1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 87 /// Minimum jump table density for normal functions. 88 static cl::opt<unsigned> 89 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 90 cl::desc("Minimum density for building a jump table in " 91 "a normal function")); 92 93 /// Minimum jump table density for -Os or -Oz functions. 94 static cl::opt<unsigned> 95 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 96 cl::desc("Minimum density for building a jump table in " 97 "an optsize function")); 98 99 100 // Limit the width of DAG chains. This is important in general to prevent 101 // DAG-based analysis from blowing up. For example, alias analysis and 102 // load clustering may not complete in reasonable time. It is difficult to 103 // recognize and avoid this situation within each individual analysis, and 104 // future analyses are likely to have the same behavior. Limiting DAG width is 105 // the safe approach and will be especially important with global DAGs. 106 // 107 // MaxParallelChains default is arbitrarily high to avoid affecting 108 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 109 // sequence over this should have been converted to llvm.memcpy by the 110 // frontend. It is easy to induce this behavior with .ll code such as: 111 // %buffer = alloca [4096 x i8] 112 // %data = load [4096 x i8]* %argPtr 113 // store [4096 x i8] %data, [4096 x i8]* %buffer 114 static const unsigned MaxParallelChains = 64; 115 116 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 117 const SDValue *Parts, unsigned NumParts, 118 MVT PartVT, EVT ValueVT, const Value *V, 119 bool IsABIRegCopy); 120 121 /// getCopyFromParts - Create a value that contains the specified legal parts 122 /// combined into the value they represent. If the parts combine to a type 123 /// larger than ValueVT then AssertOp can be used to specify whether the extra 124 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 125 /// (ISD::AssertSext). 126 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 127 const SDValue *Parts, unsigned NumParts, 128 MVT PartVT, EVT ValueVT, const Value *V, 129 Optional<ISD::NodeType> AssertOp = None, 130 bool IsABIRegCopy = false) { 131 if (ValueVT.isVector()) 132 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 133 PartVT, ValueVT, V, IsABIRegCopy); 134 135 assert(NumParts > 0 && "No parts to assemble!"); 136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 137 SDValue Val = Parts[0]; 138 139 if (NumParts > 1) { 140 // Assemble the value from multiple parts. 141 if (ValueVT.isInteger()) { 142 unsigned PartBits = PartVT.getSizeInBits(); 143 unsigned ValueBits = ValueVT.getSizeInBits(); 144 145 // Assemble the power of 2 part. 146 unsigned RoundParts = NumParts & (NumParts - 1) ? 147 1 << Log2_32(NumParts) : NumParts; 148 unsigned RoundBits = PartBits * RoundParts; 149 EVT RoundVT = RoundBits == ValueBits ? 150 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 151 SDValue Lo, Hi; 152 153 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 154 155 if (RoundParts > 2) { 156 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 157 PartVT, HalfVT, V); 158 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 159 RoundParts / 2, PartVT, HalfVT, V); 160 } else { 161 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 162 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 163 } 164 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 169 170 if (RoundParts < NumParts) { 171 // Assemble the trailing non-power-of-2 part. 172 unsigned OddParts = NumParts - RoundParts; 173 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 174 Hi = getCopyFromParts(DAG, DL, 175 Parts + RoundParts, OddParts, PartVT, OddVT, V); 176 177 // Combine the round and odd parts. 178 Lo = Val; 179 if (DAG.getDataLayout().isBigEndian()) 180 std::swap(Lo, Hi); 181 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 182 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 183 Hi = 184 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 185 DAG.getConstant(Lo.getValueSizeInBits(), DL, 186 TLI.getPointerTy(DAG.getDataLayout()))); 187 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 188 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 189 } 190 } else if (PartVT.isFloatingPoint()) { 191 // FP split into multiple FP parts (for ppcf128) 192 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 193 "Unexpected split"); 194 SDValue Lo, Hi; 195 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 196 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 197 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 198 std::swap(Lo, Hi); 199 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 200 } else { 201 // FP split into integer parts (soft fp) 202 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 203 !PartVT.isVector() && "Unexpected split"); 204 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 205 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 206 } 207 } 208 209 // There is now one part, held in Val. Correct it to match ValueVT. 210 // PartEVT is the type of the register class that holds the value. 211 // ValueVT is the type of the inline asm operation. 212 EVT PartEVT = Val.getValueType(); 213 214 if (PartEVT == ValueVT) 215 return Val; 216 217 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 218 ValueVT.bitsLT(PartEVT)) { 219 // For an FP value in an integer part, we need to truncate to the right 220 // width first. 221 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 222 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 223 } 224 225 // Handle types that have the same size. 226 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 227 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 228 229 // Handle types with different sizes. 230 if (PartEVT.isInteger() && ValueVT.isInteger()) { 231 if (ValueVT.bitsLT(PartEVT)) { 232 // For a truncate, see if we have any information to 233 // indicate whether the truncated bits will always be 234 // zero or sign-extension. 235 if (AssertOp.hasValue()) 236 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 237 DAG.getValueType(ValueVT)); 238 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 239 } 240 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 241 } 242 243 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 244 // FP_ROUND's are always exact here. 245 if (ValueVT.bitsLT(Val.getValueType())) 246 return DAG.getNode( 247 ISD::FP_ROUND, DL, ValueVT, Val, 248 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 249 250 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 251 } 252 253 llvm_unreachable("Unknown mismatch!"); 254 } 255 256 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 257 const Twine &ErrMsg) { 258 const Instruction *I = dyn_cast_or_null<Instruction>(V); 259 if (!V) 260 return Ctx.emitError(ErrMsg); 261 262 const char *AsmError = ", possible invalid constraint for vector type"; 263 if (const CallInst *CI = dyn_cast<CallInst>(I)) 264 if (isa<InlineAsm>(CI->getCalledValue())) 265 return Ctx.emitError(I, ErrMsg + AsmError); 266 267 return Ctx.emitError(I, ErrMsg); 268 } 269 270 /// getCopyFromPartsVector - Create a value that contains the specified legal 271 /// parts combined into the value they represent. If the parts combine to a 272 /// type larger than ValueVT then AssertOp can be used to specify whether the 273 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 274 /// ValueVT (ISD::AssertSext). 275 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 276 const SDValue *Parts, unsigned NumParts, 277 MVT PartVT, EVT ValueVT, const Value *V, 278 bool IsABIRegCopy) { 279 assert(ValueVT.isVector() && "Not a vector value"); 280 assert(NumParts > 0 && "No parts to assemble!"); 281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 282 SDValue Val = Parts[0]; 283 284 // Handle a multi-element vector. 285 if (NumParts > 1) { 286 EVT IntermediateVT; 287 MVT RegisterVT; 288 unsigned NumIntermediates; 289 unsigned NumRegs; 290 291 if (IsABIRegCopy) { 292 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 293 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 294 RegisterVT); 295 } else { 296 NumRegs = 297 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 298 NumIntermediates, RegisterVT); 299 } 300 301 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 302 NumParts = NumRegs; // Silence a compiler warning. 303 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 304 assert(RegisterVT.getSizeInBits() == 305 Parts[0].getSimpleValueType().getSizeInBits() && 306 "Part type sizes don't match!"); 307 308 // Assemble the parts into intermediate operands. 309 SmallVector<SDValue, 8> Ops(NumIntermediates); 310 if (NumIntermediates == NumParts) { 311 // If the register was not expanded, truncate or copy the value, 312 // as appropriate. 313 for (unsigned i = 0; i != NumParts; ++i) 314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 315 PartVT, IntermediateVT, V); 316 } else if (NumParts > 0) { 317 // If the intermediate type was expanded, build the intermediate 318 // operands from the parts. 319 assert(NumParts % NumIntermediates == 0 && 320 "Must expand into a divisible number of parts!"); 321 unsigned Factor = NumParts / NumIntermediates; 322 for (unsigned i = 0; i != NumIntermediates; ++i) 323 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 324 PartVT, IntermediateVT, V); 325 } 326 327 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 328 // intermediate operands. 329 EVT BuiltVectorTy = 330 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 331 (IntermediateVT.isVector() 332 ? IntermediateVT.getVectorNumElements() * NumParts 333 : NumIntermediates)); 334 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 335 : ISD::BUILD_VECTOR, 336 DL, BuiltVectorTy, Ops); 337 } 338 339 // There is now one part, held in Val. Correct it to match ValueVT. 340 EVT PartEVT = Val.getValueType(); 341 342 if (PartEVT == ValueVT) 343 return Val; 344 345 if (PartEVT.isVector()) { 346 // If the element type of the source/dest vectors are the same, but the 347 // parts vector has more elements than the value vector, then we have a 348 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 349 // elements we want. 350 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 351 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 352 "Cannot narrow, it would be a lossy transformation"); 353 return DAG.getNode( 354 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 355 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 356 } 357 358 // Vector/Vector bitcast. 359 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 360 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 361 362 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 363 "Cannot handle this kind of promotion"); 364 // Promoted vector extract 365 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 366 367 } 368 369 // Trivial bitcast if the types are the same size and the destination 370 // vector type is legal. 371 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 372 TLI.isTypeLegal(ValueVT)) 373 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 374 375 if (ValueVT.getVectorNumElements() != 1) { 376 377 // Certain ABIs require that vectors are passed as integers. For vectors 378 // are the same size, this is an obvious bitcast. 379 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 380 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 381 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 382 // Bitcast Val back the original type and extract the corresponding 383 // vector we want. 384 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 385 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 386 ValueVT.getVectorElementType(), Elts); 387 Val = DAG.getBitcast(WiderVecType, Val); 388 return DAG.getNode( 389 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 390 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 391 } 392 393 diagnosePossiblyInvalidConstraint( 394 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 395 return DAG.getUNDEF(ValueVT); 396 } 397 398 // Handle cases such as i8 -> <1 x i1> 399 if (ValueVT.getVectorNumElements() == 1 && 400 ValueVT.getVectorElementType() != PartEVT) 401 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 402 403 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 404 } 405 406 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 407 SDValue Val, SDValue *Parts, unsigned NumParts, 408 MVT PartVT, const Value *V, bool IsABIRegCopy); 409 410 /// getCopyToParts - Create a series of nodes that contain the specified value 411 /// split into legal parts. If the parts contain more bits than Val, then, for 412 /// integers, ExtendKind can be used to specify how to generate the extra bits. 413 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 414 SDValue *Parts, unsigned NumParts, MVT PartVT, 415 const Value *V, 416 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 417 bool IsABIRegCopy = false) { 418 EVT ValueVT = Val.getValueType(); 419 420 // Handle the vector case separately. 421 if (ValueVT.isVector()) 422 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 423 IsABIRegCopy); 424 425 unsigned PartBits = PartVT.getSizeInBits(); 426 unsigned OrigNumParts = NumParts; 427 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 428 "Copying to an illegal type!"); 429 430 if (NumParts == 0) 431 return; 432 433 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 434 EVT PartEVT = PartVT; 435 if (PartEVT == ValueVT) { 436 assert(NumParts == 1 && "No-op copy with multiple parts!"); 437 Parts[0] = Val; 438 return; 439 } 440 441 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 442 // If the parts cover more bits than the value has, promote the value. 443 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 444 assert(NumParts == 1 && "Do not know what to promote to!"); 445 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 446 } else { 447 if (ValueVT.isFloatingPoint()) { 448 // FP values need to be bitcast, then extended if they are being put 449 // into a larger container. 450 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 451 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 452 } 453 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 454 ValueVT.isInteger() && 455 "Unknown mismatch!"); 456 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 457 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 458 if (PartVT == MVT::x86mmx) 459 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 460 } 461 } else if (PartBits == ValueVT.getSizeInBits()) { 462 // Different types of the same size. 463 assert(NumParts == 1 && PartEVT != ValueVT); 464 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 465 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 466 // If the parts cover less bits than value has, truncate the value. 467 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 468 ValueVT.isInteger() && 469 "Unknown mismatch!"); 470 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 471 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 472 if (PartVT == MVT::x86mmx) 473 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 474 } 475 476 // The value may have changed - recompute ValueVT. 477 ValueVT = Val.getValueType(); 478 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 479 "Failed to tile the value with PartVT!"); 480 481 if (NumParts == 1) { 482 if (PartEVT != ValueVT) { 483 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 484 "scalar-to-vector conversion failed"); 485 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 486 } 487 488 Parts[0] = Val; 489 return; 490 } 491 492 // Expand the value into multiple parts. 493 if (NumParts & (NumParts - 1)) { 494 // The number of parts is not a power of 2. Split off and copy the tail. 495 assert(PartVT.isInteger() && ValueVT.isInteger() && 496 "Do not know what to expand to!"); 497 unsigned RoundParts = 1 << Log2_32(NumParts); 498 unsigned RoundBits = RoundParts * PartBits; 499 unsigned OddParts = NumParts - RoundParts; 500 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 501 DAG.getIntPtrConstant(RoundBits, DL)); 502 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 503 504 if (DAG.getDataLayout().isBigEndian()) 505 // The odd parts were reversed by getCopyToParts - unreverse them. 506 std::reverse(Parts + RoundParts, Parts + NumParts); 507 508 NumParts = RoundParts; 509 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 510 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 511 } 512 513 // The number of parts is a power of 2. Repeatedly bisect the value using 514 // EXTRACT_ELEMENT. 515 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 516 EVT::getIntegerVT(*DAG.getContext(), 517 ValueVT.getSizeInBits()), 518 Val); 519 520 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 521 for (unsigned i = 0; i < NumParts; i += StepSize) { 522 unsigned ThisBits = StepSize * PartBits / 2; 523 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 524 SDValue &Part0 = Parts[i]; 525 SDValue &Part1 = Parts[i+StepSize/2]; 526 527 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 528 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 529 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 530 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 531 532 if (ThisBits == PartBits && ThisVT != PartVT) { 533 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 534 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 535 } 536 } 537 } 538 539 if (DAG.getDataLayout().isBigEndian()) 540 std::reverse(Parts, Parts + OrigNumParts); 541 } 542 543 544 /// getCopyToPartsVector - Create a series of nodes that contain the specified 545 /// value split into legal parts. 546 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 547 SDValue Val, SDValue *Parts, unsigned NumParts, 548 MVT PartVT, const Value *V, 549 bool IsABIRegCopy) { 550 551 EVT ValueVT = Val.getValueType(); 552 assert(ValueVT.isVector() && "Not a vector"); 553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 554 555 if (NumParts == 1) { 556 EVT PartEVT = PartVT; 557 if (PartEVT == ValueVT) { 558 // Nothing to do. 559 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 560 // Bitconvert vector->vector case. 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (PartVT.isVector() && 563 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 564 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 565 EVT ElementVT = PartVT.getVectorElementType(); 566 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 567 // undef elements. 568 SmallVector<SDValue, 16> Ops; 569 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 570 Ops.push_back(DAG.getNode( 571 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 572 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 573 574 for (unsigned i = ValueVT.getVectorNumElements(), 575 e = PartVT.getVectorNumElements(); i != e; ++i) 576 Ops.push_back(DAG.getUNDEF(ElementVT)); 577 578 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 579 580 // FIXME: Use CONCAT for 2x -> 4x. 581 582 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 583 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 584 } else if (PartVT.isVector() && 585 PartEVT.getVectorElementType().bitsGE( 586 ValueVT.getVectorElementType()) && 587 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 588 589 // Promoted vector extract 590 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 591 } else { 592 // Vector -> scalar conversion. 593 if (ValueVT.getVectorNumElements() == 1) { 594 Val = DAG.getNode( 595 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 596 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 597 598 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 599 } else { 600 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 601 "lossy conversion of vector to scalar type"); 602 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), 603 ValueVT.getSizeInBits()); 604 Val = DAG.getBitcast(IntermediateType, Val); 605 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 606 } 607 } 608 609 Parts[0] = Val; 610 return; 611 } 612 613 // Handle a multi-element vector. 614 EVT IntermediateVT; 615 MVT RegisterVT; 616 unsigned NumIntermediates; 617 unsigned NumRegs; 618 if (IsABIRegCopy) { 619 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 620 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 621 RegisterVT); 622 } else { 623 NumRegs = 624 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 625 NumIntermediates, RegisterVT); 626 } 627 unsigned NumElements = ValueVT.getVectorNumElements(); 628 629 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 630 NumParts = NumRegs; // Silence a compiler warning. 631 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 632 633 // Convert the vector to the appropiate type if necessary. 634 unsigned DestVectorNoElts = 635 NumIntermediates * 636 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 637 EVT BuiltVectorTy = EVT::getVectorVT( 638 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 639 if (Val.getValueType() != BuiltVectorTy) 640 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 641 642 // Split the vector into intermediate operands. 643 SmallVector<SDValue, 8> Ops(NumIntermediates); 644 for (unsigned i = 0; i != NumIntermediates; ++i) { 645 if (IntermediateVT.isVector()) 646 Ops[i] = 647 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 648 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 649 TLI.getVectorIdxTy(DAG.getDataLayout()))); 650 else 651 Ops[i] = DAG.getNode( 652 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 653 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 654 } 655 656 // Split the intermediate operands into legal parts. 657 if (NumParts == NumIntermediates) { 658 // If the register was not expanded, promote or copy the value, 659 // as appropriate. 660 for (unsigned i = 0; i != NumParts; ++i) 661 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 662 } else if (NumParts > 0) { 663 // If the intermediate type was expanded, split each the value into 664 // legal parts. 665 assert(NumIntermediates != 0 && "division by zero"); 666 assert(NumParts % NumIntermediates == 0 && 667 "Must expand into a divisible number of parts!"); 668 unsigned Factor = NumParts / NumIntermediates; 669 for (unsigned i = 0; i != NumIntermediates; ++i) 670 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 671 } 672 } 673 674 RegsForValue::RegsForValue() { IsABIMangled = false; } 675 676 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 677 EVT valuevt, bool IsABIMangledValue) 678 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 679 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 680 681 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 682 const DataLayout &DL, unsigned Reg, Type *Ty, 683 bool IsABIMangledValue) { 684 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 685 686 IsABIMangled = IsABIMangledValue; 687 688 for (EVT ValueVT : ValueVTs) { 689 unsigned NumRegs = IsABIMangledValue 690 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 691 : TLI.getNumRegisters(Context, ValueVT); 692 MVT RegisterVT = IsABIMangledValue 693 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 694 : TLI.getRegisterType(Context, ValueVT); 695 for (unsigned i = 0; i != NumRegs; ++i) 696 Regs.push_back(Reg + i); 697 RegVTs.push_back(RegisterVT); 698 RegCount.push_back(NumRegs); 699 Reg += NumRegs; 700 } 701 } 702 703 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 704 FunctionLoweringInfo &FuncInfo, 705 const SDLoc &dl, SDValue &Chain, 706 SDValue *Flag, const Value *V) const { 707 // A Value with type {} or [0 x %t] needs no registers. 708 if (ValueVTs.empty()) 709 return SDValue(); 710 711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 712 713 // Assemble the legal parts into the final values. 714 SmallVector<SDValue, 4> Values(ValueVTs.size()); 715 SmallVector<SDValue, 8> Parts; 716 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 717 // Copy the legal parts from the registers. 718 EVT ValueVT = ValueVTs[Value]; 719 unsigned NumRegs = RegCount[Value]; 720 MVT RegisterVT = IsABIMangled 721 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 722 : RegVTs[Value]; 723 724 Parts.resize(NumRegs); 725 for (unsigned i = 0; i != NumRegs; ++i) { 726 SDValue P; 727 if (!Flag) { 728 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 729 } else { 730 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 731 *Flag = P.getValue(2); 732 } 733 734 Chain = P.getValue(1); 735 Parts[i] = P; 736 737 // If the source register was virtual and if we know something about it, 738 // add an assert node. 739 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 740 !RegisterVT.isInteger() || RegisterVT.isVector()) 741 continue; 742 743 const FunctionLoweringInfo::LiveOutInfo *LOI = 744 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 745 if (!LOI) 746 continue; 747 748 unsigned RegSize = RegisterVT.getSizeInBits(); 749 unsigned NumSignBits = LOI->NumSignBits; 750 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 751 752 if (NumZeroBits == RegSize) { 753 // The current value is a zero. 754 // Explicitly express that as it would be easier for 755 // optimizations to kick in. 756 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 757 continue; 758 } 759 760 // FIXME: We capture more information than the dag can represent. For 761 // now, just use the tightest assertzext/assertsext possible. 762 bool isSExt = true; 763 EVT FromVT(MVT::Other); 764 if (NumSignBits == RegSize) { 765 isSExt = true; // ASSERT SEXT 1 766 FromVT = MVT::i1; 767 } else if (NumZeroBits >= RegSize - 1) { 768 isSExt = false; // ASSERT ZEXT 1 769 FromVT = MVT::i1; 770 } else if (NumSignBits > RegSize - 8) { 771 isSExt = true; // ASSERT SEXT 8 772 FromVT = MVT::i8; 773 } else if (NumZeroBits >= RegSize - 8) { 774 isSExt = false; // ASSERT ZEXT 8 775 FromVT = MVT::i8; 776 } else if (NumSignBits > RegSize - 16) { 777 isSExt = true; // ASSERT SEXT 16 778 FromVT = MVT::i16; 779 } else if (NumZeroBits >= RegSize - 16) { 780 isSExt = false; // ASSERT ZEXT 16 781 FromVT = MVT::i16; 782 } else if (NumSignBits > RegSize - 32) { 783 isSExt = true; // ASSERT SEXT 32 784 FromVT = MVT::i32; 785 } else if (NumZeroBits >= RegSize - 32) { 786 isSExt = false; // ASSERT ZEXT 32 787 FromVT = MVT::i32; 788 } else { 789 continue; 790 } 791 // Add an assertion node. 792 assert(FromVT != MVT::Other); 793 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 794 RegisterVT, P, DAG.getValueType(FromVT)); 795 } 796 797 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 798 NumRegs, RegisterVT, ValueVT, V); 799 Part += NumRegs; 800 Parts.clear(); 801 } 802 803 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 804 } 805 806 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 807 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 808 const Value *V, 809 ISD::NodeType PreferredExtendType) const { 810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 811 ISD::NodeType ExtendKind = PreferredExtendType; 812 813 // Get the list of the values's legal parts. 814 unsigned NumRegs = Regs.size(); 815 SmallVector<SDValue, 8> Parts(NumRegs); 816 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 unsigned NumParts = RegCount[Value]; 818 819 MVT RegisterVT = IsABIMangled 820 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 821 : RegVTs[Value]; 822 823 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 824 ExtendKind = ISD::ZERO_EXTEND; 825 826 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 827 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 828 Part += NumParts; 829 } 830 831 // Copy the parts into the registers. 832 SmallVector<SDValue, 8> Chains(NumRegs); 833 for (unsigned i = 0; i != NumRegs; ++i) { 834 SDValue Part; 835 if (!Flag) { 836 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 837 } else { 838 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 839 *Flag = Part.getValue(1); 840 } 841 842 Chains[i] = Part.getValue(0); 843 } 844 845 if (NumRegs == 1 || Flag) 846 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 847 // flagged to it. That is the CopyToReg nodes and the user are considered 848 // a single scheduling unit. If we create a TokenFactor and return it as 849 // chain, then the TokenFactor is both a predecessor (operand) of the 850 // user as well as a successor (the TF operands are flagged to the user). 851 // c1, f1 = CopyToReg 852 // c2, f2 = CopyToReg 853 // c3 = TokenFactor c1, c2 854 // ... 855 // = op c3, ..., f2 856 Chain = Chains[NumRegs-1]; 857 else 858 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 859 } 860 861 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 862 unsigned MatchingIdx, const SDLoc &dl, 863 SelectionDAG &DAG, 864 std::vector<SDValue> &Ops) const { 865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 866 867 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 868 if (HasMatching) 869 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 870 else if (!Regs.empty() && 871 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 872 // Put the register class of the virtual registers in the flag word. That 873 // way, later passes can recompute register class constraints for inline 874 // assembly as well as normal instructions. 875 // Don't do this for tied operands that can use the regclass information 876 // from the def. 877 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 878 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 879 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 880 } 881 882 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 883 Ops.push_back(Res); 884 885 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 886 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 888 MVT RegisterVT = RegVTs[Value]; 889 for (unsigned i = 0; i != NumRegs; ++i) { 890 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 891 unsigned TheReg = Regs[Reg++]; 892 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 893 894 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 895 // If we clobbered the stack pointer, MFI should know about it. 896 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 897 } 898 } 899 } 900 } 901 902 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 903 const TargetLibraryInfo *li) { 904 AA = &aa; 905 GFI = gfi; 906 LibInfo = li; 907 DL = &DAG.getDataLayout(); 908 Context = DAG.getContext(); 909 LPadToCallSiteMap.clear(); 910 } 911 912 void SelectionDAGBuilder::clear() { 913 NodeMap.clear(); 914 UnusedArgNodeMap.clear(); 915 PendingLoads.clear(); 916 PendingExports.clear(); 917 CurInst = nullptr; 918 HasTailCall = false; 919 SDNodeOrder = LowestSDNodeOrder; 920 StatepointLowering.clear(); 921 } 922 923 void SelectionDAGBuilder::clearDanglingDebugInfo() { 924 DanglingDebugInfoMap.clear(); 925 } 926 927 SDValue SelectionDAGBuilder::getRoot() { 928 if (PendingLoads.empty()) 929 return DAG.getRoot(); 930 931 if (PendingLoads.size() == 1) { 932 SDValue Root = PendingLoads[0]; 933 DAG.setRoot(Root); 934 PendingLoads.clear(); 935 return Root; 936 } 937 938 // Otherwise, we have to make a token factor node. 939 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 940 PendingLoads); 941 PendingLoads.clear(); 942 DAG.setRoot(Root); 943 return Root; 944 } 945 946 SDValue SelectionDAGBuilder::getControlRoot() { 947 SDValue Root = DAG.getRoot(); 948 949 if (PendingExports.empty()) 950 return Root; 951 952 // Turn all of the CopyToReg chains into one factored node. 953 if (Root.getOpcode() != ISD::EntryToken) { 954 unsigned i = 0, e = PendingExports.size(); 955 for (; i != e; ++i) { 956 assert(PendingExports[i].getNode()->getNumOperands() > 1); 957 if (PendingExports[i].getNode()->getOperand(0) == Root) 958 break; // Don't add the root if we already indirectly depend on it. 959 } 960 961 if (i == e) 962 PendingExports.push_back(Root); 963 } 964 965 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 966 PendingExports); 967 PendingExports.clear(); 968 DAG.setRoot(Root); 969 return Root; 970 } 971 972 void SelectionDAGBuilder::visit(const Instruction &I) { 973 // Set up outgoing PHI node register values before emitting the terminator. 974 if (isa<TerminatorInst>(&I)) { 975 HandlePHINodesInSuccessorBlocks(I.getParent()); 976 } 977 978 // Increase the SDNodeOrder if dealing with a non-debug instruction. 979 if (!isa<DbgInfoIntrinsic>(I)) 980 ++SDNodeOrder; 981 982 CurInst = &I; 983 984 visit(I.getOpcode(), I); 985 986 if (!isa<TerminatorInst>(&I) && !HasTailCall && 987 !isStatepoint(&I)) // statepoints handle their exports internally 988 CopyToExportRegsIfNeeded(&I); 989 990 CurInst = nullptr; 991 } 992 993 void SelectionDAGBuilder::visitPHI(const PHINode &) { 994 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 995 } 996 997 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 998 // Note: this doesn't use InstVisitor, because it has to work with 999 // ConstantExpr's in addition to instructions. 1000 switch (Opcode) { 1001 default: llvm_unreachable("Unknown instruction type encountered!"); 1002 // Build the switch statement using the Instruction.def file. 1003 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1004 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1005 #include "llvm/IR/Instruction.def" 1006 } 1007 } 1008 1009 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1010 // generate the debug data structures now that we've seen its definition. 1011 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1012 SDValue Val) { 1013 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1014 if (DDI.getDI()) { 1015 const DbgValueInst *DI = DDI.getDI(); 1016 DebugLoc dl = DDI.getdl(); 1017 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1018 DILocalVariable *Variable = DI->getVariable(); 1019 DIExpression *Expr = DI->getExpression(); 1020 assert(Variable->isValidLocationForIntrinsic(dl) && 1021 "Expected inlined-at fields to agree"); 1022 uint64_t Offset = DI->getOffset(); 1023 SDDbgValue *SDV; 1024 if (Val.getNode()) { 1025 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 1026 Val)) { 1027 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 1028 DAG.AddDbgValue(SDV, Val.getNode(), false); 1029 } 1030 } else 1031 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1032 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1033 } 1034 } 1035 1036 /// getCopyFromRegs - If there was virtual register allocated for the value V 1037 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1038 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1039 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1040 SDValue Result; 1041 1042 if (It != FuncInfo.ValueMap.end()) { 1043 unsigned InReg = It->second; 1044 bool IsABIRegCopy = 1045 V && ((isa<CallInst>(V) && 1046 !(static_cast<const CallInst *>(V))->isInlineAsm()) || 1047 isa<ReturnInst>(V)); 1048 1049 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1050 DAG.getDataLayout(), InReg, Ty, IsABIRegCopy); 1051 SDValue Chain = DAG.getEntryNode(); 1052 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1053 V); 1054 resolveDanglingDebugInfo(V, Result); 1055 } 1056 1057 return Result; 1058 } 1059 1060 /// getValue - Return an SDValue for the given Value. 1061 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1062 // If we already have an SDValue for this value, use it. It's important 1063 // to do this first, so that we don't create a CopyFromReg if we already 1064 // have a regular SDValue. 1065 SDValue &N = NodeMap[V]; 1066 if (N.getNode()) return N; 1067 1068 // If there's a virtual register allocated and initialized for this 1069 // value, use it. 1070 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1071 return copyFromReg; 1072 1073 // Otherwise create a new SDValue and remember it. 1074 SDValue Val = getValueImpl(V); 1075 NodeMap[V] = Val; 1076 resolveDanglingDebugInfo(V, Val); 1077 return Val; 1078 } 1079 1080 // Return true if SDValue exists for the given Value 1081 bool SelectionDAGBuilder::findValue(const Value *V) const { 1082 return (NodeMap.find(V) != NodeMap.end()) || 1083 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1084 } 1085 1086 /// getNonRegisterValue - Return an SDValue for the given Value, but 1087 /// don't look in FuncInfo.ValueMap for a virtual register. 1088 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1089 // If we already have an SDValue for this value, use it. 1090 SDValue &N = NodeMap[V]; 1091 if (N.getNode()) { 1092 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1093 // Remove the debug location from the node as the node is about to be used 1094 // in a location which may differ from the original debug location. This 1095 // is relevant to Constant and ConstantFP nodes because they can appear 1096 // as constant expressions inside PHI nodes. 1097 N->setDebugLoc(DebugLoc()); 1098 } 1099 return N; 1100 } 1101 1102 // Otherwise create a new SDValue and remember it. 1103 SDValue Val = getValueImpl(V); 1104 NodeMap[V] = Val; 1105 resolveDanglingDebugInfo(V, Val); 1106 return Val; 1107 } 1108 1109 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1110 /// Create an SDValue for the given value. 1111 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1113 1114 if (const Constant *C = dyn_cast<Constant>(V)) { 1115 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1116 1117 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1118 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1119 1120 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1121 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1122 1123 if (isa<ConstantPointerNull>(C)) { 1124 unsigned AS = V->getType()->getPointerAddressSpace(); 1125 return DAG.getConstant(0, getCurSDLoc(), 1126 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1127 } 1128 1129 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1130 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1131 1132 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1133 return DAG.getUNDEF(VT); 1134 1135 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1136 visit(CE->getOpcode(), *CE); 1137 SDValue N1 = NodeMap[V]; 1138 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1139 return N1; 1140 } 1141 1142 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1143 SmallVector<SDValue, 4> Constants; 1144 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1145 OI != OE; ++OI) { 1146 SDNode *Val = getValue(*OI).getNode(); 1147 // If the operand is an empty aggregate, there are no values. 1148 if (!Val) continue; 1149 // Add each leaf value from the operand to the Constants list 1150 // to form a flattened list of all the values. 1151 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1152 Constants.push_back(SDValue(Val, i)); 1153 } 1154 1155 return DAG.getMergeValues(Constants, getCurSDLoc()); 1156 } 1157 1158 if (const ConstantDataSequential *CDS = 1159 dyn_cast<ConstantDataSequential>(C)) { 1160 SmallVector<SDValue, 4> Ops; 1161 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1162 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1163 // Add each leaf value from the operand to the Constants list 1164 // to form a flattened list of all the values. 1165 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1166 Ops.push_back(SDValue(Val, i)); 1167 } 1168 1169 if (isa<ArrayType>(CDS->getType())) 1170 return DAG.getMergeValues(Ops, getCurSDLoc()); 1171 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1172 VT, Ops); 1173 } 1174 1175 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1176 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1177 "Unknown struct or array constant!"); 1178 1179 SmallVector<EVT, 4> ValueVTs; 1180 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1181 unsigned NumElts = ValueVTs.size(); 1182 if (NumElts == 0) 1183 return SDValue(); // empty struct 1184 SmallVector<SDValue, 4> Constants(NumElts); 1185 for (unsigned i = 0; i != NumElts; ++i) { 1186 EVT EltVT = ValueVTs[i]; 1187 if (isa<UndefValue>(C)) 1188 Constants[i] = DAG.getUNDEF(EltVT); 1189 else if (EltVT.isFloatingPoint()) 1190 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1191 else 1192 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1193 } 1194 1195 return DAG.getMergeValues(Constants, getCurSDLoc()); 1196 } 1197 1198 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1199 return DAG.getBlockAddress(BA, VT); 1200 1201 VectorType *VecTy = cast<VectorType>(V->getType()); 1202 unsigned NumElements = VecTy->getNumElements(); 1203 1204 // Now that we know the number and type of the elements, get that number of 1205 // elements into the Ops array based on what kind of constant it is. 1206 SmallVector<SDValue, 16> Ops; 1207 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1208 for (unsigned i = 0; i != NumElements; ++i) 1209 Ops.push_back(getValue(CV->getOperand(i))); 1210 } else { 1211 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1212 EVT EltVT = 1213 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1214 1215 SDValue Op; 1216 if (EltVT.isFloatingPoint()) 1217 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1218 else 1219 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1220 Ops.assign(NumElements, Op); 1221 } 1222 1223 // Create a BUILD_VECTOR node. 1224 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1225 } 1226 1227 // If this is a static alloca, generate it as the frameindex instead of 1228 // computation. 1229 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1230 DenseMap<const AllocaInst*, int>::iterator SI = 1231 FuncInfo.StaticAllocaMap.find(AI); 1232 if (SI != FuncInfo.StaticAllocaMap.end()) 1233 return DAG.getFrameIndex(SI->second, 1234 TLI.getPointerTy(DAG.getDataLayout())); 1235 } 1236 1237 // If this is an instruction which fast-isel has deferred, select it now. 1238 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1239 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1240 bool IsABIRegCopy = 1241 V && ((isa<CallInst>(V) && 1242 !(static_cast<const CallInst *>(V))->isInlineAsm()) || 1243 isa<ReturnInst>(V)); 1244 1245 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1246 Inst->getType(), IsABIRegCopy); 1247 SDValue Chain = DAG.getEntryNode(); 1248 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1249 } 1250 1251 llvm_unreachable("Can't get register for value!"); 1252 } 1253 1254 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1255 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1256 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1257 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1258 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1259 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1260 if (IsMSVCCXX || IsCoreCLR) 1261 CatchPadMBB->setIsEHFuncletEntry(); 1262 1263 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1264 } 1265 1266 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1267 // Update machine-CFG edge. 1268 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1269 FuncInfo.MBB->addSuccessor(TargetMBB); 1270 1271 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1272 bool IsSEH = isAsynchronousEHPersonality(Pers); 1273 if (IsSEH) { 1274 // If this is not a fall-through branch or optimizations are switched off, 1275 // emit the branch. 1276 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1277 TM.getOptLevel() == CodeGenOpt::None) 1278 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1279 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1280 return; 1281 } 1282 1283 // Figure out the funclet membership for the catchret's successor. 1284 // This will be used by the FuncletLayout pass to determine how to order the 1285 // BB's. 1286 // A 'catchret' returns to the outer scope's color. 