } 5421 TargetLowering::ArgListTy Args; 5422 5423 TargetLowering::CallLoweringInfo CLI(DAG); 5424 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5425 CallingConv::C, I.getType(), 5426 DAG.getExternalSymbol(TrapFuncName.data(), 5427 TLI.getPointerTy(DAG.getDataLayout())), 5428 std::move(Args), 0); 5429 5430 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5431 DAG.setRoot(Result.second); 5432 return nullptr; 5433 } 5434 5435 case Intrinsic::uadd_with_overflow: 5436 case Intrinsic::sadd_with_overflow: 5437 case Intrinsic::usub_with_overflow: 5438 case Intrinsic::ssub_with_overflow: 5439 case Intrinsic::umul_with_overflow: 5440 case Intrinsic::smul_with_overflow: { 5441 ISD::NodeType Op; 5442 switch (Intrinsic) { 5443 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5444 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5445 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5446 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5447 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5448 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5449 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5450 } 5451 SDValue Op1 = getValue(I.getArgOperand(0)); 5452 SDValue Op2 = getValue(I.getArgOperand(1)); 5453 5454 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5455 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5456 return nullptr; 5457 } 5458 case Intrinsic::prefetch: { 5459 SDValue Ops[5]; 5460 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5461 Ops[0] = getRoot(); 5462 Ops[1] = getValue(I.getArgOperand(0)); 5463 Ops[2] = getValue(I.getArgOperand(1)); 5464 Ops[3] = getValue(I.getArgOperand(2)); 5465 Ops[4] = getValue(I.getArgOperand(3)); 5466 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5467 DAG.getVTList(MVT::Other), Ops, 5468 EVT::getIntegerVT(*Context, 8), 5469 MachinePointerInfo(I.getArgOperand(0)), 5470 0, /* align */ 5471 false, /* volatile */ 5472 rw==0, /* read */ 5473 rw==1)); /* write */ 5474 return nullptr; 5475 } 5476 case Intrinsic::lifetime_start: 5477 case Intrinsic::lifetime_end: { 5478 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5479 // Stack coloring is not enabled in O0, discard region information. 5480 if (TM.getOptLevel() == CodeGenOpt::None) 5481 return nullptr; 5482 5483 SmallVector<Value *, 4> Allocas; 5484 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5485 5486 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5487 E = Allocas.end(); Object != E; ++Object) { 5488 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5489 5490 // Could not find an Alloca. 5491 if (!LifetimeObject) 5492 continue; 5493 5494 // First check that the Alloca is static, otherwise it won't have a 5495 // valid frame index. 5496 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5497 if (SI == FuncInfo.StaticAllocaMap.end()) 5498 return nullptr; 5499 5500 int FI = SI->second; 5501 5502 SDValue Ops[2]; 5503 Ops[0] = getRoot(); 5504 Ops[1] = 5505 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5506 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5507 5508 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5509 DAG.setRoot(Res); 5510 } 5511 return nullptr; 5512 } 5513 case Intrinsic::invariant_start: 5514 // Discard region information. 5515 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5516 return nullptr; 5517 case Intrinsic::invariant_end: 5518 // Discard region information. 5519 return nullptr; 5520 case Intrinsic::stackprotectorcheck: { 5521 // Do not actually emit anything for this basic block. Instead we initialize 5522 // the stack protector descriptor and export the guard variable so we can 5523 // access it in FinishBasicBlock. 5524 const BasicBlock *BB = I.getParent(); 5525 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5526 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5527 5528 // Flush our exports since we are going to process a terminator. 5529 (void)getControlRoot(); 5530 return nullptr; 5531 } 5532 case Intrinsic::clear_cache: 5533 return TLI.getClearCacheBuiltinName(); 5534 case Intrinsic::donothing: 5535 // ignore 5536 return nullptr; 5537 case Intrinsic::experimental_stackmap: { 5538 visitStackmap(I); 5539 return nullptr; 5540 } 5541 case Intrinsic::experimental_patchpoint_void: 5542 case Intrinsic::experimental_patchpoint_i64: { 5543 visitPatchpoint(&I); 5544 return nullptr; 5545 } 5546 case Intrinsic::experimental_gc_statepoint: { 5547 LowerStatepoint(ImmutableStatepoint(&I)); 5548 return nullptr; 5549 } 5550 case Intrinsic::experimental_gc_result: { 5551 visitGCResult(I); 5552 return nullptr; 5553 } 5554 case Intrinsic::experimental_gc_relocate: { 5555 visitGCRelocate(cast<GCRelocateInst>(I)); 5556 return nullptr; 5557 } 5558 case Intrinsic::instrprof_increment: 5559 llvm_unreachable("instrprof failed to lower an increment"); 5560 case Intrinsic::instrprof_value_profile: 5561 llvm_unreachable("instrprof failed to lower a value profiling call"); 5562 case Intrinsic::localescape: { 5563 MachineFunction &MF = DAG.getMachineFunction(); 5564 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5565 5566 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5567 // is the same on all targets. 5568 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5569 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5570 if (isa<ConstantPointerNull>(Arg)) 5571 continue; // Skip null pointers. They represent a hole in index space. 5572 AllocaInst *Slot = cast<AllocaInst>(Arg); 5573 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5574 "can only escape static allocas"); 5575 int FI = FuncInfo.StaticAllocaMap[Slot]; 5576 MCSymbol *FrameAllocSym = 5577 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5578 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5579 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5580 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5581 .addSym(FrameAllocSym) 5582 .addFrameIndex(FI); 5583 } 5584 5585 return nullptr; 5586 } 5587 5588 case Intrinsic::localrecover: { 5589 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5590 MachineFunction &MF = DAG.getMachineFunction(); 5591 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5592 5593 // Get the symbol that defines the frame offset. 5594 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5595 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5596 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5597 MCSymbol *FrameAllocSym = 5598 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5599 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5600 5601 // Create a MCSymbol for the label to avoid any target lowering 5602 // that would make this PC relative. 5603 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5604 SDValue OffsetVal = 5605 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5606 5607 // Add the offset to the FP. 5608 Value *FP = I.getArgOperand(1); 5609 SDValue FPVal = getValue(FP); 5610 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5611 setValue(&I, Add); 5612 5613 return nullptr; 5614 } 5615 5616 case Intrinsic::eh_exceptionpointer: 5617 case Intrinsic::eh_exceptioncode: { 5618 // Get the exception pointer vreg, copy from it, and resize it to fit. 5619 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5620 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5621 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5622 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5623 SDValue N = 5624 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5625 if (Intrinsic == Intrinsic::eh_exceptioncode) 5626 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5627 setValue(&I, N); 5628 return nullptr; 5629 } 5630 5631 case Intrinsic::experimental_deoptimize: 5632 LowerDeoptimizeCall(&I); 5633 return nullptr; 5634 } 5635 } 5636 5637 std::pair<SDValue, SDValue> 5638 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5639 const BasicBlock *EHPadBB) { 5640 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5641 MCSymbol *BeginLabel = nullptr; 5642 5643 if (EHPadBB) { 5644 // Insert a label before the invoke call to mark the try range. This can be 5645 // used to detect deletion of the invoke via the MachineModuleInfo. 5646 BeginLabel = MMI.getContext().createTempSymbol(); 5647 5648 // For SjLj, keep track of which landing pads go with which invokes 5649 // so as to maintain the ordering of pads in the LSDA. 5650 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5651 if (CallSiteIndex) { 5652 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5653 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5654 5655 // Now that the call site is handled, stop tracking it. 5656 MMI.setCurrentCallSite(0); 5657 } 5658 5659 // Both PendingLoads and PendingExports must be flushed here; 5660 // this call might not return. 5661 (void)getRoot(); 5662 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5663 5664 CLI.setChain(getRoot()); 5665 } 5666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5667 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5668 5669 assert((CLI.IsTailCall || Result.second.getNode()) && 5670 "Non-null chain expected with non-tail call!"); 5671 assert((Result.second.getNode() || !Result.first.getNode()) && 5672 "Null value expected with tail call!"); 5673 5674 if (!Result.second.getNode()) { 5675 // As a special case, a null chain means that a tail call has been emitted 5676 // and the DAG root is already updated. 5677 HasTailCall = true; 5678 5679 // Since there's no actual continuation from this block, nothing can be 5680 // relying on us setting vregs for them. 5681 PendingExports.clear(); 5682 } else { 5683 DAG.setRoot(Result.second); 5684 } 5685 5686 if (EHPadBB) { 5687 // Insert a label at the end of the invoke call to mark the try range. This 5688 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5689 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5690 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5691 5692 // Inform MachineModuleInfo of range. 5693 if (MMI.hasEHFunclets()) { 5694 assert(CLI.CS); 5695 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5696 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5697 BeginLabel, EndLabel); 5698 } else { 5699 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5700 } 5701 } 5702 5703 return Result; 5704 } 5705 5706 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5707 bool isTailCall, 5708 const BasicBlock *EHPadBB) { 5709 auto &DL = DAG.getDataLayout(); 5710 FunctionType *FTy = CS.getFunctionType(); 5711 Type *RetTy = CS.getType(); 5712 5713 TargetLowering::ArgListTy Args; 5714 TargetLowering::ArgListEntry Entry; 5715 Args.reserve(CS.arg_size()); 5716 5717 const Value *SwiftErrorVal = nullptr; 5718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5719 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5720 i != e; ++i) { 5721 const Value *V = *i; 5722 5723 // Skip empty types 5724 if (V->getType()->isEmptyTy()) 5725 continue; 5726 5727 SDValue ArgNode = getValue(V); 5728 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5729 5730 // Skip the first return-type Attribute to get to params. 5731 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5732 5733 // Use swifterror virtual register as input to the call. 5734 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5735 SwiftErrorVal = V; 5736 // We find the virtual register for the actual swifterror argument. 5737 // Instead of using the Value, we use the virtual register instead. 5738 Entry.Node = DAG.getRegister( 5739 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V), 5740 EVT(TLI.getPointerTy(DL))); 5741 } 5742 5743 Args.push_back(Entry); 5744 5745 // If we have an explicit sret argument that is an Instruction, (i.e., it 5746 // might point to function-local memory), we can't meaningfully tail-call. 5747 if (Entry.isSRet && isa<Instruction>(V)) 5748 isTailCall = false; 5749 } 5750 5751 // Check if target-independent constraints permit a tail call here. 5752 // Target-dependent constraints are checked within TLI->LowerCallTo. 5753 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5754 isTailCall = false; 5755 5756 TargetLowering::CallLoweringInfo CLI(DAG); 5757 CLI.setDebugLoc(getCurSDLoc()) 5758 .setChain(getRoot()) 5759 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5760 .setTailCall(isTailCall) 5761 .setConvergent(CS.isConvergent()); 5762 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5763 5764 if (Result.first.getNode()) { 5765 const Instruction *Inst = CS.getInstruction(); 5766 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5767 setValue(Inst, Result.first); 5768 } 5769 5770 // The last element of CLI.InVals has the SDValue for swifterror return. 5771 // Here we copy it to a virtual register and update SwiftErrorMap for 5772 // book-keeping. 5773 if (SwiftErrorVal && TLI.supportSwiftError()) { 5774 // Get the last element of InVals. 5775 SDValue Src = CLI.InVals.back(); 5776 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5777 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5778 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5779 // We update the virtual register for the actual swifterror argument. 5780 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5781 DAG.setRoot(CopyNode); 5782 } 5783 } 5784 5785 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5786 /// value is equal or not-equal to zero. 5787 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5788 for (const User *U : V->users()) { 5789 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5790 if (IC->isEquality()) 5791 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5792 if (C->isNullValue()) 5793 continue; 5794 // Unknown instruction. 5795 return false; 5796 } 5797 return true; 5798 } 5799 5800 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5801 Type *LoadTy, 5802 SelectionDAGBuilder &Builder) { 5803 5804 // Check to see if this load can be trivially constant folded, e.g. if the 5805 // input is from a string literal. 5806 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5807 // Cast pointer to the type we really want to load. 5808 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5809 PointerType::getUnqual(LoadTy)); 5810 5811 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5812 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5813 return Builder.getValue(LoadCst); 5814 } 5815 5816 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5817 // still constant memory, the input chain can be the entry node. 5818 SDValue Root; 5819 bool ConstantMemory = false; 5820 5821 // Do not serialize (non-volatile) loads of constant memory with anything. 5822 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5823 Root = Builder.DAG.getEntryNode(); 5824 ConstantMemory = true; 5825 } else { 5826 // Do not serialize non-volatile loads against each other. 5827 Root = Builder.DAG.getRoot(); 5828 } 5829 5830 SDValue Ptr = Builder.getValue(PtrVal); 5831 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5832 Ptr, MachinePointerInfo(PtrVal), 5833 false /*volatile*/, 5834 false /*nontemporal*/, 5835 false /*isinvariant*/, 1 /* align=1 */); 5836 5837 if (!ConstantMemory) 5838 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5839 return LoadVal; 5840 } 5841 5842 /// processIntegerCallValue - Record the value for an instruction that 5843 /// produces an integer result, converting the type where necessary. 