1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 /// LimitFloatPrecision - Generate low-precision inline sequences for 67 /// some float libcalls (6, 8 or 12 bits). 68 static unsigned LimitFloatPrecision; 69 70 static cl::opt<unsigned, true> 71 LimitFPPrecision("limit-float-precision", 72 cl::desc("Generate low-precision inline sequences " 73 "for some float libcalls"), 74 cl::location(LimitFloatPrecision), 75 cl::init(0)); 76 77 // Limit the width of DAG chains. This is important in general to prevent 78 // prevent DAG-based analysis from blowing up. For example, alias analysis and 79 // load clustering may not complete in reasonable time. It is difficult to 80 // recognize and avoid this situation within each individual analysis, and 81 // future analyses are likely to have the same behavior. Limiting DAG width is 82 // the safe approach, and will be especially important with global DAGs. 83 // 84 // MaxParallelChains default is arbitrarily high to avoid affecting 85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 86 // sequence over this should have been converted to llvm.memcpy by the 87 // frontend. It easy to induce this behavior with .ll code such as: 88 // %buffer = alloca [4096 x i8] 89 // %data = load [4096 x i8]* %argPtr 90 // store [4096 x i8] %data, [4096 x i8]* %buffer 91 static const unsigned MaxParallelChains = 64; 92 93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 94 const SDValue *Parts, unsigned NumParts, 95 MVT PartVT, EVT ValueVT, const Value *V); 96 97 /// getCopyFromParts - Create a value that contains the specified legal parts 98 /// combined into the value they represent. If the parts combine to a type 99 /// larger then ValueVT then AssertOp can be used to specify whether the extra 100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 101 /// (ISD::AssertSext). 102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, 104 unsigned NumParts, MVT PartVT, EVT ValueVT, 105 const Value *V, 106 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 107 if (ValueVT.isVector()) 108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 109 PartVT, ValueVT, V); 110 111 assert(NumParts > 0 && "No parts to assemble!"); 112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 113 SDValue Val = Parts[0]; 114 115 if (NumParts > 1) { 116 // Assemble the value from multiple parts. 117 if (ValueVT.isInteger()) { 118 unsigned PartBits = PartVT.getSizeInBits(); 119 unsigned ValueBits = ValueVT.getSizeInBits(); 120 121 // Assemble the power of 2 part. 122 unsigned RoundParts = NumParts & (NumParts - 1) ? 123 1 << Log2_32(NumParts) : NumParts; 124 unsigned RoundBits = PartBits * RoundParts; 125 EVT RoundVT = RoundBits == ValueBits ? 126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 127 SDValue Lo, Hi; 128 129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 130 131 if (RoundParts > 2) { 132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 133 PartVT, HalfVT, V); 134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 135 RoundParts / 2, PartVT, HalfVT, V); 136 } else { 137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 139 } 140 141 if (TLI.isBigEndian()) 142 std::swap(Lo, Hi); 143 144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 145 146 if (RoundParts < NumParts) { 147 // Assemble the trailing non-power-of-2 part. 148 unsigned OddParts = NumParts - RoundParts; 149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 150 Hi = getCopyFromParts(DAG, DL, 151 Parts + RoundParts, OddParts, PartVT, OddVT, V); 152 153 // Combine the round and odd parts. 154 Lo = Val; 155 if (TLI.isBigEndian()) 156 std::swap(Lo, Hi); 157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 160 DAG.getConstant(Lo.getValueType().getSizeInBits(), 161 TLI.getPointerTy())); 162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 164 } 165 } else if (PartVT.isFloatingPoint()) { 166 // FP split into multiple FP parts (for ppcf128) 167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 168 "Unexpected split"); 169 SDValue Lo, Hi; 170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 172 if (TLI.isBigEndian()) 173 std::swap(Lo, Hi); 174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 175 } else { 176 // FP split into integer parts (soft fp) 177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 178 !PartVT.isVector() && "Unexpected split"); 179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 181 } 182 } 183 184 // There is now one part, held in Val. Correct it to match ValueVT. 185 EVT PartEVT = Val.getValueType(); 186 187 if (PartEVT == ValueVT) 188 return Val; 189 190 if (PartEVT.isInteger() && ValueVT.isInteger()) { 191 if (ValueVT.bitsLT(PartEVT)) { 192 // For a truncate, see if we have any information to 193 // indicate whether the truncated bits will always be 194 // zero or sign-extension. 195 if (AssertOp != ISD::DELETED_NODE) 196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 197 DAG.getValueType(ValueVT)); 198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 199 } 200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 201 } 202 203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 204 // FP_ROUND's are always exact here. 205 if (ValueVT.bitsLT(Val.getValueType())) 206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 207 DAG.getTargetConstant(1, TLI.getPointerTy())); 208 209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 llvm_unreachable("Unknown mismatch!"); 216 } 217 218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 219 const Twine &ErrMsg) { 220 const Instruction *I = dyn_cast_or_null<Instruction>(V); 221 if (!V) 222 return Ctx.emitError(ErrMsg); 223 224 const char *AsmError = ", possible invalid constraint for vector type"; 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) 226 if (isa<InlineAsm>(CI->getCalledValue())) 227 return Ctx.emitError(I, ErrMsg + AsmError); 228 229 return Ctx.emitError(I, ErrMsg); 230 } 231 232 /// getCopyFromPartsVector - Create a value that contains the specified legal 233 /// parts combined into the value they represent. If the parts combine to a 234 /// type larger then ValueVT then AssertOp can be used to specify whether the 235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 236 /// ValueVT (ISD::AssertSext). 237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 238 const SDValue *Parts, unsigned NumParts, 239 MVT PartVT, EVT ValueVT, const Value *V) { 240 assert(ValueVT.isVector() && "Not a vector value"); 241 assert(NumParts > 0 && "No parts to assemble!"); 242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 243 SDValue Val = Parts[0]; 244 245 // Handle a multi-element vector. 246 if (NumParts > 1) { 247 EVT IntermediateVT; 248 MVT RegisterVT; 249 unsigned NumIntermediates; 250 unsigned NumRegs = 251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 252 NumIntermediates, RegisterVT); 253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 254 NumParts = NumRegs; // Silence a compiler warning. 255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 256 assert(RegisterVT == Parts[0].getSimpleValueType() && 257 "Part type doesn't match part!"); 258 259 // Assemble the parts into intermediate operands. 260 SmallVector<SDValue, 8> Ops(NumIntermediates); 261 if (NumIntermediates == NumParts) { 262 // If the register was not expanded, truncate or copy the value, 263 // as appropriate. 264 for (unsigned i = 0; i != NumParts; ++i) 265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 266 PartVT, IntermediateVT, V); 267 } else if (NumParts > 0) { 268 // If the intermediate type was expanded, build the intermediate 269 // operands from the parts. 270 assert(NumParts % NumIntermediates == 0 && 271 "Must expand into a divisible number of parts!"); 272 unsigned Factor = NumParts / NumIntermediates; 273 for (unsigned i = 0; i != NumIntermediates; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 275 PartVT, IntermediateVT, V); 276 } 277 278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 279 // intermediate operands. 280 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 281 : ISD::BUILD_VECTOR, 282 DL, ValueVT, Ops); 283 } 284 285 // There is now one part, held in Val. Correct it to match ValueVT. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isVector()) { 292 // If the element type of the source/dest vectors are the same, but the 293 // parts vector has more elements than the value vector, then we have a 294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 295 // elements we want. 296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 298 "Cannot narrow, it would be a lossy transformation"); 299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 300 DAG.getConstant(0, TLI.getVectorIdxTy())); 301 } 302 303 // Vector/Vector bitcast. 304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 308 "Cannot handle this kind of promotion"); 309 // Promoted vector extract 310 bool Smaller = ValueVT.bitsLE(PartEVT); 311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 312 DL, ValueVT, Val); 313 314 } 315 316 // Trivial bitcast if the types are the same size and the destination 317 // vector type is legal. 318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 319 TLI.isTypeLegal(ValueVT)) 320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 321 322 // Handle cases such as i8 -> <1 x i1> 323 if (ValueVT.getVectorNumElements() != 1) { 324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 325 "non-trivial scalar-to-vector conversion"); 326 return DAG.getUNDEF(ValueVT); 327 } 328 329 if (ValueVT.getVectorNumElements() == 1 && 330 ValueVT.getVectorElementType() != PartEVT) { 331 bool Smaller = ValueVT.bitsLE(PartEVT); 332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 333 DL, ValueVT.getScalarType(), Val); 334 } 335 336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 337 } 338 339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V); 342 343 /// getCopyToParts - Create a series of nodes that contain the specified value 344 /// split into legal parts. If the parts contain more bits than Val, then, for 345 /// integers, ExtendKind can be used to specify how to generate the extra bits. 346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V, 349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 350 EVT ValueVT = Val.getValueType(); 351 352 // Handle the vector case separately. 353 if (ValueVT.isVector()) 354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 355 356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 357 unsigned PartBits = PartVT.getSizeInBits(); 358 unsigned OrigNumParts = NumParts; 359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 360 361 if (NumParts == 0) 362 return; 363 364 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 365 EVT PartEVT = PartVT; 366 if (PartEVT == ValueVT) { 367 assert(NumParts == 1 && "No-op copy with multiple parts!"); 368 Parts[0] = Val; 369 return; 370 } 371 372 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 373 // If the parts cover more bits than the value has, promote the value. 374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 375 assert(NumParts == 1 && "Do not know what to promote to!"); 376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 377 } else { 378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 379 ValueVT.isInteger() && 380 "Unknown mismatch!"); 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 383 if (PartVT == MVT::x86mmx) 384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartEVT != ValueVT); 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 393 ValueVT.isInteger() && 394 "Unknown mismatch!"); 395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 397 if (PartVT == MVT::x86mmx) 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } 400 401 // The value may have changed - recompute ValueVT. 402 ValueVT = Val.getValueType(); 403 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 404 "Failed to tile the value with PartVT!"); 405 406 if (NumParts == 1) { 407 if (PartEVT != ValueVT) 408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 409 "scalar-to-vector conversion failed"); 410 411 Parts[0] = Val; 412 return; 413 } 414 415 // Expand the value into multiple parts. 416 if (NumParts & (NumParts - 1)) { 417 // The number of parts is not a power of 2. Split off and copy the tail. 418 assert(PartVT.isInteger() && ValueVT.isInteger() && 419 "Do not know what to expand to!"); 420 unsigned RoundParts = 1 << Log2_32(NumParts); 421 unsigned RoundBits = RoundParts * PartBits; 422 unsigned OddParts = NumParts - RoundParts; 423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 424 DAG.getIntPtrConstant(RoundBits)); 425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 426 427 if (TLI.isBigEndian()) 428 // The odd parts were reversed by getCopyToParts - unreverse them. 429 std::reverse(Parts + RoundParts, Parts + NumParts); 430 431 NumParts = RoundParts; 432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 434 } 435 436 // The number of parts is a power of 2. Repeatedly bisect the value using 437 // EXTRACT_ELEMENT. 438 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 439 EVT::getIntegerVT(*DAG.getContext(), 440 ValueVT.getSizeInBits()), 441 Val); 442 443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 444 for (unsigned i = 0; i < NumParts; i += StepSize) { 445 unsigned ThisBits = StepSize * PartBits / 2; 446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 447 SDValue &Part0 = Parts[i]; 448 SDValue &Part1 = Parts[i+StepSize/2]; 449 450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(1)); 452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(0)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 458 } 459 } 460 } 461 462 if (TLI.isBigEndian()) 463 std::reverse(Parts, Parts + OrigNumParts); 464 } 465 466 467 /// getCopyToPartsVector - Create a series of nodes that contain the specified 468 /// value split into legal parts. 469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 470 SDValue Val, SDValue *Parts, unsigned NumParts, 471 MVT PartVT, const Value *V) { 472 EVT ValueVT = Val.getValueType(); 473 assert(ValueVT.isVector() && "Not a vector"); 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 476 if (NumParts == 1) { 477 EVT PartEVT = PartVT; 478 if (PartEVT == ValueVT) { 479 // Nothing to do. 480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 481 // Bitconvert vector->vector case. 482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 483 } else if (PartVT.isVector() && 484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 486 EVT ElementVT = PartVT.getVectorElementType(); 487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 488 // undef elements. 489 SmallVector<SDValue, 16> Ops; 490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 ElementVT, Val, DAG.getConstant(i, 493 TLI.getVectorIdxTy()))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getConstant(i * (NumElements / NumIntermediates), 550 TLI.getVectorIdxTy())); 551 else 552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i, TLI.getVectorIdxTy())); 555 } 556 557 // Split the intermediate operands into legal parts. 558 if (NumParts == NumIntermediates) { 559 // If the register was not expanded, promote or copy the value, 560 // as appropriate. 561 for (unsigned i = 0; i != NumParts; ++i) 562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 563 } else if (NumParts > 0) { 564 // If the intermediate type was expanded, split each the value into 565 // legal parts. 566 assert(NumParts % NumIntermediates == 0 && 567 "Must expand into a divisible number of parts!"); 568 unsigned Factor = NumParts / NumIntermediates; 569 for (unsigned i = 0; i != NumIntermediates; ++i) 570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 571 } 572 } 573 574 namespace { 575 /// RegsForValue - This struct represents the registers (physical or virtual) 576 /// that a particular set of values is assigned, and the type information 577 /// about the value. The most common situation is to represent one value at a 578 /// time, but struct or array values are handled element-wise as multiple 579 /// values. The splitting of aggregates is performed recursively, so that we 580 /// never have aggregate-typed registers. The values at this point do not 581 /// necessarily have legal types, so each value may require one or more 582 /// registers of some legal type. 583 /// 584 struct RegsForValue { 585 /// ValueVTs - The value types of the values, which may not be legal, and 586 /// may need be promoted or synthesized from one or more registers. 587 /// 588 SmallVector<EVT, 4> ValueVTs; 589 590 /// RegVTs - The value types of the registers. This is the same size as 591 /// ValueVTs and it records, for each value, what the type of the assigned 592 /// register or registers are. (Individual values are never synthesized 593 /// from more than one type of register.) 594 /// 595 /// With virtual registers, the contents of RegVTs is redundant with TLI's 596 /// getRegisterType member function, however when with physical registers 597 /// it is necessary to have a separate record of the types. 598 /// 599 SmallVector<MVT, 4> RegVTs; 600 601 /// Regs - This list holds the registers assigned to the values. 602 /// Each legal or promoted value requires one register, and each 603 /// expanded value requires multiple registers. 604 /// 605 SmallVector<unsigned, 4> Regs; 606 607 RegsForValue() {} 608 609 RegsForValue(const SmallVector<unsigned, 4> ®s, 610 MVT regvt, EVT valuevt) 611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 612 613 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 614 unsigned Reg, Type *Ty) { 615 ComputeValueVTs(tli, Ty, ValueVTs); 616 617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 EVT ValueVT = ValueVTs[Value]; 619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 621 for (unsigned i = 0; i != NumRegs; ++i) 622 Regs.push_back(Reg + i); 623 RegVTs.push_back(RegisterVT); 624 Reg += NumRegs; 625 } 626 } 627 628 /// append - Add the specified values to this one. 629 void append(const RegsForValue &RHS) { 630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 632 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 633 } 634 635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 636 /// this value and returns the result as a ValueVTs value. This uses 637 /// Chain/Flag as the input and updates them for the output Chain/Flag. 638 /// If the Flag pointer is NULL, no flag is used. 639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V = nullptr) const; 643 644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 645 /// specified value into the registers specified by this object. This uses 646 /// Chain/Flag as the input and updates them for the output Chain/Flag. 647 /// If the Flag pointer is NULL, no flag is used. 648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 649 SDValue &Chain, SDValue *Flag, const Value *V) const; 650 651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 652 /// operand list. This adds the code marker, matching input operand index 653 /// (if applicable), and includes the number of values added into it. 654 void AddInlineAsmOperands(unsigned Kind, 655 bool HasMatching, unsigned MatchingIdx, 656 SelectionDAG &DAG, 657 std::vector<SDValue> &Ops) const; 658 }; 659 } 660 661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 662 /// this value and returns the result as a ValueVT value. This uses 663 /// Chain/Flag as the input and updates them for the output Chain/Flag. 664 /// If the Flag pointer is NULL, no flag is used. 665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 666 FunctionLoweringInfo &FuncInfo, 667 SDLoc dl, 668 SDValue &Chain, SDValue *Flag, 669 const Value *V) const { 670 // A Value with type {} or [0 x %t] needs no registers. 671 if (ValueVTs.empty()) 672 return SDValue(); 673 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 676 // Assemble the legal parts into the final values. 677 SmallVector<SDValue, 4> Values(ValueVTs.size()); 678 SmallVector<SDValue, 8> Parts; 679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 680 // Copy the legal parts from the registers. 681 EVT ValueVT = ValueVTs[Value]; 682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 683 MVT RegisterVT = RegVTs[Value]; 684 685 Parts.resize(NumRegs); 686 for (unsigned i = 0; i != NumRegs; ++i) { 687 SDValue P; 688 if (!Flag) { 689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 690 } else { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 692 *Flag = P.getValue(2); 693 } 694 695 Chain = P.getValue(1); 696 Parts[i] = P; 697 698 // If the source register was virtual and if we know something about it, 699 // add an assert node. 700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 701 !RegisterVT.isInteger() || RegisterVT.isVector()) 702 continue; 703 704 const FunctionLoweringInfo::LiveOutInfo *LOI = 705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 706 if (!LOI) 707 continue; 708 709 unsigned RegSize = RegisterVT.getSizeInBits(); 710 unsigned NumSignBits = LOI->NumSignBits; 711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 712 713 if (NumZeroBits == RegSize) { 714 // The current value is a zero. 715 // Explicitly express that as it would be easier for 716 // optimizations to kick in. 717 Parts[i] = DAG.getConstant(0, RegisterVT); 718 continue; 719 } 720 721 // FIXME: We capture more information than the dag can represent. For 722 // now, just use the tightest assertzext/assertsext possible. 723 bool isSExt = true; 724 EVT FromVT(MVT::Other); 725 if (NumSignBits == RegSize) 726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 727 else if (NumZeroBits >= RegSize-1) 728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 729 else if (NumSignBits > RegSize-8) 730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 731 else if (NumZeroBits >= RegSize-8) 732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 733 else if (NumSignBits > RegSize-16) 734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 735 else if (NumZeroBits >= RegSize-16) 736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 737 else if (NumSignBits > RegSize-32) 738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 739 else if (NumZeroBits >= RegSize-32) 740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 741 else 742 continue; 743 744 // Add an assertion node. 745 assert(FromVT != MVT::Other); 746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 747 RegisterVT, P, DAG.getValueType(FromVT)); 748 } 749 750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 751 NumRegs, RegisterVT, ValueVT, V); 752 Part += NumRegs; 753 Parts.clear(); 754 } 755 756 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 757 } 758 759 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 760 /// specified value into the registers specified by this object. This uses 761 /// Chain/Flag as the input and updates them for the output Chain/Flag. 762 /// If the Flag pointer is NULL, no flag is used. 763 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 764 SDValue &Chain, SDValue *Flag, 765 const Value *V) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 // Get the list of the values's legal parts. 769 unsigned NumRegs = Regs.size(); 770 SmallVector<SDValue, 8> Parts(NumRegs); 771 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 772 EVT ValueVT = ValueVTs[Value]; 773 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 774 MVT RegisterVT = RegVTs[Value]; 775 ISD::NodeType ExtendKind = 776 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 777 778 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 779 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 780 Part += NumParts; 781 } 782 783 // Copy the parts into the registers. 784 SmallVector<SDValue, 8> Chains(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue Part; 787 if (!Flag) { 788 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 789 } else { 790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 791 *Flag = Part.getValue(1); 792 } 793 794 Chains[i] = Part.getValue(0); 795 } 796 797 if (NumRegs == 1 || Flag) 798 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 799 // flagged to it. That is the CopyToReg nodes and the user are considered 800 // a single scheduling unit. If we create a TokenFactor and return it as 801 // chain, then the TokenFactor is both a predecessor (operand) of the 802 // user as well as a successor (the TF operands are flagged to the user). 803 // c1, f1 = CopyToReg 804 // c2, f2 = CopyToReg 805 // c3 = TokenFactor c1, c2 806 // ... 807 // = op c3, ..., f2 808 Chain = Chains[NumRegs-1]; 809 else 810 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 811 } 812 813 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 814 /// operand list. This adds the code marker and includes the number of 815 /// values added into it. 816 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 817 unsigned MatchingIdx, 818 SelectionDAG &DAG, 819 std::vector<SDValue> &Ops) const { 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 823 if (HasMatching) 824 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 825 else if (!Regs.empty() && 826 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 827 // Put the register class of the virtual registers in the flag word. That 828 // way, later passes can recompute register class constraints for inline 829 // assembly as well as normal instructions. 830 // Don't do this for tied operands that can use the regclass information 831 // from the def. 832 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 833 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 834 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 835 } 836 837 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 838 Ops.push_back(Res); 839 840 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 841 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 842 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 843 MVT RegisterVT = RegVTs[Value]; 844 for (unsigned i = 0; i != NumRegs; ++i) { 845 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 846 unsigned TheReg = Regs[Reg++]; 847 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 848 849 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 850 // If we clobbered the stack pointer, MFI should know about it. 851 assert(DAG.getMachineFunction().getFrameInfo()-> 852 hasInlineAsmWithSPAdjust()); 853 } 854 } 855 } 856 } 857 858 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 859 const TargetLibraryInfo *li) { 860 AA = &aa; 861 GFI = gfi; 862 LibInfo = li; 863 DL = DAG.getTarget().getDataLayout(); 864 Context = DAG.getContext(); 865 LPadToCallSiteMap.clear(); 866 } 867 868 /// clear - Clear out the current SelectionDAG and the associated 869 /// state and prepare this SelectionDAGBuilder object to be used 870 /// for a new block. This doesn't clear out information about 871 /// additional blocks that are needed to complete switch lowering 872 /// or PHI node updating; that information is cleared out as it is 873 /// consumed. 874 void SelectionDAGBuilder::clear() { 875 NodeMap.clear(); 876 UnusedArgNodeMap.clear(); 877 PendingLoads.clear(); 878 PendingExports.clear(); 879 CurInst = nullptr; 880 HasTailCall = false; 881 SDNodeOrder = LowestSDNodeOrder; 882 } 883 884 /// clearDanglingDebugInfo - Clear the dangling debug information 885 /// map. This function is separated from the clear so that debug 886 /// information that is dangling in a basic block can be properly 887 /// resolved in a different basic block. This allows the 888 /// SelectionDAG to resolve dangling debug information attached 889 /// to PHI nodes. 890 void SelectionDAGBuilder::clearDanglingDebugInfo() { 891 DanglingDebugInfoMap.clear(); 892 } 893 894 /// getRoot - Return the current virtual root of the Selection DAG, 895 /// flushing any PendingLoad items. This must be done before emitting 896 /// a store or any other node that may need to be ordered after any 897 /// prior load instructions. 898 /// 899 SDValue SelectionDAGBuilder::getRoot() { 900 if (PendingLoads.empty()) 901 return DAG.getRoot(); 902 903 if (PendingLoads.size() == 1) { 904 SDValue Root = PendingLoads[0]; 905 DAG.setRoot(Root); 906 PendingLoads.clear(); 907 return Root; 908 } 909 910 // Otherwise, we have to make a token factor node. 911 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 912 PendingLoads); 913 PendingLoads.clear(); 914 DAG.setRoot(Root); 915 return Root; 916 } 917 918 /// getControlRoot - Similar to getRoot, but instead of flushing all the 919 /// PendingLoad items, flush all the PendingExports items. It is necessary 920 /// to do this before emitting a terminator instruction. 921 /// 922 SDValue SelectionDAGBuilder::getControlRoot() { 923 SDValue Root = DAG.getRoot(); 924 925 if (PendingExports.empty()) 926 return Root; 927 928 // Turn all of the CopyToReg chains into one factored node. 929 if (Root.getOpcode() != ISD::EntryToken) { 930 unsigned i = 0, e = PendingExports.size(); 931 for (; i != e; ++i) { 932 assert(PendingExports[i].getNode()->getNumOperands() > 1); 933 if (PendingExports[i].getNode()->getOperand(0) == Root) 934 break; // Don't add the root if we already indirectly depend on it. 935 } 936 937 if (i == e) 938 PendingExports.push_back(Root); 939 } 940 941 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 942 PendingExports); 943 PendingExports.clear(); 944 DAG.setRoot(Root); 945 return Root; 946 } 947 948 void SelectionDAGBuilder::visit(const Instruction &I) { 949 // Set up outgoing PHI node register values before emitting the terminator. 950 if (isa<TerminatorInst>(&I)) 951 HandlePHINodesInSuccessorBlocks(I.getParent()); 952 953 ++SDNodeOrder; 954 955 CurInst = &I; 956 957 visit(I.getOpcode(), I); 958 959 if (!isa<TerminatorInst>(&I) && !HasTailCall) 960 CopyToExportRegsIfNeeded(&I); 961 962 CurInst = nullptr; 963 } 964 965 void SelectionDAGBuilder::visitPHI(const PHINode &) { 966 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 967 } 968 969 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 970 // Note: this doesn't use InstVisitor, because it has to work with 971 // ConstantExpr's in addition to instructions. 972 switch (Opcode) { 973 default: llvm_unreachable("Unknown instruction type encountered!"); 974 // Build the switch statement using the Instruction.def file. 975 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 976 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 977 #include "llvm/IR/Instruction.def" 978 } 979 } 980 981 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 982 // generate the debug data structures now that we've seen its definition. 983 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 984 SDValue Val) { 985 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 986 if (DDI.getDI()) { 987 const DbgValueInst *DI = DDI.getDI(); 988 DebugLoc dl = DDI.getdl(); 989 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 990 MDNode *Variable = DI->getVariable(); 991 uint64_t Offset = DI->getOffset(); 992 // A dbg.value for an alloca is always indirect. 993 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), IsIndirect, 999 Offset, dl, DbgSDNodeOrder); 1000 DAG.AddDbgValue(SDV, Val.getNode(), false); 1001 } 1002 } else 1003 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1004 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1005 } 1006 } 1007 1008 /// getValue - Return an SDValue for the given Value. 1009 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. It's important 1011 // to do this first, so that we don't create a CopyFromReg if we already 1012 // have a regular SDValue. 1013 SDValue &N = NodeMap[V]; 1014 if (N.getNode()) return N; 1015 1016 // If there's a virtual register allocated and initialized for this 1017 // value, use it. 1018 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1019 if (It != FuncInfo.ValueMap.end()) { 1020 unsigned InReg = It->second; 1021 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1022 InReg, V->getType()); 1023 SDValue Chain = DAG.getEntryNode(); 1024 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1025 resolveDanglingDebugInfo(V, N); 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getNonRegisterValue - Return an SDValue for the given Value, but 1037 /// don't look in FuncInfo.ValueMap for a virtual register. 1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. 1040 SDValue &N = NodeMap[V]; 1041 if (N.getNode()) return N; 1042 1043 // Otherwise create a new SDValue and remember it. 1044 SDValue Val = getValueImpl(V); 1045 NodeMap[V] = Val; 1046 resolveDanglingDebugInfo(V, Val); 1047 return Val; 1048 } 1049 1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1051 /// Create an SDValue for the given value. 1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1053 const TargetLowering *TLI = TM.getTargetLowering(); 1054 1055 if (const Constant *C = dyn_cast<Constant>(V)) { 1056 EVT VT = TLI->getValueType(V->getType(), true); 1057 1058 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1059 return DAG.getConstant(*CI, VT); 1060 1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1062 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1063 1064 if (isa<ConstantPointerNull>(C)) { 1065 unsigned AS = V->getType()->getPointerAddressSpace(); 1066 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1067 } 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(Constants, getCurSDLoc()); 1096 } 1097 1098 if (const ConstantDataSequential *CDS = 1099 dyn_cast<ConstantDataSequential>(C)) { 1100 SmallVector<SDValue, 4> Ops; 1101 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1102 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1103 // Add each leaf value from the operand to the Constants list 1104 // to form a flattened list of all the values. 