1287 Value *ParentPad = I.getCatchSwitchParentPad(); 1288 const BasicBlock *SuccessorColor; 1289 if (isa<ConstantTokenNone>(ParentPad)) 1290 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1291 else 1292 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1293 assert(SuccessorColor && "No parent funclet for catchret!"); 1294 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1295 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1296 1297 // Create the terminator node. 1298 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1299 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1300 DAG.getBasicBlock(SuccessorColorMBB)); 1301 DAG.setRoot(Ret); 1302 } 1303 1304 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1305 // Don't emit any special code for the cleanuppad instruction. It just marks 1306 // the start of a funclet. 1307 FuncInfo.MBB->setIsEHFuncletEntry(); 1308 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1309 } 1310 1311 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1312 /// many places it could ultimately go. In the IR, we have a single unwind 1313 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1314 /// This function skips over imaginary basic blocks that hold catchswitch 1315 /// instructions, and finds all the "real" machine 1316 /// basic block destinations. As those destinations may not be successors of 1317 /// EHPadBB, here we also calculate the edge probability to those destinations. 1318 /// The passed-in Prob is the edge probability to EHPadBB. 1319 static void findUnwindDestinations( 1320 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1321 BranchProbability Prob, 1322 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1323 &UnwindDests) { 1324 EHPersonality Personality = 1325 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1326 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1327 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1328 1329 while (EHPadBB) { 1330 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1331 BasicBlock *NewEHPadBB = nullptr; 1332 if (isa<LandingPadInst>(Pad)) { 1333 // Stop on landingpads. They are not funclets. 1334 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1335 break; 1336 } else if (isa<CleanupPadInst>(Pad)) { 1337 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1338 // personalities. 1339 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1340 UnwindDests.back().first->setIsEHFuncletEntry(); 1341 break; 1342 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1343 // Add the catchpad handlers to the possible destinations. 1344 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1345 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1346 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1347 if (IsMSVCCXX || IsCoreCLR) 1348 UnwindDests.back().first->setIsEHFuncletEntry(); 1349 } 1350 NewEHPadBB = CatchSwitch->getUnwindDest(); 1351 } else { 1352 continue; 1353 } 1354 1355 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1356 if (BPI && NewEHPadBB) 1357 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1358 EHPadBB = NewEHPadBB; 1359 } 1360 } 1361 1362 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1363 // Update successor info. 1364 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1365 auto UnwindDest = I.getUnwindDest(); 1366 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1367 BranchProbability UnwindDestProb = 1368 (BPI && UnwindDest) 1369 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1370 : BranchProbability::getZero(); 1371 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1372 for (auto &UnwindDest : UnwindDests) { 1373 UnwindDest.first->setIsEHPad(); 1374 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1375 } 1376 FuncInfo.MBB->normalizeSuccProbs(); 1377 1378 // Create the terminator node. 1379 SDValue Ret = 1380 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1381 DAG.setRoot(Ret); 1382 } 1383 1384 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1385 report_fatal_error("visitCatchSwitch not yet implemented!"); 1386 } 1387 1388 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1389 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1390 auto &DL = DAG.getDataLayout(); 1391 SDValue Chain = getControlRoot(); 1392 SmallVector<ISD::OutputArg, 8> Outs; 1393 SmallVector<SDValue, 8> OutVals; 1394 1395 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1396 // lower 1397 // 1398 // %val = call <ty> @llvm.experimental.deoptimize() 1399 // ret <ty> %val 1400 // 1401 // differently. 1402 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1403 LowerDeoptimizingReturn(); 1404 return; 1405 } 1406 1407 if (!FuncInfo.CanLowerReturn) { 1408 unsigned DemoteReg = FuncInfo.DemoteRegister; 1409 const Function *F = I.getParent()->getParent(); 1410 1411 // Emit a store of the return value through the virtual register. 1412 // Leave Outs empty so that LowerReturn won't try to load return 1413 // registers the usual way. 1414 SmallVector<EVT, 1> PtrValueVTs; 1415 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1416 PtrValueVTs); 1417 1418 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1419 DemoteReg, PtrValueVTs[0]); 1420 SDValue RetOp = getValue(I.getOperand(0)); 1421 1422 SmallVector<EVT, 4> ValueVTs; 1423 SmallVector<uint64_t, 4> Offsets; 1424 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1425 unsigned NumValues = ValueVTs.size(); 1426 1427 // An aggregate return value cannot wrap around the address space, so 1428 // offsets to its parts don't wrap either. 1429 SDNodeFlags Flags; 1430 Flags.setNoUnsignedWrap(true); 1431 1432 SmallVector<SDValue, 4> Chains(NumValues); 1433 for (unsigned i = 0; i != NumValues; ++i) { 1434 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1435 RetPtr.getValueType(), RetPtr, 1436 DAG.getIntPtrConstant(Offsets[i], 1437 getCurSDLoc()), 1438 &Flags); 1439 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1440 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1441 // FIXME: better loc info would be nice. 1442 Add, MachinePointerInfo()); 1443 } 1444 1445 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1446 MVT::Other, Chains); 1447 } else if (I.getNumOperands() != 0) { 1448 SmallVector<EVT, 4> ValueVTs; 1449 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1450 unsigned NumValues = ValueVTs.size(); 1451 if (NumValues) { 1452 SDValue RetOp = getValue(I.getOperand(0)); 1453 1454 const Function *F = I.getParent()->getParent(); 1455 1456 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1457 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1458 Attribute::SExt)) 1459 ExtendKind = ISD::SIGN_EXTEND; 1460 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1461 Attribute::ZExt)) 1462 ExtendKind = ISD::ZERO_EXTEND; 1463 1464 LLVMContext &Context = F->getContext(); 1465 bool RetInReg = F->getAttributes().hasAttribute( 1466 AttributeList::ReturnIndex, Attribute::InReg); 1467 1468 for (unsigned j = 0; j != NumValues; ++j) { 1469 EVT VT = ValueVTs[j]; 1470 1471 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1472 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1473 1474 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1475 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1476 SmallVector<SDValue, 4> Parts(NumParts); 1477 getCopyToParts(DAG, getCurSDLoc(), 1478 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1479 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1480 1481 // 'inreg' on function refers to return value 1482 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1483 if (RetInReg) 1484 Flags.setInReg(); 1485 1486 // Propagate extension type if any 1487 if (ExtendKind == ISD::SIGN_EXTEND) 1488 Flags.setSExt(); 1489 else if (ExtendKind == ISD::ZERO_EXTEND) 1490 Flags.setZExt(); 1491 1492 for (unsigned i = 0; i < NumParts; ++i) { 1493 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1494 VT, /*isfixed=*/true, 0, 0)); 1495 OutVals.push_back(Parts[i]); 1496 } 1497 } 1498 } 1499 } 1500 1501 // Push in swifterror virtual register as the last element of Outs. This makes 1502 // sure swifterror virtual register will be returned in the swifterror 1503 // physical register. 1504 const Function *F = I.getParent()->getParent(); 1505 if (TLI.supportSwiftError() && 1506 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1507 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1508 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1509 Flags.setSwiftError(); 1510 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1511 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1512 true /*isfixed*/, 1 /*origidx*/, 1513 0 /*partOffs*/)); 1514 // Create SDNode for the swifterror virtual register. 1515 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1516 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1517 EVT(TLI.getPointerTy(DL)))); 1518 } 1519 1520 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1521 CallingConv::ID CallConv = 1522 DAG.getMachineFunction().getFunction()->getCallingConv(); 1523 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1524 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1525 1526 // Verify that the target's LowerReturn behaved as expected. 1527 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1528 "LowerReturn didn't return a valid chain!"); 1529 1530 // Update the DAG with the new chain value resulting from return lowering. 1531 DAG.setRoot(Chain); 1532 } 1533 1534 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1535 /// created for it, emit nodes to copy the value into the virtual 1536 /// registers. 1537 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1538 // Skip empty types 1539 if (V->getType()->isEmptyTy()) 1540 return; 1541 1542 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1543 if (VMI != FuncInfo.ValueMap.end()) { 1544 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1545 CopyValueToVirtualRegister(V, VMI->second); 1546 } 1547 } 1548 1549 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1550 /// the current basic block, add it to ValueMap now so that we'll get a 1551 /// CopyTo/FromReg. 1552 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1553 // No need to export constants. 1554 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1555 1556 // Already exported? 1557 if (FuncInfo.isExportedInst(V)) return; 1558 1559 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1560 CopyValueToVirtualRegister(V, Reg); 1561 } 1562 1563 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1564 const BasicBlock *FromBB) { 1565 // The operands of the setcc have to be in this block. We don't know 1566 // how to export them from some other block. 1567 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1568 // Can export from current BB. 1569 if (VI->getParent() == FromBB) 1570 return true; 1571 1572 // Is already exported, noop. 1573 return FuncInfo.isExportedInst(V); 1574 } 1575 1576 // If this is an argument, we can export it if the BB is the entry block or 1577 // if it is already exported. 1578 if (isa<Argument>(V)) { 1579 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1580 return true; 1581 1582 // Otherwise, can only export this if it is already exported. 1583 return FuncInfo.isExportedInst(V); 1584 } 1585 1586 // Otherwise, constants can always be exported. 1587 return true; 1588 } 1589 1590 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1591 BranchProbability 1592 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1593 const MachineBasicBlock *Dst) const { 1594 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1595 const BasicBlock *SrcBB = Src->getBasicBlock(); 1596 const BasicBlock *DstBB = Dst->getBasicBlock(); 1597 if (!BPI) { 1598 // If BPI is not available, set the default probability as 1 / N, where N is 1599 // the number of successors. 1600 auto SuccSize = std::max<uint32_t>( 1601 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1602 return BranchProbability(1, SuccSize); 1603 } 1604 return BPI->getEdgeProbability(SrcBB, DstBB); 1605 } 1606 1607 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1608 MachineBasicBlock *Dst, 1609 BranchProbability Prob) { 1610 if (!FuncInfo.BPI) 1611 Src->addSuccessorWithoutProb(Dst); 1612 else { 1613 if (Prob.isUnknown()) 1614 Prob = getEdgeProbability(Src, Dst); 1615 Src->addSuccessor(Dst, Prob); 1616 } 1617 } 1618 1619 static bool InBlock(const Value *V, const BasicBlock *BB) { 1620 if (const Instruction *I = dyn_cast<Instruction>(V)) 1621 return I->getParent() == BB; 1622 return true; 1623 } 1624 1625 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1626 /// This function emits a branch and is used at the leaves of an OR or an 1627 /// AND operator tree. 1628 /// 1629 void 1630 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1631 MachineBasicBlock *TBB, 1632 MachineBasicBlock *FBB, 1633 MachineBasicBlock *CurBB, 1634 MachineBasicBlock *SwitchBB, 1635 BranchProbability TProb, 1636 BranchProbability FProb, 1637 bool InvertCond) { 1638 const BasicBlock *BB = CurBB->getBasicBlock(); 1639 1640 // If the leaf of the tree is a comparison, merge the condition into 1641 // the caseblock. 1642 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1643 // The operands of the cmp have to be in this block. We don't know 1644 // how to export them from some other block. If this is the first block 1645 // of the sequence, no exporting is needed. 1646 if (CurBB == SwitchBB || 1647 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1648 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1649 ISD::CondCode Condition; 1650 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1651 ICmpInst::Predicate Pred = 1652 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1653 Condition = getICmpCondCode(Pred); 1654 } else { 1655 const FCmpInst *FC = cast<FCmpInst>(Cond); 1656 FCmpInst::Predicate Pred = 1657 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1658 Condition = getFCmpCondCode(Pred); 1659 if (TM.Options.NoNaNsFPMath) 1660 Condition = getFCmpCodeWithoutNaN(Condition); 1661 } 1662 1663 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1664 TBB, FBB, CurBB, TProb, FProb); 1665 SwitchCases.push_back(CB); 1666 return; 1667 } 1668 } 1669 1670 // Create a CaseBlock record representing this branch. 1671 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1672 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1673 nullptr, TBB, FBB, CurBB, TProb, FProb); 1674 SwitchCases.push_back(CB); 1675 } 1676 1677 /// FindMergedConditions - If Cond is an expression like 1678 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1679 MachineBasicBlock *TBB, 1680 MachineBasicBlock *FBB, 1681 MachineBasicBlock *CurBB, 1682 MachineBasicBlock *SwitchBB, 1683 Instruction::BinaryOps Opc, 1684 BranchProbability TProb, 1685 BranchProbability FProb, 1686 bool InvertCond) { 1687 // Skip over not part of the tree and remember to invert op and operands at 1688 // next level. 1689 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1690 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1691 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1692 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1693 !InvertCond); 1694 return; 1695 } 1696 } 1697 1698 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1699 // Compute the effective opcode for Cond, taking into account whether it needs 1700 // to be inverted, e.g. 1701 // and (not (or A, B)), C 1702 // gets lowered as 1703 // and (and (not A, not B), C) 1704 unsigned BOpc = 0; 1705 if (BOp) { 1706 BOpc = BOp->getOpcode(); 1707 if (InvertCond) { 1708 if (BOpc == Instruction::And) 1709 BOpc = Instruction::Or; 1710 else if (BOpc == Instruction::Or) 1711 BOpc = Instruction::And; 1712 } 1713 } 1714 1715 // If this node is not part of the or/and tree, emit it as a branch. 1716 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1717 BOpc != Opc || !BOp->hasOneUse() || 1718 BOp->getParent() != CurBB->getBasicBlock() || 1719 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1720 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1721 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1722 TProb, FProb, InvertCond); 1723 return; 1724 } 1725 1726 // Create TmpBB after CurBB. 1727 MachineFunction::iterator BBI(CurBB); 1728 MachineFunction &MF = DAG.getMachineFunction(); 1729 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1730 CurBB->getParent()->insert(++BBI, TmpBB); 1731 1732 if (Opc == Instruction::Or) { 1733 // Codegen X | Y as: 1734 // BB1: 1735 // jmp_if_X TBB 1736 // jmp TmpBB 1737 // TmpBB: 1738 // jmp_if_Y TBB 1739 // jmp FBB 1740 // 1741 1742 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1743 // The requirement is that 1744 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1745 // = TrueProb for original BB. 1746 // Assuming the original probabilities are A and B, one choice is to set 1747 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1748 // A/(1+B) and 2B/(1+B). This choice assumes that 1749 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1750 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1751 // TmpBB, but the math is more complicated. 1752 1753 auto NewTrueProb = TProb / 2; 1754 auto NewFalseProb = TProb / 2 + FProb; 1755 // Emit the LHS condition. 1756 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1757 NewTrueProb, NewFalseProb, InvertCond); 1758 1759 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1760 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1761 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1762 // Emit the RHS condition into TmpBB. 1763 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1764 Probs[0], Probs[1], InvertCond); 1765 } else { 1766 assert(Opc == Instruction::And && "Unknown merge op!"); 1767 // Codegen X & Y as: 1768 // BB1: 1769 // jmp_if_X TmpBB 1770 // jmp FBB 1771 // TmpBB: 1772 // jmp_if_Y TBB 1773 // jmp FBB 1774 // 1775 // This requires creation of TmpBB after CurBB. 1776 1777 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1778 // The requirement is that 1779 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1780 // = FalseProb for original BB. 1781 // Assuming the original probabilities are A and B, one choice is to set 1782 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1783 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1784 // TrueProb for BB1 * FalseProb for TmpBB. 1785 1786 auto NewTrueProb = TProb + FProb / 2; 1787 auto NewFalseProb = FProb / 2; 1788 // Emit the LHS condition. 1789 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1790 NewTrueProb, NewFalseProb, InvertCond); 1791 1792 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1793 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1794 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1795 // Emit the RHS condition into TmpBB. 1796 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1797 Probs[0], Probs[1], InvertCond); 1798 } 1799 } 1800 1801 /// If the set of cases should be emitted as a series of branches, return true. 1802 /// If we should emit this as a bunch of and/or'd together conditions, return 1803 /// false. 1804 bool 1805 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1806 if (Cases.size() != 2) return true; 1807 1808 // If this is two comparisons of the same values or'd or and'd together, they 1809 // will get folded into a single comparison, so don't emit two blocks. 1810 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1811 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1812 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1813 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1814 return false; 1815 } 1816 1817 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1818 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1819 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1820 Cases[0].CC == Cases[1].CC && 1821 isa<Constant>(Cases[0].CmpRHS) && 1822 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1823 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1824 return false; 1825 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1826 return false; 1827 } 1828 1829 return true; 1830 } 1831 1832 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1833 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1834 1835 // Update machine-CFG edges. 1836 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1837 1838 if (I.isUnconditional()) { 1839 // Update machine-CFG edges. 1840 BrMBB->addSuccessor(Succ0MBB); 1841 1842 // If this is not a fall-through branch or optimizations are switched off, 1843 // emit the branch. 1844 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1845 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1846 MVT::Other, getControlRoot(), 1847 DAG.getBasicBlock(Succ0MBB))); 1848 1849 return; 1850 } 1851 1852 // If this condition is one of the special cases we handle, do special stuff 1853 // now. 1854 const Value *CondVal = I.getCondition(); 1855 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1856 1857 // If this is a series of conditions that are or'd or and'd together, emit 1858 // this as a sequence of branches instead of setcc's with and/or operations. 1859 // As long as jumps are not expensive, this should improve performance. 1860 // For example, instead of something like: 1861 // cmp A, B 1862 // C = seteq 1863 // cmp D, E 1864 // F = setle 1865 // or C, F 1866 // jnz foo 1867 // Emit: 1868 // cmp A, B 1869 // je foo 1870 // cmp D, E 1871 // jle foo 1872 // 1873 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1874 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1875 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1876 !I.getMetadata(LLVMContext::MD_unpredictable) && 1877 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1878 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1879 Opcode, 1880 getEdgeProbability(BrMBB, Succ0MBB), 1881 getEdgeProbability(BrMBB, Succ1MBB), 1882 /*InvertCond=*/false); 1883 // If the compares in later blocks need to use values not currently 1884 // exported from this block, export them now. This block should always 1885 // be the first entry. 1886 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1887 1888 // Allow some cases to be rejected. 1889 if (ShouldEmitAsBranches(SwitchCases)) { 1890 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1891 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1892 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1893 } 1894 1895 // Emit the branch for this block. 1896 visitSwitchCase(SwitchCases[0], BrMBB); 1897 SwitchCases.erase(SwitchCases.begin()); 1898 return; 1899 } 1900 1901 // Okay, we decided not to do this, remove any inserted MBB's and clear 1902 // SwitchCases. 1903 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1904 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1905 1906 SwitchCases.clear(); 1907 } 1908 } 1909 1910 // Create a CaseBlock record representing this branch. 1911 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1912 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1913 1914 // Use visitSwitchCase to actually insert the fast branch sequence for this 1915 // cond branch. 1916 visitSwitchCase(CB, BrMBB); 1917 } 1918 1919 /// visitSwitchCase - Emits the necessary code to represent a single node in 1920 /// the binary search tree resulting from lowering a switch instruction. 1921 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1922 MachineBasicBlock *SwitchBB) { 1923 SDValue Cond; 1924 SDValue CondLHS = getValue(CB.CmpLHS); 1925 SDLoc dl = getCurSDLoc(); 1926 1927 // Build the setcc now. 1928 if (!CB.CmpMHS) { 1929 // Fold "(X == true)" to X and "(X == false)" to !X to 1930 // handle common cases produced by branch lowering. 1931 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1932 CB.CC == ISD::SETEQ) 1933 Cond = CondLHS; 1934 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1935 CB.CC == ISD::SETEQ) { 1936 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1937 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1938 } else 1939 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1940 } else { 1941 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1942 1943 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1944 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1945 1946 SDValue CmpOp = getValue(CB.CmpMHS); 1947 EVT VT = CmpOp.getValueType(); 1948 1949 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1950 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1951 ISD::SETLE); 1952 } else { 1953 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1954 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1955 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1956 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1957 } 1958 } 1959 1960 // Update successor info 1961 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1962 // TrueBB and FalseBB are always different unless the incoming IR is 1963 // degenerate. This only happens when running llc on weird IR. 1964 if (CB.TrueBB != CB.FalseBB) 1965 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1966 SwitchBB->normalizeSuccProbs(); 1967 1968 // If the lhs block is the next block, invert the condition so that we can 1969 // fall through to the lhs instead of the rhs block. 1970 if (CB.TrueBB == NextBlock(SwitchBB)) { 1971 std::swap(CB.TrueBB, CB.FalseBB); 1972 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1973 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1974 } 1975 1976 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1977 MVT::Other, getControlRoot(), Cond, 1978 DAG.getBasicBlock(CB.TrueBB)); 1979 1980 // Insert the false branch. Do this even if it's a fall through branch, 1981 // this makes it easier to do DAG optimizations which require inverting 1982 // the branch condition. 1983 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1984 DAG.getBasicBlock(CB.FalseBB)); 1985 1986 DAG.setRoot(BrCond); 1987 } 1988 1989 /// visitJumpTable - Emit JumpTable node in the current MBB 1990 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1991 // Emit the code for the jump table 1992 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1993 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1994 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1995 JT.Reg, PTy); 1996 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1997 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1998 MVT::Other, Index.getValue(1), 1999 Table, Index); 2000 DAG.setRoot(BrJumpTable); 2001 } 2002 2003 /// visitJumpTableHeader - This function emits necessary code to produce index 2004 /// in the JumpTable from switch case. 2005 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2006 JumpTableHeader &JTH, 2007 MachineBasicBlock *SwitchBB) { 2008 SDLoc dl = getCurSDLoc(); 2009 2010 // Subtract the lowest switch case value from the value being switched on and 2011 // conditional branch to default mbb if the result is greater than the 2012 // difference between smallest and largest cases. 2013 SDValue SwitchOp = getValue(JTH.SValue); 2014 EVT VT = SwitchOp.getValueType(); 2015 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2016 DAG.getConstant(JTH.First, dl, VT)); 2017 2018 // The SDNode we just created, which holds the value being switched on minus 2019 // the smallest case value, needs to be copied to a virtual register so it 2020 // can be used as an index into the jump table in a subsequent basic block. 2021 // This value may be smaller or larger than the target's pointer type, and 2022 // therefore require extension or truncating. 2023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2024 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2025 2026 unsigned JumpTableReg = 2027 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2028 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2029 JumpTableReg, SwitchOp); 2030 JT.Reg = JumpTableReg; 2031 2032 // Emit the range check for the jump table, and branch to the default block 2033 // for the switch statement if the value being switched on exceeds the largest 2034 // case in the switch. 2035 SDValue CMP = DAG.getSetCC( 2036 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2037 Sub.getValueType()), 2038 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2039 2040 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2041 MVT::Other, CopyTo, CMP, 2042 DAG.getBasicBlock(JT.Default)); 2043 2044 // Avoid emitting unnecessary branches to the next block. 2045 if (JT.MBB != NextBlock(SwitchBB)) 2046 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2047 DAG.getBasicBlock(JT.MBB)); 2048 2049 DAG.setRoot(BrCond); 2050 } 2051 2052 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2053 /// variable if there exists one. 2054 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2055 SDValue &Chain) { 2056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2057 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2058 MachineFunction &MF = DAG.getMachineFunction(); 2059 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2060 MachineSDNode *Node = 2061 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2062 if (Global) { 2063 MachinePointerInfo MPInfo(Global); 2064 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2065 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2066 MachineMemOperand::MODereferenceable; 2067 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2068 DAG.getEVTAlignment(PtrTy)); 2069 Node->setMemRefs(MemRefs, MemRefs + 1); 2070 } 2071 return SDValue(Node, 0); 2072 } 2073 2074 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2075 /// tail spliced into a stack protector check success bb. 2076 /// 2077 /// For a high level explanation of how this fits into the stack protector 2078 /// generation see the comment on the declaration of class 2079 /// StackProtectorDescriptor. 2080 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2081 MachineBasicBlock *ParentBB) { 2082 2083 // First create the loads to the guard/stack slot for the comparison. 2084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2085 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2086 2087 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2088 int FI = MFI.getStackProtectorIndex(); 2089 2090 SDValue Guard; 2091 SDLoc dl = getCurSDLoc(); 2092 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2093 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2094 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2095 2096 // Generate code to load the content of the guard slot. 2097 SDValue StackSlot = DAG.getLoad( 2098 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2099 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2100 MachineMemOperand::MOVolatile); 2101 2102 // Retrieve guard check function, nullptr if instrumentation is inlined. 2103 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2104 // The target provides a guard check function to validate the guard value. 2105 // Generate a call to that function with the content of the guard slot as 2106 // argument. 2107 auto *Fn = cast<Function>(GuardCheck); 2108 FunctionType *FnTy = Fn->getFunctionType(); 2109 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2110 2111 TargetLowering::ArgListTy Args; 2112 TargetLowering::ArgListEntry Entry; 2113 Entry.Node = StackSlot; 2114 Entry.Ty = FnTy->getParamType(0); 2115 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2116 Entry.IsInReg = true; 2117 Args.push_back(Entry); 2118 2119 TargetLowering::CallLoweringInfo CLI(DAG); 2120 CLI.setDebugLoc(getCurSDLoc()) 2121 .setChain(DAG.getEntryNode()) 2122 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2123 getValue(GuardCheck), std::move(Args)); 2124 2125 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2126 DAG.setRoot(Result.second); 2127 return; 2128 } 2129 2130 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2131 // Otherwise, emit a volatile load to retrieve the stack guard value. 2132 SDValue Chain = DAG.getEntryNode(); 2133 if (TLI.useLoadStackGuardNode()) { 2134 Guard = getLoadStackGuard(DAG, dl, Chain); 2135 } else { 2136 const Value *IRGuard = TLI.getSDagStackGuard(M); 2137 SDValue GuardPtr = getValue(IRGuard); 2138 2139 Guard = 2140 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2141 Align, MachineMemOperand::MOVolatile); 2142 } 2143 2144 // Perform the comparison via a subtract/getsetcc. 2145 EVT VT = Guard.getValueType(); 2146 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2147 2148 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2149 *DAG.getContext(), 2150 Sub.getValueType()), 2151 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2152 2153 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2154 // branch to failure MBB. 2155 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2156 MVT::Other, StackSlot.getOperand(0), 2157 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2158 // Otherwise branch to success MBB. 2159 SDValue Br = DAG.getNode(ISD::BR, dl, 2160 MVT::Other, BrCond, 2161 DAG.getBasicBlock(SPD.getSuccessMBB())); 2162 2163 DAG.setRoot(Br); 2164 } 2165 2166 /// Codegen the failure basic block for a stack protector check. 2167 /// 2168 /// A failure stack protector machine basic block consists simply of a call to 2169 /// __stack_chk_fail(). 2170 /// 2171 /// For a high level explanation of how this fits into the stack protector 2172 /// generation see the comment on the declaration of class 2173 /// StackProtectorDescriptor. 2174 void 2175 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2177 SDValue Chain = 2178 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2179 None, false, getCurSDLoc(), false, false).second; 2180 DAG.setRoot(Chain); 2181 } 2182 2183 /// visitBitTestHeader - This function emits necessary code to produce value 2184 /// suitable for "bit tests" 2185 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2186 MachineBasicBlock *SwitchBB) { 2187 SDLoc dl = getCurSDLoc(); 2188 2189 // Subtract the minimum value 2190 SDValue SwitchOp = getValue(B.SValue); 2191 EVT VT = SwitchOp.getValueType(); 2192 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2193 DAG.getConstant(B.First, dl, VT)); 2194 2195 // Check range 2196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2197 SDValue RangeCmp = DAG.getSetCC( 2198 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2199 Sub.getValueType()), 2200 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2201 2202 // Determine the type of the test operands. 2203 bool UsePtrType = false; 2204 if (!TLI.isTypeLegal(VT)) 2205 UsePtrType = true; 2206 else { 2207 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2208 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2209 // Switch table case range are encoded into series of masks. 2210 // Just use pointer type, it's guaranteed to fit. 2211 UsePtrType = true; 2212 break; 2213 } 2214 } 2215 if (UsePtrType) { 2216 VT = TLI.getPointerTy(DAG.getDataLayout()); 2217 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2218 } 2219 2220 B.RegVT = VT.getSimpleVT(); 2221 B.Reg = FuncInfo.CreateReg(B.RegVT); 2222 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2223 2224 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2225 2226 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2227 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2228 SwitchBB->normalizeSuccProbs(); 2229 2230 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2231 MVT::Other, CopyTo, RangeCmp, 2232 DAG.getBasicBlock(B.Default)); 2233 2234 // Avoid emitting unnecessary branches to the next block. 2235 if (MBB != NextBlock(SwitchBB)) 2236 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2237 DAG.getBasicBlock(MBB)); 2238 2239 DAG.setRoot(BrRange); 2240 } 2241 2242 /// visitBitTestCase - this function produces one "bit test" 2243 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2244 MachineBasicBlock* NextMBB, 2245 BranchProbability BranchProbToNext, 2246 unsigned Reg, 2247 BitTestCase &B, 2248 MachineBasicBlock *SwitchBB) { 2249 SDLoc dl = getCurSDLoc(); 2250 MVT VT = BB.RegVT; 2251 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2252 SDValue Cmp; 2253 unsigned PopCount = countPopulation(B.Mask); 2254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2255 if (PopCount == 1) { 2256 // Testing for a single bit; just compare the shift count with what it 2257 // would need to be to shift a 1 bit in that position. 2258 Cmp = DAG.getSetCC( 2259 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2260 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2261 ISD::SETEQ); 2262 } else if (PopCount == BB.Range) { 2263 // There is only one zero bit in the range, test for it directly. 2264 Cmp = DAG.getSetCC( 2265 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2266 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2267 ISD::SETNE); 2268 } else { 2269 // Make desired shift 2270 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2271 DAG.getConstant(1, dl, VT), ShiftOp); 2272 2273 // Emit bit tests and jumps 2274 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2275 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2276 Cmp = DAG.getSetCC( 2277 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2278 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2279 } 2280 2281 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2282 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2283 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2284 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2285 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2286 // one as they are relative probabilities (and thus work more like weights), 2287 // and hence we need to normalize them to let the sum of them become one. 2288 SwitchBB->normalizeSuccProbs(); 2289 2290 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2291 MVT::Other, getControlRoot(), 2292 Cmp, DAG.getBasicBlock(B.TargetBB)); 2293 2294 // Avoid emitting unnecessary branches to the next block. 2295 if (NextMBB != NextBlock(SwitchBB)) 2296 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2297 DAG.getBasicBlock(NextMBB)); 2298 2299 DAG.setRoot(BrAnd); 2300 } 2301 2302 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2303 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2304 2305 // Retrieve successors. Look through artificial IR level blocks like 2306 // catchswitch for successors. 2307 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2308 const BasicBlock *EHPadBB = I.getSuccessor(1); 2309 2310 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2311 // have to do anything here to lower funclet bundles. 2312 assert(!I.hasOperandBundlesOtherThan( 2313 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2314 "Cannot lower invokes with arbitrary operand bundles yet!"); 2315 2316 const Value *Callee(I.getCalledValue()); 2317 const Function *Fn = dyn_cast<Function>(Callee); 2318 if (isa<InlineAsm>(Callee)) 2319 visitInlineAsm(&I); 2320 else if (Fn && Fn->isIntrinsic()) { 2321 switch (Fn->getIntrinsicID()) { 2322 default: 2323 llvm_unreachable("Cannot invoke this intrinsic"); 2324 case Intrinsic::donothing: 2325 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2326 break; 2327 case Intrinsic::experimental_patchpoint_void: 2328 case Intrinsic::experimental_patchpoint_i64: 2329 visitPatchpoint(&I, EHPadBB); 2330 break; 2331 case Intrinsic::experimental_gc_statepoint: 2332 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2333 break; 2334 } 2335 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2336 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2337 // Eventually we will support lowering the @llvm.experimental.deoptimize 2338 // intrinsic, and right now there are no plans to support other intrinsics 2339 // with deopt state. 2340 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2341 } else { 2342 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2343 } 2344 2345 // If the value of the invoke is used outside of its defining block, make it 2346 // available as a virtual register. 2347 // We already took care of the exported value for the statepoint instruction 2348 // during call to the LowerStatepoint. 2349 if (!isStatepoint(I)) { 2350 CopyToExportRegsIfNeeded(&I); 2351 } 2352 2353 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2355 BranchProbability EHPadBBProb = 2356 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2357 : BranchProbability::getZero(); 2358 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2359 2360 // Update successor info. 2361 addSuccessorWithProb(InvokeMBB, Return); 2362 for (auto &UnwindDest : UnwindDests) { 2363 UnwindDest.first->setIsEHPad(); 2364 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2365 } 2366 InvokeMBB->normalizeSuccProbs(); 2367 2368 // Drop into normal successor. 2369 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2370 MVT::Other, getControlRoot(), 2371 DAG.getBasicBlock(Return))); 2372 } 2373 2374 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2375 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2376 } 2377 2378 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2379 assert(FuncInfo.MBB->isEHPad() && 2380 "Call to landingpad not in landing pad!"); 2381 2382 MachineBasicBlock *MBB = FuncInfo.MBB; 2383 addLandingPadInfo(LP, *MBB); 2384 2385 // If there aren't registers to copy the values into (e.g., during SjLj 2386 // exceptions), then don't bother to create these DAG nodes. 2387 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2388 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2389 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2390 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2391 return; 2392 2393 // If landingpad's return type is token type, we don't create DAG nodes 2394 // for its exception pointer and selector value. The extraction of exception 2395 // pointer or selector value from token type landingpads is not currently 2396 // supported. 2397 if (LP.getType()->isTokenTy()) 2398 return; 2399 2400 SmallVector<EVT, 2> ValueVTs; 2401 SDLoc dl = getCurSDLoc(); 2402 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2403 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2404 2405 // Get the two live-in registers as SDValues. The physregs have already been 2406 // copied into virtual registers. 2407 SDValue Ops[2]; 2408 if (FuncInfo.ExceptionPointerVirtReg) { 2409 Ops[0] = DAG.getZExtOrTrunc( 2410 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2411 FuncInfo.ExceptionPointerVirtReg, 2412 TLI.getPointerTy(DAG.getDataLayout())), 2413 dl, ValueVTs[0]); 2414 } else { 2415 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2416 } 2417 Ops[1] = DAG.getZExtOrTrunc( 2418 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2419 FuncInfo.ExceptionSelectorVirtReg, 2420 TLI.getPointerTy(DAG.getDataLayout())), 2421 dl, ValueVTs[1]); 2422 2423 // Merge into one. 2424 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2425 DAG.getVTList(ValueVTs), Ops); 2426 setValue(&LP, Res); 2427 } 2428 2429 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2430 #ifndef NDEBUG 2431 for (const CaseCluster &CC : Clusters) 2432 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2433 #endif 2434 2435 std::sort(Clusters.begin(), Clusters.end(), 2436 [](const CaseCluster &a, const CaseCluster &b) { 2437 return a.Low->getValue().slt(b.Low->getValue()); 2438 }); 2439 2440 // Merge adjacent clusters with the same destination. 2441 const unsigned N = Clusters.size(); 2442 unsigned DstIndex = 0; 2443 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2444 CaseCluster &CC = Clusters[SrcIndex]; 2445 const ConstantInt *CaseVal = CC.Low; 2446 MachineBasicBlock *Succ = CC.MBB; 2447 2448 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2449 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2450 // If this case has the same successor and is a neighbour, merge it into 2451 // the previous cluster. 