xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 60c91fd364476b3844d2c81fc73c4e32b8d04fa6)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/FunctionLoweringInfo.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <tuple>
104 
105 using namespace llvm;
106 using namespace PatternMatch;
107 using namespace SwitchCG;
108 
109 #define DEBUG_TYPE "isel"
110 
111 /// LimitFloatPrecision - Generate low-precision inline sequences for
112 /// some float libcalls (6, 8 or 12 bits).
113 static unsigned LimitFloatPrecision;
114 
115 static cl::opt<bool>
116     InsertAssertAlign("insert-assert-align", cl::init(true),
117                       cl::desc("Insert the experimental `assertalign` node."),
118                       cl::ReallyHidden);
119 
120 static cl::opt<unsigned, true>
121     LimitFPPrecision("limit-float-precision",
122                      cl::desc("Generate low-precision inline sequences "
123                               "for some float libcalls"),
124                      cl::location(LimitFloatPrecision), cl::Hidden,
125                      cl::init(0));
126 
127 static cl::opt<unsigned> SwitchPeelThreshold(
128     "switch-peel-threshold", cl::Hidden, cl::init(66),
129     cl::desc("Set the case probability threshold for peeling the case from a "
130              "switch statement. A value greater than 100 will void this "
131              "optimization"));
132 
133 // Limit the width of DAG chains. This is important in general to prevent
134 // DAG-based analysis from blowing up. For example, alias analysis and
135 // load clustering may not complete in reasonable time. It is difficult to
136 // recognize and avoid this situation within each individual analysis, and
137 // future analyses are likely to have the same behavior. Limiting DAG width is
138 // the safe approach and will be especially important with global DAGs.
139 //
140 // MaxParallelChains default is arbitrarily high to avoid affecting
141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
142 // sequence over this should have been converted to llvm.memcpy by the
143 // frontend. It is easy to induce this behavior with .ll code such as:
144 // %buffer = alloca [4096 x i8]
145 // %data = load [4096 x i8]* %argPtr
146 // store [4096 x i8] %data, [4096 x i8]* %buffer
147 static const unsigned MaxParallelChains = 64;
148 
149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
150                                       const SDValue *Parts, unsigned NumParts,
151                                       MVT PartVT, EVT ValueVT, const Value *V,
152                                       Optional<CallingConv::ID> CC);
153 
154 /// getCopyFromParts - Create a value that contains the specified legal parts
155 /// combined into the value they represent.  If the parts combine to a type
156 /// larger than ValueVT then AssertOp can be used to specify whether the extra
157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
158 /// (ISD::AssertSext).
159 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
160                                 const SDValue *Parts, unsigned NumParts,
161                                 MVT PartVT, EVT ValueVT, const Value *V,
162                                 Optional<CallingConv::ID> CC = None,
163                                 Optional<ISD::NodeType> AssertOp = None) {
164   // Let the target assemble the parts if it wants to
165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
166   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
167                                                    PartVT, ValueVT, CC))
168     return Val;
169 
170   if (ValueVT.isVector())
171     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
172                                   CC);
173 
174   assert(NumParts > 0 && "No parts to assemble!");
175   SDValue Val = Parts[0];
176 
177   if (NumParts > 1) {
178     // Assemble the value from multiple parts.
179     if (ValueVT.isInteger()) {
180       unsigned PartBits = PartVT.getSizeInBits();
181       unsigned ValueBits = ValueVT.getSizeInBits();
182 
183       // Assemble the power of 2 part.
184       unsigned RoundParts =
185           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
186       unsigned RoundBits = PartBits * RoundParts;
187       EVT RoundVT = RoundBits == ValueBits ?
188         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
189       SDValue Lo, Hi;
190 
191       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
192 
193       if (RoundParts > 2) {
194         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
195                               PartVT, HalfVT, V);
196         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
197                               RoundParts / 2, PartVT, HalfVT, V);
198       } else {
199         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
200         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
201       }
202 
203       if (DAG.getDataLayout().isBigEndian())
204         std::swap(Lo, Hi);
205 
206       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
207 
208       if (RoundParts < NumParts) {
209         // Assemble the trailing non-power-of-2 part.
210         unsigned OddParts = NumParts - RoundParts;
211         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
212         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
213                               OddVT, V, CC);
214 
215         // Combine the round and odd parts.
216         Lo = Val;
217         if (DAG.getDataLayout().isBigEndian())
218           std::swap(Lo, Hi);
219         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
220         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
221         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
222                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
223                                          TLI.getShiftAmountTy(
224                                              TotalVT, DAG.getDataLayout())));
225         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
226         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
227       }
228     } else if (PartVT.isFloatingPoint()) {
229       // FP split into multiple FP parts (for ppcf128)
230       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
231              "Unexpected split");
232       SDValue Lo, Hi;
233       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
234       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
235       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
236         std::swap(Lo, Hi);
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
238     } else {
239       // FP split into integer parts (soft fp)
240       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
241              !PartVT.isVector() && "Unexpected split");
242       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
243       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
244     }
245   }
246 
247   // There is now one part, held in Val.  Correct it to match ValueVT.
248   // PartEVT is the type of the register class that holds the value.
249   // ValueVT is the type of the inline asm operation.
250   EVT PartEVT = Val.getValueType();
251 
252   if (PartEVT == ValueVT)
253     return Val;
254 
255   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
256       ValueVT.bitsLT(PartEVT)) {
257     // For an FP value in an integer part, we need to truncate to the right
258     // width first.
259     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
260     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
261   }
262 
263   // Handle types that have the same size.
264   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
265     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
266 
267   // Handle types with different sizes.
268   if (PartEVT.isInteger() && ValueVT.isInteger()) {
269     if (ValueVT.bitsLT(PartEVT)) {
270       // For a truncate, see if we have any information to
271       // indicate whether the truncated bits will always be
272       // zero or sign-extension.
273       if (AssertOp)
274         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
275                           DAG.getValueType(ValueVT));
276       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
277     }
278     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
279   }
280 
281   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
282     // FP_ROUND's are always exact here.
283     if (ValueVT.bitsLT(Val.getValueType()))
284       return DAG.getNode(
285           ISD::FP_ROUND, DL, ValueVT, Val,
286           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
287 
288     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
289   }
290 
291   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
292   // then truncating.
293   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
294       ValueVT.bitsLT(PartEVT)) {
295     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
296     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297   }
298 
299   report_fatal_error("Unknown mismatch in getCopyFromParts!");
300 }
301 
302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
303                                               const Twine &ErrMsg) {
304   const Instruction *I = dyn_cast_or_null<Instruction>(V);
305   if (!V)
306     return Ctx.emitError(ErrMsg);
307 
308   const char *AsmError = ", possible invalid constraint for vector type";
309   if (const CallInst *CI = dyn_cast<CallInst>(I))
310     if (CI->isInlineAsm())
311       return Ctx.emitError(I, ErrMsg + AsmError);
312 
313   return Ctx.emitError(I, ErrMsg);
314 }
315 
316 /// getCopyFromPartsVector - Create a value that contains the specified legal
317 /// parts combined into the value they represent.  If the parts combine to a
318 /// type larger than ValueVT then AssertOp can be used to specify whether the
319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
320 /// ValueVT (ISD::AssertSext).
321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
322                                       const SDValue *Parts, unsigned NumParts,
323                                       MVT PartVT, EVT ValueVT, const Value *V,
324                                       Optional<CallingConv::ID> CallConv) {
325   assert(ValueVT.isVector() && "Not a vector value");
326   assert(NumParts > 0 && "No parts to assemble!");
327   const bool IsABIRegCopy = CallConv.has_value();
328 
329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
330   SDValue Val = Parts[0];
331 
332   // Handle a multi-element vector.
333   if (NumParts > 1) {
334     EVT IntermediateVT;
335     MVT RegisterVT;
336     unsigned NumIntermediates;
337     unsigned NumRegs;
338 
339     if (IsABIRegCopy) {
340       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
341           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
342           NumIntermediates, RegisterVT);
343     } else {
344       NumRegs =
345           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
346                                      NumIntermediates, RegisterVT);
347     }
348 
349     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
350     NumParts = NumRegs; // Silence a compiler warning.
351     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
352     assert(RegisterVT.getSizeInBits() ==
353            Parts[0].getSimpleValueType().getSizeInBits() &&
354            "Part type sizes don't match!");
355 
356     // Assemble the parts into intermediate operands.
357     SmallVector<SDValue, 8> Ops(NumIntermediates);
358     if (NumIntermediates == NumParts) {
359       // If the register was not expanded, truncate or copy the value,
360       // as appropriate.
361       for (unsigned i = 0; i != NumParts; ++i)
362         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
363                                   PartVT, IntermediateVT, V, CallConv);
364     } else if (NumParts > 0) {
365       // If the intermediate type was expanded, build the intermediate
366       // operands from the parts.
367       assert(NumParts % NumIntermediates == 0 &&
368              "Must expand into a divisible number of parts!");
369       unsigned Factor = NumParts / NumIntermediates;
370       for (unsigned i = 0; i != NumIntermediates; ++i)
371         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
372                                   PartVT, IntermediateVT, V, CallConv);
373     }
374 
375     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
376     // intermediate operands.
377     EVT BuiltVectorTy =
378         IntermediateVT.isVector()
379             ? EVT::getVectorVT(
380                   *DAG.getContext(), IntermediateVT.getScalarType(),
381                   IntermediateVT.getVectorElementCount() * NumParts)
382             : EVT::getVectorVT(*DAG.getContext(),
383                                IntermediateVT.getScalarType(),
384                                NumIntermediates);
385     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
386                                                 : ISD::BUILD_VECTOR,
387                       DL, BuiltVectorTy, Ops);
388   }
389 
390   // There is now one part, held in Val.  Correct it to match ValueVT.
391   EVT PartEVT = Val.getValueType();
392 
393   if (PartEVT == ValueVT)
394     return Val;
395 
396   if (PartEVT.isVector()) {
397     // Vector/Vector bitcast.
398     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
399       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400 
401     // If the element type of the source/dest vectors are the same, but the
402     // parts vector has more elements than the value vector, then we have a
403     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
404     // elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418     }
419 
420     // Promoted vector extract
421     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
422   }
423 
424   // Trivial bitcast if the types are the same size and the destination
425   // vector type is legal.
426   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
427       TLI.isTypeLegal(ValueVT))
428     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
429 
430   if (ValueVT.getVectorNumElements() != 1) {
431      // Certain ABIs require that vectors are passed as integers. For vectors
432      // are the same size, this is an obvious bitcast.
433      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
434        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435      } else if (ValueVT.bitsLT(PartEVT)) {
436        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
437        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
438        // Drop the extra bits.
439        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
440        return DAG.getBitcast(ValueVT, Val);
441      }
442 
443      diagnosePossiblyInvalidConstraint(
444          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
445      return DAG.getUNDEF(ValueVT);
446   }
447 
448   // Handle cases such as i8 -> <1 x i1>
449   EVT ValueSVT = ValueVT.getVectorElementType();
450   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
451     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
452       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
453     else
454       Val = ValueVT.isFloatingPoint()
455                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
456                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
457   }
458 
459   return DAG.getBuildVector(ValueVT, DL, Val);
460 }
461 
462 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
463                                  SDValue Val, SDValue *Parts, unsigned NumParts,
464                                  MVT PartVT, const Value *V,
465                                  Optional<CallingConv::ID> CallConv);
466 
467 /// getCopyToParts - Create a series of nodes that contain the specified value
468 /// split into legal parts.  If the parts contain more bits than Val, then, for
469 /// integers, ExtendKind can be used to specify how to generate the extra bits.
470 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
471                            SDValue *Parts, unsigned NumParts, MVT PartVT,
472                            const Value *V,
473                            Optional<CallingConv::ID> CallConv = None,
474                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
475   // Let the target split the parts if it wants to
476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
477   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
478                                       CallConv))
479     return;
480   EVT ValueVT = Val.getValueType();
481 
482   // Handle the vector case separately.
483   if (ValueVT.isVector())
484     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
485                                 CallConv);
486 
487   unsigned PartBits = PartVT.getSizeInBits();
488   unsigned OrigNumParts = NumParts;
489   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
490          "Copying to an illegal type!");
491 
492   if (NumParts == 0)
493     return;
494 
495   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
496   EVT PartEVT = PartVT;
497   if (PartEVT == ValueVT) {
498     assert(NumParts == 1 && "No-op copy with multiple parts!");
499     Parts[0] = Val;
500     return;
501   }
502 
503   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
504     // If the parts cover more bits than the value has, promote the value.
505     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
506       assert(NumParts == 1 && "Do not know what to promote to!");
507       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
508     } else {
509       if (ValueVT.isFloatingPoint()) {
510         // FP values need to be bitcast, then extended if they are being put
511         // into a larger container.
512         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
513         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
514       }
515       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
516              ValueVT.isInteger() &&
517              "Unknown mismatch!");
518       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
519       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
520       if (PartVT == MVT::x86mmx)
521         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
522     }
523   } else if (PartBits == ValueVT.getSizeInBits()) {
524     // Different types of the same size.
525     assert(NumParts == 1 && PartEVT != ValueVT);
526     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
528     // If the parts cover less bits than value has, truncate the value.
529     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
530            ValueVT.isInteger() &&
531            "Unknown mismatch!");
532     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
533     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
534     if (PartVT == MVT::x86mmx)
535       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
536   }
537 
538   // The value may have changed - recompute ValueVT.
539   ValueVT = Val.getValueType();
540   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
541          "Failed to tile the value with PartVT!");
542 
543   if (NumParts == 1) {
544     if (PartEVT != ValueVT) {
545       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
546                                         "scalar-to-vector conversion failed");
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548     }
549 
550     Parts[0] = Val;
551     return;
552   }
553 
554   // Expand the value into multiple parts.
555   if (NumParts & (NumParts - 1)) {
556     // The number of parts is not a power of 2.  Split off and copy the tail.
557     assert(PartVT.isInteger() && ValueVT.isInteger() &&
558            "Do not know what to expand to!");
559     unsigned RoundParts = 1 << Log2_32(NumParts);
560     unsigned RoundBits = RoundParts * PartBits;
561     unsigned OddParts = NumParts - RoundParts;
562     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
563       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
564 
565     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
566                    CallConv);
567 
568     if (DAG.getDataLayout().isBigEndian())
569       // The odd parts were reversed by getCopyToParts - unreverse them.
570       std::reverse(Parts + RoundParts, Parts + NumParts);
571 
572     NumParts = RoundParts;
573     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
574     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
575   }
576 
577   // The number of parts is a power of 2.  Repeatedly bisect the value using
578   // EXTRACT_ELEMENT.
579   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
580                          EVT::getIntegerVT(*DAG.getContext(),
581                                            ValueVT.getSizeInBits()),
582                          Val);
583 
584   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
585     for (unsigned i = 0; i < NumParts; i += StepSize) {
586       unsigned ThisBits = StepSize * PartBits / 2;
587       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
588       SDValue &Part0 = Parts[i];
589       SDValue &Part1 = Parts[i+StepSize/2];
590 
591       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
592                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
593       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
594                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
595 
596       if (ThisBits == PartBits && ThisVT != PartVT) {
597         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
598         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
599       }
600     }
601   }
602 
603   if (DAG.getDataLayout().isBigEndian())
604     std::reverse(Parts, Parts + OrigNumParts);
605 }
606 
607 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
608                                      const SDLoc &DL, EVT PartVT) {
609   if (!PartVT.isVector())
610     return SDValue();
611 
612   EVT ValueVT = Val.getValueType();
613   ElementCount PartNumElts = PartVT.getVectorElementCount();
614   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
615 
616   // We only support widening vectors with equivalent element types and
617   // fixed/scalable properties. If a target needs to widen a fixed-length type
618   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
619   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
620       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
621       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
622     return SDValue();
623 
624   // Widening a scalable vector to another scalable vector is done by inserting
625   // the vector into a larger undef one.
626   if (PartNumElts.isScalable())
627     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
628                        Val, DAG.getVectorIdxConstant(0, DL));
629 
630   EVT ElementVT = PartVT.getVectorElementType();
631   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632   // undef elements.
633   SmallVector<SDValue, 16> Ops;
634   DAG.ExtractVectorElements(Val, Ops);
635   SDValue EltUndef = DAG.getUNDEF(ElementVT);
636   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
637 
638   // FIXME: Use CONCAT for 2x -> 4x.
639   return DAG.getBuildVector(PartVT, DL, Ops);
640 }
641 
642 /// getCopyToPartsVector - Create a series of nodes that contain the specified
643 /// value split into legal parts.
644 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
645                                  SDValue Val, SDValue *Parts, unsigned NumParts,
646                                  MVT PartVT, const Value *V,
647                                  Optional<CallingConv::ID> CallConv) {
648   EVT ValueVT = Val.getValueType();
649   assert(ValueVT.isVector() && "Not a vector");
650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
651   const bool IsABIRegCopy = CallConv.has_value();
652 
653   if (NumParts == 1) {
654     EVT PartEVT = PartVT;
655     if (PartEVT == ValueVT) {
656       // Nothing to do.
657     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
658       // Bitconvert vector->vector case.
659       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
660     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
661       Val = Widened;
662     } else if (PartVT.isVector() &&
663                PartEVT.getVectorElementType().bitsGE(
664                    ValueVT.getVectorElementType()) &&
665                PartEVT.getVectorElementCount() ==
666                    ValueVT.getVectorElementCount()) {
667 
668       // Promoted vector extract
669       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
670     } else if (PartEVT.isVector() &&
671                PartEVT.getVectorElementType() !=
672                    ValueVT.getVectorElementType() &&
673                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
674                    TargetLowering::TypeWidenVector) {
675       // Combination of widening and promotion.
676       EVT WidenVT =
677           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
678                            PartVT.getVectorElementCount());
679       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
680       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
681     } else {
682       if (ValueVT.getVectorElementCount().isScalar()) {
683         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
684                           DAG.getVectorIdxConstant(0, DL));
685       } else {
686         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
687         assert(PartVT.getFixedSizeInBits() > ValueSize &&
688                "lossy conversion of vector to scalar type");
689         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
690         Val = DAG.getBitcast(IntermediateType, Val);
691         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
692       }
693     }
694 
695     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
696     Parts[0] = Val;
697     return;
698   }
699 
700   // Handle a multi-element vector.
701   EVT IntermediateVT;
702   MVT RegisterVT;
703   unsigned NumIntermediates;
704   unsigned NumRegs;
705   if (IsABIRegCopy) {
706     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
707         *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT,
708         NumIntermediates, RegisterVT);
709   } else {
710     NumRegs =
711         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
712                                    NumIntermediates, RegisterVT);
713   }
714 
715   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
716   NumParts = NumRegs; // Silence a compiler warning.
717   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
718 
719   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
720          "Mixing scalable and fixed vectors when copying in parts");
721 
722   Optional<ElementCount> DestEltCnt;
723 
724   if (IntermediateVT.isVector())
725     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
726   else
727     DestEltCnt = ElementCount::getFixed(NumIntermediates);
728 
729   EVT BuiltVectorTy = EVT::getVectorVT(
730       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
731 
732   if (ValueVT == BuiltVectorTy) {
733     // Nothing to do.
734   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
735     // Bitconvert vector->vector case.
736     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
737   } else {
738     if (BuiltVectorTy.getVectorElementType().bitsGT(
739             ValueVT.getVectorElementType())) {
740       // Integer promotion.
741       ValueVT = EVT::getVectorVT(*DAG.getContext(),
742                                  BuiltVectorTy.getVectorElementType(),
743                                  ValueVT.getVectorElementCount());
744       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
745     }
746 
747     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
748       Val = Widened;
749     }
750   }
751 
752   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
753 
754   // Split the vector into intermediate operands.
755   SmallVector<SDValue, 8> Ops(NumIntermediates);
756   for (unsigned i = 0; i != NumIntermediates; ++i) {
757     if (IntermediateVT.isVector()) {
758       // This does something sensible for scalable vectors - see the
759       // definition of EXTRACT_SUBVECTOR for further details.
760       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
761       Ops[i] =
762           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
763                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
764     } else {
765       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
766                            DAG.getVectorIdxConstant(i, DL));
767     }
768   }
769 
770   // Split the intermediate operands into legal parts.
771   if (NumParts == NumIntermediates) {
772     // If the register was not expanded, promote or copy the value,
773     // as appropriate.
774     for (unsigned i = 0; i != NumParts; ++i)
775       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
776   } else if (NumParts > 0) {
777     // If the intermediate type was expanded, split each the value into
778     // legal parts.
779     assert(NumIntermediates != 0 && "division by zero");
780     assert(NumParts % NumIntermediates == 0 &&
781            "Must expand into a divisible number of parts!");
782     unsigned Factor = NumParts / NumIntermediates;
783     for (unsigned i = 0; i != NumIntermediates; ++i)
784       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
785                      CallConv);
786   }
787 }
788 
789 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
790                            EVT valuevt, Optional<CallingConv::ID> CC)
791     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
792       RegCount(1, regs.size()), CallConv(CC) {}
793 
794 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
795                            const DataLayout &DL, unsigned Reg, Type *Ty,
796                            Optional<CallingConv::ID> CC) {
797   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
798 
799   CallConv = CC;
800 
801   for (EVT ValueVT : ValueVTs) {
802     unsigned NumRegs =
803         isABIMangled()
804             ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT)
805             : TLI.getNumRegisters(Context, ValueVT);
806     MVT RegisterVT =
807         isABIMangled()
808             ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT)
809             : TLI.getRegisterType(Context, ValueVT);
810     for (unsigned i = 0; i != NumRegs; ++i)
811       Regs.push_back(Reg + i);
812     RegVTs.push_back(RegisterVT);
813     RegCount.push_back(NumRegs);
814     Reg += NumRegs;
815   }
816 }
817 
818 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
819                                       FunctionLoweringInfo &FuncInfo,
820                                       const SDLoc &dl, SDValue &Chain,
821                                       SDValue *Flag, const Value *V) const {
822   // A Value with type {} or [0 x %t] needs no registers.
823   if (ValueVTs.empty())
824     return SDValue();
825 
826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
827 
828   // Assemble the legal parts into the final values.
829   SmallVector<SDValue, 4> Values(ValueVTs.size());
830   SmallVector<SDValue, 8> Parts;
831   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
832     // Copy the legal parts from the registers.
833     EVT ValueVT = ValueVTs[Value];
834     unsigned NumRegs = RegCount[Value];
835     MVT RegisterVT =
836         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
837                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
838                        : RegVTs[Value];
839 
840     Parts.resize(NumRegs);
841     for (unsigned i = 0; i != NumRegs; ++i) {
842       SDValue P;
843       if (!Flag) {
844         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
845       } else {
846         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
847         *Flag = P.getValue(2);
848       }
849 
850       Chain = P.getValue(1);
851       Parts[i] = P;
852 
853       // If the source register was virtual and if we know something about it,
854       // add an assert node.
855       if (!Register::isVirtualRegister(Regs[Part + i]) ||
856           !RegisterVT.isInteger())
857         continue;
858 
859       const FunctionLoweringInfo::LiveOutInfo *LOI =
860         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
861       if (!LOI)
862         continue;
863 
864       unsigned RegSize = RegisterVT.getScalarSizeInBits();
865       unsigned NumSignBits = LOI->NumSignBits;
866       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
867 
868       if (NumZeroBits == RegSize) {
869         // The current value is a zero.
870         // Explicitly express that as it would be easier for
871         // optimizations to kick in.
872         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
873         continue;
874       }
875 
876       // FIXME: We capture more information than the dag can represent.  For
877       // now, just use the tightest assertzext/assertsext possible.
878       bool isSExt;
879       EVT FromVT(MVT::Other);
880       if (NumZeroBits) {
881         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
882         isSExt = false;
883       } else if (NumSignBits > 1) {
884         FromVT =
885             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
886         isSExt = true;
887       } else {
888         continue;
889       }
890       // Add an assertion node.
891       assert(FromVT != MVT::Other);
892       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
893                              RegisterVT, P, DAG.getValueType(FromVT));
894     }
895 
896     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
897                                      RegisterVT, ValueVT, V, CallConv);
898     Part += NumRegs;
899     Parts.clear();
900   }
901 
902   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
903 }
904 
905 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
906                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
907                                  const Value *V,
908                                  ISD::NodeType PreferredExtendType) const {
909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
910   ISD::NodeType ExtendKind = PreferredExtendType;
911 
912   // Get the list of the values's legal parts.
913   unsigned NumRegs = Regs.size();
914   SmallVector<SDValue, 8> Parts(NumRegs);
915   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
916     unsigned NumParts = RegCount[Value];
917 
918     MVT RegisterVT =
919         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
920                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
921                        : RegVTs[Value];
922 
923     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
924       ExtendKind = ISD::ZERO_EXTEND;
925 
926     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
927                    NumParts, RegisterVT, V, CallConv, ExtendKind);
928     Part += NumParts;
929   }
930 
931   // Copy the parts into the registers.
932   SmallVector<SDValue, 8> Chains(NumRegs);
933   for (unsigned i = 0; i != NumRegs; ++i) {
934     SDValue Part;
935     if (!Flag) {
936       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
937     } else {
938       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
939       *Flag = Part.getValue(1);
940     }
941 
942     Chains[i] = Part.getValue(0);
943   }
944 
945   if (NumRegs == 1 || Flag)
946     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
947     // flagged to it. That is the CopyToReg nodes and the user are considered
948     // a single scheduling unit. If we create a TokenFactor and return it as
949     // chain, then the TokenFactor is both a predecessor (operand) of the
950     // user as well as a successor (the TF operands are flagged to the user).
951     // c1, f1 = CopyToReg
952     // c2, f2 = CopyToReg
953     // c3     = TokenFactor c1, c2
954     // ...
955     //        = op c3, ..., f2
956     Chain = Chains[NumRegs-1];
957   else
958     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
959 }
960 
961 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
962                                         unsigned MatchingIdx, const SDLoc &dl,
963                                         SelectionDAG &DAG,
964                                         std::vector<SDValue> &Ops) const {
965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
966 
967   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
968   if (HasMatching)
969     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
970   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
971     // Put the register class of the virtual registers in the flag word.  That
972     // way, later passes can recompute register class constraints for inline
973     // assembly as well as normal instructions.
974     // Don't do this for tied operands that can use the regclass information
975     // from the def.
976     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
977     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
978     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
979   }
980 
981   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
982   Ops.push_back(Res);
983 
984   if (Code == InlineAsm::Kind_Clobber) {
985     // Clobbers should always have a 1:1 mapping with registers, and may
986     // reference registers that have illegal (e.g. vector) types. Hence, we
987     // shouldn't try to apply any sort of splitting logic to them.
988     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
989            "No 1:1 mapping from clobbers to regs?");
990     Register SP = TLI.getStackPointerRegisterToSaveRestore();
991     (void)SP;
992     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
993       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
994       assert(
995           (Regs[I] != SP ||
996            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
997           "If we clobbered the stack pointer, MFI should know about it.");
998     }
999     return;
1000   }
1001 
1002   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1003     MVT RegisterVT = RegVTs[Value];
1004     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1005                                            RegisterVT);
1006     for (unsigned i = 0; i != NumRegs; ++i) {
1007       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1008       unsigned TheReg = Regs[Reg++];
1009       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1010     }
1011   }
1012 }
1013 
1014 SmallVector<std::pair<unsigned, TypeSize>, 4>
1015 RegsForValue::getRegsAndSizes() const {
1016   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1017   unsigned I = 0;
1018   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1019     unsigned RegCount = std::get<0>(CountAndVT);
1020     MVT RegisterVT = std::get<1>(CountAndVT);
1021     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1022     for (unsigned E = I + RegCount; I != E; ++I)
1023       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1024   }
1025   return OutVec;
1026 }
1027 
1028 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1029                                AssumptionCache *ac,
1030                                const TargetLibraryInfo *li) {
1031   AA = aa;
1032   AC = ac;
1033   GFI = gfi;
1034   LibInfo = li;
1035   Context = DAG.getContext();
1036   LPadToCallSiteMap.clear();
1037   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1038 }
1039 
1040 void SelectionDAGBuilder::clear() {
1041   NodeMap.clear();
1042   UnusedArgNodeMap.clear();
1043   PendingLoads.clear();
1044   PendingExports.clear();
1045   PendingConstrainedFP.clear();
1046   PendingConstrainedFPStrict.clear();
1047   CurInst = nullptr;
1048   HasTailCall = false;
1049   SDNodeOrder = LowestSDNodeOrder;
1050   StatepointLowering.clear();
1051 }
1052 
1053 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1054   DanglingDebugInfoMap.clear();
1055 }
1056 
1057 // Update DAG root to include dependencies on Pending chains.
1058 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1059   SDValue Root = DAG.getRoot();
1060 
1061   if (Pending.empty())
1062     return Root;
1063 
1064   // Add current root to PendingChains, unless we already indirectly
1065   // depend on it.