1105 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1106 Ops.push_back(SDValue(Val, i)); 1107 } 1108 1109 if (isa<ArrayType>(CDS->getType())) 1110 return DAG.getMergeValues(Ops, getCurSDLoc()); 1111 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1112 VT, Ops); 1113 } 1114 1115 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1116 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1117 "Unknown struct or array constant!"); 1118 1119 SmallVector<EVT, 4> ValueVTs; 1120 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1121 unsigned NumElts = ValueVTs.size(); 1122 if (NumElts == 0) 1123 return SDValue(); // empty struct 1124 SmallVector<SDValue, 4> Constants(NumElts); 1125 for (unsigned i = 0; i != NumElts; ++i) { 1126 EVT EltVT = ValueVTs[i]; 1127 if (isa<UndefValue>(C)) 1128 Constants[i] = DAG.getUNDEF(EltVT); 1129 else if (EltVT.isFloatingPoint()) 1130 Constants[i] = DAG.getConstantFP(0, EltVT); 1131 else 1132 Constants[i] = DAG.getConstant(0, EltVT); 1133 } 1134 1135 return DAG.getMergeValues(Constants, getCurSDLoc()); 1136 } 1137 1138 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1139 return DAG.getBlockAddress(BA, VT); 1140 1141 VectorType *VecTy = cast<VectorType>(V->getType()); 1142 unsigned NumElements = VecTy->getNumElements(); 1143 1144 // Now that we know the number and type of the elements, get that number of 1145 // elements into the Ops array based on what kind of constant it is. 1146 SmallVector<SDValue, 16> Ops; 1147 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1148 for (unsigned i = 0; i != NumElements; ++i) 1149 Ops.push_back(getValue(CV->getOperand(i))); 1150 } else { 1151 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1152 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1153 1154 SDValue Op; 1155 if (EltVT.isFloatingPoint()) 1156 Op = DAG.getConstantFP(0, EltVT); 1157 else 1158 Op = DAG.getConstant(0, EltVT); 1159 Ops.assign(NumElements, Op); 1160 } 1161 1162 // Create a BUILD_VECTOR node. 1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1164 } 1165 1166 // If this is a static alloca, generate it as the frameindex instead of 1167 // computation. 1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1169 DenseMap<const AllocaInst*, int>::iterator SI = 1170 FuncInfo.StaticAllocaMap.find(AI); 1171 if (SI != FuncInfo.StaticAllocaMap.end()) 1172 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1173 } 1174 1175 // If this is an instruction which fast-isel has deferred, select it now. 1176 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1177 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1178 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1179 SDValue Chain = DAG.getEntryNode(); 1180 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1181 } 1182 1183 llvm_unreachable("Can't get register for value!"); 1184 } 1185 1186 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1187 const TargetLowering *TLI = TM.getTargetLowering(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i])); 1216 Chains[i] = 1217 DAG.getStore(Chain, getCurSDLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1219 // FIXME: better loc info would be nice. 1220 Add, MachinePointerInfo(), false, false, 0); 1221 } 1222 1223 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1224 MVT::Other, Chains); 1225 } else if (I.getNumOperands() != 0) { 1226 SmallVector<EVT, 4> ValueVTs; 1227 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1228 unsigned NumValues = ValueVTs.size(); 1229 if (NumValues) { 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1232 EVT VT = ValueVTs[j]; 1233 1234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1235 1236 const Function *F = I.getParent()->getParent(); 1237 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1238 Attribute::SExt)) 1239 ExtendKind = ISD::SIGN_EXTEND; 1240 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1241 Attribute::ZExt)) 1242 ExtendKind = ISD::ZERO_EXTEND; 1243 1244 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1245 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1246 1247 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1248 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1249 SmallVector<SDValue, 4> Parts(NumParts); 1250 getCopyToParts(DAG, getCurSDLoc(), 1251 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1252 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1253 1254 // 'inreg' on function refers to return value 1255 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1256 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1257 Attribute::InReg)) 1258 Flags.setInReg(); 1259 1260 // Propagate extension type if any 1261 if (ExtendKind == ISD::SIGN_EXTEND) 1262 Flags.setSExt(); 1263 else if (ExtendKind == ISD::ZERO_EXTEND) 1264 Flags.setZExt(); 1265 1266 for (unsigned i = 0; i < NumParts; ++i) { 1267 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1268 VT, /*isfixed=*/true, 0, 0)); 1269 OutVals.push_back(Parts[i]); 1270 } 1271 } 1272 } 1273 } 1274 1275 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1276 CallingConv::ID CallConv = 1277 DAG.getMachineFunction().getFunction()->getCallingConv(); 1278 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1279 Outs, OutVals, getCurSDLoc(), 1280 DAG); 1281 1282 // Verify that the target's LowerReturn behaved as expected. 1283 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1284 "LowerReturn didn't return a valid chain!"); 1285 1286 // Update the DAG with the new chain value resulting from return lowering. 1287 DAG.setRoot(Chain); 1288 } 1289 1290 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1291 /// created for it, emit nodes to copy the value into the virtual 1292 /// registers. 1293 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1294 // Skip empty types 1295 if (V->getType()->isEmptyTy()) 1296 return; 1297 1298 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1299 if (VMI != FuncInfo.ValueMap.end()) { 1300 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1301 CopyValueToVirtualRegister(V, VMI->second); 1302 } 1303 } 1304 1305 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1306 /// the current basic block, add it to ValueMap now so that we'll get a 1307 /// CopyTo/FromReg. 1308 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1309 // No need to export constants. 1310 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1311 1312 // Already exported? 1313 if (FuncInfo.isExportedInst(V)) return; 1314 1315 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1316 CopyValueToVirtualRegister(V, Reg); 1317 } 1318 1319 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1320 const BasicBlock *FromBB) { 1321 // The operands of the setcc have to be in this block. We don't know 1322 // how to export them from some other block. 1323 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1324 // Can export from current BB. 1325 if (VI->getParent() == FromBB) 1326 return true; 1327 1328 // Is already exported, noop. 1329 return FuncInfo.isExportedInst(V); 1330 } 1331 1332 // If this is an argument, we can export it if the BB is the entry block or 1333 // if it is already exported. 1334 if (isa<Argument>(V)) { 1335 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1336 return true; 1337 1338 // Otherwise, can only export this if it is already exported. 1339 return FuncInfo.isExportedInst(V); 1340 } 1341 1342 // Otherwise, constants can always be exported. 1343 return true; 1344 } 1345 1346 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1347 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1348 const MachineBasicBlock *Dst) const { 1349 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1350 if (!BPI) 1351 return 0; 1352 const BasicBlock *SrcBB = Src->getBasicBlock(); 1353 const BasicBlock *DstBB = Dst->getBasicBlock(); 1354 return BPI->getEdgeWeight(SrcBB, DstBB); 1355 } 1356 1357 void SelectionDAGBuilder:: 1358 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1359 uint32_t Weight /* = 0 */) { 1360 if (!Weight) 1361 Weight = getEdgeWeight(Src, Dst); 1362 Src->addSuccessor(Dst, Weight); 1363 } 1364 1365 1366 static bool InBlock(const Value *V, const BasicBlock *BB) { 1367 if (const Instruction *I = dyn_cast<Instruction>(V)) 1368 return I->getParent() == BB; 1369 return true; 1370 } 1371 1372 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1373 /// This function emits a branch and is used at the leaves of an OR or an 1374 /// AND operator tree. 1375 /// 1376 void 1377 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1378 MachineBasicBlock *TBB, 1379 MachineBasicBlock *FBB, 1380 MachineBasicBlock *CurBB, 1381 MachineBasicBlock *SwitchBB, 1382 uint32_t TWeight, 1383 uint32_t FWeight) { 1384 const BasicBlock *BB = CurBB->getBasicBlock(); 1385 1386 // If the leaf of the tree is a comparison, merge the condition into 1387 // the caseblock. 1388 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1389 // The operands of the cmp have to be in this block. We don't know 1390 // how to export them from some other block. If this is the first block 1391 // of the sequence, no exporting is needed. 1392 if (CurBB == SwitchBB || 1393 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1394 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1395 ISD::CondCode Condition; 1396 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1397 Condition = getICmpCondCode(IC->getPredicate()); 1398 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1399 Condition = getFCmpCondCode(FC->getPredicate()); 1400 if (TM.Options.NoNaNsFPMath) 1401 Condition = getFCmpCodeWithoutNaN(Condition); 1402 } else { 1403 Condition = ISD::SETEQ; // silence warning. 1404 llvm_unreachable("Unknown compare instruction"); 1405 } 1406 1407 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1408 TBB, FBB, CurBB, TWeight, FWeight); 1409 SwitchCases.push_back(CB); 1410 return; 1411 } 1412 } 1413 1414 // Create a CaseBlock record representing this branch. 1415 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1416 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1417 SwitchCases.push_back(CB); 1418 } 1419 1420 /// Scale down both weights to fit into uint32_t. 1421 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1422 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1423 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1424 NewTrue = NewTrue / Scale; 1425 NewFalse = NewFalse / Scale; 1426 } 1427 1428 /// FindMergedConditions - If Cond is an expression like 1429 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1430 MachineBasicBlock *TBB, 1431 MachineBasicBlock *FBB, 1432 MachineBasicBlock *CurBB, 1433 MachineBasicBlock *SwitchBB, 1434 unsigned Opc, uint32_t TWeight, 1435 uint32_t FWeight) { 1436 // If this node is not part of the or/and tree, emit it as a branch. 1437 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1438 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1439 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1440 BOp->getParent() != CurBB->getBasicBlock() || 1441 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1442 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1443 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1444 TWeight, FWeight); 1445 return; 1446 } 1447 1448 // Create TmpBB after CurBB. 1449 MachineFunction::iterator BBI = CurBB; 1450 MachineFunction &MF = DAG.getMachineFunction(); 1451 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1452 CurBB->getParent()->insert(++BBI, TmpBB); 1453 1454 if (Opc == Instruction::Or) { 1455 // Codegen X | Y as: 1456 // BB1: 1457 // jmp_if_X TBB 1458 // jmp TmpBB 1459 // TmpBB: 1460 // jmp_if_Y TBB 1461 // jmp FBB 1462 // 1463 1464 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1465 // The requirement is that 1466 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1467 // = TrueProb for orignal BB. 1468 // Assuming the orignal weights are A and B, one choice is to set BB1's 1469 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1470 // assumes that 1471 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1472 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1473 // TmpBB, but the math is more complicated. 1474 1475 uint64_t NewTrueWeight = TWeight; 1476 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1477 ScaleWeights(NewTrueWeight, NewFalseWeight); 1478 // Emit the LHS condition. 1479 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1480 NewTrueWeight, NewFalseWeight); 1481 1482 NewTrueWeight = TWeight; 1483 NewFalseWeight = 2 * (uint64_t)FWeight; 1484 ScaleWeights(NewTrueWeight, NewFalseWeight); 1485 // Emit the RHS condition into TmpBB. 1486 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1487 NewTrueWeight, NewFalseWeight); 1488 } else { 1489 assert(Opc == Instruction::And && "Unknown merge op!"); 1490 // Codegen X & Y as: 1491 // BB1: 1492 // jmp_if_X TmpBB 1493 // jmp FBB 1494 // TmpBB: 1495 // jmp_if_Y TBB 1496 // jmp FBB 1497 // 1498 // This requires creation of TmpBB after CurBB. 1499 1500 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1501 // The requirement is that 1502 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1503 // = FalseProb for orignal BB. 1504 // Assuming the orignal weights are A and B, one choice is to set BB1's 1505 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1506 // assumes that 1507 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1508 1509 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1510 uint64_t NewFalseWeight = FWeight; 1511 ScaleWeights(NewTrueWeight, NewFalseWeight); 1512 // Emit the LHS condition. 1513 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1514 NewTrueWeight, NewFalseWeight); 1515 1516 NewTrueWeight = 2 * (uint64_t)TWeight; 1517 NewFalseWeight = FWeight; 1518 ScaleWeights(NewTrueWeight, NewFalseWeight); 1519 // Emit the RHS condition into TmpBB. 1520 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1521 NewTrueWeight, NewFalseWeight); 1522 } 1523 } 1524 1525 /// If the set of cases should be emitted as a series of branches, return true. 1526 /// If we should emit this as a bunch of and/or'd together conditions, return 1527 /// false. 1528 bool 1529 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1530 if (Cases.size() != 2) return true; 1531 1532 // If this is two comparisons of the same values or'd or and'd together, they 1533 // will get folded into a single comparison, so don't emit two blocks. 1534 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1535 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1536 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1537 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1538 return false; 1539 } 1540 1541 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1542 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1543 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1544 Cases[0].CC == Cases[1].CC && 1545 isa<Constant>(Cases[0].CmpRHS) && 1546 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1547 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1548 return false; 1549 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1550 return false; 1551 } 1552 1553 return true; 1554 } 1555 1556 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1557 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1558 1559 // Update machine-CFG edges. 1560 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1561 1562 // Figure out which block is immediately after the current one. 1563 MachineBasicBlock *NextBlock = nullptr; 1564 MachineFunction::iterator BBI = BrMBB; 1565 if (++BBI != FuncInfo.MF->end()) 1566 NextBlock = BBI; 1567 1568 if (I.isUnconditional()) { 1569 // Update machine-CFG edges. 1570 BrMBB->addSuccessor(Succ0MBB); 1571 1572 // If this is not a fall-through branch or optimizations are switched off, 1573 // emit the branch. 1574 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1575 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1576 MVT::Other, getControlRoot(), 1577 DAG.getBasicBlock(Succ0MBB))); 1578 1579 return; 1580 } 1581 1582 // If this condition is one of the special cases we handle, do special stuff 1583 // now. 1584 const Value *CondVal = I.getCondition(); 1585 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1586 1587 // If this is a series of conditions that are or'd or and'd together, emit 1588 // this as a sequence of branches instead of setcc's with and/or operations. 1589 // As long as jumps are not expensive, this should improve performance. 1590 // For example, instead of something like: 1591 // cmp A, B 1592 // C = seteq 1593 // cmp D, E 1594 // F = setle 1595 // or C, F 1596 // jnz foo 1597 // Emit: 1598 // cmp A, B 1599 // je foo 1600 // cmp D, E 1601 // jle foo 1602 // 1603 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1604 if (!TM.getTargetLowering()->isJumpExpensive() && 1605 BOp->hasOneUse() && 1606 (BOp->getOpcode() == Instruction::And || 1607 BOp->getOpcode() == Instruction::Or)) { 1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1610 getEdgeWeight(BrMBB, Succ1MBB)); 1611 // If the compares in later blocks need to use values not currently 1612 // exported from this block, export them now. This block should always 1613 // be the first entry. 1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1615 1616 // Allow some cases to be rejected. 1617 if (ShouldEmitAsBranches(SwitchCases)) { 1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1621 } 1622 1623 // Emit the branch for this block. 1624 visitSwitchCase(SwitchCases[0], BrMBB); 1625 SwitchCases.erase(SwitchCases.begin()); 1626 return; 1627 } 1628 1629 // Okay, we decided not to do this, remove any inserted MBB's and clear 1630 // SwitchCases. 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1633 1634 SwitchCases.clear(); 1635 } 1636 } 1637 1638 // Create a CaseBlock record representing this branch. 1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1640 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1641 1642 // Use visitSwitchCase to actually insert the fast branch sequence for this 1643 // cond branch. 1644 visitSwitchCase(CB, BrMBB); 1645 } 1646 1647 /// visitSwitchCase - Emits the necessary code to represent a single node in 1648 /// the binary search tree resulting from lowering a switch instruction. 1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue Cond; 1652 SDValue CondLHS = getValue(CB.CmpLHS); 1653 SDLoc dl = getCurSDLoc(); 1654 1655 // Build the setcc now. 1656 if (!CB.CmpMHS) { 1657 // Fold "(X == true)" to X and "(X == false)" to !X to 1658 // handle common cases produced by branch lowering. 1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1660 CB.CC == ISD::SETEQ) 1661 Cond = CondLHS; 1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) { 1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1666 } else 1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1668 } else { 1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1670 1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1673 1674 SDValue CmpOp = getValue(CB.CmpMHS); 1675 EVT VT = CmpOp.getValueType(); 1676 1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1679 ISD::SETLE); 1680 } else { 1681 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1682 VT, CmpOp, DAG.getConstant(Low, VT)); 1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1684 DAG.getConstant(High-Low, VT), ISD::SETULE); 1685 } 1686 } 1687 1688 // Update successor info 1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1690 // TrueBB and FalseBB are always different unless the incoming IR is 1691 // degenerate. This only happens when running llc on weird IR. 1692 if (CB.TrueBB != CB.FalseBB) 1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1694 1695 // Set NextBlock to be the MBB immediately after the current one, if any. 1696 // This is used to avoid emitting unnecessary branches to the next block. 1697 MachineBasicBlock *NextBlock = nullptr; 1698 MachineFunction::iterator BBI = SwitchBB; 1699 if (++BBI != FuncInfo.MF->end()) 1700 NextBlock = BBI; 1701 1702 // If the lhs block is the next block, invert the condition so that we can 1703 // fall through to the lhs instead of the rhs block. 1704 if (CB.TrueBB == NextBlock) { 1705 std::swap(CB.TrueBB, CB.FalseBB); 1706 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1708 } 1709 1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1711 MVT::Other, getControlRoot(), Cond, 1712 DAG.getBasicBlock(CB.TrueBB)); 1713 1714 // Insert the false branch. Do this even if it's a fall through branch, 1715 // this makes it easier to do DAG optimizations which require inverting 1716 // the branch condition. 1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1718 DAG.getBasicBlock(CB.FalseBB)); 1719 1720 DAG.setRoot(BrCond); 1721 } 1722 1723 /// visitJumpTable - Emit JumpTable node in the current MBB 1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1725 // Emit the code for the jump table 1726 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1727 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1729 JT.Reg, PTy); 1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1732 MVT::Other, Index.getValue(1), 1733 Table, Index); 1734 DAG.setRoot(BrJumpTable); 1735 } 1736 1737 /// visitJumpTableHeader - This function emits necessary code to produce index 1738 /// in the JumpTable from switch case. 1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1740 JumpTableHeader &JTH, 1741 MachineBasicBlock *SwitchBB) { 1742 // Subtract the lowest switch case value from the value being switched on and 1743 // conditional branch to default mbb if the result is greater than the 1744 // difference between smallest and largest cases. 1745 SDValue SwitchOp = getValue(JTH.SValue); 1746 EVT VT = SwitchOp.getValueType(); 1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1748 DAG.getConstant(JTH.First, VT)); 1749 1750 // The SDNode we just created, which holds the value being switched on minus 1751 // the smallest case value, needs to be copied to a virtual register so it 1752 // can be used as an index into the jump table in a subsequent basic block. 1753 // This value may be smaller or larger than the target's pointer type, and 1754 // therefore require extension or truncating. 1755 const TargetLowering *TLI = TM.getTargetLowering(); 1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1757 1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1760 JumpTableReg, SwitchOp); 1761 JT.Reg = JumpTableReg; 1762 1763 // Emit the range check for the jump table, and branch to the default block 1764 // for the switch statement if the value being switched on exceeds the largest 1765 // case in the switch. 1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1767 TLI->getSetCCResultType(*DAG.getContext(), 1768 Sub.getValueType()), 1769 Sub, 1770 DAG.getConstant(JTH.Last - JTH.First,VT), 1771 ISD::SETUGT); 1772 1773 // Set NextBlock to be the MBB immediately after the current one, if any. 1774 // This is used to avoid emitting unnecessary branches to the next block. 1775 MachineBasicBlock *NextBlock = nullptr; 1776 MachineFunction::iterator BBI = SwitchBB; 1777 1778 if (++BBI != FuncInfo.MF->end()) 1779 NextBlock = BBI; 1780 1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1782 MVT::Other, CopyTo, CMP, 1783 DAG.getBasicBlock(JT.Default)); 1784 1785 if (JT.MBB != NextBlock) 1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1787 DAG.getBasicBlock(JT.MBB)); 1788 1789 DAG.setRoot(BrCond); 1790 } 1791 1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1793 /// tail spliced into a stack protector check success bb. 1794 /// 1795 /// For a high level explanation of how this fits into the stack protector 1796 /// generation see the comment on the declaration of class 1797 /// StackProtectorDescriptor. 1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1799 MachineBasicBlock *ParentBB) { 1800 1801 // First create the loads to the guard/stack slot for the comparison. 1802 const TargetLowering *TLI = TM.getTargetLowering(); 1803 EVT PtrTy = TLI->getPointerTy(); 1804 1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1806 int FI = MFI->getStackProtectorIndex(); 1807 1808 const Value *IRGuard = SPD.getGuard(); 1809 SDValue GuardPtr = getValue(IRGuard); 1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1811 1812 unsigned Align = 1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1814 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1815 GuardPtr, MachinePointerInfo(IRGuard, 0), 1816 true, false, false, Align); 1817 1818 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1819 StackSlotPtr, 1820 MachinePointerInfo::getFixedStack(FI), 1821 true, false, false, Align); 1822 1823 // Perform the comparison via a subtract/getsetcc. 1824 EVT VT = Guard.getValueType(); 1825 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1826 1827 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1828 TLI->getSetCCResultType(*DAG.getContext(), 1829 Sub.getValueType()), 1830 Sub, DAG.getConstant(0, VT), 1831 ISD::SETNE); 1832 1833 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1834 // branch to failure MBB. 1835 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1836 MVT::Other, StackSlot.getOperand(0), 1837 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1838 // Otherwise branch to success MBB. 1839 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1840 MVT::Other, BrCond, 1841 DAG.getBasicBlock(SPD.getSuccessMBB())); 1842 1843 DAG.setRoot(Br); 1844 } 1845 1846 /// Codegen the failure basic block for a stack protector check. 1847 /// 1848 /// A failure stack protector machine basic block consists simply of a call to 1849 /// __stack_chk_fail(). 1850 /// 1851 /// For a high level explanation of how this fits into the stack protector 1852 /// generation see the comment on the declaration of class 1853 /// StackProtectorDescriptor. 1854 void 1855 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1856 const TargetLowering *TLI = TM.getTargetLowering(); 1857 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1858 MVT::isVoid, nullptr, 0, false, 1859 getCurSDLoc(), false, false).second; 1860 DAG.setRoot(Chain); 1861 } 1862 1863 /// visitBitTestHeader - This function emits necessary code to produce value 1864 /// suitable for "bit tests" 1865 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1866 MachineBasicBlock *SwitchBB) { 1867 // Subtract the minimum value 1868 SDValue SwitchOp = getValue(B.SValue); 1869 EVT VT = SwitchOp.getValueType(); 1870 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1871 DAG.getConstant(B.First, VT)); 1872 1873 // Check range 1874 const TargetLowering *TLI = TM.getTargetLowering(); 1875 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1876 TLI->getSetCCResultType(*DAG.getContext(), 1877 Sub.getValueType()), 1878 Sub, DAG.getConstant(B.Range, VT), 1879 ISD::SETUGT); 1880 1881 // Determine the type of the test operands. 1882 bool UsePtrType = false; 1883 if (!TLI->isTypeLegal(VT)) 1884 UsePtrType = true; 1885 else { 1886 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1887 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1888 // Switch table case range are encoded into series of masks. 1889 // Just use pointer type, it's guaranteed to fit. 1890 UsePtrType = true; 1891 break; 1892 } 1893 } 1894 if (UsePtrType) { 1895 VT = TLI->getPointerTy(); 1896 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1897 } 1898 1899 B.RegVT = VT.getSimpleVT(); 1900 B.Reg = FuncInfo.CreateReg(B.RegVT); 1901 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1902 B.Reg, Sub); 1903 1904 // Set NextBlock to be the MBB immediately after the current one, if any. 1905 // This is used to avoid emitting unnecessary branches to the next block. 1906 MachineBasicBlock *NextBlock = nullptr; 1907 MachineFunction::iterator BBI = SwitchBB; 1908 if (++BBI != FuncInfo.MF->end()) 1909 NextBlock = BBI; 1910 1911 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1912 1913 addSuccessorWithWeight(SwitchBB, B.Default); 1914 addSuccessorWithWeight(SwitchBB, MBB); 1915 1916 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1917 MVT::Other, CopyTo, RangeCmp, 1918 DAG.getBasicBlock(B.Default)); 1919 1920 if (MBB != NextBlock) 1921 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1922 DAG.getBasicBlock(MBB)); 1923 1924 DAG.setRoot(BrRange); 1925 } 1926 1927 /// visitBitTestCase - this function produces one "bit test" 1928 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1929 MachineBasicBlock* NextMBB, 1930 uint32_t BranchWeightToNext, 1931 unsigned Reg, 1932 BitTestCase &B, 1933 MachineBasicBlock *SwitchBB) { 1934 MVT VT = BB.RegVT; 1935 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1936 Reg, VT); 1937 SDValue Cmp; 1938 unsigned PopCount = CountPopulation_64(B.Mask); 1939 const TargetLowering *TLI = TM.getTargetLowering(); 1940 if (PopCount == 1) { 1941 // Testing for a single bit; just compare the shift count with what it 1942 // would need to be to shift a 1 bit in that position. 1943 Cmp = DAG.getSetCC(getCurSDLoc(), 1944 TLI->getSetCCResultType(*DAG.getContext(), VT), 1945 ShiftOp, 1946 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1947 ISD::SETEQ); 1948 } else if (PopCount == BB.Range) { 1949 // There is only one zero bit in the range, test for it directly. 1950 Cmp = DAG.getSetCC(getCurSDLoc(), 1951 TLI->getSetCCResultType(*DAG.getContext(), VT), 1952 ShiftOp, 1953 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1954 ISD::SETNE); 1955 } else { 1956 // Make desired shift 1957 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1958 DAG.getConstant(1, VT), ShiftOp); 1959 1960 // Emit bit tests and jumps 1961 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1962 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1963 Cmp = DAG.getSetCC(getCurSDLoc(), 1964 TLI->getSetCCResultType(*DAG.getContext(), VT), 1965 AndOp, DAG.getConstant(0, VT), 1966 ISD::SETNE); 1967 } 1968 1969 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1970 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1971 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1972 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1973 1974 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1975 MVT::Other, getControlRoot(), 1976 Cmp, DAG.getBasicBlock(B.TargetBB)); 1977 1978 // Set NextBlock to be the MBB immediately after the current one, if any. 1979 // This is used to avoid emitting unnecessary branches to the next block. 1980 MachineBasicBlock *NextBlock = nullptr; 1981 MachineFunction::iterator BBI = SwitchBB; 1982 if (++BBI != FuncInfo.MF->end()) 1983 NextBlock = BBI; 1984 1985 if (NextMBB != NextBlock) 1986 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1987 DAG.getBasicBlock(NextMBB)); 1988 1989 DAG.setRoot(BrAnd); 1990 } 1991 1992 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1993 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1994 1995 // Retrieve successors. 1996 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1997 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1998 1999 const Value *Callee(I.getCalledValue()); 2000 const Function *Fn = dyn_cast<Function>(Callee); 2001 if (isa<InlineAsm>(Callee)) 2002 visitInlineAsm(&I); 2003 else if (Fn && Fn->isIntrinsic()) { 2004 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2005 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2006 } else 2007 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2008 2009 // If the value of the invoke is used outside of its defining block, make it 2010 // available as a virtual register. 2011 CopyToExportRegsIfNeeded(&I); 2012 2013 // Update successor info 2014 addSuccessorWithWeight(InvokeMBB, Return); 2015 addSuccessorWithWeight(InvokeMBB, LandingPad); 2016 2017 // Drop into normal successor. 2018 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2019 MVT::Other, getControlRoot(), 2020 DAG.getBasicBlock(Return))); 2021 } 2022 2023 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2024 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2025 } 2026 2027 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2028 assert(FuncInfo.MBB->isLandingPad() && 2029 "Call to landingpad not in landing pad!"); 2030 2031 MachineBasicBlock *MBB = FuncInfo.MBB; 2032 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2033 AddLandingPadInfo(LP, MMI, MBB); 2034 2035 // If there aren't registers to copy the values into (e.g., during SjLj 2036 // exceptions), then don't bother to create these DAG nodes. 2037 const TargetLowering *TLI = TM.getTargetLowering(); 2038 if (TLI->getExceptionPointerRegister() == 0 && 2039 TLI->getExceptionSelectorRegister() == 0) 2040 return; 2041 2042 SmallVector<EVT, 2> ValueVTs; 2043 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2044 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2045 2046 // Get the two live-in registers as SDValues. The physregs have already been 2047 // copied into virtual registers. 2048 SDValue Ops[2]; 2049 Ops[0] = DAG.getZExtOrTrunc( 2050 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2051 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2052 getCurSDLoc(), ValueVTs[0]); 2053 Ops[1] = DAG.getZExtOrTrunc( 2054 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2055 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2056 getCurSDLoc(), ValueVTs[1]); 2057 2058 // Merge into one. 2059 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2060 DAG.getVTList(ValueVTs), Ops); 2061 setValue(&LP, Res); 2062 } 2063 2064 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2065 /// small case ranges). 2066 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2067 CaseRecVector& WorkList, 2068 const Value* SV, 2069 MachineBasicBlock *Default, 2070 MachineBasicBlock *SwitchBB) { 2071 // Size is the number of Cases represented by this range. 2072 size_t Size = CR.Range.second - CR.Range.first; 2073 if (Size > 3) 2074 return false; 2075 2076 // Get the MachineFunction which holds the current MBB. This is used when 2077 // inserting any additional MBBs necessary to represent the switch. 