1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 524 525 bool Smaller = ValueVT.bitsLE(PartVT); 526 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 527 DL, PartVT, Val); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), 554 TLI.getVectorIdxTy())); 555 else 556 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i, TLI.getVectorIdxTy())); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 namespace { 580 /// RegsForValue - This struct represents the registers (physical or virtual) 581 /// that a particular set of values is assigned, and the type information 582 /// about the value. The most common situation is to represent one value at a 583 /// time, but struct or array values are handled element-wise as multiple 584 /// values. The splitting of aggregates is performed recursively, so that we 585 /// never have aggregate-typed registers. The values at this point do not 586 /// necessarily have legal types, so each value may require one or more 587 /// registers of some legal type. 588 /// 589 struct RegsForValue { 590 /// ValueVTs - The value types of the values, which may not be legal, and 591 /// may need be promoted or synthesized from one or more registers. 592 /// 593 SmallVector<EVT, 4> ValueVTs; 594 595 /// RegVTs - The value types of the registers. This is the same size as 596 /// ValueVTs and it records, for each value, what the type of the assigned 597 /// register or registers are. (Individual values are never synthesized 598 /// from more than one type of register.) 599 /// 600 /// With virtual registers, the contents of RegVTs is redundant with TLI's 601 /// getRegisterType member function, however when with physical registers 602 /// it is necessary to have a separate record of the types. 603 /// 604 SmallVector<MVT, 4> RegVTs; 605 606 /// Regs - This list holds the registers assigned to the values. 607 /// Each legal or promoted value requires one register, and each 608 /// expanded value requires multiple registers. 609 /// 610 SmallVector<unsigned, 4> Regs; 611 612 RegsForValue() {} 613 614 RegsForValue(const SmallVector<unsigned, 4> ®s, 615 MVT regvt, EVT valuevt) 616 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 617 618 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 619 unsigned Reg, Type *Ty) { 620 ComputeValueVTs(tli, Ty, ValueVTs); 621 622 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 623 EVT ValueVT = ValueVTs[Value]; 624 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// append - Add the specified values to this one. 634 void append(const RegsForValue &RHS) { 635 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 636 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 637 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 638 } 639 640 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 641 /// this value and returns the result as a ValueVTs value. This uses 642 /// Chain/Flag as the input and updates them for the output Chain/Flag. 643 /// If the Flag pointer is NULL, no flag is used. 644 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 645 SDLoc dl, 646 SDValue &Chain, SDValue *Flag, 647 const Value *V = nullptr) const; 648 649 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 650 /// specified value into the registers specified by this object. This uses 651 /// Chain/Flag as the input and updates them for the output Chain/Flag. 652 /// If the Flag pointer is NULL, no flag is used. 653 void 654 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 655 SDValue *Flag, const Value *V, 656 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 657 658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 659 /// operand list. This adds the code marker, matching input operand index 660 /// (if applicable), and includes the number of values added into it. 661 void AddInlineAsmOperands(unsigned Kind, 662 bool HasMatching, unsigned MatchingIdx, 663 SelectionDAG &DAG, 664 std::vector<SDValue> &Ops) const; 665 }; 666 } 667 668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 669 /// this value and returns the result as a ValueVT value. This uses 670 /// Chain/Flag as the input and updates them for the output Chain/Flag. 671 /// If the Flag pointer is NULL, no flag is used. 672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 673 FunctionLoweringInfo &FuncInfo, 674 SDLoc dl, 675 SDValue &Chain, SDValue *Flag, 676 const Value *V) const { 677 // A Value with type {} or [0 x %t] needs no registers. 678 if (ValueVTs.empty()) 679 return SDValue(); 680 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Assemble the legal parts into the final values. 684 SmallVector<SDValue, 4> Values(ValueVTs.size()); 685 SmallVector<SDValue, 8> Parts; 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 // Copy the legal parts from the registers. 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 MVT RegisterVT = RegVTs[Value]; 691 692 Parts.resize(NumRegs); 693 for (unsigned i = 0; i != NumRegs; ++i) { 694 SDValue P; 695 if (!Flag) { 696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 697 } else { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 699 *Flag = P.getValue(2); 700 } 701 702 Chain = P.getValue(1); 703 Parts[i] = P; 704 705 // If the source register was virtual and if we know something about it, 706 // add an assert node. 707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 708 !RegisterVT.isInteger() || RegisterVT.isVector()) 709 continue; 710 711 const FunctionLoweringInfo::LiveOutInfo *LOI = 712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 713 if (!LOI) 714 continue; 715 716 unsigned RegSize = RegisterVT.getSizeInBits(); 717 unsigned NumSignBits = LOI->NumSignBits; 718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 719 720 if (NumZeroBits == RegSize) { 721 // The current value is a zero. 722 // Explicitly express that as it would be easier for 723 // optimizations to kick in. 724 Parts[i] = DAG.getConstant(0, RegisterVT); 725 continue; 726 } 727 728 // FIXME: We capture more information than the dag can represent. For 729 // now, just use the tightest assertzext/assertsext possible. 730 bool isSExt = true; 731 EVT FromVT(MVT::Other); 732 if (NumSignBits == RegSize) 733 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 734 else if (NumZeroBits >= RegSize-1) 735 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 736 else if (NumSignBits > RegSize-8) 737 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 738 else if (NumZeroBits >= RegSize-8) 739 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 740 else if (NumSignBits > RegSize-16) 741 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 742 else if (NumZeroBits >= RegSize-16) 743 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 744 else if (NumSignBits > RegSize-32) 745 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 746 else if (NumZeroBits >= RegSize-32) 747 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 748 else 749 continue; 750 751 // Add an assertion node. 752 assert(FromVT != MVT::Other); 753 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 754 RegisterVT, P, DAG.getValueType(FromVT)); 755 } 756 757 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 758 NumRegs, RegisterVT, ValueVT, V); 759 Part += NumRegs; 760 Parts.clear(); 761 } 762 763 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 764 } 765 766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 767 /// specified value into the registers specified by this object. This uses 768 /// Chain/Flag as the input and updates them for the output Chain/Flag. 769 /// If the Flag pointer is NULL, no flag is used. 770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 771 SDValue &Chain, SDValue *Flag, const Value *V, 772 ISD::NodeType PreferredExtendType) const { 773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 774 ISD::NodeType ExtendKind = PreferredExtendType; 775 776 // Get the list of the values's legal parts. 777 unsigned NumRegs = Regs.size(); 778 SmallVector<SDValue, 8> Parts(NumRegs); 779 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 780 EVT ValueVT = ValueVTs[Value]; 781 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 782 MVT RegisterVT = RegVTs[Value]; 783 784 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 785 ExtendKind = ISD::ZERO_EXTEND; 786 787 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 788 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 789 Part += NumParts; 790 } 791 792 // Copy the parts into the registers. 793 SmallVector<SDValue, 8> Chains(NumRegs); 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 SDValue Part; 796 if (!Flag) { 797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 798 } else { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 800 *Flag = Part.getValue(1); 801 } 802 803 Chains[i] = Part.getValue(0); 804 } 805 806 if (NumRegs == 1 || Flag) 807 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 808 // flagged to it. That is the CopyToReg nodes and the user are considered 809 // a single scheduling unit. If we create a TokenFactor and return it as 810 // chain, then the TokenFactor is both a predecessor (operand) of the 811 // user as well as a successor (the TF operands are flagged to the user). 812 // c1, f1 = CopyToReg 813 // c2, f2 = CopyToReg 814 // c3 = TokenFactor c1, c2 815 // ... 816 // = op c3, ..., f2 817 Chain = Chains[NumRegs-1]; 818 else 819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 820 } 821 822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 823 /// operand list. This adds the code marker and includes the number of 824 /// values added into it. 825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 826 unsigned MatchingIdx, 827 SelectionDAG &DAG, 828 std::vector<SDValue> &Ops) const { 829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 830 831 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 832 if (HasMatching) 833 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 834 else if (!Regs.empty() && 835 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 836 // Put the register class of the virtual registers in the flag word. That 837 // way, later passes can recompute register class constraints for inline 838 // assembly as well as normal instructions. 839 // Don't do this for tied operands that can use the regclass information 840 // from the def. 841 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 842 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 843 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 844 } 845 846 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 847 Ops.push_back(Res); 848 849 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 unsigned TheReg = Regs[Reg++]; 856 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 857 858 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 859 // If we clobbered the stack pointer, MFI should know about it. 860 assert(DAG.getMachineFunction().getFrameInfo()-> 861 hasInlineAsmWithSPAdjust()); 862 } 863 } 864 } 865 } 866 867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 868 const TargetLibraryInfo *li) { 869 AA = &aa; 870 GFI = gfi; 871 LibInfo = li; 872 DL = DAG.getSubtarget().getDataLayout(); 873 Context = DAG.getContext(); 874 LPadToCallSiteMap.clear(); 875 } 876 877 /// clear - Clear out the current SelectionDAG and the associated 878 /// state and prepare this SelectionDAGBuilder object to be used 879 /// for a new block. This doesn't clear out information about 880 /// additional blocks that are needed to complete switch lowering 881 /// or PHI node updating; that information is cleared out as it is 882 /// consumed. 883 void SelectionDAGBuilder::clear() { 884 NodeMap.clear(); 885 UnusedArgNodeMap.clear(); 886 PendingLoads.clear(); 887 PendingExports.clear(); 888 CurInst = nullptr; 889 HasTailCall = false; 890 SDNodeOrder = LowestSDNodeOrder; 891 StatepointLowering.clear(); 892 } 893 894 /// clearDanglingDebugInfo - Clear the dangling debug information 895 /// map. This function is separated from the clear so that debug 896 /// information that is dangling in a basic block can be properly 897 /// resolved in a different basic block. This allows the 898 /// SelectionDAG to resolve dangling debug information attached 899 /// to PHI nodes. 900 void SelectionDAGBuilder::clearDanglingDebugInfo() { 901 DanglingDebugInfoMap.clear(); 902 } 903 904 /// getRoot - Return the current virtual root of the Selection DAG, 905 /// flushing any PendingLoad items. This must be done before emitting 906 /// a store or any other node that may need to be ordered after any 907 /// prior load instructions. 908 /// 909 SDValue SelectionDAGBuilder::getRoot() { 910 if (PendingLoads.empty()) 911 return DAG.getRoot(); 912 913 if (PendingLoads.size() == 1) { 914 SDValue Root = PendingLoads[0]; 915 DAG.setRoot(Root); 916 PendingLoads.clear(); 917 return Root; 918 } 919 920 // Otherwise, we have to make a token factor node. 921 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 922 PendingLoads); 923 PendingLoads.clear(); 924 DAG.setRoot(Root); 925 return Root; 926 } 927 928 /// getControlRoot - Similar to getRoot, but instead of flushing all the 929 /// PendingLoad items, flush all the PendingExports items. It is necessary 930 /// to do this before emitting a terminator instruction. 931 /// 932 SDValue SelectionDAGBuilder::getControlRoot() { 933 SDValue Root = DAG.getRoot(); 934 935 if (PendingExports.empty()) 936 return Root; 937 938 // Turn all of the CopyToReg chains into one factored node. 939 if (Root.getOpcode() != ISD::EntryToken) { 940 unsigned i = 0, e = PendingExports.size(); 941 for (; i != e; ++i) { 942 assert(PendingExports[i].getNode()->getNumOperands() > 1); 943 if (PendingExports[i].getNode()->getOperand(0) == Root) 944 break; // Don't add the root if we already indirectly depend on it. 945 } 946 947 if (i == e) 948 PendingExports.push_back(Root); 949 } 950 951 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 952 PendingExports); 953 PendingExports.clear(); 954 DAG.setRoot(Root); 955 return Root; 956 } 957 958 void SelectionDAGBuilder::visit(const Instruction &I) { 959 // Set up outgoing PHI node register values before emitting the terminator. 960 if (isa<TerminatorInst>(&I)) 961 HandlePHINodesInSuccessorBlocks(I.getParent()); 962 963 ++SDNodeOrder; 964 965 CurInst = &I; 966 967 visit(I.getOpcode(), I); 968 969 if (!isa<TerminatorInst>(&I) && !HasTailCall) 970 CopyToExportRegsIfNeeded(&I); 971 972 CurInst = nullptr; 973 } 974 975 void SelectionDAGBuilder::visitPHI(const PHINode &) { 976 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 977 } 978 979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 980 // Note: this doesn't use InstVisitor, because it has to work with 981 // ConstantExpr's in addition to instructions. 982 switch (Opcode) { 983 default: llvm_unreachable("Unknown instruction type encountered!"); 984 // Build the switch statement using the Instruction.def file. 985 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 986 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 987 #include "llvm/IR/Instruction.def" 988 } 989 } 990 991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 992 // generate the debug data structures now that we've seen its definition. 993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 994 SDValue Val) { 995 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 996 if (DDI.getDI()) { 997 const DbgValueInst *DI = DDI.getDI(); 998 DebugLoc dl = DDI.getdl(); 999 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1000 MDNode *Variable = DI->getVariable(); 1001 MDNode *Expr = DI->getExpression(); 1002 uint64_t Offset = DI->getOffset(); 1003 // A dbg.value for an alloca is always indirect. 1004 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1005 SDDbgValue *SDV; 1006 if (Val.getNode()) { 1007 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1008 Val)) { 1009 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1010 IsIndirect, Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getValue - Return an SDValue for the given Value. 1020 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1021 // If we already have an SDValue for this value, use it. It's important 1022 // to do this first, so that we don't create a CopyFromReg if we already 1023 // have a regular SDValue. 1024 SDValue &N = NodeMap[V]; 1025 if (N.getNode()) return N; 1026 1027 // If there's a virtual register allocated and initialized for this 1028 // value, use it. 1029 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1030 if (It != FuncInfo.ValueMap.end()) { 1031 unsigned InReg = It->second; 1032 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1033 V->getType()); 1034 SDValue Chain = DAG.getEntryNode(); 1035 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1036 resolveDanglingDebugInfo(V, N); 1037 return N; 1038 } 1039 1040 // Otherwise create a new SDValue and remember it. 1041 SDValue Val = getValueImpl(V); 1042 NodeMap[V] = Val; 1043 resolveDanglingDebugInfo(V, Val); 1044 return Val; 1045 } 1046 1047 /// getNonRegisterValue - Return an SDValue for the given Value, but 1048 /// don't look in FuncInfo.ValueMap for a virtual register. 1049 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1050 // If we already have an SDValue for this value, use it. 1051 SDValue &N = NodeMap[V]; 1052 if (N.getNode()) return N; 1053 1054 // Otherwise create a new SDValue and remember it. 1055 SDValue Val = getValueImpl(V); 1056 NodeMap[V] = Val; 1057 resolveDanglingDebugInfo(V, Val); 1058 return Val; 1059 } 1060 1061 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1062 /// Create an SDValue for the given value. 1063 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1065 1066 if (const Constant *C = dyn_cast<Constant>(V)) { 1067 EVT VT = TLI.getValueType(V->getType(), true); 1068 1069 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1070 return DAG.getConstant(*CI, VT); 1071 1072 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1073 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1074 1075 if (isa<ConstantPointerNull>(C)) { 1076 unsigned AS = V->getType()->getPointerAddressSpace(); 1077 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1078 } 1079 1080 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1081 return DAG.getConstantFP(*CFP, VT); 1082 1083 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1084 return DAG.getUNDEF(VT); 1085 1086 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1087 visit(CE->getOpcode(), *CE); 1088 SDValue N1 = NodeMap[V]; 1089 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1090 return N1; 1091 } 1092 1093 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1094 SmallVector<SDValue, 4> Constants; 1095 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1096 OI != OE; ++OI) { 1097 SDNode *Val = getValue(*OI).getNode(); 1098 // If the operand is an empty aggregate, there are no values. 1099 if (!Val) continue; 1100 // Add each leaf value from the operand to the Constants list 1101 // to form a flattened list of all the values. 1102 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1103 Constants.push_back(SDValue(Val, i)); 1104 } 1105 1106 return DAG.getMergeValues(Constants, getCurSDLoc()); 1107 } 1108 1109 if (const ConstantDataSequential *CDS = 1110 dyn_cast<ConstantDataSequential>(C)) { 1111 SmallVector<SDValue, 4> Ops; 1112 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1113 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1114 // Add each leaf value from the operand to the Constants list 1115 // to form a flattened list of all the values. 1116 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1117 Ops.push_back(SDValue(Val, i)); 1118 } 1119 1120 if (isa<ArrayType>(CDS->getType())) 1121 return DAG.getMergeValues(Ops, getCurSDLoc()); 1122 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1123 VT, Ops); 1124 } 1125 1126 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1127 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1128 "Unknown struct or array constant!"); 1129 1130 SmallVector<EVT, 4> ValueVTs; 1131 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1132 unsigned NumElts = ValueVTs.size(); 1133 if (NumElts == 0) 1134 return SDValue(); // empty struct 1135 SmallVector<SDValue, 4> Constants(NumElts); 1136 for (unsigned i = 0; i != NumElts; ++i) { 1137 EVT EltVT = ValueVTs[i]; 1138 if (isa<UndefValue>(C)) 1139 Constants[i] = DAG.getUNDEF(EltVT); 1140 else if (EltVT.isFloatingPoint()) 1141 Constants[i] = DAG.getConstantFP(0, EltVT); 1142 else 1143 Constants[i] = DAG.getConstant(0, EltVT); 1144 } 1145 1146 return DAG.getMergeValues(Constants, getCurSDLoc()); 1147 } 1148 1149 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1150 return DAG.getBlockAddress(BA, VT); 1151 1152 VectorType *VecTy = cast<VectorType>(V->getType()); 1153 unsigned NumElements = VecTy->getNumElements(); 1154 1155 // Now that we know the number and type of the elements, get that number of 1156 // elements into the Ops array based on what kind of constant it is. 1157 SmallVector<SDValue, 16> Ops; 1158 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1159 for (unsigned i = 0; i != NumElements; ++i) 1160 Ops.push_back(getValue(CV->getOperand(i))); 1161 } else { 1162 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1163 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1164 1165 SDValue Op; 1166 if (EltVT.isFloatingPoint()) 1167 Op = DAG.getConstantFP(0, EltVT); 1168 else 1169 Op = DAG.getConstant(0, EltVT); 1170 Ops.assign(NumElements, Op); 1171 } 1172 1173 // Create a BUILD_VECTOR node. 1174 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1175 } 1176 1177 // If this is a static alloca, generate it as the frameindex instead of 1178 // computation. 1179 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1180 DenseMap<const AllocaInst*, int>::iterator SI = 1181 FuncInfo.StaticAllocaMap.find(AI); 1182 if (SI != FuncInfo.StaticAllocaMap.end()) 1183 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1184 } 1185 1186 // If this is an instruction which fast-isel has deferred, select it now. 1187 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1188 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1189 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1190 SDValue Chain = DAG.getEntryNode(); 1191 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1192 } 1193 1194 llvm_unreachable("Can't get register for value!"); 1195 } 1196 1197 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1199 SDValue Chain = getControlRoot(); 1200 SmallVector<ISD::OutputArg, 8> Outs; 1201 SmallVector<SDValue, 8> OutVals; 1202 1203 if (!FuncInfo.CanLowerReturn) { 1204 unsigned DemoteReg = FuncInfo.DemoteRegister; 1205 const Function *F = I.getParent()->getParent(); 1206 1207 // Emit a store of the return value through the virtual register. 1208 // Leave Outs empty so that LowerReturn won't try to load return 1209 // registers the usual way. 1210 SmallVector<EVT, 1> PtrValueVTs; 1211 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1212 PtrValueVTs); 1213 1214 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1215 SDValue RetOp = getValue(I.getOperand(0)); 1216 1217 SmallVector<EVT, 4> ValueVTs; 1218 SmallVector<uint64_t, 4> Offsets; 1219 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1220 unsigned NumValues = ValueVTs.size(); 1221 1222 SmallVector<SDValue, 4> Chains(NumValues); 1223 for (unsigned i = 0; i != NumValues; ++i) { 1224 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1225 RetPtr.getValueType(), RetPtr, 1226 DAG.getIntPtrConstant(Offsets[i])); 1227 Chains[i] = 1228 DAG.getStore(Chain, getCurSDLoc(), 1229 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1230 // FIXME: better loc info would be nice. 1231 Add, MachinePointerInfo(), false, false, 0); 1232 } 1233 1234 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1235 MVT::Other, Chains); 1236 } else if (I.getNumOperands() != 0) { 1237 SmallVector<EVT, 4> ValueVTs; 1238 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1239 unsigned NumValues = ValueVTs.size(); 1240 if (NumValues) { 1241 SDValue RetOp = getValue(I.getOperand(0)); 1242 1243 const Function *F = I.getParent()->getParent(); 1244 1245 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1246 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::SExt)) 1248 ExtendKind = ISD::SIGN_EXTEND; 1249 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1250 Attribute::ZExt)) 1251 ExtendKind = ISD::ZERO_EXTEND; 1252 1253 LLVMContext &Context = F->getContext(); 1254 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1255 Attribute::InReg); 1256 1257 for (unsigned j = 0; j != NumValues; ++j) { 1258 EVT VT = ValueVTs[j]; 1259 1260 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1261 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1262 1263 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1264 MVT PartVT = TLI.getRegisterType(Context, VT); 1265 SmallVector<SDValue, 4> Parts(NumParts); 1266 getCopyToParts(DAG, getCurSDLoc(), 1267 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1268 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1269 1270 // 'inreg' on function refers to return value 1271 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1272 if (RetInReg) 1273 Flags.setInReg(); 1274 1275 // Propagate extension type if any 1276 if (ExtendKind == ISD::SIGN_EXTEND) 1277 Flags.setSExt(); 1278 else if (ExtendKind == ISD::ZERO_EXTEND) 1279 Flags.setZExt(); 1280 1281 for (unsigned i = 0; i < NumParts; ++i) { 1282 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1283 VT, /*isfixed=*/true, 0, 0)); 1284 OutVals.push_back(Parts[i]); 1285 } 1286 } 1287 } 1288 } 1289 1290 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1291 CallingConv::ID CallConv = 1292 DAG.getMachineFunction().getFunction()->getCallingConv(); 1293 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1294 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1295 1296 // Verify that the target's LowerReturn behaved as expected. 1297 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1298 "LowerReturn didn't return a valid chain!"); 1299 1300 // Update the DAG with the new chain value resulting from return lowering. 1301 DAG.setRoot(Chain); 1302 } 1303 1304 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1305 /// created for it, emit nodes to copy the value into the virtual 1306 /// registers. 1307 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1308 // Skip empty types 1309 if (V->getType()->isEmptyTy()) 1310 return; 1311 1312 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1313 if (VMI != FuncInfo.ValueMap.end()) { 1314 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1315 CopyValueToVirtualRegister(V, VMI->second); 1316 } 1317 } 1318 1319 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1320 /// the current basic block, add it to ValueMap now so that we'll get a 1321 /// CopyTo/FromReg. 1322 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1323 // No need to export constants. 1324 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1325 1326 // Already exported? 1327 if (FuncInfo.isExportedInst(V)) return; 1328 1329 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1330 CopyValueToVirtualRegister(V, Reg); 1331 } 1332 1333 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1334 const BasicBlock *FromBB) { 1335 // The operands of the setcc have to be in this block. We don't know 1336 // how to export them from some other block. 1337 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1338 // Can export from current BB. 1339 if (VI->getParent() == FromBB) 1340 return true; 1341 1342 // Is already exported, noop. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // If this is an argument, we can export it if the BB is the entry block or 1347 // if it is already exported. 1348 if (isa<Argument>(V)) { 1349 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1350 return true; 1351 1352 // Otherwise, can only export this if it is already exported. 1353 return FuncInfo.isExportedInst(V); 1354 } 1355 1356 // Otherwise, constants can always be exported. 1357 return true; 1358 } 1359 1360 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1361 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1362 const MachineBasicBlock *Dst) const { 1363 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1364 if (!BPI) 1365 return 0; 1366 const BasicBlock *SrcBB = Src->getBasicBlock(); 1367 const BasicBlock *DstBB = Dst->getBasicBlock(); 1368 return BPI->getEdgeWeight(SrcBB, DstBB); 1369 } 1370 1371 void SelectionDAGBuilder:: 1372 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1373 uint32_t Weight /* = 0 */) { 1374 if (!Weight) 1375 Weight = getEdgeWeight(Src, Dst); 1376 Src->addSuccessor(Dst, Weight); 1377 } 1378 1379 1380 static bool InBlock(const Value *V, const BasicBlock *BB) { 1381 if (const Instruction *I = dyn_cast<Instruction>(V)) 1382 return I->getParent() == BB; 1383 return true; 1384 } 1385 1386 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1387 /// This function emits a branch and is used at the leaves of an OR or an 1388 /// AND operator tree. 1389 /// 1390 void 1391 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1392 MachineBasicBlock *TBB, 1393 MachineBasicBlock *FBB, 1394 MachineBasicBlock *CurBB, 1395 MachineBasicBlock *SwitchBB, 1396 uint32_t TWeight, 1397 uint32_t FWeight) { 1398 const BasicBlock *BB = CurBB->getBasicBlock(); 1399 1400 // If the leaf of the tree is a comparison, merge the condition into 1401 // the caseblock. 1402 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1403 // The operands of the cmp have to be in this block. We don't know 1404 // how to export them from some other block. If this is the first block 1405 // of the sequence, no exporting is needed. 1406 if (CurBB == SwitchBB || 1407 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1408 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1409 ISD::CondCode Condition; 1410 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1411 Condition = getICmpCondCode(IC->getPredicate()); 1412 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1413 Condition = getFCmpCondCode(FC->getPredicate()); 1414 if (TM.Options.NoNaNsFPMath) 1415 Condition = getFCmpCodeWithoutNaN(Condition); 1416 } else { 1417 (void)Condition; // silence warning. 1418 llvm_unreachable("Unknown compare instruction"); 1419 } 1420 1421 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1422 TBB, FBB, CurBB, TWeight, FWeight); 1423 SwitchCases.push_back(CB); 1424 return; 1425 } 1426 } 1427 1428 // Create a CaseBlock record representing this branch. 1429 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1430 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1431 SwitchCases.push_back(CB); 1432 } 1433 1434 /// Scale down both weights to fit into uint32_t. 1435 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1436 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1437 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1438 NewTrue = NewTrue / Scale; 1439 NewFalse = NewFalse / Scale; 1440 } 1441 1442 /// FindMergedConditions - If Cond is an expression like 1443 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1444 MachineBasicBlock *TBB, 1445 MachineBasicBlock *FBB, 1446 MachineBasicBlock *CurBB, 1447 MachineBasicBlock *SwitchBB, 1448 unsigned Opc, uint32_t TWeight, 1449 uint32_t FWeight) { 1450 // If this node is not part of the or/and tree, emit it as a branch. 1451 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1452 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1453 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1454 BOp->getParent() != CurBB->getBasicBlock() || 1455 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1456 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1457 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1458 TWeight, FWeight); 1459 return; 1460 } 1461 1462 // Create TmpBB after CurBB. 1463 MachineFunction::iterator BBI = CurBB; 1464 MachineFunction &MF = DAG.getMachineFunction(); 1465 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1466 CurBB->getParent()->insert(++BBI, TmpBB); 1467 1468 if (Opc == Instruction::Or) { 1469 // Codegen X | Y as: 1470 // BB1: 1471 // jmp_if_X TBB 1472 // jmp TmpBB 1473 // TmpBB: 1474 // jmp_if_Y TBB 1475 // jmp FBB 1476 // 1477 1478 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1479 // The requirement is that 1480 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1481 // = TrueProb for orignal BB. 1482 // Assuming the orignal weights are A and B, one choice is to set BB1's 1483 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1484 // assumes that 1485 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1486 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1487 // TmpBB, but the math is more complicated. 1488 1489 uint64_t NewTrueWeight = TWeight; 1490 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1491 ScaleWeights(NewTrueWeight, NewFalseWeight); 1492 // Emit the LHS condition. 1493 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1494 NewTrueWeight, NewFalseWeight); 1495 1496 NewTrueWeight = TWeight; 1497 NewFalseWeight = 2 * (uint64_t)FWeight; 1498 ScaleWeights(NewTrueWeight, NewFalseWeight); 1499 // Emit the RHS condition into TmpBB. 1500 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1501 NewTrueWeight, NewFalseWeight); 1502 } else { 1503 assert(Opc == Instruction::And && "Unknown merge op!"); 1504 // Codegen X & Y as: 1505 // BB1: 1506 // jmp_if_X TmpBB 1507 // jmp FBB 1508 // TmpBB: 1509 // jmp_if_Y TBB 1510 // jmp FBB 1511 // 1512 // This requires creation of TmpBB after CurBB. 