2452 Clusters[DstIndex - 1].High = CaseVal; 2453 Clusters[DstIndex - 1].Prob += CC.Prob; 2454 } else { 2455 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2456 sizeof(Clusters[SrcIndex])); 2457 } 2458 } 2459 Clusters.resize(DstIndex); 2460 } 2461 2462 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2463 MachineBasicBlock *Last) { 2464 // Update JTCases. 2465 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2466 if (JTCases[i].first.HeaderBB == First) 2467 JTCases[i].first.HeaderBB = Last; 2468 2469 // Update BitTestCases. 2470 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2471 if (BitTestCases[i].Parent == First) 2472 BitTestCases[i].Parent = Last; 2473 } 2474 2475 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2476 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2477 2478 // Update machine-CFG edges with unique successors. 2479 SmallSet<BasicBlock*, 32> Done; 2480 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2481 BasicBlock *BB = I.getSuccessor(i); 2482 bool Inserted = Done.insert(BB).second; 2483 if (!Inserted) 2484 continue; 2485 2486 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2487 addSuccessorWithProb(IndirectBrMBB, Succ); 2488 } 2489 IndirectBrMBB->normalizeSuccProbs(); 2490 2491 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2492 MVT::Other, getControlRoot(), 2493 getValue(I.getAddress()))); 2494 } 2495 2496 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2497 if (DAG.getTarget().Options.TrapUnreachable) 2498 DAG.setRoot( 2499 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2500 } 2501 2502 void SelectionDAGBuilder::visitFSub(const User &I) { 2503 // -0.0 - X --> fneg 2504 Type *Ty = I.getType(); 2505 if (isa<Constant>(I.getOperand(0)) && 2506 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2507 SDValue Op2 = getValue(I.getOperand(1)); 2508 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2509 Op2.getValueType(), Op2)); 2510 return; 2511 } 2512 2513 visitBinary(I, ISD::FSUB); 2514 } 2515 2516 /// Checks if the given instruction performs a vector reduction, in which case 2517 /// we have the freedom to alter the elements in the result as long as the 2518 /// reduction of them stays unchanged. 2519 static bool isVectorReductionOp(const User *I) { 2520 const Instruction *Inst = dyn_cast<Instruction>(I); 2521 if (!Inst || !Inst->getType()->isVectorTy()) 2522 return false; 2523 2524 auto OpCode = Inst->getOpcode(); 2525 switch (OpCode) { 2526 case Instruction::Add: 2527 case Instruction::Mul: 2528 case Instruction::And: 2529 case Instruction::Or: 2530 case Instruction::Xor: 2531 break; 2532 case Instruction::FAdd: 2533 case Instruction::FMul: 2534 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2535 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2536 break; 2537 LLVM_FALLTHROUGH; 2538 default: 2539 return false; 2540 } 2541 2542 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2543 unsigned ElemNumToReduce = ElemNum; 2544 2545 // Do DFS search on the def-use chain from the given instruction. We only 2546 // allow four kinds of operations during the search until we reach the 2547 // instruction that extracts the first element from the vector: 2548 // 2549 // 1. The reduction operation of the same opcode as the given instruction. 2550 // 2551 // 2. PHI node. 2552 // 2553 // 3. ShuffleVector instruction together with a reduction operation that 2554 // does a partial reduction. 2555 // 2556 // 4. ExtractElement that extracts the first element from the vector, and we 2557 // stop searching the def-use chain here. 2558 // 2559 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2560 // from 1-3 to the stack to continue the DFS. The given instruction is not 2561 // a reduction operation if we meet any other instructions other than those 2562 // listed above. 2563 2564 SmallVector<const User *, 16> UsersToVisit{Inst}; 2565 SmallPtrSet<const User *, 16> Visited; 2566 bool ReduxExtracted = false; 2567 2568 while (!UsersToVisit.empty()) { 2569 auto User = UsersToVisit.back(); 2570 UsersToVisit.pop_back(); 2571 if (!Visited.insert(User).second) 2572 continue; 2573 2574 for (const auto &U : User->users()) { 2575 auto Inst = dyn_cast<Instruction>(U); 2576 if (!Inst) 2577 return false; 2578 2579 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2580 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2581 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2582 return false; 2583 UsersToVisit.push_back(U); 2584 } else if (const ShuffleVectorInst *ShufInst = 2585 dyn_cast<ShuffleVectorInst>(U)) { 2586 // Detect the following pattern: A ShuffleVector instruction together 2587 // with a reduction that do partial reduction on the first and second 2588 // ElemNumToReduce / 2 elements, and store the result in 2589 // ElemNumToReduce / 2 elements in another vector. 2590 2591 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2592 if (ResultElements < ElemNum) 2593 return false; 2594 2595 if (ElemNumToReduce == 1) 2596 return false; 2597 if (!isa<UndefValue>(U->getOperand(1))) 2598 return false; 2599 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2600 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2601 return false; 2602 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2603 if (ShufInst->getMaskValue(i) != -1) 2604 return false; 2605 2606 // There is only one user of this ShuffleVector instruction, which 2607 // must be a reduction operation. 2608 if (!U->hasOneUse()) 2609 return false; 2610 2611 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2612 if (!U2 || U2->getOpcode() != OpCode) 2613 return false; 2614 2615 // Check operands of the reduction operation. 2616 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2617 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2618 UsersToVisit.push_back(U2); 2619 ElemNumToReduce /= 2; 2620 } else 2621 return false; 2622 } else if (isa<ExtractElementInst>(U)) { 2623 // At this moment we should have reduced all elements in the vector. 2624 if (ElemNumToReduce != 1) 2625 return false; 2626 2627 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2628 if (!Val || Val->getZExtValue() != 0) 2629 return false; 2630 2631 ReduxExtracted = true; 2632 } else 2633 return false; 2634 } 2635 } 2636 return ReduxExtracted; 2637 } 2638 2639 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2640 SDValue Op1 = getValue(I.getOperand(0)); 2641 SDValue Op2 = getValue(I.getOperand(1)); 2642 2643 bool nuw = false; 2644 bool nsw = false; 2645 bool exact = false; 2646 bool vec_redux = false; 2647 FastMathFlags FMF; 2648 2649 if (const OverflowingBinaryOperator *OFBinOp = 2650 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2651 nuw = OFBinOp->hasNoUnsignedWrap(); 2652 nsw = OFBinOp->hasNoSignedWrap(); 2653 } 2654 if (const PossiblyExactOperator *ExactOp = 2655 dyn_cast<const PossiblyExactOperator>(&I)) 2656 exact = ExactOp->isExact(); 2657 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2658 FMF = FPOp->getFastMathFlags(); 2659 2660 if (isVectorReductionOp(&I)) { 2661 vec_redux = true; 2662 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2663 } 2664 2665 SDNodeFlags Flags; 2666 Flags.setExact(exact); 2667 Flags.setNoSignedWrap(nsw); 2668 Flags.setNoUnsignedWrap(nuw); 2669 Flags.setVectorReduction(vec_redux); 2670 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2671 Flags.setAllowContract(FMF.allowContract()); 2672 Flags.setNoInfs(FMF.noInfs()); 2673 Flags.setNoNaNs(FMF.noNaNs()); 2674 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2675 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2676 2677 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2678 Op1, Op2, &Flags); 2679 setValue(&I, BinNodeValue); 2680 } 2681 2682 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2683 SDValue Op1 = getValue(I.getOperand(0)); 2684 SDValue Op2 = getValue(I.getOperand(1)); 2685 2686 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2687 Op2.getValueType(), DAG.getDataLayout()); 2688 2689 // Coerce the shift amount to the right type if we can. 2690 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2691 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2692 unsigned Op2Size = Op2.getValueSizeInBits(); 2693 SDLoc DL = getCurSDLoc(); 2694 2695 // If the operand is smaller than the shift count type, promote it. 2696 if (ShiftSize > Op2Size) 2697 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2698 2699 // If the operand is larger than the shift count type but the shift 2700 // count type has enough bits to represent any shift value, truncate 2701 // it now. This is a common case and it exposes the truncate to 2702 // optimization early. 2703 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2704 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2705 // Otherwise we'll need to temporarily settle for some other convenient 2706 // type. Type legalization will make adjustments once the shiftee is split. 2707 else 2708 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2709 } 2710 2711 bool nuw = false; 2712 bool nsw = false; 2713 bool exact = false; 2714 2715 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2716 2717 if (const OverflowingBinaryOperator *OFBinOp = 2718 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2719 nuw = OFBinOp->hasNoUnsignedWrap(); 2720 nsw = OFBinOp->hasNoSignedWrap(); 2721 } 2722 if (const PossiblyExactOperator *ExactOp = 2723 dyn_cast<const PossiblyExactOperator>(&I)) 2724 exact = ExactOp->isExact(); 2725 } 2726 SDNodeFlags Flags; 2727 Flags.setExact(exact); 2728 Flags.setNoSignedWrap(nsw); 2729 Flags.setNoUnsignedWrap(nuw); 2730 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2731 &Flags); 2732 setValue(&I, Res); 2733 } 2734 2735 void SelectionDAGBuilder::visitSDiv(const User &I) { 2736 SDValue Op1 = getValue(I.getOperand(0)); 2737 SDValue Op2 = getValue(I.getOperand(1)); 2738 2739 SDNodeFlags Flags; 2740 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2741 cast<PossiblyExactOperator>(&I)->isExact()); 2742 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2743 Op2, &Flags)); 2744 } 2745 2746 void SelectionDAGBuilder::visitICmp(const User &I) { 2747 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2748 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2749 predicate = IC->getPredicate(); 2750 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2751 predicate = ICmpInst::Predicate(IC->getPredicate()); 2752 SDValue Op1 = getValue(I.getOperand(0)); 2753 SDValue Op2 = getValue(I.getOperand(1)); 2754 ISD::CondCode Opcode = getICmpCondCode(predicate); 2755 2756 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2757 I.getType()); 2758 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2759 } 2760 2761 void SelectionDAGBuilder::visitFCmp(const User &I) { 2762 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2763 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2764 predicate = FC->getPredicate(); 2765 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2766 predicate = FCmpInst::Predicate(FC->getPredicate()); 2767 SDValue Op1 = getValue(I.getOperand(0)); 2768 SDValue Op2 = getValue(I.getOperand(1)); 2769 ISD::CondCode Condition = getFCmpCondCode(predicate); 2770 2771 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2772 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2773 // further optimization, but currently FMF is only applicable to binary nodes. 2774 if (TM.Options.NoNaNsFPMath) 2775 Condition = getFCmpCodeWithoutNaN(Condition); 2776 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2777 I.getType()); 2778 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2779 } 2780 2781 // Check if the condition of the select has one use or two users that are both 2782 // selects with the same condition. 2783 static bool hasOnlySelectUsers(const Value *Cond) { 2784 return all_of(Cond->users(), [](const Value *V) { 2785 return isa<SelectInst>(V); 2786 }); 2787 } 2788 2789 void SelectionDAGBuilder::visitSelect(const User &I) { 2790 SmallVector<EVT, 4> ValueVTs; 2791 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2792 ValueVTs); 2793 unsigned NumValues = ValueVTs.size(); 2794 if (NumValues == 0) return; 2795 2796 SmallVector<SDValue, 4> Values(NumValues); 2797 SDValue Cond = getValue(I.getOperand(0)); 2798 SDValue LHSVal = getValue(I.getOperand(1)); 2799 SDValue RHSVal = getValue(I.getOperand(2)); 2800 auto BaseOps = {Cond}; 2801 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2802 ISD::VSELECT : ISD::SELECT; 2803 2804 // Min/max matching is only viable if all output VTs are the same. 2805 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2806 EVT VT = ValueVTs[0]; 2807 LLVMContext &Ctx = *DAG.getContext(); 2808 auto &TLI = DAG.getTargetLoweringInfo(); 2809 2810 // We care about the legality of the operation after it has been type 2811 // legalized. 2812 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2813 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2814 VT = TLI.getTypeToTransformTo(Ctx, VT); 2815 2816 // If the vselect is legal, assume we want to leave this as a vector setcc + 2817 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2818 // min/max is legal on the scalar type. 2819 bool UseScalarMinMax = VT.isVector() && 2820 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2821 2822 Value *LHS, *RHS; 2823 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2824 ISD::NodeType Opc = ISD::DELETED_NODE; 2825 switch (SPR.Flavor) { 2826 case SPF_UMAX: Opc = ISD::UMAX; break; 2827 case SPF_UMIN: Opc = ISD::UMIN; break; 2828 case SPF_SMAX: Opc = ISD::SMAX; break; 2829 case SPF_SMIN: Opc = ISD::SMIN; break; 2830 case SPF_FMINNUM: 2831 switch (SPR.NaNBehavior) { 2832 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2833 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2834 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2835 case SPNB_RETURNS_ANY: { 2836 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2837 Opc = ISD::FMINNUM; 2838 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2839 Opc = ISD::FMINNAN; 2840 else if (UseScalarMinMax) 2841 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2842 ISD::FMINNUM : ISD::FMINNAN; 2843 break; 2844 } 2845 } 2846 break; 2847 case SPF_FMAXNUM: 2848 switch (SPR.NaNBehavior) { 2849 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2850 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2851 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2852 case SPNB_RETURNS_ANY: 2853 2854 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2855 Opc = ISD::FMAXNUM; 2856 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2857 Opc = ISD::FMAXNAN; 2858 else if (UseScalarMinMax) 2859 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2860 ISD::FMAXNUM : ISD::FMAXNAN; 2861 break; 2862 } 2863 break; 2864 default: break; 2865 } 2866 2867 if (Opc != ISD::DELETED_NODE && 2868 (TLI.isOperationLegalOrCustom(Opc, VT) || 2869 (UseScalarMinMax && 2870 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2871 // If the underlying comparison instruction is used by any other 2872 // instruction, the consumed instructions won't be destroyed, so it is 2873 // not profitable to convert to a min/max. 2874 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2875 OpCode = Opc; 2876 LHSVal = getValue(LHS); 2877 RHSVal = getValue(RHS); 2878 BaseOps = {}; 2879 } 2880 } 2881 2882 for (unsigned i = 0; i != NumValues; ++i) { 2883 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2884 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2885 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2886 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2887 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2888 Ops); 2889 } 2890 2891 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2892 DAG.getVTList(ValueVTs), Values)); 2893 } 2894 2895 void SelectionDAGBuilder::visitTrunc(const User &I) { 2896 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2897 SDValue N = getValue(I.getOperand(0)); 2898 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2899 I.getType()); 2900 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2901 } 2902 2903 void SelectionDAGBuilder::visitZExt(const User &I) { 2904 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2905 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2906 SDValue N = getValue(I.getOperand(0)); 2907 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2908 I.getType()); 2909 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2910 } 2911 2912 void SelectionDAGBuilder::visitSExt(const User &I) { 2913 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2914 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2915 SDValue N = getValue(I.getOperand(0)); 2916 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2917 I.getType()); 2918 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2919 } 2920 2921 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2922 // FPTrunc is never a no-op cast, no need to check 2923 SDValue N = getValue(I.getOperand(0)); 2924 SDLoc dl = getCurSDLoc(); 2925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2926 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2927 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2928 DAG.getTargetConstant( 2929 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2930 } 2931 2932 void SelectionDAGBuilder::visitFPExt(const User &I) { 2933 // FPExt is never a no-op cast, no need to check 2934 SDValue N = getValue(I.getOperand(0)); 2935 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2936 I.getType()); 2937 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2938 } 2939 2940 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2941 // FPToUI is never a no-op cast, no need to check 2942 SDValue N = getValue(I.getOperand(0)); 2943 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2944 I.getType()); 2945 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2946 } 2947 2948 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2949 // FPToSI is never a no-op cast, no need to check 2950 SDValue N = getValue(I.getOperand(0)); 2951 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2952 I.getType()); 2953 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2954 } 2955 2956 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2957 // UIToFP is never a no-op cast, no need to check 2958 SDValue N = getValue(I.getOperand(0)); 2959 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2960 I.getType()); 2961 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2962 } 2963 2964 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2965 // SIToFP is never a no-op cast, no need to check 2966 SDValue N = getValue(I.getOperand(0)); 2967 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2968 I.getType()); 2969 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2970 } 2971 2972 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2973 // What to do depends on the size of the integer and the size of the pointer. 2974 // We can either truncate, zero extend, or no-op, accordingly. 2975 SDValue N = getValue(I.getOperand(0)); 2976 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2977 I.getType()); 2978 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2979 } 2980 2981 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2982 // What to do depends on the size of the integer and the size of the pointer. 2983 // We can either truncate, zero extend, or no-op, accordingly. 2984 SDValue N = getValue(I.getOperand(0)); 2985 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2986 I.getType()); 2987 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2988 } 2989 2990 void SelectionDAGBuilder::visitBitCast(const User &I) { 2991 SDValue N = getValue(I.getOperand(0)); 2992 SDLoc dl = getCurSDLoc(); 2993 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2994 I.getType()); 2995 2996 // BitCast assures us that source and destination are the same size so this is 2997 // either a BITCAST or a no-op. 2998 if (DestVT != N.getValueType()) 2999 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3000 DestVT, N)); // convert types. 3001 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3002 // might fold any kind of constant expression to an integer constant and that 3003 // is not what we are looking for. Only recognize a bitcast of a genuine 3004 // constant integer as an opaque constant. 3005 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3006 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3007 /*isOpaque*/true)); 3008 else 3009 setValue(&I, N); // noop cast. 3010 } 3011 3012 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3014 const Value *SV = I.getOperand(0); 3015 SDValue N = getValue(SV); 3016 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3017 3018 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3019 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3020 3021 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3022 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3023 3024 setValue(&I, N); 3025 } 3026 3027 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3029 SDValue InVec = getValue(I.getOperand(0)); 3030 SDValue InVal = getValue(I.getOperand(1)); 3031 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3032 TLI.getVectorIdxTy(DAG.getDataLayout())); 3033 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3034 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3035 InVec, InVal, InIdx)); 3036 } 3037 3038 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3040 SDValue InVec = getValue(I.getOperand(0)); 3041 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3042 TLI.getVectorIdxTy(DAG.getDataLayout())); 3043 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3044 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3045 InVec, InIdx)); 3046 } 3047 3048 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3049 SDValue Src1 = getValue(I.getOperand(0)); 3050 SDValue Src2 = getValue(I.getOperand(1)); 3051 SDLoc DL = getCurSDLoc(); 3052 3053 SmallVector<int, 8> Mask; 3054 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3055 unsigned MaskNumElts = Mask.size(); 3056 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3059 EVT SrcVT = Src1.getValueType(); 3060 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3061 3062 if (SrcNumElts == MaskNumElts) { 3063 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3064 return; 3065 } 3066 3067 // Normalize the shuffle vector since mask and vector length don't match. 3068 if (SrcNumElts < MaskNumElts) { 3069 // Mask is longer than the source vectors. We can use concatenate vector to 3070 // make the mask and vectors lengths match. 3071 3072 if (MaskNumElts % SrcNumElts == 0) { 3073 // Mask length is a multiple of the source vector length. 3074 // Check if the shuffle is some kind of concatenation of the input 3075 // vectors. 3076 unsigned NumConcat = MaskNumElts / SrcNumElts; 3077 bool IsConcat = true; 3078 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3079 for (unsigned i = 0; i != MaskNumElts; ++i) { 3080 int Idx = Mask[i]; 3081 if (Idx < 0) 3082 continue; 3083 // Ensure the indices in each SrcVT sized piece are sequential and that 3084 // the same source is used for the whole piece. 3085 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3086 (ConcatSrcs[i / SrcNumElts] >= 0 && 3087 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3088 IsConcat = false; 3089 break; 3090 } 3091 // Remember which source this index came from. 3092 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3093 } 3094 3095 // The shuffle is concatenating multiple vectors together. Just emit 3096 // a CONCAT_VECTORS operation. 3097 if (IsConcat) { 3098 SmallVector<SDValue, 8> ConcatOps; 3099 for (auto Src : ConcatSrcs) { 3100 if (Src < 0) 3101 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3102 else if (Src == 0) 3103 ConcatOps.push_back(Src1); 3104 else 3105 ConcatOps.push_back(Src2); 3106 } 3107 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3108 return; 3109 } 3110 } 3111 3112 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3113 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3114 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3115 PaddedMaskNumElts); 3116 3117 // Pad both vectors with undefs to make them the same length as the mask. 3118 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3119 3120 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3121 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3122 MOps1[0] = Src1; 3123 MOps2[0] = Src2; 3124 3125 Src1 = Src1.isUndef() 3126 ? DAG.getUNDEF(PaddedVT) 3127 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3128 Src2 = Src2.isUndef() 3129 ? DAG.getUNDEF(PaddedVT) 3130 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3131 3132 // Readjust mask for new input vector length. 3133 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3134 for (unsigned i = 0; i != MaskNumElts; ++i) { 3135 int Idx = Mask[i]; 3136 if (Idx >= (int)SrcNumElts) 3137 Idx -= SrcNumElts - PaddedMaskNumElts; 3138 MappedOps[i] = Idx; 3139 } 3140 3141 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3142 3143 // If the concatenated vector was padded, extract a subvector with the 3144 // correct number of elements. 3145 if (MaskNumElts != PaddedMaskNumElts) 3146 Result = DAG.getNode( 3147 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3148 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3149 3150 setValue(&I, Result); 3151 return; 3152 } 3153 3154 if (SrcNumElts > MaskNumElts) { 3155 // Analyze the access pattern of the vector to see if we can extract 3156 // two subvectors and do the shuffle. 3157 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3158 bool CanExtract = true; 3159 for (int Idx : Mask) { 3160 unsigned Input = 0; 3161 if (Idx < 0) 3162 continue; 3163 3164 if (Idx >= (int)SrcNumElts) { 3165 Input = 1; 3166 Idx -= SrcNumElts; 3167 } 3168 3169 // If all the indices come from the same MaskNumElts sized portion of 3170 // the sources we can use extract. Also make sure the extract wouldn't 3171 // extract past the end of the source. 3172 int NewStartIdx = alignDown(Idx, MaskNumElts); 3173 if (NewStartIdx + MaskNumElts > SrcNumElts || 3174 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3175 CanExtract = false; 3176 // Make sure we always update StartIdx as we use it to track if all 3177 // elements are undef. 3178 StartIdx[Input] = NewStartIdx; 3179 } 3180 3181 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3182 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3183 return; 3184 } 3185 if (CanExtract) { 3186 // Extract appropriate subvector and generate a vector shuffle 3187 for (unsigned Input = 0; Input < 2; ++Input) { 3188 SDValue &Src = Input == 0 ? Src1 : Src2; 3189 if (StartIdx[Input] < 0) 3190 Src = DAG.getUNDEF(VT); 3191 else { 3192 Src = DAG.getNode( 3193 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3194 DAG.getConstant(StartIdx[Input], DL, 3195 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3196 } 3197 } 3198 3199 // Calculate new mask. 3200 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3201 for (int &Idx : MappedOps) { 3202 if (Idx >= (int)SrcNumElts) 3203 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3204 else if (Idx >= 0) 3205 Idx -= StartIdx[0]; 3206 } 3207 3208 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3209 return; 3210 } 3211 } 3212 3213 // We can't use either concat vectors or extract subvectors so fall back to 3214 // replacing the shuffle with extract and build vector. 3215 // to insert and build vector. 3216 EVT EltVT = VT.getVectorElementType(); 3217 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3218 SmallVector<SDValue,8> Ops; 3219 for (int Idx : Mask) { 3220 SDValue Res; 3221 3222 if (Idx < 0) { 3223 Res = DAG.getUNDEF(EltVT); 3224 } else { 3225 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3226 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3227 3228 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3229 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3230 } 3231 3232 Ops.push_back(Res); 3233 } 3234 3235 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops)); 3236 } 3237 3238 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3239 const Value *Op0 = I.getOperand(0); 3240 const Value *Op1 = I.getOperand(1); 3241 Type *AggTy = I.getType(); 3242 Type *ValTy = Op1->getType(); 3243 bool IntoUndef = isa<UndefValue>(Op0); 3244 bool FromUndef = isa<UndefValue>(Op1); 3245 3246 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3247 3248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3249 SmallVector<EVT, 4> AggValueVTs; 3250 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3251 SmallVector<EVT, 4> ValValueVTs; 3252 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3253 3254 unsigned NumAggValues = AggValueVTs.size(); 3255 unsigned NumValValues = ValValueVTs.size(); 3256 SmallVector<SDValue, 4> Values(NumAggValues); 3257 3258 // Ignore an insertvalue that produces an empty object 3259 if (!NumAggValues) { 3260 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3261 return; 3262 } 3263 3264 SDValue Agg = getValue(Op0); 3265 unsigned i = 0; 3266 // Copy the beginning value(s) from the original aggregate. 3267 for (; i != LinearIndex; ++i) 3268 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3269 SDValue(Agg.getNode(), Agg.getResNo() + i); 3270 // Copy values from the inserted value(s). 3271 if (NumValValues) { 3272 SDValue Val = getValue(Op1); 3273 for (; i != LinearIndex + NumValValues; ++i) 3274 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3275 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3276 } 3277 // Copy remaining value(s) from the original aggregate. 3278 for (; i != NumAggValues; ++i) 3279 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3280 SDValue(Agg.getNode(), Agg.getResNo() + i); 3281 3282 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3283 DAG.getVTList(AggValueVTs), Values)); 3284 } 3285 3286 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3287 const Value *Op0 = I.getOperand(0); 3288 Type *AggTy = Op0->getType(); 3289 Type *ValTy = I.getType(); 3290 bool OutOfUndef = isa<UndefValue>(Op0); 3291 3292 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3293 3294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3295 SmallVector<EVT, 4> ValValueVTs; 3296 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3297 3298 unsigned NumValValues = ValValueVTs.size(); 3299 3300 // Ignore a extractvalue that produces an empty object 3301 if (!NumValValues) { 3302 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3303 return; 3304 } 3305 3306 SmallVector<SDValue, 4> Values(NumValValues); 3307 3308 SDValue Agg = getValue(Op0); 3309 // Copy out the selected value(s). 3310 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3311 Values[i - LinearIndex] = 3312 OutOfUndef ? 3313 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3314 SDValue(Agg.getNode(), Agg.getResNo() + i); 3315 3316 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3317 DAG.getVTList(ValValueVTs), Values)); 3318 } 3319 3320 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3321 Value *Op0 = I.getOperand(0); 3322 // Note that the pointer operand may be a vector of pointers. Take the scalar 3323 // element which holds a pointer. 3324 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3325 SDValue N = getValue(Op0); 3326 SDLoc dl = getCurSDLoc(); 3327 3328 // Normalize Vector GEP - all scalar operands should be converted to the 3329 // splat vector. 3330 unsigned VectorWidth = I.getType()->isVectorTy() ? 3331 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3332 3333 if (VectorWidth && !N.getValueType().isVector()) { 3334 LLVMContext &Context = *DAG.getContext(); 3335 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3336 N = DAG.getSplatBuildVector(VT, dl, N); 3337 } 3338 3339 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3340 GTI != E; ++GTI) { 3341 const Value *Idx = GTI.getOperand(); 3342 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3343 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3344 if (Field) { 3345 // N = N + Offset 3346 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3347 3348 // In an inbounds GEP with an offset that is nonnegative even when 3349 // interpreted as signed, assume there is no unsigned overflow. 3350 SDNodeFlags Flags; 3351 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3352 Flags.setNoUnsignedWrap(true); 3353 3354 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3355 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3356 } 3357 } else { 3358 MVT PtrTy = 3359 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3360 unsigned PtrSize = PtrTy.getSizeInBits(); 3361 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3362 3363 // If this is a scalar constant or a splat vector of constants, 3364 // handle it quickly. 3365 const auto *CI = dyn_cast<ConstantInt>(Idx); 3366 if (!CI && isa<ConstantDataVector>(Idx) && 3367 cast<ConstantDataVector>(Idx)->getSplatValue()) 3368 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3369 3370 if (CI) { 3371 if (CI->isZero()) 3372 continue; 3373 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3374 LLVMContext &Context = *DAG.getContext(); 3375 SDValue OffsVal = VectorWidth ? 3376 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3377 DAG.getConstant(Offs, dl, PtrTy); 3378 3379 // In an inbouds GEP with an offset that is nonnegative even when 3380 // interpreted as signed, assume there is no unsigned overflow. 3381 SDNodeFlags Flags; 3382 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3383 Flags.setNoUnsignedWrap(true); 3384 3385 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3386 continue; 3387 } 3388 3389 // N = N + Idx * ElementSize; 3390 SDValue IdxN = getValue(Idx); 3391 3392 if (!IdxN.getValueType().isVector() && VectorWidth) { 3393 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3394 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3395 } 3396 3397 // If the index is smaller or larger than intptr_t, truncate or extend 3398 // it. 3399 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3400 3401 // If this is a multiply by a power of two, turn it into a shl 3402 // immediately. This is a very common case. 3403 if (ElementSize != 1) { 3404 if (ElementSize.isPowerOf2()) { 3405 unsigned Amt = ElementSize.logBase2(); 3406 IdxN = DAG.getNode(ISD::SHL, dl, 3407 N.getValueType(), IdxN, 3408 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3409 } else { 3410 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3411 IdxN = DAG.getNode(ISD::MUL, dl, 3412 N.getValueType(), IdxN, Scale); 3413 } 3414 } 3415 3416 N = DAG.getNode(ISD::ADD, dl, 3417 N.getValueType(), N, IdxN); 3418 } 3419 } 3420 3421 setValue(&I, N); 3422 } 3423 3424 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3425 // If this is a fixed sized alloca in the entry block of the function, 3426 // allocate it statically on the stack. 3427 if (FuncInfo.StaticAllocaMap.count(&I)) 3428 return; // getValue will auto-populate this. 3429 3430 SDLoc dl = getCurSDLoc(); 3431 Type *Ty = I.getAllocatedType(); 3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3433 auto &DL = DAG.getDataLayout(); 3434 uint64_t TySize = DL.getTypeAllocSize(Ty); 3435 unsigned Align = 3436 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3437 3438 SDValue AllocSize = getValue(I.getArraySize()); 3439 3440 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3441 if (AllocSize.getValueType() != IntPtr) 3442 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3443 3444 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3445 AllocSize, 3446 DAG.getConstant(TySize, dl, IntPtr)); 3447 3448 // Handle alignment. If the requested alignment is less than or equal to 3449 // the stack alignment, ignore it. If the size is greater than or equal to 3450 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3451 unsigned StackAlign = 3452 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3453 if (Align <= StackAlign) 3454 Align = 0; 3455 3456 // Round the size of the allocation up to the stack alignment size 3457 // by add SA-1 to the size. This doesn't overflow because we're computing 3458 // an address inside an alloca. 3459 SDNodeFlags Flags; 3460 Flags.setNoUnsignedWrap(true); 3461 AllocSize = DAG.getNode(ISD::ADD, dl, 3462 AllocSize.getValueType(), AllocSize, 3463 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3464 3465 // Mask out the low bits for alignment purposes. 3466 AllocSize = DAG.getNode(ISD::AND, dl, 3467 AllocSize.getValueType(), AllocSize, 3468 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3469 dl)); 3470 3471 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3472 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3473 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3474 setValue(&I, DSA); 3475 DAG.setRoot(DSA.getValue(1)); 3476 3477 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3478 } 3479 3480 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3481 if (I.isAtomic()) 3482 return visitAtomicLoad(I); 3483 3484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3485 const Value *SV = I.getOperand(0); 3486 if (TLI.supportSwiftError()) { 3487 // Swifterror values can come from either a function parameter with 3488 // swifterror attribute or an alloca with swifterror attribute. 3489 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3490 if (Arg->hasSwiftErrorAttr()) 3491 return visitLoadFromSwiftError(I); 3492 } 3493 3494 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3495 if (Alloca->isSwiftError()) 3496 return visitLoadFromSwiftError(I); 3497 } 3498 } 3499 3500 SDValue Ptr = getValue(SV); 3501 3502 Type *Ty = I.getType(); 3503 3504 bool isVolatile = I.isVolatile(); 3505 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3506 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3507 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3508 unsigned Alignment = I.getAlignment(); 3509 3510 AAMDNodes AAInfo; 3511 I.getAAMetadata(AAInfo); 3512 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3513 3514 SmallVector<EVT, 4> ValueVTs; 3515 SmallVector<uint64_t, 4> Offsets; 3516 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3517 unsigned NumValues = ValueVTs.size(); 3518 if (NumValues == 0) 3519 return; 3520 3521 SDValue Root; 3522 bool ConstantMemory = false; 3523 if (isVolatile || NumValues > MaxParallelChains) 3524 // Serialize volatile loads with other side effects. 3525 Root = getRoot(); 3526 else if (AA->pointsToConstantMemory(MemoryLocation( 3527 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3528 // Do not serialize (non-volatile) loads of constant memory with anything. 3529 Root = DAG.getEntryNode(); 3530 ConstantMemory = true; 3531 } else { 3532 // Do not serialize non-volatile loads against each other. 3533 Root = DAG.getRoot(); 3534 } 3535 3536 SDLoc dl = getCurSDLoc(); 3537 3538 if (isVolatile) 3539 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3540 3541 // An aggregate load cannot wrap around the address space, so offsets to its 3542 // parts don't wrap either. 3543 SDNodeFlags Flags; 3544 Flags.setNoUnsignedWrap(true); 3545 3546 SmallVector<SDValue, 4> Values(NumValues); 3547 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3548 EVT PtrVT = Ptr.getValueType(); 3549 unsigned ChainI = 0; 3550 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3551 // Serializing loads here may result in excessive register pressure, and 3552 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3553 // could recover a bit by hoisting nodes upward in the chain by recognizing 3554 // they are side-effect free or do not alias. The optimizer should really 3555 // avoid this case by converting large object/array copies to llvm.memcpy 3556 // (MaxParallelChains should always remain as failsafe). 3557 if (ChainI == MaxParallelChains) { 3558 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3559 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3560 makeArrayRef(Chains.data(), ChainI)); 3561 Root = Chain; 3562 ChainI = 0; 3563 } 3564 SDValue A = DAG.getNode(ISD::ADD, dl, 3565 PtrVT, Ptr, 3566 DAG.getConstant(Offsets[i], dl, PtrVT), 3567 &Flags); 3568 auto MMOFlags = MachineMemOperand::MONone; 3569 if (isVolatile) 3570 MMOFlags |= MachineMemOperand::MOVolatile; 3571 if (isNonTemporal) 3572 MMOFlags |= MachineMemOperand::MONonTemporal; 3573 if (isInvariant) 3574 MMOFlags |= MachineMemOperand::MOInvariant; 3575 if (isDereferenceable) 3576 MMOFlags |= MachineMemOperand::MODereferenceable; 3577 3578 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3579 MachinePointerInfo(SV, Offsets[i]), Alignment, 3580 MMOFlags, AAInfo, Ranges); 3581 3582 Values[i] = L; 3583 Chains[ChainI] = L.getValue(1); 3584 } 3585 3586 if (!ConstantMemory) { 3587 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3588 makeArrayRef(Chains.data(), ChainI)); 3589 if (isVolatile) 3590 DAG.setRoot(Chain); 3591 else 3592 PendingLoads.push_back(Chain); 3593 } 3594 3595 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3596 DAG.getVTList(ValueVTs), Values)); 3597 } 3598 3599 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3601 assert(TLI.supportSwiftError() && 3602 "call visitStoreToSwiftError when backend supports swifterror"); 3603 3604 SmallVector<EVT, 4> ValueVTs; 3605 SmallVector<uint64_t, 4> Offsets; 3606 const Value *SrcV = I.getOperand(0); 3607 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3608 SrcV->getType(), ValueVTs, &Offsets); 3609 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3610 "expect a single EVT for swifterror"); 3611 3612 SDValue Src = getValue(SrcV); 3613 // Create a virtual register, then update the virtual register. 3614 auto &DL = DAG.getDataLayout(); 3615 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3616 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3617 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3618 // Chain can be getRoot or getControlRoot. 3619 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3620 SDValue(Src.getNode(), Src.getResNo())); 3621 DAG.setRoot(CopyNode); 3622 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3623 } 3624 3625 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3626 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3627 "call visitLoadFromSwiftError when backend supports swifterror"); 3628 3629 assert(!I.isVolatile() && 3630 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3631 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3632 "Support volatile, non temporal, invariant for load_from_swift_error"); 3633 3634 const Value *SV = I.getOperand(0); 3635 Type *Ty = I.getType(); 3636 AAMDNodes AAInfo; 3637 I.getAAMetadata(AAInfo); 3638 assert(!AA->pointsToConstantMemory(MemoryLocation( 3639 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3640 "load_from_swift_error should not be constant memory"); 3641 3642 SmallVector<EVT, 4> ValueVTs; 3643 SmallVector<uint64_t, 4> Offsets; 3644 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3645 ValueVTs, &Offsets); 3646 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3647 "expect a single EVT for swifterror"); 3648 3649 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3650 SDValue L = DAG.getCopyFromReg( 3651 getRoot(), getCurSDLoc(), 3652 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3653 3654 setValue(&I, L); 3655 } 3656 3657 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3658 if (I.isAtomic()) 3659 return visitAtomicStore(I); 3660 3661 const Value *SrcV = I.getOperand(0); 3662 const Value *PtrV = I.getOperand(1); 3663 3664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3665 if (TLI.supportSwiftError()) { 3666 // Swifterror values can come from either a function parameter with 3667 // swifterror attribute or an alloca with swifterror attribute. 