5844 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5845 SDValue Value, 5846 bool IsSigned) { 5847 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5848 I.getType(), true); 5849 if (IsSigned) 5850 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5851 else 5852 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5853 setValue(&I, Value); 5854 } 5855 5856 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5857 /// If so, return true and lower it, otherwise return false and it will be 5858 /// lowered like a normal call. 5859 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5860 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5861 if (I.getNumArgOperands() != 3) 5862 return false; 5863 5864 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5865 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5866 !I.getArgOperand(2)->getType()->isIntegerTy() || 5867 !I.getType()->isIntegerTy()) 5868 return false; 5869 5870 const Value *Size = I.getArgOperand(2); 5871 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5872 if (CSize && CSize->getZExtValue() == 0) { 5873 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5874 I.getType(), true); 5875 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5876 return true; 5877 } 5878 5879 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5880 std::pair<SDValue, SDValue> Res = 5881 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5882 getValue(LHS), getValue(RHS), getValue(Size), 5883 MachinePointerInfo(LHS), 5884 MachinePointerInfo(RHS)); 5885 if (Res.first.getNode()) { 5886 processIntegerCallValue(I, Res.first, true); 5887 PendingLoads.push_back(Res.second); 5888 return true; 5889 } 5890 5891 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5892 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5893 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5894 bool ActuallyDoIt = true; 5895 MVT LoadVT; 5896 Type *LoadTy; 5897 switch (CSize->getZExtValue()) { 5898 default: 5899 LoadVT = MVT::Other; 5900 LoadTy = nullptr; 5901 ActuallyDoIt = false; 5902 break; 5903 case 2: 5904 LoadVT = MVT::i16; 5905 LoadTy = Type::getInt16Ty(CSize->getContext()); 5906 break; 5907 case 4: 5908 LoadVT = MVT::i32; 5909 LoadTy = Type::getInt32Ty(CSize->getContext()); 5910 break; 5911 case 8: 5912 LoadVT = MVT::i64; 5913 LoadTy = Type::getInt64Ty(CSize->getContext()); 5914 break; 5915 /* 5916 case 16: 5917 LoadVT = MVT::v4i32; 5918 LoadTy = Type::getInt32Ty(CSize->getContext()); 5919 LoadTy = VectorType::get(LoadTy, 4); 5920 break; 5921 */ 5922 } 5923 5924 // This turns into unaligned loads. We only do this if the target natively 5925 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5926 // we'll only produce a small number of byte loads. 5927 5928 // Require that we can find a legal MVT, and only do this if the target 5929 // supports unaligned loads of that type. Expanding into byte loads would 5930 // bloat the code. 5931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5932 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5933 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5934 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5935 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5936 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5937 // TODO: Check alignment of src and dest ptrs. 5938 if (!TLI.isTypeLegal(LoadVT) || 5939 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5940 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5941 ActuallyDoIt = false; 5942 } 5943 5944 if (ActuallyDoIt) { 5945 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5946 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5947 5948 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5949 ISD::SETNE); 5950 processIntegerCallValue(I, Res, false); 5951 return true; 5952 } 5953 } 5954 5955 5956 return false; 5957 } 5958 5959 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5960 /// form. If so, return true and lower it, otherwise return false and it 5961 /// will be lowered like a normal call. 5962 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5963 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5964 if (I.getNumArgOperands() != 3) 5965 return false; 5966 5967 const Value *Src = I.getArgOperand(0); 5968 const Value *Char = I.getArgOperand(1); 5969 const Value *Length = I.getArgOperand(2); 5970 if (!Src->getType()->isPointerTy() || 5971 !Char->getType()->isIntegerTy() || 5972 !Length->getType()->isIntegerTy() || 5973 !I.getType()->isPointerTy()) 5974 return false; 5975 5976 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5977 std::pair<SDValue, SDValue> Res = 5978 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5979 getValue(Src), getValue(Char), getValue(Length), 5980 MachinePointerInfo(Src)); 5981 if (Res.first.getNode()) { 5982 setValue(&I, Res.first); 5983 PendingLoads.push_back(Res.second); 5984 return true; 5985 } 5986 5987 return false; 5988 } 5989 5990 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5991 /// optimized form. If so, return true and lower it, otherwise return false 5992 /// and it will be lowered like a normal call. 5993 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5994 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5995 if (I.getNumArgOperands() != 2) 5996 return false; 5997 5998 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5999 if (!Arg0->getType()->isPointerTy() || 6000 !Arg1->getType()->isPointerTy() || 6001 !I.getType()->isPointerTy()) 6002 return false; 6003 6004 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6005 std::pair<SDValue, SDValue> Res = 6006 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6007 getValue(Arg0), getValue(Arg1), 6008 MachinePointerInfo(Arg0), 6009 MachinePointerInfo(Arg1), isStpcpy); 6010 if (Res.first.getNode()) { 6011 setValue(&I, Res.first); 6012 DAG.setRoot(Res.second); 6013 return true; 6014 } 6015 6016 return false; 6017 } 6018 6019 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6020 /// If so, return true and lower it, otherwise return false and it will be 6021 /// lowered like a normal call. 6022 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6023 // Verify that the prototype makes sense. int strcmp(void*,void*) 6024 if (I.getNumArgOperands() != 2) 6025 return false; 6026 6027 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6028 if (!Arg0->getType()->isPointerTy() || 6029 !Arg1->getType()->isPointerTy() || 6030 !I.getType()->isIntegerTy()) 6031 return false; 6032 6033 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6034 std::pair<SDValue, SDValue> Res = 6035 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6036 getValue(Arg0), getValue(Arg1), 6037 MachinePointerInfo(Arg0), 6038 MachinePointerInfo(Arg1)); 6039 if (Res.first.getNode()) { 6040 processIntegerCallValue(I, Res.first, true); 6041 PendingLoads.push_back(Res.second); 6042 return true; 6043 } 6044 6045 return false; 6046 } 6047 6048 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6049 /// form. If so, return true and lower it, otherwise return false and it 6050 /// will be lowered like a normal call. 6051 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6052 // Verify that the prototype makes sense. size_t strlen(char *) 6053 if (I.getNumArgOperands() != 1) 6054 return false; 6055 6056 const Value *Arg0 = I.getArgOperand(0); 6057 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6058 return false; 6059 6060 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6061 std::pair<SDValue, SDValue> Res = 6062 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6063 getValue(Arg0), MachinePointerInfo(Arg0)); 6064 if (Res.first.getNode()) { 6065 processIntegerCallValue(I, Res.first, false); 6066 PendingLoads.push_back(Res.second); 6067 return true; 6068 } 6069 6070 return false; 6071 } 6072 6073 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6074 /// form. If so, return true and lower it, otherwise return false and it 6075 /// will be lowered like a normal call. 6076 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6077 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6078 if (I.getNumArgOperands() != 2) 6079 return false; 6080 6081 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6082 if (!Arg0->getType()->isPointerTy() || 6083 !Arg1->getType()->isIntegerTy() || 6084 !I.getType()->isIntegerTy()) 6085 return false; 6086 6087 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6088 std::pair<SDValue, SDValue> Res = 6089 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6090 getValue(Arg0), getValue(Arg1), 6091 MachinePointerInfo(Arg0)); 6092 if (Res.first.getNode()) { 6093 processIntegerCallValue(I, Res.first, false); 6094 PendingLoads.push_back(Res.second); 6095 return true; 6096 } 6097 6098 return false; 6099 } 6100 6101 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6102 /// operation (as expected), translate it to an SDNode with the specified opcode 6103 /// and return true. 6104 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6105 unsigned Opcode) { 6106 // Sanity check that it really is a unary floating-point call. 6107 if (I.getNumArgOperands() != 1 || 6108 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6109 I.getType() != I.getArgOperand(0)->getType() || 6110 !I.onlyReadsMemory()) 6111 return false; 6112 6113 SDValue Tmp = getValue(I.getArgOperand(0)); 6114 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6115 return true; 6116 } 6117 6118 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6119 /// operation (as expected), translate it to an SDNode with the specified opcode 6120 /// and return true. 6121 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6122 unsigned Opcode) { 6123 // Sanity check that it really is a binary floating-point call. 6124 if (I.getNumArgOperands() != 2 || 6125 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6126 I.getType() != I.getArgOperand(0)->getType() || 6127 I.getType() != I.getArgOperand(1)->getType() || 6128 !I.onlyReadsMemory()) 6129 return false; 6130 6131 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6132 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6133 EVT VT = Tmp0.getValueType(); 6134 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6135 return true; 6136 } 6137 6138 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6139 // Handle inline assembly differently. 6140 if (isa<InlineAsm>(I.getCalledValue())) { 6141 visitInlineAsm(&I); 6142 return; 6143 } 6144 6145 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6146 ComputeUsesVAFloatArgument(I, &MMI); 6147 6148 const char *RenameFn = nullptr; 6149 if (Function *F = I.getCalledFunction()) { 6150 if (F->isDeclaration()) { 6151 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6152 if (unsigned IID = II->getIntrinsicID(F)) { 6153 RenameFn = visitIntrinsicCall(I, IID); 6154 if (!RenameFn) 6155 return; 6156 } 6157 } 6158 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6159 RenameFn = visitIntrinsicCall(I, IID); 6160 if (!RenameFn) 6161 return; 6162 } 6163 } 6164 6165 // Check for well-known libc/libm calls. If the function is internal, it 6166 // can't be a library call. 6167 LibFunc::Func Func; 6168 if (!F->hasLocalLinkage() && F->hasName() && 6169 LibInfo->getLibFunc(F->getName(), Func) && 6170 LibInfo->hasOptimizedCodeGen(Func)) { 6171 switch (Func) { 6172 default: break; 6173 case LibFunc::copysign: 6174 case LibFunc::copysignf: 6175 case LibFunc::copysignl: 6176 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6177 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6178 I.getType() == I.getArgOperand(0)->getType() && 6179 I.getType() == I.getArgOperand(1)->getType() && 6180 I.onlyReadsMemory()) { 6181 SDValue LHS = getValue(I.getArgOperand(0)); 6182 SDValue RHS = getValue(I.getArgOperand(1)); 6183 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6184 LHS.getValueType(), LHS, RHS)); 6185 return; 6186 } 6187 break; 6188 case LibFunc::fabs: 6189 case LibFunc::fabsf: 6190 case LibFunc::fabsl: 6191 if (visitUnaryFloatCall(I, ISD::FABS)) 6192 return; 6193 break; 6194 case LibFunc::fmin: 6195 case LibFunc::fminf: 6196 case LibFunc::fminl: 6197 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6198 return; 6199 break; 6200 case LibFunc::fmax: 6201 case LibFunc::fmaxf: 6202 case LibFunc::fmaxl: 6203 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6204 return; 6205 break; 6206 case LibFunc::sin: 6207 case LibFunc::sinf: 6208 case LibFunc::sinl: 6209 if (visitUnaryFloatCall(I, ISD::FSIN)) 6210 return; 6211 break; 6212 case LibFunc::cos: 6213 case LibFunc::cosf: 6214 case LibFunc::cosl: 6215 if (visitUnaryFloatCall(I, ISD::FCOS)) 6216 return; 6217 break; 6218 case LibFunc::sqrt: 6219 case LibFunc::sqrtf: 6220 case LibFunc::sqrtl: 6221 case LibFunc::sqrt_finite: 6222 case LibFunc::sqrtf_finite: 6223 case LibFunc::sqrtl_finite: 6224 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6225 return; 6226 break; 6227 case LibFunc::floor: 6228 case LibFunc::floorf: 6229 case LibFunc::floorl: 6230 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6231 return; 6232 break; 6233 case LibFunc::nearbyint: 6234 case LibFunc::nearbyintf: 6235 case LibFunc::nearbyintl: 6236 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6237 return; 6238 break; 6239 case LibFunc::ceil: 6240 case LibFunc::ceilf: 6241 case LibFunc::ceill: 6242 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6243 return; 6244 break; 6245 case LibFunc::rint: 6246 case LibFunc::rintf: 6247 case LibFunc::rintl: 6248 if (visitUnaryFloatCall(I, ISD::FRINT)) 6249 return; 6250 break; 6251 case LibFunc::round: 6252 case LibFunc::roundf: 6253 case LibFunc::roundl: 6254 if (visitUnaryFloatCall(I, ISD::FROUND)) 6255 return; 6256 break; 6257 case LibFunc::trunc: 6258 case LibFunc::truncf: 6259 case LibFunc::truncl: 6260 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6261 return; 6262 break; 6263 case LibFunc::log2: 6264 case LibFunc::log2f: 6265 case LibFunc::log2l: 6266 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6267 return; 6268 break; 6269 case LibFunc::exp2: 6270 case LibFunc::exp2f: 6271 case LibFunc::exp2l: 6272 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6273 return; 6274 break; 6275 case LibFunc::memcmp: 6276 if (visitMemCmpCall(I)) 6277 return; 6278 break; 6279 case LibFunc::memchr: 6280 if (visitMemChrCall(I)) 6281 return; 6282 break; 6283 case LibFunc::strcpy: 6284 if (visitStrCpyCall(I, false)) 6285 return; 6286 break; 6287 case LibFunc::stpcpy: 6288 if (visitStrCpyCall(I, true)) 6289 return; 6290 break; 6291 case LibFunc::strcmp: 6292 if (visitStrCmpCall(I)) 6293 return; 6294 break; 6295 case LibFunc::strlen: 6296 if (visitStrLenCall(I)) 6297 return; 6298 break; 6299 case LibFunc::strnlen: 6300 if (visitStrNLenCall(I)) 6301 return; 6302 break; 6303 } 6304 } 6305 } 6306 6307 SDValue Callee; 6308 if (!RenameFn) 6309 Callee = getValue(I.getCalledValue()); 6310 else 6311 Callee = DAG.getExternalSymbol( 6312 RenameFn, 6313 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6314 6315 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6316 // have to do anything here to lower funclet bundles. 6317 assert(!I.hasOperandBundlesOtherThan( 6318 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6319 "Cannot lower calls with arbitrary operand bundles!"); 6320 6321 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6322 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6323 else 6324 // Check if we can potentially perform a tail call. More detailed checking 6325 // is be done within LowerCallTo, after more information about the call is 6326 // known. 6327 LowerCallTo(&I, Callee, I.isTailCall()); 6328 } 6329 6330 namespace { 6331 6332 /// AsmOperandInfo - This contains information for each constraint that we are 6333 /// lowering. 6334 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6335 public: 6336 /// CallOperand - If this is the result output operand or a clobber 6337 /// this is null, otherwise it is the incoming operand to the CallInst. 6338 /// This gets modified as the asm is processed. 6339 SDValue CallOperand; 6340 6341 /// AssignedRegs - If this is a register or register class operand, this 6342 /// contains the set of register corresponding to the operand. 6343 RegsForValue AssignedRegs; 6344 6345 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6346 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6347 } 6348 6349 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6350 /// corresponds to. If there is no Value* for this operand, it returns 6351 /// MVT::Other. 6352 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6353 const DataLayout &DL) const { 6354 if (!CallOperandVal) return MVT::Other; 6355 6356 if (isa<BasicBlock>(CallOperandVal)) 6357 return TLI.getPointerTy(DL); 6358 6359 llvm::Type *OpTy = CallOperandVal->getType(); 6360 6361 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6362 // If this is an indirect operand, the operand is a pointer to the 6363 // accessed type. 6364 if (isIndirect) { 6365 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6366 if (!PtrTy) 6367 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6368 OpTy = PtrTy->getElementType(); 6369 } 6370 6371 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6372 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6373 if (STy->getNumElements() == 1) 6374 OpTy = STy->getElementType(0); 6375 6376 // If OpTy is not a single value, it may be a struct/union that we 6377 // can tile with integers. 