2078 MachineFunction *CurMF = FuncInfo.MF; 2079 2080 // Figure out which block is immediately after the current one. 2081 MachineBasicBlock *NextBlock = nullptr; 2082 MachineFunction::iterator BBI = CR.CaseBB; 2083 2084 if (++BBI != FuncInfo.MF->end()) 2085 NextBlock = BBI; 2086 2087 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2088 // If any two of the cases has the same destination, and if one value 2089 // is the same as the other, but has one bit unset that the other has set, 2090 // use bit manipulation to do two compares at once. For example: 2091 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2092 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2093 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2094 if (Size == 2 && CR.CaseBB == SwitchBB) { 2095 Case &Small = *CR.Range.first; 2096 Case &Big = *(CR.Range.second-1); 2097 2098 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2099 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2100 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2101 2102 // Check that there is only one bit different. 2103 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2104 (SmallValue | BigValue) == BigValue) { 2105 // Isolate the common bit. 2106 APInt CommonBit = BigValue & ~SmallValue; 2107 assert((SmallValue | CommonBit) == BigValue && 2108 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2109 2110 SDValue CondLHS = getValue(SV); 2111 EVT VT = CondLHS.getValueType(); 2112 SDLoc DL = getCurSDLoc(); 2113 2114 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2115 DAG.getConstant(CommonBit, VT)); 2116 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2117 Or, DAG.getConstant(BigValue, VT), 2118 ISD::SETEQ); 2119 2120 // Update successor info. 2121 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2122 addSuccessorWithWeight(SwitchBB, Small.BB, 2123 Small.ExtraWeight + Big.ExtraWeight); 2124 addSuccessorWithWeight(SwitchBB, Default, 2125 // The default destination is the first successor in IR. 2126 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2127 2128 // Insert the true branch. 2129 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2130 getControlRoot(), Cond, 2131 DAG.getBasicBlock(Small.BB)); 2132 2133 // Insert the false branch. 2134 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2135 DAG.getBasicBlock(Default)); 2136 2137 DAG.setRoot(BrCond); 2138 return true; 2139 } 2140 } 2141 } 2142 2143 // Order cases by weight so the most likely case will be checked first. 2144 uint32_t UnhandledWeights = 0; 2145 if (BPI) { 2146 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2147 uint32_t IWeight = I->ExtraWeight; 2148 UnhandledWeights += IWeight; 2149 for (CaseItr J = CR.Range.first; J < I; ++J) { 2150 uint32_t JWeight = J->ExtraWeight; 2151 if (IWeight > JWeight) 2152 std::swap(*I, *J); 2153 } 2154 } 2155 } 2156 // Rearrange the case blocks so that the last one falls through if possible. 2157 Case &BackCase = *(CR.Range.second-1); 2158 if (Size > 1 && 2159 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2160 // The last case block won't fall through into 'NextBlock' if we emit the 2161 // branches in this order. See if rearranging a case value would help. 2162 // We start at the bottom as it's the case with the least weight. 2163 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2164 if (I->BB == NextBlock) { 2165 std::swap(*I, BackCase); 2166 break; 2167 } 2168 } 2169 2170 // Create a CaseBlock record representing a conditional branch to 2171 // the Case's target mbb if the value being switched on SV is equal 2172 // to C. 2173 MachineBasicBlock *CurBlock = CR.CaseBB; 2174 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2175 MachineBasicBlock *FallThrough; 2176 if (I != E-1) { 2177 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2178 CurMF->insert(BBI, FallThrough); 2179 2180 // Put SV in a virtual register to make it available from the new blocks. 2181 ExportFromCurrentBlock(SV); 2182 } else { 2183 // If the last case doesn't match, go to the default block. 2184 FallThrough = Default; 2185 } 2186 2187 const Value *RHS, *LHS, *MHS; 2188 ISD::CondCode CC; 2189 if (I->High == I->Low) { 2190 // This is just small small case range :) containing exactly 1 case 2191 CC = ISD::SETEQ; 2192 LHS = SV; RHS = I->High; MHS = nullptr; 2193 } else { 2194 CC = ISD::SETLE; 2195 LHS = I->Low; MHS = SV; RHS = I->High; 2196 } 2197 2198 // The false weight should be sum of all un-handled cases. 2199 UnhandledWeights -= I->ExtraWeight; 2200 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2201 /* me */ CurBlock, 2202 /* trueweight */ I->ExtraWeight, 2203 /* falseweight */ UnhandledWeights); 2204 2205 // If emitting the first comparison, just call visitSwitchCase to emit the 2206 // code into the current block. Otherwise, push the CaseBlock onto the 2207 // vector to be later processed by SDISel, and insert the node's MBB 2208 // before the next MBB. 2209 if (CurBlock == SwitchBB) 2210 visitSwitchCase(CB, SwitchBB); 2211 else 2212 SwitchCases.push_back(CB); 2213 2214 CurBlock = FallThrough; 2215 } 2216 2217 return true; 2218 } 2219 2220 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2221 return TLI.supportJumpTables() && 2222 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2223 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2224 } 2225 2226 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2227 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2228 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2229 return (LastExt - FirstExt + 1ULL); 2230 } 2231 2232 /// handleJTSwitchCase - Emit jumptable for current switch case range 2233 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2234 CaseRecVector &WorkList, 2235 const Value *SV, 2236 MachineBasicBlock *Default, 2237 MachineBasicBlock *SwitchBB) { 2238 Case& FrontCase = *CR.Range.first; 2239 Case& BackCase = *(CR.Range.second-1); 2240 2241 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2242 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2243 2244 APInt TSize(First.getBitWidth(), 0); 2245 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2246 TSize += I->size(); 2247 2248 const TargetLowering *TLI = TM.getTargetLowering(); 2249 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2250 return false; 2251 2252 APInt Range = ComputeRange(First, Last); 2253 // The density is TSize / Range. Require at least 40%. 2254 // It should not be possible for IntTSize to saturate for sane code, but make 2255 // sure we handle Range saturation correctly. 2256 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2257 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2258 if (IntTSize * 10 < IntRange * 4) 2259 return false; 2260 2261 DEBUG(dbgs() << "Lowering jump table\n" 2262 << "First entry: " << First << ". Last entry: " << Last << '\n' 2263 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2264 2265 // Get the MachineFunction which holds the current MBB. This is used when 2266 // inserting any additional MBBs necessary to represent the switch. 2267 MachineFunction *CurMF = FuncInfo.MF; 2268 2269 // Figure out which block is immediately after the current one. 2270 MachineFunction::iterator BBI = CR.CaseBB; 2271 ++BBI; 2272 2273 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2274 2275 // Create a new basic block to hold the code for loading the address 2276 // of the jump table, and jumping to it. Update successor information; 2277 // we will either branch to the default case for the switch, or the jump 2278 // table. 2279 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2280 CurMF->insert(BBI, JumpTableBB); 2281 2282 addSuccessorWithWeight(CR.CaseBB, Default); 2283 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2284 2285 // Build a vector of destination BBs, corresponding to each target 2286 // of the jump table. If the value of the jump table slot corresponds to 2287 // a case statement, push the case's BB onto the vector, otherwise, push 2288 // the default BB. 2289 std::vector<MachineBasicBlock*> DestBBs; 2290 APInt TEI = First; 2291 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2292 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2293 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2294 2295 if (Low.sle(TEI) && TEI.sle(High)) { 2296 DestBBs.push_back(I->BB); 2297 if (TEI==High) 2298 ++I; 2299 } else { 2300 DestBBs.push_back(Default); 2301 } 2302 } 2303 2304 // Calculate weight for each unique destination in CR. 2305 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2306 if (FuncInfo.BPI) 2307 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2308 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2309 DestWeights.find(I->BB); 2310 if (Itr != DestWeights.end()) 2311 Itr->second += I->ExtraWeight; 2312 else 2313 DestWeights[I->BB] = I->ExtraWeight; 2314 } 2315 2316 // Update successor info. Add one edge to each unique successor. 2317 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2318 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2319 E = DestBBs.end(); I != E; ++I) { 2320 if (!SuccsHandled[(*I)->getNumber()]) { 2321 SuccsHandled[(*I)->getNumber()] = true; 2322 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2323 DestWeights.find(*I); 2324 addSuccessorWithWeight(JumpTableBB, *I, 2325 Itr != DestWeights.end() ? Itr->second : 0); 2326 } 2327 } 2328 2329 // Create a jump table index for this jump table. 2330 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2331 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2332 ->createJumpTableIndex(DestBBs); 2333 2334 // Set the jump table information so that we can codegen it as a second 2335 // MachineBasicBlock 2336 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2337 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2338 if (CR.CaseBB == SwitchBB) 2339 visitJumpTableHeader(JT, JTH, SwitchBB); 2340 2341 JTCases.push_back(JumpTableBlock(JTH, JT)); 2342 return true; 2343 } 2344 2345 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2346 /// 2 subtrees. 2347 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2348 CaseRecVector& WorkList, 2349 const Value* SV, 2350 MachineBasicBlock* Default, 2351 MachineBasicBlock* SwitchBB) { 2352 // Get the MachineFunction which holds the current MBB. This is used when 2353 // inserting any additional MBBs necessary to represent the switch. 2354 MachineFunction *CurMF = FuncInfo.MF; 2355 2356 // Figure out which block is immediately after the current one. 2357 MachineFunction::iterator BBI = CR.CaseBB; 2358 ++BBI; 2359 2360 Case& FrontCase = *CR.Range.first; 2361 Case& BackCase = *(CR.Range.second-1); 2362 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2363 2364 // Size is the number of Cases represented by this range. 2365 unsigned Size = CR.Range.second - CR.Range.first; 2366 2367 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2368 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2369 double FMetric = 0; 2370 CaseItr Pivot = CR.Range.first + Size/2; 2371 2372 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2373 // (heuristically) allow us to emit JumpTable's later. 2374 APInt TSize(First.getBitWidth(), 0); 2375 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2376 I!=E; ++I) 2377 TSize += I->size(); 2378 2379 APInt LSize = FrontCase.size(); 2380 APInt RSize = TSize-LSize; 2381 DEBUG(dbgs() << "Selecting best pivot: \n" 2382 << "First: " << First << ", Last: " << Last <<'\n' 2383 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2384 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2385 J!=E; ++I, ++J) { 2386 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2387 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2388 APInt Range = ComputeRange(LEnd, RBegin); 2389 assert((Range - 2ULL).isNonNegative() && 2390 "Invalid case distance"); 2391 // Use volatile double here to avoid excess precision issues on some hosts, 2392 // e.g. that use 80-bit X87 registers. 2393 volatile double LDensity = 2394 (double)LSize.roundToDouble() / 2395 (LEnd - First + 1ULL).roundToDouble(); 2396 volatile double RDensity = 2397 (double)RSize.roundToDouble() / 2398 (Last - RBegin + 1ULL).roundToDouble(); 2399 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2400 // Should always split in some non-trivial place 2401 DEBUG(dbgs() <<"=>Step\n" 2402 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2403 << "LDensity: " << LDensity 2404 << ", RDensity: " << RDensity << '\n' 2405 << "Metric: " << Metric << '\n'); 2406 if (FMetric < Metric) { 2407 Pivot = J; 2408 FMetric = Metric; 2409 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2410 } 2411 2412 LSize += J->size(); 2413 RSize -= J->size(); 2414 } 2415 2416 const TargetLowering *TLI = TM.getTargetLowering(); 2417 if (areJTsAllowed(*TLI)) { 2418 // If our case is dense we *really* should handle it earlier! 2419 assert((FMetric > 0) && "Should handle dense range earlier!"); 2420 } else { 2421 Pivot = CR.Range.first + Size/2; 2422 } 2423 2424 CaseRange LHSR(CR.Range.first, Pivot); 2425 CaseRange RHSR(Pivot, CR.Range.second); 2426 const Constant *C = Pivot->Low; 2427 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2428 2429 // We know that we branch to the LHS if the Value being switched on is 2430 // less than the Pivot value, C. We use this to optimize our binary 2431 // tree a bit, by recognizing that if SV is greater than or equal to the 2432 // LHS's Case Value, and that Case Value is exactly one less than the 2433 // Pivot's Value, then we can branch directly to the LHS's Target, 2434 // rather than creating a leaf node for it. 2435 if ((LHSR.second - LHSR.first) == 1 && 2436 LHSR.first->High == CR.GE && 2437 cast<ConstantInt>(C)->getValue() == 2438 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2439 TrueBB = LHSR.first->BB; 2440 } else { 2441 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2442 CurMF->insert(BBI, TrueBB); 2443 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2444 2445 // Put SV in a virtual register to make it available from the new blocks. 2446 ExportFromCurrentBlock(SV); 2447 } 2448 2449 // Similar to the optimization above, if the Value being switched on is 2450 // known to be less than the Constant CR.LT, and the current Case Value 2451 // is CR.LT - 1, then we can branch directly to the target block for 2452 // the current Case Value, rather than emitting a RHS leaf node for it. 2453 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2454 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2455 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2456 FalseBB = RHSR.first->BB; 2457 } else { 2458 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2459 CurMF->insert(BBI, FalseBB); 2460 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2461 2462 // Put SV in a virtual register to make it available from the new blocks. 2463 ExportFromCurrentBlock(SV); 2464 } 2465 2466 // Create a CaseBlock record representing a conditional branch to 2467 // the LHS node if the value being switched on SV is less than C. 2468 // Otherwise, branch to LHS. 2469 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2470 2471 if (CR.CaseBB == SwitchBB) 2472 visitSwitchCase(CB, SwitchBB); 2473 else 2474 SwitchCases.push_back(CB); 2475 2476 return true; 2477 } 2478 2479 /// handleBitTestsSwitchCase - if current case range has few destination and 2480 /// range span less, than machine word bitwidth, encode case range into series 2481 /// of masks and emit bit tests with these masks. 2482 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2483 CaseRecVector& WorkList, 2484 const Value* SV, 2485 MachineBasicBlock* Default, 2486 MachineBasicBlock* SwitchBB) { 2487 const TargetLowering *TLI = TM.getTargetLowering(); 2488 EVT PTy = TLI->getPointerTy(); 2489 unsigned IntPtrBits = PTy.getSizeInBits(); 2490 2491 Case& FrontCase = *CR.Range.first; 2492 Case& BackCase = *(CR.Range.second-1); 2493 2494 // Get the MachineFunction which holds the current MBB. This is used when 2495 // inserting any additional MBBs necessary to represent the switch. 2496 MachineFunction *CurMF = FuncInfo.MF; 2497 2498 // If target does not have legal shift left, do not emit bit tests at all. 2499 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2500 return false; 2501 2502 size_t numCmps = 0; 2503 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2504 I!=E; ++I) { 2505 // Single case counts one, case range - two. 2506 numCmps += (I->Low == I->High ? 1 : 2); 2507 } 2508 2509 // Count unique destinations 2510 SmallSet<MachineBasicBlock*, 4> Dests; 2511 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2512 Dests.insert(I->BB); 2513 if (Dests.size() > 3) 2514 // Don't bother the code below, if there are too much unique destinations 2515 return false; 2516 } 2517 DEBUG(dbgs() << "Total number of unique destinations: " 2518 << Dests.size() << '\n' 2519 << "Total number of comparisons: " << numCmps << '\n'); 2520 2521 // Compute span of values. 2522 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2523 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2524 APInt cmpRange = maxValue - minValue; 2525 2526 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2527 << "Low bound: " << minValue << '\n' 2528 << "High bound: " << maxValue << '\n'); 2529 2530 if (cmpRange.uge(IntPtrBits) || 2531 (!(Dests.size() == 1 && numCmps >= 3) && 2532 !(Dests.size() == 2 && numCmps >= 5) && 2533 !(Dests.size() >= 3 && numCmps >= 6))) 2534 return false; 2535 2536 DEBUG(dbgs() << "Emitting bit tests\n"); 2537 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2538 2539 // Optimize the case where all the case values fit in a 2540 // word without having to subtract minValue. In this case, 2541 // we can optimize away the subtraction. 2542 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2543 cmpRange = maxValue; 2544 } else { 2545 lowBound = minValue; 2546 } 2547 2548 CaseBitsVector CasesBits; 2549 unsigned i, count = 0; 2550 2551 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2552 MachineBasicBlock* Dest = I->BB; 2553 for (i = 0; i < count; ++i) 2554 if (Dest == CasesBits[i].BB) 2555 break; 2556 2557 if (i == count) { 2558 assert((count < 3) && "Too much destinations to test!"); 2559 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2560 count++; 2561 } 2562 2563 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2564 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2565 2566 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2567 uint64_t hi = (highValue - lowBound).getZExtValue(); 2568 CasesBits[i].ExtraWeight += I->ExtraWeight; 2569 2570 for (uint64_t j = lo; j <= hi; j++) { 2571 CasesBits[i].Mask |= 1ULL << j; 2572 CasesBits[i].Bits++; 2573 } 2574 2575 } 2576 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2577 2578 BitTestInfo BTC; 2579 2580 // Figure out which block is immediately after the current one. 2581 MachineFunction::iterator BBI = CR.CaseBB; 2582 ++BBI; 2583 2584 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2585 2586 DEBUG(dbgs() << "Cases:\n"); 2587 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2588 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2589 << ", Bits: " << CasesBits[i].Bits 2590 << ", BB: " << CasesBits[i].BB << '\n'); 2591 2592 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2593 CurMF->insert(BBI, CaseBB); 2594 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2595 CaseBB, 2596 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2597 2598 // Put SV in a virtual register to make it available from the new blocks. 2599 ExportFromCurrentBlock(SV); 2600 } 2601 2602 BitTestBlock BTB(lowBound, cmpRange, SV, 2603 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2604 CR.CaseBB, Default, BTC); 2605 2606 if (CR.CaseBB == SwitchBB) 2607 visitBitTestHeader(BTB, SwitchBB); 2608 2609 BitTestCases.push_back(BTB); 2610 2611 return true; 2612 } 2613 2614 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2615 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2616 const SwitchInst& SI) { 2617 size_t numCmps = 0; 2618 2619 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2620 // Start with "simple" cases 2621 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2622 i != e; ++i) { 2623 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2624 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2625 2626 uint32_t ExtraWeight = 2627 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2628 2629 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2630 SMBB, ExtraWeight)); 2631 } 2632 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2633 2634 // Merge case into clusters 2635 if (Cases.size() >= 2) 2636 // Must recompute end() each iteration because it may be 2637 // invalidated by erase if we hold on to it 2638 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2639 J != Cases.end(); ) { 2640 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2641 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2642 MachineBasicBlock* nextBB = J->BB; 2643 MachineBasicBlock* currentBB = I->BB; 2644 2645 // If the two neighboring cases go to the same destination, merge them 2646 // into a single case. 2647 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2648 I->High = J->High; 2649 I->ExtraWeight += J->ExtraWeight; 2650 J = Cases.erase(J); 2651 } else { 2652 I = J++; 2653 } 2654 } 2655 2656 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2657 if (I->Low != I->High) 2658 // A range counts double, since it requires two compares. 2659 ++numCmps; 2660 } 2661 2662 return numCmps; 2663 } 2664 2665 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2666 MachineBasicBlock *Last) { 2667 // Update JTCases. 2668 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2669 if (JTCases[i].first.HeaderBB == First) 2670 JTCases[i].first.HeaderBB = Last; 2671 2672 // Update BitTestCases. 2673 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2674 if (BitTestCases[i].Parent == First) 2675 BitTestCases[i].Parent = Last; 2676 } 2677 2678 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2679 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2680 2681 // Figure out which block is immediately after the current one. 2682 MachineBasicBlock *NextBlock = nullptr; 2683 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2684 2685 // If there is only the default destination, branch to it if it is not the 2686 // next basic block. Otherwise, just fall through. 2687 if (!SI.getNumCases()) { 2688 // Update machine-CFG edges. 2689 2690 // If this is not a fall-through branch, emit the branch. 2691 SwitchMBB->addSuccessor(Default); 2692 if (Default != NextBlock) 2693 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2694 MVT::Other, getControlRoot(), 2695 DAG.getBasicBlock(Default))); 2696 2697 return; 2698 } 2699 2700 // If there are any non-default case statements, create a vector of Cases 2701 // representing each one, and sort the vector so that we can efficiently 2702 // create a binary search tree from them. 2703 CaseVector Cases; 2704 size_t numCmps = Clusterify(Cases, SI); 2705 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2706 << ". Total compares: " << numCmps << '\n'); 2707 (void)numCmps; 2708 2709 // Get the Value to be switched on and default basic blocks, which will be 2710 // inserted into CaseBlock records, representing basic blocks in the binary 2711 // search tree. 2712 const Value *SV = SI.getCondition(); 2713 2714 // Push the initial CaseRec onto the worklist 2715 CaseRecVector WorkList; 2716 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2717 CaseRange(Cases.begin(),Cases.end()))); 2718 2719 while (!WorkList.empty()) { 2720 // Grab a record representing a case range to process off the worklist 2721 CaseRec CR = WorkList.back(); 2722 WorkList.pop_back(); 2723 2724 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2725 continue; 2726 2727 // If the range has few cases (two or less) emit a series of specific 2728 // tests. 2729 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2730 continue; 2731 2732 // If the switch has more than N blocks, and is at least 40% dense, and the 2733 // target supports indirect branches, then emit a jump table rather than 2734 // lowering the switch to a binary tree of conditional branches. 2735 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2736 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2737 continue; 2738 2739 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2740 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2741 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2742 } 2743 } 2744 2745 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2746 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2747 2748 // Update machine-CFG edges with unique successors. 2749 SmallSet<BasicBlock*, 32> Done; 2750 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2751 BasicBlock *BB = I.getSuccessor(i); 2752 bool Inserted = Done.insert(BB); 2753 if (!Inserted) 2754 continue; 2755 2756 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2757 addSuccessorWithWeight(IndirectBrMBB, Succ); 2758 } 2759 2760 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2761 MVT::Other, getControlRoot(), 2762 getValue(I.getAddress()))); 2763 } 2764 2765 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2766 if (DAG.getTarget().Options.TrapUnreachable) 2767 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2768 } 2769 2770 void SelectionDAGBuilder::visitFSub(const User &I) { 2771 // -0.0 - X --> fneg 2772 Type *Ty = I.getType(); 2773 if (isa<Constant>(I.getOperand(0)) && 2774 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2775 SDValue Op2 = getValue(I.getOperand(1)); 2776 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2777 Op2.getValueType(), Op2)); 2778 return; 2779 } 2780 2781 visitBinary(I, ISD::FSUB); 2782 } 2783 2784 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2785 SDValue Op1 = getValue(I.getOperand(0)); 2786 SDValue Op2 = getValue(I.getOperand(1)); 2787 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2788 Op1.getValueType(), Op1, Op2)); 2789 } 2790 2791 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2792 SDValue Op1 = getValue(I.getOperand(0)); 2793 SDValue Op2 = getValue(I.getOperand(1)); 2794 2795 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2796 2797 // Coerce the shift amount to the right type if we can. 2798 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2799 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2800 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2801 SDLoc DL = getCurSDLoc(); 2802 2803 // If the operand is smaller than the shift count type, promote it. 2804 if (ShiftSize > Op2Size) 2805 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2806 2807 // If the operand is larger than the shift count type but the shift 2808 // count type has enough bits to represent any shift value, truncate 2809 // it now. This is a common case and it exposes the truncate to 2810 // optimization early. 2811 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2812 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2813 // Otherwise we'll need to temporarily settle for some other convenient 2814 // type. Type legalization will make adjustments once the shiftee is split. 2815 else 2816 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2817 } 2818 2819 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2820 Op1.getValueType(), Op1, Op2)); 2821 } 2822 2823 void SelectionDAGBuilder::visitSDiv(const User &I) { 2824 SDValue Op1 = getValue(I.getOperand(0)); 2825 SDValue Op2 = getValue(I.getOperand(1)); 2826 2827 // Turn exact SDivs into multiplications. 2828 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2829 // exact bit. 2830 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2831 !isa<ConstantSDNode>(Op1) && 2832 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2833 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2834 getCurSDLoc(), DAG)); 2835 else 2836 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2837 Op1, Op2)); 2838 } 2839 2840 void SelectionDAGBuilder::visitICmp(const User &I) { 2841 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2842 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2843 predicate = IC->getPredicate(); 2844 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2845 predicate = ICmpInst::Predicate(IC->getPredicate()); 2846 SDValue Op1 = getValue(I.getOperand(0)); 2847 SDValue Op2 = getValue(I.getOperand(1)); 2848 ISD::CondCode Opcode = getICmpCondCode(predicate); 2849 2850 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2851 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2852 } 2853 2854 void SelectionDAGBuilder::visitFCmp(const User &I) { 2855 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2856 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2857 predicate = FC->getPredicate(); 2858 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2859 predicate = FCmpInst::Predicate(FC->getPredicate()); 2860 SDValue Op1 = getValue(I.getOperand(0)); 2861 SDValue Op2 = getValue(I.getOperand(1)); 2862 ISD::CondCode Condition = getFCmpCondCode(predicate); 2863 if (TM.Options.NoNaNsFPMath) 2864 Condition = getFCmpCodeWithoutNaN(Condition); 2865 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2866 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2867 } 2868 2869 void SelectionDAGBuilder::visitSelect(const User &I) { 2870 SmallVector<EVT, 4> ValueVTs; 2871 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2872 unsigned NumValues = ValueVTs.size(); 2873 if (NumValues == 0) return; 2874 2875 SmallVector<SDValue, 4> Values(NumValues); 2876 SDValue Cond = getValue(I.getOperand(0)); 2877 SDValue TrueVal = getValue(I.getOperand(1)); 2878 SDValue FalseVal = getValue(I.getOperand(2)); 2879 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2880 ISD::VSELECT : ISD::SELECT; 2881 2882 for (unsigned i = 0; i != NumValues; ++i) 2883 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2884 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2885 Cond, 2886 SDValue(TrueVal.getNode(), 2887 TrueVal.getResNo() + i), 2888 SDValue(FalseVal.getNode(), 2889 FalseVal.getResNo() + i)); 2890 2891 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2892 DAG.getVTList(ValueVTs), Values)); 2893 } 2894 2895 void SelectionDAGBuilder::visitTrunc(const User &I) { 2896 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2897 SDValue N = getValue(I.getOperand(0)); 2898 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2899 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2900 } 2901 2902 void SelectionDAGBuilder::visitZExt(const User &I) { 2903 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2904 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2905 SDValue N = getValue(I.getOperand(0)); 2906 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2907 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2908 } 2909 2910 void SelectionDAGBuilder::visitSExt(const User &I) { 2911 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2912 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2913 SDValue N = getValue(I.getOperand(0)); 2914 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2915 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2916 } 2917 2918 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2919 // FPTrunc is never a no-op cast, no need to check 2920 SDValue N = getValue(I.getOperand(0)); 2921 const TargetLowering *TLI = TM.getTargetLowering(); 2922 EVT DestVT = TLI->getValueType(I.getType()); 2923 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2924 DestVT, N, 2925 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2926 } 2927 2928 void SelectionDAGBuilder::visitFPExt(const User &I) { 2929 // FPExt is never a no-op cast, no need to check 2930 SDValue N = getValue(I.getOperand(0)); 2931 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2932 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2933 } 2934 2935 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2936 // FPToUI is never a no-op cast, no need to check 2937 SDValue N = getValue(I.getOperand(0)); 2938 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2939 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2940 } 2941 2942 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2943 // FPToSI is never a no-op cast, no need to check 2944 SDValue N = getValue(I.getOperand(0)); 2945 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2946 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2947 } 2948 2949 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2950 // UIToFP is never a no-op cast, no need to check 2951 SDValue N = getValue(I.getOperand(0)); 2952 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2953 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2954 } 2955 2956 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2957 // SIToFP is never a no-op cast, no need to check 2958 SDValue N = getValue(I.getOperand(0)); 2959 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2960 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2961 } 2962 2963 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2964 // What to do depends on the size of the integer and the size of the pointer. 2965 // We can either truncate, zero extend, or no-op, accordingly. 2966 SDValue N = getValue(I.getOperand(0)); 2967 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2968 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2969 } 2970 2971 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2972 // What to do depends on the size of the integer and the size of the pointer. 2973 // We can either truncate, zero extend, or no-op, accordingly. 2974 SDValue N = getValue(I.getOperand(0)); 2975 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2976 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2977 } 2978 2979 void SelectionDAGBuilder::visitBitCast(const User &I) { 2980 SDValue N = getValue(I.getOperand(0)); 2981 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2982 2983 // BitCast assures us that source and destination are the same size so this is 2984 // either a BITCAST or a no-op. 2985 if (DestVT != N.getValueType()) 2986 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2987 DestVT, N)); // convert types. 