1066   if (Root.getOpcode() != ISD::EntryToken) {
1067     unsigned i = 0, e = Pending.size();
1068     for (; i != e; ++i) {
1069       assert(Pending[i].getNode()->getNumOperands() > 1);
1070       if (Pending[i].getNode()->getOperand(0) == Root)
1071         break;  // Don't add the root if we already indirectly depend on it.
1072     }
1073 
1074     if (i == e)
1075       Pending.push_back(Root);
1076   }
1077 
1078   if (Pending.size() == 1)
1079     Root = Pending[0];
1080   else
1081     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1082 
1083   DAG.setRoot(Root);
1084   Pending.clear();
1085   return Root;
1086 }
1087 
1088 SDValue SelectionDAGBuilder::getMemoryRoot() {
1089   return updateRoot(PendingLoads);
1090 }
1091 
1092 SDValue SelectionDAGBuilder::getRoot() {
1093   // Chain up all pending constrained intrinsics together with all
1094   // pending loads, by simply appending them to PendingLoads and
1095   // then calling getMemoryRoot().
1096   PendingLoads.reserve(PendingLoads.size() +
1097                        PendingConstrainedFP.size() +
1098                        PendingConstrainedFPStrict.size());
1099   PendingLoads.append(PendingConstrainedFP.begin(),
1100                       PendingConstrainedFP.end());
1101   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1102                       PendingConstrainedFPStrict.end());
1103   PendingConstrainedFP.clear();
1104   PendingConstrainedFPStrict.clear();
1105   return getMemoryRoot();
1106 }
1107 
1108 SDValue SelectionDAGBuilder::getControlRoot() {
1109   // We need to emit pending fpexcept.strict constrained intrinsics,
1110   // so append them to the PendingExports list.
1111   PendingExports.append(PendingConstrainedFPStrict.begin(),
1112                         PendingConstrainedFPStrict.end());
1113   PendingConstrainedFPStrict.clear();
1114   return updateRoot(PendingExports);
1115 }
1116 
1117 void SelectionDAGBuilder::visit(const Instruction &I) {
1118   // Set up outgoing PHI node register values before emitting the terminator.
1119   if (I.isTerminator()) {
1120     HandlePHINodesInSuccessorBlocks(I.getParent());
1121   }
1122 
1123   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1124   if (!isa<DbgInfoIntrinsic>(I))
1125     ++SDNodeOrder;
1126 
1127   CurInst = &I;
1128 
1129   // Set inserted listener only if required.
1130   bool NodeInserted = false;
1131   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1132   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1133   if (PCSectionsMD) {
1134     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1135         DAG, [&](SDNode *) { NodeInserted = true; });
1136   }
1137 
1138   visit(I.getOpcode(), I);
1139 
1140   if (!I.isTerminator() && !HasTailCall &&
1141       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1142     CopyToExportRegsIfNeeded(&I);
1143 
1144   // Handle metadata.
1145   if (PCSectionsMD) {
1146     auto It = NodeMap.find(&I);
1147     if (It != NodeMap.end()) {
1148       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1149     } else if (NodeInserted) {
1150       // This should not happen; if it does, don't let it go unnoticed so we can
1151       // fix it. Relevant visit*() function is probably missing a setValue().
1152       errs() << "warning: loosing !pcsections metadata ["
1153              << I.getModule()->getName() << "]\n";
1154       LLVM_DEBUG(I.dump());
1155       assert(false);
1156     }
1157   }
1158 
1159   CurInst = nullptr;
1160 }
1161 
1162 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1163   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1164 }
1165 
1166 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1167   // Note: this doesn't use InstVisitor, because it has to work with
1168   // ConstantExpr's in addition to instructions.
1169   switch (Opcode) {
1170   default: llvm_unreachable("Unknown instruction type encountered!");
1171     // Build the switch statement using the Instruction.def file.
1172 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1173     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1174 #include "llvm/IR/Instruction.def"
1175   }
1176 }
1177 
1178 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1179                                                DebugLoc DL, unsigned Order) {
1180   // We treat variadic dbg_values differently at this stage.
1181   if (DI->hasArgList()) {
1182     // For variadic dbg_values we will now insert an undef.
1183     // FIXME: We can potentially recover these!
1184     SmallVector<SDDbgOperand, 2> Locs;
1185     for (const Value *V : DI->getValues()) {
1186       auto Undef = UndefValue::get(V->getType());
1187       Locs.push_back(SDDbgOperand::fromConst(Undef));
1188     }
1189     SDDbgValue *SDV = DAG.getDbgValueList(
1190         DI->getVariable(), DI->getExpression(), Locs, {},
1191         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1192     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1193   } else {
1194     // TODO: Dangling debug info will eventually either be resolved or produce
1195     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1196     // between the original dbg.value location and its resolved DBG_VALUE,
1197     // which we should ideally fill with an extra Undef DBG_VALUE.
1198     assert(DI->getNumVariableLocationOps() == 1 &&
1199            "DbgValueInst without an ArgList should have a single location "
1200            "operand.");
1201     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1202   }
1203 }
1204 
1205 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1206                                                 const DIExpression *Expr) {
1207   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1208     const DbgValueInst *DI = DDI.getDI();
1209     DIVariable *DanglingVariable = DI->getVariable();
1210     DIExpression *DanglingExpr = DI->getExpression();
1211     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1212       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1213       return true;
1214     }
1215     return false;
1216   };
1217 
1218   for (auto &DDIMI : DanglingDebugInfoMap) {
1219     DanglingDebugInfoVector &DDIV = DDIMI.second;
1220 
1221     // If debug info is to be dropped, run it through final checks to see
1222     // whether it can be salvaged.
1223     for (auto &DDI : DDIV)
1224       if (isMatchingDbgValue(DDI))
1225         salvageUnresolvedDbgValue(DDI);
1226 
1227     erase_if(DDIV, isMatchingDbgValue);
1228   }
1229 }
1230 
1231 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1232 // generate the debug data structures now that we've seen its definition.
1233 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1234                                                    SDValue Val) {
1235   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1236   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1237     return;
1238 
1239   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1240   for (auto &DDI : DDIV) {
1241     const DbgValueInst *DI = DDI.getDI();
1242     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1243     assert(DI && "Ill-formed DanglingDebugInfo");
1244     DebugLoc dl = DDI.getdl();
1245     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1246     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1247     DILocalVariable *Variable = DI->getVariable();
1248     DIExpression *Expr = DI->getExpression();
1249     assert(Variable->isValidLocationForIntrinsic(dl) &&
1250            "Expected inlined-at fields to agree");
1251     SDDbgValue *SDV;
1252     if (Val.getNode()) {
1253       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1254       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1255       // we couldn't resolve it directly when examining the DbgValue intrinsic
1256       // in the first place we should not be more successful here). Unless we
1257       // have some test case that prove this to be correct we should avoid
1258       // calling EmitFuncArgumentDbgValue here.
1259       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1260                                     FuncArgumentDbgValueKind::Value, Val)) {
1261         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1262                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1263         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1264         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1265         // inserted after the definition of Val when emitting the instructions
1266         // after ISel. An alternative could be to teach
1267         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1268         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1269                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1270                    << ValSDNodeOrder << "\n");
1271         SDV = getDbgValue(Val, Variable, Expr, dl,
1272                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1273         DAG.AddDbgValue(SDV, false);
1274       } else
1275         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1276                           << "in EmitFuncArgumentDbgValue\n");
1277     } else {
1278       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1279       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1280       auto SDV =
1281           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1282       DAG.AddDbgValue(SDV, false);
1283     }
1284   }
1285   DDIV.clear();
1286 }
1287 
1288 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1289   // TODO: For the variadic implementation, instead of only checking the fail
1290   // state of `handleDebugValue`, we need know specifically which values were
1291   // invalid, so that we attempt to salvage only those values when processing
1292   // a DIArgList.
1293   assert(!DDI.getDI()->hasArgList() &&
1294          "Not implemented for variadic dbg_values");
1295   Value *V = DDI.getDI()->getValue(0);
1296   DILocalVariable *Var = DDI.getDI()->getVariable();
1297   DIExpression *Expr = DDI.getDI()->getExpression();
1298   DebugLoc DL = DDI.getdl();
1299   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1300   unsigned SDOrder = DDI.getSDNodeOrder();
1301   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1302   // that DW_OP_stack_value is desired.
1303   assert(isa<DbgValueInst>(DDI.getDI()));
1304   bool StackValue = true;
1305 
1306   // Can this Value can be encoded without any further work?
1307   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1308     return;
1309 
1310   // Attempt to salvage back through as many instructions as possible. Bail if
1311   // a non-instruction is seen, such as a constant expression or global
1312   // variable. FIXME: Further work could recover those too.
1313   while (isa<Instruction>(V)) {
1314     Instruction &VAsInst = *cast<Instruction>(V);
1315     // Temporary "0", awaiting real implementation.
1316     SmallVector<uint64_t, 16> Ops;
1317     SmallVector<Value *, 4> AdditionalValues;
1318     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1319                              AdditionalValues);
1320     // If we cannot salvage any further, and haven't yet found a suitable debug
1321     // expression, bail out.
1322     if (!V)
1323       break;
1324 
1325     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1326     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1327     // here for variadic dbg_values, remove that condition.
1328     if (!AdditionalValues.empty())
1329       break;
1330 
1331     // New value and expr now represent this debuginfo.
1332     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1333 
1334     // Some kind of simplification occurred: check whether the operand of the
1335     // salvaged debug expression can be encoded in this DAG.
1336     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1337                          /*IsVariadic=*/false)) {
1338       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1339                         << *DDI.getDI() << "\nBy stripping back to:\n  " << *V);
1340       return;
1341     }
1342   }
1343 
1344   // This was the final opportunity to salvage this debug information, and it
1345   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1346   // any earlier variable location.
1347   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1348   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1349   DAG.AddDbgValue(SDV, false);
1350 
1351   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << *DDI.getDI()
1352                     << "\n");
1353   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1354                     << "\n");
1355 }
1356 
1357 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1358                                            DILocalVariable *Var,
1359                                            DIExpression *Expr, DebugLoc dl,
1360                                            DebugLoc InstDL, unsigned Order,
1361                                            bool IsVariadic) {
1362   if (Values.empty())
1363     return true;
1364   SmallVector<SDDbgOperand> LocationOps;
1365   SmallVector<SDNode *> Dependencies;
1366   for (const Value *V : Values) {
1367     // Constant value.
1368     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1369         isa<ConstantPointerNull>(V)) {
1370       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1371       continue;
1372     }
1373 
1374     // Look through IntToPtr constants.
1375     if (auto *CE = dyn_cast<ConstantExpr>(V))
1376       if (CE->getOpcode() == Instruction::IntToPtr) {
1377         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1378         continue;
1379       }
1380 
1381     // If the Value is a frame index, we can create a FrameIndex debug value
1382     // without relying on the DAG at all.
1383     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1384       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1385       if (SI != FuncInfo.StaticAllocaMap.end()) {
1386         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1387         continue;
1388       }
1389     }
1390 
1391     // Do not use getValue() in here; we don't want to generate code at
1392     // this point if it hasn't been done yet.
1393     SDValue N = NodeMap[V];
1394     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1395       N = UnusedArgNodeMap[V];
1396     if (N.getNode()) {
1397       // Only emit func arg dbg value for non-variadic dbg.values for now.
1398       if (!IsVariadic &&
1399           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1400                                    FuncArgumentDbgValueKind::Value, N))
1401         return true;
1402       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1403         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1404         // describe stack slot locations.
1405         //
1406         // Consider "int x = 0; int *px = &x;". There are two kinds of
1407         // interesting debug values here after optimization:
1408         //
1409         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1410         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1411         //
1412         // Both describe the direct values of their associated variables.
1413         Dependencies.push_back(N.getNode());
1414         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1415         continue;
1416       }
1417       LocationOps.emplace_back(
1418           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1419       continue;
1420     }
1421 
1422     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1423     // Special rules apply for the first dbg.values of parameter variables in a
1424     // function. Identify them by the fact they reference Argument Values, that
1425     // they're parameters, and they are parameters of the current function. We
1426     // need to let them dangle until they get an SDNode.
1427     bool IsParamOfFunc =
1428         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1429     if (IsParamOfFunc)
1430       return false;
1431 
1432     // The value is not used in this block yet (or it would have an SDNode).
1433     // We still want the value to appear for the user if possible -- if it has
1434     // an associated VReg, we can refer to that instead.
1435     auto VMI = FuncInfo.ValueMap.find(V);
1436     if (VMI != FuncInfo.ValueMap.end()) {
1437       unsigned Reg = VMI->second;
1438       // If this is a PHI node, it may be split up into several MI PHI nodes
1439       // (in FunctionLoweringInfo::set).
1440       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1441                        V->getType(), None);
1442       if (RFV.occupiesMultipleRegs()) {
1443         // FIXME: We could potentially support variadic dbg_values here.
1444         if (IsVariadic)
1445           return false;
1446         unsigned Offset = 0;
1447         unsigned BitsToDescribe = 0;
1448         if (auto VarSize = Var->getSizeInBits())
1449           BitsToDescribe = *VarSize;
1450         if (auto Fragment = Expr->getFragmentInfo())
1451           BitsToDescribe = Fragment->SizeInBits;
1452         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1453           // Bail out if all bits are described already.
1454           if (Offset >= BitsToDescribe)
1455             break;
1456           // TODO: handle scalable vectors.
1457           unsigned RegisterSize = RegAndSize.second;
1458           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1459                                       ? BitsToDescribe - Offset
1460                                       : RegisterSize;
1461           auto FragmentExpr = DIExpression::createFragmentExpression(
1462               Expr, Offset, FragmentSize);
1463           if (!FragmentExpr)
1464             continue;
1465           SDDbgValue *SDV = DAG.getVRegDbgValue(
1466               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1467           DAG.AddDbgValue(SDV, false);
1468           Offset += RegisterSize;
1469         }
1470         return true;
1471       }
1472       // We can use simple vreg locations for variadic dbg_values as well.
1473       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1474       continue;
1475     }
1476     // We failed to create a SDDbgOperand for V.
1477     return false;
1478   }
1479 
1480   // We have created a SDDbgOperand for each Value in Values.
1481   // Should use Order instead of SDNodeOrder?
1482   assert(!LocationOps.empty());
1483   SDDbgValue *SDV =
1484       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1485                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1486   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1487   return true;
1488 }
1489 
1490 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1491   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1492   for (auto &Pair : DanglingDebugInfoMap)
1493     for (auto &DDI : Pair.second)
1494       salvageUnresolvedDbgValue(DDI);
1495   clearDanglingDebugInfo();
1496 }
1497 
1498 /// getCopyFromRegs - If there was virtual register allocated for the value V
1499 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1500 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1501   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1502   SDValue Result;
1503 
1504   if (It != FuncInfo.ValueMap.end()) {
1505     Register InReg = It->second;
1506 
1507     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1508                      DAG.getDataLayout(), InReg, Ty,
1509                      None); // This is not an ABI copy.
1510     SDValue Chain = DAG.getEntryNode();
1511     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1512                                  V);
1513     resolveDanglingDebugInfo(V, Result);
1514   }
1515 
1516   return Result;
1517 }
1518 
1519 /// getValue - Return an SDValue for the given Value.
1520 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1521   // If we already have an SDValue for this value, use it. It's important
1522   // to do this first, so that we don't create a CopyFromReg if we already
1523   // have a regular SDValue.
1524   SDValue &N = NodeMap[V];
1525   if (N.getNode()) return N;
1526 
1527   // If there's a virtual register allocated and initialized for this
1528   // value, use it.
1529   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1530     return copyFromReg;
1531 
1532   // Otherwise create a new SDValue and remember it.
1533   SDValue Val = getValueImpl(V);
1534   NodeMap[V] = Val;
1535   resolveDanglingDebugInfo(V, Val);
1536   return Val;
1537 }
1538 
1539 /// getNonRegisterValue - Return an SDValue for the given Value, but
1540 /// don't look in FuncInfo.ValueMap for a virtual register.
1541 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1542   // If we already have an SDValue for this value, use it.
1543   SDValue &N = NodeMap[V];
1544   if (N.getNode()) {
1545     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1546       // Remove the debug location from the node as the node is about to be used
1547       // in a location which may differ from the original debug location.  This
1548       // is relevant to Constant and ConstantFP nodes because they can appear
1549       // as constant expressions inside PHI nodes.
1550       N->setDebugLoc(DebugLoc());
1551     }
1552     return N;
1553   }
1554 
1555   // Otherwise create a new SDValue and remember it.
1556   SDValue Val = getValueImpl(V);
1557   NodeMap[V] = Val;
1558   resolveDanglingDebugInfo(V, Val);
1559   return Val;
1560 }
1561 
1562 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1563 /// Create an SDValue for the given value.
1564 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1565   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1566 
1567   if (const Constant *C = dyn_cast<Constant>(V)) {
1568     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1569 
1570     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1571       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1572 
1573     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1574       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1575 
1576     if (isa<ConstantPointerNull>(C)) {
1577       unsigned AS = V->getType()->getPointerAddressSpace();
1578       return DAG.getConstant(0, getCurSDLoc(),
1579                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1580     }
1581 
1582     if (match(C, m_VScale(DAG.getDataLayout())))
1583       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1584 
1585     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1586       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1587 
1588     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1589       return DAG.getUNDEF(VT);
1590 
1591     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1592       visit(CE->getOpcode(), *CE);
1593       SDValue N1 = NodeMap[V];
1594       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1595       return N1;
1596     }
1597 
1598     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1599       SmallVector<SDValue, 4> Constants;
1600       for (const Use &U : C->operands()) {
1601         SDNode *Val = getValue(U).getNode();
1602         // If the operand is an empty aggregate, there are no values.
1603         if (!Val) continue;
1604         // Add each leaf value from the operand to the Constants list
1605         // to form a flattened list of all the values.
1606         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1607           Constants.push_back(SDValue(Val, i));
1608       }
1609 
1610       return DAG.getMergeValues(Constants, getCurSDLoc());
1611     }
1612 
1613     if (const ConstantDataSequential *CDS =
1614           dyn_cast<ConstantDataSequential>(C)) {
1615       SmallVector<SDValue, 4> Ops;
1616       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1617         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1618         // Add each leaf value from the operand to the Constants list
1619         // to form a flattened list of all the values.
1620         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1621           Ops.push_back(SDValue(Val, i));
1622       }
1623 
1624       if (isa<ArrayType>(CDS->getType()))
1625         return DAG.getMergeValues(Ops, getCurSDLoc());
1626       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1627     }
1628 
1629     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1630       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1631              "Unknown struct or array constant!");
1632 
1633       SmallVector<EVT, 4> ValueVTs;
1634       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1635       unsigned NumElts = ValueVTs.size();
1636       if (NumElts == 0)
1637         return SDValue(); // empty struct
1638       SmallVector<SDValue, 4> Constants(NumElts);
1639       for (unsigned i = 0; i != NumElts; ++i) {
1640         EVT EltVT = ValueVTs[i];
1641         if (isa<UndefValue>(C))
1642           Constants[i] = DAG.getUNDEF(EltVT);
1643         else if (EltVT.isFloatingPoint())
1644           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1645         else
1646           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1647       }
1648 
1649       return DAG.getMergeValues(Constants, getCurSDLoc());
1650     }
1651 
1652     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1653       return DAG.getBlockAddress(BA, VT);
1654 
1655     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1656       return getValue(Equiv->getGlobalValue());
1657 
1658     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1659       return getValue(NC->getGlobalValue());
1660 
1661     VectorType *VecTy = cast<VectorType>(V->getType());
1662 
1663     // Now that we know the number and type of the elements, get that number of
1664     // elements into the Ops array based on what kind of constant it is.
1665     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1666       SmallVector<SDValue, 16> Ops;
1667       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1668       for (unsigned i = 0; i != NumElements; ++i)
1669         Ops.push_back(getValue(CV->getOperand(i)));
1670 
1671       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1672     }
1673 
1674     if (isa<ConstantAggregateZero>(C)) {
1675       EVT EltVT =
1676           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1677 
1678       SDValue Op;
1679       if (EltVT.isFloatingPoint())
1680         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1681       else
1682         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1683 
1684       if (isa<ScalableVectorType>(VecTy))
1685         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1686 
1687       SmallVector<SDValue, 16> Ops;
1688       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1689       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1690     }
1691 
1692     llvm_unreachable("Unknown vector constant");
1693   }
1694 
1695   // If this is a static alloca, generate it as the frameindex instead of
1696   // computation.
1697   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1698     DenseMap<const AllocaInst*, int>::iterator SI =
1699       FuncInfo.StaticAllocaMap.find(AI);
1700     if (SI != FuncInfo.StaticAllocaMap.end())
1701       return DAG.getFrameIndex(SI->second,
1702                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1703   }
1704 
1705   // If this is an instruction which fast-isel has deferred, select it now.
1706   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1707     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1708 
1709     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1710                      Inst->getType(), None);
1711     SDValue Chain = DAG.getEntryNode();
1712     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1713   }
1714 
1715   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1716     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1717 
1718   if (const auto *BB = dyn_cast<BasicBlock>(V))
1719     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1720 
1721   llvm_unreachable("Can't get register for value!");
1722 }
1723 
1724 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1725   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1726   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1727   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1728   bool IsSEH = isAsynchronousEHPersonality(Pers);
1729   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1730   if (!IsSEH)
1731     CatchPadMBB->setIsEHScopeEntry();
1732   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1733   if (IsMSVCCXX || IsCoreCLR)
1734     CatchPadMBB->setIsEHFuncletEntry();
1735 }
1736 
1737 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1738   // Update machine-CFG edge.
1739   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1740   FuncInfo.MBB->addSuccessor(TargetMBB);
1741   TargetMBB->setIsEHCatchretTarget(true);
1742   DAG.getMachineFunction().setHasEHCatchret(true);
1743 
1744   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1745   bool IsSEH = isAsynchronousEHPersonality(Pers);
1746   if (IsSEH) {
1747     // If this is not a fall-through branch or optimizations are switched off,
1748     // emit the branch.
1749     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1750         TM.getOptLevel() == CodeGenOpt::None)
1751       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1752                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1753     return;
1754   }
1755 
1756   // Figure out the funclet membership for the catchret's successor.
1757   // This will be used by the FuncletLayout pass to determine how to order the
1758   // BB's.
1759   // A 'catchret' returns to the outer scope's color.
1760   Value *ParentPad = I.getCatchSwitchParentPad();
1761   const BasicBlock *SuccessorColor;
1762   if (isa<ConstantTokenNone>(ParentPad))
1763     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1764   else
1765     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1766   assert(SuccessorColor && "No parent funclet for catchret!");
1767   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1768   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1769 
1770   // Create the terminator node.
1771   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1772                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1773                             DAG.getBasicBlock(SuccessorColorMBB));
1774   DAG.setRoot(Ret);
1775 }
1776 
1777 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1778   // Don't emit any special code for the cleanuppad instruction. It just marks
1779   // the start of an EH scope/funclet.
1780   FuncInfo.MBB->setIsEHScopeEntry();
1781   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1782   if (Pers != EHPersonality::Wasm_CXX) {
1783     FuncInfo.MBB->setIsEHFuncletEntry();
1784     FuncInfo.MBB->setIsCleanupFuncletEntry();
1785   }
1786 }
1787 
1788 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1789 // not match, it is OK to add only the first unwind destination catchpad to the
1790 // successors, because there will be at least one invoke instruction within the
1791 // catch scope that points to the next unwind destination, if one exists, so
1792 // CFGSort cannot mess up with BB sorting order.
1793 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1794 // call within them, and catchpads only consisting of 'catch (...)' have a
1795 // '__cxa_end_catch' call within them, both of which generate invokes in case
1796 // the next unwind destination exists, i.e., the next unwind destination is not
1797 // the caller.)
1798 //
1799 // Having at most one EH pad successor is also simpler and helps later
1800 // transformations.
1801 //
1802 // For example,
1803 // current:
1804 //   invoke void @foo to ... unwind label %catch.dispatch
1805 // catch.dispatch:
1806 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1807 // catch.start:
1808 //   ...
1809 //   ... in this BB or some other child BB dominated by this BB there will be an
1810 //   invoke that points to 'next' BB as an unwind destination
1811 //
1812 // next: ; We don't need to add this to 'current' BB's successor
1813 //   ...
1814 static void findWasmUnwindDestinations(
1815     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1816     BranchProbability Prob,
1817     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1818         &UnwindDests) {
1819   while (EHPadBB) {
1820     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1821     if (isa<CleanupPadInst>(Pad)) {
1822       // Stop on cleanup pads.
1823       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1824       UnwindDests.back().first->setIsEHScopeEntry();
1825       break;
1826     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1827       // Add the catchpad handlers to the possible destinations. We don't
1828       // continue to the unwind destination of the catchswitch for wasm.
1829       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1830         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1831         UnwindDests.back().first->setIsEHScopeEntry();
1832       }
1833       break;
1834     } else {
1835       continue;
1836     }
1837   }
1838 }
1839 
1840 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1841 /// many places it could ultimately go. In the IR, we have a single unwind
1842 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1843 /// This function skips over imaginary basic blocks that hold catchswitch
1844 /// instructions, and finds all the "real" machine
1845 /// basic block destinations. As those destinations may not be successors of
1846 /// EHPadBB, here we also calculate the edge probability to those destinations.
1847 /// The passed-in Prob is the edge probability to EHPadBB.
1848 static void findUnwindDestinations(
1849     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1850     BranchProbability Prob,
1851     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1852         &UnwindDests) {
1853   EHPersonality Personality =
1854     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1855   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1856   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1857   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1858   bool IsSEH = isAsynchronousEHPersonality(Personality);
1859 
1860   if (IsWasmCXX) {
1861     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1862     assert(UnwindDests.size() <= 1 &&
1863            "There should be at most one unwind destination for wasm");
1864     return;
1865   }
1866 
1867   while (EHPadBB) {
1868     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1869     BasicBlock *NewEHPadBB = nullptr;
1870     if (isa<LandingPadInst>(Pad)) {
1871       // Stop on landingpads. They are not funclets.
1872       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1873       break;
1874     } else if (isa<CleanupPadInst>(Pad)) {
1875       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1876       // personalities.
1877       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1878       UnwindDests.back().first->setIsEHScopeEntry();
1879       UnwindDests.back().first->setIsEHFuncletEntry();
1880       break;
1881     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1882       // Add the catchpad handlers to the possible destinations.
1883       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1884         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1885         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1886         if (IsMSVCCXX || IsCoreCLR)
1887           UnwindDests.back().first->setIsEHFuncletEntry();
1888         if (!IsSEH)
1889           UnwindDests.back().first->setIsEHScopeEntry();
1890       }
1891       NewEHPadBB = CatchSwitch->getUnwindDest();
1892     } else {
1893       continue;
1894     }
1895 
1896     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1897     if (BPI && NewEHPadBB)
1898       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1899     EHPadBB = NewEHPadBB;
1900   }
1901 }
1902 
1903 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1904   // Update successor info.
1905   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1906   auto UnwindDest = I.getUnwindDest();
1907   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1908   BranchProbability UnwindDestProb =
1909       (BPI && UnwindDest)
1910           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1911           : BranchProbability::getZero();
1912   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1913   for (auto &UnwindDest : UnwindDests) {
1914     UnwindDest.first->setIsEHPad();
1915     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1916   }
1917   FuncInfo.MBB->normalizeSuccProbs();
1918 
1919   // Create the terminator node.
1920   SDValue Ret =
1921       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1922   DAG.setRoot(Ret);
1923 }
1924 
1925 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1926   report_fatal_error("visitCatchSwitch not yet implemented!");
1927 }
1928 
1929 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1930   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1931   auto &DL = DAG.getDataLayout();
1932   SDValue Chain = getControlRoot();
1933   SmallVector<ISD::OutputArg, 8> Outs;
1934   SmallVector<SDValue, 8> OutVals;
1935 
1936   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1937   // lower
1938   //
1939   //   %val = call <ty> @llvm.experimental.deoptimize()
1940   //   ret <ty> %val
1941   //
1942   // differently.
1943   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1944     LowerDeoptimizingReturn();
1945     return;
1946   }
1947 
1948   if (!FuncInfo.CanLowerReturn) {
1949     unsigned DemoteReg = FuncInfo.DemoteRegister;
1950     const Function *F = I.getParent()->getParent();
1951 
1952     // Emit a store of the return value through the virtual register.
1953     // Leave Outs empty so that LowerReturn won't try to load return
1954     // registers the usual way.
1955     SmallVector<EVT, 1> PtrValueVTs;
1956     ComputeValueVTs(TLI, DL,
1957                     F->getReturnType()->getPointerTo(
1958                         DAG.getDataLayout().getAllocaAddrSpace()),
1959                     PtrValueVTs);
1960 
1961     SDValue RetPtr =
1962         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1963     SDValue RetOp = getValue(I.getOperand(0));
1964 
1965     SmallVector<EVT, 4> ValueVTs, MemVTs;
1966     SmallVector<uint64_t, 4> Offsets;
1967     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1968                     &Offsets);
1969     unsigned NumValues = ValueVTs.size();
1970 
1971     SmallVector<SDValue, 4> Chains(NumValues);
1972     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1973     for (unsigned i = 0; i != NumValues; ++i) {
1974       // An aggregate return value cannot wrap around the address space, so
1975       // offsets to its parts don't wrap either.