3668 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3669 if (Arg->hasSwiftErrorAttr()) 3670 return visitStoreToSwiftError(I); 3671 } 3672 3673 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3674 if (Alloca->isSwiftError()) 3675 return visitStoreToSwiftError(I); 3676 } 3677 } 3678 3679 SmallVector<EVT, 4> ValueVTs; 3680 SmallVector<uint64_t, 4> Offsets; 3681 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3682 SrcV->getType(), ValueVTs, &Offsets); 3683 unsigned NumValues = ValueVTs.size(); 3684 if (NumValues == 0) 3685 return; 3686 3687 // Get the lowered operands. Note that we do this after 3688 // checking if NumResults is zero, because with zero results 3689 // the operands won't have values in the map. 3690 SDValue Src = getValue(SrcV); 3691 SDValue Ptr = getValue(PtrV); 3692 3693 SDValue Root = getRoot(); 3694 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3695 SDLoc dl = getCurSDLoc(); 3696 EVT PtrVT = Ptr.getValueType(); 3697 unsigned Alignment = I.getAlignment(); 3698 AAMDNodes AAInfo; 3699 I.getAAMetadata(AAInfo); 3700 3701 auto MMOFlags = MachineMemOperand::MONone; 3702 if (I.isVolatile()) 3703 MMOFlags |= MachineMemOperand::MOVolatile; 3704 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3705 MMOFlags |= MachineMemOperand::MONonTemporal; 3706 3707 // An aggregate load cannot wrap around the address space, so offsets to its 3708 // parts don't wrap either. 3709 SDNodeFlags Flags; 3710 Flags.setNoUnsignedWrap(true); 3711 3712 unsigned ChainI = 0; 3713 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3714 // See visitLoad comments. 3715 if (ChainI == MaxParallelChains) { 3716 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3717 makeArrayRef(Chains.data(), ChainI)); 3718 Root = Chain; 3719 ChainI = 0; 3720 } 3721 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3722 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3723 SDValue St = DAG.getStore( 3724 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3725 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3726 Chains[ChainI] = St; 3727 } 3728 3729 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3730 makeArrayRef(Chains.data(), ChainI)); 3731 DAG.setRoot(StoreNode); 3732 } 3733 3734 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3735 bool IsCompressing) { 3736 SDLoc sdl = getCurSDLoc(); 3737 3738 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3739 unsigned& Alignment) { 3740 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3741 Src0 = I.getArgOperand(0); 3742 Ptr = I.getArgOperand(1); 3743 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3744 Mask = I.getArgOperand(3); 3745 }; 3746 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3747 unsigned& Alignment) { 3748 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3749 Src0 = I.getArgOperand(0); 3750 Ptr = I.getArgOperand(1); 3751 Mask = I.getArgOperand(2); 3752 Alignment = 0; 3753 }; 3754 3755 Value *PtrOperand, *MaskOperand, *Src0Operand; 3756 unsigned Alignment; 3757 if (IsCompressing) 3758 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3759 else 3760 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3761 3762 SDValue Ptr = getValue(PtrOperand); 3763 SDValue Src0 = getValue(Src0Operand); 3764 SDValue Mask = getValue(MaskOperand); 3765 3766 EVT VT = Src0.getValueType(); 3767 if (!Alignment) 3768 Alignment = DAG.getEVTAlignment(VT); 3769 3770 AAMDNodes AAInfo; 3771 I.getAAMetadata(AAInfo); 3772 3773 MachineMemOperand *MMO = 3774 DAG.getMachineFunction(). 3775 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3776 MachineMemOperand::MOStore, VT.getStoreSize(), 3777 Alignment, AAInfo); 3778 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3779 MMO, false /* Truncating */, 3780 IsCompressing); 3781 DAG.setRoot(StoreNode); 3782 setValue(&I, StoreNode); 3783 } 3784 3785 // Get a uniform base for the Gather/Scatter intrinsic. 3786 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3787 // We try to represent it as a base pointer + vector of indices. 3788 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3789 // The first operand of the GEP may be a single pointer or a vector of pointers 3790 // Example: 3791 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3792 // or 3793 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3794 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3795 // 3796 // When the first GEP operand is a single pointer - it is the uniform base we 3797 // are looking for. If first operand of the GEP is a splat vector - we 3798 // extract the spalt value and use it as a uniform base. 3799 // In all other cases the function returns 'false'. 3800 // 3801 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3802 SelectionDAGBuilder* SDB) { 3803 3804 SelectionDAG& DAG = SDB->DAG; 3805 LLVMContext &Context = *DAG.getContext(); 3806 3807 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3808 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3809 if (!GEP || GEP->getNumOperands() > 2) 3810 return false; 3811 3812 const Value *GEPPtr = GEP->getPointerOperand(); 3813 if (!GEPPtr->getType()->isVectorTy()) 3814 Ptr = GEPPtr; 3815 else if (!(Ptr = getSplatValue(GEPPtr))) 3816 return false; 3817 3818 Value *IndexVal = GEP->getOperand(1); 3819 3820 // The operands of the GEP may be defined in another basic block. 3821 // In this case we'll not find nodes for the operands. 3822 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3823 return false; 3824 3825 Base = SDB->getValue(Ptr); 3826 Index = SDB->getValue(IndexVal); 3827 3828 // Suppress sign extension. 3829 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3830 if (SDB->findValue(Sext->getOperand(0))) { 3831 IndexVal = Sext->getOperand(0); 3832 Index = SDB->getValue(IndexVal); 3833 } 3834 } 3835 if (!Index.getValueType().isVector()) { 3836 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3837 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3838 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3839 } 3840 return true; 3841 } 3842 3843 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3844 SDLoc sdl = getCurSDLoc(); 3845 3846 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3847 const Value *Ptr = I.getArgOperand(1); 3848 SDValue Src0 = getValue(I.getArgOperand(0)); 3849 SDValue Mask = getValue(I.getArgOperand(3)); 3850 EVT VT = Src0.getValueType(); 3851 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3852 if (!Alignment) 3853 Alignment = DAG.getEVTAlignment(VT); 3854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3855 3856 AAMDNodes AAInfo; 3857 I.getAAMetadata(AAInfo); 3858 3859 SDValue Base; 3860 SDValue Index; 3861 const Value *BasePtr = Ptr; 3862 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3863 3864 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3865 MachineMemOperand *MMO = DAG.getMachineFunction(). 3866 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3867 MachineMemOperand::MOStore, VT.getStoreSize(), 3868 Alignment, AAInfo); 3869 if (!UniformBase) { 3870 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3871 Index = getValue(Ptr); 3872 } 3873 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3874 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3875 Ops, MMO); 3876 DAG.setRoot(Scatter); 3877 setValue(&I, Scatter); 3878 } 3879 3880 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3881 SDLoc sdl = getCurSDLoc(); 3882 3883 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3884 unsigned& Alignment) { 3885 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3886 Ptr = I.getArgOperand(0); 3887 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3888 Mask = I.getArgOperand(2); 3889 Src0 = I.getArgOperand(3); 3890 }; 3891 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3892 unsigned& Alignment) { 3893 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3894 Ptr = I.getArgOperand(0); 3895 Alignment = 0; 3896 Mask = I.getArgOperand(1); 3897 Src0 = I.getArgOperand(2); 3898 }; 3899 3900 Value *PtrOperand, *MaskOperand, *Src0Operand; 3901 unsigned Alignment; 3902 if (IsExpanding) 3903 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3904 else 3905 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3906 3907 SDValue Ptr = getValue(PtrOperand); 3908 SDValue Src0 = getValue(Src0Operand); 3909 SDValue Mask = getValue(MaskOperand); 3910 3911 EVT VT = Src0.getValueType(); 3912 if (!Alignment) 3913 Alignment = DAG.getEVTAlignment(VT); 3914 3915 AAMDNodes AAInfo; 3916 I.getAAMetadata(AAInfo); 3917 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3918 3919 // Do not serialize masked loads of constant memory with anything. 3920 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3921 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3922 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3923 3924 MachineMemOperand *MMO = 3925 DAG.getMachineFunction(). 3926 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3927 MachineMemOperand::MOLoad, VT.getStoreSize(), 3928 Alignment, AAInfo, Ranges); 3929 3930 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3931 ISD::NON_EXTLOAD, IsExpanding); 3932 if (AddToChain) { 3933 SDValue OutChain = Load.getValue(1); 3934 DAG.setRoot(OutChain); 3935 } 3936 setValue(&I, Load); 3937 } 3938 3939 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3940 SDLoc sdl = getCurSDLoc(); 3941 3942 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3943 const Value *Ptr = I.getArgOperand(0); 3944 SDValue Src0 = getValue(I.getArgOperand(3)); 3945 SDValue Mask = getValue(I.getArgOperand(2)); 3946 3947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3948 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3949 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3950 if (!Alignment) 3951 Alignment = DAG.getEVTAlignment(VT); 3952 3953 AAMDNodes AAInfo; 3954 I.getAAMetadata(AAInfo); 3955 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3956 3957 SDValue Root = DAG.getRoot(); 3958 SDValue Base; 3959 SDValue Index; 3960 const Value *BasePtr = Ptr; 3961 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3962 bool ConstantMemory = false; 3963 if (UniformBase && 3964 AA->pointsToConstantMemory(MemoryLocation( 3965 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3966 AAInfo))) { 3967 // Do not serialize (non-volatile) loads of constant memory with anything. 3968 Root = DAG.getEntryNode(); 3969 ConstantMemory = true; 3970 } 3971 3972 MachineMemOperand *MMO = 3973 DAG.getMachineFunction(). 3974 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3975 MachineMemOperand::MOLoad, VT.getStoreSize(), 3976 Alignment, AAInfo, Ranges); 3977 3978 if (!UniformBase) { 3979 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3980 Index = getValue(Ptr); 3981 } 3982 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3983 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3984 Ops, MMO); 3985 3986 SDValue OutChain = Gather.getValue(1); 3987 if (!ConstantMemory) 3988 PendingLoads.push_back(OutChain); 3989 setValue(&I, Gather); 3990 } 3991 3992 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3993 SDLoc dl = getCurSDLoc(); 3994 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3995 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3996 SynchronizationScope Scope = I.getSynchScope(); 3997 3998 SDValue InChain = getRoot(); 3999 4000 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4001 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4002 SDValue L = DAG.getAtomicCmpSwap( 4003 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4004 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4005 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4006 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 4007 4008 SDValue OutChain = L.getValue(2); 4009 4010 setValue(&I, L); 4011 DAG.setRoot(OutChain); 4012 } 4013 4014 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4015 SDLoc dl = getCurSDLoc(); 4016 ISD::NodeType NT; 4017 switch (I.getOperation()) { 4018 default: llvm_unreachable("Unknown atomicrmw operation"); 4019 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4020 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4021 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4022 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4023 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4024 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4025 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4026 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4027 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4028 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4029 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4030 } 4031 AtomicOrdering Order = I.getOrdering(); 4032 SynchronizationScope Scope = I.getSynchScope(); 4033 4034 SDValue InChain = getRoot(); 4035 4036 SDValue L = 4037 DAG.getAtomic(NT, dl, 4038 getValue(I.getValOperand()).getSimpleValueType(), 4039 InChain, 4040 getValue(I.getPointerOperand()), 4041 getValue(I.getValOperand()), 4042 I.getPointerOperand(), 4043 /* Alignment=*/ 0, Order, Scope); 4044 4045 SDValue OutChain = L.getValue(1); 4046 4047 setValue(&I, L); 4048 DAG.setRoot(OutChain); 4049 } 4050 4051 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4052 SDLoc dl = getCurSDLoc(); 4053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4054 SDValue Ops[3]; 4055 Ops[0] = getRoot(); 4056 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4057 TLI.getPointerTy(DAG.getDataLayout())); 4058 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 4059 TLI.getPointerTy(DAG.getDataLayout())); 4060 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4061 } 4062 4063 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4064 SDLoc dl = getCurSDLoc(); 4065 AtomicOrdering Order = I.getOrdering(); 4066 SynchronizationScope Scope = I.getSynchScope(); 4067 4068 SDValue InChain = getRoot(); 4069 4070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4071 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4072 4073 if (I.getAlignment() < VT.getSizeInBits() / 8) 4074 report_fatal_error("Cannot generate unaligned atomic load"); 4075 4076 MachineMemOperand *MMO = 4077 DAG.getMachineFunction(). 4078 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4079 MachineMemOperand::MOVolatile | 4080 MachineMemOperand::MOLoad, 4081 VT.getStoreSize(), 4082 I.getAlignment() ? I.getAlignment() : 4083 DAG.getEVTAlignment(VT), 4084 AAMDNodes(), nullptr, Scope, Order); 4085 4086 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4087 SDValue L = 4088 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4089 getValue(I.getPointerOperand()), MMO); 4090 4091 SDValue OutChain = L.getValue(1); 4092 4093 setValue(&I, L); 4094 DAG.setRoot(OutChain); 4095 } 4096 4097 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4098 SDLoc dl = getCurSDLoc(); 4099 4100 AtomicOrdering Order = I.getOrdering(); 4101 SynchronizationScope Scope = I.getSynchScope(); 4102 4103 SDValue InChain = getRoot(); 4104 4105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4106 EVT VT = 4107 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4108 4109 if (I.getAlignment() < VT.getSizeInBits() / 8) 4110 report_fatal_error("Cannot generate unaligned atomic store"); 4111 4112 SDValue OutChain = 4113 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4114 InChain, 4115 getValue(I.getPointerOperand()), 4116 getValue(I.getValueOperand()), 4117 I.getPointerOperand(), I.getAlignment(), 4118 Order, Scope); 4119 4120 DAG.setRoot(OutChain); 4121 } 4122 4123 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4124 /// node. 4125 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4126 unsigned Intrinsic) { 4127 // Ignore the callsite's attributes. A specific call site may be marked with 4128 // readnone, but the lowering code will expect the chain based on the 4129 // definition. 4130 const Function *F = I.getCalledFunction(); 4131 bool HasChain = !F->doesNotAccessMemory(); 4132 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4133 4134 // Build the operand list. 4135 SmallVector<SDValue, 8> Ops; 4136 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4137 if (OnlyLoad) { 4138 // We don't need to serialize loads against other loads. 4139 Ops.push_back(DAG.getRoot()); 4140 } else { 4141 Ops.push_back(getRoot()); 4142 } 4143 } 4144 4145 // Info is set by getTgtMemInstrinsic 4146 TargetLowering::IntrinsicInfo Info; 4147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4148 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4149 4150 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4151 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4152 Info.opc == ISD::INTRINSIC_W_CHAIN) 4153 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4154 TLI.getPointerTy(DAG.getDataLayout()))); 4155 4156 // Add all operands of the call to the operand list. 4157 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4158 SDValue Op = getValue(I.getArgOperand(i)); 4159 Ops.push_back(Op); 4160 } 4161 4162 SmallVector<EVT, 4> ValueVTs; 4163 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4164 4165 if (HasChain) 4166 ValueVTs.push_back(MVT::Other); 4167 4168 SDVTList VTs = DAG.getVTList(ValueVTs); 4169 4170 // Create the node. 4171 SDValue Result; 4172 if (IsTgtIntrinsic) { 4173 // This is target intrinsic that touches memory 4174 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4175 VTs, Ops, Info.memVT, 4176 MachinePointerInfo(Info.ptrVal, Info.offset), 4177 Info.align, Info.vol, 4178 Info.readMem, Info.writeMem, Info.size); 4179 } else if (!HasChain) { 4180 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4181 } else if (!I.getType()->isVoidTy()) { 4182 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4183 } else { 4184 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4185 } 4186 4187 if (HasChain) { 4188 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4189 if (OnlyLoad) 4190 PendingLoads.push_back(Chain); 4191 else 4192 DAG.setRoot(Chain); 4193 } 4194 4195 if (!I.getType()->isVoidTy()) { 4196 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4197 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4198 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4199 } else 4200 Result = lowerRangeToAssertZExt(DAG, I, Result); 4201 4202 setValue(&I, Result); 4203 } 4204 } 4205 4206 /// GetSignificand - Get the significand and build it into a floating-point 4207 /// number with exponent of 1: 4208 /// 4209 /// Op = (Op & 0x007fffff) | 0x3f800000; 4210 /// 4211 /// where Op is the hexadecimal representation of floating point value. 4212 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4213 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4214 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4215 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4216 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4217 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4218 } 4219 4220 /// GetExponent - Get the exponent: 4221 /// 4222 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4223 /// 4224 /// where Op is the hexadecimal representation of floating point value. 4225 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4226 const TargetLowering &TLI, const SDLoc &dl) { 4227 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4228 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4229 SDValue t1 = DAG.getNode( 4230 ISD::SRL, dl, MVT::i32, t0, 4231 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4232 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4233 DAG.getConstant(127, dl, MVT::i32)); 4234 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4235 } 4236 4237 /// getF32Constant - Get 32-bit floating point constant. 4238 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4239 const SDLoc &dl) { 4240 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4241 MVT::f32); 4242 } 4243 4244 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4245 SelectionDAG &DAG) { 4246 // TODO: What fast-math-flags should be set on the floating-point nodes? 4247 4248 // IntegerPartOfX = ((int32_t)(t0); 4249 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4250 4251 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4252 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4253 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4254 4255 // IntegerPartOfX <<= 23; 4256 IntegerPartOfX = DAG.getNode( 4257 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4258 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4259 DAG.getDataLayout()))); 4260 4261 SDValue TwoToFractionalPartOfX; 4262 if (LimitFloatPrecision <= 6) { 4263 // For floating-point precision of 6: 4264 // 4265 // TwoToFractionalPartOfX = 4266 // 0.997535578f + 4267 // (0.735607626f + 0.252464424f * x) * x; 4268 // 4269 // error 0.0144103317, which is 6 bits 4270 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4271 getF32Constant(DAG, 0x3e814304, dl)); 4272 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4273 getF32Constant(DAG, 0x3f3c50c8, dl)); 4274 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4275 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4276 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4277 } else if (LimitFloatPrecision <= 12) { 4278 // For floating-point precision of 12: 4279 // 4280 // TwoToFractionalPartOfX = 4281 // 0.999892986f + 4282 // (0.696457318f + 4283 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4284 // 4285 // error 0.000107046256, which is 13 to 14 bits 4286 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4287 getF32Constant(DAG, 0x3da235e3, dl)); 4288 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4289 getF32Constant(DAG, 0x3e65b8f3, dl)); 4290 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4291 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4292 getF32Constant(DAG, 0x3f324b07, dl)); 4293 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4294 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4295 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4296 } else { // LimitFloatPrecision <= 18 4297 // For floating-point precision of 18: 4298 // 4299 // TwoToFractionalPartOfX = 4300 // 0.999999982f + 4301 // (0.693148872f + 4302 // (0.240227044f + 4303 // (0.554906021e-1f + 4304 // (0.961591928e-2f + 4305 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4306 // error 2.47208000*10^(-7), which is better than 18 bits 4307 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4308 getF32Constant(DAG, 0x3924b03e, dl)); 4309 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4310 getF32Constant(DAG, 0x3ab24b87, dl)); 4311 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4312 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4313 getF32Constant(DAG, 0x3c1d8c17, dl)); 4314 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4315 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4316 getF32Constant(DAG, 0x3d634a1d, dl)); 4317 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4318 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4319 getF32Constant(DAG, 0x3e75fe14, dl)); 4320 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4321 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4322 getF32Constant(DAG, 0x3f317234, dl)); 4323 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4324 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4325 getF32Constant(DAG, 0x3f800000, dl)); 4326 } 4327 4328 // Add the exponent into the result in integer domain. 4329 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4330 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4331 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4332 } 4333 4334 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4335 /// limited-precision mode. 4336 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4337 const TargetLowering &TLI) { 4338 if (Op.getValueType() == MVT::f32 && 4339 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4340 4341 // Put the exponent in the right bit position for later addition to the 4342 // final result: 4343 // 4344 // #define LOG2OFe 1.4426950f 4345 // t0 = Op * LOG2OFe 4346 4347 // TODO: What fast-math-flags should be set here? 4348 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4349 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4350 return getLimitedPrecisionExp2(t0, dl, DAG); 4351 } 4352 4353 // No special expansion. 4354 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4355 } 4356 4357 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4358 /// limited-precision mode. 4359 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4360 const TargetLowering &TLI) { 4361 4362 // TODO: What fast-math-flags should be set on the floating-point nodes? 4363 4364 if (Op.getValueType() == MVT::f32 && 4365 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4366 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4367 4368 // Scale the exponent by log(2) [0.69314718f]. 4369 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4370 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4371 getF32Constant(DAG, 0x3f317218, dl)); 4372 4373 // Get the significand and build it into a floating-point number with 4374 // exponent of 1. 4375 SDValue X = GetSignificand(DAG, Op1, dl); 4376 4377 SDValue LogOfMantissa; 4378 if (LimitFloatPrecision <= 6) { 4379 // For floating-point precision of 6: 4380 // 4381 // LogofMantissa = 4382 // -1.1609546f + 4383 // (1.4034025f - 0.23903021f * x) * x; 4384 // 4385 // error 0.0034276066, which is better than 8 bits 4386 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4387 getF32Constant(DAG, 0xbe74c456, dl)); 4388 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4389 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4390 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4391 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4392 getF32Constant(DAG, 0x3f949a29, dl)); 4393 } else if (LimitFloatPrecision <= 12) { 4394 // For floating-point precision of 12: 4395 // 4396 // LogOfMantissa = 4397 // -1.7417939f + 4398 // (2.8212026f + 4399 // (-1.4699568f + 4400 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4401 // 4402 // error 0.000061011436, which is 14 bits 4403 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4404 getF32Constant(DAG, 0xbd67b6d6, dl)); 4405 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4406 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4407 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4408 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4409 getF32Constant(DAG, 0x3fbc278b, dl)); 4410 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4411 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4412 getF32Constant(DAG, 0x40348e95, dl)); 4413 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4414 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4415 getF32Constant(DAG, 0x3fdef31a, dl)); 4416 } else { // LimitFloatPrecision <= 18 4417 // For floating-point precision of 18: 4418 // 4419 // LogOfMantissa = 4420 // -2.1072184f + 4421 // (4.2372794f + 4422 // (-3.7029485f + 4423 // (2.2781945f + 4424 // (-0.87823314f + 4425 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4426 // 4427 // error 0.0000023660568, which is better than 18 bits 4428 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4429 getF32Constant(DAG, 0xbc91e5ac, dl)); 4430 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4431 getF32Constant(DAG, 0x3e4350aa, dl)); 4432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4433 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4434 getF32Constant(DAG, 0x3f60d3e3, dl)); 4435 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4436 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4437 getF32Constant(DAG, 0x4011cdf0, dl)); 4438 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4439 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4440 getF32Constant(DAG, 0x406cfd1c, dl)); 4441 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4442 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4443 getF32Constant(DAG, 0x408797cb, dl)); 4444 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4445 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4446 getF32Constant(DAG, 0x4006dcab, dl)); 4447 } 4448 4449 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4450 } 4451 4452 // No special expansion. 4453 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4454 } 4455 4456 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4457 /// limited-precision mode. 4458 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4459 const TargetLowering &TLI) { 4460 4461 // TODO: What fast-math-flags should be set on the floating-point nodes? 4462 4463 if (Op.getValueType() == MVT::f32 && 4464 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4465 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4466 4467 // Get the exponent. 4468 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4469 4470 // Get the significand and build it into a floating-point number with 4471 // exponent of 1. 4472 SDValue X = GetSignificand(DAG, Op1, dl); 4473 4474 // Different possible minimax approximations of significand in 4475 // floating-point for various degrees of accuracy over [1,2]. 4476 SDValue Log2ofMantissa; 4477 if (LimitFloatPrecision <= 6) { 4478 // For floating-point precision of 6: 4479 // 4480 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4481 // 4482 // error 0.0049451742, which is more than 7 bits 4483 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4484 getF32Constant(DAG, 0xbeb08fe0, dl)); 4485 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4486 getF32Constant(DAG, 0x40019463, dl)); 4487 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4488 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4489 getF32Constant(DAG, 0x3fd6633d, dl)); 4490 } else if (LimitFloatPrecision <= 12) { 4491 // For floating-point precision of 12: 4492 // 4493 // Log2ofMantissa = 4494 // -2.51285454f + 4495 // (4.07009056f + 4496 // (-2.12067489f + 4497 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4498 // 4499 // error 0.0000876136000, which is better than 13 bits 4500 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4501 getF32Constant(DAG, 0xbda7262e, dl)); 4502 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4503 getF32Constant(DAG, 0x3f25280b, dl)); 4504 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4505 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4506 getF32Constant(DAG, 0x4007b923, dl)); 4507 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4508 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4509 getF32Constant(DAG, 0x40823e2f, dl)); 4510 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4511 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4512 getF32Constant(DAG, 0x4020d29c, dl)); 4513 } else { // LimitFloatPrecision <= 18 4514 // For floating-point precision of 18: 4515 // 4516 // Log2ofMantissa = 4517 // -3.0400495f + 4518 // (6.1129976f + 4519 // (-5.3420409f + 4520 // (3.2865683f + 4521 // (-1.2669343f + 4522 // (0.27515199f - 4523 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4524 // 4525 // error 0.0000018516, which is better than 18 bits 4526 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4527 getF32Constant(DAG, 0xbcd2769e, dl)); 4528 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4529 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4530 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4531 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4532 getF32Constant(DAG, 0x3fa22ae7, dl)); 4533 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4534 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4535 getF32Constant(DAG, 0x40525723, dl)); 4536 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4537 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4538 getF32Constant(DAG, 0x40aaf200, dl)); 4539 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4540 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4541 getF32Constant(DAG, 0x40c39dad, dl)); 4542 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4543 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4544 getF32Constant(DAG, 0x4042902c, dl)); 4545 } 4546 4547 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4548 } 4549 4550 // No special expansion. 4551 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4552 } 4553 4554 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4555 /// limited-precision mode. 4556 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4557 const TargetLowering &TLI) { 4558 4559 // TODO: What fast-math-flags should be set on the floating-point nodes? 4560 4561 if (Op.getValueType() == MVT::f32 && 4562 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4563 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4564 4565 // Scale the exponent by log10(2) [0.30102999f]. 4566 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4567 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4568 getF32Constant(DAG, 0x3e9a209a, dl)); 4569 4570 // Get the significand and build it into a floating-point number with 4571 // exponent of 1. 4572 SDValue X = GetSignificand(DAG, Op1, dl); 4573 4574 SDValue Log10ofMantissa; 4575 if (LimitFloatPrecision <= 6) { 4576 // For floating-point precision of 6: 4577 // 4578 // Log10ofMantissa = 4579 // -0.50419619f + 4580 // (0.60948995f - 0.10380950f * x) * x; 4581 // 4582 // error 0.0014886165, which is 6 bits 4583 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4584 getF32Constant(DAG, 0xbdd49a13, dl)); 4585 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4586 getF32Constant(DAG, 0x3f1c0789, dl)); 4587 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4588 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4589 getF32Constant(DAG, 0x3f011300, dl)); 4590 } else if (LimitFloatPrecision <= 12) { 4591 // For floating-point precision of 12: 4592 // 4593 // Log10ofMantissa = 4594 // -0.64831180f + 4595 // (0.91751397f + 4596 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4597 // 4598 // error 0.00019228036, which is better than 12 bits 4599 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4600 getF32Constant(DAG, 0x3d431f31, dl)); 4601 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4602 getF32Constant(DAG, 0x3ea21fb2, dl)); 4603 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4604 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4605 getF32Constant(DAG, 0x3f6ae232, dl)); 4606 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4607 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4608 getF32Constant(DAG, 0x3f25f7c3, dl)); 4609 } else { // LimitFloatPrecision <= 18 4610 // For floating-point precision of 18: 4611 // 4612 // Log10ofMantissa = 4613 // -0.84299375f + 4614 // (1.5327582f + 4615 // (-1.0688956f + 4616 // (0.49102474f + 4617 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4618 // 4619 // error 0.0000037995730, which is better than 18 bits 4620 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4621 getF32Constant(DAG, 0x3c5d51ce, dl)); 4622 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4623 getF32Constant(DAG, 0x3e00685a, dl)); 4624 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4625 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4626 getF32Constant(DAG, 0x3efb6798, dl)); 4627 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4628 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4629 getF32Constant(DAG, 0x3f88d192, dl)); 4630 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4631 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4632 getF32Constant(DAG, 0x3fc4316c, dl)); 4633 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4634 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4635 getF32Constant(DAG, 0x3f57ce70, dl)); 4636 } 4637 4638 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4639 } 4640 4641 // No special expansion. 4642 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4643 } 4644 4645 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4646 /// limited-precision mode. 4647 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4648 const TargetLowering &TLI) { 4649 if (Op.getValueType() == MVT::f32 && 4650 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4651 return getLimitedPrecisionExp2(Op, dl, DAG); 4652 4653 // No special expansion. 4654 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4655 } 4656 4657 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4658 /// limited-precision mode with x == 10.0f. 4659 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4660 SelectionDAG &DAG, const TargetLowering &TLI) { 4661 bool IsExp10 = false; 4662 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4663 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4664 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4665 APFloat Ten(10.0f); 4666 IsExp10 = LHSC->isExactlyValue(Ten); 4667 } 4668 } 4669 4670 // TODO: What fast-math-flags should be set on the FMUL node? 4671 if (IsExp10) { 4672 // Put the exponent in the right bit position for later addition to the 4673 // final result: 4674 // 4675 // #define LOG2OF10 3.3219281f 4676 // t0 = Op * LOG2OF10; 4677 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4678 getF32Constant(DAG, 0x40549a78, dl)); 4679 return getLimitedPrecisionExp2(t0, dl, DAG); 4680 } 4681 4682 // No special expansion. 4683 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4684 } 4685 4686 4687 /// ExpandPowI - Expand a llvm.powi intrinsic. 4688 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4689 SelectionDAG &DAG) { 4690 // If RHS is a constant, we can expand this out to a multiplication tree, 4691 // otherwise we end up lowering to a call to __powidf2 (for example). When 4692 // optimizing for size, we only want to do this if the expansion would produce 4693 // a small number of multiplies, otherwise we do the full expansion. 4694 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4695 // Get the exponent as a positive value. 4696 unsigned Val = RHSC->getSExtValue(); 4697 if ((int)Val < 0) Val = -Val; 4698 4699 // powi(x, 0) -> 1.0 4700 if (Val == 0) 4701 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4702 4703 const Function *F = DAG.getMachineFunction().getFunction(); 4704 if (!F->optForSize() || 4705 // If optimizing for size, don't insert too many multiplies. 4706 // This inserts up to 5 multiplies. 4707 countPopulation(Val) + Log2_32(Val) < 7) { 4708 // We use the simple binary decomposition method to generate the multiply 4709 // sequence. There are more optimal ways to do this (for example, 4710 // powi(x,15) generates one more multiply than it should), but this has 4711 // the benefit of being both really simple and much better than a libcall. 4712 SDValue Res; // Logically starts equal to 1.0 4713 SDValue CurSquare = LHS; 4714 // TODO: Intrinsics should have fast-math-flags that propagate to these 4715 // nodes. 4716 while (Val) { 4717 if (Val & 1) { 4718 if (Res.getNode()) 4719 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4720 else 4721 Res = CurSquare; // 1.0*CurSquare. 4722 } 4723 4724 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4725 CurSquare, CurSquare); 4726 Val >>= 1; 4727 } 4728 4729 // If the original was negative, invert the result, producing 1/(x*x*x). 4730 if (RHSC->getSExtValue() < 0) 4731 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4732 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4733 return Res; 4734 } 4735 } 4736 4737 // Otherwise, expand to a libcall. 4738 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4739 } 4740 4741 // getUnderlyingArgReg - Find underlying register used for a truncated or 4742 // bitcasted argument. 4743 static unsigned getUnderlyingArgReg(const SDValue &N) { 4744 switch (N.getOpcode()) { 4745 case ISD::CopyFromReg: 4746 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4747 case ISD::BITCAST: 4748 case ISD::AssertZext: 4749 case ISD::AssertSext: 4750 case ISD::TRUNCATE: 4751 return getUnderlyingArgReg(N.getOperand(0)); 4752 default: 4753 return 0; 4754 } 4755 } 4756 4757 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4758 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4759 /// At the end of instruction selection, they will be inserted to the entry BB. 4760 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4761 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4762 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4763 const Argument *Arg = dyn_cast<Argument>(V); 4764 if (!Arg) 4765 return false; 4766 4767 MachineFunction &MF = DAG.getMachineFunction(); 4768 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4769 4770 // Ignore inlined function arguments here. 4771 // 4772 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4773 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4774 return false; 4775 4776 Optional<MachineOperand> Op; 4777 // Some arguments' frame index is recorded during argument lowering. 4778 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4779 Op = MachineOperand::CreateFI(FI); 4780 4781 if (!Op && N.getNode()) { 4782 unsigned Reg = getUnderlyingArgReg(N); 4783 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4784 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4785 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4786 if (PR) 4787 Reg = PR; 4788 } 4789 if (Reg) 4790 Op = MachineOperand::CreateReg(Reg, false); 4791 } 4792 4793 if (!Op) { 4794 // Check if ValueMap has reg number. 4795 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4796 if (VMI != FuncInfo.ValueMap.end()) 4797 Op = MachineOperand::CreateReg(VMI->second, false); 4798 } 4799 4800 if (!Op && N.getNode()) 4801 // Check if frame index is available. 4802 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4803 if (FrameIndexSDNode *FINode = 4804 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4805 Op = MachineOperand::CreateFI(FINode->getIndex()); 4806 4807 if (!Op) 4808 return false; 4809 4810 assert(Variable->isValidLocationForIntrinsic(DL) && 4811 "Expected inlined-at fields to agree"); 4812 if (Op->isReg()) 4813 FuncInfo.ArgDbgValues.push_back( 4814 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4815 Op->getReg(), Offset, Variable, Expr)); 4816 else 4817 FuncInfo.ArgDbgValues.push_back( 4818 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4819 .add(*Op) 4820 .addImm(Offset) 4821 .addMetadata(Variable) 4822 .addMetadata(Expr)); 4823 4824 return true; 4825 } 4826 4827 /// Return the appropriate SDDbgValue based on N. 4828 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4829 DILocalVariable *Variable, 4830 DIExpression *Expr, int64_t Offset, 4831 const DebugLoc &dl, 4832 unsigned DbgSDNodeOrder) { 4833 SDDbgValue *SDV; 4834 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4835 if (FISDN && Expr->startsWithDeref()) { 4836 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4837 // stack slot locations as such instead of as indirectly addressed 4838 // locations. 