6378 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6379 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6380 switch (BitSize) { 6381 default: break; 6382 case 1: 6383 case 8: 6384 case 16: 6385 case 32: 6386 case 64: 6387 case 128: 6388 OpTy = IntegerType::get(Context, BitSize); 6389 break; 6390 } 6391 } 6392 6393 return TLI.getValueType(DL, OpTy, true); 6394 } 6395 }; 6396 6397 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6398 6399 } // end anonymous namespace 6400 6401 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6402 /// specified operand. We prefer to assign virtual registers, to allow the 6403 /// register allocator to handle the assignment process. However, if the asm 6404 /// uses features that we can't model on machineinstrs, we have SDISel do the 6405 /// allocation. This produces generally horrible, but correct, code. 6406 /// 6407 /// OpInfo describes the operand. 6408 /// 6409 static void GetRegistersForValue(SelectionDAG &DAG, 6410 const TargetLowering &TLI, 6411 SDLoc DL, 6412 SDISelAsmOperandInfo &OpInfo) { 6413 LLVMContext &Context = *DAG.getContext(); 6414 6415 MachineFunction &MF = DAG.getMachineFunction(); 6416 SmallVector<unsigned, 4> Regs; 6417 6418 // If this is a constraint for a single physreg, or a constraint for a 6419 // register class, find it. 6420 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6421 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6422 OpInfo.ConstraintCode, 6423 OpInfo.ConstraintVT); 6424 6425 unsigned NumRegs = 1; 6426 if (OpInfo.ConstraintVT != MVT::Other) { 6427 // If this is a FP input in an integer register (or visa versa) insert a bit 6428 // cast of the input value. More generally, handle any case where the input 6429 // value disagrees with the register class we plan to stick this in. 6430 if (OpInfo.Type == InlineAsm::isInput && 6431 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6432 // Try to convert to the first EVT that the reg class contains. If the 6433 // types are identical size, use a bitcast to convert (e.g. two differing 6434 // vector types). 6435 MVT RegVT = *PhysReg.second->vt_begin(); 6436 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6437 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6438 RegVT, OpInfo.CallOperand); 6439 OpInfo.ConstraintVT = RegVT; 6440 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6441 // If the input is a FP value and we want it in FP registers, do a 6442 // bitcast to the corresponding integer type. This turns an f64 value 6443 // into i64, which can be passed with two i32 values on a 32-bit 6444 // machine. 6445 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6446 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6447 RegVT, OpInfo.CallOperand); 6448 OpInfo.ConstraintVT = RegVT; 6449 } 6450 } 6451 6452 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6453 } 6454 6455 MVT RegVT; 6456 EVT ValueVT = OpInfo.ConstraintVT; 6457 6458 // If this is a constraint for a specific physical register, like {r17}, 6459 // assign it now. 6460 if (unsigned AssignedReg = PhysReg.first) { 6461 const TargetRegisterClass *RC = PhysReg.second; 6462 if (OpInfo.ConstraintVT == MVT::Other) 6463 ValueVT = *RC->vt_begin(); 6464 6465 // Get the actual register value type. This is important, because the user 6466 // may have asked for (e.g.) the AX register in i32 type. We need to 6467 // remember that AX is actually i16 to get the right extension. 6468 RegVT = *RC->vt_begin(); 6469 6470 // This is a explicit reference to a physical register. 6471 Regs.push_back(AssignedReg); 6472 6473 // If this is an expanded reference, add the rest of the regs to Regs. 6474 if (NumRegs != 1) { 6475 TargetRegisterClass::iterator I = RC->begin(); 6476 for (; *I != AssignedReg; ++I) 6477 assert(I != RC->end() && "Didn't find reg!"); 6478 6479 // Already added the first reg. 6480 --NumRegs; ++I; 6481 for (; NumRegs; --NumRegs, ++I) { 6482 assert(I != RC->end() && "Ran out of registers to allocate!"); 6483 Regs.push_back(*I); 6484 } 6485 } 6486 6487 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6488 return; 6489 } 6490 6491 // Otherwise, if this was a reference to an LLVM register class, create vregs 6492 // for this reference. 6493 if (const TargetRegisterClass *RC = PhysReg.second) { 6494 RegVT = *RC->vt_begin(); 6495 if (OpInfo.ConstraintVT == MVT::Other) 6496 ValueVT = RegVT; 6497 6498 // Create the appropriate number of virtual registers. 6499 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6500 for (; NumRegs; --NumRegs) 6501 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6502 6503 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6504 return; 6505 } 6506 6507 // Otherwise, we couldn't allocate enough registers for this. 6508 } 6509 6510 /// visitInlineAsm - Handle a call to an InlineAsm object. 6511 /// 6512 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6513 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6514 6515 /// ConstraintOperands - Information about all of the constraints. 6516 SDISelAsmOperandInfoVector ConstraintOperands; 6517 6518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6519 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6520 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6521 6522 bool hasMemory = false; 6523 6524 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6525 unsigned ResNo = 0; // ResNo - The result number of the next output. 6526 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6527 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6528 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6529 6530 MVT OpVT = MVT::Other; 6531 6532 // Compute the value type for each operand. 6533 switch (OpInfo.Type) { 6534 case InlineAsm::isOutput: 6535 // Indirect outputs just consume an argument. 6536 if (OpInfo.isIndirect) { 6537 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6538 break; 6539 } 6540 6541 // The return value of the call is this value. As such, there is no 6542 // corresponding argument. 6543 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6544 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6545 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6546 STy->getElementType(ResNo)); 6547 } else { 6548 assert(ResNo == 0 && "Asm only has one result!"); 6549 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6550 } 6551 ++ResNo; 6552 break; 6553 case InlineAsm::isInput: 6554 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6555 break; 6556 case InlineAsm::isClobber: 6557 // Nothing to do. 6558 break; 6559 } 6560 6561 // If this is an input or an indirect output, process the call argument. 6562 // BasicBlocks are labels, currently appearing only in asm's. 6563 if (OpInfo.CallOperandVal) { 6564 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6565 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6566 } else { 6567 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6568 } 6569 6570 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6571 DAG.getDataLayout()).getSimpleVT(); 6572 } 6573 6574 OpInfo.ConstraintVT = OpVT; 6575 6576 // Indirect operand accesses access memory. 6577 if (OpInfo.isIndirect) 6578 hasMemory = true; 6579 else { 6580 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6581 TargetLowering::ConstraintType 6582 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6583 if (CType == TargetLowering::C_Memory) { 6584 hasMemory = true; 6585 break; 6586 } 6587 } 6588 } 6589 } 6590 6591 SDValue Chain, Flag; 6592 6593 // We won't need to flush pending loads if this asm doesn't touch 6594 // memory and is nonvolatile. 6595 if (hasMemory || IA->hasSideEffects()) 6596 Chain = getRoot(); 6597 else 6598 Chain = DAG.getRoot(); 6599 6600 // Second pass over the constraints: compute which constraint option to use 6601 // and assign registers to constraints that want a specific physreg. 6602 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6603 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6604 6605 // If this is an output operand with a matching input operand, look up the 6606 // matching input. If their types mismatch, e.g. one is an integer, the 6607 // other is floating point, or their sizes are different, flag it as an 6608 // error. 6609 if (OpInfo.hasMatchingInput()) { 6610 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6611 6612 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6613 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6614 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6615 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6616 OpInfo.ConstraintVT); 6617 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6618 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6619 Input.ConstraintVT); 6620 if ((OpInfo.ConstraintVT.isInteger() != 6621 Input.ConstraintVT.isInteger()) || 6622 (MatchRC.second != InputRC.second)) { 6623 report_fatal_error("Unsupported asm: input constraint" 6624 " with a matching output constraint of" 6625 " incompatible type!"); 6626 } 6627 Input.ConstraintVT = OpInfo.ConstraintVT; 6628 } 6629 } 6630 6631 // Compute the constraint code and ConstraintType to use. 6632 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6633 6634 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6635 OpInfo.Type == InlineAsm::isClobber) 6636 continue; 6637 6638 // If this is a memory input, and if the operand is not indirect, do what we 6639 // need to to provide an address for the memory input. 6640 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6641 !OpInfo.isIndirect) { 6642 assert((OpInfo.isMultipleAlternative || 6643 (OpInfo.Type == InlineAsm::isInput)) && 6644 "Can only indirectify direct input operands!"); 6645 6646 // Memory operands really want the address of the value. If we don't have 6647 // an indirect input, put it in the constpool if we can, otherwise spill 6648 // it to a stack slot. 6649 // TODO: This isn't quite right. We need to handle these according to 6650 // the addressing mode that the constraint wants. Also, this may take 6651 // an additional register for the computation and we don't want that 6652 // either. 6653 6654 // If the operand is a float, integer, or vector constant, spill to a 6655 // constant pool entry to get its address. 6656 const Value *OpVal = OpInfo.CallOperandVal; 6657 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6658 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6659 OpInfo.CallOperand = DAG.getConstantPool( 6660 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6661 } else { 6662 // Otherwise, create a stack slot and emit a store to it before the 6663 // asm. 6664 Type *Ty = OpVal->getType(); 6665 auto &DL = DAG.getDataLayout(); 6666 uint64_t TySize = DL.getTypeAllocSize(Ty); 6667 unsigned Align = DL.getPrefTypeAlignment(Ty); 6668 MachineFunction &MF = DAG.getMachineFunction(); 6669 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6670 SDValue StackSlot = 6671 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6672 Chain = DAG.getStore( 6673 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6674 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6675 false, false, 0); 6676 OpInfo.CallOperand = StackSlot; 6677 } 6678 6679 // There is no longer a Value* corresponding to this operand. 6680 OpInfo.CallOperandVal = nullptr; 6681 6682 // It is now an indirect operand. 6683 OpInfo.isIndirect = true; 6684 } 6685 6686 // If this constraint is for a specific register, allocate it before 6687 // anything else. 6688 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6689 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6690 } 6691 6692 // Second pass - Loop over all of the operands, assigning virtual or physregs 6693 // to register class operands. 6694 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6695 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6696 6697 // C_Register operands have already been allocated, Other/Memory don't need 6698 // to be. 6699 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6700 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6701 } 6702 6703 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6704 std::vector<SDValue> AsmNodeOperands; 6705 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6706 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6707 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6708 6709 // If we have a !srcloc metadata node associated with it, we want to attach 6710 // this to the ultimately generated inline asm machineinstr. To do this, we 6711 // pass in the third operand as this (potentially null) inline asm MDNode. 6712 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6713 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6714 6715 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6716 // bits as operand 3. 6717 unsigned ExtraInfo = 0; 6718 if (IA->hasSideEffects()) 6719 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6720 if (IA->isAlignStack()) 6721 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6722 // Set the asm dialect. 6723 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6724 6725 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6726 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6727 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6728 6729 // Compute the constraint code and ConstraintType to use. 6730 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6731 6732 // Ideally, we would only check against memory constraints. However, the 6733 // meaning of an other constraint can be target-specific and we can't easily 6734 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6735 // for other constriants as well. 6736 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6737 OpInfo.ConstraintType == TargetLowering::C_Other) { 6738 if (OpInfo.Type == InlineAsm::isInput) 6739 ExtraInfo |= InlineAsm::Extra_MayLoad; 6740 else if (OpInfo.Type == InlineAsm::isOutput) 6741 ExtraInfo |= InlineAsm::Extra_MayStore; 6742 else if (OpInfo.Type == InlineAsm::isClobber) 6743 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6744 } 6745 } 6746 6747 AsmNodeOperands.push_back(DAG.getTargetConstant( 6748 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6749 6750 // Loop over all of the inputs, copying the operand values into the 6751 // appropriate registers and processing the output regs. 6752 RegsForValue RetValRegs; 6753 6754 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6755 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6756 6757 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6758 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6759 6760 switch (OpInfo.Type) { 6761 case InlineAsm::isOutput: { 6762 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6763 OpInfo.ConstraintType != TargetLowering::C_Register) { 6764 // Memory output, or 'other' output (e.g. 'X' constraint). 6765 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6766 6767 unsigned ConstraintID = 6768 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6769 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6770 "Failed to convert memory constraint code to constraint id."); 6771 6772 // Add information to the INLINEASM node to know about this output. 6773 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6774 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6775 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6776 MVT::i32)); 6777 AsmNodeOperands.push_back(OpInfo.CallOperand); 6778 break; 6779 } 6780 6781 // Otherwise, this is a register or register class output. 6782 6783 // Copy the output from the appropriate register. Find a register that 6784 // we can use. 6785 if (OpInfo.AssignedRegs.Regs.empty()) { 6786 LLVMContext &Ctx = *DAG.getContext(); 6787 Ctx.emitError(CS.getInstruction(), 6788 "couldn't allocate output register for constraint '" + 6789 Twine(OpInfo.ConstraintCode) + "'"); 6790 return; 6791 } 6792 6793 // If this is an indirect operand, store through the pointer after the 6794 // asm. 6795 if (OpInfo.isIndirect) { 6796 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6797 OpInfo.CallOperandVal)); 6798 } else { 6799 // This is the result value of the call. 6800 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6801 // Concatenate this output onto the outputs list. 6802 RetValRegs.append(OpInfo.AssignedRegs); 6803 } 6804 6805 // Add information to the INLINEASM node to know that this register is 6806 // set. 6807 OpInfo.AssignedRegs 6808 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6809 ? InlineAsm::Kind_RegDefEarlyClobber 6810 : InlineAsm::Kind_RegDef, 6811 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6812 break; 6813 } 6814 case InlineAsm::isInput: { 6815 SDValue InOperandVal = OpInfo.CallOperand; 6816 6817 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6818 // If this is required to match an output register we have already set, 6819 // just use its register. 6820 unsigned OperandNo = OpInfo.getMatchedOperand(); 6821 6822 // Scan until we find the definition we already emitted of this operand. 