1976       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1977                                            TypeSize::Fixed(Offsets[i]));
1978 
1979       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1980       if (MemVTs[i] != ValueVTs[i])
1981         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1982       Chains[i] = DAG.getStore(
1983           Chain, getCurSDLoc(), Val,
1984           // FIXME: better loc info would be nice.
1985           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1986           commonAlignment(BaseAlign, Offsets[i]));
1987     }
1988 
1989     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1990                         MVT::Other, Chains);
1991   } else if (I.getNumOperands() != 0) {
1992     SmallVector<EVT, 4> ValueVTs;
1993     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1994     unsigned NumValues = ValueVTs.size();
1995     if (NumValues) {
1996       SDValue RetOp = getValue(I.getOperand(0));
1997 
1998       const Function *F = I.getParent()->getParent();
1999 
2000       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2001           I.getOperand(0)->getType(), F->getCallingConv(),
2002           /*IsVarArg*/ false, DL);
2003 
2004       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2005       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2006         ExtendKind = ISD::SIGN_EXTEND;
2007       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2008         ExtendKind = ISD::ZERO_EXTEND;
2009 
2010       LLVMContext &Context = F->getContext();
2011       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2012 
2013       for (unsigned j = 0; j != NumValues; ++j) {
2014         EVT VT = ValueVTs[j];
2015 
2016         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2017           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2018 
2019         CallingConv::ID CC = F->getCallingConv();
2020 
2021         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2022         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2023         SmallVector<SDValue, 4> Parts(NumParts);
2024         getCopyToParts(DAG, getCurSDLoc(),
2025                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2026                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2027 
2028         // 'inreg' on function refers to return value
2029         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2030         if (RetInReg)
2031           Flags.setInReg();
2032 
2033         if (I.getOperand(0)->getType()->isPointerTy()) {
2034           Flags.setPointer();
2035           Flags.setPointerAddrSpace(
2036               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2037         }
2038 
2039         if (NeedsRegBlock) {
2040           Flags.setInConsecutiveRegs();
2041           if (j == NumValues - 1)
2042             Flags.setInConsecutiveRegsLast();
2043         }
2044 
2045         // Propagate extension type if any
2046         if (ExtendKind == ISD::SIGN_EXTEND)
2047           Flags.setSExt();
2048         else if (ExtendKind == ISD::ZERO_EXTEND)
2049           Flags.setZExt();
2050 
2051         for (unsigned i = 0; i < NumParts; ++i) {
2052           Outs.push_back(ISD::OutputArg(Flags,
2053                                         Parts[i].getValueType().getSimpleVT(),
2054                                         VT, /*isfixed=*/true, 0, 0));
2055           OutVals.push_back(Parts[i]);
2056         }
2057       }
2058     }
2059   }
2060 
2061   // Push in swifterror virtual register as the last element of Outs. This makes
2062   // sure swifterror virtual register will be returned in the swifterror
2063   // physical register.
2064   const Function *F = I.getParent()->getParent();
2065   if (TLI.supportSwiftError() &&
2066       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2067     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2068     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2069     Flags.setSwiftError();
2070     Outs.push_back(ISD::OutputArg(
2071         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2072         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2073     // Create SDNode for the swifterror virtual register.
2074     OutVals.push_back(
2075         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2076                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2077                         EVT(TLI.getPointerTy(DL))));
2078   }
2079 
2080   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2081   CallingConv::ID CallConv =
2082     DAG.getMachineFunction().getFunction().getCallingConv();
2083   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2084       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2085 
2086   // Verify that the target's LowerReturn behaved as expected.
2087   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2088          "LowerReturn didn't return a valid chain!");
2089 
2090   // Update the DAG with the new chain value resulting from return lowering.
2091   DAG.setRoot(Chain);
2092 }
2093 
2094 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2095 /// created for it, emit nodes to copy the value into the virtual
2096 /// registers.
2097 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2098   // Skip empty types
2099   if (V->getType()->isEmptyTy())
2100     return;
2101 
2102   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2103   if (VMI != FuncInfo.ValueMap.end()) {
2104     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2105     CopyValueToVirtualRegister(V, VMI->second);
2106   }
2107 }
2108 
2109 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2110 /// the current basic block, add it to ValueMap now so that we'll get a
2111 /// CopyTo/FromReg.
2112 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2113   // No need to export constants.
2114   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2115 
2116   // Already exported?
2117   if (FuncInfo.isExportedInst(V)) return;
2118 
2119   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2120   CopyValueToVirtualRegister(V, Reg);
2121 }
2122 
2123 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2124                                                      const BasicBlock *FromBB) {
2125   // The operands of the setcc have to be in this block.  We don't know
2126   // how to export them from some other block.
2127   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2128     // Can export from current BB.
2129     if (VI->getParent() == FromBB)
2130       return true;
2131 
2132     // Is already exported, noop.
2133     return FuncInfo.isExportedInst(V);
2134   }
2135 
2136   // If this is an argument, we can export it if the BB is the entry block or
2137   // if it is already exported.
2138   if (isa<Argument>(V)) {
2139     if (FromBB->isEntryBlock())
2140       return true;
2141 
2142     // Otherwise, can only export this if it is already exported.
2143     return FuncInfo.isExportedInst(V);
2144   }
2145 
2146   // Otherwise, constants can always be exported.
2147   return true;
2148 }
2149 
2150 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2151 BranchProbability
2152 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2153                                         const MachineBasicBlock *Dst) const {
2154   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2155   const BasicBlock *SrcBB = Src->getBasicBlock();
2156   const BasicBlock *DstBB = Dst->getBasicBlock();
2157   if (!BPI) {
2158     // If BPI is not available, set the default probability as 1 / N, where N is
2159     // the number of successors.
2160     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2161     return BranchProbability(1, SuccSize);
2162   }
2163   return BPI->getEdgeProbability(SrcBB, DstBB);
2164 }
2165 
2166 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2167                                                MachineBasicBlock *Dst,
2168                                                BranchProbability Prob) {
2169   if (!FuncInfo.BPI)
2170     Src->addSuccessorWithoutProb(Dst);
2171   else {
2172     if (Prob.isUnknown())
2173       Prob = getEdgeProbability(Src, Dst);
2174     Src->addSuccessor(Dst, Prob);
2175   }
2176 }
2177 
2178 static bool InBlock(const Value *V, const BasicBlock *BB) {
2179   if (const Instruction *I = dyn_cast<Instruction>(V))
2180     return I->getParent() == BB;
2181   return true;
2182 }
2183 
2184 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2185 /// This function emits a branch and is used at the leaves of an OR or an
2186 /// AND operator tree.
2187 void
2188 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2189                                                   MachineBasicBlock *TBB,
2190                                                   MachineBasicBlock *FBB,
2191                                                   MachineBasicBlock *CurBB,
2192                                                   MachineBasicBlock *SwitchBB,
2193                                                   BranchProbability TProb,
2194                                                   BranchProbability FProb,
2195                                                   bool InvertCond) {
2196   const BasicBlock *BB = CurBB->getBasicBlock();
2197 
2198   // If the leaf of the tree is a comparison, merge the condition into
2199   // the caseblock.
2200   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2201     // The operands of the cmp have to be in this block.  We don't know
2202     // how to export them from some other block.  If this is the first block
2203     // of the sequence, no exporting is needed.
2204     if (CurBB == SwitchBB ||
2205         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2206          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2207       ISD::CondCode Condition;
2208       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2209         ICmpInst::Predicate Pred =
2210             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2211         Condition = getICmpCondCode(Pred);
2212       } else {
2213         const FCmpInst *FC = cast<FCmpInst>(Cond);
2214         FCmpInst::Predicate Pred =
2215             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2216         Condition = getFCmpCondCode(Pred);
2217         if (TM.Options.NoNaNsFPMath)
2218           Condition = getFCmpCodeWithoutNaN(Condition);
2219       }
2220 
2221       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2222                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2223       SL->SwitchCases.push_back(CB);
2224       return;
2225     }
2226   }
2227 
2228   // Create a CaseBlock record representing this branch.
2229   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2230   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2231                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2232   SL->SwitchCases.push_back(CB);
2233 }
2234 
2235 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2236                                                MachineBasicBlock *TBB,
2237                                                MachineBasicBlock *FBB,
2238                                                MachineBasicBlock *CurBB,
2239                                                MachineBasicBlock *SwitchBB,
2240                                                Instruction::BinaryOps Opc,
2241                                                BranchProbability TProb,
2242                                                BranchProbability FProb,
2243                                                bool InvertCond) {
2244   // Skip over not part of the tree and remember to invert op and operands at
2245   // next level.
2246   Value *NotCond;
2247   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2248       InBlock(NotCond, CurBB->getBasicBlock())) {
2249     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2250                          !InvertCond);
2251     return;
2252   }
2253 
2254   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2255   const Value *BOpOp0, *BOpOp1;
2256   // Compute the effective opcode for Cond, taking into account whether it needs
2257   // to be inverted, e.g.
2258   //   and (not (or A, B)), C
2259   // gets lowered as
2260   //   and (and (not A, not B), C)
2261   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2262   if (BOp) {
2263     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2264                ? Instruction::And
2265                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2266                       ? Instruction::Or
2267                       : (Instruction::BinaryOps)0);
2268     if (InvertCond) {
2269       if (BOpc == Instruction::And)
2270         BOpc = Instruction::Or;
2271       else if (BOpc == Instruction::Or)
2272         BOpc = Instruction::And;
2273     }
2274   }
2275 
2276   // If this node is not part of the or/and tree, emit it as a branch.
2277   // Note that all nodes in the tree should have same opcode.
2278   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2279   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2280       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2281       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2282     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2283                                  TProb, FProb, InvertCond);
2284     return;
2285   }
2286 
2287   //  Create TmpBB after CurBB.
2288   MachineFunction::iterator BBI(CurBB);
2289   MachineFunction &MF = DAG.getMachineFunction();
2290   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2291   CurBB->getParent()->insert(++BBI, TmpBB);
2292 
2293   if (Opc == Instruction::Or) {
2294     // Codegen X | Y as:
2295     // BB1:
2296     //   jmp_if_X TBB
2297     //   jmp TmpBB
2298     // TmpBB:
2299     //   jmp_if_Y TBB
2300     //   jmp FBB
2301     //
2302 
2303     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2304     // The requirement is that
2305     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2306     //     = TrueProb for original BB.
2307     // Assuming the original probabilities are A and B, one choice is to set
2308     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2309     // A/(1+B) and 2B/(1+B). This choice assumes that
2310     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2311     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2312     // TmpBB, but the math is more complicated.
2313 
2314     auto NewTrueProb = TProb / 2;
2315     auto NewFalseProb = TProb / 2 + FProb;
2316     // Emit the LHS condition.
2317     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2318                          NewFalseProb, InvertCond);
2319 
2320     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2321     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2322     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2323     // Emit the RHS condition into TmpBB.
2324     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2325                          Probs[1], InvertCond);
2326   } else {
2327     assert(Opc == Instruction::And && "Unknown merge op!");
2328     // Codegen X & Y as:
2329     // BB1:
2330     //   jmp_if_X TmpBB
2331     //   jmp FBB
2332     // TmpBB:
2333     //   jmp_if_Y TBB
2334     //   jmp FBB
2335     //
2336     //  This requires creation of TmpBB after CurBB.
2337 
2338     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2339     // The requirement is that
2340     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2341     //     = FalseProb for original BB.
2342     // Assuming the original probabilities are A and B, one choice is to set
2343     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2344     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2345     // TrueProb for BB1 * FalseProb for TmpBB.
2346 
2347     auto NewTrueProb = TProb + FProb / 2;
2348     auto NewFalseProb = FProb / 2;
2349     // Emit the LHS condition.
2350     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2351                          NewFalseProb, InvertCond);
2352 
2353     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2354     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2355     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2356     // Emit the RHS condition into TmpBB.
2357     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2358                          Probs[1], InvertCond);
2359   }
2360 }
2361 
2362 /// If the set of cases should be emitted as a series of branches, return true.
2363 /// If we should emit this as a bunch of and/or'd together conditions, return
2364 /// false.
2365 bool
2366 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2367   if (Cases.size() != 2) return true;
2368 
2369   // If this is two comparisons of the same values or'd or and'd together, they
2370   // will get folded into a single comparison, so don't emit two blocks.
2371   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2372        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2373       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2374        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2375     return false;
2376   }
2377 
2378   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2379   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2380   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2381       Cases[0].CC == Cases[1].CC &&
2382       isa<Constant>(Cases[0].CmpRHS) &&
2383       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2384     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2385       return false;
2386     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2387       return false;
2388   }
2389 
2390   return true;
2391 }
2392 
2393 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2394   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2395 
2396   // Update machine-CFG edges.
2397   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2398 
2399   if (I.isUnconditional()) {
2400     // Update machine-CFG edges.
2401     BrMBB->addSuccessor(Succ0MBB);
2402 
2403     // If this is not a fall-through branch or optimizations are switched off,
2404     // emit the branch.
2405     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2406       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2407                               MVT::Other, getControlRoot(),
2408                               DAG.getBasicBlock(Succ0MBB)));
2409 
2410     return;
2411   }
2412 
2413   // If this condition is one of the special cases we handle, do special stuff
2414   // now.
2415   const Value *CondVal = I.getCondition();
2416   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2417 
2418   // If this is a series of conditions that are or'd or and'd together, emit
2419   // this as a sequence of branches instead of setcc's with and/or operations.
2420   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2421   // unpredictable branches, and vector extracts because those jumps are likely
2422   // expensive for any target), this should improve performance.
2423   // For example, instead of something like:
2424   //     cmp A, B
2425   //     C = seteq
2426   //     cmp D, E
2427   //     F = setle
2428   //     or C, F
2429   //     jnz foo
2430   // Emit:
2431   //     cmp A, B
2432   //     je foo
2433   //     cmp D, E
2434   //     jle foo
2435   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2436   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2437       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2438     Value *Vec;
2439     const Value *BOp0, *BOp1;
2440     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2441     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2442       Opcode = Instruction::And;
2443     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2444       Opcode = Instruction::Or;
2445 
2446     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2447                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2448       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2449                            getEdgeProbability(BrMBB, Succ0MBB),
2450                            getEdgeProbability(BrMBB, Succ1MBB),
2451                            /*InvertCond=*/false);
2452       // If the compares in later blocks need to use values not currently
2453       // exported from this block, export them now.  This block should always
2454       // be the first entry.
2455       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2456 
2457       // Allow some cases to be rejected.
2458       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2459         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2460           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2461           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2462         }
2463 
2464         // Emit the branch for this block.
2465         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2466         SL->SwitchCases.erase(SL->SwitchCases.begin());
2467         return;
2468       }
2469 
2470       // Okay, we decided not to do this, remove any inserted MBB's and clear
2471       // SwitchCases.
2472       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2473         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2474 
2475       SL->SwitchCases.clear();
2476     }
2477   }
2478 
2479   // Create a CaseBlock record representing this branch.
2480   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2481                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2482 
2483   // Use visitSwitchCase to actually insert the fast branch sequence for this
2484   // cond branch.
2485   visitSwitchCase(CB, BrMBB);
2486 }
2487 
2488 /// visitSwitchCase - Emits the necessary code to represent a single node in
2489 /// the binary search tree resulting from lowering a switch instruction.
2490 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2491                                           MachineBasicBlock *SwitchBB) {
2492   SDValue Cond;
2493   SDValue CondLHS = getValue(CB.CmpLHS);
2494   SDLoc dl = CB.DL;
2495 
2496   if (CB.CC == ISD::SETTRUE) {
2497     // Branch or fall through to TrueBB.
2498     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2499     SwitchBB->normalizeSuccProbs();
2500     if (CB.TrueBB != NextBlock(SwitchBB)) {
2501       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2502                               DAG.getBasicBlock(CB.TrueBB)));
2503     }
2504     return;
2505   }
2506 
2507   auto &TLI = DAG.getTargetLoweringInfo();
2508   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2509 
2510   // Build the setcc now.
2511   if (!CB.CmpMHS) {
2512     // Fold "(X == true)" to X and "(X == false)" to !X to
2513     // handle common cases produced by branch lowering.
2514     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2515         CB.CC == ISD::SETEQ)
2516       Cond = CondLHS;
2517     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2518              CB.CC == ISD::SETEQ) {
2519       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2520       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2521     } else {
2522       SDValue CondRHS = getValue(CB.CmpRHS);
2523 
2524       // If a pointer's DAG type is larger than its memory type then the DAG
2525       // values are zero-extended. This breaks signed comparisons so truncate
2526       // back to the underlying type before doing the compare.
2527       if (CondLHS.getValueType() != MemVT) {
2528         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2529         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2530       }
2531       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2532     }
2533   } else {
2534     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2535 
2536     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2537     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2538 
2539     SDValue CmpOp = getValue(CB.CmpMHS);
2540     EVT VT = CmpOp.getValueType();
2541 
2542     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2543       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2544                           ISD::SETLE);
2545     } else {
2546       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2547                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2548       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2549                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2550     }
2551   }
2552 
2553   // Update successor info
2554   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2555   // TrueBB and FalseBB are always different unless the incoming IR is
2556   // degenerate. This only happens when running llc on weird IR.
2557   if (CB.TrueBB != CB.FalseBB)
2558     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2559   SwitchBB->normalizeSuccProbs();
2560 
2561   // If the lhs block is the next block, invert the condition so that we can
2562   // fall through to the lhs instead of the rhs block.
2563   if (CB.TrueBB == NextBlock(SwitchBB)) {
2564     std::swap(CB.TrueBB, CB.FalseBB);
2565     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2566     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2567   }
2568 
2569   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2570                                MVT::Other, getControlRoot(), Cond,
2571                                DAG.getBasicBlock(CB.TrueBB));
2572 
2573   setValue(CurInst, BrCond);
2574 
2575   // Insert the false branch. Do this even if it's a fall through branch,
2576   // this makes it easier to do DAG optimizations which require inverting
2577   // the branch condition.
2578   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2579                        DAG.getBasicBlock(CB.FalseBB));
2580 
2581   DAG.setRoot(BrCond);
2582 }
2583 
2584 /// visitJumpTable - Emit JumpTable node in the current MBB
2585 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2586   // Emit the code for the jump table
2587   assert(JT.Reg != -1U && "Should lower JT Header first!");
2588   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2589   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2590                                      JT.Reg, PTy);
2591   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2592   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2593                                     MVT::Other, Index.getValue(1),
2594                                     Table, Index);
2595   DAG.setRoot(BrJumpTable);
2596 }
2597 
2598 /// visitJumpTableHeader - This function emits necessary code to produce index
2599 /// in the JumpTable from switch case.
2600 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2601                                                JumpTableHeader &JTH,
2602                                                MachineBasicBlock *SwitchBB) {
2603   SDLoc dl = getCurSDLoc();
2604 
2605   // Subtract the lowest switch case value from the value being switched on.
2606   SDValue SwitchOp = getValue(JTH.SValue);
2607   EVT VT = SwitchOp.getValueType();
2608   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2609                             DAG.getConstant(JTH.First, dl, VT));
2610 
2611   // The SDNode we just created, which holds the value being switched on minus
2612   // the smallest case value, needs to be copied to a virtual register so it
2613   // can be used as an index into the jump table in a subsequent basic block.
2614   // This value may be smaller or larger than the target's pointer type, and
2615   // therefore require extension or truncating.
2616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2617   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2618 
2619   unsigned JumpTableReg =
2620       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2621   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2622                                     JumpTableReg, SwitchOp);
2623   JT.Reg = JumpTableReg;
2624 
2625   if (!JTH.FallthroughUnreachable) {
2626     // Emit the range check for the jump table, and branch to the default block
2627     // for the switch statement if the value being switched on exceeds the
2628     // largest case in the switch.
2629     SDValue CMP = DAG.getSetCC(
2630         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2631                                    Sub.getValueType()),
2632         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2633 
2634     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2635                                  MVT::Other, CopyTo, CMP,
2636                                  DAG.getBasicBlock(JT.Default));
2637 
2638     // Avoid emitting unnecessary branches to the next block.
2639     if (JT.MBB != NextBlock(SwitchBB))
2640       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2641                            DAG.getBasicBlock(JT.MBB));
2642 
2643     DAG.setRoot(BrCond);
2644   } else {
2645     // Avoid emitting unnecessary branches to the next block.
2646     if (JT.MBB != NextBlock(SwitchBB))
2647       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2648                               DAG.getBasicBlock(JT.MBB)));
2649     else
2650       DAG.setRoot(CopyTo);
2651   }
2652 }
2653 
2654 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2655 /// variable if there exists one.
2656 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2657                                  SDValue &Chain) {
2658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2659   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2660   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2661   MachineFunction &MF = DAG.getMachineFunction();
2662   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2663   MachineSDNode *Node =
2664       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2665   if (Global) {
2666     MachinePointerInfo MPInfo(Global);
2667     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2668                  MachineMemOperand::MODereferenceable;
2669     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2670         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2671     DAG.setNodeMemRefs(Node, {MemRef});
2672   }
2673   if (PtrTy != PtrMemTy)
2674     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2675   return SDValue(Node, 0);
2676 }
2677 
2678 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2679 /// tail spliced into a stack protector check success bb.
2680 ///
2681 /// For a high level explanation of how this fits into the stack protector
2682 /// generation see the comment on the declaration of class
2683 /// StackProtectorDescriptor.
2684 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2685                                                   MachineBasicBlock *ParentBB) {
2686 
2687   // First create the loads to the guard/stack slot for the comparison.
2688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2689   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2690   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2691 
2692   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2693   int FI = MFI.getStackProtectorIndex();
2694 
2695   SDValue Guard;
2696   SDLoc dl = getCurSDLoc();
2697   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2698   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2699   Align Align =
2700       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2701 
2702   // Generate code to load the content of the guard slot.
2703   SDValue GuardVal = DAG.getLoad(
2704       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2705       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2706       MachineMemOperand::MOVolatile);
2707 
2708   if (TLI.useStackGuardXorFP())
2709     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2710 
2711   // Retrieve guard check function, nullptr if instrumentation is inlined.
2712   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2713     // The target provides a guard check function to validate the guard value.
2714     // Generate a call to that function with the content of the guard slot as
2715     // argument.
2716     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2717     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2718 
2719     TargetLowering::ArgListTy Args;
2720     TargetLowering::ArgListEntry Entry;
2721     Entry.Node = GuardVal;
2722     Entry.Ty = FnTy->getParamType(0);
2723     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2724       Entry.IsInReg = true;
2725     Args.push_back(Entry);
2726 
2727     TargetLowering::CallLoweringInfo CLI(DAG);
2728     CLI.setDebugLoc(getCurSDLoc())
2729         .setChain(DAG.getEntryNode())
2730         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2731                    getValue(GuardCheckFn), std::move(Args));
2732 
2733     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2734     DAG.setRoot(Result.second);
2735     return;
2736   }
2737 
2738   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2739   // Otherwise, emit a volatile load to retrieve the stack guard value.
2740   SDValue Chain = DAG.getEntryNode();
2741   if (TLI.useLoadStackGuardNode()) {
2742     Guard = getLoadStackGuard(DAG, dl, Chain);
2743   } else {
2744     const Value *IRGuard = TLI.getSDagStackGuard(M);
2745     SDValue GuardPtr = getValue(IRGuard);
2746 
2747     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2748                         MachinePointerInfo(IRGuard, 0), Align,
2749                         MachineMemOperand::MOVolatile);
2750   }
2751 
2752   // Perform the comparison via a getsetcc.
2753   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2754                                                         *DAG.getContext(),
2755                                                         Guard.getValueType()),
2756                              Guard, GuardVal, ISD::SETNE);
2757 
2758   // If the guard/stackslot do not equal, branch to failure MBB.
2759   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2760                                MVT::Other, GuardVal.getOperand(0),
2761                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2762   // Otherwise branch to success MBB.
2763   SDValue Br = DAG.getNode(ISD::BR, dl,
2764                            MVT::Other, BrCond,
2765                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2766 
2767   DAG.setRoot(Br);
2768 }
2769 
2770 /// Codegen the failure basic block for a stack protector check.
2771 ///
2772 /// A failure stack protector machine basic block consists simply of a call to
2773 /// __stack_chk_fail().
2774 ///
2775 /// For a high level explanation of how this fits into the stack protector
2776 /// generation see the comment on the declaration of class
2777 /// StackProtectorDescriptor.
2778 void
2779 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2781   TargetLowering::MakeLibCallOptions CallOptions;
2782   CallOptions.setDiscardResult(true);
2783   SDValue Chain =
2784       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2785                       None, CallOptions, getCurSDLoc()).second;
2786   // On PS4/PS5, the "return address" must still be within the calling
2787   // function, even if it's at the very end, so emit an explicit TRAP here.
2788   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2789   if (TM.getTargetTriple().isPS())
2790     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2791   // WebAssembly needs an unreachable instruction after a non-returning call,
2792   // because the function return type can be different from __stack_chk_fail's
2793   // return type (void).
2794   if (TM.getTargetTriple().isWasm())
2795     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2796 
2797   DAG.setRoot(Chain);
2798 }
2799 
2800 /// visitBitTestHeader - This function emits necessary code to produce value
2801 /// suitable for "bit tests"
2802 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2803                                              MachineBasicBlock *SwitchBB) {
2804   SDLoc dl = getCurSDLoc();
2805 
2806   // Subtract the minimum value.
2807   SDValue SwitchOp = getValue(B.SValue);
2808   EVT VT = SwitchOp.getValueType();
2809   SDValue RangeSub =
2810       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2811 
2812   // Determine the type of the test operands.
2813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2814   bool UsePtrType = false;
2815   if (!TLI.isTypeLegal(VT)) {
2816     UsePtrType = true;
2817   } else {
2818     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2819       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2820         // Switch table case range are encoded into series of masks.
2821         // Just use pointer type, it's guaranteed to fit.
2822         UsePtrType = true;
2823         break;
2824       }
2825   }
2826   SDValue Sub = RangeSub;
2827   if (UsePtrType) {
2828     VT = TLI.getPointerTy(DAG.getDataLayout());
2829     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2830   }
2831 
2832   B.RegVT = VT.getSimpleVT();
2833   B.Reg = FuncInfo.CreateReg(B.RegVT);
2834   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2835 
2836   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2837 
2838   if (!B.FallthroughUnreachable)
2839     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2840   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2841   SwitchBB->normalizeSuccProbs();
2842 
2843   SDValue Root = CopyTo;
2844   if (!B.FallthroughUnreachable) {
2845     // Conditional branch to the default block.
2846     SDValue RangeCmp = DAG.getSetCC(dl,
2847         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2848                                RangeSub.getValueType()),
2849         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2850         ISD::SETUGT);
2851 
2852     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2853                        DAG.getBasicBlock(B.Default));
2854   }
2855 
2856   // Avoid emitting unnecessary branches to the next block.
2857   if (MBB != NextBlock(SwitchBB))
2858     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2859 
2860   DAG.setRoot(Root);
2861 }
2862 
2863 /// visitBitTestCase - this function produces one "bit test"
2864 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2865                                            MachineBasicBlock* NextMBB,
2866                                            BranchProbability BranchProbToNext,
2867                                            unsigned Reg,
2868                                            BitTestCase &B,
2869                                            MachineBasicBlock *SwitchBB) {
2870   SDLoc dl = getCurSDLoc();
2871   MVT VT = BB.RegVT;
2872   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2873   SDValue Cmp;
2874   unsigned PopCount = countPopulation(B.Mask);
2875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2876   if (PopCount == 1) {
2877     // Testing for a single bit; just compare the shift count with what it
2878     // would need to be to shift a 1 bit in that position.
2879     Cmp = DAG.getSetCC(
2880         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2881         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2882         ISD::SETEQ);
2883   } else if (PopCount == BB.Range) {
2884     // There is only one zero bit in the range, test for it directly.
2885     Cmp = DAG.getSetCC(
2886         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2887         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2888         ISD::SETNE);
2889   } else {
2890     // Make desired shift
2891     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2892                                     DAG.getConstant(1, dl, VT), ShiftOp);
2893 
2894     // Emit bit tests and jumps
2895     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2896                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2897     Cmp = DAG.getSetCC(
2898         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2899         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2900   }
2901 
2902   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2903   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2904   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2905   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2906   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2907   // one as they are relative probabilities (and thus work more like weights),
2908   // and hence we need to normalize them to let the sum of them become one.