1513 1514 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1515 // The requirement is that 1516 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1517 // = FalseProb for orignal BB. 1518 // Assuming the orignal weights are A and B, one choice is to set BB1's 1519 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1520 // assumes that 1521 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1522 1523 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1524 uint64_t NewFalseWeight = FWeight; 1525 ScaleWeights(NewTrueWeight, NewFalseWeight); 1526 // Emit the LHS condition. 1527 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1528 NewTrueWeight, NewFalseWeight); 1529 1530 NewTrueWeight = 2 * (uint64_t)TWeight; 1531 NewFalseWeight = FWeight; 1532 ScaleWeights(NewTrueWeight, NewFalseWeight); 1533 // Emit the RHS condition into TmpBB. 1534 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1535 NewTrueWeight, NewFalseWeight); 1536 } 1537 } 1538 1539 /// If the set of cases should be emitted as a series of branches, return true. 1540 /// If we should emit this as a bunch of and/or'd together conditions, return 1541 /// false. 1542 bool 1543 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1544 if (Cases.size() != 2) return true; 1545 1546 // If this is two comparisons of the same values or'd or and'd together, they 1547 // will get folded into a single comparison, so don't emit two blocks. 1548 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1549 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1550 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1551 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1552 return false; 1553 } 1554 1555 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1556 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1557 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1558 Cases[0].CC == Cases[1].CC && 1559 isa<Constant>(Cases[0].CmpRHS) && 1560 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1561 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1562 return false; 1563 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1564 return false; 1565 } 1566 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1571 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1572 1573 // Update machine-CFG edges. 1574 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1575 1576 // Figure out which block is immediately after the current one. 1577 MachineBasicBlock *NextBlock = nullptr; 1578 MachineFunction::iterator BBI = BrMBB; 1579 if (++BBI != FuncInfo.MF->end()) 1580 NextBlock = BBI; 1581 1582 if (I.isUnconditional()) { 1583 // Update machine-CFG edges. 1584 BrMBB->addSuccessor(Succ0MBB); 1585 1586 // If this is not a fall-through branch or optimizations are switched off, 1587 // emit the branch. 1588 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1589 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1590 MVT::Other, getControlRoot(), 1591 DAG.getBasicBlock(Succ0MBB))); 1592 1593 return; 1594 } 1595 1596 // If this condition is one of the special cases we handle, do special stuff 1597 // now. 1598 const Value *CondVal = I.getCondition(); 1599 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1600 1601 // If this is a series of conditions that are or'd or and'd together, emit 1602 // this as a sequence of branches instead of setcc's with and/or operations. 1603 // As long as jumps are not expensive, this should improve performance. 1604 // For example, instead of something like: 1605 // cmp A, B 1606 // C = seteq 1607 // cmp D, E 1608 // F = setle 1609 // or C, F 1610 // jnz foo 1611 // Emit: 1612 // cmp A, B 1613 // je foo 1614 // cmp D, E 1615 // jle foo 1616 // 1617 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1618 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1619 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1620 BOp->getOpcode() == Instruction::Or)) { 1621 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1622 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1623 getEdgeWeight(BrMBB, Succ1MBB)); 1624 // If the compares in later blocks need to use values not currently 1625 // exported from this block, export them now. This block should always 1626 // be the first entry. 1627 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1628 1629 // Allow some cases to be rejected. 1630 if (ShouldEmitAsBranches(SwitchCases)) { 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1632 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1633 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1634 } 1635 1636 // Emit the branch for this block. 1637 visitSwitchCase(SwitchCases[0], BrMBB); 1638 SwitchCases.erase(SwitchCases.begin()); 1639 return; 1640 } 1641 1642 // Okay, we decided not to do this, remove any inserted MBB's and clear 1643 // SwitchCases. 1644 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1645 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1646 1647 SwitchCases.clear(); 1648 } 1649 } 1650 1651 // Create a CaseBlock record representing this branch. 1652 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1653 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1654 1655 // Use visitSwitchCase to actually insert the fast branch sequence for this 1656 // cond branch. 1657 visitSwitchCase(CB, BrMBB); 1658 } 1659 1660 /// visitSwitchCase - Emits the necessary code to represent a single node in 1661 /// the binary search tree resulting from lowering a switch instruction. 1662 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1663 MachineBasicBlock *SwitchBB) { 1664 SDValue Cond; 1665 SDValue CondLHS = getValue(CB.CmpLHS); 1666 SDLoc dl = getCurSDLoc(); 1667 1668 // Build the setcc now. 1669 if (!CB.CmpMHS) { 1670 // Fold "(X == true)" to X and "(X == false)" to !X to 1671 // handle common cases produced by branch lowering. 1672 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1673 CB.CC == ISD::SETEQ) 1674 Cond = CondLHS; 1675 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1676 CB.CC == ISD::SETEQ) { 1677 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1678 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1679 } else 1680 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1681 } else { 1682 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1683 1684 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1685 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1686 1687 SDValue CmpOp = getValue(CB.CmpMHS); 1688 EVT VT = CmpOp.getValueType(); 1689 1690 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1691 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1692 ISD::SETLE); 1693 } else { 1694 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1695 VT, CmpOp, DAG.getConstant(Low, VT)); 1696 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1697 DAG.getConstant(High-Low, VT), ISD::SETULE); 1698 } 1699 } 1700 1701 // Update successor info 1702 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1703 // TrueBB and FalseBB are always different unless the incoming IR is 1704 // degenerate. This only happens when running llc on weird IR. 1705 if (CB.TrueBB != CB.FalseBB) 1706 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1707 1708 // Set NextBlock to be the MBB immediately after the current one, if any. 1709 // This is used to avoid emitting unnecessary branches to the next block. 1710 MachineBasicBlock *NextBlock = nullptr; 1711 MachineFunction::iterator BBI = SwitchBB; 1712 if (++BBI != FuncInfo.MF->end()) 1713 NextBlock = BBI; 1714 1715 // If the lhs block is the next block, invert the condition so that we can 1716 // fall through to the lhs instead of the rhs block. 1717 if (CB.TrueBB == NextBlock) { 1718 std::swap(CB.TrueBB, CB.FalseBB); 1719 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1720 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1721 } 1722 1723 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1724 MVT::Other, getControlRoot(), Cond, 1725 DAG.getBasicBlock(CB.TrueBB)); 1726 1727 // Insert the false branch. Do this even if it's a fall through branch, 1728 // this makes it easier to do DAG optimizations which require inverting 1729 // the branch condition. 1730 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1731 DAG.getBasicBlock(CB.FalseBB)); 1732 1733 DAG.setRoot(BrCond); 1734 } 1735 1736 /// visitJumpTable - Emit JumpTable node in the current MBB 1737 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1738 // Emit the code for the jump table 1739 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1740 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1741 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1742 JT.Reg, PTy); 1743 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1744 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1745 MVT::Other, Index.getValue(1), 1746 Table, Index); 1747 DAG.setRoot(BrJumpTable); 1748 } 1749 1750 /// visitJumpTableHeader - This function emits necessary code to produce index 1751 /// in the JumpTable from switch case. 1752 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1753 JumpTableHeader &JTH, 1754 MachineBasicBlock *SwitchBB) { 1755 // Subtract the lowest switch case value from the value being switched on and 1756 // conditional branch to default mbb if the result is greater than the 1757 // difference between smallest and largest cases. 1758 SDValue SwitchOp = getValue(JTH.SValue); 1759 EVT VT = SwitchOp.getValueType(); 1760 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1761 DAG.getConstant(JTH.First, VT)); 1762 1763 // The SDNode we just created, which holds the value being switched on minus 1764 // the smallest case value, needs to be copied to a virtual register so it 1765 // can be used as an index into the jump table in a subsequent basic block. 1766 // This value may be smaller or larger than the target's pointer type, and 1767 // therefore require extension or truncating. 1768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1769 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1770 1771 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1772 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1773 JumpTableReg, SwitchOp); 1774 JT.Reg = JumpTableReg; 1775 1776 // Emit the range check for the jump table, and branch to the default block 1777 // for the switch statement if the value being switched on exceeds the largest 1778 // case in the switch. 1779 SDValue CMP = 1780 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1781 Sub.getValueType()), 1782 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1783 1784 // Set NextBlock to be the MBB immediately after the current one, if any. 1785 // This is used to avoid emitting unnecessary branches to the next block. 1786 MachineBasicBlock *NextBlock = nullptr; 1787 MachineFunction::iterator BBI = SwitchBB; 1788 1789 if (++BBI != FuncInfo.MF->end()) 1790 NextBlock = BBI; 1791 1792 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1793 MVT::Other, CopyTo, CMP, 1794 DAG.getBasicBlock(JT.Default)); 1795 1796 if (JT.MBB != NextBlock) 1797 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1798 DAG.getBasicBlock(JT.MBB)); 1799 1800 DAG.setRoot(BrCond); 1801 } 1802 1803 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1804 /// tail spliced into a stack protector check success bb. 1805 /// 1806 /// For a high level explanation of how this fits into the stack protector 1807 /// generation see the comment on the declaration of class 1808 /// StackProtectorDescriptor. 1809 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1810 MachineBasicBlock *ParentBB) { 1811 1812 // First create the loads to the guard/stack slot for the comparison. 1813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1814 EVT PtrTy = TLI.getPointerTy(); 1815 1816 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1817 int FI = MFI->getStackProtectorIndex(); 1818 1819 const Value *IRGuard = SPD.getGuard(); 1820 SDValue GuardPtr = getValue(IRGuard); 1821 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1822 1823 unsigned Align = 1824 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1825 1826 SDValue Guard; 1827 1828 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1829 // guard value from the virtual register holding the value. Otherwise, emit a 1830 // volatile load to retrieve the stack guard value. 1831 unsigned GuardReg = SPD.getGuardReg(); 1832 1833 if (GuardReg && TLI.useLoadStackGuardNode()) 1834 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1835 PtrTy); 1836 else 1837 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1838 GuardPtr, MachinePointerInfo(IRGuard, 0), 1839 true, false, false, Align); 1840 1841 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1842 StackSlotPtr, 1843 MachinePointerInfo::getFixedStack(FI), 1844 true, false, false, Align); 1845 1846 // Perform the comparison via a subtract/getsetcc. 1847 EVT VT = Guard.getValueType(); 1848 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1849 1850 SDValue Cmp = 1851 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1852 Sub.getValueType()), 1853 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1854 1855 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1856 // branch to failure MBB. 1857 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1858 MVT::Other, StackSlot.getOperand(0), 1859 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1860 // Otherwise branch to success MBB. 1861 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1862 MVT::Other, BrCond, 1863 DAG.getBasicBlock(SPD.getSuccessMBB())); 1864 1865 DAG.setRoot(Br); 1866 } 1867 1868 /// Codegen the failure basic block for a stack protector check. 1869 /// 1870 /// A failure stack protector machine basic block consists simply of a call to 1871 /// __stack_chk_fail(). 1872 /// 1873 /// For a high level explanation of how this fits into the stack protector 1874 /// generation see the comment on the declaration of class 1875 /// StackProtectorDescriptor. 1876 void 1877 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1879 SDValue Chain = 1880 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1881 nullptr, 0, false, getCurSDLoc(), false, false).second; 1882 DAG.setRoot(Chain); 1883 } 1884 1885 /// visitBitTestHeader - This function emits necessary code to produce value 1886 /// suitable for "bit tests" 1887 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1888 MachineBasicBlock *SwitchBB) { 1889 // Subtract the minimum value 1890 SDValue SwitchOp = getValue(B.SValue); 1891 EVT VT = SwitchOp.getValueType(); 1892 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1893 DAG.getConstant(B.First, VT)); 1894 1895 // Check range 1896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1897 SDValue RangeCmp = 1898 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1899 Sub.getValueType()), 1900 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1901 1902 // Determine the type of the test operands. 1903 bool UsePtrType = false; 1904 if (!TLI.isTypeLegal(VT)) 1905 UsePtrType = true; 1906 else { 1907 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1908 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1909 // Switch table case range are encoded into series of masks. 1910 // Just use pointer type, it's guaranteed to fit. 1911 UsePtrType = true; 1912 break; 1913 } 1914 } 1915 if (UsePtrType) { 1916 VT = TLI.getPointerTy(); 1917 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1918 } 1919 1920 B.RegVT = VT.getSimpleVT(); 1921 B.Reg = FuncInfo.CreateReg(B.RegVT); 1922 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1923 B.Reg, Sub); 1924 1925 // Set NextBlock to be the MBB immediately after the current one, if any. 1926 // This is used to avoid emitting unnecessary branches to the next block. 1927 MachineBasicBlock *NextBlock = nullptr; 1928 MachineFunction::iterator BBI = SwitchBB; 1929 if (++BBI != FuncInfo.MF->end()) 1930 NextBlock = BBI; 1931 1932 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1933 1934 addSuccessorWithWeight(SwitchBB, B.Default); 1935 addSuccessorWithWeight(SwitchBB, MBB); 1936 1937 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1938 MVT::Other, CopyTo, RangeCmp, 1939 DAG.getBasicBlock(B.Default)); 1940 1941 if (MBB != NextBlock) 1942 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1943 DAG.getBasicBlock(MBB)); 1944 1945 DAG.setRoot(BrRange); 1946 } 1947 1948 /// visitBitTestCase - this function produces one "bit test" 1949 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1950 MachineBasicBlock* NextMBB, 1951 uint32_t BranchWeightToNext, 1952 unsigned Reg, 1953 BitTestCase &B, 1954 MachineBasicBlock *SwitchBB) { 1955 MVT VT = BB.RegVT; 1956 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1957 Reg, VT); 1958 SDValue Cmp; 1959 unsigned PopCount = CountPopulation_64(B.Mask); 1960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1961 if (PopCount == 1) { 1962 // Testing for a single bit; just compare the shift count with what it 1963 // would need to be to shift a 1 bit in that position. 1964 Cmp = DAG.getSetCC( 1965 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1966 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1967 } else if (PopCount == BB.Range) { 1968 // There is only one zero bit in the range, test for it directly. 1969 Cmp = DAG.getSetCC( 1970 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1971 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1972 } else { 1973 // Make desired shift 1974 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1975 DAG.getConstant(1, VT), ShiftOp); 1976 1977 // Emit bit tests and jumps 1978 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1979 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1980 Cmp = DAG.getSetCC(getCurSDLoc(), 1981 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1982 DAG.getConstant(0, VT), ISD::SETNE); 1983 } 1984 1985 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1986 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1987 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1988 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1989 1990 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1991 MVT::Other, getControlRoot(), 1992 Cmp, DAG.getBasicBlock(B.TargetBB)); 1993 1994 // Set NextBlock to be the MBB immediately after the current one, if any. 1995 // This is used to avoid emitting unnecessary branches to the next block. 1996 MachineBasicBlock *NextBlock = nullptr; 1997 MachineFunction::iterator BBI = SwitchBB; 1998 if (++BBI != FuncInfo.MF->end()) 1999 NextBlock = BBI; 2000 2001 if (NextMBB != NextBlock) 2002 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2003 DAG.getBasicBlock(NextMBB)); 2004 2005 DAG.setRoot(BrAnd); 2006 } 2007 2008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2009 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2010 2011 // Retrieve successors. 2012 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2013 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2014 2015 const Value *Callee(I.getCalledValue()); 2016 const Function *Fn = dyn_cast<Function>(Callee); 2017 if (isa<InlineAsm>(Callee)) 2018 visitInlineAsm(&I); 2019 else if (Fn && Fn->isIntrinsic()) { 2020 switch (Fn->getIntrinsicID()) { 2021 default: 2022 llvm_unreachable("Cannot invoke this intrinsic"); 2023 case Intrinsic::donothing: 2024 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2025 break; 2026 case Intrinsic::experimental_patchpoint_void: 2027 case Intrinsic::experimental_patchpoint_i64: 2028 visitPatchpoint(&I, LandingPad); 2029 break; 2030 } 2031 } else 2032 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2033 2034 // If the value of the invoke is used outside of its defining block, make it 2035 // available as a virtual register. 2036 CopyToExportRegsIfNeeded(&I); 2037 2038 // Update successor info 2039 addSuccessorWithWeight(InvokeMBB, Return); 2040 addSuccessorWithWeight(InvokeMBB, LandingPad); 2041 2042 // Drop into normal successor. 2043 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2044 MVT::Other, getControlRoot(), 2045 DAG.getBasicBlock(Return))); 2046 } 2047 2048 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2049 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2050 } 2051 2052 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2053 assert(FuncInfo.MBB->isLandingPad() && 2054 "Call to landingpad not in landing pad!"); 2055 2056 MachineBasicBlock *MBB = FuncInfo.MBB; 2057 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2058 AddLandingPadInfo(LP, MMI, MBB); 2059 2060 // If there aren't registers to copy the values into (e.g., during SjLj 2061 // exceptions), then don't bother to create these DAG nodes. 2062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2063 if (TLI.getExceptionPointerRegister() == 0 && 2064 TLI.getExceptionSelectorRegister() == 0) 2065 return; 2066 2067 SmallVector<EVT, 2> ValueVTs; 2068 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2069 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2070 2071 // Get the two live-in registers as SDValues. The physregs have already been 2072 // copied into virtual registers. 2073 SDValue Ops[2]; 2074 if (FuncInfo.ExceptionPointerVirtReg) { 2075 Ops[0] = DAG.getZExtOrTrunc( 2076 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2077 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2078 getCurSDLoc(), ValueVTs[0]); 2079 } else { 2080 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2081 } 2082 Ops[1] = DAG.getZExtOrTrunc( 2083 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2084 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2085 getCurSDLoc(), ValueVTs[1]); 2086 2087 // Merge into one. 2088 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2089 DAG.getVTList(ValueVTs), Ops); 2090 setValue(&LP, Res); 2091 } 2092 2093 unsigned 2094 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2095 MachineBasicBlock *LPadBB) { 2096 SDValue Chain = getControlRoot(); 2097 2098 // Get the typeid that we will dispatch on later. 2099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2100 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2101 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2102 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2103 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2104 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2105 2106 // Branch to the main landing pad block. 2107 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2108 ClauseMBB->addSuccessor(LPadBB); 2109 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2110 DAG.getBasicBlock(LPadBB))); 2111 return VReg; 2112 } 2113 2114 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2115 /// small case ranges). 2116 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2117 CaseRecVector& WorkList, 2118 const Value* SV, 2119 MachineBasicBlock *Default, 2120 MachineBasicBlock *SwitchBB) { 2121 // Size is the number of Cases represented by this range. 2122 size_t Size = CR.Range.second - CR.Range.first; 2123 if (Size > 3) 2124 return false; 2125 2126 // Get the MachineFunction which holds the current MBB. This is used when 2127 // inserting any additional MBBs necessary to represent the switch. 2128 MachineFunction *CurMF = FuncInfo.MF; 2129 2130 // Figure out which block is immediately after the current one. 2131 MachineBasicBlock *NextBlock = nullptr; 2132 MachineFunction::iterator BBI = CR.CaseBB; 2133 2134 if (++BBI != FuncInfo.MF->end()) 2135 NextBlock = BBI; 2136 2137 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2138 // If any two of the cases has the same destination, and if one value 2139 // is the same as the other, but has one bit unset that the other has set, 2140 // use bit manipulation to do two compares at once. For example: 2141 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2142 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2143 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2144 if (Size == 2 && CR.CaseBB == SwitchBB) { 2145 Case &Small = *CR.Range.first; 2146 Case &Big = *(CR.Range.second-1); 2147 2148 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2149 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2150 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2151 2152 // Check that there is only one bit different. 2153 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2154 (SmallValue | BigValue) == BigValue) { 2155 // Isolate the common bit. 2156 APInt CommonBit = BigValue & ~SmallValue; 2157 assert((SmallValue | CommonBit) == BigValue && 2158 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2159 2160 SDValue CondLHS = getValue(SV); 2161 EVT VT = CondLHS.getValueType(); 2162 SDLoc DL = getCurSDLoc(); 2163 2164 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2165 DAG.getConstant(CommonBit, VT)); 2166 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2167 Or, DAG.getConstant(BigValue, VT), 2168 ISD::SETEQ); 2169 2170 // Update successor info. 2171 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2172 addSuccessorWithWeight(SwitchBB, Small.BB, 2173 Small.ExtraWeight + Big.ExtraWeight); 2174 addSuccessorWithWeight(SwitchBB, Default, 2175 // The default destination is the first successor in IR. 2176 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2177 2178 // Insert the true branch. 2179 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2180 getControlRoot(), Cond, 2181 DAG.getBasicBlock(Small.BB)); 2182 2183 // Insert the false branch. 2184 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2185 DAG.getBasicBlock(Default)); 2186 2187 DAG.setRoot(BrCond); 2188 return true; 2189 } 2190 } 2191 } 2192 2193 // Order cases by weight so the most likely case will be checked first. 2194 uint32_t UnhandledWeights = 0; 2195 if (BPI) { 2196 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2197 uint32_t IWeight = I->ExtraWeight; 2198 UnhandledWeights += IWeight; 2199 for (CaseItr J = CR.Range.first; J < I; ++J) { 2200 uint32_t JWeight = J->ExtraWeight; 2201 if (IWeight > JWeight) 2202 std::swap(*I, *J); 2203 } 2204 } 2205 } 2206 // Rearrange the case blocks so that the last one falls through if possible. 2207 Case &BackCase = *(CR.Range.second-1); 2208 if (Size > 1 && 2209 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2210 // The last case block won't fall through into 'NextBlock' if we emit the 2211 // branches in this order. See if rearranging a case value would help. 2212 // We start at the bottom as it's the case with the least weight. 2213 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2214 if (I->BB == NextBlock) { 2215 std::swap(*I, BackCase); 2216 break; 2217 } 2218 } 2219 2220 // Create a CaseBlock record representing a conditional branch to 2221 // the Case's target mbb if the value being switched on SV is equal 2222 // to C. 2223 MachineBasicBlock *CurBlock = CR.CaseBB; 2224 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2225 MachineBasicBlock *FallThrough; 2226 if (I != E-1) { 2227 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2228 CurMF->insert(BBI, FallThrough); 2229 2230 // Put SV in a virtual register to make it available from the new blocks. 2231 ExportFromCurrentBlock(SV); 2232 } else { 2233 // If the last case doesn't match, go to the default block. 2234 FallThrough = Default; 2235 } 2236 2237 const Value *RHS, *LHS, *MHS; 2238 ISD::CondCode CC; 2239 if (I->High == I->Low) { 2240 // This is just small small case range :) containing exactly 1 case 2241 CC = ISD::SETEQ; 2242 LHS = SV; RHS = I->High; MHS = nullptr; 2243 } else { 2244 CC = ISD::SETLE; 2245 LHS = I->Low; MHS = SV; RHS = I->High; 2246 } 2247 2248 // The false weight should be sum of all un-handled cases. 2249 UnhandledWeights -= I->ExtraWeight; 2250 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2251 /* me */ CurBlock, 2252 /* trueweight */ I->ExtraWeight, 2253 /* falseweight */ UnhandledWeights); 2254 2255 // If emitting the first comparison, just call visitSwitchCase to emit the 2256 // code into the current block. Otherwise, push the CaseBlock onto the 2257 // vector to be later processed by SDISel, and insert the node's MBB 2258 // before the next MBB. 2259 if (CurBlock == SwitchBB) 2260 visitSwitchCase(CB, SwitchBB); 2261 else 2262 SwitchCases.push_back(CB); 2263 2264 CurBlock = FallThrough; 2265 } 2266 2267 return true; 2268 } 2269 2270 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2271 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2272 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2273 } 2274 2275 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2276 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2277 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2278 return (LastExt - FirstExt + 1ULL); 2279 } 2280 2281 /// handleJTSwitchCase - Emit jumptable for current switch case range 2282 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2283 CaseRecVector &WorkList, 2284 const Value *SV, 2285 MachineBasicBlock *Default, 2286 MachineBasicBlock *SwitchBB) { 2287 Case& FrontCase = *CR.Range.first; 2288 Case& BackCase = *(CR.Range.second-1); 2289 2290 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2291 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2292 2293 APInt TSize(First.getBitWidth(), 0); 2294 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2295 TSize += I->size(); 2296 2297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2298 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2299 return false; 2300 2301 APInt Range = ComputeRange(First, Last); 2302 // The density is TSize / Range. Require at least 40%. 2303 // It should not be possible for IntTSize to saturate for sane code, but make 2304 // sure we handle Range saturation correctly. 2305 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2306 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2307 if (IntTSize * 10 < IntRange * 4) 2308 return false; 2309 2310 DEBUG(dbgs() << "Lowering jump table\n" 2311 << "First entry: " << First << ". Last entry: " << Last << '\n' 2312 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2313 2314 // Get the MachineFunction which holds the current MBB. This is used when 2315 // inserting any additional MBBs necessary to represent the switch. 2316 MachineFunction *CurMF = FuncInfo.MF; 2317 2318 // Figure out which block is immediately after the current one. 2319 MachineFunction::iterator BBI = CR.CaseBB; 2320 ++BBI; 2321 2322 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2323 2324 // Create a new basic block to hold the code for loading the address 2325 // of the jump table, and jumping to it. Update successor information; 2326 // we will either branch to the default case for the switch, or the jump 2327 // table. 2328 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2329 CurMF->insert(BBI, JumpTableBB); 2330 2331 addSuccessorWithWeight(CR.CaseBB, Default); 2332 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2333 2334 // Build a vector of destination BBs, corresponding to each target 2335 // of the jump table. If the value of the jump table slot corresponds to 2336 // a case statement, push the case's BB onto the vector, otherwise, push 2337 // the default BB. 2338 std::vector<MachineBasicBlock*> DestBBs; 2339 APInt TEI = First; 2340 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2341 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2342 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2343 2344 if (Low.sle(TEI) && TEI.sle(High)) { 2345 DestBBs.push_back(I->BB); 2346 if (TEI==High) 2347 ++I; 2348 } else { 2349 DestBBs.push_back(Default); 2350 } 2351 } 2352 2353 // Calculate weight for each unique destination in CR. 2354 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2355 if (FuncInfo.BPI) 2356 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2357 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2358 DestWeights.find(I->BB); 2359 if (Itr != DestWeights.end()) 2360 Itr->second += I->ExtraWeight; 2361 else 2362 DestWeights[I->BB] = I->ExtraWeight; 2363 } 2364 2365 // Update successor info. Add one edge to each unique successor. 2366 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2367 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2368 E = DestBBs.end(); I != E; ++I) { 2369 if (!SuccsHandled[(*I)->getNumber()]) { 2370 SuccsHandled[(*I)->getNumber()] = true; 2371 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2372 DestWeights.find(*I); 2373 addSuccessorWithWeight(JumpTableBB, *I, 2374 Itr != DestWeights.end() ? Itr->second : 0); 2375 } 2376 } 2377 2378 // Create a jump table index for this jump table. 2379 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2380 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2381 ->createJumpTableIndex(DestBBs); 2382 2383 // Set the jump table information so that we can codegen it as a second 2384 // MachineBasicBlock 2385 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2386 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2387 if (CR.CaseBB == SwitchBB) 2388 visitJumpTableHeader(JT, JTH, SwitchBB); 2389 2390 JTCases.push_back(JumpTableBlock(JTH, JT)); 2391 return true; 2392 } 2393 2394 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2395 /// 2 subtrees. 2396 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2397 CaseRecVector& WorkList, 2398 const Value* SV, 2399 MachineBasicBlock* SwitchBB) { 2400 // Get the MachineFunction which holds the current MBB. This is used when 2401 // inserting any additional MBBs necessary to represent the switch. 2402 MachineFunction *CurMF = FuncInfo.MF; 2403 2404 // Figure out which block is immediately after the current one. 2405 MachineFunction::iterator BBI = CR.CaseBB; 2406 ++BBI; 2407 2408 Case& FrontCase = *CR.Range.first; 2409 Case& BackCase = *(CR.Range.second-1); 2410 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2411 2412 // Size is the number of Cases represented by this range. 2413 unsigned Size = CR.Range.second - CR.Range.first; 2414 2415 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2416 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2417 double FMetric = 0; 2418 CaseItr Pivot = CR.Range.first + Size/2; 2419 2420 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2421 // (heuristically) allow us to emit JumpTable's later. 