2988 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2989 // might fold any kind of constant expression to an integer constant and that 2990 // is not what we are looking for. Only regcognize a bitcast of a genuine 2991 // constant integer as an opaque constant. 2992 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2993 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2994 /*isOpaque*/true)); 2995 else 2996 setValue(&I, N); // noop cast. 2997 } 2998 2999 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3001 const Value *SV = I.getOperand(0); 3002 SDValue N = getValue(SV); 3003 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3004 3005 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3006 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3007 3008 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3009 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3010 3011 setValue(&I, N); 3012 } 3013 3014 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3016 SDValue InVec = getValue(I.getOperand(0)); 3017 SDValue InVal = getValue(I.getOperand(1)); 3018 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3019 getCurSDLoc(), TLI.getVectorIdxTy()); 3020 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3021 TM.getTargetLowering()->getValueType(I.getType()), 3022 InVec, InVal, InIdx)); 3023 } 3024 3025 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3027 SDValue InVec = getValue(I.getOperand(0)); 3028 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3029 getCurSDLoc(), TLI.getVectorIdxTy()); 3030 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3031 TM.getTargetLowering()->getValueType(I.getType()), 3032 InVec, InIdx)); 3033 } 3034 3035 // Utility for visitShuffleVector - Return true if every element in Mask, 3036 // beginning from position Pos and ending in Pos+Size, falls within the 3037 // specified sequential range [L, L+Pos). or is undef. 3038 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3039 unsigned Pos, unsigned Size, int Low) { 3040 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3041 if (Mask[i] >= 0 && Mask[i] != Low) 3042 return false; 3043 return true; 3044 } 3045 3046 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3047 SDValue Src1 = getValue(I.getOperand(0)); 3048 SDValue Src2 = getValue(I.getOperand(1)); 3049 3050 SmallVector<int, 8> Mask; 3051 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3052 unsigned MaskNumElts = Mask.size(); 3053 3054 const TargetLowering *TLI = TM.getTargetLowering(); 3055 EVT VT = TLI->getValueType(I.getType()); 3056 EVT SrcVT = Src1.getValueType(); 3057 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3058 3059 if (SrcNumElts == MaskNumElts) { 3060 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3061 &Mask[0])); 3062 return; 3063 } 3064 3065 // Normalize the shuffle vector since mask and vector length don't match. 3066 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3067 // Mask is longer than the source vectors and is a multiple of the source 3068 // vectors. We can use concatenate vector to make the mask and vectors 3069 // lengths match. 3070 if (SrcNumElts*2 == MaskNumElts) { 3071 // First check for Src1 in low and Src2 in high 3072 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3073 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3074 // The shuffle is concatenating two vectors together. 3075 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3076 VT, Src1, Src2)); 3077 return; 3078 } 3079 // Then check for Src2 in low and Src1 in high 3080 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3081 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3082 // The shuffle is concatenating two vectors together. 3083 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3084 VT, Src2, Src1)); 3085 return; 3086 } 3087 } 3088 3089 // Pad both vectors with undefs to make them the same length as the mask. 3090 unsigned NumConcat = MaskNumElts / SrcNumElts; 3091 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3092 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3093 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3094 3095 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3096 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3097 MOps1[0] = Src1; 3098 MOps2[0] = Src2; 3099 3100 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3101 getCurSDLoc(), VT, MOps1); 3102 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3103 getCurSDLoc(), VT, MOps2); 3104 3105 // Readjust mask for new input vector length. 3106 SmallVector<int, 8> MappedOps; 3107 for (unsigned i = 0; i != MaskNumElts; ++i) { 3108 int Idx = Mask[i]; 3109 if (Idx >= (int)SrcNumElts) 3110 Idx -= SrcNumElts - MaskNumElts; 3111 MappedOps.push_back(Idx); 3112 } 3113 3114 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3115 &MappedOps[0])); 3116 return; 3117 } 3118 3119 if (SrcNumElts > MaskNumElts) { 3120 // Analyze the access pattern of the vector to see if we can extract 3121 // two subvectors and do the shuffle. The analysis is done by calculating 3122 // the range of elements the mask access on both vectors. 3123 int MinRange[2] = { static_cast<int>(SrcNumElts), 3124 static_cast<int>(SrcNumElts)}; 3125 int MaxRange[2] = {-1, -1}; 3126 3127 for (unsigned i = 0; i != MaskNumElts; ++i) { 3128 int Idx = Mask[i]; 3129 unsigned Input = 0; 3130 if (Idx < 0) 3131 continue; 3132 3133 if (Idx >= (int)SrcNumElts) { 3134 Input = 1; 3135 Idx -= SrcNumElts; 3136 } 3137 if (Idx > MaxRange[Input]) 3138 MaxRange[Input] = Idx; 3139 if (Idx < MinRange[Input]) 3140 MinRange[Input] = Idx; 3141 } 3142 3143 // Check if the access is smaller than the vector size and can we find 3144 // a reasonable extract index. 3145 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3146 // Extract. 3147 int StartIdx[2]; // StartIdx to extract from 3148 for (unsigned Input = 0; Input < 2; ++Input) { 3149 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3150 RangeUse[Input] = 0; // Unused 3151 StartIdx[Input] = 0; 3152 continue; 3153 } 3154 3155 // Find a good start index that is a multiple of the mask length. Then 3156 // see if the rest of the elements are in range. 3157 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3158 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3159 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3160 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3161 } 3162 3163 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3164 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3165 return; 3166 } 3167 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3168 // Extract appropriate subvector and generate a vector shuffle 3169 for (unsigned Input = 0; Input < 2; ++Input) { 3170 SDValue &Src = Input == 0 ? Src1 : Src2; 3171 if (RangeUse[Input] == 0) 3172 Src = DAG.getUNDEF(VT); 3173 else 3174 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3175 Src, DAG.getConstant(StartIdx[Input], 3176 TLI->getVectorIdxTy())); 3177 } 3178 3179 // Calculate new mask. 3180 SmallVector<int, 8> MappedOps; 3181 for (unsigned i = 0; i != MaskNumElts; ++i) { 3182 int Idx = Mask[i]; 3183 if (Idx >= 0) { 3184 if (Idx < (int)SrcNumElts) 3185 Idx -= StartIdx[0]; 3186 else 3187 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3188 } 3189 MappedOps.push_back(Idx); 3190 } 3191 3192 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3193 &MappedOps[0])); 3194 return; 3195 } 3196 } 3197 3198 // We can't use either concat vectors or extract subvectors so fall back to 3199 // replacing the shuffle with extract and build vector. 3200 // to insert and build vector. 3201 EVT EltVT = VT.getVectorElementType(); 3202 EVT IdxVT = TLI->getVectorIdxTy(); 3203 SmallVector<SDValue,8> Ops; 3204 for (unsigned i = 0; i != MaskNumElts; ++i) { 3205 int Idx = Mask[i]; 3206 SDValue Res; 3207 3208 if (Idx < 0) { 3209 Res = DAG.getUNDEF(EltVT); 3210 } else { 3211 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3212 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3213 3214 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3215 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3216 } 3217 3218 Ops.push_back(Res); 3219 } 3220 3221 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3222 } 3223 3224 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3225 const Value *Op0 = I.getOperand(0); 3226 const Value *Op1 = I.getOperand(1); 3227 Type *AggTy = I.getType(); 3228 Type *ValTy = Op1->getType(); 3229 bool IntoUndef = isa<UndefValue>(Op0); 3230 bool FromUndef = isa<UndefValue>(Op1); 3231 3232 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3233 3234 const TargetLowering *TLI = TM.getTargetLowering(); 3235 SmallVector<EVT, 4> AggValueVTs; 3236 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3237 SmallVector<EVT, 4> ValValueVTs; 3238 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3239 3240 unsigned NumAggValues = AggValueVTs.size(); 3241 unsigned NumValValues = ValValueVTs.size(); 3242 SmallVector<SDValue, 4> Values(NumAggValues); 3243 3244 SDValue Agg = getValue(Op0); 3245 unsigned i = 0; 3246 // Copy the beginning value(s) from the original aggregate. 3247 for (; i != LinearIndex; ++i) 3248 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3249 SDValue(Agg.getNode(), Agg.getResNo() + i); 3250 // Copy values from the inserted value(s). 3251 if (NumValValues) { 3252 SDValue Val = getValue(Op1); 3253 for (; i != LinearIndex + NumValValues; ++i) 3254 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3255 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3256 } 3257 // Copy remaining value(s) from the original aggregate. 3258 for (; i != NumAggValues; ++i) 3259 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3260 SDValue(Agg.getNode(), Agg.getResNo() + i); 3261 3262 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3263 DAG.getVTList(AggValueVTs), Values)); 3264 } 3265 3266 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3267 const Value *Op0 = I.getOperand(0); 3268 Type *AggTy = Op0->getType(); 3269 Type *ValTy = I.getType(); 3270 bool OutOfUndef = isa<UndefValue>(Op0); 3271 3272 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3273 3274 const TargetLowering *TLI = TM.getTargetLowering(); 3275 SmallVector<EVT, 4> ValValueVTs; 3276 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3277 3278 unsigned NumValValues = ValValueVTs.size(); 3279 3280 // Ignore a extractvalue that produces an empty object 3281 if (!NumValValues) { 3282 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3283 return; 3284 } 3285 3286 SmallVector<SDValue, 4> Values(NumValValues); 3287 3288 SDValue Agg = getValue(Op0); 3289 // Copy out the selected value(s). 3290 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3291 Values[i - LinearIndex] = 3292 OutOfUndef ? 3293 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3294 SDValue(Agg.getNode(), Agg.getResNo() + i); 3295 3296 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3297 DAG.getVTList(ValValueVTs), Values)); 3298 } 3299 3300 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3301 Value *Op0 = I.getOperand(0); 3302 // Note that the pointer operand may be a vector of pointers. Take the scalar 3303 // element which holds a pointer. 3304 Type *Ty = Op0->getType()->getScalarType(); 3305 unsigned AS = Ty->getPointerAddressSpace(); 3306 SDValue N = getValue(Op0); 3307 3308 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3309 OI != E; ++OI) { 3310 const Value *Idx = *OI; 3311 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3312 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3313 if (Field) { 3314 // N = N + Offset 3315 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3316 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3317 DAG.getConstant(Offset, N.getValueType())); 3318 } 3319 3320 Ty = StTy->getElementType(Field); 3321 } else { 3322 Ty = cast<SequentialType>(Ty)->getElementType(); 3323 3324 // If this is a constant subscript, handle it quickly. 3325 const TargetLowering *TLI = TM.getTargetLowering(); 3326 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3327 if (CI->isZero()) continue; 3328 uint64_t Offs = 3329 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3330 SDValue OffsVal; 3331 EVT PTy = TLI->getPointerTy(AS); 3332 unsigned PtrBits = PTy.getSizeInBits(); 3333 if (PtrBits < 64) 3334 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3335 DAG.getConstant(Offs, MVT::i64)); 3336 else 3337 OffsVal = DAG.getConstant(Offs, PTy); 3338 3339 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3340 OffsVal); 3341 continue; 3342 } 3343 3344 // N = N + Idx * ElementSize; 3345 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3346 DL->getTypeAllocSize(Ty)); 3347 SDValue IdxN = getValue(Idx); 3348 3349 // If the index is smaller or larger than intptr_t, truncate or extend 3350 // it. 3351 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3352 3353 // If this is a multiply by a power of two, turn it into a shl 3354 // immediately. This is a very common case. 3355 if (ElementSize != 1) { 3356 if (ElementSize.isPowerOf2()) { 3357 unsigned Amt = ElementSize.logBase2(); 3358 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3359 N.getValueType(), IdxN, 3360 DAG.getConstant(Amt, IdxN.getValueType())); 3361 } else { 3362 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3363 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3364 N.getValueType(), IdxN, Scale); 3365 } 3366 } 3367 3368 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3369 N.getValueType(), N, IdxN); 3370 } 3371 } 3372 3373 setValue(&I, N); 3374 } 3375 3376 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3377 // If this is a fixed sized alloca in the entry block of the function, 3378 // allocate it statically on the stack. 3379 if (FuncInfo.StaticAllocaMap.count(&I)) 3380 return; // getValue will auto-populate this. 3381 3382 Type *Ty = I.getAllocatedType(); 3383 const TargetLowering *TLI = TM.getTargetLowering(); 3384 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3385 unsigned Align = 3386 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3387 I.getAlignment()); 3388 3389 SDValue AllocSize = getValue(I.getArraySize()); 3390 3391 EVT IntPtr = TLI->getPointerTy(); 3392 if (AllocSize.getValueType() != IntPtr) 3393 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3394 3395 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3396 AllocSize, 3397 DAG.getConstant(TySize, IntPtr)); 3398 3399 // Handle alignment. If the requested alignment is less than or equal to 3400 // the stack alignment, ignore it. If the size is greater than or equal to 3401 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3402 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3403 if (Align <= StackAlign) 3404 Align = 0; 3405 3406 // Round the size of the allocation up to the stack alignment size 3407 // by add SA-1 to the size. 3408 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3409 AllocSize.getValueType(), AllocSize, 3410 DAG.getIntPtrConstant(StackAlign-1)); 3411 3412 // Mask out the low bits for alignment purposes. 3413 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3414 AllocSize.getValueType(), AllocSize, 3415 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3416 3417 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3418 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3419 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3420 setValue(&I, DSA); 3421 DAG.setRoot(DSA.getValue(1)); 3422 3423 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3424 } 3425 3426 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3427 if (I.isAtomic()) 3428 return visitAtomicLoad(I); 3429 3430 const Value *SV = I.getOperand(0); 3431 SDValue Ptr = getValue(SV); 3432 3433 Type *Ty = I.getType(); 3434 3435 bool isVolatile = I.isVolatile(); 3436 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3437 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3438 unsigned Alignment = I.getAlignment(); 3439 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3440 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3441 3442 SmallVector<EVT, 4> ValueVTs; 3443 SmallVector<uint64_t, 4> Offsets; 3444 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3445 unsigned NumValues = ValueVTs.size(); 3446 if (NumValues == 0) 3447 return; 3448 3449 SDValue Root; 3450 bool ConstantMemory = false; 3451 if (isVolatile || NumValues > MaxParallelChains) 3452 // Serialize volatile loads with other side effects. 3453 Root = getRoot(); 3454 else if (AA->pointsToConstantMemory( 3455 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3456 // Do not serialize (non-volatile) loads of constant memory with anything. 3457 Root = DAG.getEntryNode(); 3458 ConstantMemory = true; 3459 } else { 3460 // Do not serialize non-volatile loads against each other. 3461 Root = DAG.getRoot(); 3462 } 3463 3464 const TargetLowering *TLI = TM.getTargetLowering(); 3465 if (isVolatile) 3466 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3467 3468 SmallVector<SDValue, 4> Values(NumValues); 3469 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3470 NumValues)); 3471 EVT PtrVT = Ptr.getValueType(); 3472 unsigned ChainI = 0; 3473 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3474 // Serializing loads here may result in excessive register pressure, and 3475 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3476 // could recover a bit by hoisting nodes upward in the chain by recognizing 3477 // they are side-effect free or do not alias. The optimizer should really 3478 // avoid this case by converting large object/array copies to llvm.memcpy 3479 // (MaxParallelChains should always remain as failsafe). 3480 if (ChainI == MaxParallelChains) { 3481 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3482 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3483 ArrayRef<SDValue>(Chains.data(), ChainI)); 3484 Root = Chain; 3485 ChainI = 0; 3486 } 3487 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3488 PtrVT, Ptr, 3489 DAG.getConstant(Offsets[i], PtrVT)); 3490 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3491 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3492 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3493 Ranges); 3494 3495 Values[i] = L; 3496 Chains[ChainI] = L.getValue(1); 3497 } 3498 3499 if (!ConstantMemory) { 3500 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3501 ArrayRef<SDValue>(Chains.data(), ChainI)); 3502 if (isVolatile) 3503 DAG.setRoot(Chain); 3504 else 3505 PendingLoads.push_back(Chain); 3506 } 3507 3508 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3509 DAG.getVTList(ValueVTs), Values)); 3510 } 3511 3512 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3513 if (I.isAtomic()) 3514 return visitAtomicStore(I); 3515 3516 const Value *SrcV = I.getOperand(0); 3517 const Value *PtrV = I.getOperand(1); 3518 3519 SmallVector<EVT, 4> ValueVTs; 3520 SmallVector<uint64_t, 4> Offsets; 3521 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3522 unsigned NumValues = ValueVTs.size(); 3523 if (NumValues == 0) 3524 return; 3525 3526 // Get the lowered operands. Note that we do this after 3527 // checking if NumResults is zero, because with zero results 3528 // the operands won't have values in the map. 3529 SDValue Src = getValue(SrcV); 3530 SDValue Ptr = getValue(PtrV); 3531 3532 SDValue Root = getRoot(); 3533 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3534 NumValues)); 3535 EVT PtrVT = Ptr.getValueType(); 3536 bool isVolatile = I.isVolatile(); 3537 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3538 unsigned Alignment = I.getAlignment(); 3539 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3540 3541 unsigned ChainI = 0; 3542 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3543 // See visitLoad comments. 3544 if (ChainI == MaxParallelChains) { 3545 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3546 ArrayRef<SDValue>(Chains.data(), ChainI)); 3547 Root = Chain; 3548 ChainI = 0; 3549 } 3550 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3551 DAG.getConstant(Offsets[i], PtrVT)); 3552 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3553 SDValue(Src.getNode(), Src.getResNo() + i), 3554 Add, MachinePointerInfo(PtrV, Offsets[i]), 3555 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3556 Chains[ChainI] = St; 3557 } 3558 3559 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3560 ArrayRef<SDValue>(Chains.data(), ChainI)); 3561 DAG.setRoot(StoreNode); 3562 } 3563 3564 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3565 SynchronizationScope Scope, 3566 bool Before, SDLoc dl, 3567 SelectionDAG &DAG, 3568 const TargetLowering &TLI) { 3569 // Fence, if necessary 3570 if (Before) { 3571 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3572 Order = Release; 3573 else if (Order == Acquire || Order == Monotonic) 3574 return Chain; 3575 } else { 3576 if (Order == AcquireRelease) 3577 Order = Acquire; 3578 else if (Order == Release || Order == Monotonic) 3579 return Chain; 3580 } 3581 SDValue Ops[3]; 3582 Ops[0] = Chain; 3583 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3584 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3585 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3586 } 3587 3588 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3589 SDLoc dl = getCurSDLoc(); 3590 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3591 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3592 SynchronizationScope Scope = I.getSynchScope(); 3593 3594 SDValue InChain = getRoot(); 3595 3596 const TargetLowering *TLI = TM.getTargetLowering(); 3597 if (TLI->getInsertFencesForAtomic()) 3598 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3599 DAG, *TLI); 3600 3601 SDValue L = 3602 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3603 getValue(I.getCompareOperand()).getSimpleValueType(), 3604 InChain, 3605 getValue(I.getPointerOperand()), 3606 getValue(I.getCompareOperand()), 3607 getValue(I.getNewValOperand()), 3608 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3609 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3610 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, 3611 Scope); 3612 3613 SDValue OutChain = L.getValue(1); 3614 3615 if (TLI->getInsertFencesForAtomic()) 3616 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3617 DAG, *TLI); 3618 3619 setValue(&I, L); 3620 DAG.setRoot(OutChain); 3621 } 3622 3623 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3624 SDLoc dl = getCurSDLoc(); 3625 ISD::NodeType NT; 3626 switch (I.getOperation()) { 3627 default: llvm_unreachable("Unknown atomicrmw operation"); 3628 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3629 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3630 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3631 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3632 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3633 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3634 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3635 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3636 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3637 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3638 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3639 } 3640 AtomicOrdering Order = I.getOrdering(); 3641 SynchronizationScope Scope = I.getSynchScope(); 3642 3643 SDValue InChain = getRoot(); 3644 3645 const TargetLowering *TLI = TM.getTargetLowering(); 3646 if (TLI->getInsertFencesForAtomic()) 3647 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3648 DAG, *TLI); 3649 3650 SDValue L = 3651 DAG.getAtomic(NT, dl, 3652 getValue(I.getValOperand()).getSimpleValueType(), 3653 InChain, 3654 getValue(I.getPointerOperand()), 3655 getValue(I.getValOperand()), 3656 I.getPointerOperand(), 0 /* Alignment */, 3657 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3658 Scope); 3659 3660 SDValue OutChain = L.getValue(1); 3661 3662 if (TLI->getInsertFencesForAtomic()) 3663 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3664 DAG, *TLI); 3665 3666 setValue(&I, L); 3667 DAG.setRoot(OutChain); 3668 } 3669 3670 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3671 SDLoc dl = getCurSDLoc(); 3672 const TargetLowering *TLI = TM.getTargetLowering(); 3673 SDValue Ops[3]; 3674 Ops[0] = getRoot(); 3675 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3676 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3677 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3678 } 3679 3680 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3681 SDLoc dl = getCurSDLoc(); 3682 AtomicOrdering Order = I.getOrdering(); 3683 SynchronizationScope Scope = I.getSynchScope(); 3684 3685 SDValue InChain = getRoot(); 3686 3687 const TargetLowering *TLI = TM.getTargetLowering(); 3688 EVT VT = TLI->getValueType(I.getType()); 3689 3690 if (I.getAlignment() < VT.getSizeInBits() / 8) 3691 report_fatal_error("Cannot generate unaligned atomic load"); 3692 3693 MachineMemOperand *MMO = 3694 DAG.getMachineFunction(). 3695 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3696 MachineMemOperand::MOVolatile | 3697 MachineMemOperand::MOLoad, 3698 VT.getStoreSize(), 3699 I.getAlignment() ? I.getAlignment() : 3700 DAG.getEVTAlignment(VT)); 3701 3702 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3703 SDValue L = 3704 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3705 getValue(I.getPointerOperand()), MMO, 3706 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3707 Scope); 3708 3709 SDValue OutChain = L.getValue(1); 3710 3711 if (TLI->getInsertFencesForAtomic()) 3712 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3713 DAG, *TLI); 3714 3715 setValue(&I, L); 3716 DAG.setRoot(OutChain); 3717 } 3718 3719 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3720 SDLoc dl = getCurSDLoc(); 3721 3722 AtomicOrdering Order = I.getOrdering(); 3723 SynchronizationScope Scope = I.getSynchScope(); 3724 3725 SDValue InChain = getRoot(); 3726 3727 const TargetLowering *TLI = TM.getTargetLowering(); 3728 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3729 3730 if (I.getAlignment() < VT.getSizeInBits() / 8) 3731 report_fatal_error("Cannot generate unaligned atomic store"); 3732 3733 if (TLI->getInsertFencesForAtomic()) 3734 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3735 DAG, *TLI); 3736 3737 SDValue OutChain = 3738 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3739 InChain, 3740 getValue(I.getPointerOperand()), 3741 getValue(I.getValueOperand()), 3742 I.getPointerOperand(), I.getAlignment(), 3743 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3744 Scope); 3745 3746 if (TLI->getInsertFencesForAtomic()) 3747 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3748 DAG, *TLI); 3749 3750 DAG.setRoot(OutChain); 3751 } 3752 3753 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3754 /// node. 3755 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3756 unsigned Intrinsic) { 3757 bool HasChain = !I.doesNotAccessMemory(); 3758 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3759 3760 // Build the operand list. 3761 SmallVector<SDValue, 8> Ops; 3762 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3763 if (OnlyLoad) { 3764 // We don't need to serialize loads against other loads. 3765 Ops.push_back(DAG.getRoot()); 3766 } else { 3767 Ops.push_back(getRoot()); 3768 } 3769 } 3770 3771 // Info is set by getTgtMemInstrinsic 3772 TargetLowering::IntrinsicInfo Info; 3773 const TargetLowering *TLI = TM.getTargetLowering(); 3774 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3775 3776 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3777 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3778 Info.opc == ISD::INTRINSIC_W_CHAIN) 3779 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3780 3781 // Add all operands of the call to the operand list. 3782 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3783 SDValue Op = getValue(I.getArgOperand(i)); 3784 Ops.push_back(Op); 3785 } 3786 3787 SmallVector<EVT, 4> ValueVTs; 3788 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3789 3790 if (HasChain) 3791 ValueVTs.push_back(MVT::Other); 3792 3793 SDVTList VTs = DAG.getVTList(ValueVTs); 3794 3795 // Create the node. 3796 SDValue Result; 3797 if (IsTgtIntrinsic) { 3798 // This is target intrinsic that touches memory 3799 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3800 VTs, Ops, Info.memVT, 3801 MachinePointerInfo(Info.ptrVal, Info.offset), 3802 Info.align, Info.vol, 3803 Info.readMem, Info.writeMem); 3804 } else if (!HasChain) { 3805 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3806 } else if (!I.getType()->isVoidTy()) { 3807 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3808 } else { 3809 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3810 } 3811 3812 if (HasChain) { 3813 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3814 if (OnlyLoad) 3815 PendingLoads.push_back(Chain); 3816 else 3817 DAG.setRoot(Chain); 3818 } 3819 3820 if (!I.getType()->isVoidTy()) { 3821 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3822 EVT VT = TLI->getValueType(PTy); 3823 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3824 } 3825 3826 setValue(&I, Result); 3827 } 3828 } 3829 3830 /// GetSignificand - Get the significand and build it into a floating-point 3831 /// number with exponent of 1: 3832 /// 3833 /// Op = (Op & 0x007fffff) | 0x3f800000; 3834 /// 3835 /// where Op is the hexadecimal representation of floating point value. 3836 static SDValue 3837 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3838 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3839 DAG.getConstant(0x007fffff, MVT::i32)); 3840 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3841 DAG.getConstant(0x3f800000, MVT::i32)); 3842 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3843 } 3844 3845 /// GetExponent - Get the exponent: 3846 /// 3847 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3848 /// 3849 /// where Op is the hexadecimal representation of floating point value. 3850 static SDValue 3851 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3852 SDLoc dl) { 3853 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3854 DAG.getConstant(0x7f800000, MVT::i32)); 3855 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3856 DAG.getConstant(23, TLI.getPointerTy())); 3857 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3858 DAG.getConstant(127, MVT::i32)); 3859 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3860 } 3861 3862 /// getF32Constant - Get 32-bit floating point constant. 3863 static SDValue 3864 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3865 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3866 MVT::f32); 3867 } 3868 3869 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3870 /// limited-precision mode. 3871 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3872 const TargetLowering &TLI) { 3873 if (Op.getValueType() == MVT::f32 && 3874 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3875 3876 // Put the exponent in the right bit position for later addition to the 3877 // final result: 3878 // 3879 // #define LOG2OFe 1.4426950f 3880 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3881 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3882 getF32Constant(DAG, 0x3fb8aa3b)); 3883 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3884 3885 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3886 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3887 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3888 3889 // IntegerPartOfX <<= 23; 3890 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3891 DAG.getConstant(23, TLI.getPointerTy())); 3892 3893 SDValue TwoToFracPartOfX; 3894 if (LimitFloatPrecision <= 6) { 3895 // For floating-point precision of 6: 3896 // 3897 // TwoToFractionalPartOfX = 3898 // 0.997535578f + 3899 // (0.735607626f + 0.252464424f * x) * x; 3900 // 3901 // error 0.0144103317, which is 6 bits 3902 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3903 getF32Constant(DAG, 0x3e814304)); 3904 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3905 getF32Constant(DAG, 0x3f3c50c8)); 3906 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3907 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3908 getF32Constant(DAG, 0x3f7f5e7e)); 3909 } else if (LimitFloatPrecision <= 12) { 3910 // For floating-point precision of 12: 3911 // 3912 // TwoToFractionalPartOfX = 3913 // 0.999892986f + 3914 // (0.696457318f + 3915 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3916 // 3917 // 0.000107046256 error, which is 13 to 14 bits 3918 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3919 getF32Constant(DAG, 0x3da235e3)); 3920 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3921 getF32Constant(DAG, 0x3e65b8f3)); 3922 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3923 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3924 getF32Constant(DAG, 0x3f324b07)); 3925 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3926 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3927 getF32Constant(DAG, 0x3f7ff8fd)); 3928 } else { // LimitFloatPrecision <= 18 3929 // For floating-point precision of 18: 3930 // 3931 // TwoToFractionalPartOfX = 3932 // 0.999999982f + 3933 // (0.693148872f + 3934 // (0.240227044f + 3935 // (0.554906021e-1f + 3936 // (0.961591928e-2f + 3937 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3938 // 3939 // error 2.47208000*10^(-7), which is better than 18 bits 3940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3941 getF32Constant(DAG, 0x3924b03e)); 3942 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3943 getF32Constant(DAG, 0x3ab24b87)); 3944 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3945 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3946 getF32Constant(DAG, 0x3c1d8c17)); 3947 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3948 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3949 getF32Constant(DAG, 0x3d634a1d)); 3950 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3951 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3952 getF32Constant(DAG, 0x3e75fe14)); 3953 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3954 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3955 getF32Constant(DAG, 0x3f317234)); 3956 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3957 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3958 getF32Constant(DAG, 0x3f800000)); 3959 } 3960 3961 // Add the exponent into the result in integer domain. 