4839 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4840 Expr->elements_end()); 4841 DIExpression *DerefedDIExpr = 4842 DIExpression::get(*DAG.getContext(), TrailingElements); 4843 int FI = FISDN->getIndex(); 4844 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4845 DbgSDNodeOrder); 4846 } else { 4847 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4848 Offset, dl, DbgSDNodeOrder); 4849 } 4850 return SDV; 4851 } 4852 4853 // VisualStudio defines setjmp as _setjmp 4854 #if defined(_MSC_VER) && defined(setjmp) && \ 4855 !defined(setjmp_undefined_for_msvc) 4856 # pragma push_macro("setjmp") 4857 # undef setjmp 4858 # define setjmp_undefined_for_msvc 4859 #endif 4860 4861 /// Lower the call to the specified intrinsic function. If we want to emit this 4862 /// as a call to a named external function, return the name. Otherwise, lower it 4863 /// and return null. 4864 const char * 4865 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4867 SDLoc sdl = getCurSDLoc(); 4868 DebugLoc dl = getCurDebugLoc(); 4869 SDValue Res; 4870 4871 switch (Intrinsic) { 4872 default: 4873 // By default, turn this into a target intrinsic node. 4874 visitTargetIntrinsic(I, Intrinsic); 4875 return nullptr; 4876 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4877 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4878 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4879 case Intrinsic::returnaddress: 4880 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4881 TLI.getPointerTy(DAG.getDataLayout()), 4882 getValue(I.getArgOperand(0)))); 4883 return nullptr; 4884 case Intrinsic::addressofreturnaddress: 4885 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4886 TLI.getPointerTy(DAG.getDataLayout()))); 4887 return nullptr; 4888 case Intrinsic::frameaddress: 4889 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4890 TLI.getPointerTy(DAG.getDataLayout()), 4891 getValue(I.getArgOperand(0)))); 4892 return nullptr; 4893 case Intrinsic::read_register: { 4894 Value *Reg = I.getArgOperand(0); 4895 SDValue Chain = getRoot(); 4896 SDValue RegName = 4897 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4898 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4899 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4900 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4901 setValue(&I, Res); 4902 DAG.setRoot(Res.getValue(1)); 4903 return nullptr; 4904 } 4905 case Intrinsic::write_register: { 4906 Value *Reg = I.getArgOperand(0); 4907 Value *RegValue = I.getArgOperand(1); 4908 SDValue Chain = getRoot(); 4909 SDValue RegName = 4910 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4911 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4912 RegName, getValue(RegValue))); 4913 return nullptr; 4914 } 4915 case Intrinsic::setjmp: 4916 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4917 case Intrinsic::longjmp: 4918 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4919 case Intrinsic::memcpy: { 4920 SDValue Op1 = getValue(I.getArgOperand(0)); 4921 SDValue Op2 = getValue(I.getArgOperand(1)); 4922 SDValue Op3 = getValue(I.getArgOperand(2)); 4923 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4924 if (!Align) 4925 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4926 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4927 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4928 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4929 false, isTC, 4930 MachinePointerInfo(I.getArgOperand(0)), 4931 MachinePointerInfo(I.getArgOperand(1))); 4932 updateDAGForMaybeTailCall(MC); 4933 return nullptr; 4934 } 4935 case Intrinsic::memset: { 4936 SDValue Op1 = getValue(I.getArgOperand(0)); 4937 SDValue Op2 = getValue(I.getArgOperand(1)); 4938 SDValue Op3 = getValue(I.getArgOperand(2)); 4939 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4940 if (!Align) 4941 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4942 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4943 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4944 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4945 isTC, MachinePointerInfo(I.getArgOperand(0))); 4946 updateDAGForMaybeTailCall(MS); 4947 return nullptr; 4948 } 4949 case Intrinsic::memmove: { 4950 SDValue Op1 = getValue(I.getArgOperand(0)); 4951 SDValue Op2 = getValue(I.getArgOperand(1)); 4952 SDValue Op3 = getValue(I.getArgOperand(2)); 4953 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4954 if (!Align) 4955 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4956 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4957 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4958 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4959 isTC, MachinePointerInfo(I.getArgOperand(0)), 4960 MachinePointerInfo(I.getArgOperand(1))); 4961 updateDAGForMaybeTailCall(MM); 4962 return nullptr; 4963 } 4964 case Intrinsic::memcpy_element_atomic: { 4965 SDValue Dst = getValue(I.getArgOperand(0)); 4966 SDValue Src = getValue(I.getArgOperand(1)); 4967 SDValue NumElements = getValue(I.getArgOperand(2)); 4968 SDValue ElementSize = getValue(I.getArgOperand(3)); 4969 4970 // Emit a library call. 4971 TargetLowering::ArgListTy Args; 4972 TargetLowering::ArgListEntry Entry; 4973 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4974 Entry.Node = Dst; 4975 Args.push_back(Entry); 4976 4977 Entry.Node = Src; 4978 Args.push_back(Entry); 4979 4980 Entry.Ty = I.getArgOperand(2)->getType(); 4981 Entry.Node = NumElements; 4982 Args.push_back(Entry); 4983 4984 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4985 Entry.Node = ElementSize; 4986 Args.push_back(Entry); 4987 4988 uint64_t ElementSizeConstant = 4989 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4990 RTLIB::Libcall LibraryCall = 4991 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4992 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4993 report_fatal_error("Unsupported element size"); 4994 4995 TargetLowering::CallLoweringInfo CLI(DAG); 4996 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 4997 TLI.getLibcallCallingConv(LibraryCall), 4998 Type::getVoidTy(*DAG.getContext()), 4999 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5000 TLI.getPointerTy(DAG.getDataLayout())), 5001 std::move(Args)); 5002 5003 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5004 DAG.setRoot(CallResult.second); 5005 return nullptr; 5006 } 5007 case Intrinsic::dbg_declare: { 5008 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 5009 DILocalVariable *Variable = DI.getVariable(); 5010 DIExpression *Expression = DI.getExpression(); 5011 const Value *Address = DI.getAddress(); 5012 assert(Variable && "Missing variable"); 5013 if (!Address) { 5014 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5015 return nullptr; 5016 } 5017 5018 // Check if address has undef value. 5019 if (isa<UndefValue>(Address) || 5020 (Address->use_empty() && !isa<Argument>(Address))) { 5021 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5022 return nullptr; 5023 } 5024 5025 SDValue &N = NodeMap[Address]; 5026 if (!N.getNode() && isa<Argument>(Address)) 5027 // Check unused arguments map. 5028 N = UnusedArgNodeMap[Address]; 5029 SDDbgValue *SDV; 5030 if (N.getNode()) { 5031 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5032 Address = BCI->getOperand(0); 5033 // Parameters are handled specially. 5034 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5035 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5036 if (isParameter && FINode) { 5037 // Byval parameter. We have a frame index at this point. 5038 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5039 FINode->getIndex(), 0, dl, SDNodeOrder); 5040 } else if (isa<Argument>(Address)) { 5041 // Address is an argument, so try to emit its dbg value using 5042 // virtual register info from the FuncInfo.ValueMap. 5043 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 5044 N); 5045 return nullptr; 5046 } else { 5047 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5048 true, 0, dl, SDNodeOrder); 5049 } 5050 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5051 } else { 5052 // If Address is an argument then try to emit its dbg value using 5053 // virtual register info from the FuncInfo.ValueMap. 5054 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 5055 N)) { 5056 // If variable is pinned by a alloca in dominating bb then 5057 // use StaticAllocaMap. 5058 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 5059 if (AI->getParent() != DI.getParent()) { 5060 DenseMap<const AllocaInst*, int>::iterator SI = 5061 FuncInfo.StaticAllocaMap.find(AI); 5062 if (SI != FuncInfo.StaticAllocaMap.end()) { 5063 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 5064 0, dl, SDNodeOrder); 5065 DAG.AddDbgValue(SDV, nullptr, false); 5066 return nullptr; 5067 } 5068 } 5069 } 5070 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5071 } 5072 } 5073 return nullptr; 5074 } 5075 case Intrinsic::dbg_value: { 5076 const DbgValueInst &DI = cast<DbgValueInst>(I); 5077 assert(DI.getVariable() && "Missing variable"); 5078 5079 DILocalVariable *Variable = DI.getVariable(); 5080 DIExpression *Expression = DI.getExpression(); 5081 uint64_t Offset = DI.getOffset(); 5082 const Value *V = DI.getValue(); 5083 if (!V) 5084 return nullptr; 5085 5086 SDDbgValue *SDV; 5087 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5088 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 5089 SDNodeOrder); 5090 DAG.AddDbgValue(SDV, nullptr, false); 5091 } else { 5092 // Do not use getValue() in here; we don't want to generate code at 5093 // this point if it hasn't been done yet. 5094 SDValue N = NodeMap[V]; 5095 if (!N.getNode() && isa<Argument>(V)) 5096 // Check unused arguments map. 5097 N = UnusedArgNodeMap[V]; 5098 if (N.getNode()) { 5099 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 5100 false, N)) { 5101 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5102 DAG.AddDbgValue(SDV, N.getNode(), false); 5103 } 5104 } else if (!V->use_empty() ) { 5105 // Do not call getValue(V) yet, as we don't want to generate code. 5106 // Remember it for later. 5107 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5108 DanglingDebugInfoMap[V] = DDI; 5109 } else { 5110 // We may expand this to cover more cases. One case where we have no 5111 // data available is an unreferenced parameter. 5112 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5113 } 5114 } 5115 5116 // Build a debug info table entry. 5117 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 5118 V = BCI->getOperand(0); 5119 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 5120 // Don't handle byval struct arguments or VLAs, for example. 5121 if (!AI) { 5122 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5123 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5124 return nullptr; 5125 } 5126 DenseMap<const AllocaInst*, int>::iterator SI = 5127 FuncInfo.StaticAllocaMap.find(AI); 5128 if (SI == FuncInfo.StaticAllocaMap.end()) 5129 return nullptr; // VLAs. 5130 return nullptr; 5131 } 5132 5133 case Intrinsic::eh_typeid_for: { 5134 // Find the type id for the given typeinfo. 5135 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5136 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5137 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5138 setValue(&I, Res); 5139 return nullptr; 5140 } 5141 5142 case Intrinsic::eh_return_i32: 5143 case Intrinsic::eh_return_i64: 5144 DAG.getMachineFunction().setCallsEHReturn(true); 5145 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5146 MVT::Other, 5147 getControlRoot(), 5148 getValue(I.getArgOperand(0)), 5149 getValue(I.getArgOperand(1)))); 5150 return nullptr; 5151 case Intrinsic::eh_unwind_init: 5152 DAG.getMachineFunction().setCallsUnwindInit(true); 5153 return nullptr; 5154 case Intrinsic::eh_dwarf_cfa: { 5155 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5156 TLI.getPointerTy(DAG.getDataLayout()), 5157 getValue(I.getArgOperand(0)))); 5158 return nullptr; 5159 } 5160 case Intrinsic::eh_sjlj_callsite: { 5161 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5162 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5163 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5164 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5165 5166 MMI.setCurrentCallSite(CI->getZExtValue()); 5167 return nullptr; 5168 } 5169 case Intrinsic::eh_sjlj_functioncontext: { 5170 // Get and store the index of the function context. 5171 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5172 AllocaInst *FnCtx = 5173 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5174 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5175 MFI.setFunctionContextIndex(FI); 5176 return nullptr; 5177 } 5178 case Intrinsic::eh_sjlj_setjmp: { 5179 SDValue Ops[2]; 5180 Ops[0] = getRoot(); 5181 Ops[1] = getValue(I.getArgOperand(0)); 5182 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5183 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5184 setValue(&I, Op.getValue(0)); 5185 DAG.setRoot(Op.getValue(1)); 5186 return nullptr; 5187 } 5188 case Intrinsic::eh_sjlj_longjmp: { 5189 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5190 getRoot(), getValue(I.getArgOperand(0)))); 5191 return nullptr; 5192 } 5193 case Intrinsic::eh_sjlj_setup_dispatch: { 5194 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5195 getRoot())); 5196 return nullptr; 5197 } 5198 5199 case Intrinsic::masked_gather: 5200 visitMaskedGather(I); 5201 return nullptr; 5202 case Intrinsic::masked_load: 5203 visitMaskedLoad(I); 5204 return nullptr; 5205 case Intrinsic::masked_scatter: 5206 visitMaskedScatter(I); 5207 return nullptr; 5208 case Intrinsic::masked_store: 5209 visitMaskedStore(I); 5210 return nullptr; 5211 case Intrinsic::masked_expandload: 5212 visitMaskedLoad(I, true /* IsExpanding */); 5213 return nullptr; 5214 case Intrinsic::masked_compressstore: 5215 visitMaskedStore(I, true /* IsCompressing */); 5216 return nullptr; 5217 case Intrinsic::x86_mmx_pslli_w: 5218 case Intrinsic::x86_mmx_pslli_d: 5219 case Intrinsic::x86_mmx_pslli_q: 5220 case Intrinsic::x86_mmx_psrli_w: 5221 case Intrinsic::x86_mmx_psrli_d: 5222 case Intrinsic::x86_mmx_psrli_q: 5223 case Intrinsic::x86_mmx_psrai_w: 5224 case Intrinsic::x86_mmx_psrai_d: { 5225 SDValue ShAmt = getValue(I.getArgOperand(1)); 5226 if (isa<ConstantSDNode>(ShAmt)) { 5227 visitTargetIntrinsic(I, Intrinsic); 5228 return nullptr; 5229 } 5230 unsigned NewIntrinsic = 0; 5231 EVT ShAmtVT = MVT::v2i32; 5232 switch (Intrinsic) { 5233 case Intrinsic::x86_mmx_pslli_w: 5234 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5235 break; 5236 case Intrinsic::x86_mmx_pslli_d: 5237 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5238 break; 5239 case Intrinsic::x86_mmx_pslli_q: 5240 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5241 break; 5242 case Intrinsic::x86_mmx_psrli_w: 5243 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5244 break; 5245 case Intrinsic::x86_mmx_psrli_d: 5246 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5247 break; 5248 case Intrinsic::x86_mmx_psrli_q: 5249 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5250 break; 5251 case Intrinsic::x86_mmx_psrai_w: 5252 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5253 break; 5254 case Intrinsic::x86_mmx_psrai_d: 5255 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5256 break; 5257 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5258 } 5259 5260 // The vector shift intrinsics with scalars uses 32b shift amounts but 5261 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5262 // to be zero. 5263 // We must do this early because v2i32 is not a legal type. 5264 SDValue ShOps[2]; 5265 ShOps[0] = ShAmt; 5266 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5267 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5268 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5269 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5270 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5271 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5272 getValue(I.getArgOperand(0)), ShAmt); 5273 setValue(&I, Res); 5274 return nullptr; 5275 } 5276 case Intrinsic::powi: 5277 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5278 getValue(I.getArgOperand(1)), DAG)); 5279 return nullptr; 5280 case Intrinsic::log: 5281 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5282 return nullptr; 5283 case Intrinsic::log2: 5284 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5285 return nullptr; 5286 case Intrinsic::log10: 5287 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5288 return nullptr; 5289 case Intrinsic::exp: 5290 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5291 return nullptr; 5292 case Intrinsic::exp2: 5293 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5294 return nullptr; 5295 case Intrinsic::pow: 5296 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5297 getValue(I.getArgOperand(1)), DAG, TLI)); 5298 return nullptr; 5299 case Intrinsic::sqrt: 5300 case Intrinsic::fabs: 5301 case Intrinsic::sin: 5302 case Intrinsic::cos: 5303 case Intrinsic::floor: 5304 case Intrinsic::ceil: 5305 case Intrinsic::trunc: 5306 case Intrinsic::rint: 5307 case Intrinsic::nearbyint: 5308 case Intrinsic::round: 5309 case Intrinsic::canonicalize: { 5310 unsigned Opcode; 5311 switch (Intrinsic) { 5312 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5313 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5314 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5315 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5316 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5317 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5318 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5319 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5320 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5321 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5322 case Intrinsic::round: Opcode = ISD::FROUND; break; 5323 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5324 } 5325 5326 setValue(&I, DAG.getNode(Opcode, sdl, 5327 getValue(I.getArgOperand(0)).getValueType(), 5328 getValue(I.getArgOperand(0)))); 5329 return nullptr; 5330 } 5331 case Intrinsic::minnum: { 5332 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5333 unsigned Opc = 5334 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5335 ? ISD::FMINNAN 5336 : ISD::FMINNUM; 5337 setValue(&I, DAG.getNode(Opc, sdl, VT, 5338 getValue(I.getArgOperand(0)), 5339 getValue(I.getArgOperand(1)))); 5340 return nullptr; 5341 } 5342 case Intrinsic::maxnum: { 5343 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5344 unsigned Opc = 5345 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5346 ? ISD::FMAXNAN 5347 : ISD::FMAXNUM; 5348 setValue(&I, DAG.getNode(Opc, sdl, VT, 5349 getValue(I.getArgOperand(0)), 5350 getValue(I.getArgOperand(1)))); 5351 return nullptr; 5352 } 5353 case Intrinsic::copysign: 5354 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5355 getValue(I.getArgOperand(0)).getValueType(), 5356 getValue(I.getArgOperand(0)), 5357 getValue(I.getArgOperand(1)))); 5358 return nullptr; 5359 case Intrinsic::fma: 5360 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5361 getValue(I.getArgOperand(0)).getValueType(), 5362 getValue(I.getArgOperand(0)), 5363 getValue(I.getArgOperand(1)), 5364 getValue(I.getArgOperand(2)))); 5365 return nullptr; 5366 case Intrinsic::experimental_constrained_fadd: 5367 case Intrinsic::experimental_constrained_fsub: 5368 case Intrinsic::experimental_constrained_fmul: 5369 case Intrinsic::experimental_constrained_fdiv: 5370 case Intrinsic::experimental_constrained_frem: 5371 visitConstrainedFPIntrinsic(I, Intrinsic); 5372 return nullptr; 5373 case Intrinsic::fmuladd: { 5374 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5375 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5376 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5377 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5378 getValue(I.getArgOperand(0)).getValueType(), 5379 getValue(I.getArgOperand(0)), 5380 getValue(I.getArgOperand(1)), 5381 getValue(I.getArgOperand(2)))); 5382 } else { 5383 // TODO: Intrinsic calls should have fast-math-flags. 5384 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5385 getValue(I.getArgOperand(0)).getValueType(), 5386 getValue(I.getArgOperand(0)), 5387 getValue(I.getArgOperand(1))); 5388 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5389 getValue(I.getArgOperand(0)).getValueType(), 5390 Mul, 5391 getValue(I.getArgOperand(2))); 5392 setValue(&I, Add); 5393 } 5394 return nullptr; 5395 } 5396 case Intrinsic::convert_to_fp16: 5397 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5398 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5399 getValue(I.getArgOperand(0)), 5400 DAG.getTargetConstant(0, sdl, 5401 MVT::i32)))); 5402 return nullptr; 5403 case Intrinsic::convert_from_fp16: 5404 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5405 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5406 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5407 getValue(I.getArgOperand(0))))); 5408 return nullptr; 5409 case Intrinsic::pcmarker: { 5410 SDValue Tmp = getValue(I.getArgOperand(0)); 5411 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5412 return nullptr; 5413 } 5414 case Intrinsic::readcyclecounter: { 5415 SDValue Op = getRoot(); 5416 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5417 DAG.getVTList(MVT::i64, MVT::Other), Op); 5418 setValue(&I, Res); 5419 DAG.setRoot(Res.getValue(1)); 5420 return nullptr; 5421 } 5422 case Intrinsic::bitreverse: 5423 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5424 getValue(I.getArgOperand(0)).getValueType(), 5425 getValue(I.getArgOperand(0)))); 5426 return nullptr; 5427 case Intrinsic::bswap: 5428 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5429 getValue(I.getArgOperand(0)).getValueType(), 5430 getValue(I.getArgOperand(0)))); 5431 return nullptr; 5432 case Intrinsic::cttz: { 5433 SDValue Arg = getValue(I.getArgOperand(0)); 5434 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5435 EVT Ty = Arg.getValueType(); 5436 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5437 sdl, Ty, Arg)); 5438 return nullptr; 5439 } 5440 case Intrinsic::ctlz: { 5441 SDValue Arg = getValue(I.getArgOperand(0)); 5442 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5443 EVT Ty = Arg.getValueType(); 5444 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5445 sdl, Ty, Arg)); 5446 return nullptr; 5447 } 5448 case Intrinsic::ctpop: { 5449 SDValue Arg = getValue(I.getArgOperand(0)); 5450 EVT Ty = Arg.getValueType(); 5451 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5452 return nullptr; 5453 } 5454 case Intrinsic::stacksave: { 5455 SDValue Op = getRoot(); 5456 Res = DAG.getNode( 5457 ISD::STACKSAVE, sdl, 5458 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5459 setValue(&I, Res); 5460 DAG.setRoot(Res.getValue(1)); 5461 return nullptr; 5462 } 5463 case Intrinsic::stackrestore: { 5464 Res = getValue(I.getArgOperand(0)); 5465 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5466 return nullptr; 5467 } 5468 case Intrinsic::get_dynamic_area_offset: { 5469 SDValue Op = getRoot(); 5470 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5471 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5472 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5473 // target. 5474 if (PtrTy != ResTy) 5475 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5476 " intrinsic!"); 5477 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5478 Op); 5479 DAG.setRoot(Op); 5480 setValue(&I, Res); 5481 return nullptr; 5482 } 5483 case Intrinsic::stackguard: { 5484 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5485 MachineFunction &MF = DAG.getMachineFunction(); 5486 const Module &M = *MF.getFunction()->getParent(); 5487 SDValue Chain = getRoot(); 5488 if (TLI.useLoadStackGuardNode()) { 5489 Res = getLoadStackGuard(DAG, sdl, Chain); 5490 } else { 5491 const Value *Global = TLI.getSDagStackGuard(M); 5492 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5493 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5494 MachinePointerInfo(Global, 0), Align, 5495 MachineMemOperand::MOVolatile); 5496 } 5497 DAG.setRoot(Chain); 5498 setValue(&I, Res); 5499 return nullptr; 5500 } 5501 case Intrinsic::stackprotector: { 5502 // Emit code into the DAG to store the stack guard onto the stack. 5503 MachineFunction &MF = DAG.getMachineFunction(); 5504 MachineFrameInfo &MFI = MF.getFrameInfo(); 5505 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5506 SDValue Src, Chain = getRoot(); 5507 5508 if (TLI.useLoadStackGuardNode()) 5509 Src = getLoadStackGuard(DAG, sdl, Chain); 5510 else 5511 Src = getValue(I.getArgOperand(0)); // The guard's value. 5512 5513 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5514 5515 int FI = FuncInfo.StaticAllocaMap[Slot]; 5516 MFI.setStackProtectorIndex(FI); 5517 5518 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5519 5520 // Store the stack protector onto the stack. 5521 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5522 DAG.getMachineFunction(), FI), 5523 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5524 setValue(&I, Res); 5525 DAG.setRoot(Res); 5526 return nullptr; 5527 } 5528 case Intrinsic::objectsize: { 5529 // If we don't know by now, we're never going to know. 5530 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5531 5532 assert(CI && "Non-constant type in __builtin_object_size?"); 5533 5534 SDValue Arg = getValue(I.getCalledValue()); 5535 EVT Ty = Arg.getValueType(); 5536 5537 if (CI->isZero()) 5538 Res = DAG.getConstant(-1ULL, sdl, Ty); 5539 else 5540 Res = DAG.getConstant(0, sdl, Ty); 5541 5542 setValue(&I, Res); 5543 return nullptr; 5544 } 5545 case Intrinsic::annotation: 5546 case Intrinsic::ptr_annotation: 5547 case Intrinsic::invariant_group_barrier: 5548 // Drop the intrinsic, but forward the value 5549 setValue(&I, getValue(I.getOperand(0))); 5550 return nullptr; 5551 case Intrinsic::assume: 5552 case Intrinsic::var_annotation: 5553 // Discard annotate attributes and assumptions 5554 return nullptr; 5555 5556 case Intrinsic::init_trampoline: { 5557 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5558 5559 SDValue Ops[6]; 5560 Ops[0] = getRoot(); 5561 Ops[1] = getValue(I.getArgOperand(0)); 5562 Ops[2] = getValue(I.getArgOperand(1)); 5563 Ops[3] = getValue(I.getArgOperand(2)); 5564 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5565 Ops[5] = DAG.getSrcValue(F); 5566 5567 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5568 5569 DAG.setRoot(Res); 5570 return nullptr; 5571 } 5572 case Intrinsic::adjust_trampoline: { 5573 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5574 TLI.getPointerTy(DAG.getDataLayout()), 5575 getValue(I.getArgOperand(0)))); 5576 return nullptr; 5577 } 5578 case Intrinsic::gcroot: { 5579 MachineFunction &MF = DAG.getMachineFunction(); 5580 const Function *F = MF.getFunction(); 5581 (void)F; 5582 assert(F->hasGC() && 5583 "only valid in functions with gc specified, enforced by Verifier"); 5584 assert(GFI && "implied by previous"); 5585 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5586 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5587 5588 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5589 GFI->addStackRoot(FI->getIndex(), TypeMap); 5590 return nullptr; 5591 } 5592 case Intrinsic::gcread: 5593 case Intrinsic::gcwrite: 5594 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5595 case Intrinsic::flt_rounds: 5596 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5597 return nullptr; 5598 5599 case Intrinsic::expect: { 5600 // Just replace __builtin_expect(exp, c) with EXP. 5601 setValue(&I, getValue(I.getArgOperand(0))); 5602 return nullptr; 5603 } 5604 5605 case Intrinsic::debugtrap: 5606 case Intrinsic::trap: { 5607 StringRef TrapFuncName = 5608 I.getAttributes() 5609 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5610 .getValueAsString(); 5611 if (TrapFuncName.empty()) { 5612 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5613 ISD::TRAP : ISD::DEBUGTRAP; 5614 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5615 return nullptr; 5616 } 5617 TargetLowering::ArgListTy Args; 5618 5619 TargetLowering::CallLoweringInfo CLI(DAG); 5620 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5621 CallingConv::C, I.getType(), 5622 DAG.getExternalSymbol(TrapFuncName.data(), 5623 TLI.getPointerTy(DAG.getDataLayout())), 5624 std::move(Args)); 5625 5626 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5627 DAG.setRoot(Result.second); 5628 return nullptr; 5629 } 5630 5631 case Intrinsic::uadd_with_overflow: 5632 case Intrinsic::sadd_with_overflow: 5633 case Intrinsic::usub_with_overflow: 5634 case Intrinsic::ssub_with_overflow: 5635 case Intrinsic::umul_with_overflow: 5636 case Intrinsic::smul_with_overflow: { 5637 ISD::NodeType Op; 5638 switch (Intrinsic) { 5639 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5640 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5641 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5642 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5643 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5644 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5645 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5646 } 5647 SDValue Op1 = getValue(I.getArgOperand(0)); 5648 SDValue Op2 = getValue(I.getArgOperand(1)); 5649 5650 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5651 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5652 return nullptr; 5653 } 5654 case Intrinsic::prefetch: { 5655 SDValue Ops[5]; 5656 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5657 Ops[0] = getRoot(); 5658 Ops[1] = getValue(I.getArgOperand(0)); 5659 Ops[2] = getValue(I.getArgOperand(1)); 5660 Ops[3] = getValue(I.getArgOperand(2)); 5661 Ops[4] = getValue(I.getArgOperand(3)); 5662 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5663 DAG.getVTList(MVT::Other), Ops, 5664 EVT::getIntegerVT(*Context, 8), 5665 MachinePointerInfo(I.getArgOperand(0)), 5666 0, /* align */ 5667 false, /* volatile */ 5668 rw==0, /* read */ 5669 rw==1)); /* write */ 5670 return nullptr; 5671 } 5672 case Intrinsic::lifetime_start: 5673 case Intrinsic::lifetime_end: { 5674 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5675 // Stack coloring is not enabled in O0, discard region information. 5676 if (TM.getOptLevel() == CodeGenOpt::None) 5677 return nullptr; 5678 5679 SmallVector<Value *, 4> Allocas; 5680 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5681 5682 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5683 E = Allocas.end(); Object != E; ++Object) { 5684 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5685 5686 // Could not find an Alloca. 5687 if (!LifetimeObject) 5688 continue; 5689 5690 // First check that the Alloca is static, otherwise it won't have a 5691 // valid frame index. 5692 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5693 if (SI == FuncInfo.StaticAllocaMap.end()) 5694 return nullptr; 5695 5696 int FI = SI->second; 5697 5698 SDValue Ops[2]; 5699 Ops[0] = getRoot(); 5700 Ops[1] = 5701 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5702 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5703 5704 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5705 DAG.setRoot(Res); 5706 } 5707 return nullptr; 5708 } 5709 case Intrinsic::invariant_start: 5710 // Discard region information. 5711 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5712 return nullptr; 5713 case Intrinsic::invariant_end: 5714 // Discard region information. 5715 return nullptr; 5716 case Intrinsic::clear_cache: 5717 return TLI.getClearCacheBuiltinName(); 5718 case Intrinsic::donothing: 5719 // ignore 5720 return nullptr; 5721 case Intrinsic::experimental_stackmap: { 5722 visitStackmap(I); 5723 return nullptr; 5724 } 5725 case Intrinsic::experimental_patchpoint_void: 5726 case Intrinsic::experimental_patchpoint_i64: { 5727 visitPatchpoint(&I); 5728 return nullptr; 5729 } 5730 case Intrinsic::experimental_gc_statepoint: { 5731 LowerStatepoint(ImmutableStatepoint(&I)); 5732 return nullptr; 5733 } 5734 case Intrinsic::experimental_gc_result: { 5735 visitGCResult(cast<GCResultInst>(I)); 5736 return nullptr; 5737 } 5738 case Intrinsic::experimental_gc_relocate: { 5739 visitGCRelocate(cast<GCRelocateInst>(I)); 5740 return nullptr; 5741 } 5742 case Intrinsic::instrprof_increment: 5743 llvm_unreachable("instrprof failed to lower an increment"); 5744 case Intrinsic::instrprof_value_profile: 5745 llvm_unreachable("instrprof failed to lower a value profiling call"); 5746 case Intrinsic::localescape: { 5747 MachineFunction &MF = DAG.getMachineFunction(); 5748 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5749 5750 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5751 // is the same on all targets. 5752 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5753 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5754 if (isa<ConstantPointerNull>(Arg)) 5755 continue; // Skip null pointers. They represent a hole in index space. 5756 AllocaInst *Slot = cast<AllocaInst>(Arg); 5757 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5758 "can only escape static allocas"); 5759 int FI = FuncInfo.StaticAllocaMap[Slot]; 5760 MCSymbol *FrameAllocSym = 5761 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5762 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5763 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5764 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5765 .addSym(FrameAllocSym) 5766 .addFrameIndex(FI); 5767 } 5768 5769 return nullptr; 5770 } 5771 5772 case Intrinsic::localrecover: { 5773 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5774 MachineFunction &MF = DAG.getMachineFunction(); 5775 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5776 5777 // Get the symbol that defines the frame offset. 5778 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5779 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5780 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5781 MCSymbol *FrameAllocSym = 5782 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5783 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5784 5785 // Create a MCSymbol for the label to avoid any target lowering 5786 // that would make this PC relative. 5787 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5788 SDValue OffsetVal = 5789 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5790 5791 // Add the offset to the FP. 5792 Value *FP = I.getArgOperand(1); 5793 SDValue FPVal = getValue(FP); 5794 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5795 setValue(&I, Add); 5796 5797 return nullptr; 5798 } 5799 5800 case Intrinsic::eh_exceptionpointer: 5801 case Intrinsic::eh_exceptioncode: { 5802 // Get the exception pointer vreg, copy from it, and resize it to fit. 5803 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5804 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5805 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5806 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5807 SDValue N = 5808 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5809 if (Intrinsic == Intrinsic::eh_exceptioncode) 5810 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5811 setValue(&I, N); 5812 return nullptr; 5813 } 5814 5815 case Intrinsic::experimental_deoptimize: 5816 LowerDeoptimizeCall(&I); 5817 return nullptr; 5818 } 5819 } 5820 5821 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I, 5822 unsigned Intrinsic) { 5823 SDLoc sdl = getCurSDLoc(); 5824 unsigned Opcode; 5825 switch (Intrinsic) { 5826 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5827 case Intrinsic::experimental_constrained_fadd: 5828 Opcode = ISD::STRICT_FADD; 5829 break; 5830 case Intrinsic::experimental_constrained_fsub: 5831 Opcode = ISD::STRICT_FSUB; 5832 break; 5833 case Intrinsic::experimental_constrained_fmul: 5834 Opcode = ISD::STRICT_FMUL; 5835 break; 5836 case Intrinsic::experimental_constrained_fdiv: 5837 Opcode = ISD::STRICT_FDIV; 5838 break; 5839 case Intrinsic::experimental_constrained_frem: 5840 Opcode = ISD::STRICT_FREM; 5841 break; 5842 } 5843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5844 SDValue Chain = getRoot(); 5845 SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)), 5846 getValue(I.getArgOperand(1)) }; 5847 SmallVector<EVT, 4> ValueVTs; 5848 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5849 ValueVTs.push_back(MVT::Other); // Out chain 5850 5851 SDVTList VTs = DAG.getVTList(ValueVTs); 5852 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops); 5853 5854 assert(Result.getNode()->getNumValues() == 2); 5855 SDValue OutChain = Result.getValue(1); 5856 DAG.setRoot(OutChain); 5857 SDValue FPResult = Result.getValue(0); 5858 setValue(&I, FPResult); 5859 } 5860 5861 std::pair<SDValue, SDValue> 5862 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5863 const BasicBlock *EHPadBB) { 5864 MachineFunction &MF = DAG.getMachineFunction(); 5865 MachineModuleInfo &MMI = MF.getMMI(); 5866 MCSymbol *BeginLabel = nullptr; 5867 5868 if (EHPadBB) { 5869 // Insert a label before the invoke call to mark the try range. This can be 5870 // used to detect deletion of the invoke via the MachineModuleInfo. 5871 BeginLabel = MMI.getContext().createTempSymbol(); 5872 5873 // For SjLj, keep track of which landing pads go with which invokes 5874 // so as to maintain the ordering of pads in the LSDA. 5875 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5876 if (CallSiteIndex) { 5877 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5878 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5879 5880 // Now that the call site is handled, stop tracking it. 5881 MMI.setCurrentCallSite(0); 5882 } 5883 5884 // Both PendingLoads and PendingExports must be flushed here; 5885 // this call might not return. 5886 (void)getRoot(); 5887 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5888 5889 CLI.setChain(getRoot()); 5890 } 5891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5892 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5893 5894 assert((CLI.IsTailCall || Result.second.getNode()) && 5895 "Non-null chain expected with non-tail call!"); 5896 assert((Result.second.getNode() || !Result.first.getNode()) && 5897 "Null value expected with tail call!"); 5898 5899 if (!Result.second.getNode()) { 5900 // As a special case, a null chain means that a tail call has been emitted 5901 // and the DAG root is already updated. 5902 HasTailCall = true; 5903 5904 // Since there's no actual continuation from this block, nothing can be 5905 // relying on us setting vregs for them. 5906 PendingExports.clear(); 5907 } else { 5908 DAG.setRoot(Result.second); 5909 } 5910 5911 if (EHPadBB) { 5912 // Insert a label at the end of the invoke call to mark the try range. This 5913 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5914 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5915 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5916 5917 // Inform MachineModuleInfo of range. 5918 if (MF.hasEHFunclets()) { 5919 assert(CLI.CS); 5920 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5921 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5922 BeginLabel, EndLabel); 5923 } else { 5924 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5925 } 5926 } 5927 5928 return Result; 5929 } 5930 5931 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5932 bool isTailCall, 5933 const BasicBlock *EHPadBB) { 5934 auto &DL = DAG.getDataLayout(); 5935 FunctionType *FTy = CS.getFunctionType(); 5936 Type *RetTy = CS.getType(); 5937 5938 TargetLowering::ArgListTy Args; 5939 Args.reserve(CS.arg_size()); 5940 5941 const Value *SwiftErrorVal = nullptr; 5942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5943 5944 // We can't tail call inside a function with a swifterror argument. Lowering 5945 // does not support this yet. It would have to move into the swifterror 5946 // register before the call. 5947 auto *Caller = CS.getInstruction()->getParent()->getParent(); 5948 if (TLI.supportSwiftError() && 5949 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 5950 isTailCall = false; 5951 5952 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5953 i != e; ++i) { 5954 TargetLowering::ArgListEntry Entry; 5955 const Value *V = *i; 5956 5957 // Skip empty types 5958 if (V->getType()->isEmptyTy()) 5959 continue; 5960 5961 SDValue ArgNode = getValue(V); 5962 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5963 5964 // Skip the first return-type Attribute to get to params. 5965 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5966 5967 // Use swifterror virtual register as input to the call. 5968 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 5969 SwiftErrorVal = V; 5970 // We find the virtual register for the actual swifterror argument. 5971 // Instead of using the Value, we use the virtual register instead. 5972 Entry.Node = 5973 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5974 EVT(TLI.getPointerTy(DL))); 5975 } 5976 5977 Args.push_back(Entry); 5978 5979 // If we have an explicit sret argument that is an Instruction, (i.e., it 5980 // might point to function-local memory), we can't meaningfully tail-call. 5981 if (Entry.IsSRet && isa<Instruction>(V)) 5982 isTailCall = false; 5983 } 5984 5985 // Check if target-independent constraints permit a tail call here. 5986 // Target-dependent constraints are checked within TLI->LowerCallTo. 5987 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5988 isTailCall = false; 5989 5990 // Disable tail calls if there is an swifterror argument. Targets have not 5991 // been updated to support tail calls. 5992 if (TLI.supportSwiftError() && SwiftErrorVal) 5993 isTailCall = false; 5994 5995 TargetLowering::CallLoweringInfo CLI(DAG); 5996 CLI.setDebugLoc(getCurSDLoc()) 5997 .setChain(getRoot()) 5998 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5999 .setTailCall(isTailCall) 6000 .setConvergent(CS.isConvergent()); 6001 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6002 6003 if (Result.first.getNode()) { 6004 const Instruction *Inst = CS.getInstruction(); 6005 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6006 setValue(Inst, Result.first); 6007 } 6008 6009 // The last element of CLI.InVals has the SDValue for swifterror return. 6010 // Here we copy it to a virtual register and update SwiftErrorMap for 6011 // book-keeping. 6012 if (SwiftErrorVal && TLI.supportSwiftError()) { 6013 // Get the last element of InVals. 6014 SDValue Src = CLI.InVals.back(); 6015 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 6016 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 6017 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6018 // We update the virtual register for the actual swifterror argument. 6019 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6020 DAG.setRoot(CopyNode); 6021 } 6022 } 6023 6024 /// Return true if it only matters that the value is equal or not-equal to zero. 6025 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 6026 for (const User *U : V->users()) { 6027 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 6028 if (IC->isEquality()) 6029 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 6030 if (C->isNullValue()) 6031 continue; 6032 // Unknown instruction. 6033 return false; 6034 } 6035 return true; 6036 } 6037 6038 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6039 SelectionDAGBuilder &Builder) { 6040 6041 // Check to see if this load can be trivially constant folded, e.g. if the 6042 // input is from a string literal. 6043 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6044 // Cast pointer to the type we really want to load. 6045 Type *LoadTy = 6046 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6047 if (LoadVT.isVector()) 6048 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6049 6050 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6051 PointerType::getUnqual(LoadTy)); 6052 6053 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6054 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6055 return Builder.getValue(LoadCst); 6056 } 6057 6058 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6059 // still constant memory, the input chain can be the entry node. 6060 SDValue Root; 6061 bool ConstantMemory = false; 6062 6063 // Do not serialize (non-volatile) loads of constant memory with anything. 6064 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 6065 Root = Builder.DAG.getEntryNode(); 6066 ConstantMemory = true; 6067 } else { 6068 // Do not serialize non-volatile loads against each other. 6069 Root = Builder.DAG.getRoot(); 6070 } 6071 6072 SDValue Ptr = Builder.getValue(PtrVal); 6073 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6074 Ptr, MachinePointerInfo(PtrVal), 6075 /* Alignment = */ 1); 6076 6077 if (!ConstantMemory) 6078 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6079 return LoadVal; 6080 } 6081 6082 /// Record the value for an instruction that produces an integer result, 6083 /// converting the type where necessary. 