2422 APInt TSize(First.getBitWidth(), 0); 2423 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2424 I!=E; ++I) 2425 TSize += I->size(); 2426 2427 APInt LSize = FrontCase.size(); 2428 APInt RSize = TSize-LSize; 2429 DEBUG(dbgs() << "Selecting best pivot: \n" 2430 << "First: " << First << ", Last: " << Last <<'\n' 2431 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2432 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2433 J!=E; ++I, ++J) { 2434 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2435 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2436 APInt Range = ComputeRange(LEnd, RBegin); 2437 assert((Range - 2ULL).isNonNegative() && 2438 "Invalid case distance"); 2439 // Use volatile double here to avoid excess precision issues on some hosts, 2440 // e.g. that use 80-bit X87 registers. 2441 volatile double LDensity = 2442 (double)LSize.roundToDouble() / 2443 (LEnd - First + 1ULL).roundToDouble(); 2444 volatile double RDensity = 2445 (double)RSize.roundToDouble() / 2446 (Last - RBegin + 1ULL).roundToDouble(); 2447 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2448 // Should always split in some non-trivial place 2449 DEBUG(dbgs() <<"=>Step\n" 2450 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2451 << "LDensity: " << LDensity 2452 << ", RDensity: " << RDensity << '\n' 2453 << "Metric: " << Metric << '\n'); 2454 if (FMetric < Metric) { 2455 Pivot = J; 2456 FMetric = Metric; 2457 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2458 } 2459 2460 LSize += J->size(); 2461 RSize -= J->size(); 2462 } 2463 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 if (areJTsAllowed(TLI)) { 2466 // If our case is dense we *really* should handle it earlier! 2467 assert((FMetric > 0) && "Should handle dense range earlier!"); 2468 } else { 2469 Pivot = CR.Range.first + Size/2; 2470 } 2471 2472 CaseRange LHSR(CR.Range.first, Pivot); 2473 CaseRange RHSR(Pivot, CR.Range.second); 2474 const Constant *C = Pivot->Low; 2475 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2476 2477 // We know that we branch to the LHS if the Value being switched on is 2478 // less than the Pivot value, C. We use this to optimize our binary 2479 // tree a bit, by recognizing that if SV is greater than or equal to the 2480 // LHS's Case Value, and that Case Value is exactly one less than the 2481 // Pivot's Value, then we can branch directly to the LHS's Target, 2482 // rather than creating a leaf node for it. 2483 if ((LHSR.second - LHSR.first) == 1 && 2484 LHSR.first->High == CR.GE && 2485 cast<ConstantInt>(C)->getValue() == 2486 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2487 TrueBB = LHSR.first->BB; 2488 } else { 2489 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2490 CurMF->insert(BBI, TrueBB); 2491 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2492 2493 // Put SV in a virtual register to make it available from the new blocks. 2494 ExportFromCurrentBlock(SV); 2495 } 2496 2497 // Similar to the optimization above, if the Value being switched on is 2498 // known to be less than the Constant CR.LT, and the current Case Value 2499 // is CR.LT - 1, then we can branch directly to the target block for 2500 // the current Case Value, rather than emitting a RHS leaf node for it. 2501 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2502 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2503 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2504 FalseBB = RHSR.first->BB; 2505 } else { 2506 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2507 CurMF->insert(BBI, FalseBB); 2508 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2509 2510 // Put SV in a virtual register to make it available from the new blocks. 2511 ExportFromCurrentBlock(SV); 2512 } 2513 2514 // Create a CaseBlock record representing a conditional branch to 2515 // the LHS node if the value being switched on SV is less than C. 2516 // Otherwise, branch to LHS. 2517 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2518 2519 if (CR.CaseBB == SwitchBB) 2520 visitSwitchCase(CB, SwitchBB); 2521 else 2522 SwitchCases.push_back(CB); 2523 2524 return true; 2525 } 2526 2527 /// handleBitTestsSwitchCase - if current case range has few destination and 2528 /// range span less, than machine word bitwidth, encode case range into series 2529 /// of masks and emit bit tests with these masks. 2530 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2531 CaseRecVector& WorkList, 2532 const Value* SV, 2533 MachineBasicBlock* Default, 2534 MachineBasicBlock* SwitchBB) { 2535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2536 EVT PTy = TLI.getPointerTy(); 2537 unsigned IntPtrBits = PTy.getSizeInBits(); 2538 2539 Case& FrontCase = *CR.Range.first; 2540 Case& BackCase = *(CR.Range.second-1); 2541 2542 // Get the MachineFunction which holds the current MBB. This is used when 2543 // inserting any additional MBBs necessary to represent the switch. 2544 MachineFunction *CurMF = FuncInfo.MF; 2545 2546 // If target does not have legal shift left, do not emit bit tests at all. 2547 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2548 return false; 2549 2550 size_t numCmps = 0; 2551 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2552 // Single case counts one, case range - two. 2553 numCmps += (I->Low == I->High ? 1 : 2); 2554 } 2555 2556 // Count unique destinations 2557 SmallSet<MachineBasicBlock*, 4> Dests; 2558 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2559 Dests.insert(I->BB); 2560 if (Dests.size() > 3) 2561 // Don't bother the code below, if there are too much unique destinations 2562 return false; 2563 } 2564 DEBUG(dbgs() << "Total number of unique destinations: " 2565 << Dests.size() << '\n' 2566 << "Total number of comparisons: " << numCmps << '\n'); 2567 2568 // Compute span of values. 2569 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2570 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2571 APInt cmpRange = maxValue - minValue; 2572 2573 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2574 << "Low bound: " << minValue << '\n' 2575 << "High bound: " << maxValue << '\n'); 2576 2577 if (cmpRange.uge(IntPtrBits) || 2578 (!(Dests.size() == 1 && numCmps >= 3) && 2579 !(Dests.size() == 2 && numCmps >= 5) && 2580 !(Dests.size() >= 3 && numCmps >= 6))) 2581 return false; 2582 2583 DEBUG(dbgs() << "Emitting bit tests\n"); 2584 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2585 2586 // Optimize the case where all the case values fit in a 2587 // word without having to subtract minValue. In this case, 2588 // we can optimize away the subtraction. 2589 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2590 cmpRange = maxValue; 2591 } else { 2592 lowBound = minValue; 2593 } 2594 2595 CaseBitsVector CasesBits; 2596 unsigned i, count = 0; 2597 2598 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2599 MachineBasicBlock* Dest = I->BB; 2600 for (i = 0; i < count; ++i) 2601 if (Dest == CasesBits[i].BB) 2602 break; 2603 2604 if (i == count) { 2605 assert((count < 3) && "Too much destinations to test!"); 2606 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2607 count++; 2608 } 2609 2610 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2611 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2612 2613 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2614 uint64_t hi = (highValue - lowBound).getZExtValue(); 2615 CasesBits[i].ExtraWeight += I->ExtraWeight; 2616 2617 for (uint64_t j = lo; j <= hi; j++) { 2618 CasesBits[i].Mask |= 1ULL << j; 2619 CasesBits[i].Bits++; 2620 } 2621 2622 } 2623 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2624 2625 BitTestInfo BTC; 2626 2627 // Figure out which block is immediately after the current one. 2628 MachineFunction::iterator BBI = CR.CaseBB; 2629 ++BBI; 2630 2631 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2632 2633 DEBUG(dbgs() << "Cases:\n"); 2634 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2635 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2636 << ", Bits: " << CasesBits[i].Bits 2637 << ", BB: " << CasesBits[i].BB << '\n'); 2638 2639 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2640 CurMF->insert(BBI, CaseBB); 2641 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2642 CaseBB, 2643 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2644 2645 // Put SV in a virtual register to make it available from the new blocks. 2646 ExportFromCurrentBlock(SV); 2647 } 2648 2649 BitTestBlock BTB(lowBound, cmpRange, SV, 2650 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2651 CR.CaseBB, Default, std::move(BTC)); 2652 2653 if (CR.CaseBB == SwitchBB) 2654 visitBitTestHeader(BTB, SwitchBB); 2655 2656 BitTestCases.push_back(std::move(BTB)); 2657 2658 return true; 2659 } 2660 2661 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2662 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2663 const SwitchInst& SI) { 2664 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2665 // Start with "simple" cases. 2666 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2667 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2668 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2669 2670 uint32_t ExtraWeight = 2671 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2672 2673 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2674 SMBB, ExtraWeight)); 2675 } 2676 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2677 2678 // Merge case into clusters 2679 if (Cases.size() >= 2) 2680 // Must recompute end() each iteration because it may be 2681 // invalidated by erase if we hold on to it 2682 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2683 J != Cases.end(); ) { 2684 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2685 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2686 MachineBasicBlock* nextBB = J->BB; 2687 MachineBasicBlock* currentBB = I->BB; 2688 2689 // If the two neighboring cases go to the same destination, merge them 2690 // into a single case. 2691 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2692 I->High = J->High; 2693 I->ExtraWeight += J->ExtraWeight; 2694 J = Cases.erase(J); 2695 } else { 2696 I = J++; 2697 } 2698 } 2699 2700 DEBUG({ 2701 size_t numCmps = 0; 2702 for (auto &I : Cases) 2703 // A range counts double, since it requires two compares. 2704 numCmps += I.Low != I.High ? 2 : 1; 2705 2706 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2707 << ". Total compares: " << numCmps << '\n'; 2708 }); 2709 } 2710 2711 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2712 MachineBasicBlock *Last) { 2713 // Update JTCases. 2714 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2715 if (JTCases[i].first.HeaderBB == First) 2716 JTCases[i].first.HeaderBB = Last; 2717 2718 // Update BitTestCases. 2719 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2720 if (BitTestCases[i].Parent == First) 2721 BitTestCases[i].Parent = Last; 2722 } 2723 2724 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2725 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2726 2727 // Figure out which block is immediately after the current one. 2728 MachineBasicBlock *NextBlock = nullptr; 2729 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2730 NextBlock = SwitchMBB + 1; 2731 2732 2733 // Create a vector of Cases, sorted so that we can efficiently create a binary 2734 // search tree from them. 2735 CaseVector Cases; 2736 Clusterify(Cases, SI); 2737 2738 // Get the default destination MBB. 2739 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2740 2741 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2742 !Cases.empty()) { 2743 // Replace an unreachable default destination with the most popular case 2744 // destination. 2745 DenseMap<const BasicBlock *, unsigned> Popularity; 2746 unsigned MaxPop = 0; 2747 const BasicBlock *MaxBB = nullptr; 2748 for (auto I : SI.cases()) { 2749 const BasicBlock *BB = I.getCaseSuccessor(); 2750 if (++Popularity[BB] > MaxPop) { 2751 MaxPop = Popularity[BB]; 2752 MaxBB = BB; 2753 } 2754 } 2755 2756 // Set new default. 2757 assert(MaxPop > 0); 2758 assert(MaxBB); 2759 Default = FuncInfo.MBBMap[MaxBB]; 2760 2761 // Remove cases that were pointing to the destination that is now the default. 2762 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2763 [&](const Case &C) { return C.BB == Default; }), 2764 Cases.end()); 2765 } 2766 2767 // If there is only the default destination, go there directly. 2768 if (Cases.empty()) { 2769 // Update machine-CFG edges. 2770 SwitchMBB->addSuccessor(Default); 2771 2772 // If this is not a fall-through branch, emit the branch. 2773 if (Default != NextBlock) { 2774 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2775 getControlRoot(), DAG.getBasicBlock(Default))); 2776 } 2777 return; 2778 } 2779 2780 // Get the Value to be switched on. 2781 const Value *SV = SI.getCondition(); 2782 2783 // Push the initial CaseRec onto the worklist 2784 CaseRecVector WorkList; 2785 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2786 CaseRange(Cases.begin(),Cases.end()))); 2787 2788 while (!WorkList.empty()) { 2789 // Grab a record representing a case range to process off the worklist 2790 CaseRec CR = WorkList.back(); 2791 WorkList.pop_back(); 2792 2793 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2794 continue; 2795 2796 // If the range has few cases (two or less) emit a series of specific 2797 // tests. 2798 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2799 continue; 2800 2801 // If the switch has more than N blocks, and is at least 40% dense, and the 2802 // target supports indirect branches, then emit a jump table rather than 2803 // lowering the switch to a binary tree of conditional branches. 2804 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2805 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2806 continue; 2807 2808 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2809 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2810 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2811 } 2812 } 2813 2814 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2815 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2816 2817 // Update machine-CFG edges with unique successors. 2818 SmallSet<BasicBlock*, 32> Done; 2819 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2820 BasicBlock *BB = I.getSuccessor(i); 2821 bool Inserted = Done.insert(BB).second; 2822 if (!Inserted) 2823 continue; 2824 2825 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2826 addSuccessorWithWeight(IndirectBrMBB, Succ); 2827 } 2828 2829 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2830 MVT::Other, getControlRoot(), 2831 getValue(I.getAddress()))); 2832 } 2833 2834 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2835 if (DAG.getTarget().Options.TrapUnreachable) 2836 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2837 } 2838 2839 void SelectionDAGBuilder::visitFSub(const User &I) { 2840 // -0.0 - X --> fneg 2841 Type *Ty = I.getType(); 2842 if (isa<Constant>(I.getOperand(0)) && 2843 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2844 SDValue Op2 = getValue(I.getOperand(1)); 2845 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2846 Op2.getValueType(), Op2)); 2847 return; 2848 } 2849 2850 visitBinary(I, ISD::FSUB); 2851 } 2852 2853 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2854 SDValue Op1 = getValue(I.getOperand(0)); 2855 SDValue Op2 = getValue(I.getOperand(1)); 2856 2857 bool nuw = false; 2858 bool nsw = false; 2859 bool exact = false; 2860 if (const OverflowingBinaryOperator *OFBinOp = 2861 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2862 nuw = OFBinOp->hasNoUnsignedWrap(); 2863 nsw = OFBinOp->hasNoSignedWrap(); 2864 } 2865 if (const PossiblyExactOperator *ExactOp = 2866 dyn_cast<const PossiblyExactOperator>(&I)) 2867 exact = ExactOp->isExact(); 2868 2869 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2870 Op1, Op2, nuw, nsw, exact); 2871 setValue(&I, BinNodeValue); 2872 } 2873 2874 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2875 SDValue Op1 = getValue(I.getOperand(0)); 2876 SDValue Op2 = getValue(I.getOperand(1)); 2877 2878 EVT ShiftTy = 2879 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2880 2881 // Coerce the shift amount to the right type if we can. 2882 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2883 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2884 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2885 SDLoc DL = getCurSDLoc(); 2886 2887 // If the operand is smaller than the shift count type, promote it. 2888 if (ShiftSize > Op2Size) 2889 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2890 2891 // If the operand is larger than the shift count type but the shift 2892 // count type has enough bits to represent any shift value, truncate 2893 // it now. This is a common case and it exposes the truncate to 2894 // optimization early. 2895 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2896 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2897 // Otherwise we'll need to temporarily settle for some other convenient 2898 // type. Type legalization will make adjustments once the shiftee is split. 2899 else 2900 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2901 } 2902 2903 bool nuw = false; 2904 bool nsw = false; 2905 bool exact = false; 2906 2907 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2908 2909 if (const OverflowingBinaryOperator *OFBinOp = 2910 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2911 nuw = OFBinOp->hasNoUnsignedWrap(); 2912 nsw = OFBinOp->hasNoSignedWrap(); 2913 } 2914 if (const PossiblyExactOperator *ExactOp = 2915 dyn_cast<const PossiblyExactOperator>(&I)) 2916 exact = ExactOp->isExact(); 2917 } 2918 2919 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2920 nuw, nsw, exact); 2921 setValue(&I, Res); 2922 } 2923 2924 void SelectionDAGBuilder::visitSDiv(const User &I) { 2925 SDValue Op1 = getValue(I.getOperand(0)); 2926 SDValue Op2 = getValue(I.getOperand(1)); 2927 2928 // Turn exact SDivs into multiplications. 2929 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2930 // exact bit. 2931 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2932 !isa<ConstantSDNode>(Op1) && 2933 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2934 setValue(&I, DAG.getTargetLoweringInfo() 2935 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2936 else 2937 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2938 Op1, Op2)); 2939 } 2940 2941 void SelectionDAGBuilder::visitICmp(const User &I) { 2942 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2943 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2944 predicate = IC->getPredicate(); 2945 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2946 predicate = ICmpInst::Predicate(IC->getPredicate()); 2947 SDValue Op1 = getValue(I.getOperand(0)); 2948 SDValue Op2 = getValue(I.getOperand(1)); 2949 ISD::CondCode Opcode = getICmpCondCode(predicate); 2950 2951 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2952 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2953 } 2954 2955 void SelectionDAGBuilder::visitFCmp(const User &I) { 2956 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2957 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2958 predicate = FC->getPredicate(); 2959 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2960 predicate = FCmpInst::Predicate(FC->getPredicate()); 2961 SDValue Op1 = getValue(I.getOperand(0)); 2962 SDValue Op2 = getValue(I.getOperand(1)); 2963 ISD::CondCode Condition = getFCmpCondCode(predicate); 2964 if (TM.Options.NoNaNsFPMath) 2965 Condition = getFCmpCodeWithoutNaN(Condition); 2966 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2967 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2968 } 2969 2970 void SelectionDAGBuilder::visitSelect(const User &I) { 2971 SmallVector<EVT, 4> ValueVTs; 2972 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2973 unsigned NumValues = ValueVTs.size(); 2974 if (NumValues == 0) return; 2975 2976 SmallVector<SDValue, 4> Values(NumValues); 2977 SDValue Cond = getValue(I.getOperand(0)); 2978 SDValue TrueVal = getValue(I.getOperand(1)); 2979 SDValue FalseVal = getValue(I.getOperand(2)); 2980 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2981 ISD::VSELECT : ISD::SELECT; 2982 2983 for (unsigned i = 0; i != NumValues; ++i) 2984 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2985 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2986 Cond, 2987 SDValue(TrueVal.getNode(), 2988 TrueVal.getResNo() + i), 2989 SDValue(FalseVal.getNode(), 2990 FalseVal.getResNo() + i)); 2991 2992 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2993 DAG.getVTList(ValueVTs), Values)); 2994 } 2995 2996 void SelectionDAGBuilder::visitTrunc(const User &I) { 2997 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2998 SDValue N = getValue(I.getOperand(0)); 2999 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3000 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3001 } 3002 3003 void SelectionDAGBuilder::visitZExt(const User &I) { 3004 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3005 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3006 SDValue N = getValue(I.getOperand(0)); 3007 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3008 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3009 } 3010 3011 void SelectionDAGBuilder::visitSExt(const User &I) { 3012 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3013 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3014 SDValue N = getValue(I.getOperand(0)); 3015 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3016 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3017 } 3018 3019 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3020 // FPTrunc is never a no-op cast, no need to check 3021 SDValue N = getValue(I.getOperand(0)); 3022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3023 EVT DestVT = TLI.getValueType(I.getType()); 3024 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 3025 DAG.getTargetConstant(0, TLI.getPointerTy()))); 3026 } 3027 3028 void SelectionDAGBuilder::visitFPExt(const User &I) { 3029 // FPExt is never a no-op cast, no need to check 3030 SDValue N = getValue(I.getOperand(0)); 3031 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3032 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3033 } 3034 3035 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3036 // FPToUI is never a no-op cast, no need to check 3037 SDValue N = getValue(I.getOperand(0)); 3038 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3039 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3040 } 3041 3042 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3043 // FPToSI is never a no-op cast, no need to check 3044 SDValue N = getValue(I.getOperand(0)); 3045 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3046 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3047 } 3048 3049 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3050 // UIToFP is never a no-op cast, no need to check 3051 SDValue N = getValue(I.getOperand(0)); 3052 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3053 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3054 } 3055 3056 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3057 // SIToFP is never a no-op cast, no need to check 3058 SDValue N = getValue(I.getOperand(0)); 3059 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3060 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3061 } 3062 3063 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3064 // What to do depends on the size of the integer and the size of the pointer. 3065 // We can either truncate, zero extend, or no-op, accordingly. 3066 SDValue N = getValue(I.getOperand(0)); 3067 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3068 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3069 } 3070 3071 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3072 // What to do depends on the size of the integer and the size of the pointer. 3073 // We can either truncate, zero extend, or no-op, accordingly. 3074 SDValue N = getValue(I.getOperand(0)); 3075 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3076 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3077 } 3078 3079 void SelectionDAGBuilder::visitBitCast(const User &I) { 3080 SDValue N = getValue(I.getOperand(0)); 3081 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3082 3083 // BitCast assures us that source and destination are the same size so this is 3084 // either a BITCAST or a no-op. 3085 if (DestVT != N.getValueType()) 3086 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3087 DestVT, N)); // convert types. 3088 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3089 // might fold any kind of constant expression to an integer constant and that 3090 // is not what we are looking for. Only regcognize a bitcast of a genuine 3091 // constant integer as an opaque constant. 3092 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3093 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3094 /*isOpaque*/true)); 3095 else 3096 setValue(&I, N); // noop cast. 3097 } 3098 3099 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3101 const Value *SV = I.getOperand(0); 3102 SDValue N = getValue(SV); 3103 EVT DestVT = TLI.getValueType(I.getType()); 3104 3105 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3106 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3107 3108 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3109 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3110 3111 setValue(&I, N); 3112 } 3113 3114 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3116 SDValue InVec = getValue(I.getOperand(0)); 3117 SDValue InVal = getValue(I.getOperand(1)); 3118 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3119 getCurSDLoc(), TLI.getVectorIdxTy()); 3120 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3121 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3122 } 3123 3124 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3126 SDValue InVec = getValue(I.getOperand(0)); 3127 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3128 getCurSDLoc(), TLI.getVectorIdxTy()); 3129 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3130 TLI.getValueType(I.getType()), InVec, InIdx)); 3131 } 3132 3133 // Utility for visitShuffleVector - Return true if every element in Mask, 3134 // beginning from position Pos and ending in Pos+Size, falls within the 3135 // specified sequential range [L, L+Pos). or is undef. 3136 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3137 unsigned Pos, unsigned Size, int Low) { 3138 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3139 if (Mask[i] >= 0 && Mask[i] != Low) 3140 return false; 3141 return true; 3142 } 3143 3144 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3145 SDValue Src1 = getValue(I.getOperand(0)); 3146 SDValue Src2 = getValue(I.getOperand(1)); 3147 3148 SmallVector<int, 8> Mask; 3149 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3150 unsigned MaskNumElts = Mask.size(); 3151 3152 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3153 EVT VT = TLI.getValueType(I.getType()); 3154 EVT SrcVT = Src1.getValueType(); 3155 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3156 3157 if (SrcNumElts == MaskNumElts) { 3158 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3159 &Mask[0])); 3160 return; 3161 } 3162 3163 // Normalize the shuffle vector since mask and vector length don't match. 3164 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3165 // Mask is longer than the source vectors and is a multiple of the source 3166 // vectors. We can use concatenate vector to make the mask and vectors 3167 // lengths match. 3168 if (SrcNumElts*2 == MaskNumElts) { 3169 // First check for Src1 in low and Src2 in high 3170 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3171 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3172 // The shuffle is concatenating two vectors together. 3173 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3174 VT, Src1, Src2)); 3175 return; 3176 } 3177 // Then check for Src2 in low and Src1 in high 3178 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3179 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3180 // The shuffle is concatenating two vectors together. 3181 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3182 VT, Src2, Src1)); 3183 return; 3184 } 3185 } 3186 3187 // Pad both vectors with undefs to make them the same length as the mask. 3188 unsigned NumConcat = MaskNumElts / SrcNumElts; 3189 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3190 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3191 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3192 3193 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3194 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3195 MOps1[0] = Src1; 3196 MOps2[0] = Src2; 3197 3198 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3199 getCurSDLoc(), VT, MOps1); 3200 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3201 getCurSDLoc(), VT, MOps2); 3202 3203 // Readjust mask for new input vector length. 3204 SmallVector<int, 8> MappedOps; 3205 for (unsigned i = 0; i != MaskNumElts; ++i) { 3206 int Idx = Mask[i]; 3207 if (Idx >= (int)SrcNumElts) 3208 Idx -= SrcNumElts - MaskNumElts; 3209 MappedOps.push_back(Idx); 3210 } 3211 3212 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3213 &MappedOps[0])); 3214 return; 3215 } 3216 3217 if (SrcNumElts > MaskNumElts) { 3218 // Analyze the access pattern of the vector to see if we can extract 3219 // two subvectors and do the shuffle. The analysis is done by calculating 3220 // the range of elements the mask access on both vectors. 3221 int MinRange[2] = { static_cast<int>(SrcNumElts), 3222 static_cast<int>(SrcNumElts)}; 3223 int MaxRange[2] = {-1, -1}; 3224 3225 for (unsigned i = 0; i != MaskNumElts; ++i) { 3226 int Idx = Mask[i]; 3227 unsigned Input = 0; 3228 if (Idx < 0) 3229 continue; 3230 3231 if (Idx >= (int)SrcNumElts) { 3232 Input = 1; 3233 Idx -= SrcNumElts; 3234 } 3235 if (Idx > MaxRange[Input]) 3236 MaxRange[Input] = Idx; 3237 if (Idx < MinRange[Input]) 3238 MinRange[Input] = Idx; 3239 } 3240 3241 // Check if the access is smaller than the vector size and can we find 3242 // a reasonable extract index. 3243 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3244 // Extract. 3245 int StartIdx[2]; // StartIdx to extract from 3246 for (unsigned Input = 0; Input < 2; ++Input) { 3247 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3248 RangeUse[Input] = 0; // Unused 3249 StartIdx[Input] = 0; 3250 continue; 3251 } 3252 3253 // Find a good start index that is a multiple of the mask length. Then 3254 // see if the rest of the elements are in range. 3255 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3256 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3257 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3258 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3259 } 3260 3261 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3262 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3263 return; 3264 } 3265 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3266 // Extract appropriate subvector and generate a vector shuffle 3267 for (unsigned Input = 0; Input < 2; ++Input) { 3268 SDValue &Src = Input == 0 ? Src1 : Src2; 3269 if (RangeUse[Input] == 0) 3270 Src = DAG.getUNDEF(VT); 3271 else 3272 Src = DAG.getNode( 3273 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3274 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3275 } 3276 3277 // Calculate new mask. 3278 SmallVector<int, 8> MappedOps; 3279 for (unsigned i = 0; i != MaskNumElts; ++i) { 3280 int Idx = Mask[i]; 3281 if (Idx >= 0) { 3282 if (Idx < (int)SrcNumElts) 3283 Idx -= StartIdx[0]; 3284 else 3285 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3286 } 3287 MappedOps.push_back(Idx); 3288 } 3289 3290 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3291 &MappedOps[0])); 3292 return; 3293 } 3294 } 3295 3296 // We can't use either concat vectors or extract subvectors so fall back to 3297 // replacing the shuffle with extract and build vector. 3298 // to insert and build vector. 3299 EVT EltVT = VT.getVectorElementType(); 3300 EVT IdxVT = TLI.getVectorIdxTy(); 3301 SmallVector<SDValue,8> Ops; 3302 for (unsigned i = 0; i != MaskNumElts; ++i) { 3303 int Idx = Mask[i]; 3304 SDValue Res; 3305 3306 if (Idx < 0) { 3307 Res = DAG.getUNDEF(EltVT); 3308 } else { 3309 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3310 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3311 3312 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3313 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3314 } 3315 3316 Ops.push_back(Res); 3317 } 3318 3319 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3320 } 3321 3322 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3323 const Value *Op0 = I.getOperand(0); 3324 const Value *Op1 = I.getOperand(1); 3325 Type *AggTy = I.getType(); 3326 Type *ValTy = Op1->getType(); 3327 bool IntoUndef = isa<UndefValue>(Op0); 3328 bool FromUndef = isa<UndefValue>(Op1); 3329 3330 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3331 3332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3333 SmallVector<EVT, 4> AggValueVTs; 3334 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3335 SmallVector<EVT, 4> ValValueVTs; 3336 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3337 3338 unsigned NumAggValues = AggValueVTs.size(); 3339 unsigned NumValValues = ValValueVTs.size(); 3340 SmallVector<SDValue, 4> Values(NumAggValues); 3341 3342 // Ignore an insertvalue that produces an empty object 3343 if (!NumAggValues) { 3344 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3345 return; 3346 } 3347 3348 SDValue Agg = getValue(Op0); 3349 unsigned i = 0; 3350 // Copy the beginning value(s) from the original aggregate. 