2909   SwitchBB->normalizeSuccProbs();
2910 
2911   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2912                               MVT::Other, getControlRoot(),
2913                               Cmp, DAG.getBasicBlock(B.TargetBB));
2914 
2915   // Avoid emitting unnecessary branches to the next block.
2916   if (NextMBB != NextBlock(SwitchBB))
2917     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2918                         DAG.getBasicBlock(NextMBB));
2919 
2920   DAG.setRoot(BrAnd);
2921 }
2922 
2923 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2924   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2925 
2926   // Retrieve successors. Look through artificial IR level blocks like
2927   // catchswitch for successors.
2928   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2929   const BasicBlock *EHPadBB = I.getSuccessor(1);
2930 
2931   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2932   // have to do anything here to lower funclet bundles.
2933   assert(!I.hasOperandBundlesOtherThan(
2934              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2935               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2936               LLVMContext::OB_cfguardtarget,
2937               LLVMContext::OB_clang_arc_attachedcall}) &&
2938          "Cannot lower invokes with arbitrary operand bundles yet!");
2939 
2940   const Value *Callee(I.getCalledOperand());
2941   const Function *Fn = dyn_cast<Function>(Callee);
2942   if (isa<InlineAsm>(Callee))
2943     visitInlineAsm(I, EHPadBB);
2944   else if (Fn && Fn->isIntrinsic()) {
2945     switch (Fn->getIntrinsicID()) {
2946     default:
2947       llvm_unreachable("Cannot invoke this intrinsic");
2948     case Intrinsic::donothing:
2949       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2950     case Intrinsic::seh_try_begin:
2951     case Intrinsic::seh_scope_begin:
2952     case Intrinsic::seh_try_end:
2953     case Intrinsic::seh_scope_end:
2954       break;
2955     case Intrinsic::experimental_patchpoint_void:
2956     case Intrinsic::experimental_patchpoint_i64:
2957       visitPatchpoint(I, EHPadBB);
2958       break;
2959     case Intrinsic::experimental_gc_statepoint:
2960       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2961       break;
2962     case Intrinsic::wasm_rethrow: {
2963       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2964       // special because it can be invoked, so we manually lower it to a DAG
2965       // node here.
2966       SmallVector<SDValue, 8> Ops;
2967       Ops.push_back(getRoot()); // inchain
2968       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2969       Ops.push_back(
2970           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2971                                 TLI.getPointerTy(DAG.getDataLayout())));
2972       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2973       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2974       break;
2975     }
2976     }
2977   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2978     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2979     // Eventually we will support lowering the @llvm.experimental.deoptimize
2980     // intrinsic, and right now there are no plans to support other intrinsics
2981     // with deopt state.
2982     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2983   } else {
2984     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2985   }
2986 
2987   // If the value of the invoke is used outside of its defining block, make it
2988   // available as a virtual register.
2989   // We already took care of the exported value for the statepoint instruction
2990   // during call to the LowerStatepoint.
2991   if (!isa<GCStatepointInst>(I)) {
2992     CopyToExportRegsIfNeeded(&I);
2993   }
2994 
2995   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2996   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2997   BranchProbability EHPadBBProb =
2998       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2999           : BranchProbability::getZero();
3000   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3001 
3002   // Update successor info.
3003   addSuccessorWithProb(InvokeMBB, Return);
3004   for (auto &UnwindDest : UnwindDests) {
3005     UnwindDest.first->setIsEHPad();
3006     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3007   }
3008   InvokeMBB->normalizeSuccProbs();
3009 
3010   // Drop into normal successor.
3011   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3012                           DAG.getBasicBlock(Return)));
3013 }
3014 
3015 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3016   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3017 
3018   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3019   // have to do anything here to lower funclet bundles.
3020   assert(!I.hasOperandBundlesOtherThan(
3021              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3022          "Cannot lower callbrs with arbitrary operand bundles yet!");
3023 
3024   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3025   visitInlineAsm(I);
3026   CopyToExportRegsIfNeeded(&I);
3027 
3028   // Retrieve successors.
3029   SmallPtrSet<BasicBlock *, 8> Dests;
3030   Dests.insert(I.getDefaultDest());
3031   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3032 
3033   // Update successor info.
3034   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3035   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3036     BasicBlock *Dest = I.getIndirectDest(i);
3037     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3038     Target->setIsInlineAsmBrIndirectTarget();
3039     Target->setMachineBlockAddressTaken();
3040     Target->setLabelMustBeEmitted();
3041     // Don't add duplicate machine successors.
3042     if (Dests.insert(Dest).second)
3043       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3044   }
3045   CallBrMBB->normalizeSuccProbs();
3046 
3047   // Drop into default successor.
3048   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3049                           MVT::Other, getControlRoot(),
3050                           DAG.getBasicBlock(Return)));
3051 }
3052 
3053 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3054   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3055 }
3056 
3057 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3058   assert(FuncInfo.MBB->isEHPad() &&
3059          "Call to landingpad not in landing pad!");
3060 
3061   // If there aren't registers to copy the values into (e.g., during SjLj
3062   // exceptions), then don't bother to create these DAG nodes.
3063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3064   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3065   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3066       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3067     return;
3068 
3069   // If landingpad's return type is token type, we don't create DAG nodes
3070   // for its exception pointer and selector value. The extraction of exception
3071   // pointer or selector value from token type landingpads is not currently
3072   // supported.
3073   if (LP.getType()->isTokenTy())
3074     return;
3075 
3076   SmallVector<EVT, 2> ValueVTs;
3077   SDLoc dl = getCurSDLoc();
3078   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3079   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3080 
3081   // Get the two live-in registers as SDValues. The physregs have already been
3082   // copied into virtual registers.
3083   SDValue Ops[2];
3084   if (FuncInfo.ExceptionPointerVirtReg) {
3085     Ops[0] = DAG.getZExtOrTrunc(
3086         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3087                            FuncInfo.ExceptionPointerVirtReg,
3088                            TLI.getPointerTy(DAG.getDataLayout())),
3089         dl, ValueVTs[0]);
3090   } else {
3091     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3092   }
3093   Ops[1] = DAG.getZExtOrTrunc(
3094       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3095                          FuncInfo.ExceptionSelectorVirtReg,
3096                          TLI.getPointerTy(DAG.getDataLayout())),
3097       dl, ValueVTs[1]);
3098 
3099   // Merge into one.
3100   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3101                             DAG.getVTList(ValueVTs), Ops);
3102   setValue(&LP, Res);
3103 }
3104 
3105 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3106                                            MachineBasicBlock *Last) {
3107   // Update JTCases.
3108   for (JumpTableBlock &JTB : SL->JTCases)
3109     if (JTB.first.HeaderBB == First)
3110       JTB.first.HeaderBB = Last;
3111 
3112   // Update BitTestCases.
3113   for (BitTestBlock &BTB : SL->BitTestCases)
3114     if (BTB.Parent == First)
3115       BTB.Parent = Last;
3116 }
3117 
3118 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3119   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3120 
3121   // Update machine-CFG edges with unique successors.
3122   SmallSet<BasicBlock*, 32> Done;
3123   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3124     BasicBlock *BB = I.getSuccessor(i);
3125     bool Inserted = Done.insert(BB).second;
3126     if (!Inserted)
3127         continue;
3128 
3129     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3130     addSuccessorWithProb(IndirectBrMBB, Succ);
3131   }
3132   IndirectBrMBB->normalizeSuccProbs();
3133 
3134   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3135                           MVT::Other, getControlRoot(),
3136                           getValue(I.getAddress())));
3137 }
3138 
3139 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3140   if (!DAG.getTarget().Options.TrapUnreachable)
3141     return;
3142 
3143   // We may be able to ignore unreachable behind a noreturn call.
3144   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3145     const BasicBlock &BB = *I.getParent();
3146     if (&I != &BB.front()) {
3147       BasicBlock::const_iterator PredI =
3148         std::prev(BasicBlock::const_iterator(&I));
3149       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3150         if (Call->doesNotReturn())
3151           return;
3152       }
3153     }
3154   }
3155 
3156   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3157 }
3158 
3159 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3160   SDNodeFlags Flags;
3161   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3162     Flags.copyFMF(*FPOp);
3163 
3164   SDValue Op = getValue(I.getOperand(0));
3165   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3166                                     Op, Flags);
3167   setValue(&I, UnNodeValue);
3168 }
3169 
3170 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3171   SDNodeFlags Flags;
3172   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3173     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3174     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3175   }
3176   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3177     Flags.setExact(ExactOp->isExact());
3178   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3179     Flags.copyFMF(*FPOp);
3180 
3181   SDValue Op1 = getValue(I.getOperand(0));
3182   SDValue Op2 = getValue(I.getOperand(1));
3183   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3184                                      Op1, Op2, Flags);
3185   setValue(&I, BinNodeValue);
3186 }
3187 
3188 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3189   SDValue Op1 = getValue(I.getOperand(0));
3190   SDValue Op2 = getValue(I.getOperand(1));
3191 
3192   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3193       Op1.getValueType(), DAG.getDataLayout());
3194 
3195   // Coerce the shift amount to the right type if we can. This exposes the
3196   // truncate or zext to optimization early.
3197   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3198     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3199            "Unexpected shift type");
3200     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3201   }
3202 
3203   bool nuw = false;
3204   bool nsw = false;
3205   bool exact = false;
3206 
3207   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3208 
3209     if (const OverflowingBinaryOperator *OFBinOp =
3210             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3211       nuw = OFBinOp->hasNoUnsignedWrap();
3212       nsw = OFBinOp->hasNoSignedWrap();
3213     }
3214     if (const PossiblyExactOperator *ExactOp =
3215             dyn_cast<const PossiblyExactOperator>(&I))
3216       exact = ExactOp->isExact();
3217   }
3218   SDNodeFlags Flags;
3219   Flags.setExact(exact);
3220   Flags.setNoSignedWrap(nsw);
3221   Flags.setNoUnsignedWrap(nuw);
3222   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3223                             Flags);
3224   setValue(&I, Res);
3225 }
3226 
3227 void SelectionDAGBuilder::visitSDiv(const User &I) {
3228   SDValue Op1 = getValue(I.getOperand(0));
3229   SDValue Op2 = getValue(I.getOperand(1));
3230 
3231   SDNodeFlags Flags;
3232   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3233                  cast<PossiblyExactOperator>(&I)->isExact());
3234   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3235                            Op2, Flags));
3236 }
3237 
3238 void SelectionDAGBuilder::visitICmp(const User &I) {
3239   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3240   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3241     predicate = IC->getPredicate();
3242   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3243     predicate = ICmpInst::Predicate(IC->getPredicate());
3244   SDValue Op1 = getValue(I.getOperand(0));
3245   SDValue Op2 = getValue(I.getOperand(1));
3246   ISD::CondCode Opcode = getICmpCondCode(predicate);
3247 
3248   auto &TLI = DAG.getTargetLoweringInfo();
3249   EVT MemVT =
3250       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3251 
3252   // If a pointer's DAG type is larger than its memory type then the DAG values
3253   // are zero-extended. This breaks signed comparisons so truncate back to the
3254   // underlying type before doing the compare.
3255   if (Op1.getValueType() != MemVT) {
3256     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3257     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3258   }
3259 
3260   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3261                                                         I.getType());
3262   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3263 }
3264 
3265 void SelectionDAGBuilder::visitFCmp(const User &I) {
3266   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3267   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3268     predicate = FC->getPredicate();
3269   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3270     predicate = FCmpInst::Predicate(FC->getPredicate());
3271   SDValue Op1 = getValue(I.getOperand(0));
3272   SDValue Op2 = getValue(I.getOperand(1));
3273 
3274   ISD::CondCode Condition = getFCmpCondCode(predicate);
3275   auto *FPMO = cast<FPMathOperator>(&I);
3276   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3277     Condition = getFCmpCodeWithoutNaN(Condition);
3278 
3279   SDNodeFlags Flags;
3280   Flags.copyFMF(*FPMO);
3281   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3282 
3283   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3284                                                         I.getType());
3285   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3286 }
3287 
3288 // Check if the condition of the select has one use or two users that are both
3289 // selects with the same condition.
3290 static bool hasOnlySelectUsers(const Value *Cond) {
3291   return llvm::all_of(Cond->users(), [](const Value *V) {
3292     return isa<SelectInst>(V);
3293   });
3294 }
3295 
3296 void SelectionDAGBuilder::visitSelect(const User &I) {
3297   SmallVector<EVT, 4> ValueVTs;
3298   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3299                   ValueVTs);
3300   unsigned NumValues = ValueVTs.size();
3301   if (NumValues == 0) return;
3302 
3303   SmallVector<SDValue, 4> Values(NumValues);
3304   SDValue Cond     = getValue(I.getOperand(0));
3305   SDValue LHSVal   = getValue(I.getOperand(1));
3306   SDValue RHSVal   = getValue(I.getOperand(2));
3307   SmallVector<SDValue, 1> BaseOps(1, Cond);
3308   ISD::NodeType OpCode =
3309       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3310 
3311   bool IsUnaryAbs = false;
3312   bool Negate = false;
3313 
3314   SDNodeFlags Flags;
3315   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3316     Flags.copyFMF(*FPOp);
3317 
3318   // Min/max matching is only viable if all output VTs are the same.
3319   if (all_equal(ValueVTs)) {
3320     EVT VT = ValueVTs[0];
3321     LLVMContext &Ctx = *DAG.getContext();
3322     auto &TLI = DAG.getTargetLoweringInfo();
3323 
3324     // We care about the legality of the operation after it has been type
3325     // legalized.
3326     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3327       VT = TLI.getTypeToTransformTo(Ctx, VT);
3328 
3329     // If the vselect is legal, assume we want to leave this as a vector setcc +
3330     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3331     // min/max is legal on the scalar type.
3332     bool UseScalarMinMax = VT.isVector() &&
3333       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3334 
3335     Value *LHS, *RHS;
3336     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3337     ISD::NodeType Opc = ISD::DELETED_NODE;
3338     switch (SPR.Flavor) {
3339     case SPF_UMAX:    Opc = ISD::UMAX; break;
3340     case SPF_UMIN:    Opc = ISD::UMIN; break;
3341     case SPF_SMAX:    Opc = ISD::SMAX; break;
3342     case SPF_SMIN:    Opc = ISD::SMIN; break;
3343     case SPF_FMINNUM:
3344       switch (SPR.NaNBehavior) {
3345       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3346       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3347       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3348       case SPNB_RETURNS_ANY: {
3349         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3350           Opc = ISD::FMINNUM;
3351         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3352           Opc = ISD::FMINIMUM;
3353         else if (UseScalarMinMax)
3354           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3355             ISD::FMINNUM : ISD::FMINIMUM;
3356         break;
3357       }
3358       }
3359       break;
3360     case SPF_FMAXNUM:
3361       switch (SPR.NaNBehavior) {
3362       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3363       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3364       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3365       case SPNB_RETURNS_ANY:
3366 
3367         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3368           Opc = ISD::FMAXNUM;
3369         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3370           Opc = ISD::FMAXIMUM;
3371         else if (UseScalarMinMax)
3372           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3373             ISD::FMAXNUM : ISD::FMAXIMUM;
3374         break;
3375       }
3376       break;
3377     case SPF_NABS:
3378       Negate = true;
3379       [[fallthrough]];
3380     case SPF_ABS:
3381       IsUnaryAbs = true;
3382       Opc = ISD::ABS;
3383       break;
3384     default: break;
3385     }
3386 
3387     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3388         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3389          (UseScalarMinMax &&
3390           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3391         // If the underlying comparison instruction is used by any other
3392         // instruction, the consumed instructions won't be destroyed, so it is
3393         // not profitable to convert to a min/max.
3394         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3395       OpCode = Opc;
3396       LHSVal = getValue(LHS);
3397       RHSVal = getValue(RHS);
3398       BaseOps.clear();
3399     }
3400 
3401     if (IsUnaryAbs) {
3402       OpCode = Opc;
3403       LHSVal = getValue(LHS);
3404       BaseOps.clear();
3405     }
3406   }
3407 
3408   if (IsUnaryAbs) {
3409     for (unsigned i = 0; i != NumValues; ++i) {
3410       SDLoc dl = getCurSDLoc();
3411       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3412       Values[i] =
3413           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3414       if (Negate)
3415         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3416                                 Values[i]);
3417     }
3418   } else {
3419     for (unsigned i = 0; i != NumValues; ++i) {
3420       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3421       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3422       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3423       Values[i] = DAG.getNode(
3424           OpCode, getCurSDLoc(),
3425           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3426     }
3427   }
3428 
3429   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3430                            DAG.getVTList(ValueVTs), Values));
3431 }
3432 
3433 void SelectionDAGBuilder::visitTrunc(const User &I) {
3434   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3435   SDValue N = getValue(I.getOperand(0));
3436   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3437                                                         I.getType());
3438   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3439 }
3440 
3441 void SelectionDAGBuilder::visitZExt(const User &I) {
3442   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3443   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitSExt(const User &I) {
3451   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3452   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3460   // FPTrunc is never a no-op cast, no need to check
3461   SDValue N = getValue(I.getOperand(0));
3462   SDLoc dl = getCurSDLoc();
3463   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3464   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3465   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3466                            DAG.getTargetConstant(
3467                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3468 }
3469 
3470 void SelectionDAGBuilder::visitFPExt(const User &I) {
3471   // FPExt is never a no-op cast, no need to check
3472   SDValue N = getValue(I.getOperand(0));
3473   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3474                                                         I.getType());
3475   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3476 }
3477 
3478 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3479   // FPToUI is never a no-op cast, no need to check
3480   SDValue N = getValue(I.getOperand(0));
3481   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3482                                                         I.getType());
3483   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3484 }
3485 
3486 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3487   // FPToSI is never a no-op cast, no need to check
3488   SDValue N = getValue(I.getOperand(0));
3489   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3490                                                         I.getType());
3491   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3492 }
3493 
3494 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3495   // UIToFP is never a no-op cast, no need to check
3496   SDValue N = getValue(I.getOperand(0));
3497   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3498                                                         I.getType());
3499   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3500 }
3501 
3502 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3503   // SIToFP is never a no-op cast, no need to check
3504   SDValue N = getValue(I.getOperand(0));
3505   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3506                                                         I.getType());
3507   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3508 }
3509 
3510 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3511   // What to do depends on the size of the integer and the size of the pointer.
3512   // We can either truncate, zero extend, or no-op, accordingly.
3513   SDValue N = getValue(I.getOperand(0));
3514   auto &TLI = DAG.getTargetLoweringInfo();
3515   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3516                                                         I.getType());
3517   EVT PtrMemVT =
3518       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3519   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3520   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3521   setValue(&I, N);
3522 }
3523 
3524 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3525   // What to do depends on the size of the integer and the size of the pointer.
3526   // We can either truncate, zero extend, or no-op, accordingly.
3527   SDValue N = getValue(I.getOperand(0));
3528   auto &TLI = DAG.getTargetLoweringInfo();
3529   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3530   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3531   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3532   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3533   setValue(&I, N);
3534 }
3535 
3536 void SelectionDAGBuilder::visitBitCast(const User &I) {
3537   SDValue N = getValue(I.getOperand(0));
3538   SDLoc dl = getCurSDLoc();
3539   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3540                                                         I.getType());
3541 
3542   // BitCast assures us that source and destination are the same size so this is
3543   // either a BITCAST or a no-op.
3544   if (DestVT != N.getValueType())
3545     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3546                              DestVT, N)); // convert types.
3547   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3548   // might fold any kind of constant expression to an integer constant and that
3549   // is not what we are looking for. Only recognize a bitcast of a genuine
3550   // constant integer as an opaque constant.
3551   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3552     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3553                                  /*isOpaque*/true));
3554   else
3555     setValue(&I, N);            // noop cast.
3556 }
3557 
3558 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3560   const Value *SV = I.getOperand(0);
3561   SDValue N = getValue(SV);
3562   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3563 
3564   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3565   unsigned DestAS = I.getType()->getPointerAddressSpace();
3566 
3567   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3568     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3569 
3570   setValue(&I, N);
3571 }
3572 
3573 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3575   SDValue InVec = getValue(I.getOperand(0));
3576   SDValue InVal = getValue(I.getOperand(1));
3577   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3578                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3579   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3580                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3581                            InVec, InVal, InIdx));
3582 }
3583 
3584 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586   SDValue InVec = getValue(I.getOperand(0));
3587   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3588                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3589   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3590                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3591                            InVec, InIdx));
3592 }
3593 
3594 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3595   SDValue Src1 = getValue(I.getOperand(0));
3596   SDValue Src2 = getValue(I.getOperand(1));
3597   ArrayRef<int> Mask;
3598   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3599     Mask = SVI->getShuffleMask();
3600   else
3601     Mask = cast<ConstantExpr>(I).getShuffleMask();
3602   SDLoc DL = getCurSDLoc();
3603   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3604   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3605   EVT SrcVT = Src1.getValueType();
3606 
3607   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3608       VT.isScalableVector()) {
3609     // Canonical splat form of first element of first input vector.
3610     SDValue FirstElt =
3611         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3612                     DAG.getVectorIdxConstant(0, DL));
3613     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3614     return;
3615   }
3616 
3617   // For now, we only handle splats for scalable vectors.
3618   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3619   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3620   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3621 
3622   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3623   unsigned MaskNumElts = Mask.size();
3624 
3625   if (SrcNumElts == MaskNumElts) {
3626     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3627     return;
3628   }
3629 
3630   // Normalize the shuffle vector since mask and vector length don't match.
3631   if (SrcNumElts < MaskNumElts) {
3632     // Mask is longer than the source vectors. We can use concatenate vector to
3633     // make the mask and vectors lengths match.
3634 
3635     if (MaskNumElts % SrcNumElts == 0) {
3636       // Mask length is a multiple of the source vector length.
3637       // Check if the shuffle is some kind of concatenation of the input
3638       // vectors.
3639       unsigned NumConcat = MaskNumElts / SrcNumElts;
3640       bool IsConcat = true;
3641       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3642       for (unsigned i = 0; i != MaskNumElts; ++i) {
3643         int Idx = Mask[i];
3644         if (Idx < 0)
3645           continue;
3646         // Ensure the indices in each SrcVT sized piece are sequential and that
3647         // the same source is used for the whole piece.
3648         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3649             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3650              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3651           IsConcat = false;
3652           break;
3653         }
3654         // Remember which source this index came from.
3655         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3656       }
3657 
3658       // The shuffle is concatenating multiple vectors together. Just emit
3659       // a CONCAT_VECTORS operation.
3660       if (IsConcat) {
3661         SmallVector<SDValue, 8> ConcatOps;
3662         for (auto Src : ConcatSrcs) {
3663           if (Src < 0)
3664             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3665           else if (Src == 0)
3666             ConcatOps.push_back(Src1);
3667           else
3668             ConcatOps.push_back(Src2);
3669         }
3670         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3671         return;
3672       }
3673     }
3674 
3675     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3676     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3677     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3678                                     PaddedMaskNumElts);
3679 
3680     // Pad both vectors with undefs to make them the same length as the mask.
3681     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3682 
3683     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3684     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3685     MOps1[0] = Src1;
3686     MOps2[0] = Src2;
3687 
3688     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3689     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3690 
3691     // Readjust mask for new input vector length.
3692     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3693     for (unsigned i = 0; i != MaskNumElts; ++i) {
3694       int Idx = Mask[i];
3695       if (Idx >= (int)SrcNumElts)
3696         Idx -= SrcNumElts - PaddedMaskNumElts;
3697       MappedOps[i] = Idx;
3698     }
3699 
3700     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3701 
3702     // If the concatenated vector was padded, extract a subvector with the
3703     // correct number of elements.
3704     if (MaskNumElts != PaddedMaskNumElts)
3705       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3706                            DAG.getVectorIdxConstant(0, DL));
3707 
3708     setValue(&I, Result);
3709     return;
3710   }
3711 
3712   if (SrcNumElts > MaskNumElts) {
3713     // Analyze the access pattern of the vector to see if we can extract
3714     // two subvectors and do the shuffle.
3715     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3716     bool CanExtract = true;
3717     for (int Idx : Mask) {
3718       unsigned Input = 0;
3719       if (Idx < 0)
3720         continue;
3721 
3722       if (Idx >= (int)SrcNumElts) {
3723         Input = 1;
3724         Idx -= SrcNumElts;
3725       }
3726 
3727       // If all the indices come from the same MaskNumElts sized portion of
3728       // the sources we can use extract. Also make sure the extract wouldn't
3729       // extract past the end of the source.
3730       int NewStartIdx = alignDown(Idx, MaskNumElts);
3731       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3732           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3733         CanExtract = false;
3734       // Make sure we always update StartIdx as we use it to track if all
3735       // elements are undef.
3736       StartIdx[Input] = NewStartIdx;
3737     }
3738 
3739     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3740       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3741       return;
3742     }
3743     if (CanExtract) {
3744       // Extract appropriate subvector and generate a vector shuffle
3745       for (unsigned Input = 0; Input < 2; ++Input) {
3746         SDValue &Src = Input == 0 ? Src1 : Src2;
3747         if (StartIdx[Input] < 0)
3748           Src = DAG.getUNDEF(VT);
3749         else {
3750           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3751                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3752         }
3753       }
3754 
3755       // Calculate new mask.
3756       SmallVector<int, 8> MappedOps(Mask);
3757       for (int &Idx : MappedOps) {
3758         if (Idx >= (int)SrcNumElts)
3759           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3760         else if (Idx >= 0)
3761           Idx -= StartIdx[0];
3762       }
3763 
3764       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3765       return;
3766     }
3767   }
3768 
3769   // We can't use either concat vectors or extract subvectors so fall back to
3770   // replacing the shuffle with extract and build vector.
3771   // to insert and build vector.
3772   EVT EltVT = VT.getVectorElementType();
3773   SmallVector<SDValue,8> Ops;
3774   for (int Idx : Mask) {
3775     SDValue Res;
3776 
3777     if (Idx < 0) {
3778       Res = DAG.getUNDEF(EltVT);
3779     } else {
3780       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3781       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3782 
3783       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3784                         DAG.getVectorIdxConstant(Idx, DL));
3785     }
3786 
3787     Ops.push_back(Res);
3788   }
3789 
3790   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3791 }
3792 
3793 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3794   ArrayRef<unsigned> Indices = I.getIndices();
3795   const Value *Op0 = I.getOperand(0);
3796   const Value *Op1 = I.getOperand(1);
3797   Type *AggTy = I.getType();
3798   Type *ValTy = Op1->getType();
3799   bool IntoUndef = isa<UndefValue>(Op0);
3800   bool FromUndef = isa<UndefValue>(Op1);
3801 
3802   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3803 
3804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3805   SmallVector<EVT, 4> AggValueVTs;
3806   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3807   SmallVector<EVT, 4> ValValueVTs;
3808   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3809 
3810   unsigned NumAggValues = AggValueVTs.size();
3811   unsigned NumValValues = ValValueVTs.size();
3812   SmallVector<SDValue, 4> Values(NumAggValues);
3813 
3814   // Ignore an insertvalue that produces an empty object
3815   if (!NumAggValues) {
3816     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3817     return;
3818   }
3819 
3820   SDValue Agg = getValue(Op0);
3821   unsigned i = 0;
3822   // Copy the beginning value(s) from the original aggregate.
3823   for (; i != LinearIndex; ++i)
3824     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3825                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3826   // Copy values from the inserted value(s).
3827   if (NumValValues) {
3828     SDValue Val = getValue(Op1);
3829     for (; i != LinearIndex + NumValValues; ++i)
3830       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3831                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3832   }
3833   // Copy remaining value(s) from the original aggregate.
3834   for (; i != NumAggValues; ++i)
3835     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3836                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3837 
3838   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3839                            DAG.getVTList(AggValueVTs), Values));
3840 }
3841 
3842 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3843   ArrayRef<unsigned> Indices = I.getIndices();
3844   const Value *Op0 = I.getOperand(0);
3845   Type *AggTy = Op0->getType();
3846   Type *ValTy = I.getType();
3847   bool OutOfUndef = isa<UndefValue>(Op0);
3848 
3849   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3850 
3851   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3852   SmallVector<EVT, 4> ValValueVTs;
3853   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3854 
3855   unsigned NumValValues = ValValueVTs.size();
3856 
3857   // Ignore a extractvalue that produces an empty object
3858   if (!NumValValues) {
3859     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3860     return;
3861   }
3862 
3863   SmallVector<SDValue, 4> Values(NumValValues);
3864 
3865   SDValue Agg = getValue(Op0);
3866   // Copy out the selected value(s).
3867   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3868     Values[i - LinearIndex] =
3869       OutOfUndef ?
3870         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3871         SDValue(Agg.getNode(), Agg.getResNo() + i);
3872 
3873   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3874                            DAG.getVTList(ValValueVTs), Values));
3875 }
3876 
3877 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3878   Value *Op0 = I.getOperand(0);
3879   // Note that the pointer operand may be a vector of pointers. Take the scalar
3880   // element which holds a pointer.