6823 // When we find it, create a RegsForValue operand. 6824 unsigned CurOp = InlineAsm::Op_FirstOperand; 6825 for (; OperandNo; --OperandNo) { 6826 // Advance to the next operand. 6827 unsigned OpFlag = 6828 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6829 assert((InlineAsm::isRegDefKind(OpFlag) || 6830 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6831 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6832 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6833 } 6834 6835 unsigned OpFlag = 6836 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6837 if (InlineAsm::isRegDefKind(OpFlag) || 6838 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6839 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6840 if (OpInfo.isIndirect) { 6841 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6842 LLVMContext &Ctx = *DAG.getContext(); 6843 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6844 " don't know how to handle tied " 6845 "indirect register inputs"); 6846 return; 6847 } 6848 6849 RegsForValue MatchedRegs; 6850 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6851 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6852 MatchedRegs.RegVTs.push_back(RegVT); 6853 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6854 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6855 i != e; ++i) { 6856 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6857 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6858 else { 6859 LLVMContext &Ctx = *DAG.getContext(); 6860 Ctx.emitError(CS.getInstruction(), 6861 "inline asm error: This value" 6862 " type register class is not natively supported!"); 6863 return; 6864 } 6865 } 6866 SDLoc dl = getCurSDLoc(); 6867 // Use the produced MatchedRegs object to 6868 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6869 Chain, &Flag, CS.getInstruction()); 6870 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6871 true, OpInfo.getMatchedOperand(), dl, 6872 DAG, AsmNodeOperands); 6873 break; 6874 } 6875 6876 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6877 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6878 "Unexpected number of operands"); 6879 // Add information to the INLINEASM node to know about this input. 6880 // See InlineAsm.h isUseOperandTiedToDef. 6881 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6882 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6883 OpInfo.getMatchedOperand()); 6884 AsmNodeOperands.push_back(DAG.getTargetConstant( 6885 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6886 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6887 break; 6888 } 6889 6890 // Treat indirect 'X' constraint as memory. 6891 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6892 OpInfo.isIndirect) 6893 OpInfo.ConstraintType = TargetLowering::C_Memory; 6894 6895 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6896 std::vector<SDValue> Ops; 6897 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6898 Ops, DAG); 6899 if (Ops.empty()) { 6900 LLVMContext &Ctx = *DAG.getContext(); 6901 Ctx.emitError(CS.getInstruction(), 6902 "invalid operand for inline asm constraint '" + 6903 Twine(OpInfo.ConstraintCode) + "'"); 6904 return; 6905 } 6906 6907 // Add information to the INLINEASM node to know about this input. 6908 unsigned ResOpType = 6909 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6910 AsmNodeOperands.push_back(DAG.getTargetConstant( 6911 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6912 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6913 break; 6914 } 6915 6916 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6917 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6918 assert(InOperandVal.getValueType() == 6919 TLI.getPointerTy(DAG.getDataLayout()) && 6920 "Memory operands expect pointer values"); 6921 6922 unsigned ConstraintID = 6923 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6924 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6925 "Failed to convert memory constraint code to constraint id."); 6926 6927 // Add information to the INLINEASM node to know about this input. 6928 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6929 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6930 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6931 getCurSDLoc(), 6932 MVT::i32)); 6933 AsmNodeOperands.push_back(InOperandVal); 6934 break; 6935 } 6936 6937 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6938 OpInfo.ConstraintType == TargetLowering::C_Register) && 6939 "Unknown constraint type!"); 6940 6941 // TODO: Support this. 6942 if (OpInfo.isIndirect) { 6943 LLVMContext &Ctx = *DAG.getContext(); 6944 Ctx.emitError(CS.getInstruction(), 6945 "Don't know how to handle indirect register inputs yet " 6946 "for constraint '" + 6947 Twine(OpInfo.ConstraintCode) + "'"); 6948 return; 6949 } 6950 6951 // Copy the input into the appropriate registers. 6952 if (OpInfo.AssignedRegs.Regs.empty()) { 6953 LLVMContext &Ctx = *DAG.getContext(); 6954 Ctx.emitError(CS.getInstruction(), 6955 "couldn't allocate input reg for constraint '" + 6956 Twine(OpInfo.ConstraintCode) + "'"); 6957 return; 6958 } 6959 6960 SDLoc dl = getCurSDLoc(); 6961 6962 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6963 Chain, &Flag, CS.getInstruction()); 6964 6965 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6966 dl, DAG, AsmNodeOperands); 6967 break; 6968 } 6969 case InlineAsm::isClobber: { 6970 // Add the clobbered value to the operand list, so that the register 6971 // allocator is aware that the physreg got clobbered. 6972 if (!OpInfo.AssignedRegs.Regs.empty()) 6973 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6974 false, 0, getCurSDLoc(), DAG, 6975 AsmNodeOperands); 6976 break; 6977 } 6978 } 6979 } 6980 6981 // Finish up input operands. Set the input chain and add the flag last. 6982 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6983 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6984 6985 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6986 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6987 Flag = Chain.getValue(1); 6988 6989 // If this asm returns a register value, copy the result from that register 6990 // and set it as the value of the call. 6991 if (!RetValRegs.Regs.empty()) { 6992 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6993 Chain, &Flag, CS.getInstruction()); 6994 6995 // FIXME: Why don't we do this for inline asms with MRVs? 6996 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6997 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6998 6999 // If any of the results of the inline asm is a vector, it may have the 7000 // wrong width/num elts. This can happen for register classes that can 7001 // contain multiple different value types. The preg or vreg allocated may 7002 // not have the same VT as was expected. Convert it to the right type 7003 // with bit_convert. 7004 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7005 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7006 ResultType, Val); 7007 7008 } else if (ResultType != Val.getValueType() && 7009 ResultType.isInteger() && Val.getValueType().isInteger()) { 7010 // If a result value was tied to an input value, the computed result may 7011 // have a wider width than the expected result. Extract the relevant 7012 // portion. 7013 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7014 } 7015 7016 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7017 } 7018 7019 setValue(CS.getInstruction(), Val); 7020 // Don't need to use this as a chain in this case. 7021 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7022 return; 7023 } 7024 7025 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7026 7027 // Process indirect outputs, first output all of the flagged copies out of 7028 // physregs. 7029 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7030 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7031 const Value *Ptr = IndirectStoresToEmit[i].second; 7032 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7033 Chain, &Flag, IA); 7034 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7035 } 7036 7037 // Emit the non-flagged stores from the physregs. 7038 SmallVector<SDValue, 8> OutChains; 7039 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7040 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 7041 StoresToEmit[i].first, 7042 getValue(StoresToEmit[i].second), 7043 MachinePointerInfo(StoresToEmit[i].second), 7044 false, false, 0); 7045 OutChains.push_back(Val); 7046 } 7047 7048 if (!OutChains.empty()) 7049 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7050 7051 DAG.setRoot(Chain); 7052 } 7053 7054 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7055 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7056 MVT::Other, getRoot(), 7057 getValue(I.getArgOperand(0)), 7058 DAG.getSrcValue(I.getArgOperand(0)))); 7059 } 7060 7061 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7063 const DataLayout &DL = DAG.getDataLayout(); 7064 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7065 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7066 DAG.getSrcValue(I.getOperand(0)), 7067 DL.getABITypeAlignment(I.getType())); 7068 setValue(&I, V); 7069 DAG.setRoot(V.getValue(1)); 7070 } 7071 7072 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7073 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7074 MVT::Other, getRoot(), 7075 getValue(I.getArgOperand(0)), 7076 DAG.getSrcValue(I.getArgOperand(0)))); 7077 } 7078 7079 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7080 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7081 MVT::Other, getRoot(), 7082 getValue(I.getArgOperand(0)), 7083 getValue(I.getArgOperand(1)), 7084 DAG.getSrcValue(I.getArgOperand(0)), 7085 DAG.getSrcValue(I.getArgOperand(1)))); 7086 } 7087 7088 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7089 const Instruction &I, 7090 SDValue Op) { 7091 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7092 if (!Range) 7093 return Op; 7094 7095 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 7096 if (!Lo->isNullValue()) 7097 return Op; 7098 7099 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 7100 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 7101 7102 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7103 7104 SDLoc SL = getCurSDLoc(); 7105 7106 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 7107 Op, DAG.getValueType(SmallVT)); 7108 unsigned NumVals = Op.getNode()->getNumValues(); 7109 if (NumVals == 1) 7110 return ZExt; 7111 7112 SmallVector<SDValue, 4> Ops; 7113 7114 Ops.push_back(ZExt); 7115 for (unsigned I = 1; I != NumVals; ++I) 7116 Ops.push_back(Op.getValue(I)); 7117 7118 return DAG.getMergeValues(Ops, SL); 7119 } 7120 7121 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7122 /// the call being lowered. 7123 /// 7124 /// This is a helper for lowering intrinsics that follow a target calling 7125 /// convention or require stack pointer adjustment. Only a subset of the 7126 /// intrinsic's operands need to participate in the calling convention. 7127 void SelectionDAGBuilder::populateCallLoweringInfo( 7128 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7129 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7130 bool IsPatchPoint) { 7131 TargetLowering::ArgListTy Args; 7132 Args.reserve(NumArgs); 7133 7134 // Populate the argument list. 7135 // Attributes for args start at offset 1, after the return attribute. 7136 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7137 ArgI != ArgE; ++ArgI) { 7138 const Value *V = CS->getOperand(ArgI); 7139 7140 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7141 7142 TargetLowering::ArgListEntry Entry; 7143 Entry.Node = getValue(V); 7144 Entry.Ty = V->getType(); 7145 Entry.setAttributes(&CS, AttrI); 7146 Args.push_back(Entry); 7147 } 7148 7149 CLI.setDebugLoc(getCurSDLoc()) 7150 .setChain(getRoot()) 7151 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 7152 NumArgs) 7153 .setDiscardResult(CS->use_empty()) 7154 .setIsPatchPoint(IsPatchPoint); 7155 } 7156 7157 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7158 /// or patchpoint target node's operand list. 7159 /// 7160 /// Constants are converted to TargetConstants purely as an optimization to 7161 /// avoid constant materialization and register allocation. 7162 /// 7163 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7164 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7165 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7166 /// address materialization and register allocation, but may also be required 7167 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7168 /// alloca in the entry block, then the runtime may assume that the alloca's 7169 /// StackMap location can be read immediately after compilation and that the 7170 /// location is valid at any point during execution (this is similar to the 7171 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7172 /// only available in a register, then the runtime would need to trap when 7173 /// execution reaches the StackMap in order to read the alloca's location. 7174 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7175 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 7176 SelectionDAGBuilder &Builder) { 7177 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7178 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7179 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7180 Ops.push_back( 7181 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7182 Ops.push_back( 7183 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7184 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7185 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7186 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7187 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7188 } else 7189 Ops.push_back(OpVal); 7190 } 7191 } 7192 7193 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7194 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7195 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7196 // [live variables...]) 7197 7198 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7199 7200 SDValue Chain, InFlag, Callee, NullPtr; 7201 SmallVector<SDValue, 32> Ops; 7202 7203 SDLoc DL = getCurSDLoc(); 7204 Callee = getValue(CI.getCalledValue()); 7205 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7206 7207 // The stackmap intrinsic only records the live variables (the arguemnts 7208 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7209 // intrinsic, this won't be lowered to a function call. This means we don't 7210 // have to worry about calling conventions and target specific lowering code. 7211 // Instead we perform the call lowering right here. 7212 // 7213 // chain, flag = CALLSEQ_START(chain, 0) 7214 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7215 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7216 // 7217 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7218 InFlag = Chain.getValue(1); 7219 7220 // Add the <id> and <numBytes> constants. 7221 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7222 Ops.push_back(DAG.getTargetConstant( 7223 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7224 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7225 Ops.push_back(DAG.getTargetConstant( 7226 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7227 MVT::i32)); 7228 7229 // Push live variables for the stack map. 7230 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7231 7232 // We are not pushing any register mask info here on the operands list, 7233 // because the stackmap doesn't clobber anything. 7234 7235 // Push the chain and the glue flag. 7236 Ops.push_back(Chain); 7237 Ops.push_back(InFlag); 7238 7239 // Create the STACKMAP node. 7240 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7241 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7242 Chain = SDValue(SM, 0); 7243 InFlag = Chain.getValue(1); 7244 7245 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7246 7247 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7248 7249 // Set the root to the target-lowered call chain. 7250 DAG.setRoot(Chain); 7251 7252 // Inform the Frame Information that we have a stackmap in this function. 7253 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7254 } 7255 7256 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7257 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7258 const BasicBlock *EHPadBB) { 7259 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7260 // i32 <numBytes>, 7261 // i8* <target>, 7262 // i32 <numArgs>, 7263 // [Args...], 7264 // [live variables...]) 