3351 for (; i != LinearIndex; ++i) 3352 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3353 SDValue(Agg.getNode(), Agg.getResNo() + i); 3354 // Copy values from the inserted value(s). 3355 if (NumValValues) { 3356 SDValue Val = getValue(Op1); 3357 for (; i != LinearIndex + NumValValues; ++i) 3358 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3359 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3360 } 3361 // Copy remaining value(s) from the original aggregate. 3362 for (; i != NumAggValues; ++i) 3363 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3364 SDValue(Agg.getNode(), Agg.getResNo() + i); 3365 3366 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3367 DAG.getVTList(AggValueVTs), Values)); 3368 } 3369 3370 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3371 const Value *Op0 = I.getOperand(0); 3372 Type *AggTy = Op0->getType(); 3373 Type *ValTy = I.getType(); 3374 bool OutOfUndef = isa<UndefValue>(Op0); 3375 3376 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3377 3378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3379 SmallVector<EVT, 4> ValValueVTs; 3380 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3381 3382 unsigned NumValValues = ValValueVTs.size(); 3383 3384 // Ignore a extractvalue that produces an empty object 3385 if (!NumValValues) { 3386 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3387 return; 3388 } 3389 3390 SmallVector<SDValue, 4> Values(NumValValues); 3391 3392 SDValue Agg = getValue(Op0); 3393 // Copy out the selected value(s). 3394 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3395 Values[i - LinearIndex] = 3396 OutOfUndef ? 3397 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3398 SDValue(Agg.getNode(), Agg.getResNo() + i); 3399 3400 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3401 DAG.getVTList(ValValueVTs), Values)); 3402 } 3403 3404 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3405 Value *Op0 = I.getOperand(0); 3406 // Note that the pointer operand may be a vector of pointers. Take the scalar 3407 // element which holds a pointer. 3408 Type *Ty = Op0->getType()->getScalarType(); 3409 unsigned AS = Ty->getPointerAddressSpace(); 3410 SDValue N = getValue(Op0); 3411 3412 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3413 OI != E; ++OI) { 3414 const Value *Idx = *OI; 3415 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3416 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3417 if (Field) { 3418 // N = N + Offset 3419 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3420 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3421 DAG.getConstant(Offset, N.getValueType())); 3422 } 3423 3424 Ty = StTy->getElementType(Field); 3425 } else { 3426 Ty = cast<SequentialType>(Ty)->getElementType(); 3427 3428 // If this is a constant subscript, handle it quickly. 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3431 if (CI->isZero()) continue; 3432 uint64_t Offs = 3433 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3434 SDValue OffsVal; 3435 EVT PTy = TLI.getPointerTy(AS); 3436 unsigned PtrBits = PTy.getSizeInBits(); 3437 if (PtrBits < 64) 3438 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3439 DAG.getConstant(Offs, MVT::i64)); 3440 else 3441 OffsVal = DAG.getConstant(Offs, PTy); 3442 3443 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3444 OffsVal); 3445 continue; 3446 } 3447 3448 // N = N + Idx * ElementSize; 3449 APInt ElementSize = 3450 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3451 SDValue IdxN = getValue(Idx); 3452 3453 // If the index is smaller or larger than intptr_t, truncate or extend 3454 // it. 3455 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3456 3457 // If this is a multiply by a power of two, turn it into a shl 3458 // immediately. This is a very common case. 3459 if (ElementSize != 1) { 3460 if (ElementSize.isPowerOf2()) { 3461 unsigned Amt = ElementSize.logBase2(); 3462 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3463 N.getValueType(), IdxN, 3464 DAG.getConstant(Amt, IdxN.getValueType())); 3465 } else { 3466 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3467 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3468 N.getValueType(), IdxN, Scale); 3469 } 3470 } 3471 3472 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3473 N.getValueType(), N, IdxN); 3474 } 3475 } 3476 3477 setValue(&I, N); 3478 } 3479 3480 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3481 // If this is a fixed sized alloca in the entry block of the function, 3482 // allocate it statically on the stack. 3483 if (FuncInfo.StaticAllocaMap.count(&I)) 3484 return; // getValue will auto-populate this. 3485 3486 Type *Ty = I.getAllocatedType(); 3487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3488 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3489 unsigned Align = 3490 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3491 I.getAlignment()); 3492 3493 SDValue AllocSize = getValue(I.getArraySize()); 3494 3495 EVT IntPtr = TLI.getPointerTy(); 3496 if (AllocSize.getValueType() != IntPtr) 3497 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3498 3499 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3500 AllocSize, 3501 DAG.getConstant(TySize, IntPtr)); 3502 3503 // Handle alignment. If the requested alignment is less than or equal to 3504 // the stack alignment, ignore it. If the size is greater than or equal to 3505 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3506 unsigned StackAlign = 3507 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3508 if (Align <= StackAlign) 3509 Align = 0; 3510 3511 // Round the size of the allocation up to the stack alignment size 3512 // by add SA-1 to the size. 3513 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3514 AllocSize.getValueType(), AllocSize, 3515 DAG.getIntPtrConstant(StackAlign-1)); 3516 3517 // Mask out the low bits for alignment purposes. 3518 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3519 AllocSize.getValueType(), AllocSize, 3520 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3521 3522 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3523 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3524 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3525 setValue(&I, DSA); 3526 DAG.setRoot(DSA.getValue(1)); 3527 3528 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3529 } 3530 3531 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3532 if (I.isAtomic()) 3533 return visitAtomicLoad(I); 3534 3535 const Value *SV = I.getOperand(0); 3536 SDValue Ptr = getValue(SV); 3537 3538 Type *Ty = I.getType(); 3539 3540 bool isVolatile = I.isVolatile(); 3541 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3542 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3543 unsigned Alignment = I.getAlignment(); 3544 3545 AAMDNodes AAInfo; 3546 I.getAAMetadata(AAInfo); 3547 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3548 3549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3550 SmallVector<EVT, 4> ValueVTs; 3551 SmallVector<uint64_t, 4> Offsets; 3552 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3553 unsigned NumValues = ValueVTs.size(); 3554 if (NumValues == 0) 3555 return; 3556 3557 SDValue Root; 3558 bool ConstantMemory = false; 3559 if (isVolatile || NumValues > MaxParallelChains) 3560 // Serialize volatile loads with other side effects. 3561 Root = getRoot(); 3562 else if (AA->pointsToConstantMemory( 3563 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3564 // Do not serialize (non-volatile) loads of constant memory with anything. 3565 Root = DAG.getEntryNode(); 3566 ConstantMemory = true; 3567 } else { 3568 // Do not serialize non-volatile loads against each other. 3569 Root = DAG.getRoot(); 3570 } 3571 3572 if (isVolatile) 3573 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3574 3575 SmallVector<SDValue, 4> Values(NumValues); 3576 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3577 NumValues)); 3578 EVT PtrVT = Ptr.getValueType(); 3579 unsigned ChainI = 0; 3580 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3581 // Serializing loads here may result in excessive register pressure, and 3582 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3583 // could recover a bit by hoisting nodes upward in the chain by recognizing 3584 // they are side-effect free or do not alias. The optimizer should really 3585 // avoid this case by converting large object/array copies to llvm.memcpy 3586 // (MaxParallelChains should always remain as failsafe). 3587 if (ChainI == MaxParallelChains) { 3588 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3589 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3590 makeArrayRef(Chains.data(), ChainI)); 3591 Root = Chain; 3592 ChainI = 0; 3593 } 3594 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3595 PtrVT, Ptr, 3596 DAG.getConstant(Offsets[i], PtrVT)); 3597 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3598 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3599 isNonTemporal, isInvariant, Alignment, AAInfo, 3600 Ranges); 3601 3602 Values[i] = L; 3603 Chains[ChainI] = L.getValue(1); 3604 } 3605 3606 if (!ConstantMemory) { 3607 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3608 makeArrayRef(Chains.data(), ChainI)); 3609 if (isVolatile) 3610 DAG.setRoot(Chain); 3611 else 3612 PendingLoads.push_back(Chain); 3613 } 3614 3615 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3616 DAG.getVTList(ValueVTs), Values)); 3617 } 3618 3619 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3620 if (I.isAtomic()) 3621 return visitAtomicStore(I); 3622 3623 const Value *SrcV = I.getOperand(0); 3624 const Value *PtrV = I.getOperand(1); 3625 3626 SmallVector<EVT, 4> ValueVTs; 3627 SmallVector<uint64_t, 4> Offsets; 3628 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3629 ValueVTs, &Offsets); 3630 unsigned NumValues = ValueVTs.size(); 3631 if (NumValues == 0) 3632 return; 3633 3634 // Get the lowered operands. Note that we do this after 3635 // checking if NumResults is zero, because with zero results 3636 // the operands won't have values in the map. 3637 SDValue Src = getValue(SrcV); 3638 SDValue Ptr = getValue(PtrV); 3639 3640 SDValue Root = getRoot(); 3641 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3642 NumValues)); 3643 EVT PtrVT = Ptr.getValueType(); 3644 bool isVolatile = I.isVolatile(); 3645 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3646 unsigned Alignment = I.getAlignment(); 3647 3648 AAMDNodes AAInfo; 3649 I.getAAMetadata(AAInfo); 3650 3651 unsigned ChainI = 0; 3652 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3653 // See visitLoad comments. 3654 if (ChainI == MaxParallelChains) { 3655 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3656 makeArrayRef(Chains.data(), ChainI)); 3657 Root = Chain; 3658 ChainI = 0; 3659 } 3660 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3661 DAG.getConstant(Offsets[i], PtrVT)); 3662 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3663 SDValue(Src.getNode(), Src.getResNo() + i), 3664 Add, MachinePointerInfo(PtrV, Offsets[i]), 3665 isVolatile, isNonTemporal, Alignment, AAInfo); 3666 Chains[ChainI] = St; 3667 } 3668 3669 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3670 makeArrayRef(Chains.data(), ChainI)); 3671 DAG.setRoot(StoreNode); 3672 } 3673 3674 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3675 SDLoc sdl = getCurSDLoc(); 3676 3677 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3678 Value *PtrOperand = I.getArgOperand(1); 3679 SDValue Ptr = getValue(PtrOperand); 3680 SDValue Src0 = getValue(I.getArgOperand(0)); 3681 SDValue Mask = getValue(I.getArgOperand(3)); 3682 EVT VT = Src0.getValueType(); 3683 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3684 if (!Alignment) 3685 Alignment = DAG.getEVTAlignment(VT); 3686 3687 AAMDNodes AAInfo; 3688 I.getAAMetadata(AAInfo); 3689 3690 MachineMemOperand *MMO = 3691 DAG.getMachineFunction(). 3692 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3693 MachineMemOperand::MOStore, VT.getStoreSize(), 3694 Alignment, AAInfo); 3695 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, MMO); 3696 DAG.setRoot(StoreNode); 3697 setValue(&I, StoreNode); 3698 } 3699 3700 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3701 SDLoc sdl = getCurSDLoc(); 3702 3703 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3704 Value *PtrOperand = I.getArgOperand(0); 3705 SDValue Ptr = getValue(PtrOperand); 3706 SDValue Src0 = getValue(I.getArgOperand(3)); 3707 SDValue Mask = getValue(I.getArgOperand(2)); 3708 3709 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3710 EVT VT = TLI.getValueType(I.getType()); 3711 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3712 if (!Alignment) 3713 Alignment = DAG.getEVTAlignment(VT); 3714 3715 AAMDNodes AAInfo; 3716 I.getAAMetadata(AAInfo); 3717 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3718 3719 SDValue InChain = DAG.getRoot(); 3720 if (AA->pointsToConstantMemory( 3721 AliasAnalysis::Location(PtrOperand, 3722 AA->getTypeStoreSize(I.getType()), 3723 AAInfo))) { 3724 // Do not serialize (non-volatile) loads of constant memory with anything. 3725 InChain = DAG.getEntryNode(); 3726 } 3727 3728 MachineMemOperand *MMO = 3729 DAG.getMachineFunction(). 3730 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3731 MachineMemOperand::MOLoad, VT.getStoreSize(), 3732 Alignment, AAInfo, Ranges); 3733 3734 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, MMO); 3735 SDValue OutChain = Load.getValue(1); 3736 DAG.setRoot(OutChain); 3737 setValue(&I, Load); 3738 } 3739 3740 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3741 SDLoc dl = getCurSDLoc(); 3742 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3743 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3744 SynchronizationScope Scope = I.getSynchScope(); 3745 3746 SDValue InChain = getRoot(); 3747 3748 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3749 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3750 SDValue L = DAG.getAtomicCmpSwap( 3751 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3752 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3753 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3754 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3755 3756 SDValue OutChain = L.getValue(2); 3757 3758 setValue(&I, L); 3759 DAG.setRoot(OutChain); 3760 } 3761 3762 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3763 SDLoc dl = getCurSDLoc(); 3764 ISD::NodeType NT; 3765 switch (I.getOperation()) { 3766 default: llvm_unreachable("Unknown atomicrmw operation"); 3767 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3768 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3769 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3770 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3771 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3772 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3773 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3774 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3775 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3776 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3777 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3778 } 3779 AtomicOrdering Order = I.getOrdering(); 3780 SynchronizationScope Scope = I.getSynchScope(); 3781 3782 SDValue InChain = getRoot(); 3783 3784 SDValue L = 3785 DAG.getAtomic(NT, dl, 3786 getValue(I.getValOperand()).getSimpleValueType(), 3787 InChain, 3788 getValue(I.getPointerOperand()), 3789 getValue(I.getValOperand()), 3790 I.getPointerOperand(), 3791 /* Alignment=*/ 0, Order, Scope); 3792 3793 SDValue OutChain = L.getValue(1); 3794 3795 setValue(&I, L); 3796 DAG.setRoot(OutChain); 3797 } 3798 3799 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3800 SDLoc dl = getCurSDLoc(); 3801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3802 SDValue Ops[3]; 3803 Ops[0] = getRoot(); 3804 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3805 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3806 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3807 } 3808 3809 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3810 SDLoc dl = getCurSDLoc(); 3811 AtomicOrdering Order = I.getOrdering(); 3812 SynchronizationScope Scope = I.getSynchScope(); 3813 3814 SDValue InChain = getRoot(); 3815 3816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3817 EVT VT = TLI.getValueType(I.getType()); 3818 3819 if (I.getAlignment() < VT.getSizeInBits() / 8) 3820 report_fatal_error("Cannot generate unaligned atomic load"); 3821 3822 MachineMemOperand *MMO = 3823 DAG.getMachineFunction(). 3824 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3825 MachineMemOperand::MOVolatile | 3826 MachineMemOperand::MOLoad, 3827 VT.getStoreSize(), 3828 I.getAlignment() ? I.getAlignment() : 3829 DAG.getEVTAlignment(VT)); 3830 3831 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3832 SDValue L = 3833 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3834 getValue(I.getPointerOperand()), MMO, 3835 Order, Scope); 3836 3837 SDValue OutChain = L.getValue(1); 3838 3839 setValue(&I, L); 3840 DAG.setRoot(OutChain); 3841 } 3842 3843 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3844 SDLoc dl = getCurSDLoc(); 3845 3846 AtomicOrdering Order = I.getOrdering(); 3847 SynchronizationScope Scope = I.getSynchScope(); 3848 3849 SDValue InChain = getRoot(); 3850 3851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3852 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3853 3854 if (I.getAlignment() < VT.getSizeInBits() / 8) 3855 report_fatal_error("Cannot generate unaligned atomic store"); 3856 3857 SDValue OutChain = 3858 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3859 InChain, 3860 getValue(I.getPointerOperand()), 3861 getValue(I.getValueOperand()), 3862 I.getPointerOperand(), I.getAlignment(), 3863 Order, Scope); 3864 3865 DAG.setRoot(OutChain); 3866 } 3867 3868 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3869 /// node. 3870 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3871 unsigned Intrinsic) { 3872 bool HasChain = !I.doesNotAccessMemory(); 3873 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3874 3875 // Build the operand list. 3876 SmallVector<SDValue, 8> Ops; 3877 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3878 if (OnlyLoad) { 3879 // We don't need to serialize loads against other loads. 3880 Ops.push_back(DAG.getRoot()); 3881 } else { 3882 Ops.push_back(getRoot()); 3883 } 3884 } 3885 3886 // Info is set by getTgtMemInstrinsic 3887 TargetLowering::IntrinsicInfo Info; 3888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3889 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3890 3891 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3892 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3893 Info.opc == ISD::INTRINSIC_W_CHAIN) 3894 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3895 3896 // Add all operands of the call to the operand list. 3897 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3898 SDValue Op = getValue(I.getArgOperand(i)); 3899 Ops.push_back(Op); 3900 } 3901 3902 SmallVector<EVT, 4> ValueVTs; 3903 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3904 3905 if (HasChain) 3906 ValueVTs.push_back(MVT::Other); 3907 3908 SDVTList VTs = DAG.getVTList(ValueVTs); 3909 3910 // Create the node. 3911 SDValue Result; 3912 if (IsTgtIntrinsic) { 3913 // This is target intrinsic that touches memory 3914 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3915 VTs, Ops, Info.memVT, 3916 MachinePointerInfo(Info.ptrVal, Info.offset), 3917 Info.align, Info.vol, 3918 Info.readMem, Info.writeMem, Info.size); 3919 } else if (!HasChain) { 3920 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3921 } else if (!I.getType()->isVoidTy()) { 3922 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3923 } else { 3924 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3925 } 3926 3927 if (HasChain) { 3928 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3929 if (OnlyLoad) 3930 PendingLoads.push_back(Chain); 3931 else 3932 DAG.setRoot(Chain); 3933 } 3934 3935 if (!I.getType()->isVoidTy()) { 3936 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3937 EVT VT = TLI.getValueType(PTy); 3938 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3939 } 3940 3941 setValue(&I, Result); 3942 } 3943 } 3944 3945 /// GetSignificand - Get the significand and build it into a floating-point 3946 /// number with exponent of 1: 3947 /// 3948 /// Op = (Op & 0x007fffff) | 0x3f800000; 3949 /// 3950 /// where Op is the hexadecimal representation of floating point value. 3951 static SDValue 3952 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3953 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3954 DAG.getConstant(0x007fffff, MVT::i32)); 3955 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3956 DAG.getConstant(0x3f800000, MVT::i32)); 3957 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3958 } 3959 3960 /// GetExponent - Get the exponent: 3961 /// 3962 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3963 /// 3964 /// where Op is the hexadecimal representation of floating point value. 3965 static SDValue 3966 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3967 SDLoc dl) { 3968 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3969 DAG.getConstant(0x7f800000, MVT::i32)); 3970 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3971 DAG.getConstant(23, TLI.getPointerTy())); 3972 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3973 DAG.getConstant(127, MVT::i32)); 3974 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3975 } 3976 3977 /// getF32Constant - Get 32-bit floating point constant. 3978 static SDValue 3979 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3980 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3981 MVT::f32); 3982 } 3983 3984 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3985 /// limited-precision mode. 3986 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3987 const TargetLowering &TLI) { 3988 if (Op.getValueType() == MVT::f32 && 3989 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3990 3991 // Put the exponent in the right bit position for later addition to the 3992 // final result: 3993 // 3994 // #define LOG2OFe 1.4426950f 3995 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3996 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3997 getF32Constant(DAG, 0x3fb8aa3b)); 3998 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3999 4000 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 4001 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4002 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4003 4004 // IntegerPartOfX <<= 23; 4005 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4006 DAG.getConstant(23, TLI.getPointerTy())); 4007 4008 SDValue TwoToFracPartOfX; 4009 if (LimitFloatPrecision <= 6) { 4010 // For floating-point precision of 6: 4011 // 4012 // TwoToFractionalPartOfX = 4013 // 0.997535578f + 4014 // (0.735607626f + 0.252464424f * x) * x; 4015 // 4016 // error 0.0144103317, which is 6 bits 4017 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4018 getF32Constant(DAG, 0x3e814304)); 4019 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4020 getF32Constant(DAG, 0x3f3c50c8)); 4021 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4022 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4023 getF32Constant(DAG, 0x3f7f5e7e)); 4024 } else if (LimitFloatPrecision <= 12) { 4025 // For floating-point precision of 12: 4026 // 4027 // TwoToFractionalPartOfX = 4028 // 0.999892986f + 4029 // (0.696457318f + 4030 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4031 // 4032 // 0.000107046256 error, which is 13 to 14 bits 4033 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4034 getF32Constant(DAG, 0x3da235e3)); 4035 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4036 getF32Constant(DAG, 0x3e65b8f3)); 4037 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4038 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4039 getF32Constant(DAG, 0x3f324b07)); 4040 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4041 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4042 getF32Constant(DAG, 0x3f7ff8fd)); 4043 } else { // LimitFloatPrecision <= 18 4044 // For floating-point precision of 18: 4045 // 4046 // TwoToFractionalPartOfX = 4047 // 0.999999982f + 4048 // (0.693148872f + 4049 // (0.240227044f + 4050 // (0.554906021e-1f + 4051 // (0.961591928e-2f + 4052 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4053 // 4054 // error 2.47208000*10^(-7), which is better than 18 bits 4055 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4056 getF32Constant(DAG, 0x3924b03e)); 4057 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4058 getF32Constant(DAG, 0x3ab24b87)); 4059 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4060 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4061 getF32Constant(DAG, 0x3c1d8c17)); 4062 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4063 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4064 getF32Constant(DAG, 0x3d634a1d)); 4065 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4066 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4067 getF32Constant(DAG, 0x3e75fe14)); 4068 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4069 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4070 getF32Constant(DAG, 0x3f317234)); 4071 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4072 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4073 getF32Constant(DAG, 0x3f800000)); 4074 } 4075 4076 // Add the exponent into the result in integer domain. 4077 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4078 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4079 DAG.getNode(ISD::ADD, dl, MVT::i32, 4080 t13, IntegerPartOfX)); 4081 } 4082 4083 // No special expansion. 4084 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4085 } 4086 4087 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4088 /// limited-precision mode. 4089 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4090 const TargetLowering &TLI) { 4091 if (Op.getValueType() == MVT::f32 && 4092 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4093 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4094 4095 // Scale the exponent by log(2) [0.69314718f]. 4096 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4097 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4098 getF32Constant(DAG, 0x3f317218)); 4099 4100 // Get the significand and build it into a floating-point number with 4101 // exponent of 1. 4102 SDValue X = GetSignificand(DAG, Op1, dl); 4103 4104 SDValue LogOfMantissa; 4105 if (LimitFloatPrecision <= 6) { 4106 // For floating-point precision of 6: 4107 // 4108 // LogofMantissa = 4109 // -1.1609546f + 4110 // (1.4034025f - 0.23903021f * x) * x; 4111 // 4112 // error 0.0034276066, which is better than 8 bits 4113 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4114 getF32Constant(DAG, 0xbe74c456)); 4115 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4116 getF32Constant(DAG, 0x3fb3a2b1)); 4117 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4118 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4119 getF32Constant(DAG, 0x3f949a29)); 4120 } else if (LimitFloatPrecision <= 12) { 4121 // For floating-point precision of 12: 4122 // 4123 // LogOfMantissa = 4124 // -1.7417939f + 4125 // (2.8212026f + 4126 // (-1.4699568f + 4127 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4128 // 4129 // error 0.000061011436, which is 14 bits 4130 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4131 getF32Constant(DAG, 0xbd67b6d6)); 4132 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4133 getF32Constant(DAG, 0x3ee4f4b8)); 4134 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4135 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4136 getF32Constant(DAG, 0x3fbc278b)); 4137 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4138 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4139 getF32Constant(DAG, 0x40348e95)); 4140 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4141 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4142 getF32Constant(DAG, 0x3fdef31a)); 4143 } else { // LimitFloatPrecision <= 18 4144 // For floating-point precision of 18: 4145 // 4146 // LogOfMantissa = 4147 // -2.1072184f + 4148 // (4.2372794f + 4149 // (-3.7029485f + 4150 // (2.2781945f + 4151 // (-0.87823314f + 4152 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4153 // 4154 // error 0.0000023660568, which is better than 18 bits 4155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4156 getF32Constant(DAG, 0xbc91e5ac)); 4157 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4158 getF32Constant(DAG, 0x3e4350aa)); 4159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4160 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4161 getF32Constant(DAG, 0x3f60d3e3)); 4162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4163 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4164 getF32Constant(DAG, 0x4011cdf0)); 4165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4166 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4167 getF32Constant(DAG, 0x406cfd1c)); 4168 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4169 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4170 getF32Constant(DAG, 0x408797cb)); 4171 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4172 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4173 getF32Constant(DAG, 0x4006dcab)); 4174 } 4175 4176 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4177 } 4178 4179 // No special expansion. 4180 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4181 } 4182 4183 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4184 /// limited-precision mode. 4185 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4186 const TargetLowering &TLI) { 4187 if (Op.getValueType() == MVT::f32 && 4188 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4189 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4190 4191 // Get the exponent. 4192 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4193 4194 // Get the significand and build it into a floating-point number with 4195 // exponent of 1. 4196 SDValue X = GetSignificand(DAG, Op1, dl); 4197 4198 // Different possible minimax approximations of significand in 4199 // floating-point for various degrees of accuracy over [1,2]. 4200 SDValue Log2ofMantissa; 4201 if (LimitFloatPrecision <= 6) { 4202 // For floating-point precision of 6: 4203 // 4204 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4205 // 4206 // error 0.0049451742, which is more than 7 bits 4207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4208 getF32Constant(DAG, 0xbeb08fe0)); 4209 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4210 getF32Constant(DAG, 0x40019463)); 4211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4212 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4213 getF32Constant(DAG, 0x3fd6633d)); 4214 } else if (LimitFloatPrecision <= 12) { 4215 // For floating-point precision of 12: 4216 // 4217 // Log2ofMantissa = 4218 // -2.51285454f + 4219 // (4.07009056f + 4220 // (-2.12067489f + 4221 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4222 // 4223 // error 0.0000876136000, which is better than 13 bits 4224 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4225 getF32Constant(DAG, 0xbda7262e)); 4226 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4227 getF32Constant(DAG, 0x3f25280b)); 4228 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4229 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4230 getF32Constant(DAG, 0x4007b923)); 4231 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4232 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4233 getF32Constant(DAG, 0x40823e2f)); 4234 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4235 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4236 getF32Constant(DAG, 0x4020d29c)); 4237 } else { // LimitFloatPrecision <= 18 4238 // For floating-point precision of 18: 4239 // 4240 // Log2ofMantissa = 4241 // -3.0400495f + 4242 // (6.1129976f + 4243 // (-5.3420409f + 4244 // (3.2865683f + 4245 // (-1.2669343f + 4246 // (0.27515199f - 4247 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4248 // 4249 // error 0.0000018516, which is better than 18 bits 4250 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4251 getF32Constant(DAG, 0xbcd2769e)); 4252 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4253 getF32Constant(DAG, 0x3e8ce0b9)); 4254 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4255 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4256 getF32Constant(DAG, 0x3fa22ae7)); 4257 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4258 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4259 getF32Constant(DAG, 0x40525723)); 4260 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4261 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4262 getF32Constant(DAG, 0x40aaf200)); 4263 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4264 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4265 getF32Constant(DAG, 0x40c39dad)); 4266 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4267 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4268 getF32Constant(DAG, 0x4042902c)); 4269 } 4270 4271 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4272 } 4273 4274 // No special expansion. 4275 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4276 } 4277 4278 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4279 /// limited-precision mode. 4280 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4281 const TargetLowering &TLI) { 4282 if (Op.getValueType() == MVT::f32 && 4283 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4284 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4285 4286 // Scale the exponent by log10(2) [0.30102999f]. 