3881   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3882   SDValue N = getValue(Op0);
3883   SDLoc dl = getCurSDLoc();
3884   auto &TLI = DAG.getTargetLoweringInfo();
3885 
3886   // Normalize Vector GEP - all scalar operands should be converted to the
3887   // splat vector.
3888   bool IsVectorGEP = I.getType()->isVectorTy();
3889   ElementCount VectorElementCount =
3890       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3891                   : ElementCount::getFixed(0);
3892 
3893   if (IsVectorGEP && !N.getValueType().isVector()) {
3894     LLVMContext &Context = *DAG.getContext();
3895     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3896     if (VectorElementCount.isScalable())
3897       N = DAG.getSplatVector(VT, dl, N);
3898     else
3899       N = DAG.getSplatBuildVector(VT, dl, N);
3900   }
3901 
3902   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3903        GTI != E; ++GTI) {
3904     const Value *Idx = GTI.getOperand();
3905     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3906       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3907       if (Field) {
3908         // N = N + Offset
3909         uint64_t Offset =
3910             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3911 
3912         // In an inbounds GEP with an offset that is nonnegative even when
3913         // interpreted as signed, assume there is no unsigned overflow.
3914         SDNodeFlags Flags;
3915         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3916           Flags.setNoUnsignedWrap(true);
3917 
3918         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3919                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3920       }
3921     } else {
3922       // IdxSize is the width of the arithmetic according to IR semantics.
3923       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3924       // (and fix up the result later).
3925       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3926       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3927       TypeSize ElementSize =
3928           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3929       // We intentionally mask away the high bits here; ElementSize may not
3930       // fit in IdxTy.
3931       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3932       bool ElementScalable = ElementSize.isScalable();
3933 
3934       // If this is a scalar constant or a splat vector of constants,
3935       // handle it quickly.
3936       const auto *C = dyn_cast<Constant>(Idx);
3937       if (C && isa<VectorType>(C->getType()))
3938         C = C->getSplatValue();
3939 
3940       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3941       if (CI && CI->isZero())
3942         continue;
3943       if (CI && !ElementScalable) {
3944         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3945         LLVMContext &Context = *DAG.getContext();
3946         SDValue OffsVal;
3947         if (IsVectorGEP)
3948           OffsVal = DAG.getConstant(
3949               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3950         else
3951           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3952 
3953         // In an inbounds GEP with an offset that is nonnegative even when
3954         // interpreted as signed, assume there is no unsigned overflow.
3955         SDNodeFlags Flags;
3956         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3957           Flags.setNoUnsignedWrap(true);
3958 
3959         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3960 
3961         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3962         continue;
3963       }
3964 
3965       // N = N + Idx * ElementMul;
3966       SDValue IdxN = getValue(Idx);
3967 
3968       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3969         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3970                                   VectorElementCount);
3971         if (VectorElementCount.isScalable())
3972           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3973         else
3974           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3975       }
3976 
3977       // If the index is smaller or larger than intptr_t, truncate or extend
3978       // it.
3979       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3980 
3981       if (ElementScalable) {
3982         EVT VScaleTy = N.getValueType().getScalarType();
3983         SDValue VScale = DAG.getNode(
3984             ISD::VSCALE, dl, VScaleTy,
3985             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3986         if (IsVectorGEP)
3987           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3988         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3989       } else {
3990         // If this is a multiply by a power of two, turn it into a shl
3991         // immediately.  This is a very common case.
3992         if (ElementMul != 1) {
3993           if (ElementMul.isPowerOf2()) {
3994             unsigned Amt = ElementMul.logBase2();
3995             IdxN = DAG.getNode(ISD::SHL, dl,
3996                                N.getValueType(), IdxN,
3997                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3998           } else {
3999             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4000                                             IdxN.getValueType());
4001             IdxN = DAG.getNode(ISD::MUL, dl,
4002                                N.getValueType(), IdxN, Scale);
4003           }
4004         }
4005       }
4006 
4007       N = DAG.getNode(ISD::ADD, dl,
4008                       N.getValueType(), N, IdxN);
4009     }
4010   }
4011 
4012   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4013   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4014   if (IsVectorGEP) {
4015     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4016     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4017   }
4018 
4019   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4020     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4021 
4022   setValue(&I, N);
4023 }
4024 
4025 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4026   // If this is a fixed sized alloca in the entry block of the function,
4027   // allocate it statically on the stack.
4028   if (FuncInfo.StaticAllocaMap.count(&I))
4029     return;   // getValue will auto-populate this.
4030 
4031   SDLoc dl = getCurSDLoc();
4032   Type *Ty = I.getAllocatedType();
4033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4034   auto &DL = DAG.getDataLayout();
4035   TypeSize TySize = DL.getTypeAllocSize(Ty);
4036   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4037 
4038   SDValue AllocSize = getValue(I.getArraySize());
4039 
4040   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4041   if (AllocSize.getValueType() != IntPtr)
4042     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4043 
4044   if (TySize.isScalable())
4045     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4046                             DAG.getVScale(dl, IntPtr,
4047                                           APInt(IntPtr.getScalarSizeInBits(),
4048                                                 TySize.getKnownMinValue())));
4049   else
4050     AllocSize =
4051         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4052                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4053 
4054   // Handle alignment.  If the requested alignment is less than or equal to
4055   // the stack alignment, ignore it.  If the size is greater than or equal to
4056   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4057   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4058   if (*Alignment <= StackAlign)
4059     Alignment = None;
4060 
4061   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4062   // Round the size of the allocation up to the stack alignment size
4063   // by add SA-1 to the size. This doesn't overflow because we're computing
4064   // an address inside an alloca.
4065   SDNodeFlags Flags;
4066   Flags.setNoUnsignedWrap(true);
4067   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4068                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4069 
4070   // Mask out the low bits for alignment purposes.
4071   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4072                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4073 
4074   SDValue Ops[] = {
4075       getRoot(), AllocSize,
4076       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4077   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4078   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4079   setValue(&I, DSA);
4080   DAG.setRoot(DSA.getValue(1));
4081 
4082   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4083 }
4084 
4085 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4086   if (I.isAtomic())
4087     return visitAtomicLoad(I);
4088 
4089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4090   const Value *SV = I.getOperand(0);
4091   if (TLI.supportSwiftError()) {
4092     // Swifterror values can come from either a function parameter with
4093     // swifterror attribute or an alloca with swifterror attribute.
4094     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4095       if (Arg->hasSwiftErrorAttr())
4096         return visitLoadFromSwiftError(I);
4097     }
4098 
4099     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4100       if (Alloca->isSwiftError())
4101         return visitLoadFromSwiftError(I);
4102     }
4103   }
4104 
4105   SDValue Ptr = getValue(SV);
4106 
4107   Type *Ty = I.getType();
4108   SmallVector<EVT, 4> ValueVTs, MemVTs;
4109   SmallVector<uint64_t, 4> Offsets;
4110   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4111   unsigned NumValues = ValueVTs.size();
4112   if (NumValues == 0)
4113     return;
4114 
4115   Align Alignment = I.getAlign();
4116   AAMDNodes AAInfo = I.getAAMetadata();
4117   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4118   bool isVolatile = I.isVolatile();
4119   MachineMemOperand::Flags MMOFlags =
4120       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4121 
4122   SDValue Root;
4123   bool ConstantMemory = false;
4124   if (isVolatile)
4125     // Serialize volatile loads with other side effects.
4126     Root = getRoot();
4127   else if (NumValues > MaxParallelChains)
4128     Root = getMemoryRoot();
4129   else if (AA &&
4130            AA->pointsToConstantMemory(MemoryLocation(
4131                SV,
4132                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4133                AAInfo))) {
4134     // Do not serialize (non-volatile) loads of constant memory with anything.
4135     Root = DAG.getEntryNode();
4136     ConstantMemory = true;
4137     MMOFlags |= MachineMemOperand::MOInvariant;
4138   } else {
4139     // Do not serialize non-volatile loads against each other.
4140     Root = DAG.getRoot();
4141   }
4142 
4143   if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(),
4144                                          &I, AC, nullptr, LibInfo))
4145     MMOFlags |= MachineMemOperand::MODereferenceable;
4146 
4147   SDLoc dl = getCurSDLoc();
4148 
4149   if (isVolatile)
4150     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4151 
4152   // An aggregate load cannot wrap around the address space, so offsets to its
4153   // parts don't wrap either.
4154   SDNodeFlags Flags;
4155   Flags.setNoUnsignedWrap(true);
4156 
4157   SmallVector<SDValue, 4> Values(NumValues);
4158   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4159   EVT PtrVT = Ptr.getValueType();
4160 
4161   unsigned ChainI = 0;
4162   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4163     // Serializing loads here may result in excessive register pressure, and
4164     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4165     // could recover a bit by hoisting nodes upward in the chain by recognizing
4166     // they are side-effect free or do not alias. The optimizer should really
4167     // avoid this case by converting large object/array copies to llvm.memcpy
4168     // (MaxParallelChains should always remain as failsafe).
4169     if (ChainI == MaxParallelChains) {
4170       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4171       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4172                                   makeArrayRef(Chains.data(), ChainI));
4173       Root = Chain;
4174       ChainI = 0;
4175     }
4176     SDValue A = DAG.getNode(ISD::ADD, dl,
4177                             PtrVT, Ptr,
4178                             DAG.getConstant(Offsets[i], dl, PtrVT),
4179                             Flags);
4180 
4181     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4182                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4183                             MMOFlags, AAInfo, Ranges);
4184     Chains[ChainI] = L.getValue(1);
4185 
4186     if (MemVTs[i] != ValueVTs[i])
4187       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4188 
4189     Values[i] = L;
4190   }
4191 
4192   if (!ConstantMemory) {
4193     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4194                                 makeArrayRef(Chains.data(), ChainI));
4195     if (isVolatile)
4196       DAG.setRoot(Chain);
4197     else
4198       PendingLoads.push_back(Chain);
4199   }
4200 
4201   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4202                            DAG.getVTList(ValueVTs), Values));
4203 }
4204 
4205 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4206   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4207          "call visitStoreToSwiftError when backend supports swifterror");
4208 
4209   SmallVector<EVT, 4> ValueVTs;
4210   SmallVector<uint64_t, 4> Offsets;
4211   const Value *SrcV = I.getOperand(0);
4212   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4213                   SrcV->getType(), ValueVTs, &Offsets);
4214   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4215          "expect a single EVT for swifterror");
4216 
4217   SDValue Src = getValue(SrcV);
4218   // Create a virtual register, then update the virtual register.
4219   Register VReg =
4220       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4221   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4222   // Chain can be getRoot or getControlRoot.
4223   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4224                                       SDValue(Src.getNode(), Src.getResNo()));
4225   DAG.setRoot(CopyNode);
4226 }
4227 
4228 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4229   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4230          "call visitLoadFromSwiftError when backend supports swifterror");
4231 
4232   assert(!I.isVolatile() &&
4233          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4234          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4235          "Support volatile, non temporal, invariant for load_from_swift_error");
4236 
4237   const Value *SV = I.getOperand(0);
4238   Type *Ty = I.getType();
4239   assert(
4240       (!AA ||
4241        !AA->pointsToConstantMemory(MemoryLocation(
4242            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4243            I.getAAMetadata()))) &&
4244       "load_from_swift_error should not be constant memory");
4245 
4246   SmallVector<EVT, 4> ValueVTs;
4247   SmallVector<uint64_t, 4> Offsets;
4248   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4249                   ValueVTs, &Offsets);
4250   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4251          "expect a single EVT for swifterror");
4252 
4253   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4254   SDValue L = DAG.getCopyFromReg(
4255       getRoot(), getCurSDLoc(),
4256       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4257 
4258   setValue(&I, L);
4259 }
4260 
4261 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4262   if (I.isAtomic())
4263     return visitAtomicStore(I);
4264 
4265   const Value *SrcV = I.getOperand(0);
4266   const Value *PtrV = I.getOperand(1);
4267 
4268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4269   if (TLI.supportSwiftError()) {
4270     // Swifterror values can come from either a function parameter with
4271     // swifterror attribute or an alloca with swifterror attribute.
4272     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4273       if (Arg->hasSwiftErrorAttr())
4274         return visitStoreToSwiftError(I);
4275     }
4276 
4277     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4278       if (Alloca->isSwiftError())
4279         return visitStoreToSwiftError(I);
4280     }
4281   }
4282 
4283   SmallVector<EVT, 4> ValueVTs, MemVTs;
4284   SmallVector<uint64_t, 4> Offsets;
4285   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4286                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4287   unsigned NumValues = ValueVTs.size();
4288   if (NumValues == 0)
4289     return;
4290 
4291   // Get the lowered operands. Note that we do this after
4292   // checking if NumResults is zero, because with zero results
4293   // the operands won't have values in the map.
4294   SDValue Src = getValue(SrcV);
4295   SDValue Ptr = getValue(PtrV);
4296 
4297   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4298   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4299   SDLoc dl = getCurSDLoc();
4300   Align Alignment = I.getAlign();
4301   AAMDNodes AAInfo = I.getAAMetadata();
4302 
4303   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4304 
4305   // An aggregate load cannot wrap around the address space, so offsets to its
4306   // parts don't wrap either.
4307   SDNodeFlags Flags;
4308   Flags.setNoUnsignedWrap(true);
4309 
4310   unsigned ChainI = 0;
4311   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4312     // See visitLoad comments.
4313     if (ChainI == MaxParallelChains) {
4314       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4315                                   makeArrayRef(Chains.data(), ChainI));
4316       Root = Chain;
4317       ChainI = 0;
4318     }
4319     SDValue Add =
4320         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4321     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4322     if (MemVTs[i] != ValueVTs[i])
4323       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4324     SDValue St =
4325         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4326                      Alignment, MMOFlags, AAInfo);
4327     Chains[ChainI] = St;
4328   }
4329 
4330   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4331                                   makeArrayRef(Chains.data(), ChainI));
4332   setValue(&I, StoreNode);
4333   DAG.setRoot(StoreNode);
4334 }
4335 
4336 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4337                                            bool IsCompressing) {
4338   SDLoc sdl = getCurSDLoc();
4339 
4340   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4341                                MaybeAlign &Alignment) {
4342     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4343     Src0 = I.getArgOperand(0);
4344     Ptr = I.getArgOperand(1);
4345     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4346     Mask = I.getArgOperand(3);
4347   };
4348   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4349                                     MaybeAlign &Alignment) {
4350     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4351     Src0 = I.getArgOperand(0);
4352     Ptr = I.getArgOperand(1);
4353     Mask = I.getArgOperand(2);
4354     Alignment = None;
4355   };
4356 
4357   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4358   MaybeAlign Alignment;
4359   if (IsCompressing)
4360     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4361   else
4362     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4363 
4364   SDValue Ptr = getValue(PtrOperand);
4365   SDValue Src0 = getValue(Src0Operand);
4366   SDValue Mask = getValue(MaskOperand);
4367   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4368 
4369   EVT VT = Src0.getValueType();
4370   if (!Alignment)
4371     Alignment = DAG.getEVTAlign(VT);
4372 
4373   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4374       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4375       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4376   SDValue StoreNode =
4377       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4378                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4379   DAG.setRoot(StoreNode);
4380   setValue(&I, StoreNode);
4381 }
4382 
4383 // Get a uniform base for the Gather/Scatter intrinsic.
4384 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4385 // We try to represent it as a base pointer + vector of indices.
4386 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4387 // The first operand of the GEP may be a single pointer or a vector of pointers
4388 // Example:
4389 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4390 //  or
4391 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4392 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4393 //
4394 // When the first GEP operand is a single pointer - it is the uniform base we
4395 // are looking for. If first operand of the GEP is a splat vector - we
4396 // extract the splat value and use it as a uniform base.
4397 // In all other cases the function returns 'false'.
4398 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4399                            ISD::MemIndexType &IndexType, SDValue &Scale,
4400                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4401                            uint64_t ElemSize) {
4402   SelectionDAG& DAG = SDB->DAG;
4403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4404   const DataLayout &DL = DAG.getDataLayout();
4405 
4406   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4407 
4408   // Handle splat constant pointer.
4409   if (auto *C = dyn_cast<Constant>(Ptr)) {
4410     C = C->getSplatValue();
4411     if (!C)
4412       return false;
4413 
4414     Base = SDB->getValue(C);
4415 
4416     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4417     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4418     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4419     IndexType = ISD::SIGNED_SCALED;
4420     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4421     return true;
4422   }
4423 
4424   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4425   if (!GEP || GEP->getParent() != CurBB)
4426     return false;
4427 
4428   if (GEP->getNumOperands() != 2)
4429     return false;
4430 
4431   const Value *BasePtr = GEP->getPointerOperand();
4432   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4433 
4434   // Make sure the base is scalar and the index is a vector.
4435   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4436     return false;
4437 
4438   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4439 
4440   // Target may not support the required addressing mode.
4441   if (ScaleVal != 1 &&
4442       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4443     return false;
4444 
4445   Base = SDB->getValue(BasePtr);
4446   Index = SDB->getValue(IndexVal);
4447   IndexType = ISD::SIGNED_SCALED;
4448 
4449   Scale =
4450       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4451   return true;
4452 }
4453 
4454 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4455   SDLoc sdl = getCurSDLoc();
4456 
4457   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4458   const Value *Ptr = I.getArgOperand(1);
4459   SDValue Src0 = getValue(I.getArgOperand(0));
4460   SDValue Mask = getValue(I.getArgOperand(3));
4461   EVT VT = Src0.getValueType();
4462   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4463                         ->getMaybeAlignValue()
4464                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4466 
4467   SDValue Base;
4468   SDValue Index;
4469   ISD::MemIndexType IndexType;
4470   SDValue Scale;
4471   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4472                                     I.getParent(), VT.getScalarStoreSize());
4473 
4474   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4475   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4476       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4477       // TODO: Make MachineMemOperands aware of scalable
4478       // vectors.
4479       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4480   if (!UniformBase) {
4481     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4482     Index = getValue(Ptr);
4483     IndexType = ISD::SIGNED_SCALED;
4484     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4485   }
4486 
4487   EVT IdxVT = Index.getValueType();
4488   EVT EltTy = IdxVT.getVectorElementType();
4489   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4490     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4491     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4492   }
4493 
4494   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4495   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4496                                          Ops, MMO, IndexType, false);
4497   DAG.setRoot(Scatter);
4498   setValue(&I, Scatter);
4499 }
4500 
4501 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4502   SDLoc sdl = getCurSDLoc();
4503 
4504   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4505                               MaybeAlign &Alignment) {
4506     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4507     Ptr = I.getArgOperand(0);
4508     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4509     Mask = I.getArgOperand(2);
4510     Src0 = I.getArgOperand(3);
4511   };
4512   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4513                                  MaybeAlign &Alignment) {
4514     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4515     Ptr = I.getArgOperand(0);
4516     Alignment = None;
4517     Mask = I.getArgOperand(1);
4518     Src0 = I.getArgOperand(2);
4519   };
4520 
4521   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4522   MaybeAlign Alignment;
4523   if (IsExpanding)
4524     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4525   else
4526     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4527 
4528   SDValue Ptr = getValue(PtrOperand);
4529   SDValue Src0 = getValue(Src0Operand);
4530   SDValue Mask = getValue(MaskOperand);
4531   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4532 
4533   EVT VT = Src0.getValueType();
4534   if (!Alignment)
4535     Alignment = DAG.getEVTAlign(VT);
4536 
4537   AAMDNodes AAInfo = I.getAAMetadata();
4538   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4539 
4540   // Do not serialize masked loads of constant memory with anything.
4541   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4542   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4543 
4544   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4545 
4546   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4547       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4548       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4549 
4550   SDValue Load =
4551       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4552                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4553   if (AddToChain)
4554     PendingLoads.push_back(Load.getValue(1));
4555   setValue(&I, Load);
4556 }
4557 
4558 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4559   SDLoc sdl = getCurSDLoc();
4560 
4561   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4562   const Value *Ptr = I.getArgOperand(0);
4563   SDValue Src0 = getValue(I.getArgOperand(3));
4564   SDValue Mask = getValue(I.getArgOperand(2));
4565 
4566   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4567   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4568   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4569                         ->getMaybeAlignValue()
4570                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4571 
4572   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4573 
4574   SDValue Root = DAG.getRoot();
4575   SDValue Base;
4576   SDValue Index;
4577   ISD::MemIndexType IndexType;
4578   SDValue Scale;
4579   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4580                                     I.getParent(), VT.getScalarStoreSize());
4581   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4582   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4583       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4584       // TODO: Make MachineMemOperands aware of scalable
4585       // vectors.
4586       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4587 
4588   if (!UniformBase) {
4589     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4590     Index = getValue(Ptr);
4591     IndexType = ISD::SIGNED_SCALED;
4592     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4593   }
4594 
4595   EVT IdxVT = Index.getValueType();
4596   EVT EltTy = IdxVT.getVectorElementType();
4597   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4598     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4599     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4600   }
4601 
4602   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4603   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4604                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4605 
4606   PendingLoads.push_back(Gather.getValue(1));
4607   setValue(&I, Gather);
4608 }
4609 
4610 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4611   SDLoc dl = getCurSDLoc();
4612   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4613   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4614   SyncScope::ID SSID = I.getSyncScopeID();
4615 
4616   SDValue InChain = getRoot();
4617 
4618   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4619   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4620 
4621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4622   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4623 
4624   MachineFunction &MF = DAG.getMachineFunction();
4625   MachineMemOperand *MMO = MF.getMachineMemOperand(
4626       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4627       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4628       FailureOrdering);
4629 
4630   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4631                                    dl, MemVT, VTs, InChain,
4632                                    getValue(I.getPointerOperand()),
4633                                    getValue(I.getCompareOperand()),
4634                                    getValue(I.getNewValOperand()), MMO);
4635 
4636   SDValue OutChain = L.getValue(2);
4637 
4638   setValue(&I, L);
4639   DAG.setRoot(OutChain);
4640 }
4641 
4642 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4643   SDLoc dl = getCurSDLoc();
4644   ISD::NodeType NT;
4645   switch (I.getOperation()) {
4646   default: llvm_unreachable("Unknown atomicrmw operation");
4647   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4648   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4649   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4650   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4651   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4652   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4653   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4654   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4655   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4656   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4657   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4658   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4659   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4660   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4661   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4662   }
4663   AtomicOrdering Ordering = I.getOrdering();
4664   SyncScope::ID SSID = I.getSyncScopeID();
4665 
4666   SDValue InChain = getRoot();
4667 
4668   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4670   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4671 
4672   MachineFunction &MF = DAG.getMachineFunction();
4673   MachineMemOperand *MMO = MF.getMachineMemOperand(
4674       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4675       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4676 
4677   SDValue L =
4678     DAG.getAtomic(NT, dl, MemVT, InChain,
4679                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4680                   MMO);
4681 
4682   SDValue OutChain = L.getValue(1);
4683 
4684   setValue(&I, L);
4685   DAG.setRoot(OutChain);
4686 }
4687 
4688 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4689   SDLoc dl = getCurSDLoc();
4690   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4691   SDValue Ops[3];
4692   Ops[0] = getRoot();
4693   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4694                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4695   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4696                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4697   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4698   setValue(&I, N);
4699   DAG.setRoot(N);
4700 }
4701 
4702 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4703   SDLoc dl = getCurSDLoc();
4704   AtomicOrdering Order = I.getOrdering();
4705   SyncScope::ID SSID = I.getSyncScopeID();
4706 
4707   SDValue InChain = getRoot();
4708 
4709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4710   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4711   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4712 
4713   if (!TLI.supportsUnalignedAtomics() &&
4714       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4715     report_fatal_error("Cannot generate unaligned atomic load");
4716 
4717   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4718 
4719   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4720       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4721       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4722 
4723   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4724 
4725   SDValue Ptr = getValue(I.getPointerOperand());
4726 
4727   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4728     // TODO: Once this is better exercised by tests, it should be merged with
4729     // the normal path for loads to prevent future divergence.
4730     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4731     if (MemVT != VT)
4732       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4733 
4734     setValue(&I, L);
4735     SDValue OutChain = L.getValue(1);
4736     if (!I.isUnordered())
4737       DAG.setRoot(OutChain);
4738     else
4739       PendingLoads.push_back(OutChain);
4740     return;
4741   }
4742 
4743   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4744                             Ptr, MMO);
4745 
4746   SDValue OutChain = L.getValue(1);
4747   if (MemVT != VT)
4748     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4749 
4750   setValue(&I, L);
4751   DAG.setRoot(OutChain);
4752 }
4753 
4754 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4755   SDLoc dl = getCurSDLoc();
4756 
4757   AtomicOrdering Ordering = I.getOrdering();
4758   SyncScope::ID SSID = I.getSyncScopeID();
4759 
4760   SDValue InChain = getRoot();
4761 
4762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4763   EVT MemVT =
4764       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4765 
4766   if (!TLI.supportsUnalignedAtomics() &&
4767       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4768     report_fatal_error("Cannot generate unaligned atomic store");
4769 
4770   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4771 
4772   MachineFunction &MF = DAG.getMachineFunction();
4773   MachineMemOperand *MMO = MF.getMachineMemOperand(
4774       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4775       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4776 
4777   SDValue Val = getValue(I.getValueOperand());
4778   if (Val.getValueType() != MemVT)
4779     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4780   SDValue Ptr = getValue(I.getPointerOperand());
4781 
4782   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4783     // TODO: Once this is better exercised by tests, it should be merged with
4784     // the normal path for stores to prevent future divergence.
4785     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4786     setValue(&I, S);
4787     DAG.setRoot(S);
4788     return;
4789   }
4790   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4791                                    Ptr, Val, MMO);
4792 
4793   setValue(&I, OutChain);
4794   DAG.setRoot(OutChain);
4795 }
4796 
4797 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4798 /// node.
4799 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4800                                                unsigned Intrinsic) {
4801   // Ignore the callsite's attributes. A specific call site may be marked with
4802   // readnone, but the lowering code will expect the chain based on the
4803   // definition.
4804   const Function *F = I.getCalledFunction();
4805   bool HasChain = !F->doesNotAccessMemory();
4806   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4807 
4808   // Build the operand list.
4809   SmallVector<SDValue, 8> Ops;
4810   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4811     if (OnlyLoad) {
4812       // We don't need to serialize loads against other loads.
4813       Ops.push_back(DAG.getRoot());
4814     } else {
4815       Ops.push_back(getRoot());
4816     }
4817   }
4818 
4819   // Info is set by getTgtMemIntrinsic
4820   TargetLowering::IntrinsicInfo Info;
4821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4822   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4823                                                DAG.getMachineFunction(),
4824                                                Intrinsic);
4825 
4826   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4827   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4828       Info.opc == ISD::INTRINSIC_W_CHAIN)
4829     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4830                                         TLI.getPointerTy(DAG.getDataLayout())));
4831 
4832   // Add all operands of the call to the operand list.
4833   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4834     const Value *Arg = I.getArgOperand(i);
4835     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4836       Ops.push_back(getValue(Arg));
4837       continue;
4838     }
4839 
4840     // Use TargetConstant instead of a regular constant for immarg.
4841     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4842     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4843       assert(CI->getBitWidth() <= 64 &&
4844              "large intrinsic immediates not handled");
4845       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4846     } else {
4847       Ops.push_back(
4848           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4849     }
4850   }
4851 
4852   SmallVector<EVT, 4> ValueVTs;
4853   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4854 
4855   if (HasChain)
4856     ValueVTs.push_back(MVT::Other);
4857 
4858   SDVTList VTs = DAG.getVTList(ValueVTs);
4859 
4860   // Propagate fast-math-flags from IR to node(s).
4861   SDNodeFlags Flags;
4862   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4863     Flags.copyFMF(*FPMO);
4864   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4865 
4866   // Create the node.
4867   SDValue Result;
4868   if (IsTgtIntrinsic) {
4869     // This is target intrinsic that touches memory
4870     Result =
4871         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4872                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4873                                 Info.align, Info.flags, Info.size,
4874                                 I.getAAMetadata());
4875   } else if (!HasChain) {
4876     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4877   } else if (!I.getType()->isVoidTy()) {
4878     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4879   } else {
4880     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4881   }
4882 
4883   if (HasChain) {
4884     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4885     if (OnlyLoad)
4886       PendingLoads.push_back(Chain);
4887     else
4888       DAG.setRoot(Chain);
4889   }
4890 
4891   if (!I.getType()->isVoidTy()) {
4892     if (!isa<VectorType>(I.getType()))
4893       Result = lowerRangeToAssertZExt(DAG, I, Result);
4894 
4895     MaybeAlign Alignment = I.getRetAlign();
4896     if (!Alignment)
4897       Alignment = F->getAttributes().getRetAlignment();
4898     // Insert `assertalign` node if there's an alignment.
4899     if (InsertAssertAlign && Alignment) {
4900       Result =
4901           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4902     }
4903 
4904     setValue(&I, Result);
4905   }
4906 }
4907 
4908 /// GetSignificand - Get the significand and build it into a floating-point
4909 /// number with exponent of 1:
4910 ///
4911 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4912 ///
4913 /// where Op is the hexadecimal representation of floating point value.