7265 7266 CallingConv::ID CC = CS.getCallingConv(); 7267 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7268 bool HasDef = !CS->getType()->isVoidTy(); 7269 SDLoc dl = getCurSDLoc(); 7270 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7271 7272 // Handle immediate and symbolic callees. 7273 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7274 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7275 /*isTarget=*/true); 7276 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7277 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7278 SDLoc(SymbolicCallee), 7279 SymbolicCallee->getValueType(0)); 7280 7281 // Get the real number of arguments participating in the call <numArgs> 7282 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7283 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7284 7285 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7286 // Intrinsics include all meta-operands up to but not including CC. 7287 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7288 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7289 "Not enough arguments provided to the patchpoint intrinsic"); 7290 7291 // For AnyRegCC the arguments are lowered later on manually. 7292 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7293 Type *ReturnTy = 7294 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7295 7296 TargetLowering::CallLoweringInfo CLI(DAG); 7297 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7298 true); 7299 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7300 7301 SDNode *CallEnd = Result.second.getNode(); 7302 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7303 CallEnd = CallEnd->getOperand(0).getNode(); 7304 7305 /// Get a call instruction from the call sequence chain. 7306 /// Tail calls are not allowed. 7307 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7308 "Expected a callseq node."); 7309 SDNode *Call = CallEnd->getOperand(0).getNode(); 7310 bool HasGlue = Call->getGluedNode(); 7311 7312 // Replace the target specific call node with the patchable intrinsic. 7313 SmallVector<SDValue, 8> Ops; 7314 7315 // Add the <id> and <numBytes> constants. 7316 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7317 Ops.push_back(DAG.getTargetConstant( 7318 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7319 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7320 Ops.push_back(DAG.getTargetConstant( 7321 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7322 MVT::i32)); 7323 7324 // Add the callee. 7325 Ops.push_back(Callee); 7326 7327 // Adjust <numArgs> to account for any arguments that have been passed on the 7328 // stack instead. 7329 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7330 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7331 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7332 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7333 7334 // Add the calling convention 7335 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7336 7337 // Add the arguments we omitted previously. The register allocator should 7338 // place these in any free register. 7339 if (IsAnyRegCC) 7340 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7341 Ops.push_back(getValue(CS.getArgument(i))); 7342 7343 // Push the arguments from the call instruction up to the register mask. 7344 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7345 Ops.append(Call->op_begin() + 2, e); 7346 7347 // Push live variables for the stack map. 7348 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7349 7350 // Push the register mask info. 7351 if (HasGlue) 7352 Ops.push_back(*(Call->op_end()-2)); 7353 else 7354 Ops.push_back(*(Call->op_end()-1)); 7355 7356 // Push the chain (this is originally the first operand of the call, but 7357 // becomes now the last or second to last operand). 7358 Ops.push_back(*(Call->op_begin())); 7359 7360 // Push the glue flag (last operand). 7361 if (HasGlue) 7362 Ops.push_back(*(Call->op_end()-1)); 7363 7364 SDVTList NodeTys; 7365 if (IsAnyRegCC && HasDef) { 7366 // Create the return types based on the intrinsic definition 7367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7368 SmallVector<EVT, 3> ValueVTs; 7369 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7370 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7371 7372 // There is always a chain and a glue type at the end 7373 ValueVTs.push_back(MVT::Other); 7374 ValueVTs.push_back(MVT::Glue); 7375 NodeTys = DAG.getVTList(ValueVTs); 7376 } else 7377 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7378 7379 // Replace the target specific call node with a PATCHPOINT node. 7380 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7381 dl, NodeTys, Ops); 7382 7383 // Update the NodeMap. 7384 if (HasDef) { 7385 if (IsAnyRegCC) 7386 setValue(CS.getInstruction(), SDValue(MN, 0)); 7387 else 7388 setValue(CS.getInstruction(), Result.first); 7389 } 7390 7391 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7392 // call sequence. Furthermore the location of the chain and glue can change 7393 // when the AnyReg calling convention is used and the intrinsic returns a 7394 // value. 7395 if (IsAnyRegCC && HasDef) { 7396 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7397 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7398 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7399 } else 7400 DAG.ReplaceAllUsesWith(Call, MN); 7401 DAG.DeleteNode(Call); 7402 7403 // Inform the Frame Information that we have a patchpoint in this function. 7404 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7405 } 7406 7407 /// Returns an AttributeSet representing the attributes applied to the return 7408 /// value of the given call. 7409 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7410 SmallVector<Attribute::AttrKind, 2> Attrs; 7411 if (CLI.RetSExt) 7412 Attrs.push_back(Attribute::SExt); 7413 if (CLI.RetZExt) 7414 Attrs.push_back(Attribute::ZExt); 7415 if (CLI.IsInReg) 7416 Attrs.push_back(Attribute::InReg); 7417 7418 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7419 Attrs); 7420 } 7421 7422 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7423 /// implementation, which just calls LowerCall. 7424 /// FIXME: When all targets are 7425 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7426 std::pair<SDValue, SDValue> 7427 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7428 // Handle the incoming return values from the call. 7429 CLI.Ins.clear(); 7430 Type *OrigRetTy = CLI.RetTy; 7431 SmallVector<EVT, 4> RetTys; 7432 SmallVector<uint64_t, 4> Offsets; 7433 auto &DL = CLI.DAG.getDataLayout(); 7434 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7435 7436 SmallVector<ISD::OutputArg, 4> Outs; 7437 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7438 7439 bool CanLowerReturn = 7440 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7441 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7442 7443 SDValue DemoteStackSlot; 7444 int DemoteStackIdx = -100; 7445 if (!CanLowerReturn) { 7446 // FIXME: equivalent assert? 7447 // assert(!CS.hasInAllocaArgument() && 7448 // "sret demotion is incompatible with inalloca"); 7449 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7450 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7451 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7452 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7453 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7454 7455 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7456 ArgListEntry Entry; 7457 Entry.Node = DemoteStackSlot; 7458 Entry.Ty = StackSlotPtrType; 7459 Entry.isSExt = false; 7460 Entry.isZExt = false; 7461 Entry.isInReg = false; 7462 Entry.isSRet = true; 7463 Entry.isNest = false; 7464 Entry.isByVal = false; 7465 Entry.isReturned = false; 7466 Entry.isSwiftSelf = false; 7467 Entry.isSwiftError = false; 7468 Entry.Alignment = Align; 7469 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7470 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7471 7472 // sret demotion isn't compatible with tail-calls, since the sret argument 7473 // points into the callers stack frame. 7474 CLI.IsTailCall = false; 7475 } else { 7476 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7477 EVT VT = RetTys[I]; 7478 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7479 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7480 for (unsigned i = 0; i != NumRegs; ++i) { 7481 ISD::InputArg MyFlags; 7482 MyFlags.VT = RegisterVT; 7483 MyFlags.ArgVT = VT; 7484 MyFlags.Used = CLI.IsReturnValueUsed; 7485 if (CLI.RetSExt) 7486 MyFlags.Flags.setSExt(); 7487 if (CLI.RetZExt) 7488 MyFlags.Flags.setZExt(); 7489 if (CLI.IsInReg) 7490 MyFlags.Flags.setInReg(); 7491 CLI.Ins.push_back(MyFlags); 7492 } 7493 } 7494 } 7495 7496 // We push in swifterror return as the last element of CLI.Ins. 7497 ArgListTy &Args = CLI.getArgs(); 7498 if (supportSwiftError()) { 7499 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7500 if (Args[i].isSwiftError) { 7501 ISD::InputArg MyFlags; 7502 MyFlags.VT = getPointerTy(DL); 7503 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7504 MyFlags.Flags.setSwiftError(); 7505 CLI.Ins.push_back(MyFlags); 7506 } 7507 } 7508 } 7509 7510 // Handle all of the outgoing arguments. 7511 CLI.Outs.clear(); 7512 CLI.OutVals.clear(); 7513 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7514 SmallVector<EVT, 4> ValueVTs; 7515 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7516 Type *FinalType = Args[i].Ty; 7517 if (Args[i].isByVal) 7518 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7519 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7520 FinalType, CLI.CallConv, CLI.IsVarArg); 7521 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7522 ++Value) { 7523 EVT VT = ValueVTs[Value]; 7524 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7525 SDValue Op = SDValue(Args[i].Node.getNode(), 7526 Args[i].Node.getResNo() + Value); 7527 ISD::ArgFlagsTy Flags; 7528 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7529 7530 if (Args[i].isZExt) 7531 Flags.setZExt(); 7532 if (Args[i].isSExt) 7533 Flags.setSExt(); 7534 if (Args[i].isInReg) 7535 Flags.setInReg(); 7536 if (Args[i].isSRet) 7537 Flags.setSRet(); 7538 if (Args[i].isSwiftSelf) 7539 Flags.setSwiftSelf(); 7540 if (Args[i].isSwiftError) 7541 Flags.setSwiftError(); 7542 if (Args[i].isByVal) 7543 Flags.setByVal(); 7544 if (Args[i].isInAlloca) { 7545 Flags.setInAlloca(); 7546 // Set the byval flag for CCAssignFn callbacks that don't know about 7547 // inalloca. This way we can know how many bytes we should've allocated 7548 // and how many bytes a callee cleanup function will pop. If we port 7549 // inalloca to more targets, we'll have to add custom inalloca handling 7550 // in the various CC lowering callbacks. 7551 Flags.setByVal(); 7552 } 7553 if (Args[i].isByVal || Args[i].isInAlloca) { 7554 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7555 Type *ElementTy = Ty->getElementType(); 7556 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7557 // For ByVal, alignment should come from FE. BE will guess if this 7558 // info is not there but there are cases it cannot get right. 7559 unsigned FrameAlign; 7560 if (Args[i].Alignment) 7561 FrameAlign = Args[i].Alignment; 7562 else 7563 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7564 Flags.setByValAlign(FrameAlign); 7565 } 7566 if (Args[i].isNest) 7567 Flags.setNest(); 7568 if (NeedsRegBlock) 7569 Flags.setInConsecutiveRegs(); 7570 Flags.setOrigAlign(OriginalAlignment); 7571 7572 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7573 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7574 SmallVector<SDValue, 4> Parts(NumParts); 7575 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7576 7577 if (Args[i].isSExt) 7578 ExtendKind = ISD::SIGN_EXTEND; 7579 else if (Args[i].isZExt) 7580 ExtendKind = ISD::ZERO_EXTEND; 7581 7582 // Conservatively only handle 'returned' on non-vectors for now 7583 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7584 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7585 "unexpected use of 'returned'"); 7586 // Before passing 'returned' to the target lowering code, ensure that 7587 // either the register MVT and the actual EVT are the same size or that 7588 // the return value and argument are extended in the same way; in these 7589 // cases it's safe to pass the argument register value unchanged as the 7590 // return register value (although it's at the target's option whether 7591 // to do so) 7592 // TODO: allow code generation to take advantage of partially preserved 7593 // registers rather than clobbering the entire register when the 7594 // parameter extension method is not compatible with the return 7595 // extension method 7596 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7597 (ExtendKind != ISD::ANY_EXTEND && 7598 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7599 Flags.setReturned(); 7600 } 7601 7602 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7603 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7604 7605 for (unsigned j = 0; j != NumParts; ++j) { 7606 // if it isn't first piece, alignment must be 1 7607 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7608 i < CLI.NumFixedArgs, 7609 i, j*Parts[j].getValueType().getStoreSize()); 7610 if (NumParts > 1 && j == 0) 7611 MyFlags.Flags.setSplit(); 7612 else if (j != 0) { 7613 MyFlags.Flags.setOrigAlign(1); 7614 if (j == NumParts - 1) 7615 MyFlags.Flags.setSplitEnd(); 7616 } 7617 7618 CLI.Outs.push_back(MyFlags); 7619 CLI.OutVals.push_back(Parts[j]); 7620 } 7621 7622 if (NeedsRegBlock && Value == NumValues - 1) 7623 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7624 } 7625 } 7626 7627 SmallVector<SDValue, 4> InVals; 7628 CLI.Chain = LowerCall(CLI, InVals); 7629 7630 // Update CLI.InVals to use outside of this function. 7631 CLI.InVals = InVals; 7632 7633 // Verify that the target's LowerCall behaved as expected. 7634 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7635 "LowerCall didn't return a valid chain!"); 7636 assert((!CLI.IsTailCall || InVals.empty()) && 7637 "LowerCall emitted a return value for a tail call!"); 7638 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7639 "LowerCall didn't emit the correct number of values!"); 7640 7641 // For a tail call, the return value is merely live-out and there aren't 7642 // any nodes in the DAG representing it. Return a special value to 7643 // indicate that a tail call has been emitted and no more Instructions 7644 // should be processed in the current block. 7645 if (CLI.IsTailCall) { 7646 CLI.DAG.setRoot(CLI.Chain); 7647 return std::make_pair(SDValue(), SDValue()); 7648 } 7649 7650 #ifndef NDEBUG 7651 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7652 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7653 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7654 "LowerCall emitted a value with the wrong type!"); 7655 } 7656 #endif 7657 7658 SmallVector<SDValue, 4> ReturnValues; 7659 if (!CanLowerReturn) { 7660 // The instruction result is the result of loading from the 7661 // hidden sret parameter. 7662 SmallVector<EVT, 1> PVTs; 7663 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7664 7665 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7666 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7667 EVT PtrVT = PVTs[0]; 7668 7669 unsigned NumValues = RetTys.size(); 7670 ReturnValues.resize(NumValues); 7671 SmallVector<SDValue, 4> Chains(NumValues); 7672 7673 // An aggregate return value cannot wrap around the address space, so 7674 // offsets to its parts don't wrap either. 7675 SDNodeFlags Flags; 7676 Flags.setNoUnsignedWrap(true); 7677 7678 for (unsigned i = 0; i < NumValues; ++i) { 7679 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7680 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7681 PtrVT), &Flags); 7682 SDValue L = CLI.DAG.getLoad( 7683 RetTys[i], CLI.DL, CLI.Chain, Add, 7684 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7685 DemoteStackIdx, Offsets[i]), 7686 false, false, false, 1); 7687 ReturnValues[i] = L; 7688 Chains[i] = L.getValue(1); 7689 } 7690 7691 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7692 } else { 7693 // Collect the legal value parts into potentially illegal values 7694 // that correspond to the original function's return values. 