4287 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4288 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4289 getF32Constant(DAG, 0x3e9a209a)); 4290 4291 // Get the significand and build it into a floating-point number with 4292 // exponent of 1. 4293 SDValue X = GetSignificand(DAG, Op1, dl); 4294 4295 SDValue Log10ofMantissa; 4296 if (LimitFloatPrecision <= 6) { 4297 // For floating-point precision of 6: 4298 // 4299 // Log10ofMantissa = 4300 // -0.50419619f + 4301 // (0.60948995f - 0.10380950f * x) * x; 4302 // 4303 // error 0.0014886165, which is 6 bits 4304 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4305 getF32Constant(DAG, 0xbdd49a13)); 4306 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4307 getF32Constant(DAG, 0x3f1c0789)); 4308 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4309 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4310 getF32Constant(DAG, 0x3f011300)); 4311 } else if (LimitFloatPrecision <= 12) { 4312 // For floating-point precision of 12: 4313 // 4314 // Log10ofMantissa = 4315 // -0.64831180f + 4316 // (0.91751397f + 4317 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4318 // 4319 // error 0.00019228036, which is better than 12 bits 4320 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4321 getF32Constant(DAG, 0x3d431f31)); 4322 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4323 getF32Constant(DAG, 0x3ea21fb2)); 4324 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4325 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4326 getF32Constant(DAG, 0x3f6ae232)); 4327 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4328 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4329 getF32Constant(DAG, 0x3f25f7c3)); 4330 } else { // LimitFloatPrecision <= 18 4331 // For floating-point precision of 18: 4332 // 4333 // Log10ofMantissa = 4334 // -0.84299375f + 4335 // (1.5327582f + 4336 // (-1.0688956f + 4337 // (0.49102474f + 4338 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4339 // 4340 // error 0.0000037995730, which is better than 18 bits 4341 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4342 getF32Constant(DAG, 0x3c5d51ce)); 4343 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4344 getF32Constant(DAG, 0x3e00685a)); 4345 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4346 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4347 getF32Constant(DAG, 0x3efb6798)); 4348 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4349 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4350 getF32Constant(DAG, 0x3f88d192)); 4351 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4352 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4353 getF32Constant(DAG, 0x3fc4316c)); 4354 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4355 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4356 getF32Constant(DAG, 0x3f57ce70)); 4357 } 4358 4359 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4360 } 4361 4362 // No special expansion. 4363 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4364 } 4365 4366 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4367 /// limited-precision mode. 4368 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4369 const TargetLowering &TLI) { 4370 if (Op.getValueType() == MVT::f32 && 4371 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4372 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4373 4374 // FractionalPartOfX = x - (float)IntegerPartOfX; 4375 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4376 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4377 4378 // IntegerPartOfX <<= 23; 4379 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4380 DAG.getConstant(23, TLI.getPointerTy())); 4381 4382 SDValue TwoToFractionalPartOfX; 4383 if (LimitFloatPrecision <= 6) { 4384 // For floating-point precision of 6: 4385 // 4386 // TwoToFractionalPartOfX = 4387 // 0.997535578f + 4388 // (0.735607626f + 0.252464424f * x) * x; 4389 // 4390 // error 0.0144103317, which is 6 bits 4391 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4392 getF32Constant(DAG, 0x3e814304)); 4393 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4394 getF32Constant(DAG, 0x3f3c50c8)); 4395 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4396 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4397 getF32Constant(DAG, 0x3f7f5e7e)); 4398 } else if (LimitFloatPrecision <= 12) { 4399 // For floating-point precision of 12: 4400 // 4401 // TwoToFractionalPartOfX = 4402 // 0.999892986f + 4403 // (0.696457318f + 4404 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4405 // 4406 // error 0.000107046256, which is 13 to 14 bits 4407 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4408 getF32Constant(DAG, 0x3da235e3)); 4409 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4410 getF32Constant(DAG, 0x3e65b8f3)); 4411 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4412 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4413 getF32Constant(DAG, 0x3f324b07)); 4414 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4415 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4416 getF32Constant(DAG, 0x3f7ff8fd)); 4417 } else { // LimitFloatPrecision <= 18 4418 // For floating-point precision of 18: 4419 // 4420 // TwoToFractionalPartOfX = 4421 // 0.999999982f + 4422 // (0.693148872f + 4423 // (0.240227044f + 4424 // (0.554906021e-1f + 4425 // (0.961591928e-2f + 4426 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4427 // error 2.47208000*10^(-7), which is better than 18 bits 4428 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4429 getF32Constant(DAG, 0x3924b03e)); 4430 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4431 getF32Constant(DAG, 0x3ab24b87)); 4432 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4433 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4434 getF32Constant(DAG, 0x3c1d8c17)); 4435 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4436 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4437 getF32Constant(DAG, 0x3d634a1d)); 4438 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4439 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4440 getF32Constant(DAG, 0x3e75fe14)); 4441 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4442 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4443 getF32Constant(DAG, 0x3f317234)); 4444 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4445 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4446 getF32Constant(DAG, 0x3f800000)); 4447 } 4448 4449 // Add the exponent into the result in integer domain. 4450 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4451 TwoToFractionalPartOfX); 4452 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4453 DAG.getNode(ISD::ADD, dl, MVT::i32, 4454 t13, IntegerPartOfX)); 4455 } 4456 4457 // No special expansion. 4458 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4459 } 4460 4461 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4462 /// limited-precision mode with x == 10.0f. 4463 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4464 SelectionDAG &DAG, const TargetLowering &TLI) { 4465 bool IsExp10 = false; 4466 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4467 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4468 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4469 APFloat Ten(10.0f); 4470 IsExp10 = LHSC->isExactlyValue(Ten); 4471 } 4472 } 4473 4474 if (IsExp10) { 4475 // Put the exponent in the right bit position for later addition to the 4476 // final result: 4477 // 4478 // #define LOG2OF10 3.3219281f 4479 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4480 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4481 getF32Constant(DAG, 0x40549a78)); 4482 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4483 4484 // FractionalPartOfX = x - (float)IntegerPartOfX; 4485 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4486 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4487 4488 // IntegerPartOfX <<= 23; 4489 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4490 DAG.getConstant(23, TLI.getPointerTy())); 4491 4492 SDValue TwoToFractionalPartOfX; 4493 if (LimitFloatPrecision <= 6) { 4494 // For floating-point precision of 6: 4495 // 4496 // twoToFractionalPartOfX = 4497 // 0.997535578f + 4498 // (0.735607626f + 0.252464424f * x) * x; 4499 // 4500 // error 0.0144103317, which is 6 bits 4501 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4502 getF32Constant(DAG, 0x3e814304)); 4503 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4504 getF32Constant(DAG, 0x3f3c50c8)); 4505 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4506 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4507 getF32Constant(DAG, 0x3f7f5e7e)); 4508 } else if (LimitFloatPrecision <= 12) { 4509 // For floating-point precision of 12: 4510 // 4511 // TwoToFractionalPartOfX = 4512 // 0.999892986f + 4513 // (0.696457318f + 4514 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4515 // 4516 // error 0.000107046256, which is 13 to 14 bits 4517 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4518 getF32Constant(DAG, 0x3da235e3)); 4519 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4520 getF32Constant(DAG, 0x3e65b8f3)); 4521 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4522 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4523 getF32Constant(DAG, 0x3f324b07)); 4524 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4525 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4526 getF32Constant(DAG, 0x3f7ff8fd)); 4527 } else { // LimitFloatPrecision <= 18 4528 // For floating-point precision of 18: 4529 // 4530 // TwoToFractionalPartOfX = 4531 // 0.999999982f + 4532 // (0.693148872f + 4533 // (0.240227044f + 4534 // (0.554906021e-1f + 4535 // (0.961591928e-2f + 4536 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4537 // error 2.47208000*10^(-7), which is better than 18 bits 4538 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4539 getF32Constant(DAG, 0x3924b03e)); 4540 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4541 getF32Constant(DAG, 0x3ab24b87)); 4542 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4543 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4544 getF32Constant(DAG, 0x3c1d8c17)); 4545 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4546 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4547 getF32Constant(DAG, 0x3d634a1d)); 4548 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4549 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4550 getF32Constant(DAG, 0x3e75fe14)); 4551 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4552 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4553 getF32Constant(DAG, 0x3f317234)); 4554 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4555 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4556 getF32Constant(DAG, 0x3f800000)); 4557 } 4558 4559 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4560 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4561 DAG.getNode(ISD::ADD, dl, MVT::i32, 4562 t13, IntegerPartOfX)); 4563 } 4564 4565 // No special expansion. 4566 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4567 } 4568 4569 4570 /// ExpandPowI - Expand a llvm.powi intrinsic. 4571 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4572 SelectionDAG &DAG) { 4573 // If RHS is a constant, we can expand this out to a multiplication tree, 4574 // otherwise we end up lowering to a call to __powidf2 (for example). When 4575 // optimizing for size, we only want to do this if the expansion would produce 4576 // a small number of multiplies, otherwise we do the full expansion. 4577 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4578 // Get the exponent as a positive value. 4579 unsigned Val = RHSC->getSExtValue(); 4580 if ((int)Val < 0) Val = -Val; 4581 4582 // powi(x, 0) -> 1.0 4583 if (Val == 0) 4584 return DAG.getConstantFP(1.0, LHS.getValueType()); 4585 4586 const Function *F = DAG.getMachineFunction().getFunction(); 4587 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4588 Attribute::OptimizeForSize) || 4589 // If optimizing for size, don't insert too many multiplies. This 4590 // inserts up to 5 multiplies. 4591 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4592 // We use the simple binary decomposition method to generate the multiply 4593 // sequence. There are more optimal ways to do this (for example, 4594 // powi(x,15) generates one more multiply than it should), but this has 4595 // the benefit of being both really simple and much better than a libcall. 4596 SDValue Res; // Logically starts equal to 1.0 4597 SDValue CurSquare = LHS; 4598 while (Val) { 4599 if (Val & 1) { 4600 if (Res.getNode()) 4601 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4602 else 4603 Res = CurSquare; // 1.0*CurSquare. 4604 } 4605 4606 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4607 CurSquare, CurSquare); 4608 Val >>= 1; 4609 } 4610 4611 // If the original was negative, invert the result, producing 1/(x*x*x). 4612 if (RHSC->getSExtValue() < 0) 4613 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4614 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4615 return Res; 4616 } 4617 } 4618 4619 // Otherwise, expand to a libcall. 4620 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4621 } 4622 4623 // getTruncatedArgReg - Find underlying register used for an truncated 4624 // argument. 4625 static unsigned getTruncatedArgReg(const SDValue &N) { 4626 if (N.getOpcode() != ISD::TRUNCATE) 4627 return 0; 4628 4629 const SDValue &Ext = N.getOperand(0); 4630 if (Ext.getOpcode() == ISD::AssertZext || 4631 Ext.getOpcode() == ISD::AssertSext) { 4632 const SDValue &CFR = Ext.getOperand(0); 4633 if (CFR.getOpcode() == ISD::CopyFromReg) 4634 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4635 if (CFR.getOpcode() == ISD::TRUNCATE) 4636 return getTruncatedArgReg(CFR); 4637 } 4638 return 0; 4639 } 4640 4641 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4642 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4643 /// At the end of instruction selection, they will be inserted to the entry BB. 4644 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4645 MDNode *Variable, 4646 MDNode *Expr, int64_t Offset, 4647 bool IsIndirect, 4648 const SDValue &N) { 4649 const Argument *Arg = dyn_cast<Argument>(V); 4650 if (!Arg) 4651 return false; 4652 4653 MachineFunction &MF = DAG.getMachineFunction(); 4654 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4655 4656 // Ignore inlined function arguments here. 4657 DIVariable DV(Variable); 4658 if (DV.isInlinedFnArgument(MF.getFunction())) 4659 return false; 4660 4661 Optional<MachineOperand> Op; 4662 // Some arguments' frame index is recorded during argument lowering. 4663 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4664 Op = MachineOperand::CreateFI(FI); 4665 4666 if (!Op && N.getNode()) { 4667 unsigned Reg; 4668 if (N.getOpcode() == ISD::CopyFromReg) 4669 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4670 else 4671 Reg = getTruncatedArgReg(N); 4672 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4673 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4674 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4675 if (PR) 4676 Reg = PR; 4677 } 4678 if (Reg) 4679 Op = MachineOperand::CreateReg(Reg, false); 4680 } 4681 4682 if (!Op) { 4683 // Check if ValueMap has reg number. 4684 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4685 if (VMI != FuncInfo.ValueMap.end()) 4686 Op = MachineOperand::CreateReg(VMI->second, false); 4687 } 4688 4689 if (!Op && N.getNode()) 4690 // Check if frame index is available. 4691 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4692 if (FrameIndexSDNode *FINode = 4693 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4694 Op = MachineOperand::CreateFI(FINode->getIndex()); 4695 4696 if (!Op) 4697 return false; 4698 4699 if (Op->isReg()) 4700 FuncInfo.ArgDbgValues.push_back( 4701 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4702 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4703 else 4704 FuncInfo.ArgDbgValues.push_back( 4705 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4706 .addOperand(*Op) 4707 .addImm(Offset) 4708 .addMetadata(Variable) 4709 .addMetadata(Expr)); 4710 4711 return true; 4712 } 4713 4714 // VisualStudio defines setjmp as _setjmp 4715 #if defined(_MSC_VER) && defined(setjmp) && \ 4716 !defined(setjmp_undefined_for_msvc) 4717 # pragma push_macro("setjmp") 4718 # undef setjmp 4719 # define setjmp_undefined_for_msvc 4720 #endif 4721 4722 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4723 /// we want to emit this as a call to a named external function, return the name 4724 /// otherwise lower it and return null. 4725 const char * 4726 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4728 SDLoc sdl = getCurSDLoc(); 4729 DebugLoc dl = getCurDebugLoc(); 4730 SDValue Res; 4731 4732 switch (Intrinsic) { 4733 default: 4734 // By default, turn this into a target intrinsic node. 4735 visitTargetIntrinsic(I, Intrinsic); 4736 return nullptr; 4737 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4738 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4739 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4740 case Intrinsic::returnaddress: 4741 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4742 getValue(I.getArgOperand(0)))); 4743 return nullptr; 4744 case Intrinsic::frameaddress: 4745 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4746 getValue(I.getArgOperand(0)))); 4747 return nullptr; 4748 case Intrinsic::read_register: { 4749 Value *Reg = I.getArgOperand(0); 4750 SDValue RegName = 4751 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4752 EVT VT = TLI.getValueType(I.getType()); 4753 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4754 return nullptr; 4755 } 4756 case Intrinsic::write_register: { 4757 Value *Reg = I.getArgOperand(0); 4758 Value *RegValue = I.getArgOperand(1); 4759 SDValue Chain = getValue(RegValue).getOperand(0); 4760 SDValue RegName = 4761 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4762 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4763 RegName, getValue(RegValue))); 4764 return nullptr; 4765 } 4766 case Intrinsic::setjmp: 4767 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4768 case Intrinsic::longjmp: 4769 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4770 case Intrinsic::memcpy: { 4771 // Assert for address < 256 since we support only user defined address 4772 // spaces. 4773 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4774 < 256 && 4775 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4776 < 256 && 4777 "Unknown address space"); 4778 SDValue Op1 = getValue(I.getArgOperand(0)); 4779 SDValue Op2 = getValue(I.getArgOperand(1)); 4780 SDValue Op3 = getValue(I.getArgOperand(2)); 4781 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4782 if (!Align) 4783 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4784 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4785 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4786 MachinePointerInfo(I.getArgOperand(0)), 4787 MachinePointerInfo(I.getArgOperand(1)))); 4788 return nullptr; 4789 } 4790 case Intrinsic::memset: { 4791 // Assert for address < 256 since we support only user defined address 4792 // spaces. 4793 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4794 < 256 && 4795 "Unknown address space"); 4796 SDValue Op1 = getValue(I.getArgOperand(0)); 4797 SDValue Op2 = getValue(I.getArgOperand(1)); 4798 SDValue Op3 = getValue(I.getArgOperand(2)); 4799 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4800 if (!Align) 4801 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4802 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4803 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4804 MachinePointerInfo(I.getArgOperand(0)))); 4805 return nullptr; 4806 } 4807 case Intrinsic::memmove: { 4808 // Assert for address < 256 since we support only user defined address 4809 // spaces. 4810 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4811 < 256 && 4812 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4813 < 256 && 4814 "Unknown address space"); 4815 SDValue Op1 = getValue(I.getArgOperand(0)); 4816 SDValue Op2 = getValue(I.getArgOperand(1)); 4817 SDValue Op3 = getValue(I.getArgOperand(2)); 4818 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4819 if (!Align) 4820 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4821 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4822 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4823 MachinePointerInfo(I.getArgOperand(0)), 4824 MachinePointerInfo(I.getArgOperand(1)))); 4825 return nullptr; 4826 } 4827 case Intrinsic::dbg_declare: { 4828 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4829 MDNode *Variable = DI.getVariable(); 4830 MDNode *Expression = DI.getExpression(); 4831 const Value *Address = DI.getAddress(); 4832 DIVariable DIVar(Variable); 4833 assert((!DIVar || DIVar.isVariable()) && 4834 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4835 if (!Address || !DIVar) { 4836 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4837 return nullptr; 4838 } 4839 4840 // Check if address has undef value. 4841 if (isa<UndefValue>(Address) || 4842 (Address->use_empty() && !isa<Argument>(Address))) { 4843 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4844 return nullptr; 4845 } 4846 4847 SDValue &N = NodeMap[Address]; 4848 if (!N.getNode() && isa<Argument>(Address)) 4849 // Check unused arguments map. 4850 N = UnusedArgNodeMap[Address]; 4851 SDDbgValue *SDV; 4852 if (N.getNode()) { 4853 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4854 Address = BCI->getOperand(0); 4855 // Parameters are handled specially. 4856 bool isParameter = 4857 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4858 isa<Argument>(Address)); 4859 4860 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4861 4862 if (isParameter && !AI) { 4863 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4864 if (FINode) 4865 // Byval parameter. We have a frame index at this point. 4866 SDV = DAG.getFrameIndexDbgValue( 4867 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4868 else { 4869 // Address is an argument, so try to emit its dbg value using 4870 // virtual register info from the FuncInfo.ValueMap. 4871 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4872 return nullptr; 4873 } 4874 } else if (AI) 4875 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4876 true, 0, dl, SDNodeOrder); 4877 else { 4878 // Can't do anything with other non-AI cases yet. 4879 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4880 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4881 DEBUG(Address->dump()); 4882 return nullptr; 4883 } 4884 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4885 } else { 4886 // If Address is an argument then try to emit its dbg value using 4887 // virtual register info from the FuncInfo.ValueMap. 4888 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4889 N)) { 4890 // If variable is pinned by a alloca in dominating bb then 4891 // use StaticAllocaMap. 4892 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4893 if (AI->getParent() != DI.getParent()) { 4894 DenseMap<const AllocaInst*, int>::iterator SI = 4895 FuncInfo.StaticAllocaMap.find(AI); 4896 if (SI != FuncInfo.StaticAllocaMap.end()) { 4897 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4898 0, dl, SDNodeOrder); 4899 DAG.AddDbgValue(SDV, nullptr, false); 4900 return nullptr; 4901 } 4902 } 4903 } 4904 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4905 } 4906 } 4907 return nullptr; 4908 } 4909 case Intrinsic::dbg_value: { 4910 const DbgValueInst &DI = cast<DbgValueInst>(I); 4911 DIVariable DIVar(DI.getVariable()); 4912 assert((!DIVar || DIVar.isVariable()) && 4913 "Variable in DbgValueInst should be either null or a DIVariable."); 4914 if (!DIVar) 4915 return nullptr; 4916 4917 MDNode *Variable = DI.getVariable(); 4918 MDNode *Expression = DI.getExpression(); 4919 uint64_t Offset = DI.getOffset(); 4920 const Value *V = DI.getValue(); 4921 if (!V) 4922 return nullptr; 4923 4924 SDDbgValue *SDV; 4925 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4926 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4927 SDNodeOrder); 4928 DAG.AddDbgValue(SDV, nullptr, false); 4929 } else { 4930 // Do not use getValue() in here; we don't want to generate code at 4931 // this point if it hasn't been done yet. 4932 SDValue N = NodeMap[V]; 4933 if (!N.getNode() && isa<Argument>(V)) 4934 // Check unused arguments map. 4935 N = UnusedArgNodeMap[V]; 4936 if (N.getNode()) { 4937 // A dbg.value for an alloca is always indirect. 4938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4939 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4940 IsIndirect, N)) { 4941 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4942 IsIndirect, Offset, dl, SDNodeOrder); 4943 DAG.AddDbgValue(SDV, N.getNode(), false); 4944 } 4945 } else if (!V->use_empty() ) { 4946 // Do not call getValue(V) yet, as we don't want to generate code. 4947 // Remember it for later. 4948 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4949 DanglingDebugInfoMap[V] = DDI; 4950 } else { 4951 // We may expand this to cover more cases. One case where we have no 4952 // data available is an unreferenced parameter. 4953 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4954 } 4955 } 4956 4957 // Build a debug info table entry. 4958 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4959 V = BCI->getOperand(0); 4960 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4961 // Don't handle byval struct arguments or VLAs, for example. 4962 if (!AI) { 4963 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4964 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4965 return nullptr; 4966 } 4967 DenseMap<const AllocaInst*, int>::iterator SI = 4968 FuncInfo.StaticAllocaMap.find(AI); 4969 if (SI == FuncInfo.StaticAllocaMap.end()) 4970 return nullptr; // VLAs. 4971 return nullptr; 4972 } 4973 4974 case Intrinsic::eh_typeid_for: { 4975 // Find the type id for the given typeinfo. 4976 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4977 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4978 Res = DAG.getConstant(TypeID, MVT::i32); 4979 setValue(&I, Res); 4980 return nullptr; 4981 } 4982 4983 case Intrinsic::eh_return_i32: 4984 case Intrinsic::eh_return_i64: 4985 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4986 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4987 MVT::Other, 4988 getControlRoot(), 4989 getValue(I.getArgOperand(0)), 4990 getValue(I.getArgOperand(1)))); 4991 return nullptr; 4992 case Intrinsic::eh_unwind_init: 4993 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4994 return nullptr; 4995 case Intrinsic::eh_dwarf_cfa: { 4996 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4997 TLI.getPointerTy()); 4998 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4999 CfaArg.getValueType(), 5000 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 5001 CfaArg.getValueType()), 5002 CfaArg); 5003 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 5004 DAG.getConstant(0, TLI.getPointerTy())); 5005 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 5006 FA, Offset)); 5007 return nullptr; 5008 } 5009 case Intrinsic::eh_sjlj_callsite: { 5010 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5011 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5012 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5013 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5014 5015 MMI.setCurrentCallSite(CI->getZExtValue()); 5016 return nullptr; 5017 } 5018 case Intrinsic::eh_sjlj_functioncontext: { 5019 // Get and store the index of the function context. 5020 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 5021 AllocaInst *FnCtx = 5022 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5023 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5024 MFI->setFunctionContextIndex(FI); 5025 return nullptr; 5026 } 5027 case Intrinsic::eh_sjlj_setjmp: { 5028 SDValue Ops[2]; 5029 Ops[0] = getRoot(); 5030 Ops[1] = getValue(I.getArgOperand(0)); 5031 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5032 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5033 setValue(&I, Op.getValue(0)); 5034 DAG.setRoot(Op.getValue(1)); 5035 return nullptr; 5036 } 5037 case Intrinsic::eh_sjlj_longjmp: { 5038 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5039 getRoot(), getValue(I.getArgOperand(0)))); 5040 return nullptr; 5041 } 5042 5043 case Intrinsic::masked_load: 5044 visitMaskedLoad(I); 5045 return nullptr; 5046 case Intrinsic::masked_store: 5047 visitMaskedStore(I); 5048 return nullptr; 5049 case Intrinsic::x86_mmx_pslli_w: 5050 case Intrinsic::x86_mmx_pslli_d: 5051 case Intrinsic::x86_mmx_pslli_q: 5052 case Intrinsic::x86_mmx_psrli_w: 5053 case Intrinsic::x86_mmx_psrli_d: 5054 case Intrinsic::x86_mmx_psrli_q: 5055 case Intrinsic::x86_mmx_psrai_w: 5056 case Intrinsic::x86_mmx_psrai_d: { 5057 SDValue ShAmt = getValue(I.getArgOperand(1)); 5058 if (isa<ConstantSDNode>(ShAmt)) { 5059 visitTargetIntrinsic(I, Intrinsic); 5060 return nullptr; 5061 } 5062 unsigned NewIntrinsic = 0; 5063 EVT ShAmtVT = MVT::v2i32; 5064 switch (Intrinsic) { 5065 case Intrinsic::x86_mmx_pslli_w: 5066 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5067 break; 5068 case Intrinsic::x86_mmx_pslli_d: 5069 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5070 break; 5071 case Intrinsic::x86_mmx_pslli_q: 5072 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5073 break; 5074 case Intrinsic::x86_mmx_psrli_w: 5075 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5076 break; 5077 case Intrinsic::x86_mmx_psrli_d: 5078 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5079 break; 5080 case Intrinsic::x86_mmx_psrli_q: 5081 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5082 break; 5083 case Intrinsic::x86_mmx_psrai_w: 5084 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5085 break; 5086 case Intrinsic::x86_mmx_psrai_d: 5087 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5088 break; 5089 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5090 } 5091 5092 // The vector shift intrinsics with scalars uses 32b shift amounts but 5093 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5094 // to be zero. 5095 // We must do this early because v2i32 is not a legal type. 5096 SDValue ShOps[2]; 5097 ShOps[0] = ShAmt; 5098 ShOps[1] = DAG.getConstant(0, MVT::i32); 5099 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5100 EVT DestVT = TLI.getValueType(I.getType()); 5101 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5102 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5103 DAG.getConstant(NewIntrinsic, MVT::i32), 5104 getValue(I.getArgOperand(0)), ShAmt); 5105 setValue(&I, Res); 5106 return nullptr; 5107 } 5108 case Intrinsic::x86_avx_vinsertf128_pd_256: 5109 case Intrinsic::x86_avx_vinsertf128_ps_256: 5110 case Intrinsic::x86_avx_vinsertf128_si_256: 5111 case Intrinsic::x86_avx2_vinserti128: { 5112 EVT DestVT = TLI.getValueType(I.getType()); 5113 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 5114 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5115 ElVT.getVectorNumElements(); 5116 Res = 5117 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5118 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 5119 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5120 setValue(&I, Res); 5121 return nullptr; 5122 } 5123 case Intrinsic::x86_avx_vextractf128_pd_256: 5124 case Intrinsic::x86_avx_vextractf128_ps_256: 5125 case Intrinsic::x86_avx_vextractf128_si_256: 5126 case Intrinsic::x86_avx2_vextracti128: { 5127 EVT DestVT = TLI.getValueType(I.getType()); 5128 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5129 DestVT.getVectorNumElements(); 5130 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5131 getValue(I.getArgOperand(0)), 5132 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5133 setValue(&I, Res); 5134 return nullptr; 5135 } 5136 case Intrinsic::convertff: 5137 case Intrinsic::convertfsi: 5138 case Intrinsic::convertfui: 5139 case Intrinsic::convertsif: 5140 case Intrinsic::convertuif: 5141 case Intrinsic::convertss: 5142 case Intrinsic::convertsu: 5143 case Intrinsic::convertus: 5144 case Intrinsic::convertuu: { 5145 ISD::CvtCode Code = ISD::CVT_INVALID; 5146 switch (Intrinsic) { 5147 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5148 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5149 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5150 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5151 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5152 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5153 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5154 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5155 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5156 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5157 } 5158 EVT DestVT = TLI.getValueType(I.getType()); 5159 const Value *Op1 = I.getArgOperand(0); 5160 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5161 DAG.getValueType(DestVT), 5162 DAG.getValueType(getValue(Op1).getValueType()), 5163 getValue(I.getArgOperand(1)), 5164 getValue(I.getArgOperand(2)), 5165 Code); 5166 setValue(&I, Res); 5167 return nullptr; 5168 } 5169 case Intrinsic::powi: 5170 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5171 getValue(I.getArgOperand(1)), DAG)); 5172 return nullptr; 5173 case Intrinsic::log: 5174 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5175 return nullptr; 5176 case Intrinsic::log2: 5177 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5178 return nullptr; 5179 case Intrinsic::log10: 5180 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5181 return nullptr; 5182 case Intrinsic::exp: 5183 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5184 