4914 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4915   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4916                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4917   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4918                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4919   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4920 }
4921 
4922 /// GetExponent - Get the exponent:
4923 ///
4924 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4925 ///
4926 /// where Op is the hexadecimal representation of floating point value.
4927 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4928                            const TargetLowering &TLI, const SDLoc &dl) {
4929   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4930                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4931   SDValue t1 = DAG.getNode(
4932       ISD::SRL, dl, MVT::i32, t0,
4933       DAG.getConstant(23, dl,
4934                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4935   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4936                            DAG.getConstant(127, dl, MVT::i32));
4937   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4938 }
4939 
4940 /// getF32Constant - Get 32-bit floating point constant.
4941 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4942                               const SDLoc &dl) {
4943   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4944                            MVT::f32);
4945 }
4946 
4947 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4948                                        SelectionDAG &DAG) {
4949   // TODO: What fast-math-flags should be set on the floating-point nodes?
4950 
4951   //   IntegerPartOfX = ((int32_t)(t0);
4952   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4953 
4954   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4955   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4956   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4957 
4958   //   IntegerPartOfX <<= 23;
4959   IntegerPartOfX =
4960       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4961                   DAG.getConstant(23, dl,
4962                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4963                                       MVT::i32, DAG.getDataLayout())));
4964 
4965   SDValue TwoToFractionalPartOfX;
4966   if (LimitFloatPrecision <= 6) {
4967     // For floating-point precision of 6:
4968     //
4969     //   TwoToFractionalPartOfX =
4970     //     0.997535578f +
4971     //       (0.735607626f + 0.252464424f * x) * x;
4972     //
4973     // error 0.0144103317, which is 6 bits
4974     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4975                              getF32Constant(DAG, 0x3e814304, dl));
4976     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4977                              getF32Constant(DAG, 0x3f3c50c8, dl));
4978     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4979     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4980                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4981   } else if (LimitFloatPrecision <= 12) {
4982     // For floating-point precision of 12:
4983     //
4984     //   TwoToFractionalPartOfX =
4985     //     0.999892986f +
4986     //       (0.696457318f +
4987     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4988     //
4989     // error 0.000107046256, which is 13 to 14 bits
4990     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4991                              getF32Constant(DAG, 0x3da235e3, dl));
4992     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4993                              getF32Constant(DAG, 0x3e65b8f3, dl));
4994     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4995     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4996                              getF32Constant(DAG, 0x3f324b07, dl));
4997     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4998     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4999                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5000   } else { // LimitFloatPrecision <= 18
5001     // For floating-point precision of 18:
5002     //
5003     //   TwoToFractionalPartOfX =
5004     //     0.999999982f +
5005     //       (0.693148872f +
5006     //         (0.240227044f +
5007     //           (0.554906021e-1f +
5008     //             (0.961591928e-2f +
5009     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5010     // error 2.47208000*10^(-7), which is better than 18 bits
5011     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5012                              getF32Constant(DAG, 0x3924b03e, dl));
5013     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5014                              getF32Constant(DAG, 0x3ab24b87, dl));
5015     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5016     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5017                              getF32Constant(DAG, 0x3c1d8c17, dl));
5018     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5019     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5020                              getF32Constant(DAG, 0x3d634a1d, dl));
5021     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5022     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5023                              getF32Constant(DAG, 0x3e75fe14, dl));
5024     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5025     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5026                               getF32Constant(DAG, 0x3f317234, dl));
5027     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5028     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5029                                          getF32Constant(DAG, 0x3f800000, dl));
5030   }
5031 
5032   // Add the exponent into the result in integer domain.
5033   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5034   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5035                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5036 }
5037 
5038 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5039 /// limited-precision mode.
5040 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5041                          const TargetLowering &TLI, SDNodeFlags Flags) {
5042   if (Op.getValueType() == MVT::f32 &&
5043       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5044 
5045     // Put the exponent in the right bit position for later addition to the
5046     // final result:
5047     //
5048     // t0 = Op * log2(e)
5049 
5050     // TODO: What fast-math-flags should be set here?
5051     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5052                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5053     return getLimitedPrecisionExp2(t0, dl, DAG);
5054   }
5055 
5056   // No special expansion.
5057   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5058 }
5059 
5060 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5061 /// limited-precision mode.
5062 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5063                          const TargetLowering &TLI, SDNodeFlags Flags) {
5064   // TODO: What fast-math-flags should be set on the floating-point nodes?
5065 
5066   if (Op.getValueType() == MVT::f32 &&
5067       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5068     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5069 
5070     // Scale the exponent by log(2).
5071     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5072     SDValue LogOfExponent =
5073         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5074                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5075 
5076     // Get the significand and build it into a floating-point number with
5077     // exponent of 1.
5078     SDValue X = GetSignificand(DAG, Op1, dl);
5079 
5080     SDValue LogOfMantissa;
5081     if (LimitFloatPrecision <= 6) {
5082       // For floating-point precision of 6:
5083       //
5084       //   LogofMantissa =
5085       //     -1.1609546f +
5086       //       (1.4034025f - 0.23903021f * x) * x;
5087       //
5088       // error 0.0034276066, which is better than 8 bits
5089       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5090                                getF32Constant(DAG, 0xbe74c456, dl));
5091       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5092                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5093       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5094       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5095                                   getF32Constant(DAG, 0x3f949a29, dl));
5096     } else if (LimitFloatPrecision <= 12) {
5097       // For floating-point precision of 12:
5098       //
5099       //   LogOfMantissa =
5100       //     -1.7417939f +
5101       //       (2.8212026f +
5102       //         (-1.4699568f +
5103       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5104       //
5105       // error 0.000061011436, which is 14 bits
5106       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5107                                getF32Constant(DAG, 0xbd67b6d6, dl));
5108       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5109                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5110       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5111       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5112                                getF32Constant(DAG, 0x3fbc278b, dl));
5113       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5114       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5115                                getF32Constant(DAG, 0x40348e95, dl));
5116       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5117       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5118                                   getF32Constant(DAG, 0x3fdef31a, dl));
5119     } else { // LimitFloatPrecision <= 18
5120       // For floating-point precision of 18:
5121       //
5122       //   LogOfMantissa =
5123       //     -2.1072184f +
5124       //       (4.2372794f +
5125       //         (-3.7029485f +
5126       //           (2.2781945f +
5127       //             (-0.87823314f +
5128       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5129       //
5130       // error 0.0000023660568, which is better than 18 bits
5131       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5132                                getF32Constant(DAG, 0xbc91e5ac, dl));
5133       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5134                                getF32Constant(DAG, 0x3e4350aa, dl));
5135       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5136       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5137                                getF32Constant(DAG, 0x3f60d3e3, dl));
5138       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5139       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5140                                getF32Constant(DAG, 0x4011cdf0, dl));
5141       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5142       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5143                                getF32Constant(DAG, 0x406cfd1c, dl));
5144       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5145       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5146                                getF32Constant(DAG, 0x408797cb, dl));
5147       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5148       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5149                                   getF32Constant(DAG, 0x4006dcab, dl));
5150     }
5151 
5152     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5153   }
5154 
5155   // No special expansion.
5156   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5157 }
5158 
5159 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5160 /// limited-precision mode.
5161 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5162                           const TargetLowering &TLI, SDNodeFlags Flags) {
5163   // TODO: What fast-math-flags should be set on the floating-point nodes?
5164 
5165   if (Op.getValueType() == MVT::f32 &&
5166       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5167     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5168 
5169     // Get the exponent.
5170     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5171 
5172     // Get the significand and build it into a floating-point number with
5173     // exponent of 1.
5174     SDValue X = GetSignificand(DAG, Op1, dl);
5175 
5176     // Different possible minimax approximations of significand in
5177     // floating-point for various degrees of accuracy over [1,2].
5178     SDValue Log2ofMantissa;
5179     if (LimitFloatPrecision <= 6) {
5180       // For floating-point precision of 6:
5181       //
5182       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5183       //
5184       // error 0.0049451742, which is more than 7 bits
5185       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5186                                getF32Constant(DAG, 0xbeb08fe0, dl));
5187       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5188                                getF32Constant(DAG, 0x40019463, dl));
5189       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5190       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5191                                    getF32Constant(DAG, 0x3fd6633d, dl));
5192     } else if (LimitFloatPrecision <= 12) {
5193       // For floating-point precision of 12:
5194       //
5195       //   Log2ofMantissa =
5196       //     -2.51285454f +
5197       //       (4.07009056f +
5198       //         (-2.12067489f +
5199       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5200       //
5201       // error 0.0000876136000, which is better than 13 bits
5202       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5203                                getF32Constant(DAG, 0xbda7262e, dl));
5204       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5205                                getF32Constant(DAG, 0x3f25280b, dl));
5206       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5207       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5208                                getF32Constant(DAG, 0x4007b923, dl));
5209       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5210       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5211                                getF32Constant(DAG, 0x40823e2f, dl));
5212       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5213       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5214                                    getF32Constant(DAG, 0x4020d29c, dl));
5215     } else { // LimitFloatPrecision <= 18
5216       // For floating-point precision of 18:
5217       //
5218       //   Log2ofMantissa =
5219       //     -3.0400495f +
5220       //       (6.1129976f +
5221       //         (-5.3420409f +
5222       //           (3.2865683f +
5223       //             (-1.2669343f +
5224       //               (0.27515199f -
5225       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5226       //
5227       // error 0.0000018516, which is better than 18 bits
5228       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5229                                getF32Constant(DAG, 0xbcd2769e, dl));
5230       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5231                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5232       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5233       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5234                                getF32Constant(DAG, 0x3fa22ae7, dl));
5235       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5236       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5237                                getF32Constant(DAG, 0x40525723, dl));
5238       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5239       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5240                                getF32Constant(DAG, 0x40aaf200, dl));
5241       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5242       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5243                                getF32Constant(DAG, 0x40c39dad, dl));
5244       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5245       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5246                                    getF32Constant(DAG, 0x4042902c, dl));
5247     }
5248 
5249     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5250   }
5251 
5252   // No special expansion.
5253   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5254 }
5255 
5256 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5257 /// limited-precision mode.
5258 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5259                            const TargetLowering &TLI, SDNodeFlags Flags) {
5260   // TODO: What fast-math-flags should be set on the floating-point nodes?
5261 
5262   if (Op.getValueType() == MVT::f32 &&
5263       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5264     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5265 
5266     // Scale the exponent by log10(2) [0.30102999f].
5267     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5268     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5269                                         getF32Constant(DAG, 0x3e9a209a, dl));
5270 
5271     // Get the significand and build it into a floating-point number with
5272     // exponent of 1.
5273     SDValue X = GetSignificand(DAG, Op1, dl);
5274 
5275     SDValue Log10ofMantissa;
5276     if (LimitFloatPrecision <= 6) {
5277       // For floating-point precision of 6:
5278       //
5279       //   Log10ofMantissa =
5280       //     -0.50419619f +
5281       //       (0.60948995f - 0.10380950f * x) * x;
5282       //
5283       // error 0.0014886165, which is 6 bits
5284       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5285                                getF32Constant(DAG, 0xbdd49a13, dl));
5286       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5287                                getF32Constant(DAG, 0x3f1c0789, dl));
5288       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5289       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5290                                     getF32Constant(DAG, 0x3f011300, dl));
5291     } else if (LimitFloatPrecision <= 12) {
5292       // For floating-point precision of 12:
5293       //
5294       //   Log10ofMantissa =
5295       //     -0.64831180f +
5296       //       (0.91751397f +
5297       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5298       //
5299       // error 0.00019228036, which is better than 12 bits
5300       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5301                                getF32Constant(DAG, 0x3d431f31, dl));
5302       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5303                                getF32Constant(DAG, 0x3ea21fb2, dl));
5304       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5305       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5306                                getF32Constant(DAG, 0x3f6ae232, dl));
5307       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5308       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5309                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5310     } else { // LimitFloatPrecision <= 18
5311       // For floating-point precision of 18:
5312       //
5313       //   Log10ofMantissa =
5314       //     -0.84299375f +
5315       //       (1.5327582f +
5316       //         (-1.0688956f +
5317       //           (0.49102474f +
5318       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5319       //
5320       // error 0.0000037995730, which is better than 18 bits
5321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5322                                getF32Constant(DAG, 0x3c5d51ce, dl));
5323       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5324                                getF32Constant(DAG, 0x3e00685a, dl));
5325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5326       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5327                                getF32Constant(DAG, 0x3efb6798, dl));
5328       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5329       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5330                                getF32Constant(DAG, 0x3f88d192, dl));
5331       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5332       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5333                                getF32Constant(DAG, 0x3fc4316c, dl));
5334       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5335       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5336                                     getF32Constant(DAG, 0x3f57ce70, dl));
5337     }
5338 
5339     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5340   }
5341 
5342   // No special expansion.
5343   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5344 }
5345 
5346 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5347 /// limited-precision mode.
5348 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5349                           const TargetLowering &TLI, SDNodeFlags Flags) {
5350   if (Op.getValueType() == MVT::f32 &&
5351       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5352     return getLimitedPrecisionExp2(Op, dl, DAG);
5353 
5354   // No special expansion.
5355   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5356 }
5357 
5358 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5359 /// limited-precision mode with x == 10.0f.
5360 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5361                          SelectionDAG &DAG, const TargetLowering &TLI,
5362                          SDNodeFlags Flags) {
5363   bool IsExp10 = false;
5364   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5365       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5366     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5367       APFloat Ten(10.0f);
5368       IsExp10 = LHSC->isExactlyValue(Ten);
5369     }
5370   }
5371 
5372   // TODO: What fast-math-flags should be set on the FMUL node?
5373   if (IsExp10) {
5374     // Put the exponent in the right bit position for later addition to the
5375     // final result:
5376     //
5377     //   #define LOG2OF10 3.3219281f
5378     //   t0 = Op * LOG2OF10;
5379     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5380                              getF32Constant(DAG, 0x40549a78, dl));
5381     return getLimitedPrecisionExp2(t0, dl, DAG);
5382   }
5383 
5384   // No special expansion.
5385   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5386 }
5387 
5388 /// ExpandPowI - Expand a llvm.powi intrinsic.
5389 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5390                           SelectionDAG &DAG) {
5391   // If RHS is a constant, we can expand this out to a multiplication tree if
5392   // it's beneficial on the target, otherwise we end up lowering to a call to
5393   // __powidf2 (for example).
5394   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5395     unsigned Val = RHSC->getSExtValue();
5396 
5397     // powi(x, 0) -> 1.0
5398     if (Val == 0)
5399       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5400 
5401     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5402             Val, DAG.shouldOptForSize())) {
5403       // Get the exponent as a positive value.
5404       if ((int)Val < 0)
5405         Val = -Val;
5406       // We use the simple binary decomposition method to generate the multiply
5407       // sequence.  There are more optimal ways to do this (for example,
5408       // powi(x,15) generates one more multiply than it should), but this has
5409       // the benefit of being both really simple and much better than a libcall.
5410       SDValue Res; // Logically starts equal to 1.0
5411       SDValue CurSquare = LHS;
5412       // TODO: Intrinsics should have fast-math-flags that propagate to these
5413       // nodes.
5414       while (Val) {
5415         if (Val & 1) {
5416           if (Res.getNode())
5417             Res =
5418                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5419           else
5420             Res = CurSquare; // 1.0*CurSquare.
5421         }
5422 
5423         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5424                                 CurSquare, CurSquare);
5425         Val >>= 1;
5426       }
5427 
5428       // If the original was negative, invert the result, producing 1/(x*x*x).
5429       if (RHSC->getSExtValue() < 0)
5430         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5431                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5432       return Res;
5433     }
5434   }
5435 
5436   // Otherwise, expand to a libcall.
5437   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5438 }
5439 
5440 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5441                             SDValue LHS, SDValue RHS, SDValue Scale,
5442                             SelectionDAG &DAG, const TargetLowering &TLI) {
5443   EVT VT = LHS.getValueType();
5444   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5445   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5446   LLVMContext &Ctx = *DAG.getContext();
5447 
5448   // If the type is legal but the operation isn't, this node might survive all
5449   // the way to operation legalization. If we end up there and we do not have
5450   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5451   // node.
5452 
5453   // Coax the legalizer into expanding the node during type legalization instead
5454   // by bumping the size by one bit. This will force it to Promote, enabling the
5455   // early expansion and avoiding the need to expand later.
5456 
5457   // We don't have to do this if Scale is 0; that can always be expanded, unless
5458   // it's a saturating signed operation. Those can experience true integer
5459   // division overflow, a case which we must avoid.
5460 
5461   // FIXME: We wouldn't have to do this (or any of the early
5462   // expansion/promotion) if it was possible to expand a libcall of an
5463   // illegal type during operation legalization. But it's not, so things
5464   // get a bit hacky.
5465   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5466   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5467       (TLI.isTypeLegal(VT) ||
5468        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5469     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5470         Opcode, VT, ScaleInt);
5471     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5472       EVT PromVT;
5473       if (VT.isScalarInteger())
5474         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5475       else if (VT.isVector()) {
5476         PromVT = VT.getVectorElementType();
5477         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5478         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5479       } else
5480         llvm_unreachable("Wrong VT for DIVFIX?");
5481       if (Signed) {
5482         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5483         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5484       } else {
5485         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5486         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5487       }
5488       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5489       // For saturating operations, we need to shift up the LHS to get the
5490       // proper saturation width, and then shift down again afterwards.
5491       if (Saturating)
5492         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5493                           DAG.getConstant(1, DL, ShiftTy));
5494       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5495       if (Saturating)
5496         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5497                           DAG.getConstant(1, DL, ShiftTy));
5498       return DAG.getZExtOrTrunc(Res, DL, VT);
5499     }
5500   }
5501 
5502   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5503 }
5504 
5505 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5506 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5507 static void
5508 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5509                      const SDValue &N) {
5510   switch (N.getOpcode()) {
5511   case ISD::CopyFromReg: {
5512     SDValue Op = N.getOperand(1);
5513     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5514                       Op.getValueType().getSizeInBits());
5515     return;
5516   }
5517   case ISD::BITCAST:
5518   case ISD::AssertZext:
5519   case ISD::AssertSext:
5520   case ISD::TRUNCATE:
5521     getUnderlyingArgRegs(Regs, N.getOperand(0));
5522     return;
5523   case ISD::BUILD_PAIR:
5524   case ISD::BUILD_VECTOR:
5525   case ISD::CONCAT_VECTORS:
5526     for (SDValue Op : N->op_values())
5527       getUnderlyingArgRegs(Regs, Op);
5528     return;
5529   default:
5530     return;
5531   }
5532 }
5533 
5534 /// If the DbgValueInst is a dbg_value of a function argument, create the
5535 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5536 /// instruction selection, they will be inserted to the entry BB.
5537 /// We don't currently support this for variadic dbg_values, as they shouldn't
5538 /// appear for function arguments or in the prologue.
5539 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5540     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5541     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5542   const Argument *Arg = dyn_cast<Argument>(V);
5543   if (!Arg)
5544     return false;
5545 
5546   MachineFunction &MF = DAG.getMachineFunction();
5547   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5548 
5549   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5550   // we've been asked to pursue.
5551   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5552                               bool Indirect) {
5553     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5554       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5555       // pointing at the VReg, which will be patched up later.
5556       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5557       auto MIB = BuildMI(MF, DL, Inst);
5558       MIB.addReg(Reg);
5559       MIB.addImm(0);
5560       MIB.addMetadata(Variable);
5561       auto *NewDIExpr = FragExpr;
5562       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5563       // the DIExpression.
5564       if (Indirect)
5565         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5566       MIB.addMetadata(NewDIExpr);
5567       return MIB;
5568     } else {
5569       // Create a completely standard DBG_VALUE.
5570       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5571       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5572     }
5573   };
5574 
5575   if (Kind == FuncArgumentDbgValueKind::Value) {
5576     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5577     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5578     // the entry block.
5579     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5580     if (!IsInEntryBlock)
5581       return false;
5582 
5583     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5584     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5585     // variable that also is a param.
5586     //
5587     // Although, if we are at the top of the entry block already, we can still
5588     // emit using ArgDbgValue. This might catch some situations when the
5589     // dbg.value refers to an argument that isn't used in the entry block, so
5590     // any CopyToReg node would be optimized out and the only way to express
5591     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5592     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5593     // we should only emit as ArgDbgValue if the Variable is an argument to the
5594     // current function, and the dbg.value intrinsic is found in the entry
5595     // block.
5596     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5597         !DL->getInlinedAt();
5598     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5599     if (!IsInPrologue && !VariableIsFunctionInputArg)
5600       return false;
5601 
5602     // Here we assume that a function argument on IR level only can be used to
5603     // describe one input parameter on source level. If we for example have
5604     // source code like this
5605     //
5606     //    struct A { long x, y; };
5607     //    void foo(struct A a, long b) {
5608     //      ...
5609     //      b = a.x;
5610     //      ...
5611     //    }
5612     //
5613     // and IR like this
5614     //
5615     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5616     //  entry:
5617     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5618     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5619     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5620     //    ...
5621     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5622     //    ...
5623     //
5624     // then the last dbg.value is describing a parameter "b" using a value that
5625     // is an argument. But since we already has used %a1 to describe a parameter
5626     // we should not handle that last dbg.value here (that would result in an
5627     // incorrect hoisting of the DBG_VALUE to the function entry).
5628     // Notice that we allow one dbg.value per IR level argument, to accommodate
5629     // for the situation with fragments above.
5630     if (VariableIsFunctionInputArg) {
5631       unsigned ArgNo = Arg->getArgNo();
5632       if (ArgNo >= FuncInfo.DescribedArgs.size())
5633         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5634       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5635         return false;
5636       FuncInfo.DescribedArgs.set(ArgNo);
5637     }
5638   }
5639 
5640   bool IsIndirect = false;
5641   Optional<MachineOperand> Op;
5642   // Some arguments' frame index is recorded during argument lowering.
5643   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5644   if (FI != std::numeric_limits<int>::max())
5645     Op = MachineOperand::CreateFI(FI);
5646 
5647   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5648   if (!Op && N.getNode()) {
5649     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5650     Register Reg;
5651     if (ArgRegsAndSizes.size() == 1)
5652       Reg = ArgRegsAndSizes.front().first;
5653 
5654     if (Reg && Reg.isVirtual()) {
5655       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5656       Register PR = RegInfo.getLiveInPhysReg(Reg);
5657       if (PR)
5658         Reg = PR;
5659     }
5660     if (Reg) {
5661       Op = MachineOperand::CreateReg(Reg, false);
5662       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5663     }
5664   }
5665 
5666   if (!Op && N.getNode()) {
5667     // Check if frame index is available.
5668     SDValue LCandidate = peekThroughBitcasts(N);
5669     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5670       if (FrameIndexSDNode *FINode =
5671           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5672         Op = MachineOperand::CreateFI(FINode->getIndex());
5673   }
5674 
5675   if (!Op) {
5676     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5677     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5678                                          SplitRegs) {
5679       unsigned Offset = 0;
5680       for (const auto &RegAndSize : SplitRegs) {
5681         // If the expression is already a fragment, the current register
5682         // offset+size might extend beyond the fragment. In this case, only
5683         // the register bits that are inside the fragment are relevant.
5684         int RegFragmentSizeInBits = RegAndSize.second;
5685         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5686           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5687           // The register is entirely outside the expression fragment,
5688           // so is irrelevant for debug info.
5689           if (Offset >= ExprFragmentSizeInBits)
5690             break;
5691           // The register is partially outside the expression fragment, only
5692           // the low bits within the fragment are relevant for debug info.
5693           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5694             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5695           }
5696         }
5697 
5698         auto FragmentExpr = DIExpression::createFragmentExpression(
5699             Expr, Offset, RegFragmentSizeInBits);
5700         Offset += RegAndSize.second;
5701         // If a valid fragment expression cannot be created, the variable's
5702         // correct value cannot be determined and so it is set as Undef.
5703         if (!FragmentExpr) {
5704           SDDbgValue *SDV = DAG.getConstantDbgValue(
5705               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5706           DAG.AddDbgValue(SDV, false);
5707           continue;
5708         }
5709         MachineInstr *NewMI =
5710             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5711                              Kind != FuncArgumentDbgValueKind::Value);
5712         FuncInfo.ArgDbgValues.push_back(NewMI);
5713       }
5714     };
5715 
5716     // Check if ValueMap has reg number.
5717     DenseMap<const Value *, Register>::const_iterator
5718       VMI = FuncInfo.ValueMap.find(V);
5719     if (VMI != FuncInfo.ValueMap.end()) {
5720       const auto &TLI = DAG.getTargetLoweringInfo();
5721       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5722                        V->getType(), None);
5723       if (RFV.occupiesMultipleRegs()) {
5724         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5725         return true;
5726       }
5727 
5728       Op = MachineOperand::CreateReg(VMI->second, false);
5729       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5730     } else if (ArgRegsAndSizes.size() > 1) {
5731       // This was split due to the calling convention, and no virtual register
5732       // mapping exists for the value.
5733       splitMultiRegDbgValue(ArgRegsAndSizes);
5734       return true;
5735     }
5736   }
5737 
5738   if (!Op)
5739     return false;
5740 
5741   assert(Variable->isValidLocationForIntrinsic(DL) &&
5742          "Expected inlined-at fields to agree");
5743   MachineInstr *NewMI = nullptr;
5744 
5745   if (Op->isReg())
5746     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5747   else
5748     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5749                     Variable, Expr);
5750 
5751   // Otherwise, use ArgDbgValues.
5752   FuncInfo.ArgDbgValues.push_back(NewMI);
5753   return true;
5754 }
5755 
5756 /// Return the appropriate SDDbgValue based on N.
5757 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5758                                              DILocalVariable *Variable,
5759                                              DIExpression *Expr,
5760                                              const DebugLoc &dl,
5761                                              unsigned DbgSDNodeOrder) {
5762   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5763     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5764     // stack slot locations.
5765     //
5766     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5767     // debug values here after optimization:
5768     //
5769     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5770     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5771     //
5772     // Both describe the direct values of their associated variables.
5773     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5774                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5775   }
5776   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5777                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5778 }
5779 
5780 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5781   switch (Intrinsic) {
5782   case Intrinsic::smul_fix:
5783     return ISD::SMULFIX;
5784   case Intrinsic::umul_fix:
5785     return ISD::UMULFIX;
5786   case Intrinsic::smul_fix_sat:
5787     return ISD::SMULFIXSAT;
5788   case Intrinsic::umul_fix_sat:
5789     return ISD::UMULFIXSAT;
5790   case Intrinsic::sdiv_fix:
5791     return ISD::SDIVFIX;
5792   case Intrinsic::udiv_fix:
5793     return ISD::UDIVFIX;
5794   case Intrinsic::sdiv_fix_sat:
5795     return ISD::SDIVFIXSAT;
5796   case Intrinsic::udiv_fix_sat:
5797     return ISD::UDIVFIXSAT;
5798   default:
5799     llvm_unreachable("Unhandled fixed point intrinsic");
5800   }
5801 }
5802 
5803 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5804                                            const char *FunctionName) {
5805   assert(FunctionName && "FunctionName must not be nullptr");
5806   SDValue Callee = DAG.getExternalSymbol(
5807       FunctionName,
5808       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5809   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5810 }
5811 
5812 /// Given a @llvm.call.preallocated.setup, return the corresponding
5813 /// preallocated call.
5814 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5815   assert(cast<CallBase>(PreallocatedSetup)
5816                  ->getCalledFunction()
5817                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5818          "expected call_preallocated_setup Value");
5819   for (const auto *U : PreallocatedSetup->users()) {
5820     auto *UseCall = cast<CallBase>(U);
5821     const Function *Fn = UseCall->getCalledFunction();
5822     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5823       return UseCall;
5824     }
5825   }
5826   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5827 }
5828 
5829 /// Lower the call to the specified intrinsic function.
5830 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5831                                              unsigned Intrinsic) {
5832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5833   SDLoc sdl = getCurSDLoc();
5834   DebugLoc dl = getCurDebugLoc();
5835   SDValue Res;
5836 
5837   SDNodeFlags Flags;
5838   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5839     Flags.copyFMF(*FPOp);
5840 
5841   switch (Intrinsic) {
5842   default:
5843     // By default, turn this into a target intrinsic node.