7695 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7696 if (CLI.RetSExt) 7697 AssertOp = ISD::AssertSext; 7698 else if (CLI.RetZExt) 7699 AssertOp = ISD::AssertZext; 7700 unsigned CurReg = 0; 7701 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7702 EVT VT = RetTys[I]; 7703 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7704 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7705 7706 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7707 NumRegs, RegisterVT, VT, nullptr, 7708 AssertOp)); 7709 CurReg += NumRegs; 7710 } 7711 7712 // For a function returning void, there is no return value. We can't create 7713 // such a node, so we just return a null return value in that case. In 7714 // that case, nothing will actually look at the value. 7715 if (ReturnValues.empty()) 7716 return std::make_pair(SDValue(), CLI.Chain); 7717 } 7718 7719 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7720 CLI.DAG.getVTList(RetTys), ReturnValues); 7721 return std::make_pair(Res, CLI.Chain); 7722 } 7723 7724 void TargetLowering::LowerOperationWrapper(SDNode *N, 7725 SmallVectorImpl<SDValue> &Results, 7726 SelectionDAG &DAG) const { 7727 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7728 Results.push_back(Res); 7729 } 7730 7731 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7732 llvm_unreachable("LowerOperation not implemented for this target!"); 7733 } 7734 7735 void 7736 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7737 SDValue Op = getNonRegisterValue(V); 7738 assert((Op.getOpcode() != ISD::CopyFromReg || 7739 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7740 "Copy from a reg to the same reg!"); 7741 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7742 7743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7744 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7745 V->getType()); 7746 SDValue Chain = DAG.getEntryNode(); 7747 7748 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7749 FuncInfo.PreferredExtendType.end()) 7750 ? ISD::ANY_EXTEND 7751 : FuncInfo.PreferredExtendType[V]; 7752 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7753 PendingExports.push_back(Chain); 7754 } 7755 7756 #include "llvm/CodeGen/SelectionDAGISel.h" 7757 7758 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7759 /// entry block, return true. This includes arguments used by switches, since 7760 /// the switch may expand into multiple basic blocks. 7761 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7762 // With FastISel active, we may be splitting blocks, so force creation 7763 // of virtual registers for all non-dead arguments. 7764 if (FastISel) 7765 return A->use_empty(); 7766 7767 const BasicBlock &Entry = A->getParent()->front(); 7768 for (const User *U : A->users()) 7769 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7770 return false; // Use not in entry block. 7771 7772 return true; 7773 } 7774 7775 void SelectionDAGISel::LowerArguments(const Function &F) { 7776 SelectionDAG &DAG = SDB->DAG; 7777 SDLoc dl = SDB->getCurSDLoc(); 7778 const DataLayout &DL = DAG.getDataLayout(); 7779 SmallVector<ISD::InputArg, 16> Ins; 7780 7781 if (!FuncInfo->CanLowerReturn) { 7782 // Put in an sret pointer parameter before all the other parameters. 7783 SmallVector<EVT, 1> ValueVTs; 7784 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7785 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7786 7787 // NOTE: Assuming that a pointer will never break down to more than one VT 7788 // or one register. 7789 ISD::ArgFlagsTy Flags; 7790 Flags.setSRet(); 7791 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7792 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7793 ISD::InputArg::NoArgIndex, 0); 7794 Ins.push_back(RetArg); 7795 } 7796 7797 // Set up the incoming argument description vector. 7798 unsigned Idx = 1; 7799 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7800 I != E; ++I, ++Idx) { 7801 SmallVector<EVT, 4> ValueVTs; 7802 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7803 bool isArgValueUsed = !I->use_empty(); 7804 unsigned PartBase = 0; 7805 Type *FinalType = I->getType(); 7806 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7807 FinalType = cast<PointerType>(FinalType)->getElementType(); 7808 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7809 FinalType, F.getCallingConv(), F.isVarArg()); 7810 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7811 Value != NumValues; ++Value) { 7812 EVT VT = ValueVTs[Value]; 7813 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7814 ISD::ArgFlagsTy Flags; 7815 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7816 7817 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7818 Flags.setZExt(); 7819 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7820 Flags.setSExt(); 7821 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7822 Flags.setInReg(); 7823 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7824 Flags.setSRet(); 7825 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 7826 Flags.setSwiftSelf(); 7827 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 7828 Flags.setSwiftError(); 7829 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7830 Flags.setByVal(); 7831 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7832 Flags.setInAlloca(); 7833 // Set the byval flag for CCAssignFn callbacks that don't know about 7834 // inalloca. This way we can know how many bytes we should've allocated 7835 // and how many bytes a callee cleanup function will pop. If we port 7836 // inalloca to more targets, we'll have to add custom inalloca handling 7837 // in the various CC lowering callbacks. 7838 Flags.setByVal(); 7839 } 7840 if (F.getCallingConv() == CallingConv::X86_INTR) { 7841 // IA Interrupt passes frame (1st parameter) by value in the stack. 7842 if (Idx == 1) 7843 Flags.setByVal(); 7844 } 7845 if (Flags.isByVal() || Flags.isInAlloca()) { 7846 PointerType *Ty = cast<PointerType>(I->getType()); 7847 Type *ElementTy = Ty->getElementType(); 7848 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7849 // For ByVal, alignment should be passed from FE. BE will guess if 7850 // this info is not there but there are cases it cannot get right. 7851 unsigned FrameAlign; 7852 if (F.getParamAlignment(Idx)) 7853 FrameAlign = F.getParamAlignment(Idx); 7854 else 7855 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7856 Flags.setByValAlign(FrameAlign); 7857 } 7858 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7859 Flags.setNest(); 7860 if (NeedsRegBlock) 7861 Flags.setInConsecutiveRegs(); 7862 Flags.setOrigAlign(OriginalAlignment); 7863 7864 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7865 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7866 for (unsigned i = 0; i != NumRegs; ++i) { 7867 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7868 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7869 if (NumRegs > 1 && i == 0) 7870 MyFlags.Flags.setSplit(); 7871 // if it isn't first piece, alignment must be 1 7872 else if (i > 0) { 7873 MyFlags.Flags.setOrigAlign(1); 7874 if (i == NumRegs - 1) 7875 MyFlags.Flags.setSplitEnd(); 7876 } 7877 Ins.push_back(MyFlags); 7878 } 7879 if (NeedsRegBlock && Value == NumValues - 1) 7880 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7881 PartBase += VT.getStoreSize(); 7882 } 7883 } 7884 7885 // Call the target to set up the argument values. 7886 SmallVector<SDValue, 8> InVals; 7887 SDValue NewRoot = TLI->LowerFormalArguments( 7888 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7889 7890 // Verify that the target's LowerFormalArguments behaved as expected. 7891 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7892 "LowerFormalArguments didn't return a valid chain!"); 7893 assert(InVals.size() == Ins.size() && 7894 "LowerFormalArguments didn't emit the correct number of values!"); 7895 DEBUG({ 7896 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7897 assert(InVals[i].getNode() && 7898 "LowerFormalArguments emitted a null value!"); 7899 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7900 "LowerFormalArguments emitted a value with the wrong type!"); 7901 } 7902 }); 7903 7904 // Update the DAG with the new chain value resulting from argument lowering. 7905 DAG.setRoot(NewRoot); 7906 7907 // Set up the argument values. 7908 unsigned i = 0; 7909 Idx = 1; 7910 if (!FuncInfo->CanLowerReturn) { 7911 // Create a virtual register for the sret pointer, and put in a copy 7912 // from the sret argument into it. 7913 SmallVector<EVT, 1> ValueVTs; 7914 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7915 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7916 MVT VT = ValueVTs[0].getSimpleVT(); 7917 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7918 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7919 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7920 RegVT, VT, nullptr, AssertOp); 7921 7922 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7923 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7924 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7925 FuncInfo->DemoteRegister = SRetReg; 7926 NewRoot = 7927 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7928 DAG.setRoot(NewRoot); 7929 7930 // i indexes lowered arguments. Bump it past the hidden sret argument. 7931 // Idx indexes LLVM arguments. Don't touch it. 7932 ++i; 7933 } 7934 7935 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7936 ++I, ++Idx) { 7937 SmallVector<SDValue, 4> ArgValues; 7938 SmallVector<EVT, 4> ValueVTs; 7939 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7940 unsigned NumValues = ValueVTs.size(); 7941 7942 // If this argument is unused then remember its value. It is used to generate 7943 // debugging information. 7944 if (I->use_empty() && NumValues) { 7945 SDB->setUnusedArgValue(&*I, InVals[i]); 7946 7947 // Also remember any frame index for use in FastISel. 7948 if (FrameIndexSDNode *FI = 7949 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7950 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7951 } 7952 7953 for (unsigned Val = 0; Val != NumValues; ++Val) { 7954 EVT VT = ValueVTs[Val]; 7955 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7956 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7957 7958 if (!I->use_empty()) { 7959 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7960 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7961 AssertOp = ISD::AssertSext; 7962 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7963 AssertOp = ISD::AssertZext; 7964 7965 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7966 NumParts, PartVT, VT, 7967 nullptr, AssertOp)); 7968 } 7969 7970 i += NumParts; 7971 } 7972 7973 // We don't need to do anything else for unused arguments. 7974 if (ArgValues.empty()) 7975 continue; 7976 7977 // Note down frame index. 7978 if (FrameIndexSDNode *FI = 7979 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7980 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7981 7982 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7983 SDB->getCurSDLoc()); 7984 7985 SDB->setValue(&*I, Res); 7986 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7987 if (LoadSDNode *LNode = 7988 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7989 if (FrameIndexSDNode *FI = 7990 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7991 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7992 } 7993 7994 // Update SwiftErrorMap. 7995 if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() && 7996 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) { 7997 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7998 if (TargetRegisterInfo::isVirtualRegister(Reg)) 7999 FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg; 8000 } 8001 8002 // If this argument is live outside of the entry block, insert a copy from 8003 // wherever we got it to the vreg that other BB's will reference it as. 8004 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8005 // If we can, though, try to skip creating an unnecessary vreg. 8006 // FIXME: This isn't very clean... it would be nice to make this more 8007 // general. It's also subtly incompatible with the hacks FastISel 8008 // uses with vregs. 8009 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8010 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8011 FuncInfo->ValueMap[&*I] = Reg; 8012 continue; 8013 } 8014 } 8015 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8016 FuncInfo->InitializeRegForValue(&*I); 8017 SDB->CopyToExportRegsIfNeeded(&*I); 8018 } 8019 } 8020 8021 assert(i == InVals.size() && "Argument register count mismatch!"); 8022 8023 // Finally, if the target has anything special to do, allow it to do so. 8024 EmitFunctionEntryCode(); 8025 } 8026 8027 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8028 /// ensure constants are generated when needed. Remember the virtual registers 8029 /// that need to be added to the Machine PHI nodes as input. We cannot just 8030 /// directly add them, because expansion might result in multiple MBB's for one 8031 /// BB. As such, the start of the BB might correspond to a different MBB than 8032 /// the end. 8033 /// 8034 void 8035 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8036 const TerminatorInst *TI = LLVMBB->getTerminator(); 8037 8038 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8039 8040 // Check PHI nodes in successors that expect a value to be available from this 8041 // block. 8042 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8043 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8044 if (!isa<PHINode>(SuccBB->begin())) continue; 8045 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8046 8047 // If this terminator has multiple identical successors (common for 8048 // switches), only handle each succ once. 8049 if (!SuccsHandled.insert(SuccMBB).second) 8050 continue; 8051 8052 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8053 8054 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8055 // nodes and Machine PHI nodes, but the incoming operands have not been 8056 // emitted yet. 8057 for (BasicBlock::const_iterator I = SuccBB->begin(); 8058 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8059 // Ignore dead phi's. 8060 if (PN->use_empty()) continue; 8061 8062 // Skip empty types 8063 if (PN->getType()->isEmptyTy()) 8064 continue; 8065 8066 unsigned Reg; 8067 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8068 8069 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8070 unsigned &RegOut = ConstantsOut[C]; 8071 if (RegOut == 0) { 8072 RegOut = FuncInfo.CreateRegs(C->getType()); 8073 CopyValueToVirtualRegister(C, RegOut); 8074 } 8075 Reg = RegOut; 8076 } else { 8077 DenseMap<const Value *, unsigned>::iterator I = 8078 FuncInfo.ValueMap.find(PHIOp); 8079 if (I != FuncInfo.ValueMap.end()) 8080 Reg = I->second; 8081 else { 8082 assert(isa<AllocaInst>(PHIOp) && 8083 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8084 "Didn't codegen value into a register!??"); 8085 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8086 CopyValueToVirtualRegister(PHIOp, Reg); 8087 } 8088 } 8089 8090 // Remember that this register needs to added to the machine PHI node as 8091 // the input for this MBB. 8092 SmallVector<EVT, 4> ValueVTs; 8093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8094 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8095 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8096 EVT VT = ValueVTs[vti]; 8097 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8098 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8099 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 8100 Reg += NumRegisters; 8101 } 8102 } 8103 } 8104 8105 ConstantsOut.clear(); 8106 } 8107 8108 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8109 /// is 0. 8110 MachineBasicBlock * 8111 SelectionDAGBuilder::StackProtectorDescriptor:: 8112 AddSuccessorMBB(const BasicBlock *BB, 8113 MachineBasicBlock *ParentMBB, 8114 bool IsLikely, 8115 MachineBasicBlock *SuccMBB) { 8116 // If SuccBB has not been created yet, create it. 8117 if (!SuccMBB) { 8118 MachineFunction *MF = ParentMBB->getParent(); 8119 MachineFunction::iterator BBI(ParentMBB); 8120 SuccMBB = MF->CreateMachineBasicBlock(BB); 8121 MF->insert(++BBI, SuccMBB); 8122 } 8123 // Add it as a successor of ParentMBB. 8124 ParentMBB->addSuccessor( 8125 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8126 return SuccMBB; 8127 } 8128 8129 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8130 MachineFunction::iterator I(MBB); 8131 if (++I == FuncInfo.MF->end()) 8132 return nullptr; 8133 return &*I; 8134 } 8135 8136 /// During lowering new call nodes can be created (such as memset, etc.). 8137 /// Those will become new roots of the current DAG, but complications arise 8138 /// when they are tail calls. In such cases, the call lowering will update 8139 /// the root, but the builder still needs to know that a tail call has been 8140 /// lowered in order to avoid generating an additional return. 