return nullptr; 5185 case Intrinsic::exp2: 5186 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5187 return nullptr; 5188 case Intrinsic::pow: 5189 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5190 getValue(I.getArgOperand(1)), DAG, TLI)); 5191 return nullptr; 5192 case Intrinsic::sqrt: 5193 case Intrinsic::fabs: 5194 case Intrinsic::sin: 5195 case Intrinsic::cos: 5196 case Intrinsic::floor: 5197 case Intrinsic::ceil: 5198 case Intrinsic::trunc: 5199 case Intrinsic::rint: 5200 case Intrinsic::nearbyint: 5201 case Intrinsic::round: { 5202 unsigned Opcode; 5203 switch (Intrinsic) { 5204 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5205 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5206 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5207 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5208 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5209 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5210 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5211 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5212 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5213 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5214 case Intrinsic::round: Opcode = ISD::FROUND; break; 5215 } 5216 5217 setValue(&I, DAG.getNode(Opcode, sdl, 5218 getValue(I.getArgOperand(0)).getValueType(), 5219 getValue(I.getArgOperand(0)))); 5220 return nullptr; 5221 } 5222 case Intrinsic::minnum: 5223 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5224 getValue(I.getArgOperand(0)).getValueType(), 5225 getValue(I.getArgOperand(0)), 5226 getValue(I.getArgOperand(1)))); 5227 return nullptr; 5228 case Intrinsic::maxnum: 5229 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5230 getValue(I.getArgOperand(0)).getValueType(), 5231 getValue(I.getArgOperand(0)), 5232 getValue(I.getArgOperand(1)))); 5233 return nullptr; 5234 case Intrinsic::copysign: 5235 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5236 getValue(I.getArgOperand(0)).getValueType(), 5237 getValue(I.getArgOperand(0)), 5238 getValue(I.getArgOperand(1)))); 5239 return nullptr; 5240 case Intrinsic::fma: 5241 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5242 getValue(I.getArgOperand(0)).getValueType(), 5243 getValue(I.getArgOperand(0)), 5244 getValue(I.getArgOperand(1)), 5245 getValue(I.getArgOperand(2)))); 5246 return nullptr; 5247 case Intrinsic::fmuladd: { 5248 EVT VT = TLI.getValueType(I.getType()); 5249 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5250 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5251 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5252 getValue(I.getArgOperand(0)).getValueType(), 5253 getValue(I.getArgOperand(0)), 5254 getValue(I.getArgOperand(1)), 5255 getValue(I.getArgOperand(2)))); 5256 } else { 5257 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5258 getValue(I.getArgOperand(0)).getValueType(), 5259 getValue(I.getArgOperand(0)), 5260 getValue(I.getArgOperand(1))); 5261 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5262 getValue(I.getArgOperand(0)).getValueType(), 5263 Mul, 5264 getValue(I.getArgOperand(2))); 5265 setValue(&I, Add); 5266 } 5267 return nullptr; 5268 } 5269 case Intrinsic::convert_to_fp16: 5270 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5271 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5272 getValue(I.getArgOperand(0)), 5273 DAG.getTargetConstant(0, MVT::i32)))); 5274 return nullptr; 5275 case Intrinsic::convert_from_fp16: 5276 setValue(&I, 5277 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5278 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5279 getValue(I.getArgOperand(0))))); 5280 return nullptr; 5281 case Intrinsic::pcmarker: { 5282 SDValue Tmp = getValue(I.getArgOperand(0)); 5283 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5284 return nullptr; 5285 } 5286 case Intrinsic::readcyclecounter: { 5287 SDValue Op = getRoot(); 5288 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5289 DAG.getVTList(MVT::i64, MVT::Other), Op); 5290 setValue(&I, Res); 5291 DAG.setRoot(Res.getValue(1)); 5292 return nullptr; 5293 } 5294 case Intrinsic::bswap: 5295 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5296 getValue(I.getArgOperand(0)).getValueType(), 5297 getValue(I.getArgOperand(0)))); 5298 return nullptr; 5299 case Intrinsic::cttz: { 5300 SDValue Arg = getValue(I.getArgOperand(0)); 5301 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5302 EVT Ty = Arg.getValueType(); 5303 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5304 sdl, Ty, Arg)); 5305 return nullptr; 5306 } 5307 case Intrinsic::ctlz: { 5308 SDValue Arg = getValue(I.getArgOperand(0)); 5309 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5310 EVT Ty = Arg.getValueType(); 5311 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5312 sdl, Ty, Arg)); 5313 return nullptr; 5314 } 5315 case Intrinsic::ctpop: { 5316 SDValue Arg = getValue(I.getArgOperand(0)); 5317 EVT Ty = Arg.getValueType(); 5318 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5319 return nullptr; 5320 } 5321 case Intrinsic::stacksave: { 5322 SDValue Op = getRoot(); 5323 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5324 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5325 setValue(&I, Res); 5326 DAG.setRoot(Res.getValue(1)); 5327 return nullptr; 5328 } 5329 case Intrinsic::stackrestore: { 5330 Res = getValue(I.getArgOperand(0)); 5331 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5332 return nullptr; 5333 } 5334 case Intrinsic::stackprotector: { 5335 // Emit code into the DAG to store the stack guard onto the stack. 5336 MachineFunction &MF = DAG.getMachineFunction(); 5337 MachineFrameInfo *MFI = MF.getFrameInfo(); 5338 EVT PtrTy = TLI.getPointerTy(); 5339 SDValue Src, Chain = getRoot(); 5340 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5341 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5342 5343 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5344 // global variable __stack_chk_guard. 5345 if (!GV) 5346 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5347 if (BC->getOpcode() == Instruction::BitCast) 5348 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5349 5350 if (GV && TLI.useLoadStackGuardNode()) { 5351 // Emit a LOAD_STACK_GUARD node. 5352 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5353 sdl, PtrTy, Chain); 5354 MachinePointerInfo MPInfo(GV); 5355 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5356 unsigned Flags = MachineMemOperand::MOLoad | 5357 MachineMemOperand::MOInvariant; 5358 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5359 PtrTy.getSizeInBits() / 8, 5360 DAG.getEVTAlignment(PtrTy)); 5361 Node->setMemRefs(MemRefs, MemRefs + 1); 5362 5363 // Copy the guard value to a virtual register so that it can be 5364 // retrieved in the epilogue. 5365 Src = SDValue(Node, 0); 5366 const TargetRegisterClass *RC = 5367 TLI.getRegClassFor(Src.getSimpleValueType()); 5368 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5369 5370 SPDescriptor.setGuardReg(Reg); 5371 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5372 } else { 5373 Src = getValue(I.getArgOperand(0)); // The guard's value. 5374 } 5375 5376 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5377 5378 int FI = FuncInfo.StaticAllocaMap[Slot]; 5379 MFI->setStackProtectorIndex(FI); 5380 5381 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5382 5383 // Store the stack protector onto the stack. 5384 Res = DAG.getStore(Chain, sdl, Src, FIN, 5385 MachinePointerInfo::getFixedStack(FI), 5386 true, false, 0); 5387 setValue(&I, Res); 5388 DAG.setRoot(Res); 5389 return nullptr; 5390 } 5391 case Intrinsic::objectsize: { 5392 // If we don't know by now, we're never going to know. 5393 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5394 5395 assert(CI && "Non-constant type in __builtin_object_size?"); 5396 5397 SDValue Arg = getValue(I.getCalledValue()); 5398 EVT Ty = Arg.getValueType(); 5399 5400 if (CI->isZero()) 5401 Res = DAG.getConstant(-1ULL, Ty); 5402 else 5403 Res = DAG.getConstant(0, Ty); 5404 5405 setValue(&I, Res); 5406 return nullptr; 5407 } 5408 case Intrinsic::annotation: 5409 case Intrinsic::ptr_annotation: 5410 // Drop the intrinsic, but forward the value 5411 setValue(&I, getValue(I.getOperand(0))); 5412 return nullptr; 5413 case Intrinsic::assume: 5414 case Intrinsic::var_annotation: 5415 // Discard annotate attributes and assumptions 5416 return nullptr; 5417 5418 case Intrinsic::init_trampoline: { 5419 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5420 5421 SDValue Ops[6]; 5422 Ops[0] = getRoot(); 5423 Ops[1] = getValue(I.getArgOperand(0)); 5424 Ops[2] = getValue(I.getArgOperand(1)); 5425 Ops[3] = getValue(I.getArgOperand(2)); 5426 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5427 Ops[5] = DAG.getSrcValue(F); 5428 5429 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5430 5431 DAG.setRoot(Res); 5432 return nullptr; 5433 } 5434 case Intrinsic::adjust_trampoline: { 5435 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5436 TLI.getPointerTy(), 5437 getValue(I.getArgOperand(0)))); 5438 return nullptr; 5439 } 5440 case Intrinsic::gcroot: 5441 if (GFI) { 5442 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5443 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5444 5445 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5446 GFI->addStackRoot(FI->getIndex(), TypeMap); 5447 } 5448 return nullptr; 5449 case Intrinsic::gcread: 5450 case Intrinsic::gcwrite: 5451 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5452 case Intrinsic::flt_rounds: 5453 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5454 return nullptr; 5455 5456 case Intrinsic::expect: { 5457 // Just replace __builtin_expect(exp, c) with EXP. 5458 setValue(&I, getValue(I.getArgOperand(0))); 5459 return nullptr; 5460 } 5461 5462 case Intrinsic::debugtrap: 5463 case Intrinsic::trap: { 5464 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5465 if (TrapFuncName.empty()) { 5466 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5467 ISD::TRAP : ISD::DEBUGTRAP; 5468 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5469 return nullptr; 5470 } 5471 TargetLowering::ArgListTy Args; 5472 5473 TargetLowering::CallLoweringInfo CLI(DAG); 5474 CLI.setDebugLoc(sdl).setChain(getRoot()) 5475 .setCallee(CallingConv::C, I.getType(), 5476 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5477 std::move(Args), 0); 5478 5479 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5480 DAG.setRoot(Result.second); 5481 return nullptr; 5482 } 5483 5484 case Intrinsic::uadd_with_overflow: 5485 case Intrinsic::sadd_with_overflow: 5486 case Intrinsic::usub_with_overflow: 5487 case Intrinsic::ssub_with_overflow: 5488 case Intrinsic::umul_with_overflow: 5489 case Intrinsic::smul_with_overflow: { 5490 ISD::NodeType Op; 5491 switch (Intrinsic) { 5492 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5493 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5494 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5495 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5496 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5497 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5498 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5499 } 5500 SDValue Op1 = getValue(I.getArgOperand(0)); 5501 SDValue Op2 = getValue(I.getArgOperand(1)); 5502 5503 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5504 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5505 return nullptr; 5506 } 5507 case Intrinsic::prefetch: { 5508 SDValue Ops[5]; 5509 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5510 Ops[0] = getRoot(); 5511 Ops[1] = getValue(I.getArgOperand(0)); 5512 Ops[2] = getValue(I.getArgOperand(1)); 5513 Ops[3] = getValue(I.getArgOperand(2)); 5514 Ops[4] = getValue(I.getArgOperand(3)); 5515 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5516 DAG.getVTList(MVT::Other), Ops, 5517 EVT::getIntegerVT(*Context, 8), 5518 MachinePointerInfo(I.getArgOperand(0)), 5519 0, /* align */ 5520 false, /* volatile */ 5521 rw==0, /* read */ 5522 rw==1)); /* write */ 5523 return nullptr; 5524 } 5525 case Intrinsic::lifetime_start: 5526 case Intrinsic::lifetime_end: { 5527 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5528 // Stack coloring is not enabled in O0, discard region information. 5529 if (TM.getOptLevel() == CodeGenOpt::None) 5530 return nullptr; 5531 5532 SmallVector<Value *, 4> Allocas; 5533 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5534 5535 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5536 E = Allocas.end(); Object != E; ++Object) { 5537 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5538 5539 // Could not find an Alloca. 5540 if (!LifetimeObject) 5541 continue; 5542 5543 // First check that the Alloca is static, otherwise it won't have a 5544 // valid frame index. 5545 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5546 if (SI == FuncInfo.StaticAllocaMap.end()) 5547 return nullptr; 5548 5549 int FI = SI->second; 5550 5551 SDValue Ops[2]; 5552 Ops[0] = getRoot(); 5553 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5554 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5555 5556 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5557 DAG.setRoot(Res); 5558 } 5559 return nullptr; 5560 } 5561 case Intrinsic::invariant_start: 5562 // Discard region information. 5563 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5564 return nullptr; 5565 case Intrinsic::invariant_end: 5566 // Discard region information. 5567 return nullptr; 5568 case Intrinsic::stackprotectorcheck: { 5569 // Do not actually emit anything for this basic block. Instead we initialize 5570 // the stack protector descriptor and export the guard variable so we can 5571 // access it in FinishBasicBlock. 5572 const BasicBlock *BB = I.getParent(); 5573 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5574 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5575 5576 // Flush our exports since we are going to process a terminator. 5577 (void)getControlRoot(); 5578 return nullptr; 5579 } 5580 case Intrinsic::clear_cache: 5581 return TLI.getClearCacheBuiltinName(); 5582 case Intrinsic::donothing: 5583 // ignore 5584 return nullptr; 5585 case Intrinsic::experimental_stackmap: { 5586 visitStackmap(I); 5587 return nullptr; 5588 } 5589 case Intrinsic::experimental_patchpoint_void: 5590 case Intrinsic::experimental_patchpoint_i64: { 5591 visitPatchpoint(&I); 5592 return nullptr; 5593 } 5594 case Intrinsic::experimental_gc_statepoint: { 5595 visitStatepoint(I); 5596 return nullptr; 5597 } 5598 case Intrinsic::experimental_gc_result_int: 5599 case Intrinsic::experimental_gc_result_float: 5600 case Intrinsic::experimental_gc_result_ptr: { 5601 visitGCResult(I); 5602 return nullptr; 5603 } 5604 case Intrinsic::experimental_gc_relocate: { 5605 visitGCRelocate(I); 5606 return nullptr; 5607 } 5608 case Intrinsic::instrprof_increment: 5609 llvm_unreachable("instrprof failed to lower an increment"); 5610 5611 case Intrinsic::frameallocate: { 5612 MachineFunction &MF = DAG.getMachineFunction(); 5613 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5614 5615 // Do the allocation and map it as a normal value. 5616 // FIXME: Maybe we should add this to the alloca map so that we don't have 5617 // to register allocate it? 5618 uint64_t Size = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 5619 int Alloc = MF.getFrameInfo()->CreateFrameAllocation(Size); 5620 MVT PtrVT = TLI.getPointerTy(0); 5621 SDValue FIVal = DAG.getFrameIndex(Alloc, PtrVT); 5622 setValue(&I, FIVal); 5623 5624 // Directly emit a FRAME_ALLOC machine instr. Label assignment emission is 5625 // the same on all targets. 5626 MCSymbol *FrameAllocSym = 5627 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName()); 5628 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5629 TII->get(TargetOpcode::FRAME_ALLOC)) 5630 .addSym(FrameAllocSym) 5631 .addFrameIndex(Alloc); 5632 5633 return nullptr; 5634 } 5635 5636 case Intrinsic::framerecover: { 5637 // i8* @llvm.framerecover(i8* %fn, i8* %fp) 5638 MachineFunction &MF = DAG.getMachineFunction(); 5639 MVT PtrVT = TLI.getPointerTy(0); 5640 5641 // Get the symbol that defines the frame offset. 5642 Function *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5643 MCSymbol *FrameAllocSym = 5644 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName()); 5645 5646 // Create a TargetExternalSymbol for the label to avoid any target lowering 5647 // that would make this PC relative. 5648 StringRef Name = FrameAllocSym->getName(); 5649 assert(Name.size() == strlen(Name.data()) && "not null terminated"); 5650 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5651 SDValue OffsetVal = 5652 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5653 5654 // Add the offset to the FP. 5655 Value *FP = I.getArgOperand(1); 5656 SDValue FPVal = getValue(FP); 5657 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5658 setValue(&I, Add); 5659 5660 return nullptr; 5661 } 5662 } 5663 } 5664 5665 std::pair<SDValue, SDValue> 5666 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5667 MachineBasicBlock *LandingPad) { 5668 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5669 MCSymbol *BeginLabel = nullptr; 5670 5671 if (LandingPad) { 5672 // Insert a label before the invoke call to mark the try range. This can be 5673 // used to detect deletion of the invoke via the MachineModuleInfo. 5674 BeginLabel = MMI.getContext().CreateTempSymbol(); 5675 5676 // For SjLj, keep track of which landing pads go with which invokes 5677 // so as to maintain the ordering of pads in the LSDA. 5678 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5679 if (CallSiteIndex) { 5680 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5681 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5682 5683 // Now that the call site is handled, stop tracking it. 5684 MMI.setCurrentCallSite(0); 5685 } 5686 5687 // Both PendingLoads and PendingExports must be flushed here; 5688 // this call might not return. 5689 (void)getRoot(); 5690 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5691 5692 CLI.setChain(getRoot()); 5693 } 5694 5695 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5696 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5697 5698 assert((CLI.IsTailCall || Result.second.getNode()) && 5699 "Non-null chain expected with non-tail call!"); 5700 assert((Result.second.getNode() || !Result.first.getNode()) && 5701 "Null value expected with tail call!"); 5702 5703 if (!Result.second.getNode()) { 5704 // As a special case, a null chain means that a tail call has been emitted 5705 // and the DAG root is already updated. 5706 HasTailCall = true; 5707 5708 // Since there's no actual continuation from this block, nothing can be 5709 // relying on us setting vregs for them. 5710 PendingExports.clear(); 5711 } else { 5712 DAG.setRoot(Result.second); 5713 } 5714 5715 if (LandingPad) { 5716 // Insert a label at the end of the invoke call to mark the try range. This 5717 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5718 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5719 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5720 5721 // Inform MachineModuleInfo of range. 5722 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5723 } 5724 5725 return Result; 5726 } 5727 5728 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5729 bool isTailCall, 5730 MachineBasicBlock *LandingPad) { 5731 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5732 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5733 Type *RetTy = FTy->getReturnType(); 5734 5735 TargetLowering::ArgListTy Args; 5736 TargetLowering::ArgListEntry Entry; 5737 Args.reserve(CS.arg_size()); 5738 5739 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5740 i != e; ++i) { 5741 const Value *V = *i; 5742 5743 // Skip empty types 5744 if (V->getType()->isEmptyTy()) 5745 continue; 5746 5747 SDValue ArgNode = getValue(V); 5748 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5749 5750 // Skip the first return-type Attribute to get to params. 5751 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5752 Args.push_back(Entry); 5753 } 5754 5755 // Check if target-independent constraints permit a tail call here. 5756 // Target-dependent constraints are checked within TLI->LowerCallTo. 5757 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5758 isTailCall = false; 5759 5760 TargetLowering::CallLoweringInfo CLI(DAG); 5761 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5762 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5763 .setTailCall(isTailCall); 5764 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5765 5766 if (Result.first.getNode()) 5767 setValue(CS.getInstruction(), Result.first); 5768 } 5769 5770 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5771 /// value is equal or not-equal to zero. 5772 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5773 for (const User *U : V->users()) { 5774 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5775 if (IC->isEquality()) 5776 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5777 if (C->isNullValue()) 5778 continue; 5779 // Unknown instruction. 5780 return false; 5781 } 5782 return true; 5783 } 5784 5785 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5786 Type *LoadTy, 5787 SelectionDAGBuilder &Builder) { 5788 5789 // Check to see if this load can be trivially constant folded, e.g. if the 5790 // input is from a string literal. 5791 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5792 // Cast pointer to the type we really want to load. 5793 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5794 PointerType::getUnqual(LoadTy)); 5795 5796 if (const Constant *LoadCst = 5797 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5798 Builder.DL)) 5799 return Builder.getValue(LoadCst); 5800 } 5801 5802 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5803 // still constant memory, the input chain can be the entry node. 5804 SDValue Root; 5805 bool ConstantMemory = false; 5806 5807 // Do not serialize (non-volatile) loads of constant memory with anything. 5808 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5809 Root = Builder.DAG.getEntryNode(); 5810 ConstantMemory = true; 5811 } else { 5812 // Do not serialize non-volatile loads against each other. 5813 Root = Builder.DAG.getRoot(); 5814 } 5815 5816 SDValue Ptr = Builder.getValue(PtrVal); 5817 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5818 Ptr, MachinePointerInfo(PtrVal), 5819 false /*volatile*/, 5820 false /*nontemporal*/, 5821 false /*isinvariant*/, 1 /* align=1 */); 5822 5823 if (!ConstantMemory) 5824 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5825 return LoadVal; 5826 } 5827 5828 /// processIntegerCallValue - Record the value for an instruction that 5829 /// produces an integer result, converting the type where necessary. 5830 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5831 SDValue Value, 5832 bool IsSigned) { 5833 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5834 if (IsSigned) 5835 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5836 else 5837 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5838 setValue(&I, Value); 5839 } 5840 5841 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5842 /// If so, return true and lower it, otherwise return false and it will be 5843 /// lowered like a normal call. 5844 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5845 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5846 if (I.getNumArgOperands() != 3) 5847 return false; 5848 5849 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5850 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5851 !I.getArgOperand(2)->getType()->isIntegerTy() || 5852 !I.getType()->isIntegerTy()) 5853 return false; 5854 5855 const Value *Size = I.getArgOperand(2); 5856 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5857 if (CSize && CSize->getZExtValue() == 0) { 5858 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5859 setValue(&I, DAG.getConstant(0, CallVT)); 5860 return true; 5861 } 5862 5863 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5864 std::pair<SDValue, SDValue> Res = 5865 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5866 getValue(LHS), getValue(RHS), getValue(Size), 5867 MachinePointerInfo(LHS), 5868 MachinePointerInfo(RHS)); 5869 if (Res.first.getNode()) { 5870 processIntegerCallValue(I, Res.first, true); 5871 PendingLoads.push_back(Res.second); 5872 return true; 5873 } 5874 5875 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5876 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5877 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5878 bool ActuallyDoIt = true; 5879 MVT LoadVT; 5880 Type *LoadTy; 5881 switch (CSize->getZExtValue()) { 5882 default: 5883 LoadVT = MVT::Other; 5884 LoadTy = nullptr; 5885 ActuallyDoIt = false; 5886 break; 5887 case 2: 5888 LoadVT = MVT::i16; 5889 LoadTy = Type::getInt16Ty(CSize->getContext()); 5890 break; 5891 case 4: 5892 LoadVT = MVT::i32; 5893 LoadTy = Type::getInt32Ty(CSize->getContext()); 5894 break; 5895 case 8: 5896 LoadVT = MVT::i64; 5897 LoadTy = Type::getInt64Ty(CSize->getContext()); 5898 break; 5899 /* 5900 case 16: 5901 LoadVT = MVT::v4i32; 5902 LoadTy = Type::getInt32Ty(CSize->getContext()); 5903 LoadTy = VectorType::get(LoadTy, 4); 5904 break; 5905 */ 5906 } 5907 5908 // This turns into unaligned loads. We only do this if the target natively 5909 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5910 // we'll only produce a small number of byte loads. 5911 5912 // Require that we can find a legal MVT, and only do this if the target 5913 // supports unaligned loads of that type. Expanding into byte loads would 5914 // bloat the code. 5915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5916 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5917 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5918 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5919 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5920 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5921 // TODO: Check alignment of src and dest ptrs. 5922 if (!TLI.isTypeLegal(LoadVT) || 5923 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5924 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5925 ActuallyDoIt = false; 5926 } 5927 5928 if (ActuallyDoIt) { 5929 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5930 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5931 5932 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5933 ISD::SETNE); 5934 processIntegerCallValue(I, Res, false); 5935 return true; 5936 } 5937 } 5938 5939 5940 return false; 5941 } 5942 5943 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5944 /// form. If so, return true and lower it, otherwise return false and it 5945 /// will be lowered like a normal call. 5946 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5947 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5948 if (I.getNumArgOperands() != 3) 5949 return false; 5950 5951 const Value *Src = I.getArgOperand(0); 5952 const Value *Char = I.getArgOperand(1); 5953 const Value *Length = I.getArgOperand(2); 5954 if (!Src->getType()->isPointerTy() || 5955 !Char->getType()->isIntegerTy() || 5956 !Length->getType()->isIntegerTy() || 5957 !I.getType()->isPointerTy()) 5958 return false; 5959 5960 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5961 std::pair<SDValue, SDValue> Res = 5962 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5963 getValue(Src), getValue(Char), getValue(Length), 5964 MachinePointerInfo(Src)); 5965 if (Res.first.getNode()) { 5966 setValue(&I, Res.first); 5967 PendingLoads.push_back(Res.second); 5968 return true; 5969 } 5970 5971 return false; 5972 } 5973 5974 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5975 /// optimized form. If so, return true and lower it, otherwise return false 5976 /// and it will be lowered like a normal call. 5977 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5978 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5979 if (I.getNumArgOperands() != 2) 5980 return false; 5981 5982 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5983 if (!Arg0->getType()->isPointerTy() || 5984 !Arg1->getType()->isPointerTy() || 5985 !I.getType()->isPointerTy()) 5986 return false; 5987 5988 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5989 std::pair<SDValue, SDValue> Res = 5990 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5991 getValue(Arg0), getValue(Arg1), 5992 MachinePointerInfo(Arg0), 5993 MachinePointerInfo(Arg1), isStpcpy); 5994 if (Res.first.getNode()) { 5995 setValue(&I, Res.first); 5996 DAG.setRoot(Res.second); 5997 return true; 5998 } 5999 6000 return false; 6001 } 6002 6003 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6004 /// If so, return true and lower it, otherwise return false and it will be 6005 /// lowered like a normal call. 6006 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6007 // Verify that the prototype makes sense. int strcmp(void*,void*) 6008 if (I.getNumArgOperands() != 2) 6009 return false; 6010 6011 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6012 if (!Arg0->getType()->isPointerTy() || 6013 !Arg1->getType()->isPointerTy() || 6014 !I.getType()->isIntegerTy()) 6015 return false; 6016 6017 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6018 std::pair<SDValue, SDValue> Res = 6019 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6020 getValue(Arg0), getValue(Arg1), 6021 MachinePointerInfo(Arg0), 6022 MachinePointerInfo(Arg1)); 6023 if (Res.first.getNode()) { 6024 processIntegerCallValue(I, Res.first, true); 6025 PendingLoads.push_back(Res.second); 6026 return true; 6027 } 6028 6029 return false; 6030 } 6031 6032 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6033 /// form. If so, return true and lower it, otherwise return false and it 6034 /// will be lowered like a normal call. 6035 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6036 // Verify that the prototype makes sense. size_t strlen(char *) 6037 if (I.getNumArgOperands() != 1) 6038 return false; 6039 6040 const Value *Arg0 = I.getArgOperand(0); 6041 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6042 return false; 6043 6044 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6045 std::pair<SDValue, SDValue> Res = 6046 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6047 getValue(Arg0), MachinePointerInfo(Arg0)); 6048 if (Res.first.getNode()) { 6049 processIntegerCallValue(I, Res.first, false); 6050 PendingLoads.push_back(Res.second); 6051 return true; 6052 } 6053 6054 return false; 6055 } 6056 6057 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6058 /// form. If so, return true and lower it, otherwise return false and it 6059 /// will be lowered like a normal call. 6060 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6061 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6062 if (I.getNumArgOperands() != 2) 6063 return false; 6064 6065 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6066 if (!Arg0->getType()->isPointerTy() || 6067 !Arg1->getType()->isIntegerTy() || 6068 !I.getType()->isIntegerTy()) 6069 return false; 6070 6071 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6072 std::pair<SDValue, SDValue> Res = 6073 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6074 getValue(Arg0), getValue(Arg1), 6075 MachinePointerInfo(Arg0)); 6076 if (Res.first.getNode()) { 6077 processIntegerCallValue(I, Res.first, false); 6078 PendingLoads.push_back(Res.second); 6079 return true; 6080 } 6081 6082 return false; 6083 } 6084 6085 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6086 /// operation (as expected), translate it to an SDNode with the specified opcode 6087 /// and return true. 6088 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6089 unsigned Opcode) { 6090 // Sanity check that it really is a unary floating-point call. 6091 if (I.getNumArgOperands() != 1 || 6092 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6093 I.getType() != I.getArgOperand(0)->getType() || 6094 !I.onlyReadsMemory()) 6095 return false; 6096 6097 SDValue Tmp = getValue(I.getArgOperand(0)); 6098 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6099 return true; 6100 } 6101 6102 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6103 /// operation (as expected), translate it to an SDNode with the specified opcode 6104 /// and return true. 6105 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6106 unsigned Opcode) { 6107 // Sanity check that it really is a binary floating-point call. 6108 if (I.getNumArgOperands() != 2 || 6109 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6110 I.getType() != I.getArgOperand(0)->getType() || 6111 I.getType() != I.getArgOperand(1)->getType() || 6112 !I.onlyReadsMemory()) 6113 return false; 6114 6115 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6116 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6117 EVT VT = Tmp0.getValueType(); 6118 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6119 return true; 6120 } 6121 6122 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6123 // Handle inline assembly differently. 