5844     visitTargetIntrinsic(I, Intrinsic);
5845     return;
5846   case Intrinsic::vscale: {
5847     match(&I, m_VScale(DAG.getDataLayout()));
5848     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5849     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5850     return;
5851   }
5852   case Intrinsic::vastart:  visitVAStart(I); return;
5853   case Intrinsic::vaend:    visitVAEnd(I); return;
5854   case Intrinsic::vacopy:   visitVACopy(I); return;
5855   case Intrinsic::returnaddress:
5856     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5857                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5858                              getValue(I.getArgOperand(0))));
5859     return;
5860   case Intrinsic::addressofreturnaddress:
5861     setValue(&I,
5862              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5863                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5864     return;
5865   case Intrinsic::sponentry:
5866     setValue(&I,
5867              DAG.getNode(ISD::SPONENTRY, sdl,
5868                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5869     return;
5870   case Intrinsic::frameaddress:
5871     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5872                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5873                              getValue(I.getArgOperand(0))));
5874     return;
5875   case Intrinsic::read_volatile_register:
5876   case Intrinsic::read_register: {
5877     Value *Reg = I.getArgOperand(0);
5878     SDValue Chain = getRoot();
5879     SDValue RegName =
5880         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5881     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5882     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5883       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5884     setValue(&I, Res);
5885     DAG.setRoot(Res.getValue(1));
5886     return;
5887   }
5888   case Intrinsic::write_register: {
5889     Value *Reg = I.getArgOperand(0);
5890     Value *RegValue = I.getArgOperand(1);
5891     SDValue Chain = getRoot();
5892     SDValue RegName =
5893         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5894     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5895                             RegName, getValue(RegValue)));
5896     return;
5897   }
5898   case Intrinsic::memcpy: {
5899     const auto &MCI = cast<MemCpyInst>(I);
5900     SDValue Op1 = getValue(I.getArgOperand(0));
5901     SDValue Op2 = getValue(I.getArgOperand(1));
5902     SDValue Op3 = getValue(I.getArgOperand(2));
5903     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5904     Align DstAlign = MCI.getDestAlign().valueOrOne();
5905     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5906     Align Alignment = std::min(DstAlign, SrcAlign);
5907     bool isVol = MCI.isVolatile();
5908     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5909     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5910     // node.
5911     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5912     SDValue MC = DAG.getMemcpy(
5913         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5914         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5915         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5916     updateDAGForMaybeTailCall(MC);
5917     return;
5918   }
5919   case Intrinsic::memcpy_inline: {
5920     const auto &MCI = cast<MemCpyInlineInst>(I);
5921     SDValue Dst = getValue(I.getArgOperand(0));
5922     SDValue Src = getValue(I.getArgOperand(1));
5923     SDValue Size = getValue(I.getArgOperand(2));
5924     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5925     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5926     Align DstAlign = MCI.getDestAlign().valueOrOne();
5927     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5928     Align Alignment = std::min(DstAlign, SrcAlign);
5929     bool isVol = MCI.isVolatile();
5930     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5931     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5932     // node.
5933     SDValue MC = DAG.getMemcpy(
5934         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5935         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5936         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5937     updateDAGForMaybeTailCall(MC);
5938     return;
5939   }
5940   case Intrinsic::memset: {
5941     const auto &MSI = cast<MemSetInst>(I);
5942     SDValue Op1 = getValue(I.getArgOperand(0));
5943     SDValue Op2 = getValue(I.getArgOperand(1));
5944     SDValue Op3 = getValue(I.getArgOperand(2));
5945     // @llvm.memset defines 0 and 1 to both mean no alignment.
5946     Align Alignment = MSI.getDestAlign().valueOrOne();
5947     bool isVol = MSI.isVolatile();
5948     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5949     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5950     SDValue MS = DAG.getMemset(
5951         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5952         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5953     updateDAGForMaybeTailCall(MS);
5954     return;
5955   }
5956   case Intrinsic::memset_inline: {
5957     const auto &MSII = cast<MemSetInlineInst>(I);
5958     SDValue Dst = getValue(I.getArgOperand(0));
5959     SDValue Value = getValue(I.getArgOperand(1));
5960     SDValue Size = getValue(I.getArgOperand(2));
5961     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5962     // @llvm.memset defines 0 and 1 to both mean no alignment.
5963     Align DstAlign = MSII.getDestAlign().valueOrOne();
5964     bool isVol = MSII.isVolatile();
5965     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5966     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5967     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5968                                /* AlwaysInline */ true, isTC,
5969                                MachinePointerInfo(I.getArgOperand(0)),
5970                                I.getAAMetadata());
5971     updateDAGForMaybeTailCall(MC);
5972     return;
5973   }
5974   case Intrinsic::memmove: {
5975     const auto &MMI = cast<MemMoveInst>(I);
5976     SDValue Op1 = getValue(I.getArgOperand(0));
5977     SDValue Op2 = getValue(I.getArgOperand(1));
5978     SDValue Op3 = getValue(I.getArgOperand(2));
5979     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5980     Align DstAlign = MMI.getDestAlign().valueOrOne();
5981     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5982     Align Alignment = std::min(DstAlign, SrcAlign);
5983     bool isVol = MMI.isVolatile();
5984     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5985     // FIXME: Support passing different dest/src alignments to the memmove DAG
5986     // node.
5987     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5988     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5989                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5990                                 MachinePointerInfo(I.getArgOperand(1)),
5991                                 I.getAAMetadata(), AA);
5992     updateDAGForMaybeTailCall(MM);
5993     return;
5994   }
5995   case Intrinsic::memcpy_element_unordered_atomic: {
5996     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5997     SDValue Dst = getValue(MI.getRawDest());
5998     SDValue Src = getValue(MI.getRawSource());
5999     SDValue Length = getValue(MI.getLength());
6000 
6001     Type *LengthTy = MI.getLength()->getType();
6002     unsigned ElemSz = MI.getElementSizeInBytes();
6003     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6004     SDValue MC =
6005         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6006                             isTC, MachinePointerInfo(MI.getRawDest()),
6007                             MachinePointerInfo(MI.getRawSource()));
6008     updateDAGForMaybeTailCall(MC);
6009     return;
6010   }
6011   case Intrinsic::memmove_element_unordered_atomic: {
6012     auto &MI = cast<AtomicMemMoveInst>(I);
6013     SDValue Dst = getValue(MI.getRawDest());
6014     SDValue Src = getValue(MI.getRawSource());
6015     SDValue Length = getValue(MI.getLength());
6016 
6017     Type *LengthTy = MI.getLength()->getType();
6018     unsigned ElemSz = MI.getElementSizeInBytes();
6019     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6020     SDValue MC =
6021         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6022                              isTC, MachinePointerInfo(MI.getRawDest()),
6023                              MachinePointerInfo(MI.getRawSource()));
6024     updateDAGForMaybeTailCall(MC);
6025     return;
6026   }
6027   case Intrinsic::memset_element_unordered_atomic: {
6028     auto &MI = cast<AtomicMemSetInst>(I);
6029     SDValue Dst = getValue(MI.getRawDest());
6030     SDValue Val = getValue(MI.getValue());
6031     SDValue Length = getValue(MI.getLength());
6032 
6033     Type *LengthTy = MI.getLength()->getType();
6034     unsigned ElemSz = MI.getElementSizeInBytes();
6035     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6036     SDValue MC =
6037         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6038                             isTC, MachinePointerInfo(MI.getRawDest()));
6039     updateDAGForMaybeTailCall(MC);
6040     return;
6041   }
6042   case Intrinsic::call_preallocated_setup: {
6043     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6044     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6045     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6046                               getRoot(), SrcValue);
6047     setValue(&I, Res);
6048     DAG.setRoot(Res);
6049     return;
6050   }
6051   case Intrinsic::call_preallocated_arg: {
6052     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6053     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6054     SDValue Ops[3];
6055     Ops[0] = getRoot();
6056     Ops[1] = SrcValue;
6057     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6058                                    MVT::i32); // arg index
6059     SDValue Res = DAG.getNode(
6060         ISD::PREALLOCATED_ARG, sdl,
6061         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6062     setValue(&I, Res);
6063     DAG.setRoot(Res.getValue(1));
6064     return;
6065   }
6066   case Intrinsic::dbg_addr:
6067   case Intrinsic::dbg_declare: {
6068     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6069     // they are non-variadic.
6070     const auto &DI = cast<DbgVariableIntrinsic>(I);
6071     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6072     DILocalVariable *Variable = DI.getVariable();
6073     DIExpression *Expression = DI.getExpression();
6074     dropDanglingDebugInfo(Variable, Expression);
6075     assert(Variable && "Missing variable");
6076     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6077                       << "\n");
6078     // Check if address has undef value.
6079     const Value *Address = DI.getVariableLocationOp(0);
6080     if (!Address || isa<UndefValue>(Address) ||
6081         (Address->use_empty() && !isa<Argument>(Address))) {
6082       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6083                         << " (bad/undef/unused-arg address)\n");
6084       return;
6085     }
6086 
6087     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6088 
6089     // Check if this variable can be described by a frame index, typically
6090     // either as a static alloca or a byval parameter.
6091     int FI = std::numeric_limits<int>::max();
6092     if (const auto *AI =
6093             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6094       if (AI->isStaticAlloca()) {
6095         auto I = FuncInfo.StaticAllocaMap.find(AI);
6096         if (I != FuncInfo.StaticAllocaMap.end())
6097           FI = I->second;
6098       }
6099     } else if (const auto *Arg = dyn_cast<Argument>(
6100                    Address->stripInBoundsConstantOffsets())) {
6101       FI = FuncInfo.getArgumentFrameIndex(Arg);
6102     }
6103 
6104     // llvm.dbg.addr is control dependent and always generates indirect
6105     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6106     // the MachineFunction variable table.
6107     if (FI != std::numeric_limits<int>::max()) {
6108       if (Intrinsic == Intrinsic::dbg_addr) {
6109         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6110             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6111             dl, SDNodeOrder);
6112         DAG.AddDbgValue(SDV, isParameter);
6113       } else {
6114         LLVM_DEBUG(dbgs() << "Skipping " << DI
6115                           << " (variable info stashed in MF side table)\n");
6116       }
6117       return;
6118     }
6119 
6120     SDValue &N = NodeMap[Address];
6121     if (!N.getNode() && isa<Argument>(Address))
6122       // Check unused arguments map.
6123       N = UnusedArgNodeMap[Address];
6124     SDDbgValue *SDV;
6125     if (N.getNode()) {
6126       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6127         Address = BCI->getOperand(0);
6128       // Parameters are handled specially.
6129       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6130       if (isParameter && FINode) {
6131         // Byval parameter. We have a frame index at this point.
6132         SDV =
6133             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6134                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6135       } else if (isa<Argument>(Address)) {
6136         // Address is an argument, so try to emit its dbg value using
6137         // virtual register info from the FuncInfo.ValueMap.
6138         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6139                                  FuncArgumentDbgValueKind::Declare, N);
6140         return;
6141       } else {
6142         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6143                               true, dl, SDNodeOrder);
6144       }
6145       DAG.AddDbgValue(SDV, isParameter);
6146     } else {
6147       // If Address is an argument then try to emit its dbg value using
6148       // virtual register info from the FuncInfo.ValueMap.
6149       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6150                                     FuncArgumentDbgValueKind::Declare, N)) {
6151         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6152                           << " (could not emit func-arg dbg_value)\n");
6153       }
6154     }
6155     return;
6156   }
6157   case Intrinsic::dbg_label: {
6158     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6159     DILabel *Label = DI.getLabel();
6160     assert(Label && "Missing label");
6161 
6162     SDDbgLabel *SDV;
6163     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6164     DAG.AddDbgLabel(SDV);
6165     return;
6166   }
6167   case Intrinsic::dbg_value: {
6168     const DbgValueInst &DI = cast<DbgValueInst>(I);
6169     assert(DI.getVariable() && "Missing variable");
6170 
6171     DILocalVariable *Variable = DI.getVariable();
6172     DIExpression *Expression = DI.getExpression();
6173     dropDanglingDebugInfo(Variable, Expression);
6174     SmallVector<Value *, 4> Values(DI.getValues());
6175     if (Values.empty())
6176       return;
6177 
6178     if (llvm::is_contained(Values, nullptr))
6179       return;
6180 
6181     bool IsVariadic = DI.hasArgList();
6182     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6183                           SDNodeOrder, IsVariadic))
6184       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6185     return;
6186   }
6187 
6188   case Intrinsic::eh_typeid_for: {
6189     // Find the type id for the given typeinfo.
6190     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6191     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6192     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6193     setValue(&I, Res);
6194     return;
6195   }
6196 
6197   case Intrinsic::eh_return_i32:
6198   case Intrinsic::eh_return_i64:
6199     DAG.getMachineFunction().setCallsEHReturn(true);
6200     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6201                             MVT::Other,
6202                             getControlRoot(),
6203                             getValue(I.getArgOperand(0)),
6204                             getValue(I.getArgOperand(1))));
6205     return;
6206   case Intrinsic::eh_unwind_init:
6207     DAG.getMachineFunction().setCallsUnwindInit(true);
6208     return;
6209   case Intrinsic::eh_dwarf_cfa:
6210     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6211                              TLI.getPointerTy(DAG.getDataLayout()),
6212                              getValue(I.getArgOperand(0))));
6213     return;
6214   case Intrinsic::eh_sjlj_callsite: {
6215     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6216     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6217     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6218 
6219     MMI.setCurrentCallSite(CI->getZExtValue());
6220     return;
6221   }
6222   case Intrinsic::eh_sjlj_functioncontext: {
6223     // Get and store the index of the function context.
6224     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6225     AllocaInst *FnCtx =
6226       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6227     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6228     MFI.setFunctionContextIndex(FI);
6229     return;
6230   }
6231   case Intrinsic::eh_sjlj_setjmp: {
6232     SDValue Ops[2];
6233     Ops[0] = getRoot();
6234     Ops[1] = getValue(I.getArgOperand(0));
6235     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6236                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6237     setValue(&I, Op.getValue(0));
6238     DAG.setRoot(Op.getValue(1));
6239     return;
6240   }
6241   case Intrinsic::eh_sjlj_longjmp:
6242     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6243                             getRoot(), getValue(I.getArgOperand(0))));
6244     return;
6245   case Intrinsic::eh_sjlj_setup_dispatch:
6246     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6247                             getRoot()));
6248     return;
6249   case Intrinsic::masked_gather:
6250     visitMaskedGather(I);
6251     return;
6252   case Intrinsic::masked_load:
6253     visitMaskedLoad(I);
6254     return;
6255   case Intrinsic::masked_scatter:
6256     visitMaskedScatter(I);
6257     return;
6258   case Intrinsic::masked_store:
6259     visitMaskedStore(I);
6260     return;
6261   case Intrinsic::masked_expandload:
6262     visitMaskedLoad(I, true /* IsExpanding */);
6263     return;
6264   case Intrinsic::masked_compressstore:
6265     visitMaskedStore(I, true /* IsCompressing */);
6266     return;
6267   case Intrinsic::powi:
6268     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6269                             getValue(I.getArgOperand(1)), DAG));
6270     return;
6271   case Intrinsic::log:
6272     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6273     return;
6274   case Intrinsic::log2:
6275     setValue(&I,
6276              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6277     return;
6278   case Intrinsic::log10:
6279     setValue(&I,
6280              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6281     return;
6282   case Intrinsic::exp:
6283     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6284     return;
6285   case Intrinsic::exp2:
6286     setValue(&I,
6287              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6288     return;
6289   case Intrinsic::pow:
6290     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6291                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6292     return;
6293   case Intrinsic::sqrt:
6294   case Intrinsic::fabs:
6295   case Intrinsic::sin:
6296   case Intrinsic::cos:
6297   case Intrinsic::floor:
6298   case Intrinsic::ceil:
6299   case Intrinsic::trunc:
6300   case Intrinsic::rint:
6301   case Intrinsic::nearbyint:
6302   case Intrinsic::round:
6303   case Intrinsic::roundeven:
6304   case Intrinsic::canonicalize: {
6305     unsigned Opcode;
6306     switch (Intrinsic) {
6307     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6308     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6309     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6310     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6311     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6312     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6313     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6314     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6315     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6316     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6317     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6318     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6319     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6320     }
6321 
6322     setValue(&I, DAG.getNode(Opcode, sdl,
6323                              getValue(I.getArgOperand(0)).getValueType(),
6324                              getValue(I.getArgOperand(0)), Flags));
6325     return;
6326   }
6327   case Intrinsic::lround:
6328   case Intrinsic::llround:
6329   case Intrinsic::lrint:
6330   case Intrinsic::llrint: {
6331     unsigned Opcode;
6332     switch (Intrinsic) {
6333     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6334     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6335     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6336     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6337     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6338     }
6339 
6340     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6341     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6342                              getValue(I.getArgOperand(0))));
6343     return;
6344   }
6345   case Intrinsic::minnum:
6346     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6347                              getValue(I.getArgOperand(0)).getValueType(),
6348                              getValue(I.getArgOperand(0)),
6349                              getValue(I.getArgOperand(1)), Flags));
6350     return;
6351   case Intrinsic::maxnum:
6352     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6353                              getValue(I.getArgOperand(0)).getValueType(),
6354                              getValue(I.getArgOperand(0)),
6355                              getValue(I.getArgOperand(1)), Flags));
6356     return;
6357   case Intrinsic::minimum:
6358     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6359                              getValue(I.getArgOperand(0)).getValueType(),
6360                              getValue(I.getArgOperand(0)),
6361                              getValue(I.getArgOperand(1)), Flags));
6362     return;
6363   case Intrinsic::maximum:
6364     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6365                              getValue(I.getArgOperand(0)).getValueType(),
6366                              getValue(I.getArgOperand(0)),
6367                              getValue(I.getArgOperand(1)), Flags));
6368     return;
6369   case Intrinsic::copysign:
6370     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6371                              getValue(I.getArgOperand(0)).getValueType(),
6372                              getValue(I.getArgOperand(0)),
6373                              getValue(I.getArgOperand(1)), Flags));
6374     return;
6375   case Intrinsic::arithmetic_fence: {
6376     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6377                              getValue(I.getArgOperand(0)).getValueType(),
6378                              getValue(I.getArgOperand(0)), Flags));
6379     return;
6380   }
6381   case Intrinsic::fma:
6382     setValue(&I, DAG.getNode(
6383                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6384                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6385                      getValue(I.getArgOperand(2)), Flags));
6386     return;
6387 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6388   case Intrinsic::INTRINSIC:
6389 #include "llvm/IR/ConstrainedOps.def"
6390     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6391     return;
6392 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6393 #include "llvm/IR/VPIntrinsics.def"
6394     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6395     return;
6396   case Intrinsic::fptrunc_round: {
6397     // Get the last argument, the metadata and convert it to an integer in the
6398     // call
6399     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6400     Optional<RoundingMode> RoundMode =
6401         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6402 
6403     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6404 
6405     // Propagate fast-math-flags from IR to node(s).
6406     SDNodeFlags Flags;
6407     Flags.copyFMF(*cast<FPMathOperator>(&I));
6408     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6409 
6410     SDValue Result;
6411     Result = DAG.getNode(
6412         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6413         DAG.getTargetConstant((int)*RoundMode, sdl,
6414                               TLI.getPointerTy(DAG.getDataLayout())));
6415     setValue(&I, Result);
6416 
6417     return;
6418   }
6419   case Intrinsic::fmuladd: {
6420     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6421     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6422         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6423       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6424                                getValue(I.getArgOperand(0)).getValueType(),
6425                                getValue(I.getArgOperand(0)),
6426                                getValue(I.getArgOperand(1)),
6427                                getValue(I.getArgOperand(2)), Flags));
6428     } else {
6429       // TODO: Intrinsic calls should have fast-math-flags.
6430       SDValue Mul = DAG.getNode(
6431           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6432           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6433       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6434                                 getValue(I.getArgOperand(0)).getValueType(),
6435                                 Mul, getValue(I.getArgOperand(2)), Flags);
6436       setValue(&I, Add);
6437     }
6438     return;
6439   }
6440   case Intrinsic::convert_to_fp16:
6441     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6442                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6443                                          getValue(I.getArgOperand(0)),
6444                                          DAG.getTargetConstant(0, sdl,
6445                                                                MVT::i32))));
6446     return;
6447   case Intrinsic::convert_from_fp16:
6448     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6449                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6450                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6451                                          getValue(I.getArgOperand(0)))));
6452     return;
6453   case Intrinsic::fptosi_sat: {
6454     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6455     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6456                              getValue(I.getArgOperand(0)),
6457                              DAG.getValueType(VT.getScalarType())));
6458     return;
6459   }
6460   case Intrinsic::fptoui_sat: {
6461     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6462     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6463                              getValue(I.getArgOperand(0)),
6464                              DAG.getValueType(VT.getScalarType())));
6465     return;
6466   }
6467   case Intrinsic::set_rounding:
6468     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6469                       {getRoot(), getValue(I.getArgOperand(0))});
6470     setValue(&I, Res);
6471     DAG.setRoot(Res.getValue(0));
6472     return;
6473   case Intrinsic::is_fpclass: {
6474     const DataLayout DLayout = DAG.getDataLayout();
6475     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6476     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6477     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6478     MachineFunction &MF = DAG.getMachineFunction();
6479     const Function &F = MF.getFunction();
6480     SDValue Op = getValue(I.getArgOperand(0));
6481     SDNodeFlags Flags;
6482     Flags.setNoFPExcept(
6483         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6484     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6485     // expansion can use illegal types. Making expansion early allows
6486     // legalizing these types prior to selection.
6487     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6488       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6489       setValue(&I, Result);
6490       return;
6491     }
6492 
6493     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6494     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6495     setValue(&I, V);
6496     return;
6497   }
6498   case Intrinsic::pcmarker: {
6499     SDValue Tmp = getValue(I.getArgOperand(0));
6500     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6501     return;
6502   }
6503   case Intrinsic::readcyclecounter: {
6504     SDValue Op = getRoot();
6505     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6506                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6507     setValue(&I, Res);
6508     DAG.setRoot(Res.getValue(1));
6509     return;
6510   }
6511   case Intrinsic::bitreverse:
6512     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6513                              getValue(I.getArgOperand(0)).getValueType(),
6514                              getValue(I.getArgOperand(0))));
6515     return;
6516   case Intrinsic::bswap:
6517     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6518                              getValue(I.getArgOperand(0)).getValueType(),
6519                              getValue(I.getArgOperand(0))));
6520     return;
6521   case Intrinsic::cttz: {
6522     SDValue Arg = getValue(I.getArgOperand(0));
6523     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6524     EVT Ty = Arg.getValueType();
6525     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6526                              sdl, Ty, Arg));
6527     return;
6528   }
6529   case Intrinsic::ctlz: {
6530     SDValue Arg = getValue(I.getArgOperand(0));
6531     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6532     EVT Ty = Arg.getValueType();
6533     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6534                              sdl, Ty, Arg));
6535     return;
6536   }
6537   case Intrinsic::ctpop: {
6538     SDValue Arg = getValue(I.getArgOperand(0));
6539     EVT Ty = Arg.getValueType();
6540     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6541     return;
6542   }
6543   case Intrinsic::fshl:
6544   case Intrinsic::fshr: {
6545     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6546     SDValue X = getValue(I.getArgOperand(0));
6547     SDValue Y = getValue(I.getArgOperand(1));
6548     SDValue Z = getValue(I.getArgOperand(2));
6549     EVT VT = X.getValueType();
6550 
6551     if (X == Y) {
6552       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6553       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6554     } else {
6555       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6556       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6557     }
6558     return;
6559   }
6560   case Intrinsic::sadd_sat: {
6561     SDValue Op1 = getValue(I.getArgOperand(0));
6562     SDValue Op2 = getValue(I.getArgOperand(1));
6563     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6564     return;
6565   }
6566   case Intrinsic::uadd_sat: {
6567     SDValue Op1 = getValue(I.getArgOperand(0));
6568     SDValue Op2 = getValue(I.getArgOperand(1));
6569     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6570     return;
6571   }
6572   case Intrinsic::ssub_sat: {
6573     SDValue Op1 = getValue(I.getArgOperand(0));
6574     SDValue Op2 = getValue(I.getArgOperand(1));
6575     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6576     return;
6577   }
6578   case Intrinsic::usub_sat: {
6579     SDValue Op1 = getValue(I.getArgOperand(0));
6580     SDValue Op2 = getValue(I.getArgOperand(1));
6581     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6582     return;
6583   }
6584   case Intrinsic::sshl_sat: {
6585     SDValue Op1 = getValue(I.getArgOperand(0));
6586     SDValue Op2 = getValue(I.getArgOperand(1));
6587     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6588     return;
6589   }
6590   case Intrinsic::ushl_sat: {
6591     SDValue Op1 = getValue(I.getArgOperand(0));
6592     SDValue Op2 = getValue(I.getArgOperand(1));
6593     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6594     return;
6595   }
6596   case Intrinsic::smul_fix:
6597   case Intrinsic::umul_fix:
6598   case Intrinsic::smul_fix_sat:
6599   case Intrinsic::umul_fix_sat: {
6600     SDValue Op1 = getValue(I.getArgOperand(0));
6601     SDValue Op2 = getValue(I.getArgOperand(1));
6602     SDValue Op3 = getValue(I.getArgOperand(2));
6603     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6604                              Op1.getValueType(), Op1, Op2, Op3));
6605     return;
6606   }
6607   case Intrinsic::sdiv_fix:
6608   case Intrinsic::udiv_fix:
6609   case Intrinsic::sdiv_fix_sat:
6610   case Intrinsic::udiv_fix_sat: {
6611     SDValue Op1 = getValue(I.getArgOperand(0));
6612     SDValue Op2 = getValue(I.getArgOperand(1));
6613     SDValue Op3 = getValue(I.getArgOperand(2));
6614     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6615                               Op1, Op2, Op3, DAG, TLI));
6616     return;
6617   }
6618   case Intrinsic::smax: {
6619     SDValue Op1 = getValue(I.getArgOperand(0));
6620     SDValue Op2 = getValue(I.getArgOperand(1));
6621     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6622     return;
6623   }
6624   case Intrinsic::smin: {
6625     SDValue Op1 = getValue(I.getArgOperand(0));
6626     SDValue Op2 = getValue(I.getArgOperand(1));
6627     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6628     return;
6629   }
6630   case Intrinsic::umax: {
6631     SDValue Op1 = getValue(I.getArgOperand(0));
6632     SDValue Op2 = getValue(I.getArgOperand(1));
6633     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6634     return;
6635   }
6636   case Intrinsic::umin: {
6637     SDValue Op1 = getValue(I.getArgOperand(0));
6638     SDValue Op2 = getValue(I.getArgOperand(1));
6639     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6640     return;
6641   }
6642   case Intrinsic::abs: {
6643     // TODO: Preserve "int min is poison" arg in SDAG?
6644     SDValue Op1 = getValue(I.getArgOperand(0));
6645     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6646     return;
6647   }
6648   case Intrinsic::stacksave: {
6649     SDValue Op = getRoot();
6650     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6651     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6652     setValue(&I, Res);
6653     DAG.setRoot(Res.getValue(1));
6654     return;
6655   }
6656   case Intrinsic::stackrestore:
6657     Res = getValue(I.getArgOperand(0));
6658     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6659     return;
6660   case Intrinsic::get_dynamic_area_offset: {
6661     SDValue Op = getRoot();
6662     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6663     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6664     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6665     // target.
6666     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6667       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6668                          " intrinsic!");
6669     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6670                       Op);
6671     DAG.setRoot(Op);
6672     setValue(&I, Res);
6673     return;
6674   }
6675   case Intrinsic::stackguard: {
6676     MachineFunction &MF = DAG.getMachineFunction();
6677     const Module &M = *MF.getFunction().getParent();
6678     SDValue Chain = getRoot();
6679     if (TLI.useLoadStackGuardNode()) {
6680       Res = getLoadStackGuard(DAG, sdl, Chain);
6681     } else {
6682       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6683       const Value *Global = TLI.getSDagStackGuard(M);
6684       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6685       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6686                         MachinePointerInfo(Global, 0), Align,
6687                         MachineMemOperand::MOVolatile);
6688     }
6689     if (TLI.useStackGuardXorFP())
6690       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6691     DAG.setRoot(Chain);
6692     setValue(&I, Res);
6693     return;
6694   }
6695   case Intrinsic::stackprotector: {
6696     // Emit code into the DAG to store the stack guard onto the stack.
6697     MachineFunction &MF = DAG.getMachineFunction();
6698     MachineFrameInfo &MFI = MF.getFrameInfo();
6699     SDValue Src, Chain = getRoot();
6700 
6701     if (TLI.useLoadStackGuardNode())
6702       Src = getLoadStackGuard(DAG, sdl, Chain);
6703     else
6704       Src = getValue(I.getArgOperand(0));   // The guard's value.
6705 
6706     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6707 
6708     int FI = FuncInfo.StaticAllocaMap[Slot];
6709     MFI.setStackProtectorIndex(FI);
6710     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6711 
6712     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6713 
6714     // Store the stack protector onto the stack.