6084 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6085 SDValue Value, 6086 bool IsSigned) { 6087 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6088 I.getType(), true); 6089 if (IsSigned) 6090 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6091 else 6092 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6093 setValue(&I, Value); 6094 } 6095 6096 /// See if we can lower a memcmp call into an optimized form. If so, return 6097 /// true and lower it. Otherwise return false, and it will be lowered like a 6098 /// normal call. 6099 /// The caller already checked that \p I calls the appropriate LibFunc with a 6100 /// correct prototype. 6101 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6102 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6103 const Value *Size = I.getArgOperand(2); 6104 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6105 if (CSize && CSize->getZExtValue() == 0) { 6106 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6107 I.getType(), true); 6108 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6109 return true; 6110 } 6111 6112 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6113 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6114 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6115 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6116 if (Res.first.getNode()) { 6117 processIntegerCallValue(I, Res.first, true); 6118 PendingLoads.push_back(Res.second); 6119 return true; 6120 } 6121 6122 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6123 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6124 if (!CSize || !IsOnlyUsedInZeroEqualityComparison(&I)) 6125 return false; 6126 6127 // If the target has a fast compare for the given size, it will return a 6128 // preferred load type for that size. Require that the load VT is legal and 6129 // that the target supports unaligned loads of that type. Otherwise, return 6130 // INVALID. 6131 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6132 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6133 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6134 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6135 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6136 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6137 // TODO: Check alignment of src and dest ptrs. 6138 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6139 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6140 if (!TLI.isTypeLegal(LVT) || 6141 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6142 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6143 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6144 } 6145 6146 return LVT; 6147 }; 6148 6149 // This turns into unaligned loads. We only do this if the target natively 6150 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6151 // we'll only produce a small number of byte loads. 6152 MVT LoadVT; 6153 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6154 switch (NumBitsToCompare) { 6155 default: 6156 return false; 6157 case 16: 6158 LoadVT = MVT::i16; 6159 break; 6160 case 32: 6161 LoadVT = MVT::i32; 6162 break; 6163 case 64: 6164 case 128: 6165 case 256: 6166 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6167 break; 6168 } 6169 6170 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6171 return false; 6172 6173 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6174 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6175 6176 // Bitcast to a wide integer type if the loads are vectors. 6177 if (LoadVT.isVector()) { 6178 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6179 LoadL = DAG.getBitcast(CmpVT, LoadL); 6180 LoadR = DAG.getBitcast(CmpVT, LoadR); 6181 } 6182 6183 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6184 processIntegerCallValue(I, Cmp, false); 6185 return true; 6186 } 6187 6188 /// See if we can lower a memchr call into an optimized form. If so, return 6189 /// true and lower it. Otherwise return false, and it will be lowered like a 6190 /// normal call. 6191 /// The caller already checked that \p I calls the appropriate LibFunc with a 6192 /// correct prototype. 6193 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6194 const Value *Src = I.getArgOperand(0); 6195 const Value *Char = I.getArgOperand(1); 6196 const Value *Length = I.getArgOperand(2); 6197 6198 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6199 std::pair<SDValue, SDValue> Res = 6200 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6201 getValue(Src), getValue(Char), getValue(Length), 6202 MachinePointerInfo(Src)); 6203 if (Res.first.getNode()) { 6204 setValue(&I, Res.first); 6205 PendingLoads.push_back(Res.second); 6206 return true; 6207 } 6208 6209 return false; 6210 } 6211 6212 /// See if we can lower a mempcpy call into an optimized form. If so, return 6213 /// true and lower it. Otherwise return false, and it will be lowered like a 6214 /// normal call. 6215 /// The caller already checked that \p I calls the appropriate LibFunc with a 6216 /// correct prototype. 6217 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6218 SDValue Dst = getValue(I.getArgOperand(0)); 6219 SDValue Src = getValue(I.getArgOperand(1)); 6220 SDValue Size = getValue(I.getArgOperand(2)); 6221 6222 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6223 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6224 unsigned Align = std::min(DstAlign, SrcAlign); 6225 if (Align == 0) // Alignment of one or both could not be inferred. 6226 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6227 6228 bool isVol = false; 6229 SDLoc sdl = getCurSDLoc(); 6230 6231 // In the mempcpy context we need to pass in a false value for isTailCall 6232 // because the return pointer needs to be adjusted by the size of 6233 // the copied memory. 6234 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6235 false, /*isTailCall=*/false, 6236 MachinePointerInfo(I.getArgOperand(0)), 6237 MachinePointerInfo(I.getArgOperand(1))); 6238 assert(MC.getNode() != nullptr && 6239 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6240 DAG.setRoot(MC); 6241 6242 // Check if Size needs to be truncated or extended. 6243 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6244 6245 // Adjust return pointer to point just past the last dst byte. 6246 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6247 Dst, Size); 6248 setValue(&I, DstPlusSize); 6249 return true; 6250 } 6251 6252 /// See if we can lower a strcpy call into an optimized form. If so, return 6253 /// true and lower it, otherwise return false and it will be lowered like a 6254 /// normal call. 6255 /// The caller already checked that \p I calls the appropriate LibFunc with a 6256 /// correct prototype. 6257 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6258 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6259 6260 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6261 std::pair<SDValue, SDValue> Res = 6262 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6263 getValue(Arg0), getValue(Arg1), 6264 MachinePointerInfo(Arg0), 6265 MachinePointerInfo(Arg1), isStpcpy); 6266 if (Res.first.getNode()) { 6267 setValue(&I, Res.first); 6268 DAG.setRoot(Res.second); 6269 return true; 6270 } 6271 6272 return false; 6273 } 6274 6275 /// See if we can lower a strcmp call into an optimized form. If so, return 6276 /// true and lower it, otherwise return false and it will be lowered like a 6277 /// normal call. 6278 /// The caller already checked that \p I calls the appropriate LibFunc with a 6279 /// correct prototype. 6280 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6281 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6282 6283 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6284 std::pair<SDValue, SDValue> Res = 6285 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6286 getValue(Arg0), getValue(Arg1), 6287 MachinePointerInfo(Arg0), 6288 MachinePointerInfo(Arg1)); 6289 if (Res.first.getNode()) { 6290 processIntegerCallValue(I, Res.first, true); 6291 PendingLoads.push_back(Res.second); 6292 return true; 6293 } 6294 6295 return false; 6296 } 6297 6298 /// See if we can lower a strlen call into an optimized form. If so, return 6299 /// true and lower it, otherwise return false and it will be lowered like a 6300 /// normal call. 6301 /// The caller already checked that \p I calls the appropriate LibFunc with a 6302 /// correct prototype. 6303 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6304 const Value *Arg0 = I.getArgOperand(0); 6305 6306 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6307 std::pair<SDValue, SDValue> Res = 6308 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6309 getValue(Arg0), MachinePointerInfo(Arg0)); 6310 if (Res.first.getNode()) { 6311 processIntegerCallValue(I, Res.first, false); 6312 PendingLoads.push_back(Res.second); 6313 return true; 6314 } 6315 6316 return false; 6317 } 6318 6319 /// See if we can lower a strnlen call into an optimized form. If so, return 6320 /// true and lower it, otherwise return false and it will be lowered like a 6321 /// normal call. 6322 /// The caller already checked that \p I calls the appropriate LibFunc with a 6323 /// correct prototype. 6324 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6325 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6326 6327 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6328 std::pair<SDValue, SDValue> Res = 6329 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6330 getValue(Arg0), getValue(Arg1), 6331 MachinePointerInfo(Arg0)); 6332 if (Res.first.getNode()) { 6333 processIntegerCallValue(I, Res.first, false); 6334 PendingLoads.push_back(Res.second); 6335 return true; 6336 } 6337 6338 return false; 6339 } 6340 6341 /// See if we can lower a unary floating-point operation into an SDNode with 6342 /// the specified Opcode. If so, return true and lower it, otherwise return 6343 /// false and it will be lowered like a normal call. 6344 /// The caller already checked that \p I calls the appropriate LibFunc with a 6345 /// correct prototype. 6346 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6347 unsigned Opcode) { 6348 // We already checked this call's prototype; verify it doesn't modify errno. 6349 if (!I.onlyReadsMemory()) 6350 return false; 6351 6352 SDValue Tmp = getValue(I.getArgOperand(0)); 6353 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6354 return true; 6355 } 6356 6357 /// See if we can lower a binary floating-point operation into an SDNode with 6358 /// the specified Opcode. If so, return true and lower it. Otherwise return 6359 /// false, and it will be lowered like a normal call. 6360 /// The caller already checked that \p I calls the appropriate LibFunc with a 6361 /// correct prototype. 6362 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6363 unsigned Opcode) { 6364 // We already checked this call's prototype; verify it doesn't modify errno. 6365 if (!I.onlyReadsMemory()) 6366 return false; 6367 6368 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6369 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6370 EVT VT = Tmp0.getValueType(); 6371 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6372 return true; 6373 } 6374 6375 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6376 // Handle inline assembly differently. 6377 if (isa<InlineAsm>(I.getCalledValue())) { 6378 visitInlineAsm(&I); 6379 return; 6380 } 6381 6382 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6383 computeUsesVAFloatArgument(I, MMI); 6384 6385 const char *RenameFn = nullptr; 6386 if (Function *F = I.getCalledFunction()) { 6387 if (F->isDeclaration()) { 6388 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6389 if (unsigned IID = II->getIntrinsicID(F)) { 6390 RenameFn = visitIntrinsicCall(I, IID); 6391 if (!RenameFn) 6392 return; 6393 } 6394 } 6395 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6396 RenameFn = visitIntrinsicCall(I, IID); 6397 if (!RenameFn) 6398 return; 6399 } 6400 } 6401 6402 // Check for well-known libc/libm calls. If the function is internal, it 6403 // can't be a library call. Don't do the check if marked as nobuiltin for 6404 // some reason. 6405 LibFunc Func; 6406 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6407 LibInfo->getLibFunc(*F, Func) && 6408 LibInfo->hasOptimizedCodeGen(Func)) { 6409 switch (Func) { 6410 default: break; 6411 case LibFunc_copysign: 6412 case LibFunc_copysignf: 6413 case LibFunc_copysignl: 6414 // We already checked this call's prototype; verify it doesn't modify 6415 // errno. 6416 if (I.onlyReadsMemory()) { 6417 SDValue LHS = getValue(I.getArgOperand(0)); 6418 SDValue RHS = getValue(I.getArgOperand(1)); 6419 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6420 LHS.getValueType(), LHS, RHS)); 6421 return; 6422 } 6423 break; 6424 case LibFunc_fabs: 6425 case LibFunc_fabsf: 6426 case LibFunc_fabsl: 6427 if (visitUnaryFloatCall(I, ISD::FABS)) 6428 return; 6429 break; 6430 case LibFunc_fmin: 6431 case LibFunc_fminf: 6432 case LibFunc_fminl: 6433 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6434 return; 6435 break; 6436 case LibFunc_fmax: 6437 case LibFunc_fmaxf: 6438 case LibFunc_fmaxl: 6439 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6440 return; 6441 break; 6442 case LibFunc_sin: 6443 case LibFunc_sinf: 6444 case LibFunc_sinl: 6445 if (visitUnaryFloatCall(I, ISD::FSIN)) 6446 return; 6447 break; 6448 case LibFunc_cos: 6449 case LibFunc_cosf: 6450 case LibFunc_cosl: 6451 if (visitUnaryFloatCall(I, ISD::FCOS)) 6452 return; 6453 break; 6454 case LibFunc_sqrt: 6455 case LibFunc_sqrtf: 6456 case LibFunc_sqrtl: 6457 case LibFunc_sqrt_finite: 6458 case LibFunc_sqrtf_finite: 6459 case LibFunc_sqrtl_finite: 6460 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6461 return; 6462 break; 6463 case LibFunc_floor: 6464 case LibFunc_floorf: 6465 case LibFunc_floorl: 6466 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6467 return; 6468 break; 6469 case LibFunc_nearbyint: 6470 case LibFunc_nearbyintf: 6471 case LibFunc_nearbyintl: 6472 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6473 return; 6474 break; 6475 case LibFunc_ceil: 6476 case LibFunc_ceilf: 6477 case LibFunc_ceill: 6478 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6479 return; 6480 break; 6481 case LibFunc_rint: 6482 case LibFunc_rintf: 6483 case LibFunc_rintl: 6484 if (visitUnaryFloatCall(I, ISD::FRINT)) 6485 return; 6486 break; 6487 case LibFunc_round: 6488 case LibFunc_roundf: 6489 case LibFunc_roundl: 6490 if (visitUnaryFloatCall(I, ISD::FROUND)) 6491 return; 6492 break; 6493 case LibFunc_trunc: 6494 case LibFunc_truncf: 6495 case LibFunc_truncl: 6496 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6497 return; 6498 break; 6499 case LibFunc_log2: 6500 case LibFunc_log2f: 6501 case LibFunc_log2l: 6502 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6503 return; 6504 break; 6505 case LibFunc_exp2: 6506 case LibFunc_exp2f: 6507 case LibFunc_exp2l: 6508 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6509 return; 6510 break; 6511 case LibFunc_memcmp: 6512 if (visitMemCmpCall(I)) 6513 return; 6514 break; 6515 case LibFunc_mempcpy: 6516 if (visitMemPCpyCall(I)) 6517 return; 6518 break; 6519 case LibFunc_memchr: 6520 if (visitMemChrCall(I)) 6521 return; 6522 break; 6523 case LibFunc_strcpy: 6524 if (visitStrCpyCall(I, false)) 6525 return; 6526 break; 6527 case LibFunc_stpcpy: 6528 if (visitStrCpyCall(I, true)) 6529 return; 6530 break; 6531 case LibFunc_strcmp: 6532 if (visitStrCmpCall(I)) 6533 return; 6534 break; 6535 case LibFunc_strlen: 6536 if (visitStrLenCall(I)) 6537 return; 6538 break; 6539 case LibFunc_strnlen: 6540 if (visitStrNLenCall(I)) 6541 return; 6542 break; 6543 } 6544 } 6545 } 6546 6547 SDValue Callee; 6548 if (!RenameFn) 6549 Callee = getValue(I.getCalledValue()); 6550 else 6551 Callee = DAG.getExternalSymbol( 6552 RenameFn, 6553 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6554 6555 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6556 // have to do anything here to lower funclet bundles. 6557 assert(!I.hasOperandBundlesOtherThan( 6558 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6559 "Cannot lower calls with arbitrary operand bundles!"); 6560 6561 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6562 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6563 else 6564 // Check if we can potentially perform a tail call. More detailed checking 6565 // is be done within LowerCallTo, after more information about the call is 6566 // known. 6567 LowerCallTo(&I, Callee, I.isTailCall()); 6568 } 6569 6570 namespace { 6571 6572 /// AsmOperandInfo - This contains information for each constraint that we are 6573 /// lowering. 6574 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6575 public: 6576 /// CallOperand - If this is the result output operand or a clobber 6577 /// this is null, otherwise it is the incoming operand to the CallInst. 6578 /// This gets modified as the asm is processed. 6579 SDValue CallOperand; 6580 6581 /// AssignedRegs - If this is a register or register class operand, this 6582 /// contains the set of register corresponding to the operand. 6583 RegsForValue AssignedRegs; 6584 6585 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6586 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6587 } 6588 6589 /// Whether or not this operand accesses memory 6590 bool hasMemory(const TargetLowering &TLI) const { 6591 // Indirect operand accesses access memory. 6592 if (isIndirect) 6593 return true; 6594 6595 for (const auto &Code : Codes) 6596 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6597 return true; 6598 6599 return false; 6600 } 6601 6602 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6603 /// corresponds to. If there is no Value* for this operand, it returns 6604 /// MVT::Other. 6605 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6606 const DataLayout &DL) const { 6607 if (!CallOperandVal) return MVT::Other; 6608 6609 if (isa<BasicBlock>(CallOperandVal)) 6610 return TLI.getPointerTy(DL); 6611 6612 llvm::Type *OpTy = CallOperandVal->getType(); 6613 6614 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6615 // If this is an indirect operand, the operand is a pointer to the 6616 // accessed type. 6617 if (isIndirect) { 6618 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6619 if (!PtrTy) 6620 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6621 OpTy = PtrTy->getElementType(); 6622 } 6623 6624 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6625 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6626 if (STy->getNumElements() == 1) 6627 OpTy = STy->getElementType(0); 6628 6629 // If OpTy is not a single value, it may be a struct/union that we 6630 // can tile with integers. 6631 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6632 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6633 switch (BitSize) { 6634 default: break; 6635 case 1: 6636 case 8: 6637 case 16: 6638 case 32: 6639 case 64: 6640 case 128: 6641 OpTy = IntegerType::get(Context, BitSize); 6642 break; 6643 } 6644 } 6645 6646 return TLI.getValueType(DL, OpTy, true); 6647 } 6648 }; 6649 6650 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6651 6652 } // end anonymous namespace 6653 6654 /// Make sure that the output operand \p OpInfo and its corresponding input 6655 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6656 /// out). 6657 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6658 SDISelAsmOperandInfo &MatchingOpInfo, 6659 SelectionDAG &DAG) { 6660 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6661 return; 6662 6663 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6664 const auto &TLI = DAG.getTargetLoweringInfo(); 6665 6666 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6667 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6668 OpInfo.ConstraintVT); 6669 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6670 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6671 MatchingOpInfo.ConstraintVT); 6672 if ((OpInfo.ConstraintVT.isInteger() != 6673 MatchingOpInfo.ConstraintVT.isInteger()) || 6674 (MatchRC.second != InputRC.second)) { 6675 // FIXME: error out in a more elegant fashion 6676 report_fatal_error("Unsupported asm: input constraint" 6677 " with a matching output constraint of" 6678 " incompatible type!"); 6679 } 6680 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6681 } 6682 6683 /// Get a direct memory input to behave well as an indirect operand. 6684 /// This may introduce stores, hence the need for a \p Chain. 6685 /// \return The (possibly updated) chain. 6686 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6687 SDISelAsmOperandInfo &OpInfo, 6688 SelectionDAG &DAG) { 6689 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6690 6691 // If we don't have an indirect input, put it in the constpool if we can, 6692 // otherwise spill it to a stack slot. 6693 // TODO: This isn't quite right. We need to handle these according to 6694 // the addressing mode that the constraint wants. Also, this may take 6695 // an additional register for the computation and we don't want that 6696 // either. 6697 6698 // If the operand is a float, integer, or vector constant, spill to a 6699 // constant pool entry to get its address. 6700 const Value *OpVal = OpInfo.CallOperandVal; 6701 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6702 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6703 OpInfo.CallOperand = DAG.getConstantPool( 6704 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6705 return Chain; 6706 } 6707 6708 // Otherwise, create a stack slot and emit a store to it before the asm. 6709 Type *Ty = OpVal->getType(); 6710 auto &DL = DAG.getDataLayout(); 6711 uint64_t TySize = DL.getTypeAllocSize(Ty); 6712 unsigned Align = DL.getPrefTypeAlignment(Ty); 6713 MachineFunction &MF = DAG.getMachineFunction(); 6714 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6715 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL)); 6716 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6717 MachinePointerInfo::getFixedStack(MF, SSFI)); 6718 OpInfo.CallOperand = StackSlot; 6719 6720 return Chain; 6721 } 6722 6723 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6724 /// specified operand. We prefer to assign virtual registers, to allow the 6725 /// register allocator to handle the assignment process. However, if the asm 6726 /// uses features that we can't model on machineinstrs, we have SDISel do the 6727 /// allocation. This produces generally horrible, but correct, code. 6728 /// 6729 /// OpInfo describes the operand. 6730 /// 6731 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6732 const SDLoc &DL, 6733 SDISelAsmOperandInfo &OpInfo) { 6734 LLVMContext &Context = *DAG.getContext(); 6735 6736 MachineFunction &MF = DAG.getMachineFunction(); 6737 SmallVector<unsigned, 4> Regs; 6738 6739 // If this is a constraint for a single physreg, or a constraint for a 6740 // register class, find it. 6741 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6742 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6743 OpInfo.ConstraintCode, 6744 OpInfo.ConstraintVT); 6745 6746 unsigned NumRegs = 1; 6747 if (OpInfo.ConstraintVT != MVT::Other) { 6748 // If this is a FP input in an integer register (or visa versa) insert a bit 6749 // cast of the input value. More generally, handle any case where the input 6750 // value disagrees with the register class we plan to stick this in. 6751 if (OpInfo.Type == InlineAsm::isInput && 6752 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6753 // Try to convert to the first EVT that the reg class contains. If the 6754 // types are identical size, use a bitcast to convert (e.g. two differing 6755 // vector types). 6756 MVT RegVT = *PhysReg.second->vt_begin(); 6757 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6758 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6759 RegVT, OpInfo.CallOperand); 6760 OpInfo.ConstraintVT = RegVT; 6761 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6762 // If the input is a FP value and we want it in FP registers, do a 6763 // bitcast to the corresponding integer type. This turns an f64 value 6764 // into i64, which can be passed with two i32 values on a 32-bit 6765 // machine. 6766 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6767 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6768 RegVT, OpInfo.CallOperand); 6769 OpInfo.ConstraintVT = RegVT; 6770 } 6771 } 6772 6773 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6774 } 6775 6776 MVT RegVT; 6777 EVT ValueVT = OpInfo.ConstraintVT; 6778 6779 // If this is a constraint for a specific physical register, like {r17}, 6780 // assign it now. 6781 if (unsigned AssignedReg = PhysReg.first) { 6782 const TargetRegisterClass *RC = PhysReg.second; 6783 if (OpInfo.ConstraintVT == MVT::Other) 6784 ValueVT = *RC->vt_begin(); 6785 6786 // Get the actual register value type. This is important, because the user 6787 // may have asked for (e.g.) the AX register in i32 type. We need to 6788 // remember that AX is actually i16 to get the right extension. 6789 RegVT = *RC->vt_begin(); 6790 6791 // This is a explicit reference to a physical register. 6792 Regs.push_back(AssignedReg); 6793 6794 // If this is an expanded reference, add the rest of the regs to Regs. 6795 if (NumRegs != 1) { 6796 TargetRegisterClass::iterator I = RC->begin(); 6797 for (; *I != AssignedReg; ++I) 6798 assert(I != RC->end() && "Didn't find reg!"); 6799 6800 // Already added the first reg. 6801 --NumRegs; ++I; 6802 for (; NumRegs; --NumRegs, ++I) { 6803 assert(I != RC->end() && "Ran out of registers to allocate!"); 6804 Regs.push_back(*I); 6805 } 6806 } 6807 6808 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6809 return; 6810 } 6811 6812 // Otherwise, if this was a reference to an LLVM register class, create vregs 6813 // for this reference. 6814 if (const TargetRegisterClass *RC = PhysReg.second) { 6815 RegVT = *RC->vt_begin(); 6816 if (OpInfo.ConstraintVT == MVT::Other) 6817 ValueVT = RegVT; 6818 6819 // Create the appropriate number of virtual registers. 6820 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6821 for (; NumRegs; --NumRegs) 6822 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6823 6824 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6825 return; 6826 } 6827 6828 // Otherwise, we couldn't allocate enough registers for this. 6829 } 6830 6831 static unsigned 6832 findMatchingInlineAsmOperand(unsigned OperandNo, 6833 const std::vector<SDValue> &AsmNodeOperands) { 6834 // Scan until we find the definition we already emitted of this operand. 6835 unsigned CurOp = InlineAsm::Op_FirstOperand; 6836 for (; OperandNo; --OperandNo) { 6837 // Advance to the next operand. 6838 unsigned OpFlag = 6839 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6840 assert((InlineAsm::isRegDefKind(OpFlag) || 6841 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6842 InlineAsm::isMemKind(OpFlag)) && 6843 "Skipped past definitions?"); 6844 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6845 } 6846 return CurOp; 6847 } 6848 6849 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6850 /// \return true if it has succeeded, false otherwise 6851 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6852 MVT RegVT, SelectionDAG &DAG) { 6853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6854 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6855 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6856 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6857 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6858 else 6859 return false; 6860 } 6861 return true; 6862 } 6863 6864 class ExtraFlags { 6865 unsigned Flags = 0; 6866 6867 public: 6868 explicit ExtraFlags(ImmutableCallSite CS) { 6869 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6870 if (IA->hasSideEffects()) 6871 Flags |= InlineAsm::Extra_HasSideEffects; 6872 if (IA->isAlignStack()) 6873 Flags |= InlineAsm::Extra_IsAlignStack; 6874 if (CS.isConvergent()) 6875 Flags |= InlineAsm::Extra_IsConvergent; 6876 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6877 } 6878 6879 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6880 // Ideally, we would only check against memory constraints. However, the 6881 // meaning of an Other constraint can be target-specific and we can't easily 6882 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6883 // for Other constraints as well. 6884 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6885 OpInfo.ConstraintType == TargetLowering::C_Other) { 6886 if (OpInfo.Type == InlineAsm::isInput) 6887 Flags |= InlineAsm::Extra_MayLoad; 6888 else if (OpInfo.Type == InlineAsm::isOutput) 6889 Flags |= InlineAsm::Extra_MayStore; 6890 else if (OpInfo.Type == InlineAsm::isClobber) 6891 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6892 } 6893 } 6894 6895 unsigned get() const { return Flags; } 6896 }; 6897 6898 /// visitInlineAsm - Handle a call to an InlineAsm object. 6899 /// 6900 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6901 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6902 6903 /// ConstraintOperands - Information about all of the constraints. 6904 SDISelAsmOperandInfoVector ConstraintOperands; 6905 6906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6907 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6908 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6909 6910 bool hasMemory = false; 6911 6912 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6913 ExtraFlags ExtraInfo(CS); 6914 6915 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6916 unsigned ResNo = 0; // ResNo - The result number of the next output. 6917 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6918 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6919 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6920 6921 MVT OpVT = MVT::Other; 6922 6923 // Compute the value type for each operand. 6924 if (OpInfo.Type == InlineAsm::isInput || 6925 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6926 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6927 6928 // Process the call argument. BasicBlocks are labels, currently appearing 6929 // only in asm's. 6930 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6931 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6932 } else { 6933 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6934 } 6935 6936 OpVT = 6937 OpInfo 6938 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6939 .getSimpleVT(); 6940 } 6941 6942 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6943 // The return value of the call is this value. As such, there is no 6944 // corresponding argument. 6945 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6946 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6947 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6948 STy->getElementType(ResNo)); 6949 } else { 6950 assert(ResNo == 0 && "Asm only has one result!"); 6951 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6952 } 6953 ++ResNo; 6954 } 6955 6956 OpInfo.ConstraintVT = OpVT; 6957 6958 if (!hasMemory) 6959 hasMemory = OpInfo.hasMemory(TLI); 6960 6961 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6962 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6963 auto TargetConstraint = TargetConstraints[i]; 6964 6965 // Compute the constraint code and ConstraintType to use. 6966 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6967 6968 ExtraInfo.update(TargetConstraint); 6969 } 6970 6971 SDValue Chain, Flag; 6972 6973 // We won't need to flush pending loads if this asm doesn't touch 6974 // memory and is nonvolatile. 6975 if (hasMemory || IA->hasSideEffects()) 6976 Chain = getRoot(); 6977 else 6978 Chain = DAG.getRoot(); 6979 6980 // Second pass over the constraints: compute which constraint option to use 6981 // and assign registers to constraints that want a specific physreg. 6982 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6983 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6984 6985 // If this is an output operand with a matching input operand, look up the 6986 // matching input. If their types mismatch, e.g. one is an integer, the 6987 // other is floating point, or their sizes are different, flag it as an 6988 // error. 6989 if (OpInfo.hasMatchingInput()) { 6990 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6991 patchMatchingInput(OpInfo, Input, DAG); 6992 } 6993 6994 // Compute the constraint code and ConstraintType to use. 6995 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6996 6997 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6998 OpInfo.Type == InlineAsm::isClobber) 6999 continue; 7000 7001 // If this is a memory input, and if the operand is not indirect, do what we 7002 // need to to provide an address for the memory input. 7003 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7004 !OpInfo.isIndirect) { 7005 assert((OpInfo.isMultipleAlternative || 7006 (OpInfo.Type == InlineAsm::isInput)) && 7007 "Can only indirectify direct input operands!"); 7008 7009 // Memory operands really want the address of the value. 7010 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7011 7012 // There is no longer a Value* corresponding to this operand. 7013 OpInfo.CallOperandVal = nullptr; 7014 7015 // It is now an indirect operand. 7016 OpInfo.isIndirect = true; 7017 } 7018 7019 // If this constraint is for a specific register, allocate it before 7020 // anything else. 7021 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7022 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7023 } 7024 7025 // Third pass - Loop over all of the operands, assigning virtual or physregs 7026 // to register class operands. 7027 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7028 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7029 7030 // C_Register operands have already been allocated, Other/Memory don't need 7031 // to be. 7032 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7033 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7034 } 7035 7036 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7037 std::vector<SDValue> AsmNodeOperands; 7038 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7039 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7040 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7041 7042 // If we have a !srcloc metadata node associated with it, we want to attach 7043 // this to the ultimately generated inline asm machineinstr. To do this, we 7044 // pass in the third operand as this (potentially null) inline asm MDNode. 7045 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7046 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7047 7048 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7049 // bits as operand 3. 7050 AsmNodeOperands.push_back(DAG.getTargetConstant( 7051 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7052 7053 // Loop over all of the inputs, copying the operand values into the 7054 // appropriate registers and processing the output regs. 7055 RegsForValue RetValRegs; 7056 7057 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7058 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 7059 7060 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7061 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7062 7063 switch (OpInfo.Type) { 7064 case InlineAsm::isOutput: { 7065 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7066 OpInfo.ConstraintType != TargetLowering::C_Register) { 7067 // Memory output, or 'other' output (e.g. 'X' constraint). 7068 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7069 7070 unsigned ConstraintID = 7071 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7072 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7073 "Failed to convert memory constraint code to constraint id."); 7074 7075 // Add information to the INLINEASM node to know about this output. 7076 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7077 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7078 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7079 MVT::i32)); 7080 AsmNodeOperands.push_back(OpInfo.CallOperand); 7081 break; 7082 } 7083 7084 // Otherwise, this is a register or register class output. 7085 7086 // Copy the output from the appropriate register. Find a register that 7087 // we can use. 7088 if (OpInfo.AssignedRegs.Regs.empty()) { 7089 emitInlineAsmError( 7090 CS, "couldn't allocate output register for constraint '" + 7091 Twine(OpInfo.ConstraintCode) + "'"); 7092 return; 7093 } 7094 7095 // If this is an indirect operand, store through the pointer after the 7096 // asm. 7097 if (OpInfo.isIndirect) { 7098 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7099 OpInfo.CallOperandVal)); 7100 } else { 7101 // This is the result value of the call. 7102 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7103 // Concatenate this output onto the outputs list. 7104 RetValRegs.append(OpInfo.AssignedRegs); 7105 } 7106 7107 // Add information to the INLINEASM node to know that this register is 7108 // set. 7109 OpInfo.AssignedRegs 7110 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7111 ? InlineAsm::Kind_RegDefEarlyClobber 7112 : InlineAsm::Kind_RegDef, 7113 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7114 break; 7115 } 7116 case InlineAsm::isInput: { 7117 SDValue InOperandVal = OpInfo.CallOperand; 7118 7119 if (OpInfo.isMatchingInputConstraint()) { 7120 // If this is required to match an output register we have already set, 7121 // just use its register. 7122 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7123 AsmNodeOperands); 7124 unsigned OpFlag = 7125 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7126 if (InlineAsm::isRegDefKind(OpFlag) || 7127 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7128 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7129 if (OpInfo.isIndirect) { 7130 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7131 emitInlineAsmError(CS, "inline asm not supported yet:" 7132 " don't know how to handle tied " 7133 "indirect register inputs"); 7134 return; 7135 } 7136 7137 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7138 SmallVector<unsigned, 4> Regs; 7139 7140 if (!createVirtualRegs(Regs, 7141 InlineAsm::getNumOperandRegisters(OpFlag), 7142 RegVT, DAG)) { 7143 emitInlineAsmError(CS, "inline asm error: This value type register " 7144 "class is not natively supported!"); 7145 return; 7146 } 7147 7148 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7149 7150 SDLoc dl = getCurSDLoc(); 7151 // Use the produced MatchedRegs object to 7152 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7153 CS.getInstruction()); 7154 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7155 true, OpInfo.getMatchedOperand(), dl, 7156 DAG, AsmNodeOperands); 7157 break; 7158 } 7159 7160 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7161 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7162 "Unexpected number of operands"); 7163 // Add information to the INLINEASM node to know about this input. 7164 // See InlineAsm.h isUseOperandTiedToDef. 7165 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7166 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7167 OpInfo.getMatchedOperand()); 7168 AsmNodeOperands.push_back(DAG.getTargetConstant( 7169 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7170 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7171 break; 7172 } 7173 7174 // Treat indirect 'X' constraint as memory. 7175 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7176 OpInfo.isIndirect) 7177 OpInfo.ConstraintType = TargetLowering::C_Memory; 7178 7179 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7180 std::vector<SDValue> Ops; 7181 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7182 Ops, DAG); 7183 if (Ops.empty()) { 7184 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7185 Twine(OpInfo.ConstraintCode) + "'"); 7186 return; 7187 } 7188 7189 // Add information to the INLINEASM node to know about this input. 7190 unsigned ResOpType = 7191 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7192 AsmNodeOperands.push_back(DAG.getTargetConstant( 7193 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7194 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7195 break; 7196 } 7197 7198 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7199 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7200 assert(InOperandVal.getValueType() == 7201 TLI.getPointerTy(DAG.getDataLayout()) && 7202 "Memory operands expect pointer values"); 7203 7204 unsigned ConstraintID = 7205 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7206 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7207 "Failed to convert memory constraint code to constraint id."); 7208 7209 // Add information to the INLINEASM node to know about this input. 7210 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7211 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7212 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7213 getCurSDLoc(), 7214 MVT::i32)); 7215 AsmNodeOperands.push_back(InOperandVal); 7216 break; 7217 } 7218 7219 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7220 OpInfo.ConstraintType == TargetLowering::C_Register) && 7221 "Unknown constraint type!"); 7222 7223 // TODO: Support this. 7224 if (OpInfo.isIndirect) { 7225 emitInlineAsmError( 7226 CS, "Don't know how to handle indirect register inputs yet " 7227 "for constraint '" + 7228 Twine(OpInfo.ConstraintCode) + "'"); 7229 return; 7230 } 7231 7232 // Copy the input into the appropriate registers. 7233 if (OpInfo.AssignedRegs.Regs.empty()) { 7234 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7235 Twine(OpInfo.ConstraintCode) + "'"); 7236 return; 7237 } 7238 7239 SDLoc dl = getCurSDLoc(); 7240 7241 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7242 Chain, &Flag, CS.getInstruction()); 7243 7244 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7245 dl, DAG, AsmNodeOperands); 7246 break; 7247 } 7248 case InlineAsm::isClobber: { 7249 // Add the clobbered value to the operand list, so that the register 7250 // allocator is aware that the physreg got clobbered. 7251 if (!OpInfo.AssignedRegs.Regs.empty()) 7252 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7253 false, 0, getCurSDLoc(), DAG, 7254 AsmNodeOperands); 7255 break; 7256 } 7257 } 7258 } 7259 7260 // Finish up input operands. Set the input chain and add the flag last. 7261 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7262 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7263 7264 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7265 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7266 Flag = Chain.getValue(1); 7267 7268 // If this asm returns a register value, copy the result from that register 7269 // and set it as the value of the call. 7270 if (!RetValRegs.Regs.empty()) { 7271 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7272 Chain, &Flag, CS.getInstruction()); 7273 7274 // FIXME: Why don't we do this for inline asms with MRVs? 7275 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7276 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7277 7278 // If any of the results of the inline asm is a vector, it may have the 7279 // wrong width/num elts. This can happen for register classes that can 7280 // contain multiple different value types. The preg or vreg allocated may 7281 // not have the same VT as was expected. Convert it to the right type 7282 // with bit_convert. 7283 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7284 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7285 ResultType, Val); 7286 7287 } else if (ResultType != Val.getValueType() && 7288 ResultType.isInteger() && Val.getValueType().isInteger()) { 7289 // If a result value was tied to an input value, the computed result may 7290 // have a wider width than the expected result. Extract the relevant 7291 // portion. 