3962 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3963 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3964 DAG.getNode(ISD::ADD, dl, MVT::i32, 3965 t13, IntegerPartOfX)); 3966 } 3967 3968 // No special expansion. 3969 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3970 } 3971 3972 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3973 /// limited-precision mode. 3974 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3975 const TargetLowering &TLI) { 3976 if (Op.getValueType() == MVT::f32 && 3977 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3978 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3979 3980 // Scale the exponent by log(2) [0.69314718f]. 3981 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3982 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3983 getF32Constant(DAG, 0x3f317218)); 3984 3985 // Get the significand and build it into a floating-point number with 3986 // exponent of 1. 3987 SDValue X = GetSignificand(DAG, Op1, dl); 3988 3989 SDValue LogOfMantissa; 3990 if (LimitFloatPrecision <= 6) { 3991 // For floating-point precision of 6: 3992 // 3993 // LogofMantissa = 3994 // -1.1609546f + 3995 // (1.4034025f - 0.23903021f * x) * x; 3996 // 3997 // error 0.0034276066, which is better than 8 bits 3998 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3999 getF32Constant(DAG, 0xbe74c456)); 4000 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4001 getF32Constant(DAG, 0x3fb3a2b1)); 4002 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4003 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4004 getF32Constant(DAG, 0x3f949a29)); 4005 } else if (LimitFloatPrecision <= 12) { 4006 // For floating-point precision of 12: 4007 // 4008 // LogOfMantissa = 4009 // -1.7417939f + 4010 // (2.8212026f + 4011 // (-1.4699568f + 4012 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4013 // 4014 // error 0.000061011436, which is 14 bits 4015 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4016 getF32Constant(DAG, 0xbd67b6d6)); 4017 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4018 getF32Constant(DAG, 0x3ee4f4b8)); 4019 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4020 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4021 getF32Constant(DAG, 0x3fbc278b)); 4022 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4023 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4024 getF32Constant(DAG, 0x40348e95)); 4025 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4026 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4027 getF32Constant(DAG, 0x3fdef31a)); 4028 } else { // LimitFloatPrecision <= 18 4029 // For floating-point precision of 18: 4030 // 4031 // LogOfMantissa = 4032 // -2.1072184f + 4033 // (4.2372794f + 4034 // (-3.7029485f + 4035 // (2.2781945f + 4036 // (-0.87823314f + 4037 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4038 // 4039 // error 0.0000023660568, which is better than 18 bits 4040 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4041 getF32Constant(DAG, 0xbc91e5ac)); 4042 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4043 getF32Constant(DAG, 0x3e4350aa)); 4044 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4045 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4046 getF32Constant(DAG, 0x3f60d3e3)); 4047 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4048 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4049 getF32Constant(DAG, 0x4011cdf0)); 4050 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4051 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4052 getF32Constant(DAG, 0x406cfd1c)); 4053 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4054 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4055 getF32Constant(DAG, 0x408797cb)); 4056 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4057 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4058 getF32Constant(DAG, 0x4006dcab)); 4059 } 4060 4061 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4062 } 4063 4064 // No special expansion. 4065 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4066 } 4067 4068 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4069 /// limited-precision mode. 4070 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4071 const TargetLowering &TLI) { 4072 if (Op.getValueType() == MVT::f32 && 4073 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4074 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4075 4076 // Get the exponent. 4077 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4078 4079 // Get the significand and build it into a floating-point number with 4080 // exponent of 1. 4081 SDValue X = GetSignificand(DAG, Op1, dl); 4082 4083 // Different possible minimax approximations of significand in 4084 // floating-point for various degrees of accuracy over [1,2]. 4085 SDValue Log2ofMantissa; 4086 if (LimitFloatPrecision <= 6) { 4087 // For floating-point precision of 6: 4088 // 4089 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4090 // 4091 // error 0.0049451742, which is more than 7 bits 4092 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4093 getF32Constant(DAG, 0xbeb08fe0)); 4094 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4095 getF32Constant(DAG, 0x40019463)); 4096 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4097 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4098 getF32Constant(DAG, 0x3fd6633d)); 4099 } else if (LimitFloatPrecision <= 12) { 4100 // For floating-point precision of 12: 4101 // 4102 // Log2ofMantissa = 4103 // -2.51285454f + 4104 // (4.07009056f + 4105 // (-2.12067489f + 4106 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4107 // 4108 // error 0.0000876136000, which is better than 13 bits 4109 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4110 getF32Constant(DAG, 0xbda7262e)); 4111 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4112 getF32Constant(DAG, 0x3f25280b)); 4113 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4114 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4115 getF32Constant(DAG, 0x4007b923)); 4116 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4117 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4118 getF32Constant(DAG, 0x40823e2f)); 4119 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4120 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4121 getF32Constant(DAG, 0x4020d29c)); 4122 } else { // LimitFloatPrecision <= 18 4123 // For floating-point precision of 18: 4124 // 4125 // Log2ofMantissa = 4126 // -3.0400495f + 4127 // (6.1129976f + 4128 // (-5.3420409f + 4129 // (3.2865683f + 4130 // (-1.2669343f + 4131 // (0.27515199f - 4132 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4133 // 4134 // error 0.0000018516, which is better than 18 bits 4135 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4136 getF32Constant(DAG, 0xbcd2769e)); 4137 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4138 getF32Constant(DAG, 0x3e8ce0b9)); 4139 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4140 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4141 getF32Constant(DAG, 0x3fa22ae7)); 4142 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4143 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4144 getF32Constant(DAG, 0x40525723)); 4145 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4146 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4147 getF32Constant(DAG, 0x40aaf200)); 4148 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4149 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4150 getF32Constant(DAG, 0x40c39dad)); 4151 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4152 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4153 getF32Constant(DAG, 0x4042902c)); 4154 } 4155 4156 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4157 } 4158 4159 // No special expansion. 4160 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4161 } 4162 4163 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4164 /// limited-precision mode. 4165 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4166 const TargetLowering &TLI) { 4167 if (Op.getValueType() == MVT::f32 && 4168 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4169 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4170 4171 // Scale the exponent by log10(2) [0.30102999f]. 4172 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4173 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4174 getF32Constant(DAG, 0x3e9a209a)); 4175 4176 // Get the significand and build it into a floating-point number with 4177 // exponent of 1. 4178 SDValue X = GetSignificand(DAG, Op1, dl); 4179 4180 SDValue Log10ofMantissa; 4181 if (LimitFloatPrecision <= 6) { 4182 // For floating-point precision of 6: 4183 // 4184 // Log10ofMantissa = 4185 // -0.50419619f + 4186 // (0.60948995f - 0.10380950f * x) * x; 4187 // 4188 // error 0.0014886165, which is 6 bits 4189 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4190 getF32Constant(DAG, 0xbdd49a13)); 4191 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4192 getF32Constant(DAG, 0x3f1c0789)); 4193 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4194 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4195 getF32Constant(DAG, 0x3f011300)); 4196 } else if (LimitFloatPrecision <= 12) { 4197 // For floating-point precision of 12: 4198 // 4199 // Log10ofMantissa = 4200 // -0.64831180f + 4201 // (0.91751397f + 4202 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4203 // 4204 // error 0.00019228036, which is better than 12 bits 4205 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4206 getF32Constant(DAG, 0x3d431f31)); 4207 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4208 getF32Constant(DAG, 0x3ea21fb2)); 4209 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4210 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4211 getF32Constant(DAG, 0x3f6ae232)); 4212 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4213 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4214 getF32Constant(DAG, 0x3f25f7c3)); 4215 } else { // LimitFloatPrecision <= 18 4216 // For floating-point precision of 18: 4217 // 4218 // Log10ofMantissa = 4219 // -0.84299375f + 4220 // (1.5327582f + 4221 // (-1.0688956f + 4222 // (0.49102474f + 4223 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4224 // 4225 // error 0.0000037995730, which is better than 18 bits 4226 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4227 getF32Constant(DAG, 0x3c5d51ce)); 4228 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4229 getF32Constant(DAG, 0x3e00685a)); 4230 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4231 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4232 getF32Constant(DAG, 0x3efb6798)); 4233 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4234 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4235 getF32Constant(DAG, 0x3f88d192)); 4236 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4237 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4238 getF32Constant(DAG, 0x3fc4316c)); 4239 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4240 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4241 getF32Constant(DAG, 0x3f57ce70)); 4242 } 4243 4244 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4245 } 4246 4247 // No special expansion. 4248 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4249 } 4250 4251 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4252 /// limited-precision mode. 4253 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4254 const TargetLowering &TLI) { 4255 if (Op.getValueType() == MVT::f32 && 4256 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4257 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4258 4259 // FractionalPartOfX = x - (float)IntegerPartOfX; 4260 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4261 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4262 4263 // IntegerPartOfX <<= 23; 4264 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4265 DAG.getConstant(23, TLI.getPointerTy())); 4266 4267 SDValue TwoToFractionalPartOfX; 4268 if (LimitFloatPrecision <= 6) { 4269 // For floating-point precision of 6: 4270 // 4271 // TwoToFractionalPartOfX = 4272 // 0.997535578f + 4273 // (0.735607626f + 0.252464424f * x) * x; 4274 // 4275 // error 0.0144103317, which is 6 bits 4276 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4277 getF32Constant(DAG, 0x3e814304)); 4278 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4279 getF32Constant(DAG, 0x3f3c50c8)); 4280 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4281 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4282 getF32Constant(DAG, 0x3f7f5e7e)); 4283 } else if (LimitFloatPrecision <= 12) { 4284 // For floating-point precision of 12: 4285 // 4286 // TwoToFractionalPartOfX = 4287 // 0.999892986f + 4288 // (0.696457318f + 4289 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4290 // 4291 // error 0.000107046256, which is 13 to 14 bits 4292 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4293 getF32Constant(DAG, 0x3da235e3)); 4294 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4295 getF32Constant(DAG, 0x3e65b8f3)); 4296 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4297 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4298 getF32Constant(DAG, 0x3f324b07)); 4299 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4300 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4301 getF32Constant(DAG, 0x3f7ff8fd)); 4302 } else { // LimitFloatPrecision <= 18 4303 // For floating-point precision of 18: 4304 // 4305 // TwoToFractionalPartOfX = 4306 // 0.999999982f + 4307 // (0.693148872f + 4308 // (0.240227044f + 4309 // (0.554906021e-1f + 4310 // (0.961591928e-2f + 4311 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4312 // error 2.47208000*10^(-7), which is better than 18 bits 4313 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4314 getF32Constant(DAG, 0x3924b03e)); 4315 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4316 getF32Constant(DAG, 0x3ab24b87)); 4317 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4318 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4319 getF32Constant(DAG, 0x3c1d8c17)); 4320 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4321 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4322 getF32Constant(DAG, 0x3d634a1d)); 4323 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4324 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4325 getF32Constant(DAG, 0x3e75fe14)); 4326 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4327 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4328 getF32Constant(DAG, 0x3f317234)); 4329 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4330 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4331 getF32Constant(DAG, 0x3f800000)); 4332 } 4333 4334 // Add the exponent into the result in integer domain. 4335 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4336 TwoToFractionalPartOfX); 4337 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4338 DAG.getNode(ISD::ADD, dl, MVT::i32, 4339 t13, IntegerPartOfX)); 4340 } 4341 4342 // No special expansion. 4343 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4344 } 4345 4346 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4347 /// limited-precision mode with x == 10.0f. 4348 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4349 SelectionDAG &DAG, const TargetLowering &TLI) { 4350 bool IsExp10 = false; 4351 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4352 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4353 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4354 APFloat Ten(10.0f); 4355 IsExp10 = LHSC->isExactlyValue(Ten); 4356 } 4357 } 4358 4359 if (IsExp10) { 4360 // Put the exponent in the right bit position for later addition to the 4361 // final result: 4362 // 4363 // #define LOG2OF10 3.3219281f 4364 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4365 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4366 getF32Constant(DAG, 0x40549a78)); 4367 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4368 4369 // FractionalPartOfX = x - (float)IntegerPartOfX; 4370 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4371 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4372 4373 // IntegerPartOfX <<= 23; 4374 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4375 DAG.getConstant(23, TLI.getPointerTy())); 4376 4377 SDValue TwoToFractionalPartOfX; 4378 if (LimitFloatPrecision <= 6) { 4379 // For floating-point precision of 6: 4380 // 4381 // twoToFractionalPartOfX = 4382 // 0.997535578f + 4383 // (0.735607626f + 0.252464424f * x) * x; 4384 // 4385 // error 0.0144103317, which is 6 bits 4386 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4387 getF32Constant(DAG, 0x3e814304)); 4388 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4389 getF32Constant(DAG, 0x3f3c50c8)); 4390 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4391 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4392 getF32Constant(DAG, 0x3f7f5e7e)); 4393 } else if (LimitFloatPrecision <= 12) { 4394 // For floating-point precision of 12: 4395 // 4396 // TwoToFractionalPartOfX = 4397 // 0.999892986f + 4398 // (0.696457318f + 4399 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4400 // 4401 // error 0.000107046256, which is 13 to 14 bits 4402 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4403 getF32Constant(DAG, 0x3da235e3)); 4404 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4405 getF32Constant(DAG, 0x3e65b8f3)); 4406 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4407 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4408 getF32Constant(DAG, 0x3f324b07)); 4409 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4410 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4411 getF32Constant(DAG, 0x3f7ff8fd)); 4412 } else { // LimitFloatPrecision <= 18 4413 // For floating-point precision of 18: 4414 // 4415 // TwoToFractionalPartOfX = 4416 // 0.999999982f + 4417 // (0.693148872f + 4418 // (0.240227044f + 4419 // (0.554906021e-1f + 4420 // (0.961591928e-2f + 4421 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4422 // error 2.47208000*10^(-7), which is better than 18 bits 4423 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4424 getF32Constant(DAG, 0x3924b03e)); 4425 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4426 getF32Constant(DAG, 0x3ab24b87)); 4427 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4428 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4429 getF32Constant(DAG, 0x3c1d8c17)); 4430 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4431 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4432 getF32Constant(DAG, 0x3d634a1d)); 4433 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4434 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4435 getF32Constant(DAG, 0x3e75fe14)); 4436 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4437 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4438 getF32Constant(DAG, 0x3f317234)); 4439 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4440 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4441 getF32Constant(DAG, 0x3f800000)); 4442 } 4443 4444 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4445 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4446 DAG.getNode(ISD::ADD, dl, MVT::i32, 4447 t13, IntegerPartOfX)); 4448 } 4449 4450 // No special expansion. 4451 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4452 } 4453 4454 4455 /// ExpandPowI - Expand a llvm.powi intrinsic. 4456 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4457 SelectionDAG &DAG) { 4458 // If RHS is a constant, we can expand this out to a multiplication tree, 4459 // otherwise we end up lowering to a call to __powidf2 (for example). When 4460 // optimizing for size, we only want to do this if the expansion would produce 4461 // a small number of multiplies, otherwise we do the full expansion. 4462 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4463 // Get the exponent as a positive value. 4464 unsigned Val = RHSC->getSExtValue(); 4465 if ((int)Val < 0) Val = -Val; 4466 4467 // powi(x, 0) -> 1.0 4468 if (Val == 0) 4469 return DAG.getConstantFP(1.0, LHS.getValueType()); 4470 4471 const Function *F = DAG.getMachineFunction().getFunction(); 4472 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4473 Attribute::OptimizeForSize) || 4474 // If optimizing for size, don't insert too many multiplies. This 4475 // inserts up to 5 multiplies. 4476 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4477 // We use the simple binary decomposition method to generate the multiply 4478 // sequence. There are more optimal ways to do this (for example, 4479 // powi(x,15) generates one more multiply than it should), but this has 4480 // the benefit of being both really simple and much better than a libcall. 4481 SDValue Res; // Logically starts equal to 1.0 4482 SDValue CurSquare = LHS; 4483 while (Val) { 4484 if (Val & 1) { 4485 if (Res.getNode()) 4486 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4487 else 4488 Res = CurSquare; // 1.0*CurSquare. 4489 } 4490 4491 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4492 CurSquare, CurSquare); 4493 Val >>= 1; 4494 } 4495 4496 // If the original was negative, invert the result, producing 1/(x*x*x). 4497 if (RHSC->getSExtValue() < 0) 4498 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4499 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4500 return Res; 4501 } 4502 } 4503 4504 // Otherwise, expand to a libcall. 4505 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4506 } 4507 4508 // getTruncatedArgReg - Find underlying register used for an truncated 4509 // argument. 4510 static unsigned getTruncatedArgReg(const SDValue &N) { 4511 if (N.getOpcode() != ISD::TRUNCATE) 4512 return 0; 4513 4514 const SDValue &Ext = N.getOperand(0); 4515 if (Ext.getOpcode() == ISD::AssertZext || 4516 Ext.getOpcode() == ISD::AssertSext) { 4517 const SDValue &CFR = Ext.getOperand(0); 4518 if (CFR.getOpcode() == ISD::CopyFromReg) 4519 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4520 if (CFR.getOpcode() == ISD::TRUNCATE) 4521 return getTruncatedArgReg(CFR); 4522 } 4523 return 0; 4524 } 4525 4526 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4527 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4528 /// At the end of instruction selection, they will be inserted to the entry BB. 4529 bool 4530 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4531 int64_t Offset, bool IsIndirect, 4532 const SDValue &N) { 4533 const Argument *Arg = dyn_cast<Argument>(V); 4534 if (!Arg) 4535 return false; 4536 4537 MachineFunction &MF = DAG.getMachineFunction(); 4538 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4539 4540 // Ignore inlined function arguments here. 4541 DIVariable DV(Variable); 4542 if (DV.isInlinedFnArgument(MF.getFunction())) 4543 return false; 4544 4545 Optional<MachineOperand> Op; 4546 // Some arguments' frame index is recorded during argument lowering. 4547 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4548 Op = MachineOperand::CreateFI(FI); 4549 4550 if (!Op && N.getNode()) { 4551 unsigned Reg; 4552 if (N.getOpcode() == ISD::CopyFromReg) 4553 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4554 else 4555 Reg = getTruncatedArgReg(N); 4556 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4557 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4558 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4559 if (PR) 4560 Reg = PR; 4561 } 4562 if (Reg) 4563 Op = MachineOperand::CreateReg(Reg, false); 4564 } 4565 4566 if (!Op) { 4567 // Check if ValueMap has reg number. 4568 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4569 if (VMI != FuncInfo.ValueMap.end()) 4570 Op = MachineOperand::CreateReg(VMI->second, false); 4571 } 4572 4573 if (!Op && N.getNode()) 4574 // Check if frame index is available. 4575 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4576 if (FrameIndexSDNode *FINode = 4577 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4578 Op = MachineOperand::CreateFI(FINode->getIndex()); 4579 4580 if (!Op) 4581 return false; 4582 4583 if (Op->isReg()) 4584 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4585 TII->get(TargetOpcode::DBG_VALUE), 4586 IsIndirect, 4587 Op->getReg(), Offset, Variable)); 4588 else 4589 FuncInfo.ArgDbgValues.push_back( 4590 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4591 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4592 4593 return true; 4594 } 4595 4596 // VisualStudio defines setjmp as _setjmp 4597 #if defined(_MSC_VER) && defined(setjmp) && \ 4598 !defined(setjmp_undefined_for_msvc) 4599 # pragma push_macro("setjmp") 4600 # undef setjmp 4601 # define setjmp_undefined_for_msvc 4602 #endif 4603 4604 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4605 /// we want to emit this as a call to a named external function, return the name 4606 /// otherwise lower it and return null. 4607 const char * 4608 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4609 const TargetLowering *TLI = TM.getTargetLowering(); 4610 SDLoc sdl = getCurSDLoc(); 4611 DebugLoc dl = getCurDebugLoc(); 4612 SDValue Res; 4613 4614 switch (Intrinsic) { 4615 default: 4616 // By default, turn this into a target intrinsic node. 4617 visitTargetIntrinsic(I, Intrinsic); 4618 return nullptr; 4619 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4620 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4621 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4622 case Intrinsic::returnaddress: 4623 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4624 getValue(I.getArgOperand(0)))); 4625 return nullptr; 4626 case Intrinsic::frameaddress: 4627 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4628 getValue(I.getArgOperand(0)))); 4629 return nullptr; 4630 case Intrinsic::setjmp: 4631 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4632 case Intrinsic::longjmp: 4633 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4634 case Intrinsic::memcpy: { 4635 // Assert for address < 256 since we support only user defined address 4636 // spaces. 4637 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4638 < 256 && 4639 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4640 < 256 && 4641 "Unknown address space"); 4642 SDValue Op1 = getValue(I.getArgOperand(0)); 4643 SDValue Op2 = getValue(I.getArgOperand(1)); 4644 SDValue Op3 = getValue(I.getArgOperand(2)); 4645 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4646 if (!Align) 4647 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4648 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4649 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4650 MachinePointerInfo(I.getArgOperand(0)), 4651 MachinePointerInfo(I.getArgOperand(1)))); 4652 return nullptr; 4653 } 4654 case Intrinsic::memset: { 4655 // Assert for address < 256 since we support only user defined address 4656 // spaces. 4657 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4658 < 256 && 4659 "Unknown address space"); 4660 SDValue Op1 = getValue(I.getArgOperand(0)); 4661 SDValue Op2 = getValue(I.getArgOperand(1)); 4662 SDValue Op3 = getValue(I.getArgOperand(2)); 4663 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4664 if (!Align) 4665 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4666 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4667 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4668 MachinePointerInfo(I.getArgOperand(0)))); 4669 return nullptr; 4670 } 4671 case Intrinsic::memmove: { 4672 // Assert for address < 256 since we support only user defined address 4673 // spaces. 4674 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4675 < 256 && 4676 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4677 < 256 && 4678 "Unknown address space"); 4679 SDValue Op1 = getValue(I.getArgOperand(0)); 4680 SDValue Op2 = getValue(I.getArgOperand(1)); 4681 SDValue Op3 = getValue(I.getArgOperand(2)); 4682 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4683 if (!Align) 4684 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4685 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4686 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4687 MachinePointerInfo(I.getArgOperand(0)), 4688 MachinePointerInfo(I.getArgOperand(1)))); 4689 return nullptr; 4690 } 4691 case Intrinsic::dbg_declare: { 4692 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4693 MDNode *Variable = DI.getVariable(); 4694 const Value *Address = DI.getAddress(); 4695 DIVariable DIVar(Variable); 4696 assert((!DIVar || DIVar.isVariable()) && 4697 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4698 if (!Address || !DIVar) { 4699 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4700 return nullptr; 4701 } 4702 4703 // Check if address has undef value. 4704 if (isa<UndefValue>(Address) || 4705 (Address->use_empty() && !isa<Argument>(Address))) { 4706 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4707 return nullptr; 4708 } 4709 4710 SDValue &N = NodeMap[Address]; 4711 if (!N.getNode() && isa<Argument>(Address)) 4712 // Check unused arguments map. 4713 N = UnusedArgNodeMap[Address]; 4714 SDDbgValue *SDV; 4715 if (N.getNode()) { 4716 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4717 Address = BCI->getOperand(0); 4718 // Parameters are handled specially. 4719 bool isParameter = 4720 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4721 isa<Argument>(Address)); 4722 4723 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4724 4725 if (isParameter && !AI) { 4726 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4727 if (FINode) 4728 // Byval parameter. We have a frame index at this point. 4729 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4730 0, dl, SDNodeOrder); 4731 else { 4732 // Address is an argument, so try to emit its dbg value using 4733 // virtual register info from the FuncInfo.ValueMap. 4734 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4735 return nullptr; 4736 } 4737 } else if (AI) 4738 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4739 true, 0, dl, SDNodeOrder); 4740 else { 4741 // Can't do anything with other non-AI cases yet. 4742 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4743 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4744 DEBUG(Address->dump()); 4745 return nullptr; 4746 } 4747 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4748 } else { 4749 // If Address is an argument then try to emit its dbg value using 4750 // virtual register info from the FuncInfo.ValueMap. 4751 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4752 // If variable is pinned by a alloca in dominating bb then 4753 // use StaticAllocaMap. 4754 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4755 if (AI->getParent() != DI.getParent()) { 4756 DenseMap<const AllocaInst*, int>::iterator SI = 4757 FuncInfo.StaticAllocaMap.find(AI); 4758 if (SI != FuncInfo.StaticAllocaMap.end()) { 4759 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4760 0, dl, SDNodeOrder); 4761 DAG.AddDbgValue(SDV, nullptr, false); 4762 return nullptr; 4763 } 4764 } 4765 } 4766 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4767 } 4768 } 4769 return nullptr; 4770 } 4771 case Intrinsic::dbg_value: { 4772 const DbgValueInst &DI = cast<DbgValueInst>(I); 4773 DIVariable DIVar(DI.getVariable()); 4774 assert((!DIVar || DIVar.isVariable()) && 4775 "Variable in DbgValueInst should be either null or a DIVariable."); 4776 if (!DIVar) 4777 return nullptr; 4778 4779 MDNode *Variable = DI.getVariable(); 4780 uint64_t Offset = DI.getOffset(); 4781 const Value *V = DI.getValue(); 4782 if (!V) 4783 return nullptr; 4784 4785 SDDbgValue *SDV; 4786 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4787 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4788 DAG.AddDbgValue(SDV, nullptr, false); 4789 } else { 4790 // Do not use getValue() in here; we don't want to generate code at 4791 // this point if it hasn't been done yet. 4792 SDValue N = NodeMap[V]; 4793 if (!N.getNode() && isa<Argument>(V)) 4794 // Check unused arguments map. 4795 N = UnusedArgNodeMap[V]; 4796 if (N.getNode()) { 4797 // A dbg.value for an alloca is always indirect. 4798 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4799 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4800 SDV = DAG.getDbgValue(Variable, N.getNode(), 4801 N.getResNo(), IsIndirect, 4802 Offset, dl, SDNodeOrder); 4803 DAG.AddDbgValue(SDV, N.getNode(), false); 4804 } 4805 } else if (!V->use_empty() ) { 4806 // Do not call getValue(V) yet, as we don't want to generate code. 4807 // Remember it for later. 4808 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4809 DanglingDebugInfoMap[V] = DDI; 4810 } else { 4811 // We may expand this to cover more cases. One case where we have no 4812 // data available is an unreferenced parameter. 4813 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4814 } 4815 } 4816 4817 // Build a debug info table entry. 4818 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4819 V = BCI->getOperand(0); 4820 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4821 // Don't handle byval struct arguments or VLAs, for example. 4822 if (!AI) { 4823 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4824 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4825 return nullptr; 4826 } 4827 DenseMap<const AllocaInst*, int>::iterator SI = 4828 FuncInfo.StaticAllocaMap.find(AI); 4829 if (SI == FuncInfo.StaticAllocaMap.end()) 4830 return nullptr; // VLAs. 4831 return nullptr; 4832 } 4833 4834 case Intrinsic::eh_typeid_for: { 4835 // Find the type id for the given typeinfo. 