6124 if (isa<InlineAsm>(I.getCalledValue())) { 6125 visitInlineAsm(&I); 6126 return; 6127 } 6128 6129 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6130 ComputeUsesVAFloatArgument(I, &MMI); 6131 6132 const char *RenameFn = nullptr; 6133 if (Function *F = I.getCalledFunction()) { 6134 if (F->isDeclaration()) { 6135 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6136 if (unsigned IID = II->getIntrinsicID(F)) { 6137 RenameFn = visitIntrinsicCall(I, IID); 6138 if (!RenameFn) 6139 return; 6140 } 6141 } 6142 if (unsigned IID = F->getIntrinsicID()) { 6143 RenameFn = visitIntrinsicCall(I, IID); 6144 if (!RenameFn) 6145 return; 6146 } 6147 } 6148 6149 // Check for well-known libc/libm calls. If the function is internal, it 6150 // can't be a library call. 6151 LibFunc::Func Func; 6152 if (!F->hasLocalLinkage() && F->hasName() && 6153 LibInfo->getLibFunc(F->getName(), Func) && 6154 LibInfo->hasOptimizedCodeGen(Func)) { 6155 switch (Func) { 6156 default: break; 6157 case LibFunc::copysign: 6158 case LibFunc::copysignf: 6159 case LibFunc::copysignl: 6160 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6161 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6162 I.getType() == I.getArgOperand(0)->getType() && 6163 I.getType() == I.getArgOperand(1)->getType() && 6164 I.onlyReadsMemory()) { 6165 SDValue LHS = getValue(I.getArgOperand(0)); 6166 SDValue RHS = getValue(I.getArgOperand(1)); 6167 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6168 LHS.getValueType(), LHS, RHS)); 6169 return; 6170 } 6171 break; 6172 case LibFunc::fabs: 6173 case LibFunc::fabsf: 6174 case LibFunc::fabsl: 6175 if (visitUnaryFloatCall(I, ISD::FABS)) 6176 return; 6177 break; 6178 case LibFunc::fmin: 6179 case LibFunc::fminf: 6180 case LibFunc::fminl: 6181 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6182 return; 6183 break; 6184 case LibFunc::fmax: 6185 case LibFunc::fmaxf: 6186 case LibFunc::fmaxl: 6187 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6188 return; 6189 break; 6190 case LibFunc::sin: 6191 case LibFunc::sinf: 6192 case LibFunc::sinl: 6193 if (visitUnaryFloatCall(I, ISD::FSIN)) 6194 return; 6195 break; 6196 case LibFunc::cos: 6197 case LibFunc::cosf: 6198 case LibFunc::cosl: 6199 if (visitUnaryFloatCall(I, ISD::FCOS)) 6200 return; 6201 break; 6202 case LibFunc::sqrt: 6203 case LibFunc::sqrtf: 6204 case LibFunc::sqrtl: 6205 case LibFunc::sqrt_finite: 6206 case LibFunc::sqrtf_finite: 6207 case LibFunc::sqrtl_finite: 6208 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6209 return; 6210 break; 6211 case LibFunc::floor: 6212 case LibFunc::floorf: 6213 case LibFunc::floorl: 6214 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6215 return; 6216 break; 6217 case LibFunc::nearbyint: 6218 case LibFunc::nearbyintf: 6219 case LibFunc::nearbyintl: 6220 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6221 return; 6222 break; 6223 case LibFunc::ceil: 6224 case LibFunc::ceilf: 6225 case LibFunc::ceill: 6226 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6227 return; 6228 break; 6229 case LibFunc::rint: 6230 case LibFunc::rintf: 6231 case LibFunc::rintl: 6232 if (visitUnaryFloatCall(I, ISD::FRINT)) 6233 return; 6234 break; 6235 case LibFunc::round: 6236 case LibFunc::roundf: 6237 case LibFunc::roundl: 6238 if (visitUnaryFloatCall(I, ISD::FROUND)) 6239 return; 6240 break; 6241 case LibFunc::trunc: 6242 case LibFunc::truncf: 6243 case LibFunc::truncl: 6244 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6245 return; 6246 break; 6247 case LibFunc::log2: 6248 case LibFunc::log2f: 6249 case LibFunc::log2l: 6250 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6251 return; 6252 break; 6253 case LibFunc::exp2: 6254 case LibFunc::exp2f: 6255 case LibFunc::exp2l: 6256 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6257 return; 6258 break; 6259 case LibFunc::memcmp: 6260 if (visitMemCmpCall(I)) 6261 return; 6262 break; 6263 case LibFunc::memchr: 6264 if (visitMemChrCall(I)) 6265 return; 6266 break; 6267 case LibFunc::strcpy: 6268 if (visitStrCpyCall(I, false)) 6269 return; 6270 break; 6271 case LibFunc::stpcpy: 6272 if (visitStrCpyCall(I, true)) 6273 return; 6274 break; 6275 case LibFunc::strcmp: 6276 if (visitStrCmpCall(I)) 6277 return; 6278 break; 6279 case LibFunc::strlen: 6280 if (visitStrLenCall(I)) 6281 return; 6282 break; 6283 case LibFunc::strnlen: 6284 if (visitStrNLenCall(I)) 6285 return; 6286 break; 6287 } 6288 } 6289 } 6290 6291 SDValue Callee; 6292 if (!RenameFn) 6293 Callee = getValue(I.getCalledValue()); 6294 else 6295 Callee = DAG.getExternalSymbol(RenameFn, 6296 DAG.getTargetLoweringInfo().getPointerTy()); 6297 6298 // Check if we can potentially perform a tail call. More detailed checking is 6299 // be done within LowerCallTo, after more information about the call is known. 6300 LowerCallTo(&I, Callee, I.isTailCall()); 6301 } 6302 6303 namespace { 6304 6305 /// AsmOperandInfo - This contains information for each constraint that we are 6306 /// lowering. 6307 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6308 public: 6309 /// CallOperand - If this is the result output operand or a clobber 6310 /// this is null, otherwise it is the incoming operand to the CallInst. 6311 /// This gets modified as the asm is processed. 6312 SDValue CallOperand; 6313 6314 /// AssignedRegs - If this is a register or register class operand, this 6315 /// contains the set of register corresponding to the operand. 6316 RegsForValue AssignedRegs; 6317 6318 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6319 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6320 } 6321 6322 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6323 /// corresponds to. If there is no Value* for this operand, it returns 6324 /// MVT::Other. 6325 EVT getCallOperandValEVT(LLVMContext &Context, 6326 const TargetLowering &TLI, 6327 const DataLayout *DL) const { 6328 if (!CallOperandVal) return MVT::Other; 6329 6330 if (isa<BasicBlock>(CallOperandVal)) 6331 return TLI.getPointerTy(); 6332 6333 llvm::Type *OpTy = CallOperandVal->getType(); 6334 6335 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6336 // If this is an indirect operand, the operand is a pointer to the 6337 // accessed type. 6338 if (isIndirect) { 6339 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6340 if (!PtrTy) 6341 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6342 OpTy = PtrTy->getElementType(); 6343 } 6344 6345 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6346 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6347 if (STy->getNumElements() == 1) 6348 OpTy = STy->getElementType(0); 6349 6350 // If OpTy is not a single value, it may be a struct/union that we 6351 // can tile with integers. 6352 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6353 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6354 switch (BitSize) { 6355 default: break; 6356 case 1: 6357 case 8: 6358 case 16: 6359 case 32: 6360 case 64: 6361 case 128: 6362 OpTy = IntegerType::get(Context, BitSize); 6363 break; 6364 } 6365 } 6366 6367 return TLI.getValueType(OpTy, true); 6368 } 6369 }; 6370 6371 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6372 6373 } // end anonymous namespace 6374 6375 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6376 /// specified operand. We prefer to assign virtual registers, to allow the 6377 /// register allocator to handle the assignment process. However, if the asm 6378 /// uses features that we can't model on machineinstrs, we have SDISel do the 6379 /// allocation. This produces generally horrible, but correct, code. 6380 /// 6381 /// OpInfo describes the operand. 6382 /// 6383 static void GetRegistersForValue(SelectionDAG &DAG, 6384 const TargetLowering &TLI, 6385 SDLoc DL, 6386 SDISelAsmOperandInfo &OpInfo) { 6387 LLVMContext &Context = *DAG.getContext(); 6388 6389 MachineFunction &MF = DAG.getMachineFunction(); 6390 SmallVector<unsigned, 4> Regs; 6391 6392 // If this is a constraint for a single physreg, or a constraint for a 6393 // register class, find it. 6394 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6395 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6396 OpInfo.ConstraintVT); 6397 6398 unsigned NumRegs = 1; 6399 if (OpInfo.ConstraintVT != MVT::Other) { 6400 // If this is a FP input in an integer register (or visa versa) insert a bit 6401 // cast of the input value. More generally, handle any case where the input 6402 // value disagrees with the register class we plan to stick this in. 6403 if (OpInfo.Type == InlineAsm::isInput && 6404 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6405 // Try to convert to the first EVT that the reg class contains. If the 6406 // types are identical size, use a bitcast to convert (e.g. two differing 6407 // vector types). 6408 MVT RegVT = *PhysReg.second->vt_begin(); 6409 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6410 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6411 RegVT, OpInfo.CallOperand); 6412 OpInfo.ConstraintVT = RegVT; 6413 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6414 // If the input is a FP value and we want it in FP registers, do a 6415 // bitcast to the corresponding integer type. This turns an f64 value 6416 // into i64, which can be passed with two i32 values on a 32-bit 6417 // machine. 6418 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6419 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6420 RegVT, OpInfo.CallOperand); 6421 OpInfo.ConstraintVT = RegVT; 6422 } 6423 } 6424 6425 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6426 } 6427 6428 MVT RegVT; 6429 EVT ValueVT = OpInfo.ConstraintVT; 6430 6431 // If this is a constraint for a specific physical register, like {r17}, 6432 // assign it now. 6433 if (unsigned AssignedReg = PhysReg.first) { 6434 const TargetRegisterClass *RC = PhysReg.second; 6435 if (OpInfo.ConstraintVT == MVT::Other) 6436 ValueVT = *RC->vt_begin(); 6437 6438 // Get the actual register value type. This is important, because the user 6439 // may have asked for (e.g.) the AX register in i32 type. We need to 6440 // remember that AX is actually i16 to get the right extension. 6441 RegVT = *RC->vt_begin(); 6442 6443 // This is a explicit reference to a physical register. 6444 Regs.push_back(AssignedReg); 6445 6446 // If this is an expanded reference, add the rest of the regs to Regs. 6447 if (NumRegs != 1) { 6448 TargetRegisterClass::iterator I = RC->begin(); 6449 for (; *I != AssignedReg; ++I) 6450 assert(I != RC->end() && "Didn't find reg!"); 6451 6452 // Already added the first reg. 6453 --NumRegs; ++I; 6454 for (; NumRegs; --NumRegs, ++I) { 6455 assert(I != RC->end() && "Ran out of registers to allocate!"); 6456 Regs.push_back(*I); 6457 } 6458 } 6459 6460 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6461 return; 6462 } 6463 6464 // Otherwise, if this was a reference to an LLVM register class, create vregs 6465 // for this reference. 6466 if (const TargetRegisterClass *RC = PhysReg.second) { 6467 RegVT = *RC->vt_begin(); 6468 if (OpInfo.ConstraintVT == MVT::Other) 6469 ValueVT = RegVT; 6470 6471 // Create the appropriate number of virtual registers. 6472 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6473 for (; NumRegs; --NumRegs) 6474 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6475 6476 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6477 return; 6478 } 6479 6480 // Otherwise, we couldn't allocate enough registers for this. 6481 } 6482 6483 /// visitInlineAsm - Handle a call to an InlineAsm object. 6484 /// 6485 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6486 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6487 6488 /// ConstraintOperands - Information about all of the constraints. 6489 SDISelAsmOperandInfoVector ConstraintOperands; 6490 6491 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6492 TargetLowering::AsmOperandInfoVector 6493 TargetConstraints = TLI.ParseConstraints(CS); 6494 6495 bool hasMemory = false; 6496 6497 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6498 unsigned ResNo = 0; // ResNo - The result number of the next output. 6499 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6500 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6501 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6502 6503 MVT OpVT = MVT::Other; 6504 6505 // Compute the value type for each operand. 6506 switch (OpInfo.Type) { 6507 case InlineAsm::isOutput: 6508 // Indirect outputs just consume an argument. 6509 if (OpInfo.isIndirect) { 6510 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6511 break; 6512 } 6513 6514 // The return value of the call is this value. As such, there is no 6515 // corresponding argument. 6516 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6517 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6518 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6519 } else { 6520 assert(ResNo == 0 && "Asm only has one result!"); 6521 OpVT = TLI.getSimpleValueType(CS.getType()); 6522 } 6523 ++ResNo; 6524 break; 6525 case InlineAsm::isInput: 6526 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6527 break; 6528 case InlineAsm::isClobber: 6529 // Nothing to do. 6530 break; 6531 } 6532 6533 // If this is an input or an indirect output, process the call argument. 6534 // BasicBlocks are labels, currently appearing only in asm's. 6535 if (OpInfo.CallOperandVal) { 6536 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6537 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6538 } else { 6539 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6540 } 6541 6542 OpVT = 6543 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6544 } 6545 6546 OpInfo.ConstraintVT = OpVT; 6547 6548 // Indirect operand accesses access memory. 6549 if (OpInfo.isIndirect) 6550 hasMemory = true; 6551 else { 6552 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6553 TargetLowering::ConstraintType 6554 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6555 if (CType == TargetLowering::C_Memory) { 6556 hasMemory = true; 6557 break; 6558 } 6559 } 6560 } 6561 } 6562 6563 SDValue Chain, Flag; 6564 6565 // We won't need to flush pending loads if this asm doesn't touch 6566 // memory and is nonvolatile. 6567 if (hasMemory || IA->hasSideEffects()) 6568 Chain = getRoot(); 6569 else 6570 Chain = DAG.getRoot(); 6571 6572 // Second pass over the constraints: compute which constraint option to use 6573 // and assign registers to constraints that want a specific physreg. 6574 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6575 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6576 6577 // If this is an output operand with a matching input operand, look up the 6578 // matching input. If their types mismatch, e.g. one is an integer, the 6579 // other is floating point, or their sizes are different, flag it as an 6580 // error. 6581 if (OpInfo.hasMatchingInput()) { 6582 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6583 6584 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6585 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6586 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6587 OpInfo.ConstraintVT); 6588 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6589 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6590 Input.ConstraintVT); 6591 if ((OpInfo.ConstraintVT.isInteger() != 6592 Input.ConstraintVT.isInteger()) || 6593 (MatchRC.second != InputRC.second)) { 6594 report_fatal_error("Unsupported asm: input constraint" 6595 " with a matching output constraint of" 6596 " incompatible type!"); 6597 } 6598 Input.ConstraintVT = OpInfo.ConstraintVT; 6599 } 6600 } 6601 6602 // Compute the constraint code and ConstraintType to use. 6603 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6604 6605 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6606 OpInfo.Type == InlineAsm::isClobber) 6607 continue; 6608 6609 // If this is a memory input, and if the operand is not indirect, do what we 6610 // need to to provide an address for the memory input. 6611 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6612 !OpInfo.isIndirect) { 6613 assert((OpInfo.isMultipleAlternative || 6614 (OpInfo.Type == InlineAsm::isInput)) && 6615 "Can only indirectify direct input operands!"); 6616 6617 // Memory operands really want the address of the value. If we don't have 6618 // an indirect input, put it in the constpool if we can, otherwise spill 6619 // it to a stack slot. 6620 // TODO: This isn't quite right. We need to handle these according to 6621 // the addressing mode that the constraint wants. Also, this may take 6622 // an additional register for the computation and we don't want that 6623 // either. 6624 6625 // If the operand is a float, integer, or vector constant, spill to a 6626 // constant pool entry to get its address. 6627 const Value *OpVal = OpInfo.CallOperandVal; 6628 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6629 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6630 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6631 TLI.getPointerTy()); 6632 } else { 6633 // Otherwise, create a stack slot and emit a store to it before the 6634 // asm. 6635 Type *Ty = OpVal->getType(); 6636 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6637 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6638 MachineFunction &MF = DAG.getMachineFunction(); 6639 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6640 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6641 Chain = DAG.getStore(Chain, getCurSDLoc(), 6642 OpInfo.CallOperand, StackSlot, 6643 MachinePointerInfo::getFixedStack(SSFI), 6644 false, false, 0); 6645 OpInfo.CallOperand = StackSlot; 6646 } 6647 6648 // There is no longer a Value* corresponding to this operand. 6649 OpInfo.CallOperandVal = nullptr; 6650 6651 // It is now an indirect operand. 6652 OpInfo.isIndirect = true; 6653 } 6654 6655 // If this constraint is for a specific register, allocate it before 6656 // anything else. 6657 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6658 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6659 } 6660 6661 // Second pass - Loop over all of the operands, assigning virtual or physregs 6662 // to register class operands. 6663 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6664 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6665 6666 // C_Register operands have already been allocated, Other/Memory don't need 6667 // to be. 6668 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6669 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6670 } 6671 6672 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6673 std::vector<SDValue> AsmNodeOperands; 6674 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6675 AsmNodeOperands.push_back( 6676 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6677 TLI.getPointerTy())); 6678 6679 // If we have a !srcloc metadata node associated with it, we want to attach 6680 // this to the ultimately generated inline asm machineinstr. To do this, we 6681 // pass in the third operand as this (potentially null) inline asm MDNode. 6682 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6683 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6684 6685 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6686 // bits as operand 3. 6687 unsigned ExtraInfo = 0; 6688 if (IA->hasSideEffects()) 6689 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6690 if (IA->isAlignStack()) 6691 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6692 // Set the asm dialect. 6693 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6694 6695 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6696 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6697 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6698 6699 // Compute the constraint code and ConstraintType to use. 6700 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6701 6702 // Ideally, we would only check against memory constraints. However, the 6703 // meaning of an other constraint can be target-specific and we can't easily 6704 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6705 // for other constriants as well. 6706 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6707 OpInfo.ConstraintType == TargetLowering::C_Other) { 6708 if (OpInfo.Type == InlineAsm::isInput) 6709 ExtraInfo |= InlineAsm::Extra_MayLoad; 6710 else if (OpInfo.Type == InlineAsm::isOutput) 6711 ExtraInfo |= InlineAsm::Extra_MayStore; 6712 else if (OpInfo.Type == InlineAsm::isClobber) 6713 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6714 } 6715 } 6716 6717 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6718 TLI.getPointerTy())); 6719 6720 // Loop over all of the inputs, copying the operand values into the 6721 // appropriate registers and processing the output regs. 6722 RegsForValue RetValRegs; 6723 6724 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6725 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6726 6727 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6728 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6729 6730 switch (OpInfo.Type) { 6731 case InlineAsm::isOutput: { 6732 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6733 OpInfo.ConstraintType != TargetLowering::C_Register) { 6734 // Memory output, or 'other' output (e.g. 'X' constraint). 6735 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6736 6737 // Add information to the INLINEASM node to know about this output. 6738 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6739 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6740 TLI.getPointerTy())); 6741 AsmNodeOperands.push_back(OpInfo.CallOperand); 6742 break; 6743 } 6744 6745 // Otherwise, this is a register or register class output. 6746 6747 // Copy the output from the appropriate register. Find a register that 6748 // we can use. 6749 if (OpInfo.AssignedRegs.Regs.empty()) { 6750 LLVMContext &Ctx = *DAG.getContext(); 6751 Ctx.emitError(CS.getInstruction(), 6752 "couldn't allocate output register for constraint '" + 6753 Twine(OpInfo.ConstraintCode) + "'"); 6754 return; 6755 } 6756 6757 // If this is an indirect operand, store through the pointer after the 6758 // asm. 6759 if (OpInfo.isIndirect) { 6760 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6761 OpInfo.CallOperandVal)); 6762 } else { 6763 // This is the result value of the call. 6764 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6765 // Concatenate this output onto the outputs list. 6766 RetValRegs.append(OpInfo.AssignedRegs); 6767 } 6768 6769 // Add information to the INLINEASM node to know that this register is 6770 // set. 6771 OpInfo.AssignedRegs 6772 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6773 ? InlineAsm::Kind_RegDefEarlyClobber 6774 : InlineAsm::Kind_RegDef, 6775 false, 0, DAG, AsmNodeOperands); 6776 break; 6777 } 6778 case InlineAsm::isInput: { 6779 SDValue InOperandVal = OpInfo.CallOperand; 6780 6781 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6782 // If this is required to match an output register we have already set, 6783 // just use its register. 6784 unsigned OperandNo = OpInfo.getMatchedOperand(); 6785 6786 // Scan until we find the definition we already emitted of this operand. 6787 // When we find it, create a RegsForValue operand. 6788 unsigned CurOp = InlineAsm::Op_FirstOperand; 6789 for (; OperandNo; --OperandNo) { 6790 // Advance to the next operand. 6791 unsigned OpFlag = 6792 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6793 assert((InlineAsm::isRegDefKind(OpFlag) || 6794 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6795 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6796 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6797 } 6798 6799 unsigned OpFlag = 6800 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6801 if (InlineAsm::isRegDefKind(OpFlag) || 6802 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6803 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6804 if (OpInfo.isIndirect) { 6805 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6806 LLVMContext &Ctx = *DAG.getContext(); 6807 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6808 " don't know how to handle tied " 6809 "indirect register inputs"); 6810 return; 6811 } 6812 6813 RegsForValue MatchedRegs; 6814 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6815 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6816 MatchedRegs.RegVTs.push_back(RegVT); 6817 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6818 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6819 i != e; ++i) { 6820 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6821 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6822 else { 6823 LLVMContext &Ctx = *DAG.getContext(); 6824 Ctx.emitError(CS.getInstruction(), 6825 "inline asm error: This value" 6826 " type register class is not natively supported!"); 6827 return; 6828 } 6829 } 6830 // Use the produced MatchedRegs object to 6831 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6832 Chain, &Flag, CS.getInstruction()); 6833 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6834 true, OpInfo.getMatchedOperand(), 6835 DAG, AsmNodeOperands); 6836 break; 6837 } 6838 6839 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6840 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6841 "Unexpected number of operands"); 6842 // Add information to the INLINEASM node to know about this input. 6843 // See InlineAsm.h isUseOperandTiedToDef. 6844 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6845 OpInfo.getMatchedOperand()); 6846 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6847 TLI.getPointerTy())); 6848 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6849 break; 6850 } 6851 6852 // Treat indirect 'X' constraint as memory. 6853 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6854 OpInfo.isIndirect) 6855 OpInfo.ConstraintType = TargetLowering::C_Memory; 6856 6857 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6858 std::vector<SDValue> Ops; 6859 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6860 Ops, DAG); 6861 if (Ops.empty()) { 6862 LLVMContext &Ctx = *DAG.getContext(); 6863 Ctx.emitError(CS.getInstruction(), 6864 "invalid operand for inline asm constraint '" + 6865 Twine(OpInfo.ConstraintCode) + "'"); 6866 return; 6867 } 6868 6869 // Add information to the INLINEASM node to know about this input. 6870 unsigned ResOpType = 6871 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6872 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6873 TLI.getPointerTy())); 6874 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6875 break; 6876 } 6877 6878 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6879 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6880 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6881 "Memory operands expect pointer values"); 6882 6883 // Add information to the INLINEASM node to know about this input. 6884 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6885 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6886 TLI.getPointerTy())); 6887 AsmNodeOperands.push_back(InOperandVal); 6888 break; 6889 } 6890 6891 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6892 OpInfo.ConstraintType == TargetLowering::C_Register) && 6893 "Unknown constraint type!"); 6894 6895 // TODO: Support this. 6896 if (OpInfo.isIndirect) { 6897 LLVMContext &Ctx = *DAG.getContext(); 6898 Ctx.emitError(CS.getInstruction(), 6899 "Don't know how to handle indirect register inputs yet " 6900 "for constraint '" + 6901 Twine(OpInfo.ConstraintCode) + "'"); 6902 return; 6903 } 6904 6905 // Copy the input into the appropriate registers. 6906 if (OpInfo.AssignedRegs.Regs.empty()) { 6907 LLVMContext &Ctx = *DAG.getContext(); 6908 Ctx.emitError(CS.getInstruction(), 6909 "couldn't allocate input reg for constraint '" + 6910 Twine(OpInfo.ConstraintCode) + "'"); 6911 return; 6912 } 6913 6914 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6915 Chain, &Flag, CS.getInstruction()); 6916 6917 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6918 DAG, AsmNodeOperands); 6919 break; 6920 } 6921 case InlineAsm::isClobber: { 6922 // Add the clobbered value to the operand list, so that the register 6923 // allocator is aware that the physreg got clobbered. 6924 if (!OpInfo.AssignedRegs.Regs.empty()) 6925 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6926 false, 0, DAG, 6927 AsmNodeOperands); 6928 break; 6929 } 6930 } 6931 } 6932 6933 // Finish up input operands. Set the input chain and add the flag last. 6934 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6935 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6936 6937 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6938 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6939 Flag = Chain.getValue(1); 6940 6941 // If this asm returns a register value, copy the result from that register 6942 // and set it as the value of the call. 6943 if (!RetValRegs.Regs.empty()) { 6944 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6945 Chain, &Flag, CS.getInstruction()); 6946 6947 // FIXME: Why don't we do this for inline asms with MRVs? 6948 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6949 EVT ResultType = TLI.getValueType(CS.getType()); 6950 6951 // If any of the results of the inline asm is a vector, it may have the 6952 // wrong width/num elts. This can happen for register classes that can 6953 // contain multiple different value types. The preg or vreg allocated may 6954 // not have the same VT as was expected. Convert it to the right type 6955 // with bit_convert. 6956 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6957 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6958 ResultType, Val); 6959 6960 } else if (ResultType != Val.getValueType() && 6961 ResultType.isInteger() && Val.getValueType().isInteger()) { 6962 // If a result value was tied to an input value, the computed result may 6963 // have a wider width than the expected result. Extract the relevant 6964 // portion. 6965 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6966 } 6967 6968 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6969 } 6970 6971 setValue(CS.getInstruction(), Val); 6972 // Don't need to use this as a chain in this case. 6973 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6974 return; 6975 } 6976 6977 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6978 6979 // Process indirect outputs, first output all of the flagged copies out of 6980 // physregs. 6981 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6982 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6983 const Value *Ptr = IndirectStoresToEmit[i].second; 6984 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6985 Chain, &Flag, IA); 6986 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6987 } 6988 6989 // Emit the non-flagged stores from the physregs. 6990 SmallVector<SDValue, 8> OutChains; 6991 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6992 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6993 StoresToEmit[i].first, 6994 getValue(StoresToEmit[i].second), 6995 MachinePointerInfo(StoresToEmit[i].second), 6996 false, false, 0); 6997 OutChains.push_back(Val); 6998 } 6999 7000 if (!OutChains.empty()) 7001 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7002 7003 DAG.setRoot(Chain); 7004 } 7005 7006 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7007 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7008 MVT::Other, getRoot(), 7009 getValue(I.getArgOperand(0)), 7010 DAG.getSrcValue(I.getArgOperand(0)))); 7011 } 7012 7013 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7015 const DataLayout &DL = *TLI.getDataLayout(); 7016 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 7017 getRoot(), getValue(I.getOperand(0)), 7018 DAG.getSrcValue(I.getOperand(0)), 7019 DL.getABITypeAlignment(I.getType())); 7020 setValue(&I, V); 7021 DAG.setRoot(V.getValue(1)); 7022 } 7023 7024 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7025 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7026 MVT::Other, getRoot(), 7027 getValue(I.getArgOperand(0)), 7028 DAG.getSrcValue(I.getArgOperand(0)))); 7029 } 7030 7031 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7032 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7033 MVT::Other, getRoot(), 7034 getValue(I.getArgOperand(0)), 7035 getValue(I.getArgOperand(1)), 7036 DAG.getSrcValue(I.getArgOperand(0)), 7037 DAG.getSrcValue(I.getArgOperand(1)))); 7038 } 7039 7040 /// \brief Lower an argument list according to the target calling convention. 7041 /// 7042 /// \return A tuple of <return-value, token-chain> 7043 /// 7044 /// This is a helper for lowering intrinsics that follow a target calling 7045 /// convention or require stack pointer adjustment. Only a subset of the 7046 /// intrinsic's operands need to participate in the calling convention. 7047 std::pair<SDValue, SDValue> 7048 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 7049 unsigned NumArgs, SDValue Callee, 7050 bool UseVoidTy, 7051 MachineBasicBlock *LandingPad, 7052 bool IsPatchPoint) { 7053 TargetLowering::ArgListTy Args; 7054 Args.reserve(NumArgs); 7055 7056 // Populate the argument list. 7057 // Attributes for args start at offset 1, after the return attribute. 7058 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7059 ArgI != ArgE; ++ArgI) { 7060 const Value *V = CS->getOperand(ArgI); 7061 7062 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7063 7064 TargetLowering::ArgListEntry Entry; 7065 Entry.Node = getValue(V); 7066 Entry.Ty = V->getType(); 7067 Entry.setAttributes(&CS, AttrI); 7068 Args.push_back(Entry); 7069 } 7070 7071 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7072 TargetLowering::CallLoweringInfo CLI(DAG); 7073 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 7074 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 7075 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 7076 7077 return lowerInvokable(CLI, LandingPad); 7078 } 7079 7080 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7081 /// or patchpoint target node's operand list. 7082 /// 7083 /// Constants are converted to TargetConstants purely as an optimization to 7084 /// avoid constant materialization and register allocation. 7085 /// 7086 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7087 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7088 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7089 /// address materialization and register allocation, but may also be required 7090 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7091 /// alloca in the entry block, then the runtime may assume that the alloca's 7092 /// StackMap location can be read immediately after compilation and that the 7093 /// location is valid at any point during execution (this is similar to the 7094 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7095 /// only available in a register, then the runtime would need to trap when 7096 /// execution reaches the StackMap in order to read the alloca's location. 