7292 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7293 } 7294 7295 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7296 } 7297 7298 setValue(CS.getInstruction(), Val); 7299 // Don't need to use this as a chain in this case. 7300 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7301 return; 7302 } 7303 7304 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7305 7306 // Process indirect outputs, first output all of the flagged copies out of 7307 // physregs. 7308 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7309 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7310 const Value *Ptr = IndirectStoresToEmit[i].second; 7311 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7312 Chain, &Flag, IA); 7313 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7314 } 7315 7316 // Emit the non-flagged stores from the physregs. 7317 SmallVector<SDValue, 8> OutChains; 7318 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7319 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7320 getValue(StoresToEmit[i].second), 7321 MachinePointerInfo(StoresToEmit[i].second)); 7322 OutChains.push_back(Val); 7323 } 7324 7325 if (!OutChains.empty()) 7326 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7327 7328 DAG.setRoot(Chain); 7329 } 7330 7331 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7332 const Twine &Message) { 7333 LLVMContext &Ctx = *DAG.getContext(); 7334 Ctx.emitError(CS.getInstruction(), Message); 7335 7336 // Make sure we leave the DAG in a valid state 7337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7338 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7339 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7340 } 7341 7342 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7343 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7344 MVT::Other, getRoot(), 7345 getValue(I.getArgOperand(0)), 7346 DAG.getSrcValue(I.getArgOperand(0)))); 7347 } 7348 7349 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7351 const DataLayout &DL = DAG.getDataLayout(); 7352 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7353 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7354 DAG.getSrcValue(I.getOperand(0)), 7355 DL.getABITypeAlignment(I.getType())); 7356 setValue(&I, V); 7357 DAG.setRoot(V.getValue(1)); 7358 } 7359 7360 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7361 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7362 MVT::Other, getRoot(), 7363 getValue(I.getArgOperand(0)), 7364 DAG.getSrcValue(I.getArgOperand(0)))); 7365 } 7366 7367 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7368 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7369 MVT::Other, getRoot(), 7370 getValue(I.getArgOperand(0)), 7371 getValue(I.getArgOperand(1)), 7372 DAG.getSrcValue(I.getArgOperand(0)), 7373 DAG.getSrcValue(I.getArgOperand(1)))); 7374 } 7375 7376 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7377 const Instruction &I, 7378 SDValue Op) { 7379 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7380 if (!Range) 7381 return Op; 7382 7383 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7384 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7385 return Op; 7386 7387 APInt Lo = CR.getUnsignedMin(); 7388 if (!Lo.isMinValue()) 7389 return Op; 7390 7391 APInt Hi = CR.getUnsignedMax(); 7392 unsigned Bits = Hi.getActiveBits(); 7393 7394 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7395 7396 SDLoc SL = getCurSDLoc(); 7397 7398 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7399 DAG.getValueType(SmallVT)); 7400 unsigned NumVals = Op.getNode()->getNumValues(); 7401 if (NumVals == 1) 7402 return ZExt; 7403 7404 SmallVector<SDValue, 4> Ops; 7405 7406 Ops.push_back(ZExt); 7407 for (unsigned I = 1; I != NumVals; ++I) 7408 Ops.push_back(Op.getValue(I)); 7409 7410 return DAG.getMergeValues(Ops, SL); 7411 } 7412 7413 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7414 /// the call being lowered. 7415 /// 7416 /// This is a helper for lowering intrinsics that follow a target calling 7417 /// convention or require stack pointer adjustment. Only a subset of the 7418 /// intrinsic's operands need to participate in the calling convention. 7419 void SelectionDAGBuilder::populateCallLoweringInfo( 7420 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7421 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7422 bool IsPatchPoint) { 7423 TargetLowering::ArgListTy Args; 7424 Args.reserve(NumArgs); 7425 7426 // Populate the argument list. 7427 // Attributes for args start at offset 1, after the return attribute. 7428 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7429 ArgI != ArgE; ++ArgI) { 7430 const Value *V = CS->getOperand(ArgI); 7431 7432 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7433 7434 TargetLowering::ArgListEntry Entry; 7435 Entry.Node = getValue(V); 7436 Entry.Ty = V->getType(); 7437 Entry.setAttributes(&CS, AttrI); 7438 Args.push_back(Entry); 7439 } 7440 7441 CLI.setDebugLoc(getCurSDLoc()) 7442 .setChain(getRoot()) 7443 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7444 .setDiscardResult(CS->use_empty()) 7445 .setIsPatchPoint(IsPatchPoint); 7446 } 7447 7448 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7449 /// or patchpoint target node's operand list. 7450 /// 7451 /// Constants are converted to TargetConstants purely as an optimization to 7452 /// avoid constant materialization and register allocation. 7453 /// 7454 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7455 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7456 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7457 /// address materialization and register allocation, but may also be required 7458 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7459 /// alloca in the entry block, then the runtime may assume that the alloca's 7460 /// StackMap location can be read immediately after compilation and that the 7461 /// location is valid at any point during execution (this is similar to the 7462 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7463 /// only available in a register, then the runtime would need to trap when 7464 /// execution reaches the StackMap in order to read the alloca's location. 7465 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7466 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7467 SelectionDAGBuilder &Builder) { 7468 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7469 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7470 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7471 Ops.push_back( 7472 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7473 Ops.push_back( 7474 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7475 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7476 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7477 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7478 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7479 } else 7480 Ops.push_back(OpVal); 7481 } 7482 } 7483 7484 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7485 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7486 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7487 // [live variables...]) 7488 7489 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7490 7491 SDValue Chain, InFlag, Callee, NullPtr; 7492 SmallVector<SDValue, 32> Ops; 7493 7494 SDLoc DL = getCurSDLoc(); 7495 Callee = getValue(CI.getCalledValue()); 7496 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7497 7498 // The stackmap intrinsic only records the live variables (the arguemnts 7499 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7500 // intrinsic, this won't be lowered to a function call. This means we don't 7501 // have to worry about calling conventions and target specific lowering code. 7502 // Instead we perform the call lowering right here. 7503 // 7504 // chain, flag = CALLSEQ_START(chain, 0) 7505 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7506 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7507 // 7508 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7509 InFlag = Chain.getValue(1); 7510 7511 // Add the <id> and <numBytes> constants. 7512 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7513 Ops.push_back(DAG.getTargetConstant( 7514 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7515 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7516 Ops.push_back(DAG.getTargetConstant( 7517 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7518 MVT::i32)); 7519 7520 // Push live variables for the stack map. 7521 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7522 7523 // We are not pushing any register mask info here on the operands list, 7524 // because the stackmap doesn't clobber anything. 7525 7526 // Push the chain and the glue flag. 7527 Ops.push_back(Chain); 7528 Ops.push_back(InFlag); 7529 7530 // Create the STACKMAP node. 7531 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7532 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7533 Chain = SDValue(SM, 0); 7534 InFlag = Chain.getValue(1); 7535 7536 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7537 7538 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7539 7540 // Set the root to the target-lowered call chain. 7541 DAG.setRoot(Chain); 7542 7543 // Inform the Frame Information that we have a stackmap in this function. 7544 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7545 } 7546 7547 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7548 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7549 const BasicBlock *EHPadBB) { 7550 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7551 // i32 <numBytes>, 7552 // i8* <target>, 7553 // i32 <numArgs>, 7554 // [Args...], 7555 // [live variables...]) 7556 7557 CallingConv::ID CC = CS.getCallingConv(); 7558 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7559 bool HasDef = !CS->getType()->isVoidTy(); 7560 SDLoc dl = getCurSDLoc(); 7561 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7562 7563 // Handle immediate and symbolic callees. 7564 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7565 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7566 /*isTarget=*/true); 7567 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7568 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7569 SDLoc(SymbolicCallee), 7570 SymbolicCallee->getValueType(0)); 7571 7572 // Get the real number of arguments participating in the call <numArgs> 7573 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7574 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7575 7576 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7577 // Intrinsics include all meta-operands up to but not including CC. 7578 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7579 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7580 "Not enough arguments provided to the patchpoint intrinsic"); 7581 7582 // For AnyRegCC the arguments are lowered later on manually. 7583 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7584 Type *ReturnTy = 7585 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7586 7587 TargetLowering::CallLoweringInfo CLI(DAG); 7588 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7589 true); 7590 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7591 7592 SDNode *CallEnd = Result.second.getNode(); 7593 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7594 CallEnd = CallEnd->getOperand(0).getNode(); 7595 7596 /// Get a call instruction from the call sequence chain. 7597 /// Tail calls are not allowed. 7598 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7599 "Expected a callseq node."); 7600 SDNode *Call = CallEnd->getOperand(0).getNode(); 7601 bool HasGlue = Call->getGluedNode(); 7602 7603 // Replace the target specific call node with the patchable intrinsic. 7604 SmallVector<SDValue, 8> Ops; 7605 7606 // Add the <id> and <numBytes> constants. 7607 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7608 Ops.push_back(DAG.getTargetConstant( 7609 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7610 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7611 Ops.push_back(DAG.getTargetConstant( 7612 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7613 MVT::i32)); 7614 7615 // Add the callee. 7616 Ops.push_back(Callee); 7617 7618 // Adjust <numArgs> to account for any arguments that have been passed on the 7619 // stack instead. 7620 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7621 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7622 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7623 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7624 7625 // Add the calling convention 7626 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7627 7628 // Add the arguments we omitted previously. The register allocator should 7629 // place these in any free register. 7630 if (IsAnyRegCC) 7631 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7632 Ops.push_back(getValue(CS.getArgument(i))); 7633 7634 // Push the arguments from the call instruction up to the register mask. 7635 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7636 Ops.append(Call->op_begin() + 2, e); 7637 7638 // Push live variables for the stack map. 7639 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7640 7641 // Push the register mask info. 7642 if (HasGlue) 7643 Ops.push_back(*(Call->op_end()-2)); 7644 else 7645 Ops.push_back(*(Call->op_end()-1)); 7646 7647 // Push the chain (this is originally the first operand of the call, but 7648 // becomes now the last or second to last operand). 7649 Ops.push_back(*(Call->op_begin())); 7650 7651 // Push the glue flag (last operand). 7652 if (HasGlue) 7653 Ops.push_back(*(Call->op_end()-1)); 7654 7655 SDVTList NodeTys; 7656 if (IsAnyRegCC && HasDef) { 7657 // Create the return types based on the intrinsic definition 7658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7659 SmallVector<EVT, 3> ValueVTs; 7660 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7661 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7662 7663 // There is always a chain and a glue type at the end 7664 ValueVTs.push_back(MVT::Other); 7665 ValueVTs.push_back(MVT::Glue); 7666 NodeTys = DAG.getVTList(ValueVTs); 7667 } else 7668 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7669 7670 // Replace the target specific call node with a PATCHPOINT node. 7671 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7672 dl, NodeTys, Ops); 7673 7674 // Update the NodeMap. 7675 if (HasDef) { 7676 if (IsAnyRegCC) 7677 setValue(CS.getInstruction(), SDValue(MN, 0)); 7678 else 7679 setValue(CS.getInstruction(), Result.first); 7680 } 7681 7682 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7683 // call sequence. Furthermore the location of the chain and glue can change 7684 // when the AnyReg calling convention is used and the intrinsic returns a 7685 // value. 7686 if (IsAnyRegCC && HasDef) { 7687 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7688 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7689 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7690 } else 7691 DAG.ReplaceAllUsesWith(Call, MN); 7692 DAG.DeleteNode(Call); 7693 7694 // Inform the Frame Information that we have a patchpoint in this function. 7695 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7696 } 7697 7698 /// Returns an AttributeList representing the attributes applied to the return 7699 /// value of the given call. 7700 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7701 SmallVector<Attribute::AttrKind, 2> Attrs; 7702 if (CLI.RetSExt) 7703 Attrs.push_back(Attribute::SExt); 7704 if (CLI.RetZExt) 7705 Attrs.push_back(Attribute::ZExt); 7706 if (CLI.IsInReg) 7707 Attrs.push_back(Attribute::InReg); 7708 7709 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 7710 Attrs); 7711 } 7712 7713 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7714 /// implementation, which just calls LowerCall. 7715 /// FIXME: When all targets are 7716 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7717 std::pair<SDValue, SDValue> 7718 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7719 // Handle the incoming return values from the call. 7720 CLI.Ins.clear(); 7721 Type *OrigRetTy = CLI.RetTy; 7722 SmallVector<EVT, 4> RetTys; 7723 SmallVector<uint64_t, 4> Offsets; 7724 auto &DL = CLI.DAG.getDataLayout(); 7725 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7726 7727 SmallVector<ISD::OutputArg, 4> Outs; 7728 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7729 7730 bool CanLowerReturn = 7731 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7732 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7733 7734 SDValue DemoteStackSlot; 7735 int DemoteStackIdx = -100; 7736 if (!CanLowerReturn) { 7737 // FIXME: equivalent assert? 7738 // assert(!CS.hasInAllocaArgument() && 7739 // "sret demotion is incompatible with inalloca"); 7740 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7741 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7742 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7743 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7744 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7745 7746 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7747 ArgListEntry Entry; 7748 Entry.Node = DemoteStackSlot; 7749 Entry.Ty = StackSlotPtrType; 7750 Entry.IsSExt = false; 7751 Entry.IsZExt = false; 7752 Entry.IsInReg = false; 7753 Entry.IsSRet = true; 7754 Entry.IsNest = false; 7755 Entry.IsByVal = false; 7756 Entry.IsReturned = false; 7757 Entry.IsSwiftSelf = false; 7758 Entry.IsSwiftError = false; 7759 Entry.Alignment = Align; 7760 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7761 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7762 7763 // sret demotion isn't compatible with tail-calls, since the sret argument 7764 // points into the callers stack frame. 7765 CLI.IsTailCall = false; 7766 } else { 7767 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7768 EVT VT = RetTys[I]; 7769 MVT RegisterVT = 7770 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 7771 unsigned NumRegs = 7772 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 7773 for (unsigned i = 0; i != NumRegs; ++i) { 7774 ISD::InputArg MyFlags; 7775 MyFlags.VT = RegisterVT; 7776 MyFlags.ArgVT = VT; 7777 MyFlags.Used = CLI.IsReturnValueUsed; 7778 if (CLI.RetSExt) 7779 MyFlags.Flags.setSExt(); 7780 if (CLI.RetZExt) 7781 MyFlags.Flags.setZExt(); 7782 if (CLI.IsInReg) 7783 MyFlags.Flags.setInReg(); 7784 CLI.Ins.push_back(MyFlags); 7785 } 7786 } 7787 } 7788 7789 // We push in swifterror return as the last element of CLI.Ins. 7790 ArgListTy &Args = CLI.getArgs(); 7791 if (supportSwiftError()) { 7792 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7793 if (Args[i].IsSwiftError) { 7794 ISD::InputArg MyFlags; 7795 MyFlags.VT = getPointerTy(DL); 7796 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7797 MyFlags.Flags.setSwiftError(); 7798 CLI.Ins.push_back(MyFlags); 7799 } 7800 } 7801 } 7802 7803 // Handle all of the outgoing arguments. 7804 CLI.Outs.clear(); 7805 CLI.OutVals.clear(); 7806 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7807 SmallVector<EVT, 4> ValueVTs; 7808 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7809 Type *FinalType = Args[i].Ty; 7810 if (Args[i].IsByVal) 7811 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7812 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7813 FinalType, CLI.CallConv, CLI.IsVarArg); 7814 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7815 ++Value) { 7816 EVT VT = ValueVTs[Value]; 7817 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7818 SDValue Op = SDValue(Args[i].Node.getNode(), 7819 Args[i].Node.getResNo() + Value); 7820 ISD::ArgFlagsTy Flags; 7821 7822 // Certain targets (such as MIPS), may have a different ABI alignment 7823 // for a type depending on the context. Give the target a chance to 7824 // specify the alignment it wants. 7825 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 7826 7827 if (Args[i].IsZExt) 7828 Flags.setZExt(); 7829 if (Args[i].IsSExt) 7830 Flags.setSExt(); 7831 if (Args[i].IsInReg) { 7832 // If we are using vectorcall calling convention, a structure that is 7833 // passed InReg - is surely an HVA 7834 if (CLI.CallConv == CallingConv::X86_VectorCall && 7835 isa<StructType>(FinalType)) { 7836 // The first value of a structure is marked 7837 if (0 == Value) 7838 Flags.setHvaStart(); 7839 Flags.setHva(); 7840 } 7841 // Set InReg Flag 7842 Flags.setInReg(); 7843 } 7844 if (Args[i].IsSRet) 7845 Flags.setSRet(); 7846 if (Args[i].IsSwiftSelf) 7847 Flags.setSwiftSelf(); 7848 if (Args[i].IsSwiftError) 7849 Flags.setSwiftError(); 7850 if (Args[i].IsByVal) 7851 Flags.setByVal(); 7852 if (Args[i].IsInAlloca) { 7853 Flags.setInAlloca(); 7854 // Set the byval flag for CCAssignFn callbacks that don't know about 7855 // inalloca. This way we can know how many bytes we should've allocated 7856 // and how many bytes a callee cleanup function will pop. If we port 7857 // inalloca to more targets, we'll have to add custom inalloca handling 7858 // in the various CC lowering callbacks. 7859 Flags.setByVal(); 7860 } 7861 if (Args[i].IsByVal || Args[i].IsInAlloca) { 7862 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7863 Type *ElementTy = Ty->getElementType(); 7864 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7865 // For ByVal, alignment should come from FE. BE will guess if this 7866 // info is not there but there are cases it cannot get right. 7867 unsigned FrameAlign; 7868 if (Args[i].Alignment) 7869 FrameAlign = Args[i].Alignment; 7870 else 7871 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7872 Flags.setByValAlign(FrameAlign); 7873 } 7874 if (Args[i].IsNest) 7875 Flags.setNest(); 7876 if (NeedsRegBlock) 7877 Flags.setInConsecutiveRegs(); 7878 Flags.setOrigAlign(OriginalAlignment); 7879 7880 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 7881 unsigned NumParts = 7882 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 7883 SmallVector<SDValue, 4> Parts(NumParts); 7884 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7885 7886 if (Args[i].IsSExt) 7887 ExtendKind = ISD::SIGN_EXTEND; 7888 else if (Args[i].IsZExt) 7889 ExtendKind = ISD::ZERO_EXTEND; 7890 7891 // Conservatively only handle 'returned' on non-vectors for now 7892 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 7893 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7894 "unexpected use of 'returned'"); 7895 // Before passing 'returned' to the target lowering code, ensure that 7896 // either the register MVT and the actual EVT are the same size or that 7897 // the return value and argument are extended in the same way; in these 7898 // cases it's safe to pass the argument register value unchanged as the 7899 // return register value (although it's at the target's option whether 7900 // to do so) 7901 // TODO: allow code generation to take advantage of partially preserved 7902 // registers rather than clobbering the entire register when the 7903 // parameter extension method is not compatible with the return 7904 // extension method 7905 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7906 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 7907 CLI.RetZExt == Args[i].IsZExt)) 7908 Flags.setReturned(); 7909 } 7910 7911 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7912 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind, 7913 true); 7914 7915 for (unsigned j = 0; j != NumParts; ++j) { 7916 // if it isn't first piece, alignment must be 1 7917 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7918 i < CLI.NumFixedArgs, 7919 i, j*Parts[j].getValueType().getStoreSize()); 7920 if (NumParts > 1 && j == 0) 7921 MyFlags.Flags.setSplit(); 7922 else if (j != 0) { 7923 MyFlags.Flags.setOrigAlign(1); 7924 if (j == NumParts - 1) 7925 MyFlags.Flags.setSplitEnd(); 7926 } 7927 7928 CLI.Outs.push_back(MyFlags); 7929 CLI.OutVals.push_back(Parts[j]); 7930 } 7931 7932 if (NeedsRegBlock && Value == NumValues - 1) 7933 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7934 } 7935 } 7936 7937 SmallVector<SDValue, 4> InVals; 7938 CLI.Chain = LowerCall(CLI, InVals); 7939 7940 // Update CLI.InVals to use outside of this function. 7941 CLI.InVals = InVals; 7942 7943 // Verify that the target's LowerCall behaved as expected. 7944 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7945 "LowerCall didn't return a valid chain!"); 7946 assert((!CLI.IsTailCall || InVals.empty()) && 7947 "LowerCall emitted a return value for a tail call!"); 7948 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7949 "LowerCall didn't emit the correct number of values!"); 7950 7951 // For a tail call, the return value is merely live-out and there aren't 7952 // any nodes in the DAG representing it. Return a special value to 7953 // indicate that a tail call has been emitted and no more Instructions 7954 // should be processed in the current block. 7955 if (CLI.IsTailCall) { 7956 CLI.DAG.setRoot(CLI.Chain); 7957 return std::make_pair(SDValue(), SDValue()); 7958 } 7959 7960 #ifndef NDEBUG 7961 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7962 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7963 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7964 "LowerCall emitted a value with the wrong type!"); 7965 } 7966 #endif 7967 7968 SmallVector<SDValue, 4> ReturnValues; 7969 if (!CanLowerReturn) { 7970 // The instruction result is the result of loading from the 7971 // hidden sret parameter. 7972 SmallVector<EVT, 1> PVTs; 7973 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7974 7975 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7976 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7977 EVT PtrVT = PVTs[0]; 7978 7979 unsigned NumValues = RetTys.size(); 7980 ReturnValues.resize(NumValues); 7981 SmallVector<SDValue, 4> Chains(NumValues); 7982 7983 // An aggregate return value cannot wrap around the address space, so 7984 // offsets to its parts don't wrap either. 7985 SDNodeFlags Flags; 7986 Flags.setNoUnsignedWrap(true); 7987 7988 for (unsigned i = 0; i < NumValues; ++i) { 7989 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7990 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7991 PtrVT), &Flags); 7992 SDValue L = CLI.DAG.getLoad( 7993 RetTys[i], CLI.DL, CLI.Chain, Add, 7994 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7995 DemoteStackIdx, Offsets[i]), 7996 /* Alignment = */ 1); 7997 ReturnValues[i] = L; 7998 Chains[i] = L.getValue(1); 7999 } 8000 8001 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8002 } else { 8003 // Collect the legal value parts into potentially illegal values 8004 // that correspond to the original function's return values. 8005 Optional<ISD::NodeType> AssertOp; 8006 if (CLI.RetSExt) 8007 AssertOp = ISD::AssertSext; 8008 else if (CLI.RetZExt) 8009 AssertOp = ISD::AssertZext; 8010 unsigned CurReg = 0; 8011 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8012 EVT VT = RetTys[I]; 8013 MVT RegisterVT = 8014 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8015 unsigned NumRegs = 8016 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8017 8018 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8019 NumRegs, RegisterVT, VT, nullptr, 8020 AssertOp, true)); 8021 CurReg += NumRegs; 8022 } 8023 8024 // For a function returning void, there is no return value. We can't create 8025 // such a node, so we just return a null return value in that case. In 8026 // that case, nothing will actually look at the value. 8027 if (ReturnValues.empty()) 8028 return std::make_pair(SDValue(), CLI.Chain); 8029 } 8030 8031 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8032 CLI.DAG.getVTList(RetTys), ReturnValues); 8033 return std::make_pair(Res, CLI.Chain); 8034 } 8035 8036 void TargetLowering::LowerOperationWrapper(SDNode *N, 8037 SmallVectorImpl<SDValue> &Results, 8038 SelectionDAG &DAG) const { 8039 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8040 Results.push_back(Res); 8041 } 8042 8043 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8044 llvm_unreachable("LowerOperation not implemented for this target!"); 8045 } 8046 8047 void 8048 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8049 SDValue Op = getNonRegisterValue(V); 8050 assert((Op.getOpcode() != ISD::CopyFromReg || 8051 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8052 "Copy from a reg to the same reg!"); 8053 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8054 8055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8056 // If this is an InlineAsm we have to match the registers required, not the 8057 // notional registers required by the type. 8058 bool IsABIRegCopy = 8059 V && ((isa<CallInst>(V) && 8060 !(static_cast<const CallInst *>(V))->isInlineAsm()) || 8061 isa<ReturnInst>(V)); 8062 8063 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8064 V->getType(), IsABIRegCopy); 8065 SDValue Chain = DAG.getEntryNode(); 8066 8067 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8068 FuncInfo.PreferredExtendType.end()) 8069 ? ISD::ANY_EXTEND 8070 : FuncInfo.PreferredExtendType[V]; 8071 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8072 PendingExports.push_back(Chain); 8073 } 8074 8075 #include "llvm/CodeGen/SelectionDAGISel.h" 8076 8077 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8078 /// entry block, return true. This includes arguments used by switches, since 8079 /// the switch may expand into multiple basic blocks. 8080 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8081 // With FastISel active, we may be splitting blocks, so force creation 8082 // of virtual registers for all non-dead arguments. 8083 if (FastISel) 8084 return A->use_empty(); 8085 8086 const BasicBlock &Entry = A->getParent()->front(); 8087 for (const User *U : A->users()) 8088 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8089 return false; // Use not in entry block. 8090 8091 return true; 8092 } 8093 8094 typedef DenseMap<const Argument *, 8095 std::pair<const AllocaInst *, const StoreInst *>> 8096 ArgCopyElisionMapTy; 8097 8098 /// Scan the entry block of the function in FuncInfo for arguments that look 8099 /// like copies into a local alloca. Record any copied arguments in 8100 /// ArgCopyElisionCandidates. 8101 static void 8102 findArgumentCopyElisionCandidates(const DataLayout &DL, 8103 FunctionLoweringInfo *FuncInfo, 8104 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8105 // Record the state of every static alloca used in the entry block. Argument 8106 // allocas are all used in the entry block, so we need approximately as many 8107 // entries as we have arguments. 8108 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8109 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8110 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8111 StaticAllocas.reserve(NumArgs * 2); 8112 8113 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8114 if (!V) 8115 return nullptr; 8116 V = V->stripPointerCasts(); 8117 const auto *AI = dyn_cast<AllocaInst>(V); 8118 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8119 return nullptr; 8120 auto Iter = StaticAllocas.insert({AI, Unknown}); 8121 return &Iter.first->second; 8122 }; 8123 8124 // Look for stores of arguments to static allocas. Look through bitcasts and 8125 // GEPs to handle type coercions, as long as the alloca is fully initialized 8126 // by the store. Any non-store use of an alloca escapes it and any subsequent 8127 // unanalyzed store might write it. 8128 // FIXME: Handle structs initialized with multiple stores. 8129 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8130 // Look for stores, and handle non-store uses conservatively. 8131 const auto *SI = dyn_cast<StoreInst>(&I); 8132 if (!SI) { 8133 // We will look through cast uses, so ignore them completely. 8134 if (I.isCast()) 8135 continue; 8136 // Ignore debug info intrinsics, they don't escape or store to allocas. 8137 if (isa<DbgInfoIntrinsic>(I)) 8138 continue; 8139 // This is an unknown instruction. Assume it escapes or writes to all 8140 // static alloca operands. 8141 for (const Use &U : I.operands()) { 8142 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8143 *Info = StaticAllocaInfo::Clobbered; 8144 } 8145 continue; 8146 } 8147 8148 // If the stored value is a static alloca, mark it as escaped. 8149 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8150 *Info = StaticAllocaInfo::Clobbered; 8151 8152 // Check if the destination is a static alloca. 8153 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8154 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8155 if (!Info) 8156 continue; 8157 const AllocaInst *AI = cast<AllocaInst>(Dst); 8158 8159 // Skip allocas that have been initialized or clobbered. 8160 if (*Info != StaticAllocaInfo::Unknown) 8161 continue; 8162 8163 // Check if the stored value is an argument, and that this store fully 8164 // initializes the alloca. Don't elide copies from the same argument twice. 8165 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8166 const auto *Arg = dyn_cast<Argument>(Val); 8167 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8168 Arg->getType()->isEmptyTy() || 8169 DL.getTypeStoreSize(Arg->getType()) != 8170 DL.getTypeAllocSize(AI->getAllocatedType()) || 8171 ArgCopyElisionCandidates.count(Arg)) { 8172 *Info = StaticAllocaInfo::Clobbered; 8173 continue; 8174 } 8175 8176 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8177 8178 // Mark this alloca and store for argument copy elision. 8179 *Info = StaticAllocaInfo::Elidable; 8180 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8181 8182 // Stop scanning if we've seen all arguments. This will happen early in -O0 8183 // builds, which is useful, because -O0 builds have large entry blocks and 8184 // many allocas. 8185 if (ArgCopyElisionCandidates.size() == NumArgs) 8186 break; 8187 } 8188 } 8189 8190 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8191 /// ArgVal is a load from a suitable fixed stack object. 8192 static void tryToElideArgumentCopy( 8193 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8194 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8195 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8196 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8197 SDValue ArgVal, bool &ArgHasUses) { 8198 // Check if this is a load from a fixed stack object. 8199 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8200 if (!LNode) 8201 return; 8202 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8203 if (!FINode) 8204 return; 8205 8206 // Check that the fixed stack object is the right size and alignment. 8207 // Look at the alignment that the user wrote on the alloca instead of looking 8208 // at the stack object. 8209 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8210 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8211 const AllocaInst *AI = ArgCopyIter->second.first; 8212 int FixedIndex = FINode->getIndex(); 8213 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8214 int OldIndex = AllocaIndex; 8215 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8216 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8217 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8218 "object size\n"); 8219 return; 8220 } 8221 unsigned RequiredAlignment = AI->getAlignment(); 8222 if (!RequiredAlignment) { 8223 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8224 AI->getAllocatedType()); 8225 } 8226 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8227 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8228 "greater than stack argument alignment (" 8229 << RequiredAlignment << " vs " 8230 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8231 return; 8232 } 8233 8234 // Perform the elision. Delete the old stack object and replace its only use 8235 // in the variable info map. Mark the stack object as mutable. 8236 DEBUG({ 8237 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8238 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8239 << '\n'; 8240 }); 8241 MFI.RemoveStackObject(OldIndex); 8242 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8243 AllocaIndex = FixedIndex; 8244 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8245 Chains.push_back(ArgVal.getValue(1)); 8246 8247 // Avoid emitting code for the store implementing the copy. 8248 const StoreInst *SI = ArgCopyIter->second.second; 8249 ElidedArgCopyInstrs.insert(SI); 8250 8251 // Check for uses of the argument again so that we can avoid exporting ArgVal 8252 // if it is't used by anything other than the store. 8253 for (const Value *U : Arg.users()) { 8254 if (U != SI) { 8255 ArgHasUses = true; 8256 break; 8257 } 8258 } 8259 } 8260 8261 void SelectionDAGISel::LowerArguments(const Function &F) { 8262 SelectionDAG &DAG = SDB->DAG; 8263 SDLoc dl = SDB->getCurSDLoc(); 8264 const DataLayout &DL = DAG.getDataLayout(); 8265 SmallVector<ISD::InputArg, 16> Ins; 8266 8267 if (!FuncInfo->CanLowerReturn) { 8268 // Put in an sret pointer parameter before all the other parameters. 8269 SmallVector<EVT, 1> ValueVTs; 8270 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8271 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8272 8273 // NOTE: Assuming that a pointer will never break down to more than one VT 8274 // or one register. 8275 ISD::ArgFlagsTy Flags; 8276 Flags.setSRet(); 8277 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8278 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8279 ISD::InputArg::NoArgIndex, 0); 8280 Ins.push_back(RetArg); 8281 } 8282 8283 // Look for stores of arguments to static allocas. Mark such arguments with a 8284 // flag to ask the target to give us the memory location of that argument if 8285 // available. 8286 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8287 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8288 8289 // Set up the incoming argument description vector. 8290 unsigned Idx = 0; 8291 for (const Argument &Arg : F.args()) { 8292 ++Idx; 8293 SmallVector<EVT, 4> ValueVTs; 8294 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8295 bool isArgValueUsed = !Arg.use_empty(); 8296 unsigned PartBase = 0; 8297 Type *FinalType = Arg.getType(); 8298 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8299 FinalType = cast<PointerType>(FinalType)->getElementType(); 8300 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8301 FinalType, F.getCallingConv(), F.isVarArg()); 8302 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8303 Value != NumValues; ++Value) { 8304 EVT VT = ValueVTs[Value]; 8305 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8306 ISD::ArgFlagsTy Flags; 8307 8308 // Certain targets (such as MIPS), may have a different ABI alignment 8309 // for a type depending on the context. Give the target a chance to 8310 // specify the alignment it wants. 8311 unsigned OriginalAlignment = 8312 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8313 8314 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8315 Flags.setZExt(); 8316 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8317 Flags.setSExt(); 8318 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) { 8319 // If we are using vectorcall calling convention, a structure that is 8320 // passed InReg - is surely an HVA 8321 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8322 isa<StructType>(Arg.getType())) { 8323 // The first value of a structure is marked 8324 if (0 == Value) 8325 Flags.setHvaStart(); 8326 Flags.setHva(); 8327 } 8328 // Set InReg Flag 8329 Flags.setInReg(); 8330 } 8331 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 8332 Flags.setSRet(); 8333 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 8334 Flags.setSwiftSelf(); 8335 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 8336 Flags.setSwiftError(); 8337 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8338 Flags.setByVal(); 8339 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 8340 Flags.setInAlloca(); 8341 // Set the byval flag for CCAssignFn callbacks that don't know about 8342 // inalloca. This way we can know how many bytes we should've allocated 8343 // and how many bytes a callee cleanup function will pop. If we port 8344 // inalloca to more targets, we'll have to add custom inalloca handling 8345 // in the various CC lowering callbacks. 8346 Flags.setByVal(); 8347 } 8348 if (F.getCallingConv() == CallingConv::X86_INTR) { 8349 // IA Interrupt passes frame (1st parameter) by value in the stack. 8350 if (Idx == 1) 8351 Flags.setByVal(); 8352 } 8353 if (Flags.isByVal() || Flags.isInAlloca()) { 8354 PointerType *Ty = cast<PointerType>(Arg.getType()); 8355 Type *ElementTy = Ty->getElementType(); 8356 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8357 // For ByVal, alignment should be passed from FE. BE will guess if 8358 // this info is not there but there are cases it cannot get right. 8359 unsigned FrameAlign; 8360 if (F.getParamAlignment(Idx)) 8361 FrameAlign = F.getParamAlignment(Idx); 8362 else 8363 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8364 Flags.setByValAlign(FrameAlign); 8365 } 8366 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 8367 Flags.setNest(); 8368 if (NeedsRegBlock) 8369 Flags.setInConsecutiveRegs(); 8370 Flags.setOrigAlign(OriginalAlignment); 8371 if (ArgCopyElisionCandidates.count(&Arg)) 8372 Flags.setCopyElisionCandidate(); 8373 8374 MVT RegisterVT = 8375 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8376 unsigned NumRegs = 8377 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8378 for (unsigned i = 0; i != NumRegs; ++i) { 8379 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8380 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 8381 if (NumRegs > 1 && i == 0) 8382 MyFlags.Flags.setSplit(); 8383 // if it isn't first piece, alignment must be 1 8384 else if (i > 0) { 8385 MyFlags.Flags.setOrigAlign(1); 8386 if (i == NumRegs - 1) 8387 MyFlags.Flags.setSplitEnd(); 8388 } 8389 Ins.push_back(MyFlags); 8390 } 8391 if (NeedsRegBlock && Value == NumValues - 1) 8392 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8393 PartBase += VT.getStoreSize(); 8394 } 8395 } 8396 8397 // Call the target to set up the argument values. 8398 SmallVector<SDValue, 8> InVals; 8399 SDValue NewRoot = TLI->LowerFormalArguments( 8400 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8401 8402 // Verify that the target's LowerFormalArguments behaved as expected. 8403 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8404 "LowerFormalArguments didn't return a valid chain!"); 8405 assert(InVals.size() == Ins.size() && 8406 "LowerFormalArguments didn't emit the correct number of values!"); 8407 DEBUG({ 8408 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8409 assert(InVals[i].getNode() && 8410 "LowerFormalArguments emitted a null value!"); 8411 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8412 "LowerFormalArguments emitted a value with the wrong type!"); 8413 } 8414 }); 8415 8416 // Update the DAG with the new chain value resulting from argument lowering. 8417 DAG.setRoot(NewRoot); 8418 8419 // Set up the argument values. 8420 unsigned i = 0; 8421 Idx = 0; 8422 if (!FuncInfo->CanLowerReturn) { 8423 // Create a virtual register for the sret pointer, and put in a copy 8424 // from the sret argument into it. 8425 SmallVector<EVT, 1> ValueVTs; 8426 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8427 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8428 MVT VT = ValueVTs[0].getSimpleVT(); 8429 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8430 Optional<ISD::NodeType> AssertOp = None; 8431 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8432 RegVT, VT, nullptr, AssertOp); 8433 8434 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8435 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8436 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8437 FuncInfo->DemoteRegister = SRetReg; 8438 NewRoot = 8439 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8440 DAG.setRoot(NewRoot); 8441 8442 // i indexes lowered arguments. Bump it past the hidden sret argument. 