4836 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4837 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4838 Res = DAG.getConstant(TypeID, MVT::i32); 4839 setValue(&I, Res); 4840 return nullptr; 4841 } 4842 4843 case Intrinsic::eh_return_i32: 4844 case Intrinsic::eh_return_i64: 4845 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4846 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4847 MVT::Other, 4848 getControlRoot(), 4849 getValue(I.getArgOperand(0)), 4850 getValue(I.getArgOperand(1)))); 4851 return nullptr; 4852 case Intrinsic::eh_unwind_init: 4853 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4854 return nullptr; 4855 case Intrinsic::eh_dwarf_cfa: { 4856 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4857 TLI->getPointerTy()); 4858 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4859 CfaArg.getValueType(), 4860 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4861 CfaArg.getValueType()), 4862 CfaArg); 4863 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4864 TLI->getPointerTy(), 4865 DAG.getConstant(0, TLI->getPointerTy())); 4866 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4867 FA, Offset)); 4868 return nullptr; 4869 } 4870 case Intrinsic::eh_sjlj_callsite: { 4871 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4872 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4873 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4874 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4875 4876 MMI.setCurrentCallSite(CI->getZExtValue()); 4877 return nullptr; 4878 } 4879 case Intrinsic::eh_sjlj_functioncontext: { 4880 // Get and store the index of the function context. 4881 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4882 AllocaInst *FnCtx = 4883 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4884 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4885 MFI->setFunctionContextIndex(FI); 4886 return nullptr; 4887 } 4888 case Intrinsic::eh_sjlj_setjmp: { 4889 SDValue Ops[2]; 4890 Ops[0] = getRoot(); 4891 Ops[1] = getValue(I.getArgOperand(0)); 4892 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4893 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4894 setValue(&I, Op.getValue(0)); 4895 DAG.setRoot(Op.getValue(1)); 4896 return nullptr; 4897 } 4898 case Intrinsic::eh_sjlj_longjmp: { 4899 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4900 getRoot(), getValue(I.getArgOperand(0)))); 4901 return nullptr; 4902 } 4903 4904 case Intrinsic::x86_mmx_pslli_w: 4905 case Intrinsic::x86_mmx_pslli_d: 4906 case Intrinsic::x86_mmx_pslli_q: 4907 case Intrinsic::x86_mmx_psrli_w: 4908 case Intrinsic::x86_mmx_psrli_d: 4909 case Intrinsic::x86_mmx_psrli_q: 4910 case Intrinsic::x86_mmx_psrai_w: 4911 case Intrinsic::x86_mmx_psrai_d: { 4912 SDValue ShAmt = getValue(I.getArgOperand(1)); 4913 if (isa<ConstantSDNode>(ShAmt)) { 4914 visitTargetIntrinsic(I, Intrinsic); 4915 return nullptr; 4916 } 4917 unsigned NewIntrinsic = 0; 4918 EVT ShAmtVT = MVT::v2i32; 4919 switch (Intrinsic) { 4920 case Intrinsic::x86_mmx_pslli_w: 4921 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4922 break; 4923 case Intrinsic::x86_mmx_pslli_d: 4924 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4925 break; 4926 case Intrinsic::x86_mmx_pslli_q: 4927 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4928 break; 4929 case Intrinsic::x86_mmx_psrli_w: 4930 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4931 break; 4932 case Intrinsic::x86_mmx_psrli_d: 4933 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4934 break; 4935 case Intrinsic::x86_mmx_psrli_q: 4936 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4937 break; 4938 case Intrinsic::x86_mmx_psrai_w: 4939 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4940 break; 4941 case Intrinsic::x86_mmx_psrai_d: 4942 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4943 break; 4944 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4945 } 4946 4947 // The vector shift intrinsics with scalars uses 32b shift amounts but 4948 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4949 // to be zero. 4950 // We must do this early because v2i32 is not a legal type. 4951 SDValue ShOps[2]; 4952 ShOps[0] = ShAmt; 4953 ShOps[1] = DAG.getConstant(0, MVT::i32); 4954 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4955 EVT DestVT = TLI->getValueType(I.getType()); 4956 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4957 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4958 DAG.getConstant(NewIntrinsic, MVT::i32), 4959 getValue(I.getArgOperand(0)), ShAmt); 4960 setValue(&I, Res); 4961 return nullptr; 4962 } 4963 case Intrinsic::x86_avx_vinsertf128_pd_256: 4964 case Intrinsic::x86_avx_vinsertf128_ps_256: 4965 case Intrinsic::x86_avx_vinsertf128_si_256: 4966 case Intrinsic::x86_avx2_vinserti128: { 4967 EVT DestVT = TLI->getValueType(I.getType()); 4968 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4969 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4970 ElVT.getVectorNumElements(); 4971 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4972 getValue(I.getArgOperand(0)), 4973 getValue(I.getArgOperand(1)), 4974 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4975 setValue(&I, Res); 4976 return nullptr; 4977 } 4978 case Intrinsic::x86_avx_vextractf128_pd_256: 4979 case Intrinsic::x86_avx_vextractf128_ps_256: 4980 case Intrinsic::x86_avx_vextractf128_si_256: 4981 case Intrinsic::x86_avx2_vextracti128: { 4982 EVT DestVT = TLI->getValueType(I.getType()); 4983 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4984 DestVT.getVectorNumElements(); 4985 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4986 getValue(I.getArgOperand(0)), 4987 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4988 setValue(&I, Res); 4989 return nullptr; 4990 } 4991 case Intrinsic::convertff: 4992 case Intrinsic::convertfsi: 4993 case Intrinsic::convertfui: 4994 case Intrinsic::convertsif: 4995 case Intrinsic::convertuif: 4996 case Intrinsic::convertss: 4997 case Intrinsic::convertsu: 4998 case Intrinsic::convertus: 4999 case Intrinsic::convertuu: { 5000 ISD::CvtCode Code = ISD::CVT_INVALID; 5001 switch (Intrinsic) { 5002 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5003 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5004 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5005 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5006 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5007 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5008 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5009 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5010 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5011 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5012 } 5013 EVT DestVT = TLI->getValueType(I.getType()); 5014 const Value *Op1 = I.getArgOperand(0); 5015 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5016 DAG.getValueType(DestVT), 5017 DAG.getValueType(getValue(Op1).getValueType()), 5018 getValue(I.getArgOperand(1)), 5019 getValue(I.getArgOperand(2)), 5020 Code); 5021 setValue(&I, Res); 5022 return nullptr; 5023 } 5024 case Intrinsic::powi: 5025 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5026 getValue(I.getArgOperand(1)), DAG)); 5027 return nullptr; 5028 case Intrinsic::log: 5029 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5030 return nullptr; 5031 case Intrinsic::log2: 5032 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5033 return nullptr; 5034 case Intrinsic::log10: 5035 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5036 return nullptr; 5037 case Intrinsic::exp: 5038 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5039 return nullptr; 5040 case Intrinsic::exp2: 5041 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5042 return nullptr; 5043 case Intrinsic::pow: 5044 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5045 getValue(I.getArgOperand(1)), DAG, *TLI)); 5046 return nullptr; 5047 case Intrinsic::sqrt: 5048 case Intrinsic::fabs: 5049 case Intrinsic::sin: 5050 case Intrinsic::cos: 5051 case Intrinsic::floor: 5052 case Intrinsic::ceil: 5053 case Intrinsic::trunc: 5054 case Intrinsic::rint: 5055 case Intrinsic::nearbyint: 5056 case Intrinsic::round: { 5057 unsigned Opcode; 5058 switch (Intrinsic) { 5059 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5060 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5061 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5062 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5063 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5064 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5065 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5066 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5067 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5068 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5069 case Intrinsic::round: Opcode = ISD::FROUND; break; 5070 } 5071 5072 setValue(&I, DAG.getNode(Opcode, sdl, 5073 getValue(I.getArgOperand(0)).getValueType(), 5074 getValue(I.getArgOperand(0)))); 5075 return nullptr; 5076 } 5077 case Intrinsic::copysign: 5078 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5079 getValue(I.getArgOperand(0)).getValueType(), 5080 getValue(I.getArgOperand(0)), 5081 getValue(I.getArgOperand(1)))); 5082 return nullptr; 5083 case Intrinsic::fma: 5084 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5085 getValue(I.getArgOperand(0)).getValueType(), 5086 getValue(I.getArgOperand(0)), 5087 getValue(I.getArgOperand(1)), 5088 getValue(I.getArgOperand(2)))); 5089 return nullptr; 5090 case Intrinsic::fmuladd: { 5091 EVT VT = TLI->getValueType(I.getType()); 5092 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5093 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5094 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5095 getValue(I.getArgOperand(0)).getValueType(), 5096 getValue(I.getArgOperand(0)), 5097 getValue(I.getArgOperand(1)), 5098 getValue(I.getArgOperand(2)))); 5099 } else { 5100 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5101 getValue(I.getArgOperand(0)).getValueType(), 5102 getValue(I.getArgOperand(0)), 5103 getValue(I.getArgOperand(1))); 5104 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5105 getValue(I.getArgOperand(0)).getValueType(), 5106 Mul, 5107 getValue(I.getArgOperand(2))); 5108 setValue(&I, Add); 5109 } 5110 return nullptr; 5111 } 5112 case Intrinsic::convert_to_fp16: 5113 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5114 MVT::i16, getValue(I.getArgOperand(0)))); 5115 return nullptr; 5116 case Intrinsic::convert_from_fp16: 5117 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5118 MVT::f32, getValue(I.getArgOperand(0)))); 5119 return nullptr; 5120 case Intrinsic::pcmarker: { 5121 SDValue Tmp = getValue(I.getArgOperand(0)); 5122 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5123 return nullptr; 5124 } 5125 case Intrinsic::readcyclecounter: { 5126 SDValue Op = getRoot(); 5127 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5128 DAG.getVTList(MVT::i64, MVT::Other), Op); 5129 setValue(&I, Res); 5130 DAG.setRoot(Res.getValue(1)); 5131 return nullptr; 5132 } 5133 case Intrinsic::bswap: 5134 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5135 getValue(I.getArgOperand(0)).getValueType(), 5136 getValue(I.getArgOperand(0)))); 5137 return nullptr; 5138 case Intrinsic::cttz: { 5139 SDValue Arg = getValue(I.getArgOperand(0)); 5140 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5141 EVT Ty = Arg.getValueType(); 5142 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5143 sdl, Ty, Arg)); 5144 return nullptr; 5145 } 5146 case Intrinsic::ctlz: { 5147 SDValue Arg = getValue(I.getArgOperand(0)); 5148 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5149 EVT Ty = Arg.getValueType(); 5150 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5151 sdl, Ty, Arg)); 5152 return nullptr; 5153 } 5154 case Intrinsic::ctpop: { 5155 SDValue Arg = getValue(I.getArgOperand(0)); 5156 EVT Ty = Arg.getValueType(); 5157 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5158 return nullptr; 5159 } 5160 case Intrinsic::stacksave: { 5161 SDValue Op = getRoot(); 5162 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5163 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5164 setValue(&I, Res); 5165 DAG.setRoot(Res.getValue(1)); 5166 return nullptr; 5167 } 5168 case Intrinsic::stackrestore: { 5169 Res = getValue(I.getArgOperand(0)); 5170 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5171 return nullptr; 5172 } 5173 case Intrinsic::stackprotector: { 5174 // Emit code into the DAG to store the stack guard onto the stack. 5175 MachineFunction &MF = DAG.getMachineFunction(); 5176 MachineFrameInfo *MFI = MF.getFrameInfo(); 5177 EVT PtrTy = TLI->getPointerTy(); 5178 5179 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5180 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5181 5182 int FI = FuncInfo.StaticAllocaMap[Slot]; 5183 MFI->setStackProtectorIndex(FI); 5184 5185 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5186 5187 // Store the stack protector onto the stack. 5188 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5189 MachinePointerInfo::getFixedStack(FI), 5190 true, false, 0); 5191 setValue(&I, Res); 5192 DAG.setRoot(Res); 5193 return nullptr; 5194 } 5195 case Intrinsic::objectsize: { 5196 // If we don't know by now, we're never going to know. 5197 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5198 5199 assert(CI && "Non-constant type in __builtin_object_size?"); 5200 5201 SDValue Arg = getValue(I.getCalledValue()); 5202 EVT Ty = Arg.getValueType(); 5203 5204 if (CI->isZero()) 5205 Res = DAG.getConstant(-1ULL, Ty); 5206 else 5207 Res = DAG.getConstant(0, Ty); 5208 5209 setValue(&I, Res); 5210 return nullptr; 5211 } 5212 case Intrinsic::annotation: 5213 case Intrinsic::ptr_annotation: 5214 // Drop the intrinsic, but forward the value 5215 setValue(&I, getValue(I.getOperand(0))); 5216 return nullptr; 5217 case Intrinsic::var_annotation: 5218 // Discard annotate attributes 5219 return nullptr; 5220 5221 case Intrinsic::init_trampoline: { 5222 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5223 5224 SDValue Ops[6]; 5225 Ops[0] = getRoot(); 5226 Ops[1] = getValue(I.getArgOperand(0)); 5227 Ops[2] = getValue(I.getArgOperand(1)); 5228 Ops[3] = getValue(I.getArgOperand(2)); 5229 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5230 Ops[5] = DAG.getSrcValue(F); 5231 5232 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5233 5234 DAG.setRoot(Res); 5235 return nullptr; 5236 } 5237 case Intrinsic::adjust_trampoline: { 5238 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5239 TLI->getPointerTy(), 5240 getValue(I.getArgOperand(0)))); 5241 return nullptr; 5242 } 5243 case Intrinsic::gcroot: 5244 if (GFI) { 5245 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5246 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5247 5248 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5249 GFI->addStackRoot(FI->getIndex(), TypeMap); 5250 } 5251 return nullptr; 5252 case Intrinsic::gcread: 5253 case Intrinsic::gcwrite: 5254 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5255 case Intrinsic::flt_rounds: 5256 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5257 return nullptr; 5258 5259 case Intrinsic::expect: { 5260 // Just replace __builtin_expect(exp, c) with EXP. 5261 setValue(&I, getValue(I.getArgOperand(0))); 5262 return nullptr; 5263 } 5264 5265 case Intrinsic::debugtrap: 5266 case Intrinsic::trap: { 5267 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5268 if (TrapFuncName.empty()) { 5269 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5270 ISD::TRAP : ISD::DEBUGTRAP; 5271 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5272 return nullptr; 5273 } 5274 TargetLowering::ArgListTy Args; 5275 TargetLowering:: 5276 CallLoweringInfo CLI(getRoot(), I.getType(), 5277 false, false, false, false, 0, CallingConv::C, 5278 /*isTailCall=*/false, 5279 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5280 DAG.getExternalSymbol(TrapFuncName.data(), 5281 TLI->getPointerTy()), 5282 Args, DAG, sdl); 5283 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5284 DAG.setRoot(Result.second); 5285 return nullptr; 5286 } 5287 5288 case Intrinsic::uadd_with_overflow: 5289 case Intrinsic::sadd_with_overflow: 5290 case Intrinsic::usub_with_overflow: 5291 case Intrinsic::ssub_with_overflow: 5292 case Intrinsic::umul_with_overflow: 5293 case Intrinsic::smul_with_overflow: { 5294 ISD::NodeType Op; 5295 switch (Intrinsic) { 5296 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5297 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5298 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5299 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5300 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5301 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5302 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5303 } 5304 SDValue Op1 = getValue(I.getArgOperand(0)); 5305 SDValue Op2 = getValue(I.getArgOperand(1)); 5306 5307 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5308 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5309 return nullptr; 5310 } 5311 case Intrinsic::prefetch: { 5312 SDValue Ops[5]; 5313 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5314 Ops[0] = getRoot(); 5315 Ops[1] = getValue(I.getArgOperand(0)); 5316 Ops[2] = getValue(I.getArgOperand(1)); 5317 Ops[3] = getValue(I.getArgOperand(2)); 5318 Ops[4] = getValue(I.getArgOperand(3)); 5319 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5320 DAG.getVTList(MVT::Other), Ops, 5321 EVT::getIntegerVT(*Context, 8), 5322 MachinePointerInfo(I.getArgOperand(0)), 5323 0, /* align */ 5324 false, /* volatile */ 5325 rw==0, /* read */ 5326 rw==1)); /* write */ 5327 return nullptr; 5328 } 5329 case Intrinsic::lifetime_start: 5330 case Intrinsic::lifetime_end: { 5331 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5332 // Stack coloring is not enabled in O0, discard region information. 5333 if (TM.getOptLevel() == CodeGenOpt::None) 5334 return nullptr; 5335 5336 SmallVector<Value *, 4> Allocas; 5337 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5338 5339 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5340 E = Allocas.end(); Object != E; ++Object) { 5341 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5342 5343 // Could not find an Alloca. 5344 if (!LifetimeObject) 5345 continue; 5346 5347 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5348 5349 SDValue Ops[2]; 5350 Ops[0] = getRoot(); 5351 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5352 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5353 5354 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5355 DAG.setRoot(Res); 5356 } 5357 return nullptr; 5358 } 5359 case Intrinsic::invariant_start: 5360 // Discard region information. 5361 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5362 return nullptr; 5363 case Intrinsic::invariant_end: 5364 // Discard region information. 5365 return nullptr; 5366 case Intrinsic::stackprotectorcheck: { 5367 // Do not actually emit anything for this basic block. Instead we initialize 5368 // the stack protector descriptor and export the guard variable so we can 5369 // access it in FinishBasicBlock. 5370 const BasicBlock *BB = I.getParent(); 5371 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5372 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5373 5374 // Flush our exports since we are going to process a terminator. 5375 (void)getControlRoot(); 5376 return nullptr; 5377 } 5378 case Intrinsic::clear_cache: 5379 return TLI->getClearCacheBuiltinName(); 5380 case Intrinsic::donothing: 5381 // ignore 5382 return nullptr; 5383 case Intrinsic::experimental_stackmap: { 5384 visitStackmap(I); 5385 return nullptr; 5386 } 5387 case Intrinsic::experimental_patchpoint_void: 5388 case Intrinsic::experimental_patchpoint_i64: { 5389 visitPatchpoint(I); 5390 return nullptr; 5391 } 5392 } 5393 } 5394 5395 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5396 bool isTailCall, 5397 MachineBasicBlock *LandingPad) { 5398 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5399 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5400 Type *RetTy = FTy->getReturnType(); 5401 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5402 MCSymbol *BeginLabel = nullptr; 5403 5404 TargetLowering::ArgListTy Args; 5405 TargetLowering::ArgListEntry Entry; 5406 Args.reserve(CS.arg_size()); 5407 5408 // Check whether the function can return without sret-demotion. 5409 SmallVector<ISD::OutputArg, 4> Outs; 5410 const TargetLowering *TLI = TM.getTargetLowering(); 5411 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5412 5413 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5414 DAG.getMachineFunction(), 5415 FTy->isVarArg(), Outs, 5416 FTy->getContext()); 5417 5418 SDValue DemoteStackSlot; 5419 int DemoteStackIdx = -100; 5420 5421 if (!CanLowerReturn) { 5422 assert(!CS.hasInAllocaArgument() && 5423 "sret demotion is incompatible with inalloca"); 5424 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5425 FTy->getReturnType()); 5426 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5427 FTy->getReturnType()); 5428 MachineFunction &MF = DAG.getMachineFunction(); 5429 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5430 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5431 5432 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5433 Entry.Node = DemoteStackSlot; 5434 Entry.Ty = StackSlotPtrType; 5435 Entry.isSExt = false; 5436 Entry.isZExt = false; 5437 Entry.isInReg = false; 5438 Entry.isSRet = true; 5439 Entry.isNest = false; 5440 Entry.isByVal = false; 5441 Entry.isReturned = false; 5442 Entry.Alignment = Align; 5443 Args.push_back(Entry); 5444 RetTy = Type::getVoidTy(FTy->getContext()); 5445 } 5446 5447 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5448 i != e; ++i) { 5449 const Value *V = *i; 5450 5451 // Skip empty types 5452 if (V->getType()->isEmptyTy()) 5453 continue; 5454 5455 SDValue ArgNode = getValue(V); 5456 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5457 5458 // Skip the first return-type Attribute to get to params. 5459 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5460 Args.push_back(Entry); 5461 } 5462 5463 if (LandingPad) { 5464 // Insert a label before the invoke call to mark the try range. This can be 5465 // used to detect deletion of the invoke via the MachineModuleInfo. 5466 BeginLabel = MMI.getContext().CreateTempSymbol(); 5467 5468 // For SjLj, keep track of which landing pads go with which invokes 5469 // so as to maintain the ordering of pads in the LSDA. 5470 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5471 if (CallSiteIndex) { 5472 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5473 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5474 5475 // Now that the call site is handled, stop tracking it. 5476 MMI.setCurrentCallSite(0); 5477 } 5478 5479 // Both PendingLoads and PendingExports must be flushed here; 5480 // this call might not return. 5481 (void)getRoot(); 5482 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5483 } 5484 5485 // Check if target-independent constraints permit a tail call here. 5486 // Target-dependent constraints are checked within TLI->LowerCallTo. 5487 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5488 isTailCall = false; 5489 5490 TargetLowering:: 5491 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5492 getCurSDLoc(), CS); 5493 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5494 assert((isTailCall || Result.second.getNode()) && 5495 "Non-null chain expected with non-tail call!"); 5496 assert((Result.second.getNode() || !Result.first.getNode()) && 5497 "Null value expected with tail call!"); 5498 if (Result.first.getNode()) { 5499 setValue(CS.getInstruction(), Result.first); 5500 } else if (!CanLowerReturn && Result.second.getNode()) { 5501 // The instruction result is the result of loading from the 5502 // hidden sret parameter. 5503 SmallVector<EVT, 1> PVTs; 5504 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5505 5506 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5507 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5508 EVT PtrVT = PVTs[0]; 5509 5510 SmallVector<EVT, 4> RetTys; 5511 SmallVector<uint64_t, 4> Offsets; 5512 RetTy = FTy->getReturnType(); 5513 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5514 5515 unsigned NumValues = RetTys.size(); 5516 SmallVector<SDValue, 4> Values(NumValues); 5517 SmallVector<SDValue, 4> Chains(NumValues); 5518 5519 for (unsigned i = 0; i < NumValues; ++i) { 5520 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5521 DemoteStackSlot, 5522 DAG.getConstant(Offsets[i], PtrVT)); 5523 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5524 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5525 false, false, false, 1); 5526 Values[i] = L; 5527 Chains[i] = L.getValue(1); 5528 } 5529 5530 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5531 MVT::Other, Chains); 5532 PendingLoads.push_back(Chain); 5533 5534 setValue(CS.getInstruction(), 5535 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5536 DAG.getVTList(RetTys), Values)); 5537 } 5538 5539 if (!Result.second.getNode()) { 5540 // As a special case, a null chain means that a tail call has been emitted 5541 // and the DAG root is already updated. 5542 HasTailCall = true; 5543 5544 // Since there's no actual continuation from this block, nothing can be 5545 // relying on us setting vregs for them. 5546 PendingExports.clear(); 5547 } else { 5548 DAG.setRoot(Result.second); 5549 } 5550 5551 if (LandingPad) { 5552 // Insert a label at the end of the invoke call to mark the try range. This 5553 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5554 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5555 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5556 5557 // Inform MachineModuleInfo of range. 5558 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5559 } 5560 } 5561 5562 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5563 /// value is equal or not-equal to zero. 5564 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5565 for (const User *U : V->users()) { 5566 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5567 if (IC->isEquality()) 5568 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5569 if (C->isNullValue()) 5570 continue; 5571 // Unknown instruction. 5572 return false; 5573 } 5574 return true; 5575 } 5576 5577 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5578 Type *LoadTy, 5579 SelectionDAGBuilder &Builder) { 5580 5581 // Check to see if this load can be trivially constant folded, e.g. if the 5582 // input is from a string literal. 5583 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5584 // Cast pointer to the type we really want to load. 5585 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5586 PointerType::getUnqual(LoadTy)); 5587 5588 if (const Constant *LoadCst = 5589 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5590 Builder.DL)) 5591 return Builder.getValue(LoadCst); 5592 } 5593 5594 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5595 // still constant memory, the input chain can be the entry node. 5596 SDValue Root; 5597 bool ConstantMemory = false; 5598 5599 // Do not serialize (non-volatile) loads of constant memory with anything. 5600 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5601 Root = Builder.DAG.getEntryNode(); 5602 ConstantMemory = true; 5603 } else { 5604 // Do not serialize non-volatile loads against each other. 5605 Root = Builder.DAG.getRoot(); 5606 } 5607 5608 SDValue Ptr = Builder.getValue(PtrVal); 5609 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5610 Ptr, MachinePointerInfo(PtrVal), 5611 false /*volatile*/, 5612 false /*nontemporal*/, 5613 false /*isinvariant*/, 1 /* align=1 */); 5614 5615 if (!ConstantMemory) 5616 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5617 return LoadVal; 5618 } 5619 5620 /// processIntegerCallValue - Record the value for an instruction that 5621 /// produces an integer result, converting the type where necessary. 5622 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5623 SDValue Value, 5624 bool IsSigned) { 5625 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5626 if (IsSigned) 5627 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5628 else 5629 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5630 setValue(&I, Value); 5631 } 5632 5633 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5634 /// If so, return true and lower it, otherwise return false and it will be 5635 /// lowered like a normal call. 5636 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5637 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5638 if (I.getNumArgOperands() != 3) 5639 return false; 5640 5641 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5642 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5643 !I.getArgOperand(2)->getType()->isIntegerTy() || 5644 !I.getType()->isIntegerTy()) 5645 return false; 5646 5647 const Value *Size = I.getArgOperand(2); 5648 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5649 if (CSize && CSize->getZExtValue() == 0) { 5650 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5651 setValue(&I, DAG.getConstant(0, CallVT)); 5652 return true; 5653 } 5654 5655 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5656 std::pair<SDValue, SDValue> Res = 5657 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5658 getValue(LHS), getValue(RHS), getValue(Size), 5659 MachinePointerInfo(LHS), 5660 MachinePointerInfo(RHS)); 5661 if (Res.first.getNode()) { 5662 processIntegerCallValue(I, Res.first, true); 5663 PendingLoads.push_back(Res.second); 5664 return true; 5665 } 5666 5667 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5668 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5669 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5670 bool ActuallyDoIt = true; 5671 MVT LoadVT; 5672 Type *LoadTy; 5673 switch (CSize->getZExtValue()) { 5674 default: 5675 LoadVT = MVT::Other; 5676 LoadTy = nullptr; 5677 ActuallyDoIt = false; 5678 break; 5679 case 2: 5680 LoadVT = MVT::i16; 5681 LoadTy = Type::getInt16Ty(CSize->getContext()); 5682 break; 5683 case 4: 5684 LoadVT = MVT::i32; 5685 LoadTy = Type::getInt32Ty(CSize->getContext()); 5686 break; 5687 case 8: 5688 LoadVT = MVT::i64; 5689 LoadTy = Type::getInt64Ty(CSize->getContext()); 5690 break; 5691 /* 5692 case 16: 5693 LoadVT = MVT::v4i32; 5694 LoadTy = Type::getInt32Ty(CSize->getContext()); 5695 LoadTy = VectorType::get(LoadTy, 4); 5696 break; 5697 */ 5698 } 5699 5700 // This turns into unaligned loads. We only do this if the target natively 5701 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5702 // we'll only produce a small number of byte loads. 5703 5704 // Require that we can find a legal MVT, and only do this if the target 5705 // supports unaligned loads of that type. Expanding into byte loads would 5706 // bloat the code. 5707 const TargetLowering *TLI = TM.getTargetLowering(); 5708 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5709 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5710 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5711 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5712 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5713 if (!TLI->isTypeLegal(LoadVT) || 5714 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5715 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5716 ActuallyDoIt = false; 5717 } 5718 5719 if (ActuallyDoIt) { 5720 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5721 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5722 5723 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5724 ISD::SETNE); 5725 processIntegerCallValue(I, Res, false); 5726 return true; 5727 } 5728 } 5729 5730 5731 return false; 5732 } 5733 5734 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5735 /// form. If so, return true and lower it, otherwise return false and it 5736 /// will be lowered like a normal call. 5737 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5738 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5739 if (I.getNumArgOperands() != 3) 5740 return false; 5741 5742 const Value *Src = I.getArgOperand(0); 5743 const Value *Char = I.getArgOperand(1); 5744 const Value *Length = I.getArgOperand(2); 5745 if (!Src->getType()->isPointerTy() || 5746 !Char->getType()->isIntegerTy() || 5747 !Length->getType()->isIntegerTy() || 5748 !I.getType()->isPointerTy()) 5749 return false; 5750 5751 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5752 std::pair<SDValue, SDValue> Res = 5753 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5754 getValue(Src), getValue(Char), getValue(Length), 5755 MachinePointerInfo(Src)); 5756 if (Res.first.getNode()) { 5757 setValue(&I, Res.first); 5758 PendingLoads.push_back(Res.second); 5759 return true; 5760 } 5761 5762 return false; 5763 } 5764 5765 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5766 /// optimized form. If so, return true and lower it, otherwise return false 5767 /// and it will be lowered like a normal call. 5768 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5769 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5770 if (I.getNumArgOperands() != 2) 5771 return false; 5772 5773 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5774 if (!Arg0->getType()->isPointerTy() || 5775 !Arg1->getType()->isPointerTy() || 5776 !I.getType()->isPointerTy()) 5777 return false; 5778 5779 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5780 std::pair<SDValue, SDValue> Res = 5781 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5782 getValue(Arg0), getValue(Arg1), 5783 MachinePointerInfo(Arg0), 5784 MachinePointerInfo(Arg1), isStpcpy); 5785 if (Res.first.getNode()) { 5786 setValue(&I, Res.first); 5787 DAG.setRoot(Res.second); 5788 return true; 5789 } 5790 5791 return false; 5792 } 5793 5794 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5795 /// If so, return true and lower it, otherwise return false and it will be 5796 /// lowered like a normal call. 5797 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5798 // Verify that the prototype makes sense. int strcmp(void*,void*) 5799 if (I.getNumArgOperands() != 2) 5800 return false; 5801 5802 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5803 if (!Arg0->getType()->isPointerTy() || 5804 !Arg1->getType()->isPointerTy() || 5805 !I.getType()->isIntegerTy()) 5806 return false; 5807 5808 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5809 std::pair<SDValue, SDValue> Res = 5810 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5811 getValue(Arg0), getValue(Arg1), 5812 MachinePointerInfo(Arg0), 5813 MachinePointerInfo(Arg1)); 5814 if (Res.first.getNode()) { 5815 processIntegerCallValue(I, Res.first, true); 5816 PendingLoads.push_back(Res.second); 5817 return true; 5818 } 5819 5820 return false; 5821 } 5822 5823 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5824 /// form. If so, return true and lower it, otherwise return false and it 5825 /// will be lowered like a normal call. 5826 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5827 // Verify that the prototype makes sense. size_t strlen(char *) 5828 if (I.getNumArgOperands() != 1) 5829 return false; 5830 5831 const Value *Arg0 = I.getArgOperand(0); 5832 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5833 return false; 5834 5835 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5836 std::pair<SDValue, SDValue> Res = 5837 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5838 getValue(Arg0), MachinePointerInfo(Arg0)); 5839 if (Res.first.getNode()) { 5840 processIntegerCallValue(I, Res.first, false); 5841 PendingLoads.push_back(Res.second); 5842 return true; 5843 } 5844 5845 return false; 5846 } 5847 5848 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5849 /// form. If so, return true and lower it, otherwise return false and it 5850 /// will be lowered like a normal call. 5851 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5852 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5853 if (I.getNumArgOperands() != 2) 5854 return false; 5855 5856 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5857 if (!Arg0->getType()->isPointerTy() || 5858 !Arg1->getType()->isIntegerTy() || 5859 !I.getType()->isIntegerTy()) 5860 return false; 5861 5862 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5863 std::pair<SDValue, SDValue> Res = 5864 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5865 getValue(Arg0), getValue(Arg1), 5866 MachinePointerInfo(Arg0)); 5867 if (Res.first.getNode()) { 5868 processIntegerCallValue(I, Res.first, false); 5869 PendingLoads.push_back(Res.second); 5870 return true; 5871 } 5872 5873 return false; 5874 } 5875 5876 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5877 /// operation (as expected), translate it to an SDNode with the specified opcode 5878 /// and return true. 5879 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5880 unsigned Opcode) { 5881 // Sanity check that it really is a unary floating-point call. 5882 if (I.getNumArgOperands() != 1 || 5883 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5884 I.getType() != I.getArgOperand(0)->getType() || 5885 !I.onlyReadsMemory()) 5886 return false; 5887 5888 SDValue Tmp = getValue(I.getArgOperand(0)); 5889 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5890 return true; 5891 } 5892 5893 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5894 // Handle inline assembly differently. 