7097 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7098 SmallVectorImpl<SDValue> &Ops, 7099 SelectionDAGBuilder &Builder) { 7100 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7101 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7102 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7103 Ops.push_back( 7104 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 7105 Ops.push_back( 7106 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 7107 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7108 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7109 Ops.push_back( 7110 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 7111 } else 7112 Ops.push_back(OpVal); 7113 } 7114 } 7115 7116 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7117 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7118 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7119 // [live variables...]) 7120 7121 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7122 7123 SDValue Chain, InFlag, Callee, NullPtr; 7124 SmallVector<SDValue, 32> Ops; 7125 7126 SDLoc DL = getCurSDLoc(); 7127 Callee = getValue(CI.getCalledValue()); 7128 NullPtr = DAG.getIntPtrConstant(0, true); 7129 7130 // The stackmap intrinsic only records the live variables (the arguemnts 7131 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7132 // intrinsic, this won't be lowered to a function call. This means we don't 7133 // have to worry about calling conventions and target specific lowering code. 7134 // Instead we perform the call lowering right here. 7135 // 7136 // chain, flag = CALLSEQ_START(chain, 0) 7137 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7138 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7139 // 7140 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7141 InFlag = Chain.getValue(1); 7142 7143 // Add the <id> and <numBytes> constants. 7144 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7145 Ops.push_back(DAG.getTargetConstant( 7146 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7147 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7148 Ops.push_back(DAG.getTargetConstant( 7149 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7150 7151 // Push live variables for the stack map. 7152 addStackMapLiveVars(&CI, 2, Ops, *this); 7153 7154 // We are not pushing any register mask info here on the operands list, 7155 // because the stackmap doesn't clobber anything. 7156 7157 // Push the chain and the glue flag. 7158 Ops.push_back(Chain); 7159 Ops.push_back(InFlag); 7160 7161 // Create the STACKMAP node. 7162 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7163 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7164 Chain = SDValue(SM, 0); 7165 InFlag = Chain.getValue(1); 7166 7167 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7168 7169 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7170 7171 // Set the root to the target-lowered call chain. 7172 DAG.setRoot(Chain); 7173 7174 // Inform the Frame Information that we have a stackmap in this function. 7175 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7176 } 7177 7178 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7179 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7180 MachineBasicBlock *LandingPad) { 7181 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7182 // i32 <numBytes>, 7183 // i8* <target>, 7184 // i32 <numArgs>, 7185 // [Args...], 7186 // [live variables...]) 7187 7188 CallingConv::ID CC = CS.getCallingConv(); 7189 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7190 bool HasDef = !CS->getType()->isVoidTy(); 7191 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7192 7193 // Get the real number of arguments participating in the call <numArgs> 7194 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7195 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7196 7197 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7198 // Intrinsics include all meta-operands up to but not including CC. 7199 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7200 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7201 "Not enough arguments provided to the patchpoint intrinsic"); 7202 7203 // For AnyRegCC the arguments are lowered later on manually. 7204 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7205 std::pair<SDValue, SDValue> Result = 7206 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7207 LandingPad, true); 7208 7209 SDNode *CallEnd = Result.second.getNode(); 7210 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7211 CallEnd = CallEnd->getOperand(0).getNode(); 7212 7213 /// Get a call instruction from the call sequence chain. 7214 /// Tail calls are not allowed. 7215 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7216 "Expected a callseq node."); 7217 SDNode *Call = CallEnd->getOperand(0).getNode(); 7218 bool HasGlue = Call->getGluedNode(); 7219 7220 // Replace the target specific call node with the patchable intrinsic. 7221 SmallVector<SDValue, 8> Ops; 7222 7223 // Add the <id> and <numBytes> constants. 7224 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7225 Ops.push_back(DAG.getTargetConstant( 7226 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7227 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7228 Ops.push_back(DAG.getTargetConstant( 7229 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7230 7231 // Assume that the Callee is a constant address. 7232 // FIXME: handle function symbols in the future. 7233 Ops.push_back( 7234 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7235 /*isTarget=*/true)); 7236 7237 // Adjust <numArgs> to account for any arguments that have been passed on the 7238 // stack instead. 7239 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7240 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7241 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7242 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7243 7244 // Add the calling convention 7245 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7246 7247 // Add the arguments we omitted previously. The register allocator should 7248 // place these in any free register. 7249 if (IsAnyRegCC) 7250 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7251 Ops.push_back(getValue(CS.getArgument(i))); 7252 7253 // Push the arguments from the call instruction up to the register mask. 7254 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7255 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7256 Ops.push_back(*i); 7257 7258 // Push live variables for the stack map. 7259 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7260 7261 // Push the register mask info. 7262 if (HasGlue) 7263 Ops.push_back(*(Call->op_end()-2)); 7264 else 7265 Ops.push_back(*(Call->op_end()-1)); 7266 7267 // Push the chain (this is originally the first operand of the call, but 7268 // becomes now the last or second to last operand). 7269 Ops.push_back(*(Call->op_begin())); 7270 7271 // Push the glue flag (last operand). 7272 if (HasGlue) 7273 Ops.push_back(*(Call->op_end()-1)); 7274 7275 SDVTList NodeTys; 7276 if (IsAnyRegCC && HasDef) { 7277 // Create the return types based on the intrinsic definition 7278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7279 SmallVector<EVT, 3> ValueVTs; 7280 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7281 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7282 7283 // There is always a chain and a glue type at the end 7284 ValueVTs.push_back(MVT::Other); 7285 ValueVTs.push_back(MVT::Glue); 7286 NodeTys = DAG.getVTList(ValueVTs); 7287 } else 7288 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7289 7290 // Replace the target specific call node with a PATCHPOINT node. 7291 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7292 getCurSDLoc(), NodeTys, Ops); 7293 7294 // Update the NodeMap. 7295 if (HasDef) { 7296 if (IsAnyRegCC) 7297 setValue(CS.getInstruction(), SDValue(MN, 0)); 7298 else 7299 setValue(CS.getInstruction(), Result.first); 7300 } 7301 7302 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7303 // call sequence. Furthermore the location of the chain and glue can change 7304 // when the AnyReg calling convention is used and the intrinsic returns a 7305 // value. 7306 if (IsAnyRegCC && HasDef) { 7307 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7308 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7309 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7310 } else 7311 DAG.ReplaceAllUsesWith(Call, MN); 7312 DAG.DeleteNode(Call); 7313 7314 // Inform the Frame Information that we have a patchpoint in this function. 7315 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7316 } 7317 7318 /// Returns an AttributeSet representing the attributes applied to the return 7319 /// value of the given call. 7320 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7321 SmallVector<Attribute::AttrKind, 2> Attrs; 7322 if (CLI.RetSExt) 7323 Attrs.push_back(Attribute::SExt); 7324 if (CLI.RetZExt) 7325 Attrs.push_back(Attribute::ZExt); 7326 if (CLI.IsInReg) 7327 Attrs.push_back(Attribute::InReg); 7328 7329 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7330 Attrs); 7331 } 7332 7333 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7334 /// implementation, which just calls LowerCall. 7335 /// FIXME: When all targets are 7336 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7337 std::pair<SDValue, SDValue> 7338 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7339 // Handle the incoming return values from the call. 7340 CLI.Ins.clear(); 7341 Type *OrigRetTy = CLI.RetTy; 7342 SmallVector<EVT, 4> RetTys; 7343 SmallVector<uint64_t, 4> Offsets; 7344 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7345 7346 SmallVector<ISD::OutputArg, 4> Outs; 7347 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7348 7349 bool CanLowerReturn = 7350 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7351 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7352 7353 SDValue DemoteStackSlot; 7354 int DemoteStackIdx = -100; 7355 if (!CanLowerReturn) { 7356 // FIXME: equivalent assert? 7357 // assert(!CS.hasInAllocaArgument() && 7358 // "sret demotion is incompatible with inalloca"); 7359 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7360 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7361 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7362 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7363 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7364 7365 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7366 ArgListEntry Entry; 7367 Entry.Node = DemoteStackSlot; 7368 Entry.Ty = StackSlotPtrType; 7369 Entry.isSExt = false; 7370 Entry.isZExt = false; 7371 Entry.isInReg = false; 7372 Entry.isSRet = true; 7373 Entry.isNest = false; 7374 Entry.isByVal = false; 7375 Entry.isReturned = false; 7376 Entry.Alignment = Align; 7377 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7378 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7379 } else { 7380 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7381 EVT VT = RetTys[I]; 7382 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7383 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7384 for (unsigned i = 0; i != NumRegs; ++i) { 7385 ISD::InputArg MyFlags; 7386 MyFlags.VT = RegisterVT; 7387 MyFlags.ArgVT = VT; 7388 MyFlags.Used = CLI.IsReturnValueUsed; 7389 if (CLI.RetSExt) 7390 MyFlags.Flags.setSExt(); 7391 if (CLI.RetZExt) 7392 MyFlags.Flags.setZExt(); 7393 if (CLI.IsInReg) 7394 MyFlags.Flags.setInReg(); 7395 CLI.Ins.push_back(MyFlags); 7396 } 7397 } 7398 } 7399 7400 // Handle all of the outgoing arguments. 7401 CLI.Outs.clear(); 7402 CLI.OutVals.clear(); 7403 ArgListTy &Args = CLI.getArgs(); 7404 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7405 SmallVector<EVT, 4> ValueVTs; 7406 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7407 Type *FinalType = Args[i].Ty; 7408 if (Args[i].isByVal) 7409 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7410 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7411 FinalType, CLI.CallConv, CLI.IsVarArg); 7412 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7413 ++Value) { 7414 EVT VT = ValueVTs[Value]; 7415 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7416 SDValue Op = SDValue(Args[i].Node.getNode(), 7417 Args[i].Node.getResNo() + Value); 7418 ISD::ArgFlagsTy Flags; 7419 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7420 7421 if (Args[i].isZExt) 7422 Flags.setZExt(); 7423 if (Args[i].isSExt) 7424 Flags.setSExt(); 7425 if (Args[i].isInReg) 7426 Flags.setInReg(); 7427 if (Args[i].isSRet) 7428 Flags.setSRet(); 7429 if (Args[i].isByVal) 7430 Flags.setByVal(); 7431 if (Args[i].isInAlloca) { 7432 Flags.setInAlloca(); 7433 // Set the byval flag for CCAssignFn callbacks that don't know about 7434 // inalloca. This way we can know how many bytes we should've allocated 7435 // and how many bytes a callee cleanup function will pop. If we port 7436 // inalloca to more targets, we'll have to add custom inalloca handling 7437 // in the various CC lowering callbacks. 7438 Flags.setByVal(); 7439 } 7440 if (Args[i].isByVal || Args[i].isInAlloca) { 7441 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7442 Type *ElementTy = Ty->getElementType(); 7443 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7444 // For ByVal, alignment should come from FE. BE will guess if this 7445 // info is not there but there are cases it cannot get right. 7446 unsigned FrameAlign; 7447 if (Args[i].Alignment) 7448 FrameAlign = Args[i].Alignment; 7449 else 7450 FrameAlign = getByValTypeAlignment(ElementTy); 7451 Flags.setByValAlign(FrameAlign); 7452 } 7453 if (Args[i].isNest) 7454 Flags.setNest(); 7455 if (NeedsRegBlock) { 7456 Flags.setInConsecutiveRegs(); 7457 if (Value == NumValues - 1) 7458 Flags.setInConsecutiveRegsLast(); 7459 } 7460 Flags.setOrigAlign(OriginalAlignment); 7461 7462 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7463 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7464 SmallVector<SDValue, 4> Parts(NumParts); 7465 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7466 7467 if (Args[i].isSExt) 7468 ExtendKind = ISD::SIGN_EXTEND; 7469 else if (Args[i].isZExt) 7470 ExtendKind = ISD::ZERO_EXTEND; 7471 7472 // Conservatively only handle 'returned' on non-vectors for now 7473 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7474 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7475 "unexpected use of 'returned'"); 7476 // Before passing 'returned' to the target lowering code, ensure that 7477 // either the register MVT and the actual EVT are the same size or that 7478 // the return value and argument are extended in the same way; in these 7479 // cases it's safe to pass the argument register value unchanged as the 7480 // return register value (although it's at the target's option whether 7481 // to do so) 7482 // TODO: allow code generation to take advantage of partially preserved 7483 // registers rather than clobbering the entire register when the 7484 // parameter extension method is not compatible with the return 7485 // extension method 7486 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7487 (ExtendKind != ISD::ANY_EXTEND && 7488 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7489 Flags.setReturned(); 7490 } 7491 7492 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7493 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7494 7495 for (unsigned j = 0; j != NumParts; ++j) { 7496 // if it isn't first piece, alignment must be 1 7497 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7498 i < CLI.NumFixedArgs, 7499 i, j*Parts[j].getValueType().getStoreSize()); 7500 if (NumParts > 1 && j == 0) 7501 MyFlags.Flags.setSplit(); 7502 else if (j != 0) 7503 MyFlags.Flags.setOrigAlign(1); 7504 7505 CLI.Outs.push_back(MyFlags); 7506 CLI.OutVals.push_back(Parts[j]); 7507 } 7508 } 7509 } 7510 7511 SmallVector<SDValue, 4> InVals; 7512 CLI.Chain = LowerCall(CLI, InVals); 7513 7514 // Verify that the target's LowerCall behaved as expected. 7515 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7516 "LowerCall didn't return a valid chain!"); 7517 assert((!CLI.IsTailCall || InVals.empty()) && 7518 "LowerCall emitted a return value for a tail call!"); 7519 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7520 "LowerCall didn't emit the correct number of values!"); 7521 7522 // For a tail call, the return value is merely live-out and there aren't 7523 // any nodes in the DAG representing it. Return a special value to 7524 // indicate that a tail call has been emitted and no more Instructions 7525 // should be processed in the current block. 7526 if (CLI.IsTailCall) { 7527 CLI.DAG.setRoot(CLI.Chain); 7528 return std::make_pair(SDValue(), SDValue()); 7529 } 7530 7531 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7532 assert(InVals[i].getNode() && 7533 "LowerCall emitted a null value!"); 7534 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7535 "LowerCall emitted a value with the wrong type!"); 7536 }); 7537 7538 SmallVector<SDValue, 4> ReturnValues; 7539 if (!CanLowerReturn) { 7540 // The instruction result is the result of loading from the 7541 // hidden sret parameter. 7542 SmallVector<EVT, 1> PVTs; 7543 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7544 7545 ComputeValueVTs(*this, PtrRetTy, PVTs); 7546 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7547 EVT PtrVT = PVTs[0]; 7548 7549 unsigned NumValues = RetTys.size(); 7550 ReturnValues.resize(NumValues); 7551 SmallVector<SDValue, 4> Chains(NumValues); 7552 7553 for (unsigned i = 0; i < NumValues; ++i) { 7554 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7555 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7556 SDValue L = CLI.DAG.getLoad( 7557 RetTys[i], CLI.DL, CLI.Chain, Add, 7558 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7559 false, false, 1); 7560 ReturnValues[i] = L; 7561 Chains[i] = L.getValue(1); 7562 } 7563 7564 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7565 } else { 7566 // Collect the legal value parts into potentially illegal values 7567 // that correspond to the original function's return values. 7568 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7569 if (CLI.RetSExt) 7570 AssertOp = ISD::AssertSext; 7571 else if (CLI.RetZExt) 7572 AssertOp = ISD::AssertZext; 7573 unsigned CurReg = 0; 7574 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7575 EVT VT = RetTys[I]; 7576 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7577 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7578 7579 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7580 NumRegs, RegisterVT, VT, nullptr, 7581 AssertOp)); 7582 CurReg += NumRegs; 7583 } 7584 7585 // For a function returning void, there is no return value. We can't create 7586 // such a node, so we just return a null return value in that case. In 7587 // that case, nothing will actually look at the value. 7588 if (ReturnValues.empty()) 7589 return std::make_pair(SDValue(), CLI.Chain); 7590 } 7591 7592 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7593 CLI.DAG.getVTList(RetTys), ReturnValues); 7594 return std::make_pair(Res, CLI.Chain); 7595 } 7596 7597 void TargetLowering::LowerOperationWrapper(SDNode *N, 7598 SmallVectorImpl<SDValue> &Results, 7599 SelectionDAG &DAG) const { 7600 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7601 if (Res.getNode()) 7602 Results.push_back(Res); 7603 } 7604 7605 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7606 llvm_unreachable("LowerOperation not implemented for this target!"); 7607 } 7608 7609 void 7610 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7611 SDValue Op = getNonRegisterValue(V); 7612 assert((Op.getOpcode() != ISD::CopyFromReg || 7613 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7614 "Copy from a reg to the same reg!"); 7615 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7616 7617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7618 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7619 SDValue Chain = DAG.getEntryNode(); 7620 7621 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7622 FuncInfo.PreferredExtendType.end()) 7623 ? ISD::ANY_EXTEND 7624 : FuncInfo.PreferredExtendType[V]; 7625 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7626 PendingExports.push_back(Chain); 7627 } 7628 7629 #include "llvm/CodeGen/SelectionDAGISel.h" 7630 7631 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7632 /// entry block, return true. This includes arguments used by switches, since 7633 /// the switch may expand into multiple basic blocks. 7634 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7635 // With FastISel active, we may be splitting blocks, so force creation 7636 // of virtual registers for all non-dead arguments. 7637 if (FastISel) 7638 return A->use_empty(); 7639 7640 const BasicBlock *Entry = A->getParent()->begin(); 7641 for (const User *U : A->users()) 7642 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7643 return false; // Use not in entry block. 7644 7645 return true; 7646 } 7647 7648 void SelectionDAGISel::LowerArguments(const Function &F) { 7649 SelectionDAG &DAG = SDB->DAG; 7650 SDLoc dl = SDB->getCurSDLoc(); 7651 const DataLayout *DL = TLI->getDataLayout(); 7652 SmallVector<ISD::InputArg, 16> Ins; 7653 7654 if (!FuncInfo->CanLowerReturn) { 7655 // Put in an sret pointer parameter before all the other parameters. 7656 SmallVector<EVT, 1> ValueVTs; 7657 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7658 7659 // NOTE: Assuming that a pointer will never break down to more than one VT 7660 // or one register. 7661 ISD::ArgFlagsTy Flags; 7662 Flags.setSRet(); 7663 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7664 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7665 Ins.push_back(RetArg); 7666 } 7667 7668 // Set up the incoming argument description vector. 7669 unsigned Idx = 1; 7670 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7671 I != E; ++I, ++Idx) { 7672 SmallVector<EVT, 4> ValueVTs; 7673 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7674 bool isArgValueUsed = !I->use_empty(); 7675 unsigned PartBase = 0; 7676 Type *FinalType = I->getType(); 7677 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7678 FinalType = cast<PointerType>(FinalType)->getElementType(); 7679 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7680 FinalType, F.getCallingConv(), F.isVarArg()); 7681 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7682 Value != NumValues; ++Value) { 7683 EVT VT = ValueVTs[Value]; 7684 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7685 ISD::ArgFlagsTy Flags; 7686 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7687 7688 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7689 Flags.setZExt(); 7690 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7691 Flags.setSExt(); 7692 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7693 Flags.setInReg(); 7694 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7695 Flags.setSRet(); 7696 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7697 Flags.setByVal(); 7698 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7699 Flags.setInAlloca(); 7700 // Set the byval flag for CCAssignFn callbacks that don't know about 7701 // inalloca. This way we can know how many bytes we should've allocated 7702 // and how many bytes a callee cleanup function will pop. If we port 7703 // inalloca to more targets, we'll have to add custom inalloca handling 7704 // in the various CC lowering callbacks. 7705 Flags.setByVal(); 7706 } 7707 if (Flags.isByVal() || Flags.isInAlloca()) { 7708 PointerType *Ty = cast<PointerType>(I->getType()); 7709 Type *ElementTy = Ty->getElementType(); 7710 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7711 // For ByVal, alignment should be passed from FE. BE will guess if 7712 // this info is not there but there are cases it cannot get right. 7713 unsigned FrameAlign; 7714 if (F.getParamAlignment(Idx)) 7715 FrameAlign = F.getParamAlignment(Idx); 7716 else 7717 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7718 Flags.setByValAlign(FrameAlign); 7719 } 7720 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7721 Flags.setNest(); 7722 if (NeedsRegBlock) { 7723 Flags.setInConsecutiveRegs(); 7724 if (Value == NumValues - 1) 7725 Flags.setInConsecutiveRegsLast(); 7726 } 7727 Flags.setOrigAlign(OriginalAlignment); 7728 7729 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7730 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7731 for (unsigned i = 0; i != NumRegs; ++i) { 7732 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7733 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7734 if (NumRegs > 1 && i == 0) 7735 MyFlags.Flags.setSplit(); 7736 // if it isn't first piece, alignment must be 1 7737 else if (i > 0) 7738 MyFlags.Flags.setOrigAlign(1); 7739 Ins.push_back(MyFlags); 7740 } 7741 PartBase += VT.getStoreSize(); 7742 } 7743 } 7744 7745 // Call the target to set up the argument values. 7746 SmallVector<SDValue, 8> InVals; 7747 SDValue NewRoot = TLI->LowerFormalArguments( 7748 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7749 7750 // Verify that the target's LowerFormalArguments behaved as expected. 7751 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7752 "LowerFormalArguments didn't return a valid chain!"); 7753 assert(InVals.size() == Ins.size() && 7754 "LowerFormalArguments didn't emit the correct number of values!"); 7755 DEBUG({ 7756 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7757 assert(InVals[i].getNode() && 7758 "LowerFormalArguments emitted a null value!"); 7759 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7760 "LowerFormalArguments emitted a value with the wrong type!"); 7761 } 7762 }); 7763 7764 // Update the DAG with the new chain value resulting from argument lowering. 7765 DAG.setRoot(NewRoot); 7766 7767 // Set up the argument values. 7768 unsigned i = 0; 7769 Idx = 1; 7770 if (!FuncInfo->CanLowerReturn) { 7771 // Create a virtual register for the sret pointer, and put in a copy 7772 // from the sret argument into it. 7773 SmallVector<EVT, 1> ValueVTs; 7774 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7775 MVT VT = ValueVTs[0].getSimpleVT(); 7776 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7777 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7778 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7779 RegVT, VT, nullptr, AssertOp); 7780 7781 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7782 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7783 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7784 FuncInfo->DemoteRegister = SRetReg; 7785 NewRoot = 7786 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7787 DAG.setRoot(NewRoot); 7788 7789 // i indexes lowered arguments. Bump it past the hidden sret argument. 7790 // Idx indexes LLVM arguments. Don't touch it. 7791 ++i; 7792 } 7793 7794 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7795 ++I, ++Idx) { 7796 SmallVector<SDValue, 4> ArgValues; 7797 SmallVector<EVT, 4> ValueVTs; 7798 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7799 unsigned NumValues = ValueVTs.size(); 7800 7801 // If this argument is unused then remember its value. It is used to generate 7802 // debugging information. 7803 if (I->use_empty() && NumValues) { 7804 SDB->setUnusedArgValue(I, InVals[i]); 7805 7806 // Also remember any frame index for use in FastISel. 7807 if (FrameIndexSDNode *FI = 7808 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7809 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7810 } 7811 7812 for (unsigned Val = 0; Val != NumValues; ++Val) { 7813 EVT VT = ValueVTs[Val]; 7814 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7815 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7816 7817 if (!I->use_empty()) { 7818 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7819 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7820 AssertOp = ISD::AssertSext; 7821 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7822 AssertOp = ISD::AssertZext; 7823 7824 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7825 NumParts, PartVT, VT, 7826 nullptr, AssertOp)); 7827 } 7828 7829 i += NumParts; 7830 } 7831 7832 // We don't need to do anything else for unused arguments. 7833 if (ArgValues.empty()) 7834 continue; 7835 7836 // Note down frame index. 7837 if (FrameIndexSDNode *FI = 7838 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7839 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7840 7841 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7842 SDB->getCurSDLoc()); 7843 7844 SDB->setValue(I, Res); 7845 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7846 if (LoadSDNode *LNode = 7847 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7848 if (FrameIndexSDNode *FI = 7849 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7850 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7851 } 7852 7853 // If this argument is live outside of the entry block, insert a copy from 7854 // wherever we got it to the vreg that other BB's will reference it as. 7855 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7856 // If we can, though, try to skip creating an unnecessary vreg. 7857 // FIXME: This isn't very clean... it would be nice to make this more 7858 // general. It's also subtly incompatible with the hacks FastISel 7859 // uses with vregs. 7860 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7861 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7862 FuncInfo->ValueMap[I] = Reg; 7863 continue; 7864 } 7865 } 7866 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7867 FuncInfo->InitializeRegForValue(I); 7868 SDB->CopyToExportRegsIfNeeded(I); 7869 } 7870 } 7871 7872 assert(i == InVals.size() && "Argument register count mismatch!"); 7873 7874 // Finally, if the target has anything special to do, allow it to do so. 7875 // FIXME: this should insert code into the DAG! 7876 EmitFunctionEntryCode(); 7877 } 7878 7879 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7880 /// ensure constants are generated when needed. Remember the virtual registers 7881 /// that need to be added to the Machine PHI nodes as input. We cannot just 7882 /// directly add them, because expansion might result in multiple MBB's for one 7883 /// BB. As such, the start of the BB might correspond to a different MBB than 7884 /// the end. 7885 /// 7886 void 7887 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7888 const TerminatorInst *TI = LLVMBB->getTerminator(); 7889 7890 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7891 7892 // Check successor nodes' PHI nodes that expect a constant to be available 7893 // from this block. 7894 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7895 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7896 if (!isa<PHINode>(SuccBB->begin())) continue; 7897 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7898 7899 // If this terminator has multiple identical successors (common for 7900 // switches), only handle each succ once. 7901 if (!SuccsHandled.insert(SuccMBB).second) 7902 continue; 7903 7904 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7905 7906 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7907 // nodes and Machine PHI nodes, but the incoming operands have not been 7908 // emitted yet. 7909 for (BasicBlock::const_iterator I = SuccBB->begin(); 7910 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7911 // Ignore dead phi's. 7912 if (PN->use_empty()) continue; 7913 7914 // Skip empty types 7915 if (PN->getType()->isEmptyTy()) 7916 continue; 7917 7918 unsigned Reg; 7919 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7920 7921 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7922 unsigned &RegOut = ConstantsOut[C]; 7923 if (RegOut == 0) { 7924 RegOut = FuncInfo.CreateRegs(C->getType()); 7925 CopyValueToVirtualRegister(C, RegOut); 7926 } 7927 Reg = RegOut; 7928 } else { 7929 DenseMap<const Value *, unsigned>::iterator I = 7930 FuncInfo.ValueMap.find(PHIOp); 7931 if (I != FuncInfo.ValueMap.end()) 7932 Reg = I->second; 7933 else { 7934 assert(isa<AllocaInst>(PHIOp) && 7935 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7936 "Didn't codegen value into a register!??"); 7937 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7938 CopyValueToVirtualRegister(PHIOp, Reg); 7939 } 7940 } 7941 7942 // Remember that this register needs to added to the machine PHI node as 7943 // the input for this MBB. 7944 SmallVector<EVT, 4> ValueVTs; 7945 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7946 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7947 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7948 EVT VT = ValueVTs[vti]; 7949 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7950 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7951 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7952 Reg += NumRegisters; 7953 } 7954 } 7955 } 7956 7957 ConstantsOut.clear(); 7958 } 7959 7960 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7961 /// is 0. 7962 MachineBasicBlock * 7963 SelectionDAGBuilder::StackProtectorDescriptor:: 7964 AddSuccessorMBB(const BasicBlock *BB, 7965 MachineBasicBlock *ParentMBB, 7966 bool IsLikely, 7967 MachineBasicBlock *SuccMBB) { 7968 // If SuccBB has not been created yet, create it. 7969 if (!SuccMBB) { 7970 MachineFunction *MF = ParentMBB->getParent(); 7971 MachineFunction::iterator BBI = ParentMBB; 7972 SuccMBB = MF->CreateMachineBasicBlock(BB); 7973 MF->insert(++BBI, SuccMBB); 7974 } 7975 // Add it as a successor of ParentMBB. 7976 ParentMBB->addSuccessor( 7977 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7978 return SuccMBB; 7979 } 7980