8443 // Idx indexes LLVM arguments. Don't touch it. 8444 ++i; 8445 } 8446 8447 SmallVector<SDValue, 4> Chains; 8448 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8449 for (const Argument &Arg : F.args()) { 8450 ++Idx; 8451 SmallVector<SDValue, 4> ArgValues; 8452 SmallVector<EVT, 4> ValueVTs; 8453 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8454 unsigned NumValues = ValueVTs.size(); 8455 if (NumValues == 0) 8456 continue; 8457 8458 bool ArgHasUses = !Arg.use_empty(); 8459 8460 // Elide the copying store if the target loaded this argument from a 8461 // suitable fixed stack object. 8462 if (Ins[i].Flags.isCopyElisionCandidate()) { 8463 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8464 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8465 InVals[i], ArgHasUses); 8466 } 8467 8468 // If this argument is unused then remember its value. It is used to generate 8469 // debugging information. 8470 bool isSwiftErrorArg = 8471 TLI->supportSwiftError() && 8472 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError); 8473 if (!ArgHasUses && !isSwiftErrorArg) { 8474 SDB->setUnusedArgValue(&Arg, InVals[i]); 8475 8476 // Also remember any frame index for use in FastISel. 8477 if (FrameIndexSDNode *FI = 8478 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8479 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8480 } 8481 8482 for (unsigned Val = 0; Val != NumValues; ++Val) { 8483 EVT VT = ValueVTs[Val]; 8484 MVT PartVT = 8485 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8486 unsigned NumParts = 8487 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8488 8489 // Even an apparant 'unused' swifterror argument needs to be returned. So 8490 // we do generate a copy for it that can be used on return from the 8491 // function. 8492 if (ArgHasUses || isSwiftErrorArg) { 8493 Optional<ISD::NodeType> AssertOp; 8494 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8495 AssertOp = ISD::AssertSext; 8496 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8497 AssertOp = ISD::AssertZext; 8498 8499 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8500 PartVT, VT, nullptr, AssertOp, 8501 true)); 8502 } 8503 8504 i += NumParts; 8505 } 8506 8507 // We don't need to do anything else for unused arguments. 8508 if (ArgValues.empty()) 8509 continue; 8510 8511 // Note down frame index. 8512 if (FrameIndexSDNode *FI = 8513 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8514 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8515 8516 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8517 SDB->getCurSDLoc()); 8518 8519 SDB->setValue(&Arg, Res); 8520 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8521 if (LoadSDNode *LNode = 8522 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8523 if (FrameIndexSDNode *FI = 8524 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8525 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8526 } 8527 8528 // Update the SwiftErrorVRegDefMap. 8529 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8530 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8531 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8532 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8533 FuncInfo->SwiftErrorArg, Reg); 8534 } 8535 8536 // If this argument is live outside of the entry block, insert a copy from 8537 // wherever we got it to the vreg that other BB's will reference it as. 8538 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8539 // If we can, though, try to skip creating an unnecessary vreg. 8540 // FIXME: This isn't very clean... it would be nice to make this more 8541 // general. It's also subtly incompatible with the hacks FastISel 8542 // uses with vregs. 8543 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8544 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8545 FuncInfo->ValueMap[&Arg] = Reg; 8546 continue; 8547 } 8548 } 8549 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8550 FuncInfo->InitializeRegForValue(&Arg); 8551 SDB->CopyToExportRegsIfNeeded(&Arg); 8552 } 8553 } 8554 8555 if (!Chains.empty()) { 8556 Chains.push_back(NewRoot); 8557 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8558 } 8559 8560 DAG.setRoot(NewRoot); 8561 8562 assert(i == InVals.size() && "Argument register count mismatch!"); 8563 8564 // If any argument copy elisions occurred and we have debug info, update the 8565 // stale frame indices used in the dbg.declare variable info table. 8566 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8567 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8568 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8569 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8570 if (I != ArgCopyElisionFrameIndexMap.end()) 8571 VI.Slot = I->second; 8572 } 8573 } 8574 8575 // Finally, if the target has anything special to do, allow it to do so. 8576 EmitFunctionEntryCode(); 8577 } 8578 8579 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8580 /// ensure constants are generated when needed. Remember the virtual registers 8581 /// that need to be added to the Machine PHI nodes as input. We cannot just 8582 /// directly add them, because expansion might result in multiple MBB's for one 8583 /// BB. As such, the start of the BB might correspond to a different MBB than 8584 /// the end. 8585 /// 8586 void 8587 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8588 const TerminatorInst *TI = LLVMBB->getTerminator(); 8589 8590 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8591 8592 // Check PHI nodes in successors that expect a value to be available from this 8593 // block. 8594 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8595 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8596 if (!isa<PHINode>(SuccBB->begin())) continue; 8597 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8598 8599 // If this terminator has multiple identical successors (common for 8600 // switches), only handle each succ once. 8601 if (!SuccsHandled.insert(SuccMBB).second) 8602 continue; 8603 8604 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8605 8606 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8607 // nodes and Machine PHI nodes, but the incoming operands have not been 8608 // emitted yet. 8609 for (BasicBlock::const_iterator I = SuccBB->begin(); 8610 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8611 // Ignore dead phi's. 8612 if (PN->use_empty()) continue; 8613 8614 // Skip empty types 8615 if (PN->getType()->isEmptyTy()) 8616 continue; 8617 8618 unsigned Reg; 8619 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8620 8621 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8622 unsigned &RegOut = ConstantsOut[C]; 8623 if (RegOut == 0) { 8624 RegOut = FuncInfo.CreateRegs(C->getType()); 8625 CopyValueToVirtualRegister(C, RegOut); 8626 } 8627 Reg = RegOut; 8628 } else { 8629 DenseMap<const Value *, unsigned>::iterator I = 8630 FuncInfo.ValueMap.find(PHIOp); 8631 if (I != FuncInfo.ValueMap.end()) 8632 Reg = I->second; 8633 else { 8634 assert(isa<AllocaInst>(PHIOp) && 8635 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8636 "Didn't codegen value into a register!??"); 8637 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8638 CopyValueToVirtualRegister(PHIOp, Reg); 8639 } 8640 } 8641 8642 // Remember that this register needs to added to the machine PHI node as 8643 // the input for this MBB. 8644 SmallVector<EVT, 4> ValueVTs; 8645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8646 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8647 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8648 EVT VT = ValueVTs[vti]; 8649 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8650 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8651 FuncInfo.PHINodesToUpdate.push_back( 8652 std::make_pair(&*MBBI++, Reg + i)); 8653 Reg += NumRegisters; 8654 } 8655 } 8656 } 8657 8658 ConstantsOut.clear(); 8659 } 8660 8661 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8662 /// is 0. 8663 MachineBasicBlock * 8664 SelectionDAGBuilder::StackProtectorDescriptor:: 8665 AddSuccessorMBB(const BasicBlock *BB, 8666 MachineBasicBlock *ParentMBB, 8667 bool IsLikely, 8668 MachineBasicBlock *SuccMBB) { 8669 // If SuccBB has not been created yet, create it. 8670 if (!SuccMBB) { 8671 MachineFunction *MF = ParentMBB->getParent(); 8672 MachineFunction::iterator BBI(ParentMBB); 8673 SuccMBB = MF->CreateMachineBasicBlock(BB); 8674 MF->insert(++BBI, SuccMBB); 8675 } 8676 // Add it as a successor of ParentMBB. 8677 ParentMBB->addSuccessor( 8678 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8679 return SuccMBB; 8680 } 8681 8682 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8683 MachineFunction::iterator I(MBB); 8684 if (++I == FuncInfo.MF->end()) 8685 return nullptr; 8686 return &*I; 8687 } 8688 8689 /// During lowering new call nodes can be created (such as memset, etc.). 8690 /// Those will become new roots of the current DAG, but complications arise 8691 /// when they are tail calls. In such cases, the call lowering will update 8692 /// the root, but the builder still needs to know that a tail call has been 8693 /// lowered in order to avoid generating an additional return. 8694 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8695 // If the node is null, we do have a tail call. 8696 if (MaybeTC.getNode() != nullptr) 8697 DAG.setRoot(MaybeTC); 8698 else 8699 HasTailCall = true; 8700 } 8701 8702 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8703 const SmallVectorImpl<unsigned> &TotalCases, 8704 unsigned First, unsigned Last, 8705 unsigned Density) const { 8706 assert(Last >= First); 8707 assert(TotalCases[Last] >= TotalCases[First]); 8708 8709 const APInt &LowCase = Clusters[First].Low->getValue(); 8710 const APInt &HighCase = Clusters[Last].High->getValue(); 8711 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8712 8713 // FIXME: A range of consecutive cases has 100% density, but only requires one 8714 // comparison to lower. We should discriminate against such consecutive ranges 8715 // in jump tables. 8716 8717 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8718 uint64_t Range = Diff + 1; 8719 8720 uint64_t NumCases = 8721 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8722 8723 assert(NumCases < UINT64_MAX / 100); 8724 assert(Range >= NumCases); 8725 8726 return NumCases * 100 >= Range * Density; 8727 } 8728 8729 static inline bool areJTsAllowed(const TargetLowering &TLI, 8730 const SwitchInst *SI) { 8731 const Function *Fn = SI->getParent()->getParent(); 8732 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8733 return false; 8734 8735 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8736 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8737 } 8738 8739 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8740 unsigned First, unsigned Last, 8741 const SwitchInst *SI, 8742 MachineBasicBlock *DefaultMBB, 8743 CaseCluster &JTCluster) { 8744 assert(First <= Last); 8745 8746 auto Prob = BranchProbability::getZero(); 8747 unsigned NumCmps = 0; 8748 std::vector<MachineBasicBlock*> Table; 8749 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8750 8751 // Initialize probabilities in JTProbs. 8752 for (unsigned I = First; I <= Last; ++I) 8753 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8754 8755 for (unsigned I = First; I <= Last; ++I) { 8756 assert(Clusters[I].Kind == CC_Range); 8757 Prob += Clusters[I].Prob; 8758 const APInt &Low = Clusters[I].Low->getValue(); 8759 const APInt &High = Clusters[I].High->getValue(); 8760 NumCmps += (Low == High) ? 1 : 2; 8761 if (I != First) { 8762 // Fill the gap between this and the previous cluster. 8763 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8764 assert(PreviousHigh.slt(Low)); 8765 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8766 for (uint64_t J = 0; J < Gap; J++) 8767 Table.push_back(DefaultMBB); 8768 } 8769 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8770 for (uint64_t J = 0; J < ClusterSize; ++J) 8771 Table.push_back(Clusters[I].MBB); 8772 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8773 } 8774 8775 unsigned NumDests = JTProbs.size(); 8776 if (isSuitableForBitTests(NumDests, NumCmps, 8777 Clusters[First].Low->getValue(), 8778 Clusters[Last].High->getValue())) { 8779 // Clusters[First..Last] should be lowered as bit tests instead. 8780 return false; 8781 } 8782 8783 // Create the MBB that will load from and jump through the table. 8784 // Note: We create it here, but it's not inserted into the function yet. 8785 MachineFunction *CurMF = FuncInfo.MF; 8786 MachineBasicBlock *JumpTableMBB = 8787 CurMF->CreateMachineBasicBlock(SI->getParent()); 8788 8789 // Add successors. Note: use table order for determinism. 8790 SmallPtrSet<MachineBasicBlock *, 8> Done; 8791 for (MachineBasicBlock *Succ : Table) { 8792 if (Done.count(Succ)) 8793 continue; 8794 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8795 Done.insert(Succ); 8796 } 8797 JumpTableMBB->normalizeSuccProbs(); 8798 8799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8800 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8801 ->createJumpTableIndex(Table); 8802 8803 // Set up the jump table info. 8804 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8805 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8806 Clusters[Last].High->getValue(), SI->getCondition(), 8807 nullptr, false); 8808 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8809 8810 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8811 JTCases.size() - 1, Prob); 8812 return true; 8813 } 8814 8815 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8816 const SwitchInst *SI, 8817 MachineBasicBlock *DefaultMBB) { 8818 #ifndef NDEBUG 8819 // Clusters must be non-empty, sorted, and only contain Range clusters. 8820 assert(!Clusters.empty()); 8821 for (CaseCluster &C : Clusters) 8822 assert(C.Kind == CC_Range); 8823 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8824 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8825 #endif 8826 8827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8828 if (!areJTsAllowed(TLI, SI)) 8829 return; 8830 8831 const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize(); 8832 8833 const int64_t N = Clusters.size(); 8834 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8835 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8836 const unsigned MaxJumpTableSize = 8837 OptForSize || TLI.getMaximumJumpTableSize() == 0 8838 ? UINT_MAX : TLI.getMaximumJumpTableSize(); 8839 8840 if (N < 2 || N < MinJumpTableEntries) 8841 return; 8842 8843 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8844 SmallVector<unsigned, 8> TotalCases(N); 8845 for (unsigned i = 0; i < N; ++i) { 8846 const APInt &Hi = Clusters[i].High->getValue(); 8847 const APInt &Lo = Clusters[i].Low->getValue(); 8848 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8849 if (i != 0) 8850 TotalCases[i] += TotalCases[i - 1]; 8851 } 8852 8853 const unsigned MinDensity = 8854 OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 8855 8856 // Cheap case: the whole range may be suitable for jump table. 8857 unsigned JumpTableSize = (Clusters[N - 1].High->getValue() - 8858 Clusters[0].Low->getValue()) 8859 .getLimitedValue(UINT_MAX - 1) + 1; 8860 if (JumpTableSize <= MaxJumpTableSize && 8861 isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) { 8862 CaseCluster JTCluster; 8863 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8864 Clusters[0] = JTCluster; 8865 Clusters.resize(1); 8866 return; 8867 } 8868 } 8869 8870 // The algorithm below is not suitable for -O0. 8871 if (TM.getOptLevel() == CodeGenOpt::None) 8872 return; 8873 8874 // Split Clusters into minimum number of dense partitions. The algorithm uses 8875 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8876 // for the Case Statement'" (1994), but builds the MinPartitions array in 8877 // reverse order to make it easier to reconstruct the partitions in ascending 8878 // order. In the choice between two optimal partitionings, it picks the one 8879 // which yields more jump tables. 8880 8881 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8882 SmallVector<unsigned, 8> MinPartitions(N); 8883 // LastElement[i] is the last element of the partition starting at i. 8884 SmallVector<unsigned, 8> LastElement(N); 8885 // PartitionsScore[i] is used to break ties when choosing between two 8886 // partitionings resulting in the same number of partitions. 8887 SmallVector<unsigned, 8> PartitionsScore(N); 8888 // For PartitionsScore, a small number of comparisons is considered as good as 8889 // a jump table and a single comparison is considered better than a jump 8890 // table. 8891 enum PartitionScores : unsigned { 8892 NoTable = 0, 8893 Table = 1, 8894 FewCases = 1, 8895 SingleCase = 2 8896 }; 8897 8898 // Base case: There is only one way to partition Clusters[N-1]. 8899 MinPartitions[N - 1] = 1; 8900 LastElement[N - 1] = N - 1; 8901 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8902 8903 // Note: loop indexes are signed to avoid underflow. 8904 for (int64_t i = N - 2; i >= 0; i--) { 8905 // Find optimal partitioning of Clusters[i..N-1]. 8906 // Baseline: Put Clusters[i] into a partition on its own. 8907 MinPartitions[i] = MinPartitions[i + 1] + 1; 8908 LastElement[i] = i; 8909 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8910 8911 // Search for a solution that results in fewer partitions. 8912 for (int64_t j = N - 1; j > i; j--) { 8913 // Try building a partition from Clusters[i..j]. 8914 JumpTableSize = (Clusters[j].High->getValue() - 8915 Clusters[i].Low->getValue()) 8916 .getLimitedValue(UINT_MAX - 1) + 1; 8917 if (JumpTableSize <= MaxJumpTableSize && 8918 isDense(Clusters, TotalCases, i, j, MinDensity)) { 8919 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8920 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8921 int64_t NumEntries = j - i + 1; 8922 8923 if (NumEntries == 1) 8924 Score += PartitionScores::SingleCase; 8925 else if (NumEntries <= SmallNumberOfEntries) 8926 Score += PartitionScores::FewCases; 8927 else if (NumEntries >= MinJumpTableEntries) 8928 Score += PartitionScores::Table; 8929 8930 // If this leads to fewer partitions, or to the same number of 8931 // partitions with better score, it is a better partitioning. 8932 if (NumPartitions < MinPartitions[i] || 8933 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8934 MinPartitions[i] = NumPartitions; 8935 LastElement[i] = j; 8936 PartitionsScore[i] = Score; 8937 } 8938 } 8939 } 8940 } 8941 8942 // Iterate over the partitions, replacing some with jump tables in-place. 8943 unsigned DstIndex = 0; 8944 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8945 Last = LastElement[First]; 8946 assert(Last >= First); 8947 assert(DstIndex <= First); 8948 unsigned NumClusters = Last - First + 1; 8949 8950 CaseCluster JTCluster; 8951 if (NumClusters >= MinJumpTableEntries && 8952 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8953 Clusters[DstIndex++] = JTCluster; 8954 } else { 8955 for (unsigned I = First; I <= Last; ++I) 8956 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8957 } 8958 } 8959 Clusters.resize(DstIndex); 8960 } 8961 8962 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8963 // FIXME: Using the pointer type doesn't seem ideal. 8964 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8965 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8966 return Range <= BW; 8967 } 8968 8969 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8970 unsigned NumCmps, 8971 const APInt &Low, 8972 const APInt &High) { 8973 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8974 // range of cases both require only one branch to lower. Just looking at the 8975 // number of clusters and destinations should be enough to decide whether to 8976 // build bit tests. 8977 8978 // To lower a range with bit tests, the range must fit the bitwidth of a 8979 // machine word. 8980 if (!rangeFitsInWord(Low, High)) 8981 return false; 8982 8983 // Decide whether it's profitable to lower this range with bit tests. Each 8984 // destination requires a bit test and branch, and there is an overall range 8985 // check branch. For a small number of clusters, separate comparisons might be 8986 // cheaper, and for many destinations, splitting the range might be better. 8987 return (NumDests == 1 && NumCmps >= 3) || 8988 (NumDests == 2 && NumCmps >= 5) || 8989 (NumDests == 3 && NumCmps >= 6); 8990 } 8991 8992 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8993 unsigned First, unsigned Last, 8994 const SwitchInst *SI, 8995 CaseCluster &BTCluster) { 8996 assert(First <= Last); 8997 if (First == Last) 8998 return false; 8999 9000 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9001 unsigned NumCmps = 0; 9002 for (int64_t I = First; I <= Last; ++I) { 9003 assert(Clusters[I].Kind == CC_Range); 9004 Dests.set(Clusters[I].MBB->getNumber()); 9005 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9006 } 9007 unsigned NumDests = Dests.count(); 9008 9009 APInt Low = Clusters[First].Low->getValue(); 9010 APInt High = Clusters[Last].High->getValue(); 9011 assert(Low.slt(High)); 9012 9013 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 9014 return false; 9015 9016 APInt LowBound; 9017 APInt CmpRange; 9018 9019 const int BitWidth = DAG.getTargetLoweringInfo() 9020 .getPointerTy(DAG.getDataLayout()) 9021 .getSizeInBits(); 9022 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 9023 9024 // Check if the clusters cover a contiguous range such that no value in the 9025 // range will jump to the default statement. 9026 bool ContiguousRange = true; 9027 for (int64_t I = First + 1; I <= Last; ++I) { 9028 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9029 ContiguousRange = false; 9030 break; 9031 } 9032 } 9033 9034 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9035 // Optimize the case where all the case values fit in a word without having 9036 // to subtract minValue. In this case, we can optimize away the subtraction. 9037 LowBound = APInt::getNullValue(Low.getBitWidth()); 9038 CmpRange = High; 9039 ContiguousRange = false; 9040 } else { 9041 LowBound = Low; 9042 CmpRange = High - Low; 9043 } 9044 9045 CaseBitsVector CBV; 9046 auto TotalProb = BranchProbability::getZero(); 9047 for (unsigned i = First; i <= Last; ++i) { 9048 // Find the CaseBits for this destination. 9049 unsigned j; 9050 for (j = 0; j < CBV.size(); ++j) 9051 if (CBV[j].BB == Clusters[i].MBB) 9052 break; 9053 if (j == CBV.size()) 9054 CBV.push_back( 9055 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9056 CaseBits *CB = &CBV[j]; 9057 9058 // Update Mask, Bits and ExtraProb. 9059 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9060 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9061 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9062 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9063 CB->Bits += Hi - Lo + 1; 9064 CB->ExtraProb += Clusters[i].Prob; 9065 TotalProb += Clusters[i].Prob; 9066 } 9067 9068 BitTestInfo BTI; 9069 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9070 // Sort by probability first, number of bits second. 9071 if (a.ExtraProb != b.ExtraProb) 9072 return a.ExtraProb > b.ExtraProb; 9073 return a.Bits > b.Bits; 9074 }); 9075 9076 for (auto &CB : CBV) { 9077 MachineBasicBlock *BitTestBB = 9078 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9079 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9080 } 9081 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9082 SI->getCondition(), -1U, MVT::Other, false, 9083 ContiguousRange, nullptr, nullptr, std::move(BTI), 9084 TotalProb); 9085 9086 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9087 BitTestCases.size() - 1, TotalProb); 9088 return true; 9089 } 9090 9091 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9092 const SwitchInst *SI) { 9093 // Partition Clusters into as few subsets as possible, where each subset has a 9094 // range that fits in a machine word and has <= 3 unique destinations. 9095 9096 #ifndef NDEBUG 9097 // Clusters must be sorted and contain Range or JumpTable clusters. 9098 assert(!Clusters.empty()); 9099 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9100 for (const CaseCluster &C : Clusters) 9101 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9102 for (unsigned i = 1; i < Clusters.size(); ++i) 9103 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9104 #endif 9105 9106 // The algorithm below is not suitable for -O0. 9107 if (TM.getOptLevel() == CodeGenOpt::None) 9108 return; 9109 9110 // If target does not have legal shift left, do not emit bit tests at all. 9111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9112 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 9113 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9114 return; 9115 9116 int BitWidth = PTy.getSizeInBits(); 9117 const int64_t N = Clusters.size(); 9118 9119 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9120 SmallVector<unsigned, 8> MinPartitions(N); 9121 // LastElement[i] is the last element of the partition starting at i. 9122 SmallVector<unsigned, 8> LastElement(N); 9123 9124 // FIXME: This might not be the best algorithm for finding bit test clusters. 9125 9126 // Base case: There is only one way to partition Clusters[N-1]. 9127 MinPartitions[N - 1] = 1; 9128 LastElement[N - 1] = N - 1; 9129 9130 // Note: loop indexes are signed to avoid underflow. 9131 for (int64_t i = N - 2; i >= 0; --i) { 9132 // Find optimal partitioning of Clusters[i..N-1]. 9133 // Baseline: Put Clusters[i] into a partition on its own. 9134 MinPartitions[i] = MinPartitions[i + 1] + 1; 9135 LastElement[i] = i; 9136 9137 // Search for a solution that results in fewer partitions. 9138 // Note: the search is limited by BitWidth, reducing time complexity. 9139 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9140 // Try building a partition from Clusters[i..j]. 9141 9142 // Check the range. 9143 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 9144 Clusters[j].High->getValue())) 9145 continue; 9146 9147 // Check nbr of destinations and cluster types. 9148 // FIXME: This works, but doesn't seem very efficient. 9149 bool RangesOnly = true; 9150 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9151 for (int64_t k = i; k <= j; k++) { 9152 if (Clusters[k].Kind != CC_Range) { 9153 RangesOnly = false; 9154 break; 9155 } 9156 Dests.set(Clusters[k].MBB->getNumber()); 9157 } 9158 if (!RangesOnly || Dests.count() > 3) 9159 break; 9160 9161 // Check if it's a better partition. 9162 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9163 if (NumPartitions < MinPartitions[i]) { 9164 // Found a better partition. 9165 MinPartitions[i] = NumPartitions; 9166 LastElement[i] = j; 9167 } 9168 } 9169 } 9170 9171 // Iterate over the partitions, replacing with bit-test clusters in-place. 9172 unsigned DstIndex = 0; 9173 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9174 Last = LastElement[First]; 9175 assert(First <= Last); 9176 assert(DstIndex <= First); 9177 9178 CaseCluster BitTestCluster; 9179 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9180 Clusters[DstIndex++] = BitTestCluster; 9181 } else { 9182 size_t NumClusters = Last - First + 1; 9183 std::memmove(&Clusters[DstIndex], &Clusters[First], 9184 sizeof(Clusters[0]) * NumClusters); 9185 DstIndex += NumClusters; 9186 } 9187 } 9188 Clusters.resize(DstIndex); 9189 } 9190 9191 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9192 MachineBasicBlock *SwitchMBB, 9193 MachineBasicBlock *DefaultMBB) { 9194 MachineFunction *CurMF = FuncInfo.MF; 9195 MachineBasicBlock *NextMBB = nullptr; 9196 MachineFunction::iterator BBI(W.MBB); 9197 if (++BBI != FuncInfo.MF->end()) 9198 NextMBB = &*BBI; 9199 9200 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9201 9202 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9203 9204 if (Size == 2 && W.MBB == SwitchMBB) { 9205 // If any two of the cases has the same destination, and if one value 9206 // is the same as the other, but has one bit unset that the other has set, 9207 // use bit manipulation to do two compares at once. For example: 9208 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9209 // TODO: This could be extended to merge any 2 cases in switches with 3 9210 // cases. 9211 // TODO: Handle cases where W.CaseBB != SwitchBB. 9212 CaseCluster &Small = *W.FirstCluster; 9213 CaseCluster &Big = *W.LastCluster; 9214 9215 if (Small.Low == Small.High && Big.Low == Big.High && 9216 Small.MBB == Big.MBB) { 9217 const APInt &SmallValue = Small.Low->getValue(); 9218 const APInt &BigValue = Big.Low->getValue(); 9219 9220 // Check that there is only one bit different. 9221 APInt CommonBit = BigValue ^ SmallValue; 9222 if (CommonBit.isPowerOf2()) { 9223 SDValue CondLHS = getValue(Cond); 9224 EVT VT = CondLHS.getValueType(); 9225 SDLoc DL = getCurSDLoc(); 9226 9227 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9228 DAG.getConstant(CommonBit, DL, VT)); 9229 SDValue Cond = DAG.getSetCC( 9230 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9231 ISD::SETEQ); 9232 9233 // Update successor info. 9234 // Both Small and Big will jump to Small.BB, so we sum up the 9235 // probabilities. 9236 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9237 if (BPI) 9238 addSuccessorWithProb( 9239 SwitchMBB, DefaultMBB, 9240 // The default destination is the first successor in IR. 9241 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9242 else 9243 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9244 9245 // Insert the true branch. 9246 SDValue BrCond = 9247 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9248 DAG.getBasicBlock(Small.MBB)); 9249 // Insert the false branch. 9250 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9251 DAG.getBasicBlock(DefaultMBB)); 9252 9253 DAG.setRoot(BrCond); 9254 return; 9255 } 9256 } 9257 } 9258 9259 if (TM.getOptLevel() != CodeGenOpt::None) { 9260 // Order cases by probability so the most likely case will be checked first. 9261 std::sort(W.FirstCluster, W.LastCluster + 1, 9262 [](const CaseCluster &a, const CaseCluster &b) { 9263 return a.Prob > b.Prob; 9264 }); 9265 9266 // Rearrange the case blocks so that the last one falls through if possible 9267 // without without changing the order of probabilities. 9268 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9269 --I; 9270 if (I->Prob > W.LastCluster->Prob) 9271 break; 9272 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9273 std::swap(*I, *W.LastCluster); 9274 break; 9275 } 9276 } 9277 } 9278 9279 // Compute total probability. 9280 BranchProbability DefaultProb = W.DefaultProb; 9281 BranchProbability UnhandledProbs = DefaultProb; 9282 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9283 UnhandledProbs += I->Prob; 9284 9285 MachineBasicBlock *CurMBB = W.MBB; 9286 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9287 MachineBasicBlock *Fallthrough; 9288 if (I == W.LastCluster) { 9289 // For the last cluster, fall through to the default destination. 9290 Fallthrough = DefaultMBB; 9291 } else { 9292 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9293 CurMF->insert(BBI, Fallthrough); 9294 // Put Cond in a virtual register to make it available from the new blocks. 9295 ExportFromCurrentBlock(Cond); 9296 } 9297 UnhandledProbs -= I->Prob; 9298 9299 switch (I->Kind) { 9300 case CC_JumpTable: { 9301 // FIXME: Optimize away range check based on pivot comparisons. 9302 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9303 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9304 9305 // The jump block hasn't been inserted yet; insert it here. 9306 MachineBasicBlock *JumpMBB = JT->MBB; 9307 CurMF->insert(BBI, JumpMBB); 9308 9309 auto JumpProb = I->Prob; 9310 auto FallthroughProb = UnhandledProbs; 9311 9312 // If the default statement is a target of the jump table, we evenly 9313 // distribute the default probability to successors of CurMBB. Also 9314 // update the probability on the edge from JumpMBB to Fallthrough. 9315 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9316 SE = JumpMBB->succ_end(); 9317 SI != SE; ++SI) { 9318 if (*SI == DefaultMBB) { 9319 JumpProb += DefaultProb / 2; 9320 FallthroughProb -= DefaultProb / 2; 9321 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9322 JumpMBB->normalizeSuccProbs(); 9323 break; 9324 } 9325 } 9326 9327 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9328 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9329 CurMBB->normalizeSuccProbs(); 9330 9331 // The jump table header will be inserted in our current block, do the 9332 // range check, and fall through to our fallthrough block. 9333 JTH->HeaderBB = CurMBB; 9334 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9335 9336 // If we're in the right place, emit the jump table header right now. 9337 if (CurMBB == SwitchMBB) { 9338 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9339 JTH->Emitted = true; 9340 } 9341 break; 9342 } 9343 case CC_BitTests: { 9344 // FIXME: Optimize away range check based on pivot comparisons. 9345 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9346 9347 // The bit test blocks haven't been inserted yet; insert them here. 9348 for (BitTestCase &BTC : BTB->Cases) 9349 CurMF->insert(BBI, BTC.ThisBB); 9350 9351 // Fill in fields of the BitTestBlock. 9352 BTB->Parent = CurMBB; 9353 BTB->Default = Fallthrough; 9354 9355 BTB->DefaultProb = UnhandledProbs; 9356 // If the cases in bit test don't form a contiguous range, we evenly 9357 // distribute the probability on the edge to Fallthrough to two 9358 // successors of CurMBB. 9359 if (!BTB->ContiguousRange) { 9360 BTB->Prob += DefaultProb / 2; 9361 BTB->DefaultProb -= DefaultProb / 2; 9362 } 9363 9364 // If we're in the right place, emit the bit test header right now. 9365 if (CurMBB == SwitchMBB) { 9366 visitBitTestHeader(*BTB, SwitchMBB); 9367 BTB->Emitted = true; 9368 } 9369 break; 9370 } 9371 case CC_Range: { 9372 const Value *RHS, *LHS, *MHS; 9373 ISD::CondCode CC; 9374 if (I->Low == I->High) { 9375 // Check Cond == I->Low. 9376 CC = ISD::SETEQ; 9377 LHS = Cond; 9378 RHS=I->Low; 9379 MHS = nullptr; 9380 } else { 9381 // Check I->Low <= Cond <= I->High. 9382 CC = ISD::SETLE; 9383 LHS = I->Low; 9384 MHS = Cond; 9385 RHS = I->High; 9386 } 9387 9388 // The false probability is the sum of all unhandled cases. 9389 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9390 UnhandledProbs); 9391 9392 if (CurMBB == SwitchMBB) 9393 visitSwitchCase(CB, SwitchMBB); 9394 else 9395 SwitchCases.push_back(CB); 9396 9397 break; 9398 } 9399 } 9400 CurMBB = Fallthrough; 9401 } 9402 } 9403 9404 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9405 CaseClusterIt First, 9406 CaseClusterIt Last) { 9407 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9408 if (X.Prob != CC.Prob) 9409 return X.Prob > CC.Prob; 9410 9411 // Ties are broken by comparing the case value. 9412 return X.Low->getValue().slt(CC.Low->getValue()); 9413 }); 9414 } 9415 9416 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9417 const SwitchWorkListItem &W, 9418 Value *Cond, 9419 MachineBasicBlock *SwitchMBB) { 9420 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9421 "Clusters not sorted?"); 9422 9423 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9424 9425 // Balance the tree based on branch probabilities to create a near-optimal (in 9426 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9427 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9428 CaseClusterIt LastLeft = W.FirstCluster; 9429 CaseClusterIt FirstRight = W.LastCluster; 9430 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9431 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9432 9433 // Move LastLeft and FirstRight towards each other from opposite directions to 9434 // find a partitioning of the clusters which balances the probability on both 9435 // sides. If LeftProb and RightProb are equal, alternate which side is 9436 // taken to ensure 0-probability nodes are distributed evenly. 9437 unsigned I = 0; 9438 while (LastLeft + 1 < FirstRight) { 9439 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9440 LeftProb += (++LastLeft)->Prob; 9441 else 9442 RightProb += (--FirstRight)->Prob; 9443 I++; 9444 } 9445 9446 for (;;) { 9447 // Our binary search tree differs from a typical BST in that ours can have up 9448 // to three values in each leaf. The pivot selection above doesn't take that 9449 // into account, which means the tree might require more nodes and be less 9450 // efficient. We compensate for this here. 9451 9452 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9453 unsigned NumRight = W.LastCluster - FirstRight + 1; 9454 9455 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9456 // If one side has less than 3 clusters, and the other has more than 3, 9457 // consider taking a cluster from the other side. 9458 9459 if (NumLeft < NumRight) { 9460 // Consider moving the first cluster on the right to the left side. 9461 CaseCluster &CC = *FirstRight; 9462 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9463 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9464 if (LeftSideRank <= RightSideRank) { 9465 // Moving the cluster to the left does not demote it. 9466 ++LastLeft; 9467 ++FirstRight; 9468 continue; 9469 } 9470 } else { 9471 assert(NumRight < NumLeft); 9472 // Consider moving the last element on the left to the right side. 9473 CaseCluster &CC = *LastLeft; 9474 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9475 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9476 if (RightSideRank <= LeftSideRank) { 9477 // Moving the cluster to the right does not demot it. 9478 --LastLeft; 9479 --FirstRight; 9480 continue; 9481 } 9482 } 9483 } 9484 break; 9485 } 9486 9487 assert(LastLeft + 1 == FirstRight); 9488 assert(LastLeft >= W.FirstCluster); 9489 assert(FirstRight <= W.LastCluster); 9490 9491 // Use the first element on the right as pivot since we will make less-than 9492 // comparisons against it. 9493 CaseClusterIt PivotCluster = FirstRight; 9494 assert(PivotCluster > W.FirstCluster); 9495 assert(PivotCluster <= W.LastCluster); 9496 9497 CaseClusterIt FirstLeft = W.FirstCluster; 9498 CaseClusterIt LastRight = W.LastCluster; 9499 9500 const ConstantInt *Pivot = PivotCluster->Low; 9501 9502 // New blocks will be inserted immediately after the current one. 9503 MachineFunction::iterator BBI(W.MBB); 9504 ++BBI; 9505 9506 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9507 // we can branch to its destination directly if it's squeezed exactly in 9508 // between the known lower bound and Pivot - 1. 9509 MachineBasicBlock *LeftMBB; 9510 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9511 FirstLeft->Low == W.GE && 9512 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9513 LeftMBB = FirstLeft->MBB; 9514 } else { 9515 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9516 FuncInfo.MF->insert(BBI, LeftMBB); 9517 WorkList.push_back( 9518 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9519 // Put Cond in a virtual register to make it available from the new blocks. 9520 ExportFromCurrentBlock(Cond); 9521 } 9522 9523 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9524 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9525 // directly if RHS.High equals the current upper bound. 9526 MachineBasicBlock *RightMBB; 9527 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9528 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9529 RightMBB = FirstRight->MBB; 9530 } else { 9531 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9532 FuncInfo.MF->insert(BBI, RightMBB); 9533 WorkList.push_back( 9534 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9535 // Put Cond in a virtual register to make it available from the new blocks. 9536 ExportFromCurrentBlock(Cond); 9537 } 9538 9539 // Create the CaseBlock record that will be used to lower the branch. 9540 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9541 LeftProb, RightProb); 9542 9543 if (W.MBB == SwitchMBB) 9544 visitSwitchCase(CB, SwitchMBB); 9545 else 9546 SwitchCases.push_back(CB); 9547 } 9548 9549 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9550 // Extract cases from the switch. 9551 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9552 CaseClusterVector Clusters; 9553 Clusters.reserve(SI.getNumCases()); 9554 for (auto I : SI.cases()) { 9555 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9556 const ConstantInt *CaseVal = I.getCaseValue(); 9557 BranchProbability Prob = 9558 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9559 : BranchProbability(1, SI.getNumCases() + 1); 9560 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9561 } 9562 9563 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9564 9565 // Cluster adjacent cases with the same destination. We do this at all 9566 // optimization levels because it's cheap to do and will make codegen faster 9567 // if there are many clusters. 9568 sortAndRangeify(Clusters); 9569 9570 if (TM.getOptLevel() != CodeGenOpt::None) { 9571 // Replace an unreachable default with the most popular destination. 9572 // FIXME: Exploit unreachable default more aggressively. 9573 bool UnreachableDefault = 9574 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9575 if (UnreachableDefault && !Clusters.empty()) { 9576 DenseMap<const BasicBlock *, unsigned> Popularity; 9577 unsigned MaxPop = 0; 9578 const BasicBlock *MaxBB = nullptr; 9579 for (auto I : SI.cases()) { 9580 const BasicBlock *BB = I.getCaseSuccessor(); 9581 if (++Popularity[BB] > MaxPop) { 9582 MaxPop = Popularity[BB]; 9583 MaxBB = BB; 9584 } 9585 } 9586 // Set new default. 9587 assert(MaxPop > 0 && MaxBB); 9588 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9589 9590 // Remove cases that were pointing to the destination that is now the 9591 // default. 9592 CaseClusterVector New; 9593 New.reserve(Clusters.size()); 9594 for (CaseCluster &CC : Clusters) { 9595 if (CC.MBB != DefaultMBB) 9596 New.push_back(CC); 9597 } 9598 Clusters = std::move(New); 9599 } 9600 } 9601 9602 // If there is only the default destination, jump there directly. 9603 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9604 if (Clusters.empty()) { 9605 SwitchMBB->addSuccessor(DefaultMBB); 9606 if (DefaultMBB != NextBlock(SwitchMBB)) { 9607 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9608 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9609 } 9610 return; 9611 } 9612 9613 findJumpTables(Clusters, &SI, DefaultMBB); 9614 findBitTestClusters(Clusters, &SI); 9615 9616 DEBUG({ 9617 dbgs() << "Case clusters: "; 9618 for (const CaseCluster &C : Clusters) { 9619 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9620 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9621 9622 C.Low->getValue().print(dbgs(), true); 9623 if (C.Low != C.High) { 9624 dbgs() << '-'; 9625 C.High->getValue().print(dbgs(), true); 9626 } 9627 dbgs() << ' '; 9628 } 9629 dbgs() << '\n'; 9630 }); 9631 9632 assert(!Clusters.empty()); 9633 SwitchWorkList WorkList; 9634 CaseClusterIt First = Clusters.begin(); 9635 CaseClusterIt Last = Clusters.end() - 1; 9636 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9637 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9638 9639 while (!WorkList.empty()) { 9640 SwitchWorkListItem W = WorkList.back(); 9641 WorkList.pop_back(); 9642 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9643 9644 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9645 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9646 // For optimized builds, lower large range as a balanced binary tree. 9647 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9648 continue; 9649 } 9650 9651 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9652 } 9653 } 9654