5895 if (isa<InlineAsm>(I.getCalledValue())) { 5896 visitInlineAsm(&I); 5897 return; 5898 } 5899 5900 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5901 ComputeUsesVAFloatArgument(I, &MMI); 5902 5903 const char *RenameFn = nullptr; 5904 if (Function *F = I.getCalledFunction()) { 5905 if (F->isDeclaration()) { 5906 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5907 if (unsigned IID = II->getIntrinsicID(F)) { 5908 RenameFn = visitIntrinsicCall(I, IID); 5909 if (!RenameFn) 5910 return; 5911 } 5912 } 5913 if (unsigned IID = F->getIntrinsicID()) { 5914 RenameFn = visitIntrinsicCall(I, IID); 5915 if (!RenameFn) 5916 return; 5917 } 5918 } 5919 5920 // Check for well-known libc/libm calls. If the function is internal, it 5921 // can't be a library call. 5922 LibFunc::Func Func; 5923 if (!F->hasLocalLinkage() && F->hasName() && 5924 LibInfo->getLibFunc(F->getName(), Func) && 5925 LibInfo->hasOptimizedCodeGen(Func)) { 5926 switch (Func) { 5927 default: break; 5928 case LibFunc::copysign: 5929 case LibFunc::copysignf: 5930 case LibFunc::copysignl: 5931 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5932 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5933 I.getType() == I.getArgOperand(0)->getType() && 5934 I.getType() == I.getArgOperand(1)->getType() && 5935 I.onlyReadsMemory()) { 5936 SDValue LHS = getValue(I.getArgOperand(0)); 5937 SDValue RHS = getValue(I.getArgOperand(1)); 5938 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5939 LHS.getValueType(), LHS, RHS)); 5940 return; 5941 } 5942 break; 5943 case LibFunc::fabs: 5944 case LibFunc::fabsf: 5945 case LibFunc::fabsl: 5946 if (visitUnaryFloatCall(I, ISD::FABS)) 5947 return; 5948 break; 5949 case LibFunc::sin: 5950 case LibFunc::sinf: 5951 case LibFunc::sinl: 5952 if (visitUnaryFloatCall(I, ISD::FSIN)) 5953 return; 5954 break; 5955 case LibFunc::cos: 5956 case LibFunc::cosf: 5957 case LibFunc::cosl: 5958 if (visitUnaryFloatCall(I, ISD::FCOS)) 5959 return; 5960 break; 5961 case LibFunc::sqrt: 5962 case LibFunc::sqrtf: 5963 case LibFunc::sqrtl: 5964 case LibFunc::sqrt_finite: 5965 case LibFunc::sqrtf_finite: 5966 case LibFunc::sqrtl_finite: 5967 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5968 return; 5969 break; 5970 case LibFunc::floor: 5971 case LibFunc::floorf: 5972 case LibFunc::floorl: 5973 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5974 return; 5975 break; 5976 case LibFunc::nearbyint: 5977 case LibFunc::nearbyintf: 5978 case LibFunc::nearbyintl: 5979 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5980 return; 5981 break; 5982 case LibFunc::ceil: 5983 case LibFunc::ceilf: 5984 case LibFunc::ceill: 5985 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5986 return; 5987 break; 5988 case LibFunc::rint: 5989 case LibFunc::rintf: 5990 case LibFunc::rintl: 5991 if (visitUnaryFloatCall(I, ISD::FRINT)) 5992 return; 5993 break; 5994 case LibFunc::round: 5995 case LibFunc::roundf: 5996 case LibFunc::roundl: 5997 if (visitUnaryFloatCall(I, ISD::FROUND)) 5998 return; 5999 break; 6000 case LibFunc::trunc: 6001 case LibFunc::truncf: 6002 case LibFunc::truncl: 6003 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6004 return; 6005 break; 6006 case LibFunc::log2: 6007 case LibFunc::log2f: 6008 case LibFunc::log2l: 6009 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6010 return; 6011 break; 6012 case LibFunc::exp2: 6013 case LibFunc::exp2f: 6014 case LibFunc::exp2l: 6015 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6016 return; 6017 break; 6018 case LibFunc::memcmp: 6019 if (visitMemCmpCall(I)) 6020 return; 6021 break; 6022 case LibFunc::memchr: 6023 if (visitMemChrCall(I)) 6024 return; 6025 break; 6026 case LibFunc::strcpy: 6027 if (visitStrCpyCall(I, false)) 6028 return; 6029 break; 6030 case LibFunc::stpcpy: 6031 if (visitStrCpyCall(I, true)) 6032 return; 6033 break; 6034 case LibFunc::strcmp: 6035 if (visitStrCmpCall(I)) 6036 return; 6037 break; 6038 case LibFunc::strlen: 6039 if (visitStrLenCall(I)) 6040 return; 6041 break; 6042 case LibFunc::strnlen: 6043 if (visitStrNLenCall(I)) 6044 return; 6045 break; 6046 } 6047 } 6048 } 6049 6050 SDValue Callee; 6051 if (!RenameFn) 6052 Callee = getValue(I.getCalledValue()); 6053 else 6054 Callee = DAG.getExternalSymbol(RenameFn, 6055 TM.getTargetLowering()->getPointerTy()); 6056 6057 // Check if we can potentially perform a tail call. More detailed checking is 6058 // be done within LowerCallTo, after more information about the call is known. 6059 LowerCallTo(&I, Callee, I.isTailCall()); 6060 } 6061 6062 namespace { 6063 6064 /// AsmOperandInfo - This contains information for each constraint that we are 6065 /// lowering. 6066 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6067 public: 6068 /// CallOperand - If this is the result output operand or a clobber 6069 /// this is null, otherwise it is the incoming operand to the CallInst. 6070 /// This gets modified as the asm is processed. 6071 SDValue CallOperand; 6072 6073 /// AssignedRegs - If this is a register or register class operand, this 6074 /// contains the set of register corresponding to the operand. 6075 RegsForValue AssignedRegs; 6076 6077 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6078 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6079 } 6080 6081 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6082 /// corresponds to. If there is no Value* for this operand, it returns 6083 /// MVT::Other. 6084 EVT getCallOperandValEVT(LLVMContext &Context, 6085 const TargetLowering &TLI, 6086 const DataLayout *DL) const { 6087 if (!CallOperandVal) return MVT::Other; 6088 6089 if (isa<BasicBlock>(CallOperandVal)) 6090 return TLI.getPointerTy(); 6091 6092 llvm::Type *OpTy = CallOperandVal->getType(); 6093 6094 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6095 // If this is an indirect operand, the operand is a pointer to the 6096 // accessed type. 6097 if (isIndirect) { 6098 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6099 if (!PtrTy) 6100 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6101 OpTy = PtrTy->getElementType(); 6102 } 6103 6104 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6105 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6106 if (STy->getNumElements() == 1) 6107 OpTy = STy->getElementType(0); 6108 6109 // If OpTy is not a single value, it may be a struct/union that we 6110 // can tile with integers. 6111 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6112 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6113 switch (BitSize) { 6114 default: break; 6115 case 1: 6116 case 8: 6117 case 16: 6118 case 32: 6119 case 64: 6120 case 128: 6121 OpTy = IntegerType::get(Context, BitSize); 6122 break; 6123 } 6124 } 6125 6126 return TLI.getValueType(OpTy, true); 6127 } 6128 }; 6129 6130 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6131 6132 } // end anonymous namespace 6133 6134 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6135 /// specified operand. We prefer to assign virtual registers, to allow the 6136 /// register allocator to handle the assignment process. However, if the asm 6137 /// uses features that we can't model on machineinstrs, we have SDISel do the 6138 /// allocation. This produces generally horrible, but correct, code. 6139 /// 6140 /// OpInfo describes the operand. 6141 /// 6142 static void GetRegistersForValue(SelectionDAG &DAG, 6143 const TargetLowering &TLI, 6144 SDLoc DL, 6145 SDISelAsmOperandInfo &OpInfo) { 6146 LLVMContext &Context = *DAG.getContext(); 6147 6148 MachineFunction &MF = DAG.getMachineFunction(); 6149 SmallVector<unsigned, 4> Regs; 6150 6151 // If this is a constraint for a single physreg, or a constraint for a 6152 // register class, find it. 6153 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6154 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6155 OpInfo.ConstraintVT); 6156 6157 unsigned NumRegs = 1; 6158 if (OpInfo.ConstraintVT != MVT::Other) { 6159 // If this is a FP input in an integer register (or visa versa) insert a bit 6160 // cast of the input value. More generally, handle any case where the input 6161 // value disagrees with the register class we plan to stick this in. 6162 if (OpInfo.Type == InlineAsm::isInput && 6163 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6164 // Try to convert to the first EVT that the reg class contains. If the 6165 // types are identical size, use a bitcast to convert (e.g. two differing 6166 // vector types). 6167 MVT RegVT = *PhysReg.second->vt_begin(); 6168 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6169 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6170 RegVT, OpInfo.CallOperand); 6171 OpInfo.ConstraintVT = RegVT; 6172 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6173 // If the input is a FP value and we want it in FP registers, do a 6174 // bitcast to the corresponding integer type. This turns an f64 value 6175 // into i64, which can be passed with two i32 values on a 32-bit 6176 // machine. 6177 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6178 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6179 RegVT, OpInfo.CallOperand); 6180 OpInfo.ConstraintVT = RegVT; 6181 } 6182 } 6183 6184 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6185 } 6186 6187 MVT RegVT; 6188 EVT ValueVT = OpInfo.ConstraintVT; 6189 6190 // If this is a constraint for a specific physical register, like {r17}, 6191 // assign it now. 6192 if (unsigned AssignedReg = PhysReg.first) { 6193 const TargetRegisterClass *RC = PhysReg.second; 6194 if (OpInfo.ConstraintVT == MVT::Other) 6195 ValueVT = *RC->vt_begin(); 6196 6197 // Get the actual register value type. This is important, because the user 6198 // may have asked for (e.g.) the AX register in i32 type. We need to 6199 // remember that AX is actually i16 to get the right extension. 6200 RegVT = *RC->vt_begin(); 6201 6202 // This is a explicit reference to a physical register. 6203 Regs.push_back(AssignedReg); 6204 6205 // If this is an expanded reference, add the rest of the regs to Regs. 6206 if (NumRegs != 1) { 6207 TargetRegisterClass::iterator I = RC->begin(); 6208 for (; *I != AssignedReg; ++I) 6209 assert(I != RC->end() && "Didn't find reg!"); 6210 6211 // Already added the first reg. 6212 --NumRegs; ++I; 6213 for (; NumRegs; --NumRegs, ++I) { 6214 assert(I != RC->end() && "Ran out of registers to allocate!"); 6215 Regs.push_back(*I); 6216 } 6217 } 6218 6219 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6220 return; 6221 } 6222 6223 // Otherwise, if this was a reference to an LLVM register class, create vregs 6224 // for this reference. 6225 if (const TargetRegisterClass *RC = PhysReg.second) { 6226 RegVT = *RC->vt_begin(); 6227 if (OpInfo.ConstraintVT == MVT::Other) 6228 ValueVT = RegVT; 6229 6230 // Create the appropriate number of virtual registers. 6231 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6232 for (; NumRegs; --NumRegs) 6233 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6234 6235 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6236 return; 6237 } 6238 6239 // Otherwise, we couldn't allocate enough registers for this. 6240 } 6241 6242 /// visitInlineAsm - Handle a call to an InlineAsm object. 6243 /// 6244 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6245 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6246 6247 /// ConstraintOperands - Information about all of the constraints. 6248 SDISelAsmOperandInfoVector ConstraintOperands; 6249 6250 const TargetLowering *TLI = TM.getTargetLowering(); 6251 TargetLowering::AsmOperandInfoVector 6252 TargetConstraints = TLI->ParseConstraints(CS); 6253 6254 bool hasMemory = false; 6255 6256 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6257 unsigned ResNo = 0; // ResNo - The result number of the next output. 6258 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6259 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6260 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6261 6262 MVT OpVT = MVT::Other; 6263 6264 // Compute the value type for each operand. 6265 switch (OpInfo.Type) { 6266 case InlineAsm::isOutput: 6267 // Indirect outputs just consume an argument. 6268 if (OpInfo.isIndirect) { 6269 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6270 break; 6271 } 6272 6273 // The return value of the call is this value. As such, there is no 6274 // corresponding argument. 6275 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6276 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6277 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6278 } else { 6279 assert(ResNo == 0 && "Asm only has one result!"); 6280 OpVT = TLI->getSimpleValueType(CS.getType()); 6281 } 6282 ++ResNo; 6283 break; 6284 case InlineAsm::isInput: 6285 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6286 break; 6287 case InlineAsm::isClobber: 6288 // Nothing to do. 6289 break; 6290 } 6291 6292 // If this is an input or an indirect output, process the call argument. 6293 // BasicBlocks are labels, currently appearing only in asm's. 6294 if (OpInfo.CallOperandVal) { 6295 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6296 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6297 } else { 6298 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6299 } 6300 6301 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6302 getSimpleVT(); 6303 } 6304 6305 OpInfo.ConstraintVT = OpVT; 6306 6307 // Indirect operand accesses access memory. 6308 if (OpInfo.isIndirect) 6309 hasMemory = true; 6310 else { 6311 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6312 TargetLowering::ConstraintType 6313 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6314 if (CType == TargetLowering::C_Memory) { 6315 hasMemory = true; 6316 break; 6317 } 6318 } 6319 } 6320 } 6321 6322 SDValue Chain, Flag; 6323 6324 // We won't need to flush pending loads if this asm doesn't touch 6325 // memory and is nonvolatile. 6326 if (hasMemory || IA->hasSideEffects()) 6327 Chain = getRoot(); 6328 else 6329 Chain = DAG.getRoot(); 6330 6331 // Second pass over the constraints: compute which constraint option to use 6332 // and assign registers to constraints that want a specific physreg. 6333 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6334 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6335 6336 // If this is an output operand with a matching input operand, look up the 6337 // matching input. If their types mismatch, e.g. one is an integer, the 6338 // other is floating point, or their sizes are different, flag it as an 6339 // error. 6340 if (OpInfo.hasMatchingInput()) { 6341 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6342 6343 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6344 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6345 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6346 OpInfo.ConstraintVT); 6347 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6348 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6349 Input.ConstraintVT); 6350 if ((OpInfo.ConstraintVT.isInteger() != 6351 Input.ConstraintVT.isInteger()) || 6352 (MatchRC.second != InputRC.second)) { 6353 report_fatal_error("Unsupported asm: input constraint" 6354 " with a matching output constraint of" 6355 " incompatible type!"); 6356 } 6357 Input.ConstraintVT = OpInfo.ConstraintVT; 6358 } 6359 } 6360 6361 // Compute the constraint code and ConstraintType to use. 6362 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6363 6364 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6365 OpInfo.Type == InlineAsm::isClobber) 6366 continue; 6367 6368 // If this is a memory input, and if the operand is not indirect, do what we 6369 // need to to provide an address for the memory input. 6370 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6371 !OpInfo.isIndirect) { 6372 assert((OpInfo.isMultipleAlternative || 6373 (OpInfo.Type == InlineAsm::isInput)) && 6374 "Can only indirectify direct input operands!"); 6375 6376 // Memory operands really want the address of the value. If we don't have 6377 // an indirect input, put it in the constpool if we can, otherwise spill 6378 // it to a stack slot. 6379 // TODO: This isn't quite right. We need to handle these according to 6380 // the addressing mode that the constraint wants. Also, this may take 6381 // an additional register for the computation and we don't want that 6382 // either. 6383 6384 // If the operand is a float, integer, or vector constant, spill to a 6385 // constant pool entry to get its address. 6386 const Value *OpVal = OpInfo.CallOperandVal; 6387 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6388 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6389 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6390 TLI->getPointerTy()); 6391 } else { 6392 // Otherwise, create a stack slot and emit a store to it before the 6393 // asm. 6394 Type *Ty = OpVal->getType(); 6395 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6396 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6397 MachineFunction &MF = DAG.getMachineFunction(); 6398 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6399 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6400 Chain = DAG.getStore(Chain, getCurSDLoc(), 6401 OpInfo.CallOperand, StackSlot, 6402 MachinePointerInfo::getFixedStack(SSFI), 6403 false, false, 0); 6404 OpInfo.CallOperand = StackSlot; 6405 } 6406 6407 // There is no longer a Value* corresponding to this operand. 6408 OpInfo.CallOperandVal = nullptr; 6409 6410 // It is now an indirect operand. 6411 OpInfo.isIndirect = true; 6412 } 6413 6414 // If this constraint is for a specific register, allocate it before 6415 // anything else. 6416 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6417 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6418 } 6419 6420 // Second pass - Loop over all of the operands, assigning virtual or physregs 6421 // to register class operands. 6422 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6423 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6424 6425 // C_Register operands have already been allocated, Other/Memory don't need 6426 // to be. 6427 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6428 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6429 } 6430 6431 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6432 std::vector<SDValue> AsmNodeOperands; 6433 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6434 AsmNodeOperands.push_back( 6435 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6436 TLI->getPointerTy())); 6437 6438 // If we have a !srcloc metadata node associated with it, we want to attach 6439 // this to the ultimately generated inline asm machineinstr. To do this, we 6440 // pass in the third operand as this (potentially null) inline asm MDNode. 6441 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6442 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6443 6444 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6445 // bits as operand 3. 6446 unsigned ExtraInfo = 0; 6447 if (IA->hasSideEffects()) 6448 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6449 if (IA->isAlignStack()) 6450 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6451 // Set the asm dialect. 6452 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6453 6454 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6455 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6456 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6457 6458 // Compute the constraint code and ConstraintType to use. 6459 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6460 6461 // Ideally, we would only check against memory constraints. However, the 6462 // meaning of an other constraint can be target-specific and we can't easily 6463 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6464 // for other constriants as well. 6465 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6466 OpInfo.ConstraintType == TargetLowering::C_Other) { 6467 if (OpInfo.Type == InlineAsm::isInput) 6468 ExtraInfo |= InlineAsm::Extra_MayLoad; 6469 else if (OpInfo.Type == InlineAsm::isOutput) 6470 ExtraInfo |= InlineAsm::Extra_MayStore; 6471 else if (OpInfo.Type == InlineAsm::isClobber) 6472 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6473 } 6474 } 6475 6476 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6477 TLI->getPointerTy())); 6478 6479 // Loop over all of the inputs, copying the operand values into the 6480 // appropriate registers and processing the output regs. 6481 RegsForValue RetValRegs; 6482 6483 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6484 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6485 6486 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6487 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6488 6489 switch (OpInfo.Type) { 6490 case InlineAsm::isOutput: { 6491 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6492 OpInfo.ConstraintType != TargetLowering::C_Register) { 6493 // Memory output, or 'other' output (e.g. 'X' constraint). 6494 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6495 6496 // Add information to the INLINEASM node to know about this output. 6497 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6498 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6499 TLI->getPointerTy())); 6500 AsmNodeOperands.push_back(OpInfo.CallOperand); 6501 break; 6502 } 6503 6504 // Otherwise, this is a register or register class output. 6505 6506 // Copy the output from the appropriate register. Find a register that 6507 // we can use. 6508 if (OpInfo.AssignedRegs.Regs.empty()) { 6509 LLVMContext &Ctx = *DAG.getContext(); 6510 Ctx.emitError(CS.getInstruction(), 6511 "couldn't allocate output register for constraint '" + 6512 Twine(OpInfo.ConstraintCode) + "'"); 6513 return; 6514 } 6515 6516 // If this is an indirect operand, store through the pointer after the 6517 // asm. 6518 if (OpInfo.isIndirect) { 6519 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6520 OpInfo.CallOperandVal)); 6521 } else { 6522 // This is the result value of the call. 6523 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6524 // Concatenate this output onto the outputs list. 6525 RetValRegs.append(OpInfo.AssignedRegs); 6526 } 6527 6528 // Add information to the INLINEASM node to know that this register is 6529 // set. 6530 OpInfo.AssignedRegs 6531 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6532 ? InlineAsm::Kind_RegDefEarlyClobber 6533 : InlineAsm::Kind_RegDef, 6534 false, 0, DAG, AsmNodeOperands); 6535 break; 6536 } 6537 case InlineAsm::isInput: { 6538 SDValue InOperandVal = OpInfo.CallOperand; 6539 6540 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6541 // If this is required to match an output register we have already set, 6542 // just use its register. 6543 unsigned OperandNo = OpInfo.getMatchedOperand(); 6544 6545 // Scan until we find the definition we already emitted of this operand. 6546 // When we find it, create a RegsForValue operand. 6547 unsigned CurOp = InlineAsm::Op_FirstOperand; 6548 for (; OperandNo; --OperandNo) { 6549 // Advance to the next operand. 6550 unsigned OpFlag = 6551 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6552 assert((InlineAsm::isRegDefKind(OpFlag) || 6553 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6554 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6555 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6556 } 6557 6558 unsigned OpFlag = 6559 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6560 if (InlineAsm::isRegDefKind(OpFlag) || 6561 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6562 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6563 if (OpInfo.isIndirect) { 6564 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6565 LLVMContext &Ctx = *DAG.getContext(); 6566 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6567 " don't know how to handle tied " 6568 "indirect register inputs"); 6569 return; 6570 } 6571 6572 RegsForValue MatchedRegs; 6573 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6574 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6575 MatchedRegs.RegVTs.push_back(RegVT); 6576 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6577 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6578 i != e; ++i) { 6579 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6580 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6581 else { 6582 LLVMContext &Ctx = *DAG.getContext(); 6583 Ctx.emitError(CS.getInstruction(), 6584 "inline asm error: This value" 6585 " type register class is not natively supported!"); 6586 return; 6587 } 6588 } 6589 // Use the produced MatchedRegs object to 6590 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6591 Chain, &Flag, CS.getInstruction()); 6592 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6593 true, OpInfo.getMatchedOperand(), 6594 DAG, AsmNodeOperands); 6595 break; 6596 } 6597 6598 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6599 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6600 "Unexpected number of operands"); 6601 // Add information to the INLINEASM node to know about this input. 6602 // See InlineAsm.h isUseOperandTiedToDef. 6603 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6604 OpInfo.getMatchedOperand()); 6605 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6606 TLI->getPointerTy())); 6607 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6608 break; 6609 } 6610 6611 // Treat indirect 'X' constraint as memory. 6612 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6613 OpInfo.isIndirect) 6614 OpInfo.ConstraintType = TargetLowering::C_Memory; 6615 6616 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6617 std::vector<SDValue> Ops; 6618 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6619 Ops, DAG); 6620 if (Ops.empty()) { 6621 LLVMContext &Ctx = *DAG.getContext(); 6622 Ctx.emitError(CS.getInstruction(), 6623 "invalid operand for inline asm constraint '" + 6624 Twine(OpInfo.ConstraintCode) + "'"); 6625 return; 6626 } 6627 6628 // Add information to the INLINEASM node to know about this input. 6629 unsigned ResOpType = 6630 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6631 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6632 TLI->getPointerTy())); 6633 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6634 break; 6635 } 6636 6637 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6638 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6639 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6640 "Memory operands expect pointer values"); 6641 6642 // Add information to the INLINEASM node to know about this input. 6643 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6644 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6645 TLI->getPointerTy())); 6646 AsmNodeOperands.push_back(InOperandVal); 6647 break; 6648 } 6649 6650 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6651 OpInfo.ConstraintType == TargetLowering::C_Register) && 6652 "Unknown constraint type!"); 6653 6654 // TODO: Support this. 6655 if (OpInfo.isIndirect) { 6656 LLVMContext &Ctx = *DAG.getContext(); 6657 Ctx.emitError(CS.getInstruction(), 6658 "Don't know how to handle indirect register inputs yet " 6659 "for constraint '" + 6660 Twine(OpInfo.ConstraintCode) + "'"); 6661 return; 6662 } 6663 6664 // Copy the input into the appropriate registers. 6665 if (OpInfo.AssignedRegs.Regs.empty()) { 6666 LLVMContext &Ctx = *DAG.getContext(); 6667 Ctx.emitError(CS.getInstruction(), 6668 "couldn't allocate input reg for constraint '" + 6669 Twine(OpInfo.ConstraintCode) + "'"); 6670 return; 6671 } 6672 6673 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6674 Chain, &Flag, CS.getInstruction()); 6675 6676 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6677 DAG, AsmNodeOperands); 6678 break; 6679 } 6680 case InlineAsm::isClobber: { 6681 // Add the clobbered value to the operand list, so that the register 6682 // allocator is aware that the physreg got clobbered. 6683 if (!OpInfo.AssignedRegs.Regs.empty()) 6684 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6685 false, 0, DAG, 6686 AsmNodeOperands); 6687 break; 6688 } 6689 } 6690 } 6691 6692 // Finish up input operands. Set the input chain and add the flag last. 6693 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6694 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6695 6696 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6697 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6698 Flag = Chain.getValue(1); 6699 6700 // If this asm returns a register value, copy the result from that register 6701 // and set it as the value of the call. 6702 if (!RetValRegs.Regs.empty()) { 6703 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6704 Chain, &Flag, CS.getInstruction()); 6705 6706 // FIXME: Why don't we do this for inline asms with MRVs? 6707 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6708 EVT ResultType = TLI->getValueType(CS.getType()); 6709 6710 // If any of the results of the inline asm is a vector, it may have the 6711 // wrong width/num elts. This can happen for register classes that can 6712 // contain multiple different value types. The preg or vreg allocated may 6713 // not have the same VT as was expected. Convert it to the right type 6714 // with bit_convert. 6715 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6716 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6717 ResultType, Val); 6718 6719 } else if (ResultType != Val.getValueType() && 6720 ResultType.isInteger() && Val.getValueType().isInteger()) { 6721 // If a result value was tied to an input value, the computed result may 6722 // have a wider width than the expected result. Extract the relevant 6723 // portion. 6724 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6725 } 6726 6727 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6728 } 6729 6730 setValue(CS.getInstruction(), Val); 6731 // Don't need to use this as a chain in this case. 6732 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6733 return; 6734 } 6735 6736 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6737 6738 // Process indirect outputs, first output all of the flagged copies out of 6739 // physregs. 6740 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6741 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6742 const Value *Ptr = IndirectStoresToEmit[i].second; 6743 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6744 Chain, &Flag, IA); 6745 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6746 } 6747 6748 // Emit the non-flagged stores from the physregs. 