8141 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8142 // If the node is null, we do have a tail call. 8143 if (MaybeTC.getNode() != nullptr) 8144 DAG.setRoot(MaybeTC); 8145 else 8146 HasTailCall = true; 8147 } 8148 8149 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8150 unsigned *TotalCases, unsigned First, 8151 unsigned Last, 8152 unsigned Density) { 8153 assert(Last >= First); 8154 assert(TotalCases[Last] >= TotalCases[First]); 8155 8156 APInt LowCase = Clusters[First].Low->getValue(); 8157 APInt HighCase = Clusters[Last].High->getValue(); 8158 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8159 8160 // FIXME: A range of consecutive cases has 100% density, but only requires one 8161 // comparison to lower. We should discriminate against such consecutive ranges 8162 // in jump tables. 8163 8164 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8165 uint64_t Range = Diff + 1; 8166 8167 uint64_t NumCases = 8168 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8169 8170 assert(NumCases < UINT64_MAX / 100); 8171 assert(Range >= NumCases); 8172 8173 return NumCases * 100 >= Range * Density; 8174 } 8175 8176 static inline bool areJTsAllowed(const TargetLowering &TLI, 8177 const SwitchInst *SI) { 8178 const Function *Fn = SI->getParent()->getParent(); 8179 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8180 return false; 8181 8182 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8183 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8184 } 8185 8186 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 8187 unsigned First, unsigned Last, 8188 const SwitchInst *SI, 8189 MachineBasicBlock *DefaultMBB, 8190 CaseCluster &JTCluster) { 8191 assert(First <= Last); 8192 8193 auto Prob = BranchProbability::getZero(); 8194 unsigned NumCmps = 0; 8195 std::vector<MachineBasicBlock*> Table; 8196 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8197 8198 // Initialize probabilities in JTProbs. 8199 for (unsigned I = First; I <= Last; ++I) 8200 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8201 8202 for (unsigned I = First; I <= Last; ++I) { 8203 assert(Clusters[I].Kind == CC_Range); 8204 Prob += Clusters[I].Prob; 8205 APInt Low = Clusters[I].Low->getValue(); 8206 APInt High = Clusters[I].High->getValue(); 8207 NumCmps += (Low == High) ? 1 : 2; 8208 if (I != First) { 8209 // Fill the gap between this and the previous cluster. 8210 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 8211 assert(PreviousHigh.slt(Low)); 8212 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8213 for (uint64_t J = 0; J < Gap; J++) 8214 Table.push_back(DefaultMBB); 8215 } 8216 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8217 for (uint64_t J = 0; J < ClusterSize; ++J) 8218 Table.push_back(Clusters[I].MBB); 8219 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8220 } 8221 8222 unsigned NumDests = JTProbs.size(); 8223 if (isSuitableForBitTests(NumDests, NumCmps, 8224 Clusters[First].Low->getValue(), 8225 Clusters[Last].High->getValue())) { 8226 // Clusters[First..Last] should be lowered as bit tests instead. 8227 return false; 8228 } 8229 8230 // Create the MBB that will load from and jump through the table. 8231 // Note: We create it here, but it's not inserted into the function yet. 8232 MachineFunction *CurMF = FuncInfo.MF; 8233 MachineBasicBlock *JumpTableMBB = 8234 CurMF->CreateMachineBasicBlock(SI->getParent()); 8235 8236 // Add successors. Note: use table order for determinism. 8237 SmallPtrSet<MachineBasicBlock *, 8> Done; 8238 for (MachineBasicBlock *Succ : Table) { 8239 if (Done.count(Succ)) 8240 continue; 8241 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8242 Done.insert(Succ); 8243 } 8244 JumpTableMBB->normalizeSuccProbs(); 8245 8246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8247 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8248 ->createJumpTableIndex(Table); 8249 8250 // Set up the jump table info. 8251 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8252 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8253 Clusters[Last].High->getValue(), SI->getCondition(), 8254 nullptr, false); 8255 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8256 8257 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8258 JTCases.size() - 1, Prob); 8259 return true; 8260 } 8261 8262 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8263 const SwitchInst *SI, 8264 MachineBasicBlock *DefaultMBB) { 8265 #ifndef NDEBUG 8266 // Clusters must be non-empty, sorted, and only contain Range clusters. 8267 assert(!Clusters.empty()); 8268 for (CaseCluster &C : Clusters) 8269 assert(C.Kind == CC_Range); 8270 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8271 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8272 #endif 8273 8274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8275 if (!areJTsAllowed(TLI, SI)) 8276 return; 8277 8278 const int64_t N = Clusters.size(); 8279 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8280 8281 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8282 SmallVector<unsigned, 8> TotalCases(N); 8283 8284 for (unsigned i = 0; i < N; ++i) { 8285 APInt Hi = Clusters[i].High->getValue(); 8286 APInt Lo = Clusters[i].Low->getValue(); 8287 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8288 if (i != 0) 8289 TotalCases[i] += TotalCases[i - 1]; 8290 } 8291 8292 unsigned MinDensity = JumpTableDensity; 8293 if (DefaultMBB->getParent()->getFunction()->optForSize()) 8294 MinDensity = OptsizeJumpTableDensity; 8295 if (N >= MinJumpTableSize 8296 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) { 8297 // Cheap case: the whole range might be suitable for jump table. 8298 CaseCluster JTCluster; 8299 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8300 Clusters[0] = JTCluster; 8301 Clusters.resize(1); 8302 return; 8303 } 8304 } 8305 8306 // The algorithm below is not suitable for -O0. 8307 if (TM.getOptLevel() == CodeGenOpt::None) 8308 return; 8309 8310 // Split Clusters into minimum number of dense partitions. The algorithm uses 8311 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8312 // for the Case Statement'" (1994), but builds the MinPartitions array in 8313 // reverse order to make it easier to reconstruct the partitions in ascending 8314 // order. In the choice between two optimal partitionings, it picks the one 8315 // which yields more jump tables. 8316 8317 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8318 SmallVector<unsigned, 8> MinPartitions(N); 8319 // LastElement[i] is the last element of the partition starting at i. 8320 SmallVector<unsigned, 8> LastElement(N); 8321 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8322 SmallVector<unsigned, 8> NumTables(N); 8323 8324 // Base case: There is only one way to partition Clusters[N-1]. 8325 MinPartitions[N - 1] = 1; 8326 LastElement[N - 1] = N - 1; 8327 assert(MinJumpTableSize > 1); 8328 NumTables[N - 1] = 0; 8329 8330 // Note: loop indexes are signed to avoid underflow. 8331 for (int64_t i = N - 2; i >= 0; i--) { 8332 // Find optimal partitioning of Clusters[i..N-1]. 8333 // Baseline: Put Clusters[i] into a partition on its own. 8334 MinPartitions[i] = MinPartitions[i + 1] + 1; 8335 LastElement[i] = i; 8336 NumTables[i] = NumTables[i + 1]; 8337 8338 // Search for a solution that results in fewer partitions. 8339 for (int64_t j = N - 1; j > i; j--) { 8340 // Try building a partition from Clusters[i..j]. 8341 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) { 8342 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8343 bool IsTable = j - i + 1 >= MinJumpTableSize; 8344 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8345 8346 // If this j leads to fewer partitions, or same number of partitions 8347 // with more lookup tables, it is a better partitioning. 8348 if (NumPartitions < MinPartitions[i] || 8349 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8350 MinPartitions[i] = NumPartitions; 8351 LastElement[i] = j; 8352 NumTables[i] = Tables; 8353 } 8354 } 8355 } 8356 } 8357 8358 // Iterate over the partitions, replacing some with jump tables in-place. 8359 unsigned DstIndex = 0; 8360 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8361 Last = LastElement[First]; 8362 assert(Last >= First); 8363 assert(DstIndex <= First); 8364 unsigned NumClusters = Last - First + 1; 8365 8366 CaseCluster JTCluster; 8367 if (NumClusters >= MinJumpTableSize && 8368 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8369 Clusters[DstIndex++] = JTCluster; 8370 } else { 8371 for (unsigned I = First; I <= Last; ++I) 8372 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8373 } 8374 } 8375 Clusters.resize(DstIndex); 8376 } 8377 8378 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8379 // FIXME: Using the pointer type doesn't seem ideal. 8380 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8381 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8382 return Range <= BW; 8383 } 8384 8385 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8386 unsigned NumCmps, 8387 const APInt &Low, 8388 const APInt &High) { 8389 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8390 // range of cases both require only one branch to lower. Just looking at the 8391 // number of clusters and destinations should be enough to decide whether to 8392 // build bit tests. 8393 8394 // To lower a range with bit tests, the range must fit the bitwidth of a 8395 // machine word. 8396 if (!rangeFitsInWord(Low, High)) 8397 return false; 8398 8399 // Decide whether it's profitable to lower this range with bit tests. Each 8400 // destination requires a bit test and branch, and there is an overall range 8401 // check branch. For a small number of clusters, separate comparisons might be 8402 // cheaper, and for many destinations, splitting the range might be better. 8403 return (NumDests == 1 && NumCmps >= 3) || 8404 (NumDests == 2 && NumCmps >= 5) || 8405 (NumDests == 3 && NumCmps >= 6); 8406 } 8407 8408 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8409 unsigned First, unsigned Last, 8410 const SwitchInst *SI, 8411 CaseCluster &BTCluster) { 8412 assert(First <= Last); 8413 if (First == Last) 8414 return false; 8415 8416 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8417 unsigned NumCmps = 0; 8418 for (int64_t I = First; I <= Last; ++I) { 8419 assert(Clusters[I].Kind == CC_Range); 8420 Dests.set(Clusters[I].MBB->getNumber()); 8421 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8422 } 8423 unsigned NumDests = Dests.count(); 8424 8425 APInt Low = Clusters[First].Low->getValue(); 8426 APInt High = Clusters[Last].High->getValue(); 8427 assert(Low.slt(High)); 8428 8429 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8430 return false; 8431 8432 APInt LowBound; 8433 APInt CmpRange; 8434 8435 const int BitWidth = DAG.getTargetLoweringInfo() 8436 .getPointerTy(DAG.getDataLayout()) 8437 .getSizeInBits(); 8438 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8439 8440 // Check if the clusters cover a contiguous range such that no value in the 8441 // range will jump to the default statement. 8442 bool ContiguousRange = true; 8443 for (int64_t I = First + 1; I <= Last; ++I) { 8444 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8445 ContiguousRange = false; 8446 break; 8447 } 8448 } 8449 8450 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8451 // Optimize the case where all the case values fit in a word without having 8452 // to subtract minValue. In this case, we can optimize away the subtraction. 8453 LowBound = APInt::getNullValue(Low.getBitWidth()); 8454 CmpRange = High; 8455 ContiguousRange = false; 8456 } else { 8457 LowBound = Low; 8458 CmpRange = High - Low; 8459 } 8460 8461 CaseBitsVector CBV; 8462 auto TotalProb = BranchProbability::getZero(); 8463 for (unsigned i = First; i <= Last; ++i) { 8464 // Find the CaseBits for this destination. 8465 unsigned j; 8466 for (j = 0; j < CBV.size(); ++j) 8467 if (CBV[j].BB == Clusters[i].MBB) 8468 break; 8469 if (j == CBV.size()) 8470 CBV.push_back( 8471 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8472 CaseBits *CB = &CBV[j]; 8473 8474 // Update Mask, Bits and ExtraProb. 8475 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8476 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8477 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8478 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8479 CB->Bits += Hi - Lo + 1; 8480 CB->ExtraProb += Clusters[i].Prob; 8481 TotalProb += Clusters[i].Prob; 8482 } 8483 8484 BitTestInfo BTI; 8485 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8486 // Sort by probability first, number of bits second. 8487 if (a.ExtraProb != b.ExtraProb) 8488 return a.ExtraProb > b.ExtraProb; 8489 return a.Bits > b.Bits; 8490 }); 8491 8492 for (auto &CB : CBV) { 8493 MachineBasicBlock *BitTestBB = 8494 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8495 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8496 } 8497 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8498 SI->getCondition(), -1U, MVT::Other, false, 8499 ContiguousRange, nullptr, nullptr, std::move(BTI), 8500 TotalProb); 8501 8502 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8503 BitTestCases.size() - 1, TotalProb); 8504 return true; 8505 } 8506 8507 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8508 const SwitchInst *SI) { 8509 // Partition Clusters into as few subsets as possible, where each subset has a 8510 // range that fits in a machine word and has <= 3 unique destinations. 8511 8512 #ifndef NDEBUG 8513 // Clusters must be sorted and contain Range or JumpTable clusters. 8514 assert(!Clusters.empty()); 8515 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8516 for (const CaseCluster &C : Clusters) 8517 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8518 for (unsigned i = 1; i < Clusters.size(); ++i) 8519 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8520 #endif 8521 8522 // The algorithm below is not suitable for -O0. 8523 if (TM.getOptLevel() == CodeGenOpt::None) 8524 return; 8525 8526 // If target does not have legal shift left, do not emit bit tests at all. 8527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8528 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8529 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8530 return; 8531 8532 int BitWidth = PTy.getSizeInBits(); 8533 const int64_t N = Clusters.size(); 8534 8535 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8536 SmallVector<unsigned, 8> MinPartitions(N); 8537 // LastElement[i] is the last element of the partition starting at i. 8538 SmallVector<unsigned, 8> LastElement(N); 8539 8540 // FIXME: This might not be the best algorithm for finding bit test clusters. 8541 8542 // Base case: There is only one way to partition Clusters[N-1]. 8543 MinPartitions[N - 1] = 1; 8544 LastElement[N - 1] = N - 1; 8545 8546 // Note: loop indexes are signed to avoid underflow. 8547 for (int64_t i = N - 2; i >= 0; --i) { 8548 // Find optimal partitioning of Clusters[i..N-1]. 8549 // Baseline: Put Clusters[i] into a partition on its own. 8550 MinPartitions[i] = MinPartitions[i + 1] + 1; 8551 LastElement[i] = i; 8552 8553 // Search for a solution that results in fewer partitions. 8554 // Note: the search is limited by BitWidth, reducing time complexity. 8555 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8556 // Try building a partition from Clusters[i..j]. 8557 8558 // Check the range. 8559 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8560 Clusters[j].High->getValue())) 8561 continue; 8562 8563 // Check nbr of destinations and cluster types. 8564 // FIXME: This works, but doesn't seem very efficient. 8565 bool RangesOnly = true; 8566 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8567 for (int64_t k = i; k <= j; k++) { 8568 if (Clusters[k].Kind != CC_Range) { 8569 RangesOnly = false; 8570 break; 8571 } 8572 Dests.set(Clusters[k].MBB->getNumber()); 8573 } 8574 if (!RangesOnly || Dests.count() > 3) 8575 break; 8576 8577 // Check if it's a better partition. 8578 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8579 if (NumPartitions < MinPartitions[i]) { 8580 // Found a better partition. 8581 MinPartitions[i] = NumPartitions; 8582 LastElement[i] = j; 8583 } 8584 } 8585 } 8586 8587 // Iterate over the partitions, replacing with bit-test clusters in-place. 8588 unsigned DstIndex = 0; 8589 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8590 Last = LastElement[First]; 8591 assert(First <= Last); 8592 assert(DstIndex <= First); 8593 8594 CaseCluster BitTestCluster; 8595 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8596 Clusters[DstIndex++] = BitTestCluster; 8597 } else { 8598 size_t NumClusters = Last - First + 1; 8599 std::memmove(&Clusters[DstIndex], &Clusters[First], 8600 sizeof(Clusters[0]) * NumClusters); 8601 DstIndex += NumClusters; 8602 } 8603 } 8604 Clusters.resize(DstIndex); 8605 } 8606 8607 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8608 MachineBasicBlock *SwitchMBB, 8609 MachineBasicBlock *DefaultMBB) { 8610 MachineFunction *CurMF = FuncInfo.MF; 8611 MachineBasicBlock *NextMBB = nullptr; 8612 MachineFunction::iterator BBI(W.MBB); 8613 if (++BBI != FuncInfo.MF->end()) 8614 NextMBB = &*BBI; 8615 8616 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8617 8618 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8619 8620 if (Size == 2 && W.MBB == SwitchMBB) { 8621 // If any two of the cases has the same destination, and if one value 8622 // is the same as the other, but has one bit unset that the other has set, 8623 // use bit manipulation to do two compares at once. For example: 8624 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8625 // TODO: This could be extended to merge any 2 cases in switches with 3 8626 // cases. 8627 // TODO: Handle cases where W.CaseBB != SwitchBB. 8628 CaseCluster &Small = *W.FirstCluster; 8629 CaseCluster &Big = *W.LastCluster; 8630 8631 if (Small.Low == Small.High && Big.Low == Big.High && 8632 Small.MBB == Big.MBB) { 8633 const APInt &SmallValue = Small.Low->getValue(); 8634 const APInt &BigValue = Big.Low->getValue(); 8635 8636 // Check that there is only one bit different. 8637 APInt CommonBit = BigValue ^ SmallValue; 8638 if (CommonBit.isPowerOf2()) { 8639 SDValue CondLHS = getValue(Cond); 8640 EVT VT = CondLHS.getValueType(); 8641 SDLoc DL = getCurSDLoc(); 8642 8643 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8644 DAG.getConstant(CommonBit, DL, VT)); 8645 SDValue Cond = DAG.getSetCC( 8646 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8647 ISD::SETEQ); 8648 8649 // Update successor info. 8650 // Both Small and Big will jump to Small.BB, so we sum up the 8651 // probabilities. 8652 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8653 if (BPI) 8654 addSuccessorWithProb( 8655 SwitchMBB, DefaultMBB, 8656 // The default destination is the first successor in IR. 8657 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8658 else 8659 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8660 8661 // Insert the true branch. 8662 SDValue BrCond = 8663 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8664 DAG.getBasicBlock(Small.MBB)); 8665 // Insert the false branch. 8666 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8667 DAG.getBasicBlock(DefaultMBB)); 8668 8669 DAG.setRoot(BrCond); 8670 return; 8671 } 8672 } 8673 } 8674 8675 if (TM.getOptLevel() != CodeGenOpt::None) { 8676 // Order cases by probability so the most likely case will be checked first. 8677 std::sort(W.FirstCluster, W.LastCluster + 1, 8678 [](const CaseCluster &a, const CaseCluster &b) { 8679 return a.Prob > b.Prob; 8680 }); 8681 8682 // Rearrange the case blocks so that the last one falls through if possible 8683 // without without changing the order of probabilities. 8684 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8685 --I; 8686 if (I->Prob > W.LastCluster->Prob) 8687 break; 8688 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8689 std::swap(*I, *W.LastCluster); 8690 break; 8691 } 8692 } 8693 } 8694 8695 // Compute total probability. 8696 BranchProbability DefaultProb = W.DefaultProb; 8697 BranchProbability UnhandledProbs = DefaultProb; 8698 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8699 UnhandledProbs += I->Prob; 8700 8701 MachineBasicBlock *CurMBB = W.MBB; 8702 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8703 MachineBasicBlock *Fallthrough; 8704 if (I == W.LastCluster) { 8705 // For the last cluster, fall through to the default destination. 8706 Fallthrough = DefaultMBB; 8707 } else { 8708 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8709 CurMF->insert(BBI, Fallthrough); 8710 // Put Cond in a virtual register to make it available from the new blocks. 8711 ExportFromCurrentBlock(Cond); 8712 } 8713 UnhandledProbs -= I->Prob; 8714 8715 switch (I->Kind) { 8716 case CC_JumpTable: { 8717 // FIXME: Optimize away range check based on pivot comparisons. 8718 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8719 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8720 8721 // The jump block hasn't been inserted yet; insert it here. 8722 MachineBasicBlock *JumpMBB = JT->MBB; 8723 CurMF->insert(BBI, JumpMBB); 8724 8725 auto JumpProb = I->Prob; 8726 auto FallthroughProb = UnhandledProbs; 8727 8728 // If the default statement is a target of the jump table, we evenly 8729 // distribute the default probability to successors of CurMBB. Also 8730 // update the probability on the edge from JumpMBB to Fallthrough. 8731 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8732 SE = JumpMBB->succ_end(); 8733 SI != SE; ++SI) { 8734 if (*SI == DefaultMBB) { 8735 JumpProb += DefaultProb / 2; 8736 FallthroughProb -= DefaultProb / 2; 8737 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8738 JumpMBB->normalizeSuccProbs(); 8739 break; 8740 } 8741 } 8742 8743 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8744 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8745 CurMBB->normalizeSuccProbs(); 8746 8747 // The jump table header will be inserted in our current block, do the 8748 // range check, and fall through to our fallthrough block. 8749 JTH->HeaderBB = CurMBB; 8750 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8751 8752 // If we're in the right place, emit the jump table header right now. 8753 if (CurMBB == SwitchMBB) { 8754 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8755 JTH->Emitted = true; 8756 } 8757 break; 8758 } 8759 case CC_BitTests: { 8760 // FIXME: Optimize away range check based on pivot comparisons. 8761 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8762 8763 // The bit test blocks haven't been inserted yet; insert them here. 8764 for (BitTestCase &BTC : BTB->Cases) 8765 CurMF->insert(BBI, BTC.ThisBB); 8766 8767 // Fill in fields of the BitTestBlock. 8768 BTB->Parent = CurMBB; 8769 BTB->Default = Fallthrough; 8770 8771 BTB->DefaultProb = UnhandledProbs; 8772 // If the cases in bit test don't form a contiguous range, we evenly 8773 // distribute the probability on the edge to Fallthrough to two 8774 // successors of CurMBB. 8775 if (!BTB->ContiguousRange) { 8776 BTB->Prob += DefaultProb / 2; 8777 BTB->DefaultProb -= DefaultProb / 2; 8778 } 8779 8780 // If we're in the right place, emit the bit test header right now. 8781 if (CurMBB == SwitchMBB) { 8782 visitBitTestHeader(*BTB, SwitchMBB); 8783 BTB->Emitted = true; 8784 } 8785 break; 8786 } 8787 case CC_Range: { 8788 const Value *RHS, *LHS, *MHS; 8789 ISD::CondCode CC; 8790 if (I->Low == I->High) { 8791 // Check Cond == I->Low. 8792 CC = ISD::SETEQ; 8793 LHS = Cond; 8794 RHS=I->Low; 8795 MHS = nullptr; 8796 } else { 8797 // Check I->Low <= Cond <= I->High. 8798 CC = ISD::SETLE; 8799 LHS = I->Low; 8800 MHS = Cond; 8801 RHS = I->High; 8802 } 8803 8804 // The false probability is the sum of all unhandled cases. 8805 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8806 UnhandledProbs); 8807 8808 if (CurMBB == SwitchMBB) 8809 visitSwitchCase(CB, SwitchMBB); 8810 else 8811 SwitchCases.push_back(CB); 8812 8813 break; 8814 } 8815 } 8816 CurMBB = Fallthrough; 8817 } 8818 } 8819 8820 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8821 CaseClusterIt First, 8822 CaseClusterIt Last) { 8823 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8824 if (X.Prob != CC.Prob) 8825 return X.Prob > CC.Prob; 8826 8827 // Ties are broken by comparing the case value. 8828 return X.Low->getValue().slt(CC.Low->getValue()); 8829 }); 8830 } 8831 8832 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8833 const SwitchWorkListItem &W, 8834 Value *Cond, 8835 MachineBasicBlock *SwitchMBB) { 8836 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8837 "Clusters not sorted?"); 8838 8839 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8840 8841 // Balance the tree based on branch probabilities to create a near-optimal (in 8842 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8843 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8844 CaseClusterIt LastLeft = W.FirstCluster; 8845 CaseClusterIt FirstRight = W.LastCluster; 8846 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8847 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8848 8849 // Move LastLeft and FirstRight towards each other from opposite directions to 8850 // find a partitioning of the clusters which balances the probability on both 8851 // sides. If LeftProb and RightProb are equal, alternate which side is 8852 // taken to ensure 0-probability nodes are distributed evenly. 8853 unsigned I = 0; 8854 while (LastLeft + 1 < FirstRight) { 8855 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8856 LeftProb += (++LastLeft)->Prob; 8857 else 8858 RightProb += (--FirstRight)->Prob; 8859 I++; 8860 } 8861 8862 for (;;) { 8863 // Our binary search tree differs from a typical BST in that ours can have up 8864 // to three values in each leaf. The pivot selection above doesn't take that 8865 // into account, which means the tree might require more nodes and be less 8866 // efficient. We compensate for this here. 8867 8868 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8869 unsigned NumRight = W.LastCluster - FirstRight + 1; 8870 8871 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8872 // If one side has less than 3 clusters, and the other has more than 3, 8873 // consider taking a cluster from the other side. 8874 8875 if (NumLeft < NumRight) { 8876 // Consider moving the first cluster on the right to the left side. 8877 CaseCluster &CC = *FirstRight; 8878 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8879 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8880 if (LeftSideRank <= RightSideRank) { 8881 // Moving the cluster to the left does not demote it. 8882 ++LastLeft; 8883 ++FirstRight; 8884 continue; 8885 } 8886 } else { 8887 assert(NumRight < NumLeft); 8888 // Consider moving the last element on the left to the right side. 8889 CaseCluster &CC = *LastLeft; 8890 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8891 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8892 if (RightSideRank <= LeftSideRank) { 8893 // Moving the cluster to the right does not demot it. 8894 --LastLeft; 8895 --FirstRight; 8896 continue; 8897 } 8898 } 8899 } 8900 break; 8901 } 8902 8903 assert(LastLeft + 1 == FirstRight); 8904 assert(LastLeft >= W.FirstCluster); 8905 assert(FirstRight <= W.LastCluster); 8906 8907 // Use the first element on the right as pivot since we will make less-than 8908 // comparisons against it. 8909 CaseClusterIt PivotCluster = FirstRight; 8910 assert(PivotCluster > W.FirstCluster); 8911 assert(PivotCluster <= W.LastCluster); 8912 8913 CaseClusterIt FirstLeft = W.FirstCluster; 8914 CaseClusterIt LastRight = W.LastCluster; 8915 8916 const ConstantInt *Pivot = PivotCluster->Low; 8917 8918 // New blocks will be inserted immediately after the current one. 8919 MachineFunction::iterator BBI(W.MBB); 8920 ++BBI; 8921 8922 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8923 // we can branch to its destination directly if it's squeezed exactly in 8924 // between the known lower bound and Pivot - 1. 8925 MachineBasicBlock *LeftMBB; 8926 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8927 FirstLeft->Low == W.GE && 8928 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8929 LeftMBB = FirstLeft->MBB; 8930 } else { 8931 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8932 FuncInfo.MF->insert(BBI, LeftMBB); 8933 WorkList.push_back( 8934 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8935 // Put Cond in a virtual register to make it available from the new blocks. 8936 ExportFromCurrentBlock(Cond); 8937 } 8938 8939 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8940 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8941 // directly if RHS.High equals the current upper bound. 8942 MachineBasicBlock *RightMBB; 8943 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8944 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8945 RightMBB = FirstRight->MBB; 8946 } else { 8947 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8948 FuncInfo.MF->insert(BBI, RightMBB); 8949 WorkList.push_back( 8950 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8951 // Put Cond in a virtual register to make it available from the new blocks. 8952 ExportFromCurrentBlock(Cond); 8953 } 8954 8955 // Create the CaseBlock record that will be used to lower the branch. 8956 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8957 LeftProb, RightProb); 8958 8959 if (W.MBB == SwitchMBB) 8960 visitSwitchCase(CB, SwitchMBB); 8961 else 8962 SwitchCases.push_back(CB); 8963 } 8964 8965 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8966 // Extract cases from the switch. 8967 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8968 CaseClusterVector Clusters; 8969 Clusters.reserve(SI.getNumCases()); 8970 for (auto I : SI.cases()) { 8971 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8972 const ConstantInt *CaseVal = I.getCaseValue(); 8973 BranchProbability Prob = 8974 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8975 : BranchProbability(1, SI.getNumCases() + 1); 8976 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8977 } 8978 8979 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8980 8981 // Cluster adjacent cases with the same destination. We do this at all 8982 // optimization levels because it's cheap to do and will make codegen faster 8983 // if there are many clusters. 8984 sortAndRangeify(Clusters); 8985 8986 if (TM.getOptLevel() != CodeGenOpt::None) { 8987 // Replace an unreachable default with the most popular destination. 8988 // FIXME: Exploit unreachable default more aggressively. 8989 bool UnreachableDefault = 8990 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8991 if (UnreachableDefault && !Clusters.empty()) { 8992 DenseMap<const BasicBlock *, unsigned> Popularity; 8993 unsigned MaxPop = 0; 8994 const BasicBlock *MaxBB = nullptr; 8995 for (auto I : SI.cases()) { 8996 const BasicBlock *BB = I.getCaseSuccessor(); 8997 if (++Popularity[BB] > MaxPop) { 8998 MaxPop = Popularity[BB]; 8999 MaxBB = BB; 9000 } 9001 } 9002 // Set new default. 9003 assert(MaxPop > 0 && MaxBB); 9004 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9005 9006 // Remove cases that were pointing to the destination that is now the 9007 // default. 9008 CaseClusterVector New; 9009 New.reserve(Clusters.size()); 9010 for (CaseCluster &CC : Clusters) { 9011 if (CC.MBB != DefaultMBB) 9012 New.push_back(CC); 9013 } 9014 Clusters = std::move(New); 9015 } 9016 } 9017 9018 // If there is only the default destination, jump there directly. 9019 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9020 if (Clusters.empty()) { 9021 SwitchMBB->addSuccessor(DefaultMBB); 9022 if (DefaultMBB != NextBlock(SwitchMBB)) { 9023 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9024 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9025 } 9026 return; 9027 } 9028 9029 findJumpTables(Clusters, &SI, DefaultMBB); 9030 findBitTestClusters(Clusters, &SI); 9031 9032 DEBUG({ 9033 dbgs() << "Case clusters: "; 9034 for (const CaseCluster &C : Clusters) { 9035 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9036 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9037 9038 C.Low->getValue().print(dbgs(), true); 9039 if (C.Low != C.High) { 9040 dbgs() << '-'; 9041 C.High->getValue().print(dbgs(), true); 9042 } 9043 dbgs() << ' '; 9044 } 9045 dbgs() << '\n'; 9046 }); 9047 9048 assert(!Clusters.empty()); 9049 SwitchWorkList WorkList; 9050 CaseClusterIt First = Clusters.begin(); 9051 CaseClusterIt Last = Clusters.end() - 1; 9052 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9053 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9054 9055 while (!WorkList.empty()) { 9056 SwitchWorkListItem W = WorkList.back(); 9057 WorkList.pop_back(); 9058 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9059 9060 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 9061 // For optimized builds, lower large range as a balanced binary tree. 9062 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9063 continue; 9064 } 9065 9066 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9067 } 9068 } 9069