6749 SmallVector<SDValue, 8> OutChains; 6750 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6751 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6752 StoresToEmit[i].first, 6753 getValue(StoresToEmit[i].second), 6754 MachinePointerInfo(StoresToEmit[i].second), 6755 false, false, 0); 6756 OutChains.push_back(Val); 6757 } 6758 6759 if (!OutChains.empty()) 6760 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6761 6762 DAG.setRoot(Chain); 6763 } 6764 6765 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6766 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6767 MVT::Other, getRoot(), 6768 getValue(I.getArgOperand(0)), 6769 DAG.getSrcValue(I.getArgOperand(0)))); 6770 } 6771 6772 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6773 const TargetLowering *TLI = TM.getTargetLowering(); 6774 const DataLayout &DL = *TLI->getDataLayout(); 6775 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6776 getRoot(), getValue(I.getOperand(0)), 6777 DAG.getSrcValue(I.getOperand(0)), 6778 DL.getABITypeAlignment(I.getType())); 6779 setValue(&I, V); 6780 DAG.setRoot(V.getValue(1)); 6781 } 6782 6783 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6784 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6785 MVT::Other, getRoot(), 6786 getValue(I.getArgOperand(0)), 6787 DAG.getSrcValue(I.getArgOperand(0)))); 6788 } 6789 6790 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6791 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6792 MVT::Other, getRoot(), 6793 getValue(I.getArgOperand(0)), 6794 getValue(I.getArgOperand(1)), 6795 DAG.getSrcValue(I.getArgOperand(0)), 6796 DAG.getSrcValue(I.getArgOperand(1)))); 6797 } 6798 6799 /// \brief Lower an argument list according to the target calling convention. 6800 /// 6801 /// \return A tuple of <return-value, token-chain> 6802 /// 6803 /// This is a helper for lowering intrinsics that follow a target calling 6804 /// convention or require stack pointer adjustment. Only a subset of the 6805 /// intrinsic's operands need to participate in the calling convention. 6806 std::pair<SDValue, SDValue> 6807 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6808 unsigned NumArgs, SDValue Callee, 6809 bool useVoidTy) { 6810 TargetLowering::ArgListTy Args; 6811 Args.reserve(NumArgs); 6812 6813 // Populate the argument list. 6814 // Attributes for args start at offset 1, after the return attribute. 6815 ImmutableCallSite CS(&CI); 6816 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6817 ArgI != ArgE; ++ArgI) { 6818 const Value *V = CI.getOperand(ArgI); 6819 6820 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6821 6822 TargetLowering::ArgListEntry Entry; 6823 Entry.Node = getValue(V); 6824 Entry.Ty = V->getType(); 6825 Entry.setAttributes(&CS, AttrI); 6826 Args.push_back(Entry); 6827 } 6828 6829 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6830 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6831 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6832 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6833 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6834 6835 const TargetLowering *TLI = TM.getTargetLowering(); 6836 return TLI->LowerCallTo(CLI); 6837 } 6838 6839 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6840 /// or patchpoint target node's operand list. 6841 /// 6842 /// Constants are converted to TargetConstants purely as an optimization to 6843 /// avoid constant materialization and register allocation. 6844 /// 6845 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6846 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6847 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6848 /// address materialization and register allocation, but may also be required 6849 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6850 /// alloca in the entry block, then the runtime may assume that the alloca's 6851 /// StackMap location can be read immediately after compilation and that the 6852 /// location is valid at any point during execution (this is similar to the 6853 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6854 /// only available in a register, then the runtime would need to trap when 6855 /// execution reaches the StackMap in order to read the alloca's location. 6856 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6857 SmallVectorImpl<SDValue> &Ops, 6858 SelectionDAGBuilder &Builder) { 6859 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6860 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6861 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6862 Ops.push_back( 6863 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6864 Ops.push_back( 6865 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6866 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6867 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6868 Ops.push_back( 6869 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6870 } else 6871 Ops.push_back(OpVal); 6872 } 6873 } 6874 6875 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6876 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6877 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6878 // [live variables...]) 6879 6880 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6881 6882 SDValue Chain, InFlag, Callee, NullPtr; 6883 SmallVector<SDValue, 32> Ops; 6884 6885 SDLoc DL = getCurSDLoc(); 6886 Callee = getValue(CI.getCalledValue()); 6887 NullPtr = DAG.getIntPtrConstant(0, true); 6888 6889 // The stackmap intrinsic only records the live variables (the arguemnts 6890 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6891 // intrinsic, this won't be lowered to a function call. This means we don't 6892 // have to worry about calling conventions and target specific lowering code. 6893 // Instead we perform the call lowering right here. 6894 // 6895 // chain, flag = CALLSEQ_START(chain, 0) 6896 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6897 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6898 // 6899 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6900 InFlag = Chain.getValue(1); 6901 6902 // Add the <id> and <numBytes> constants. 6903 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6904 Ops.push_back(DAG.getTargetConstant( 6905 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6906 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6907 Ops.push_back(DAG.getTargetConstant( 6908 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6909 6910 // Push live variables for the stack map. 6911 addStackMapLiveVars(CI, 2, Ops, *this); 6912 6913 // We are not pushing any register mask info here on the operands list, 6914 // because the stackmap doesn't clobber anything. 6915 6916 // Push the chain and the glue flag. 6917 Ops.push_back(Chain); 6918 Ops.push_back(InFlag); 6919 6920 // Create the STACKMAP node. 6921 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6922 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6923 Chain = SDValue(SM, 0); 6924 InFlag = Chain.getValue(1); 6925 6926 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6927 6928 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6929 6930 // Set the root to the target-lowered call chain. 6931 DAG.setRoot(Chain); 6932 6933 // Inform the Frame Information that we have a stackmap in this function. 6934 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6935 } 6936 6937 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6938 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6939 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6940 // i32 <numBytes>, 6941 // i8* <target>, 6942 // i32 <numArgs>, 6943 // [Args...], 6944 // [live variables...]) 6945 6946 CallingConv::ID CC = CI.getCallingConv(); 6947 bool isAnyRegCC = CC == CallingConv::AnyReg; 6948 bool hasDef = !CI.getType()->isVoidTy(); 6949 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6950 6951 // Get the real number of arguments participating in the call <numArgs> 6952 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6953 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6954 6955 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6956 // Intrinsics include all meta-operands up to but not including CC. 6957 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6958 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6959 "Not enough arguments provided to the patchpoint intrinsic"); 6960 6961 // For AnyRegCC the arguments are lowered later on manually. 6962 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6963 std::pair<SDValue, SDValue> Result = 6964 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6965 6966 // Set the root to the target-lowered call chain. 6967 SDValue Chain = Result.second; 6968 DAG.setRoot(Chain); 6969 6970 SDNode *CallEnd = Chain.getNode(); 6971 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6972 CallEnd = CallEnd->getOperand(0).getNode(); 6973 6974 /// Get a call instruction from the call sequence chain. 6975 /// Tail calls are not allowed. 6976 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6977 "Expected a callseq node."); 6978 SDNode *Call = CallEnd->getOperand(0).getNode(); 6979 bool hasGlue = Call->getGluedNode(); 6980 6981 // Replace the target specific call node with the patchable intrinsic. 6982 SmallVector<SDValue, 8> Ops; 6983 6984 // Add the <id> and <numBytes> constants. 6985 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6986 Ops.push_back(DAG.getTargetConstant( 6987 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6988 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6989 Ops.push_back(DAG.getTargetConstant( 6990 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6991 6992 // Assume that the Callee is a constant address. 6993 // FIXME: handle function symbols in the future. 6994 Ops.push_back( 6995 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 6996 /*isTarget=*/true)); 6997 6998 // Adjust <numArgs> to account for any arguments that have been passed on the 6999 // stack instead. 7000 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7001 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7002 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7003 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7004 7005 // Add the calling convention 7006 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7007 7008 // Add the arguments we omitted previously. The register allocator should 7009 // place these in any free register. 7010 if (isAnyRegCC) 7011 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7012 Ops.push_back(getValue(CI.getArgOperand(i))); 7013 7014 // Push the arguments from the call instruction up to the register mask. 7015 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7016 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7017 Ops.push_back(*i); 7018 7019 // Push live variables for the stack map. 7020 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7021 7022 // Push the register mask info. 7023 if (hasGlue) 7024 Ops.push_back(*(Call->op_end()-2)); 7025 else 7026 Ops.push_back(*(Call->op_end()-1)); 7027 7028 // Push the chain (this is originally the first operand of the call, but 7029 // becomes now the last or second to last operand). 7030 Ops.push_back(*(Call->op_begin())); 7031 7032 // Push the glue flag (last operand). 7033 if (hasGlue) 7034 Ops.push_back(*(Call->op_end()-1)); 7035 7036 SDVTList NodeTys; 7037 if (isAnyRegCC && hasDef) { 7038 // Create the return types based on the intrinsic definition 7039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7040 SmallVector<EVT, 3> ValueVTs; 7041 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7042 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7043 7044 // There is always a chain and a glue type at the end 7045 ValueVTs.push_back(MVT::Other); 7046 ValueVTs.push_back(MVT::Glue); 7047 NodeTys = DAG.getVTList(ValueVTs); 7048 } else 7049 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7050 7051 // Replace the target specific call node with a PATCHPOINT node. 7052 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7053 getCurSDLoc(), NodeTys, Ops); 7054 7055 // Update the NodeMap. 7056 if (hasDef) { 7057 if (isAnyRegCC) 7058 setValue(&CI, SDValue(MN, 0)); 7059 else 7060 setValue(&CI, Result.first); 7061 } 7062 7063 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7064 // call sequence. Furthermore the location of the chain and glue can change 7065 // when the AnyReg calling convention is used and the intrinsic returns a 7066 // value. 7067 if (isAnyRegCC && hasDef) { 7068 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7069 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7070 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7071 } else 7072 DAG.ReplaceAllUsesWith(Call, MN); 7073 DAG.DeleteNode(Call); 7074 7075 // Inform the Frame Information that we have a patchpoint in this function. 7076 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7077 } 7078 7079 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7080 /// implementation, which just calls LowerCall. 7081 /// FIXME: When all targets are 7082 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7083 std::pair<SDValue, SDValue> 7084 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7085 // Handle the incoming return values from the call. 7086 CLI.Ins.clear(); 7087 SmallVector<EVT, 4> RetTys; 7088 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7089 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7090 EVT VT = RetTys[I]; 7091 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7092 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7093 for (unsigned i = 0; i != NumRegs; ++i) { 7094 ISD::InputArg MyFlags; 7095 MyFlags.VT = RegisterVT; 7096 MyFlags.ArgVT = VT; 7097 MyFlags.Used = CLI.IsReturnValueUsed; 7098 if (CLI.RetSExt) 7099 MyFlags.Flags.setSExt(); 7100 if (CLI.RetZExt) 7101 MyFlags.Flags.setZExt(); 7102 if (CLI.IsInReg) 7103 MyFlags.Flags.setInReg(); 7104 CLI.Ins.push_back(MyFlags); 7105 } 7106 } 7107 7108 // Handle all of the outgoing arguments. 7109 CLI.Outs.clear(); 7110 CLI.OutVals.clear(); 7111 ArgListTy &Args = CLI.Args; 7112 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7113 SmallVector<EVT, 4> ValueVTs; 7114 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7115 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7116 Value != NumValues; ++Value) { 7117 EVT VT = ValueVTs[Value]; 7118 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7119 SDValue Op = SDValue(Args[i].Node.getNode(), 7120 Args[i].Node.getResNo() + Value); 7121 ISD::ArgFlagsTy Flags; 7122 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7123 7124 if (Args[i].isZExt) 7125 Flags.setZExt(); 7126 if (Args[i].isSExt) 7127 Flags.setSExt(); 7128 if (Args[i].isInReg) 7129 Flags.setInReg(); 7130 if (Args[i].isSRet) 7131 Flags.setSRet(); 7132 if (Args[i].isByVal) 7133 Flags.setByVal(); 7134 if (Args[i].isInAlloca) { 7135 Flags.setInAlloca(); 7136 // Set the byval flag for CCAssignFn callbacks that don't know about 7137 // inalloca. This way we can know how many bytes we should've allocated 7138 // and how many bytes a callee cleanup function will pop. If we port 7139 // inalloca to more targets, we'll have to add custom inalloca handling 7140 // in the various CC lowering callbacks. 7141 Flags.setByVal(); 7142 } 7143 if (Args[i].isByVal || Args[i].isInAlloca) { 7144 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7145 Type *ElementTy = Ty->getElementType(); 7146 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7147 // For ByVal, alignment should come from FE. BE will guess if this 7148 // info is not there but there are cases it cannot get right. 7149 unsigned FrameAlign; 7150 if (Args[i].Alignment) 7151 FrameAlign = Args[i].Alignment; 7152 else 7153 FrameAlign = getByValTypeAlignment(ElementTy); 7154 Flags.setByValAlign(FrameAlign); 7155 } 7156 if (Args[i].isNest) 7157 Flags.setNest(); 7158 Flags.setOrigAlign(OriginalAlignment); 7159 7160 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7161 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7162 SmallVector<SDValue, 4> Parts(NumParts); 7163 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7164 7165 if (Args[i].isSExt) 7166 ExtendKind = ISD::SIGN_EXTEND; 7167 else if (Args[i].isZExt) 7168 ExtendKind = ISD::ZERO_EXTEND; 7169 7170 // Conservatively only handle 'returned' on non-vectors for now 7171 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7172 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7173 "unexpected use of 'returned'"); 7174 // Before passing 'returned' to the target lowering code, ensure that 7175 // either the register MVT and the actual EVT are the same size or that 7176 // the return value and argument are extended in the same way; in these 7177 // cases it's safe to pass the argument register value unchanged as the 7178 // return register value (although it's at the target's option whether 7179 // to do so) 7180 // TODO: allow code generation to take advantage of partially preserved 7181 // registers rather than clobbering the entire register when the 7182 // parameter extension method is not compatible with the return 7183 // extension method 7184 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7185 (ExtendKind != ISD::ANY_EXTEND && 7186 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7187 Flags.setReturned(); 7188 } 7189 7190 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7191 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7192 7193 for (unsigned j = 0; j != NumParts; ++j) { 7194 // if it isn't first piece, alignment must be 1 7195 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7196 i < CLI.NumFixedArgs, 7197 i, j*Parts[j].getValueType().getStoreSize()); 7198 if (NumParts > 1 && j == 0) 7199 MyFlags.Flags.setSplit(); 7200 else if (j != 0) 7201 MyFlags.Flags.setOrigAlign(1); 7202 7203 CLI.Outs.push_back(MyFlags); 7204 CLI.OutVals.push_back(Parts[j]); 7205 } 7206 } 7207 } 7208 7209 SmallVector<SDValue, 4> InVals; 7210 CLI.Chain = LowerCall(CLI, InVals); 7211 7212 // Verify that the target's LowerCall behaved as expected. 7213 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7214 "LowerCall didn't return a valid chain!"); 7215 assert((!CLI.IsTailCall || InVals.empty()) && 7216 "LowerCall emitted a return value for a tail call!"); 7217 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7218 "LowerCall didn't emit the correct number of values!"); 7219 7220 // For a tail call, the return value is merely live-out and there aren't 7221 // any nodes in the DAG representing it. Return a special value to 7222 // indicate that a tail call has been emitted and no more Instructions 7223 // should be processed in the current block. 7224 if (CLI.IsTailCall) { 7225 CLI.DAG.setRoot(CLI.Chain); 7226 return std::make_pair(SDValue(), SDValue()); 7227 } 7228 7229 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7230 assert(InVals[i].getNode() && 7231 "LowerCall emitted a null value!"); 7232 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7233 "LowerCall emitted a value with the wrong type!"); 7234 }); 7235 7236 // Collect the legal value parts into potentially illegal values 7237 // that correspond to the original function's return values. 7238 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7239 if (CLI.RetSExt) 7240 AssertOp = ISD::AssertSext; 7241 else if (CLI.RetZExt) 7242 AssertOp = ISD::AssertZext; 7243 SmallVector<SDValue, 4> ReturnValues; 7244 unsigned CurReg = 0; 7245 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7246 EVT VT = RetTys[I]; 7247 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7248 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7249 7250 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7251 NumRegs, RegisterVT, VT, nullptr, 7252 AssertOp)); 7253 CurReg += NumRegs; 7254 } 7255 7256 // For a function returning void, there is no return value. We can't create 7257 // such a node, so we just return a null return value in that case. In 7258 // that case, nothing will actually look at the value. 7259 if (ReturnValues.empty()) 7260 return std::make_pair(SDValue(), CLI.Chain); 7261 7262 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7263 CLI.DAG.getVTList(RetTys), ReturnValues); 7264 return std::make_pair(Res, CLI.Chain); 7265 } 7266 7267 void TargetLowering::LowerOperationWrapper(SDNode *N, 7268 SmallVectorImpl<SDValue> &Results, 7269 SelectionDAG &DAG) const { 7270 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7271 if (Res.getNode()) 7272 Results.push_back(Res); 7273 } 7274 7275 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7276 llvm_unreachable("LowerOperation not implemented for this target!"); 7277 } 7278 7279 void 7280 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7281 SDValue Op = getNonRegisterValue(V); 7282 assert((Op.getOpcode() != ISD::CopyFromReg || 7283 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7284 "Copy from a reg to the same reg!"); 7285 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7286 7287 const TargetLowering *TLI = TM.getTargetLowering(); 7288 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7289 SDValue Chain = DAG.getEntryNode(); 7290 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7291 PendingExports.push_back(Chain); 7292 } 7293 7294 #include "llvm/CodeGen/SelectionDAGISel.h" 7295 7296 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7297 /// entry block, return true. This includes arguments used by switches, since 7298 /// the switch may expand into multiple basic blocks. 7299 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7300 // With FastISel active, we may be splitting blocks, so force creation 7301 // of virtual registers for all non-dead arguments. 7302 if (FastISel) 7303 return A->use_empty(); 7304 7305 const BasicBlock *Entry = A->getParent()->begin(); 7306 for (const User *U : A->users()) 7307 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7308 return false; // Use not in entry block. 7309 7310 return true; 7311 } 7312 7313 void SelectionDAGISel::LowerArguments(const Function &F) { 7314 SelectionDAG &DAG = SDB->DAG; 7315 SDLoc dl = SDB->getCurSDLoc(); 7316 const TargetLowering *TLI = getTargetLowering(); 7317 const DataLayout *DL = TLI->getDataLayout(); 7318 SmallVector<ISD::InputArg, 16> Ins; 7319 7320 if (!FuncInfo->CanLowerReturn) { 7321 // Put in an sret pointer parameter before all the other parameters. 7322 SmallVector<EVT, 1> ValueVTs; 7323 ComputeValueVTs(*getTargetLowering(), 7324 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7325 7326 // NOTE: Assuming that a pointer will never break down to more than one VT 7327 // or one register. 7328 ISD::ArgFlagsTy Flags; 7329 Flags.setSRet(); 7330 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7331 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7332 Ins.push_back(RetArg); 7333 } 7334 7335 // Set up the incoming argument description vector. 7336 unsigned Idx = 1; 7337 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7338 I != E; ++I, ++Idx) { 7339 SmallVector<EVT, 4> ValueVTs; 7340 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7341 bool isArgValueUsed = !I->use_empty(); 7342 unsigned PartBase = 0; 7343 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7344 Value != NumValues; ++Value) { 7345 EVT VT = ValueVTs[Value]; 7346 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7347 ISD::ArgFlagsTy Flags; 7348 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7349 7350 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7351 Flags.setZExt(); 7352 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7353 Flags.setSExt(); 7354 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7355 Flags.setInReg(); 7356 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7357 Flags.setSRet(); 7358 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7359 Flags.setByVal(); 7360 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7361 Flags.setInAlloca(); 7362 // Set the byval flag for CCAssignFn callbacks that don't know about 7363 // inalloca. This way we can know how many bytes we should've allocated 7364 // and how many bytes a callee cleanup function will pop. If we port 7365 // inalloca to more targets, we'll have to add custom inalloca handling 7366 // in the various CC lowering callbacks. 7367 Flags.setByVal(); 7368 } 7369 if (Flags.isByVal() || Flags.isInAlloca()) { 7370 PointerType *Ty = cast<PointerType>(I->getType()); 7371 Type *ElementTy = Ty->getElementType(); 7372 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7373 // For ByVal, alignment should be passed from FE. BE will guess if 7374 // this info is not there but there are cases it cannot get right. 7375 unsigned FrameAlign; 7376 if (F.getParamAlignment(Idx)) 7377 FrameAlign = F.getParamAlignment(Idx); 7378 else 7379 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7380 Flags.setByValAlign(FrameAlign); 7381 } 7382 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7383 Flags.setNest(); 7384 Flags.setOrigAlign(OriginalAlignment); 7385 7386 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7387 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7388 for (unsigned i = 0; i != NumRegs; ++i) { 7389 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7390 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7391 if (NumRegs > 1 && i == 0) 7392 MyFlags.Flags.setSplit(); 7393 // if it isn't first piece, alignment must be 1 7394 else if (i > 0) 7395 MyFlags.Flags.setOrigAlign(1); 7396 Ins.push_back(MyFlags); 7397 } 7398 PartBase += VT.getStoreSize(); 7399 } 7400 } 7401 7402 // Call the target to set up the argument values. 7403 SmallVector<SDValue, 8> InVals; 7404 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7405 F.isVarArg(), Ins, 7406 dl, DAG, InVals); 7407 7408 // Verify that the target's LowerFormalArguments behaved as expected. 7409 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7410 "LowerFormalArguments didn't return a valid chain!"); 7411 assert(InVals.size() == Ins.size() && 7412 "LowerFormalArguments didn't emit the correct number of values!"); 7413 DEBUG({ 7414 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7415 assert(InVals[i].getNode() && 7416 "LowerFormalArguments emitted a null value!"); 7417 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7418 "LowerFormalArguments emitted a value with the wrong type!"); 7419 } 7420 }); 7421 7422 // Update the DAG with the new chain value resulting from argument lowering. 7423 DAG.setRoot(NewRoot); 7424 7425 // Set up the argument values. 7426 unsigned i = 0; 7427 Idx = 1; 7428 if (!FuncInfo->CanLowerReturn) { 7429 // Create a virtual register for the sret pointer, and put in a copy 7430 // from the sret argument into it. 7431 SmallVector<EVT, 1> ValueVTs; 7432 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7433 MVT VT = ValueVTs[0].getSimpleVT(); 7434 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7435 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7436 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7437 RegVT, VT, nullptr, AssertOp); 7438 7439 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7440 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7441 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7442 FuncInfo->DemoteRegister = SRetReg; 7443 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7444 SRetReg, ArgValue); 7445 DAG.setRoot(NewRoot); 7446 7447 // i indexes lowered arguments. Bump it past the hidden sret argument. 7448 // Idx indexes LLVM arguments. Don't touch it. 7449 ++i; 7450 } 7451 7452 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7453 ++I, ++Idx) { 7454 SmallVector<SDValue, 4> ArgValues; 7455 SmallVector<EVT, 4> ValueVTs; 7456 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7457 unsigned NumValues = ValueVTs.size(); 7458 7459 // If this argument is unused then remember its value. It is used to generate 7460 // debugging information. 7461 if (I->use_empty() && NumValues) { 7462 SDB->setUnusedArgValue(I, InVals[i]); 7463 7464 // Also remember any frame index for use in FastISel. 7465 if (FrameIndexSDNode *FI = 7466 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7467 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7468 } 7469 7470 for (unsigned Val = 0; Val != NumValues; ++Val) { 7471 EVT VT = ValueVTs[Val]; 7472 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7473 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7474 7475 if (!I->use_empty()) { 7476 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7477 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7478 AssertOp = ISD::AssertSext; 7479 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7480 AssertOp = ISD::AssertZext; 7481 7482 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7483 NumParts, PartVT, VT, 7484 nullptr, AssertOp)); 7485 } 7486 7487 i += NumParts; 7488 } 7489 7490 // We don't need to do anything else for unused arguments. 7491 if (ArgValues.empty()) 7492 continue; 7493 7494 // Note down frame index. 7495 if (FrameIndexSDNode *FI = 7496 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7497 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7498 7499 SDValue Res = DAG.getMergeValues(ArrayRef<SDValue>(ArgValues.data(), 7500 NumValues), 7501 SDB->getCurSDLoc()); 7502 7503 SDB->setValue(I, Res); 7504 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7505 if (LoadSDNode *LNode = 7506 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7507 if (FrameIndexSDNode *FI = 7508 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7509 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7510 } 7511 7512 // If this argument is live outside of the entry block, insert a copy from 7513 // wherever we got it to the vreg that other BB's will reference it as. 7514 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7515 // If we can, though, try to skip creating an unnecessary vreg. 7516 // FIXME: This isn't very clean... it would be nice to make this more 7517 // general. It's also subtly incompatible with the hacks FastISel 7518 // uses with vregs. 7519 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7520 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7521 FuncInfo->ValueMap[I] = Reg; 7522 continue; 7523 } 7524 } 7525 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7526 FuncInfo->InitializeRegForValue(I); 7527 SDB->CopyToExportRegsIfNeeded(I); 7528 } 7529 } 7530 7531 assert(i == InVals.size() && "Argument register count mismatch!"); 7532 7533 // Finally, if the target has anything special to do, allow it to do so. 7534 // FIXME: this should insert code into the DAG! 7535 EmitFunctionEntryCode(); 7536 } 7537 7538 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7539 /// ensure constants are generated when needed. Remember the virtual registers 7540 /// that need to be added to the Machine PHI nodes as input. We cannot just 7541 /// directly add them, because expansion might result in multiple MBB's for one 7542 /// BB. As such, the start of the BB might correspond to a different MBB than 7543 /// the end. 7544 /// 7545 void 7546 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7547 const TerminatorInst *TI = LLVMBB->getTerminator(); 7548 7549 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7550 7551 // Check successor nodes' PHI nodes that expect a constant to be available 7552 // from this block. 7553 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7554 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7555 if (!isa<PHINode>(SuccBB->begin())) continue; 7556 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7557 7558 // If this terminator has multiple identical successors (common for 7559 // switches), only handle each succ once. 7560 if (!SuccsHandled.insert(SuccMBB)) continue; 7561 7562 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7563 7564 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7565 // nodes and Machine PHI nodes, but the incoming operands have not been 7566 // emitted yet. 7567 for (BasicBlock::const_iterator I = SuccBB->begin(); 7568 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7569 // Ignore dead phi's. 7570 if (PN->use_empty()) continue; 7571 7572 // Skip empty types 7573 if (PN->getType()->isEmptyTy()) 7574 continue; 7575 7576 unsigned Reg; 7577 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7578 7579 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7580 unsigned &RegOut = ConstantsOut[C]; 7581 if (RegOut == 0) { 7582 RegOut = FuncInfo.CreateRegs(C->getType()); 7583 CopyValueToVirtualRegister(C, RegOut); 7584 } 7585 Reg = RegOut; 7586 } else { 7587 DenseMap<const Value *, unsigned>::iterator I = 7588 FuncInfo.ValueMap.find(PHIOp); 7589 if (I != FuncInfo.ValueMap.end()) 7590 Reg = I->second; 7591 else { 7592 assert(isa<AllocaInst>(PHIOp) && 7593 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7594 "Didn't codegen value into a register!??"); 7595 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7596 CopyValueToVirtualRegister(PHIOp, Reg); 7597 } 7598 } 7599 7600 // Remember that this register needs to added to the machine PHI node as 7601 // the input for this MBB. 7602 SmallVector<EVT, 4> ValueVTs; 7603 const TargetLowering *TLI = TM.getTargetLowering(); 7604 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7605 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7606 EVT VT = ValueVTs[vti]; 7607 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7608 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7609 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7610 Reg += NumRegisters; 7611 } 7612 } 7613 } 7614 7615 ConstantsOut.clear(); 7616 } 7617 7618 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7619 /// is 0. 7620 MachineBasicBlock * 7621 SelectionDAGBuilder::StackProtectorDescriptor:: 7622 AddSuccessorMBB(const BasicBlock *BB, 7623 MachineBasicBlock *ParentMBB, 7624 MachineBasicBlock *SuccMBB) { 7625 // If SuccBB has not been created yet, create it. 7626 if (!SuccMBB) { 7627 MachineFunction *MF = ParentMBB->getParent(); 7628 MachineFunction::iterator BBI = ParentMBB; 7629 SuccMBB = MF->CreateMachineBasicBlock(BB); 7630 MF->insert(++BBI, SuccMBB); 7631 } 7632 // Add it as a successor of ParentMBB. 7633 ParentMBB->addSuccessor(SuccMBB); 7634 return SuccMBB; 7635 } 7636