6715     Res = DAG.getStore(
6716         Chain, sdl, Src, FIN,
6717         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6718         MaybeAlign(), MachineMemOperand::MOVolatile);
6719     setValue(&I, Res);
6720     DAG.setRoot(Res);
6721     return;
6722   }
6723   case Intrinsic::objectsize:
6724     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6725 
6726   case Intrinsic::is_constant:
6727     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6728 
6729   case Intrinsic::annotation:
6730   case Intrinsic::ptr_annotation:
6731   case Intrinsic::launder_invariant_group:
6732   case Intrinsic::strip_invariant_group:
6733     // Drop the intrinsic, but forward the value
6734     setValue(&I, getValue(I.getOperand(0)));
6735     return;
6736 
6737   case Intrinsic::assume:
6738   case Intrinsic::experimental_noalias_scope_decl:
6739   case Intrinsic::var_annotation:
6740   case Intrinsic::sideeffect:
6741     // Discard annotate attributes, noalias scope declarations, assumptions, and
6742     // artificial side-effects.
6743     return;
6744 
6745   case Intrinsic::codeview_annotation: {
6746     // Emit a label associated with this metadata.
6747     MachineFunction &MF = DAG.getMachineFunction();
6748     MCSymbol *Label =
6749         MF.getMMI().getContext().createTempSymbol("annotation", true);
6750     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6751     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6752     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6753     DAG.setRoot(Res);
6754     return;
6755   }
6756 
6757   case Intrinsic::init_trampoline: {
6758     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6759 
6760     SDValue Ops[6];
6761     Ops[0] = getRoot();
6762     Ops[1] = getValue(I.getArgOperand(0));
6763     Ops[2] = getValue(I.getArgOperand(1));
6764     Ops[3] = getValue(I.getArgOperand(2));
6765     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6766     Ops[5] = DAG.getSrcValue(F);
6767 
6768     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6769 
6770     DAG.setRoot(Res);
6771     return;
6772   }
6773   case Intrinsic::adjust_trampoline:
6774     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6775                              TLI.getPointerTy(DAG.getDataLayout()),
6776                              getValue(I.getArgOperand(0))));
6777     return;
6778   case Intrinsic::gcroot: {
6779     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6780            "only valid in functions with gc specified, enforced by Verifier");
6781     assert(GFI && "implied by previous");
6782     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6783     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6784 
6785     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6786     GFI->addStackRoot(FI->getIndex(), TypeMap);
6787     return;
6788   }
6789   case Intrinsic::gcread:
6790   case Intrinsic::gcwrite:
6791     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6792   case Intrinsic::flt_rounds:
6793     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6794     setValue(&I, Res);
6795     DAG.setRoot(Res.getValue(1));
6796     return;
6797 
6798   case Intrinsic::expect:
6799     // Just replace __builtin_expect(exp, c) with EXP.
6800     setValue(&I, getValue(I.getArgOperand(0)));
6801     return;
6802 
6803   case Intrinsic::ubsantrap:
6804   case Intrinsic::debugtrap:
6805   case Intrinsic::trap: {
6806     StringRef TrapFuncName =
6807         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6808     if (TrapFuncName.empty()) {
6809       switch (Intrinsic) {
6810       case Intrinsic::trap:
6811         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6812         break;
6813       case Intrinsic::debugtrap:
6814         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6815         break;
6816       case Intrinsic::ubsantrap:
6817         DAG.setRoot(DAG.getNode(
6818             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6819             DAG.getTargetConstant(
6820                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6821                 MVT::i32)));
6822         break;
6823       default: llvm_unreachable("unknown trap intrinsic");
6824       }
6825       return;
6826     }
6827     TargetLowering::ArgListTy Args;
6828     if (Intrinsic == Intrinsic::ubsantrap) {
6829       Args.push_back(TargetLoweringBase::ArgListEntry());
6830       Args[0].Val = I.getArgOperand(0);
6831       Args[0].Node = getValue(Args[0].Val);
6832       Args[0].Ty = Args[0].Val->getType();
6833     }
6834 
6835     TargetLowering::CallLoweringInfo CLI(DAG);
6836     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6837         CallingConv::C, I.getType(),
6838         DAG.getExternalSymbol(TrapFuncName.data(),
6839                               TLI.getPointerTy(DAG.getDataLayout())),
6840         std::move(Args));
6841 
6842     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6843     DAG.setRoot(Result.second);
6844     return;
6845   }
6846 
6847   case Intrinsic::uadd_with_overflow:
6848   case Intrinsic::sadd_with_overflow:
6849   case Intrinsic::usub_with_overflow:
6850   case Intrinsic::ssub_with_overflow:
6851   case Intrinsic::umul_with_overflow:
6852   case Intrinsic::smul_with_overflow: {
6853     ISD::NodeType Op;
6854     switch (Intrinsic) {
6855     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6856     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6857     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6858     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6859     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6860     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6861     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6862     }
6863     SDValue Op1 = getValue(I.getArgOperand(0));
6864     SDValue Op2 = getValue(I.getArgOperand(1));
6865 
6866     EVT ResultVT = Op1.getValueType();
6867     EVT OverflowVT = MVT::i1;
6868     if (ResultVT.isVector())
6869       OverflowVT = EVT::getVectorVT(
6870           *Context, OverflowVT, ResultVT.getVectorElementCount());
6871 
6872     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6873     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6874     return;
6875   }
6876   case Intrinsic::prefetch: {
6877     SDValue Ops[5];
6878     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6879     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6880     Ops[0] = DAG.getRoot();
6881     Ops[1] = getValue(I.getArgOperand(0));
6882     Ops[2] = getValue(I.getArgOperand(1));
6883     Ops[3] = getValue(I.getArgOperand(2));
6884     Ops[4] = getValue(I.getArgOperand(3));
6885     SDValue Result = DAG.getMemIntrinsicNode(
6886         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6887         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6888         /* align */ None, Flags);
6889 
6890     // Chain the prefetch in parallell with any pending loads, to stay out of
6891     // the way of later optimizations.
6892     PendingLoads.push_back(Result);
6893     Result = getRoot();
6894     DAG.setRoot(Result);
6895     return;
6896   }
6897   case Intrinsic::lifetime_start:
6898   case Intrinsic::lifetime_end: {
6899     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6900     // Stack coloring is not enabled in O0, discard region information.
6901     if (TM.getOptLevel() == CodeGenOpt::None)
6902       return;
6903 
6904     const int64_t ObjectSize =
6905         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6906     Value *const ObjectPtr = I.getArgOperand(1);
6907     SmallVector<const Value *, 4> Allocas;
6908     getUnderlyingObjects(ObjectPtr, Allocas);
6909 
6910     for (const Value *Alloca : Allocas) {
6911       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6912 
6913       // Could not find an Alloca.
6914       if (!LifetimeObject)
6915         continue;
6916 
6917       // First check that the Alloca is static, otherwise it won't have a
6918       // valid frame index.
6919       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6920       if (SI == FuncInfo.StaticAllocaMap.end())
6921         return;
6922 
6923       const int FrameIndex = SI->second;
6924       int64_t Offset;
6925       if (GetPointerBaseWithConstantOffset(
6926               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6927         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6928       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6929                                 Offset);
6930       DAG.setRoot(Res);
6931     }
6932     return;
6933   }
6934   case Intrinsic::pseudoprobe: {
6935     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6936     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6937     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6938     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6939     DAG.setRoot(Res);
6940     return;
6941   }
6942   case Intrinsic::invariant_start:
6943     // Discard region information.
6944     setValue(&I,
6945              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6946     return;
6947   case Intrinsic::invariant_end:
6948     // Discard region information.
6949     return;
6950   case Intrinsic::clear_cache:
6951     /// FunctionName may be null.
6952     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6953       lowerCallToExternalSymbol(I, FunctionName);
6954     return;
6955   case Intrinsic::donothing:
6956   case Intrinsic::seh_try_begin:
6957   case Intrinsic::seh_scope_begin:
6958   case Intrinsic::seh_try_end:
6959   case Intrinsic::seh_scope_end:
6960     // ignore
6961     return;
6962   case Intrinsic::experimental_stackmap:
6963     visitStackmap(I);
6964     return;
6965   case Intrinsic::experimental_patchpoint_void:
6966   case Intrinsic::experimental_patchpoint_i64:
6967     visitPatchpoint(I);
6968     return;
6969   case Intrinsic::experimental_gc_statepoint:
6970     LowerStatepoint(cast<GCStatepointInst>(I));
6971     return;
6972   case Intrinsic::experimental_gc_result:
6973     visitGCResult(cast<GCResultInst>(I));
6974     return;
6975   case Intrinsic::experimental_gc_relocate:
6976     visitGCRelocate(cast<GCRelocateInst>(I));
6977     return;
6978   case Intrinsic::instrprof_cover:
6979     llvm_unreachable("instrprof failed to lower a cover");
6980   case Intrinsic::instrprof_increment:
6981     llvm_unreachable("instrprof failed to lower an increment");
6982   case Intrinsic::instrprof_value_profile:
6983     llvm_unreachable("instrprof failed to lower a value profiling call");
6984   case Intrinsic::localescape: {
6985     MachineFunction &MF = DAG.getMachineFunction();
6986     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6987 
6988     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6989     // is the same on all targets.
6990     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6991       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6992       if (isa<ConstantPointerNull>(Arg))
6993         continue; // Skip null pointers. They represent a hole in index space.
6994       AllocaInst *Slot = cast<AllocaInst>(Arg);
6995       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6996              "can only escape static allocas");
6997       int FI = FuncInfo.StaticAllocaMap[Slot];
6998       MCSymbol *FrameAllocSym =
6999           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7000               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7001       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7002               TII->get(TargetOpcode::LOCAL_ESCAPE))
7003           .addSym(FrameAllocSym)
7004           .addFrameIndex(FI);
7005     }
7006 
7007     return;
7008   }
7009 
7010   case Intrinsic::localrecover: {
7011     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7012     MachineFunction &MF = DAG.getMachineFunction();
7013 
7014     // Get the symbol that defines the frame offset.
7015     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7016     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7017     unsigned IdxVal =
7018         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7019     MCSymbol *FrameAllocSym =
7020         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7021             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7022 
7023     Value *FP = I.getArgOperand(1);
7024     SDValue FPVal = getValue(FP);
7025     EVT PtrVT = FPVal.getValueType();
7026 
7027     // Create a MCSymbol for the label to avoid any target lowering
7028     // that would make this PC relative.
7029     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7030     SDValue OffsetVal =
7031         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7032 
7033     // Add the offset to the FP.
7034     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7035     setValue(&I, Add);
7036 
7037     return;
7038   }
7039 
7040   case Intrinsic::eh_exceptionpointer:
7041   case Intrinsic::eh_exceptioncode: {
7042     // Get the exception pointer vreg, copy from it, and resize it to fit.
7043     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7044     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7045     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7046     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7047     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7048     if (Intrinsic == Intrinsic::eh_exceptioncode)
7049       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7050     setValue(&I, N);
7051     return;
7052   }
7053   case Intrinsic::xray_customevent: {
7054     // Here we want to make sure that the intrinsic behaves as if it has a
7055     // specific calling convention, and only for x86_64.
7056     // FIXME: Support other platforms later.
7057     const auto &Triple = DAG.getTarget().getTargetTriple();
7058     if (Triple.getArch() != Triple::x86_64)
7059       return;
7060 
7061     SmallVector<SDValue, 8> Ops;
7062 
7063     // We want to say that we always want the arguments in registers.
7064     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7065     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7066     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7067     SDValue Chain = getRoot();
7068     Ops.push_back(LogEntryVal);
7069     Ops.push_back(StrSizeVal);
7070     Ops.push_back(Chain);
7071 
7072     // We need to enforce the calling convention for the callsite, so that
7073     // argument ordering is enforced correctly, and that register allocation can
7074     // see that some registers may be assumed clobbered and have to preserve
7075     // them across calls to the intrinsic.
7076     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7077                                            sdl, NodeTys, Ops);
7078     SDValue patchableNode = SDValue(MN, 0);
7079     DAG.setRoot(patchableNode);
7080     setValue(&I, patchableNode);
7081     return;
7082   }
7083   case Intrinsic::xray_typedevent: {
7084     // Here we want to make sure that the intrinsic behaves as if it has a
7085     // specific calling convention, and only for x86_64.
7086     // FIXME: Support other platforms later.
7087     const auto &Triple = DAG.getTarget().getTargetTriple();
7088     if (Triple.getArch() != Triple::x86_64)
7089       return;
7090 
7091     SmallVector<SDValue, 8> Ops;
7092 
7093     // We want to say that we always want the arguments in registers.
7094     // It's unclear to me how manipulating the selection DAG here forces callers
7095     // to provide arguments in registers instead of on the stack.
7096     SDValue LogTypeId = getValue(I.getArgOperand(0));
7097     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7098     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7099     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7100     SDValue Chain = getRoot();
7101     Ops.push_back(LogTypeId);
7102     Ops.push_back(LogEntryVal);
7103     Ops.push_back(StrSizeVal);
7104     Ops.push_back(Chain);
7105 
7106     // We need to enforce the calling convention for the callsite, so that
7107     // argument ordering is enforced correctly, and that register allocation can
7108     // see that some registers may be assumed clobbered and have to preserve
7109     // them across calls to the intrinsic.
7110     MachineSDNode *MN = DAG.getMachineNode(
7111         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7112     SDValue patchableNode = SDValue(MN, 0);
7113     DAG.setRoot(patchableNode);
7114     setValue(&I, patchableNode);
7115     return;
7116   }
7117   case Intrinsic::experimental_deoptimize:
7118     LowerDeoptimizeCall(&I);
7119     return;
7120   case Intrinsic::experimental_stepvector:
7121     visitStepVector(I);
7122     return;
7123   case Intrinsic::vector_reduce_fadd:
7124   case Intrinsic::vector_reduce_fmul:
7125   case Intrinsic::vector_reduce_add:
7126   case Intrinsic::vector_reduce_mul:
7127   case Intrinsic::vector_reduce_and:
7128   case Intrinsic::vector_reduce_or:
7129   case Intrinsic::vector_reduce_xor:
7130   case Intrinsic::vector_reduce_smax:
7131   case Intrinsic::vector_reduce_smin:
7132   case Intrinsic::vector_reduce_umax:
7133   case Intrinsic::vector_reduce_umin:
7134   case Intrinsic::vector_reduce_fmax:
7135   case Intrinsic::vector_reduce_fmin:
7136     visitVectorReduce(I, Intrinsic);
7137     return;
7138 
7139   case Intrinsic::icall_branch_funnel: {
7140     SmallVector<SDValue, 16> Ops;
7141     Ops.push_back(getValue(I.getArgOperand(0)));
7142 
7143     int64_t Offset;
7144     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7145         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7146     if (!Base)
7147       report_fatal_error(
7148           "llvm.icall.branch.funnel operand must be a GlobalValue");
7149     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7150 
7151     struct BranchFunnelTarget {
7152       int64_t Offset;
7153       SDValue Target;
7154     };
7155     SmallVector<BranchFunnelTarget, 8> Targets;
7156 
7157     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7158       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7159           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7160       if (ElemBase != Base)
7161         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7162                            "to the same GlobalValue");
7163 
7164       SDValue Val = getValue(I.getArgOperand(Op + 1));
7165       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7166       if (!GA)
7167         report_fatal_error(
7168             "llvm.icall.branch.funnel operand must be a GlobalValue");
7169       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7170                                      GA->getGlobal(), sdl, Val.getValueType(),
7171                                      GA->getOffset())});
7172     }
7173     llvm::sort(Targets,
7174                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7175                  return T1.Offset < T2.Offset;
7176                });
7177 
7178     for (auto &T : Targets) {
7179       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7180       Ops.push_back(T.Target);
7181     }
7182 
7183     Ops.push_back(DAG.getRoot()); // Chain
7184     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7185                                  MVT::Other, Ops),
7186               0);
7187     DAG.setRoot(N);
7188     setValue(&I, N);
7189     HasTailCall = true;
7190     return;
7191   }
7192 
7193   case Intrinsic::wasm_landingpad_index:
7194     // Information this intrinsic contained has been transferred to
7195     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7196     // delete it now.
7197     return;
7198 
7199   case Intrinsic::aarch64_settag:
7200   case Intrinsic::aarch64_settag_zero: {
7201     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7202     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7203     SDValue Val = TSI.EmitTargetCodeForSetTag(
7204         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7205         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7206         ZeroMemory);
7207     DAG.setRoot(Val);
7208     setValue(&I, Val);
7209     return;
7210   }
7211   case Intrinsic::ptrmask: {
7212     SDValue Ptr = getValue(I.getOperand(0));
7213     SDValue Const = getValue(I.getOperand(1));
7214 
7215     EVT PtrVT = Ptr.getValueType();
7216     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7217                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7218     return;
7219   }
7220   case Intrinsic::threadlocal_address: {
7221     setValue(&I, getValue(I.getOperand(0)));
7222     return;
7223   }
7224   case Intrinsic::get_active_lane_mask: {
7225     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7226     SDValue Index = getValue(I.getOperand(0));
7227     EVT ElementVT = Index.getValueType();
7228 
7229     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7230       visitTargetIntrinsic(I, Intrinsic);
7231       return;
7232     }
7233 
7234     SDValue TripCount = getValue(I.getOperand(1));
7235     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7236 
7237     SDValue VectorIndex, VectorTripCount;
7238     if (VecTy.isScalableVector()) {
7239       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7240       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7241     } else {
7242       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7243       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7244     }
7245     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7246     SDValue VectorInduction = DAG.getNode(
7247         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7248     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7249                                  VectorTripCount, ISD::CondCode::SETULT);
7250     setValue(&I, SetCC);
7251     return;
7252   }
7253   case Intrinsic::vector_insert: {
7254     SDValue Vec = getValue(I.getOperand(0));
7255     SDValue SubVec = getValue(I.getOperand(1));
7256     SDValue Index = getValue(I.getOperand(2));
7257 
7258     // The intrinsic's index type is i64, but the SDNode requires an index type
7259     // suitable for the target. Convert the index as required.
7260     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7261     if (Index.getValueType() != VectorIdxTy)
7262       Index = DAG.getVectorIdxConstant(
7263           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7264 
7265     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7266     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7267                              Index));
7268     return;
7269   }
7270   case Intrinsic::vector_extract: {
7271     SDValue Vec = getValue(I.getOperand(0));
7272     SDValue Index = getValue(I.getOperand(1));
7273     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7274 
7275     // The intrinsic's index type is i64, but the SDNode requires an index type
7276     // suitable for the target. Convert the index as required.
7277     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7278     if (Index.getValueType() != VectorIdxTy)
7279       Index = DAG.getVectorIdxConstant(
7280           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7281 
7282     setValue(&I,
7283              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7284     return;
7285   }
7286   case Intrinsic::experimental_vector_reverse:
7287     visitVectorReverse(I);
7288     return;
7289   case Intrinsic::experimental_vector_splice:
7290     visitVectorSplice(I);
7291     return;
7292   }
7293 }
7294 
7295 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7296     const ConstrainedFPIntrinsic &FPI) {
7297   SDLoc sdl = getCurSDLoc();
7298 
7299   // We do not need to serialize constrained FP intrinsics against
7300   // each other or against (nonvolatile) loads, so they can be
7301   // chained like loads.
7302   SDValue Chain = DAG.getRoot();
7303   SmallVector<SDValue, 4> Opers;
7304   Opers.push_back(Chain);
7305   if (FPI.isUnaryOp()) {
7306     Opers.push_back(getValue(FPI.getArgOperand(0)));
7307   } else if (FPI.isTernaryOp()) {
7308     Opers.push_back(getValue(FPI.getArgOperand(0)));
7309     Opers.push_back(getValue(FPI.getArgOperand(1)));
7310     Opers.push_back(getValue(FPI.getArgOperand(2)));
7311   } else {
7312     Opers.push_back(getValue(FPI.getArgOperand(0)));
7313     Opers.push_back(getValue(FPI.getArgOperand(1)));
7314   }
7315 
7316   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7317     assert(Result.getNode()->getNumValues() == 2);
7318 
7319     // Push node to the appropriate list so that future instructions can be
7320     // chained up correctly.
7321     SDValue OutChain = Result.getValue(1);
7322     switch (EB) {
7323     case fp::ExceptionBehavior::ebIgnore:
7324       // The only reason why ebIgnore nodes still need to be chained is that
7325       // they might depend on the current rounding mode, and therefore must
7326       // not be moved across instruction that may change that mode.
7327       [[fallthrough]];
7328     case fp::ExceptionBehavior::ebMayTrap:
7329       // These must not be moved across calls or instructions that may change
7330       // floating-point exception masks.
7331       PendingConstrainedFP.push_back(OutChain);
7332       break;
7333     case fp::ExceptionBehavior::ebStrict:
7334       // These must not be moved across calls or instructions that may change
7335       // floating-point exception masks or read floating-point exception flags.
7336       // In addition, they cannot be optimized out even if unused.
7337       PendingConstrainedFPStrict.push_back(OutChain);
7338       break;
7339     }
7340   };
7341 
7342   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7343   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7344   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7345   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7346 
7347   SDNodeFlags Flags;
7348   if (EB == fp::ExceptionBehavior::ebIgnore)
7349     Flags.setNoFPExcept(true);
7350 
7351   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7352     Flags.copyFMF(*FPOp);
7353 
7354   unsigned Opcode;
7355   switch (FPI.getIntrinsicID()) {
7356   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7357 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7358   case Intrinsic::INTRINSIC:                                                   \
7359     Opcode = ISD::STRICT_##DAGN;                                               \
7360     break;
7361 #include "llvm/IR/ConstrainedOps.def"
7362   case Intrinsic::experimental_constrained_fmuladd: {
7363     Opcode = ISD::STRICT_FMA;
7364     // Break fmuladd into fmul and fadd.
7365     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7366         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7367       Opers.pop_back();
7368       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7369       pushOutChain(Mul, EB);
7370       Opcode = ISD::STRICT_FADD;
7371       Opers.clear();
7372       Opers.push_back(Mul.getValue(1));
7373       Opers.push_back(Mul.getValue(0));
7374       Opers.push_back(getValue(FPI.getArgOperand(2)));
7375     }
7376     break;
7377   }
7378   }
7379 
7380   // A few strict DAG nodes carry additional operands that are not
7381   // set up by the default code above.
7382   switch (Opcode) {
7383   default: break;
7384   case ISD::STRICT_FP_ROUND:
7385     Opers.push_back(
7386         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7387     break;
7388   case ISD::STRICT_FSETCC:
7389   case ISD::STRICT_FSETCCS: {
7390     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7391     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7392     if (TM.Options.NoNaNsFPMath)
7393       Condition = getFCmpCodeWithoutNaN(Condition);
7394     Opers.push_back(DAG.getCondCode(Condition));
7395     break;
7396   }
7397   }
7398 
7399   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7400   pushOutChain(Result, EB);
7401 
7402   SDValue FPResult = Result.getValue(0);
7403   setValue(&FPI, FPResult);
7404 }
7405 
7406 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7407   Optional<unsigned> ResOPC;
7408   switch (VPIntrin.getIntrinsicID()) {
7409 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7410   case Intrinsic::VPID:                                                        \
7411     ResOPC = ISD::VPSD;                                                        \
7412     break;
7413 #include "llvm/IR/VPIntrinsics.def"
7414   }
7415 
7416   if (!ResOPC)
7417     llvm_unreachable(
7418         "Inconsistency: no SDNode available for this VPIntrinsic!");
7419 
7420   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7421       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7422     if (VPIntrin.getFastMathFlags().allowReassoc())
7423       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7424                                                 : ISD::VP_REDUCE_FMUL;
7425   }
7426 
7427   return *ResOPC;
7428 }
7429 
7430 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7431                                       SmallVector<SDValue, 7> &OpValues) {
7432   SDLoc DL = getCurSDLoc();
7433   Value *PtrOperand = VPIntrin.getArgOperand(0);
7434   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7435   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7436   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7437   SDValue LD;
7438   bool AddToChain = true;
7439   // Do not serialize variable-length loads of constant memory with
7440   // anything.
7441   if (!Alignment)
7442     Alignment = DAG.getEVTAlign(VT);
7443   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7444   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7445   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7446   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7447       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7448       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7449   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7450                      MMO, false /*IsExpanding */);
7451   if (AddToChain)
7452     PendingLoads.push_back(LD.getValue(1));
7453   setValue(&VPIntrin, LD);
7454 }
7455 
7456 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7457                                         SmallVector<SDValue, 7> &OpValues) {
7458   SDLoc DL = getCurSDLoc();
7459   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7460   Value *PtrOperand = VPIntrin.getArgOperand(0);
7461   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7462   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7463   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7464   SDValue LD;
7465   if (!Alignment)
7466     Alignment = DAG.getEVTAlign(VT.getScalarType());
7467   unsigned AS =
7468     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7469   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7470      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7471      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7472   SDValue Base, Index, Scale;
7473   ISD::MemIndexType IndexType;
7474   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7475                                     this, VPIntrin.getParent(),
7476                                     VT.getScalarStoreSize());
7477   if (!UniformBase) {
7478     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7479     Index = getValue(PtrOperand);
7480     IndexType = ISD::SIGNED_SCALED;
7481     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7482   }
7483   EVT IdxVT = Index.getValueType();
7484   EVT EltTy = IdxVT.getVectorElementType();
7485   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7486     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7487     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7488   }
7489   LD = DAG.getGatherVP(
7490       DAG.getVTList(VT, MVT::Other), VT, DL,
7491       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7492       IndexType);
7493   PendingLoads.push_back(LD.getValue(1));
7494   setValue(&VPIntrin, LD);
7495 }
7496 
7497 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7498                                        SmallVector<SDValue, 7> &OpValues) {
7499   SDLoc DL = getCurSDLoc();
7500   Value *PtrOperand = VPIntrin.getArgOperand(1);
7501   EVT VT = OpValues[0].getValueType();
7502   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7503   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7504   SDValue ST;
7505   if (!Alignment)
7506     Alignment = DAG.getEVTAlign(VT);
7507   SDValue Ptr = OpValues[1];
7508   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7509   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7510       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7511       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7512   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7513                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7514                       /* IsTruncating */ false, /*IsCompressing*/ false);
7515   DAG.setRoot(ST);
7516   setValue(&VPIntrin, ST);
7517 }
7518 
7519 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7520                                               SmallVector<SDValue, 7> &OpValues) {
7521   SDLoc DL = getCurSDLoc();
7522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7523   Value *PtrOperand = VPIntrin.getArgOperand(1);
7524   EVT VT = OpValues[0].getValueType();
7525   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7526   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7527   SDValue ST;
7528   if (!Alignment)
7529     Alignment = DAG.getEVTAlign(VT.getScalarType());
7530   unsigned AS =
7531       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7532   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7533       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7534       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7535   SDValue Base, Index, Scale;
7536   ISD::MemIndexType IndexType;
7537   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7538                                     this, VPIntrin.getParent(),
7539                                     VT.getScalarStoreSize());
7540   if (!UniformBase) {
7541     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7542     Index = getValue(PtrOperand);
7543     IndexType = ISD::SIGNED_SCALED;
7544     Scale =
7545       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7546   }
7547   EVT IdxVT = Index.getValueType();
7548   EVT EltTy = IdxVT.getVectorElementType();
7549   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7550     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7551     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7552   }
7553   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7554                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7555                          OpValues[2], OpValues[3]},
7556                         MMO, IndexType);
7557   DAG.setRoot(ST);
7558   setValue(&VPIntrin, ST);
7559 }
7560 
7561 void SelectionDAGBuilder::visitVPStridedLoad(
7562     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7563   SDLoc DL = getCurSDLoc();
7564   Value *PtrOperand = VPIntrin.getArgOperand(0);
7565   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7566   if (!Alignment)
7567     Alignment = DAG.getEVTAlign(VT.getScalarType());
7568   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7569   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7570   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7571   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7572   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7573   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7574       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7575       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7576 
7577   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7578                                     OpValues[2], OpValues[3], MMO,
7579                                     false /*IsExpanding*/);
7580 
7581   if (AddToChain)
7582     PendingLoads.push_back(LD.getValue(1));
7583   setValue(&VPIntrin, LD);
7584 }
7585 
7586 void SelectionDAGBuilder::visitVPStridedStore(
7587     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7588   SDLoc DL = getCurSDLoc();
7589   Value *PtrOperand = VPIntrin.getArgOperand(1);
7590   EVT VT = OpValues[0].getValueType();
7591   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7592   if (!Alignment)
7593     Alignment = DAG.getEVTAlign(VT.getScalarType());
7594   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7595   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7596       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7597       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7598 
7599   SDValue ST = DAG.getStridedStoreVP(
7600       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7601       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7602       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7603       /*IsCompressing*/ false);
7604 
7605   DAG.setRoot(ST);
7606   setValue(&VPIntrin, ST);
7607 }
7608 
7609 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7611   SDLoc DL = getCurSDLoc();
7612 
7613   ISD::CondCode Condition;
7614   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7615   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7616   if (IsFP) {
7617     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7618     // flags, but calls that don't return floating-point types can't be
7619     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7620     Condition = getFCmpCondCode(CondCode);
7621     if (TM.Options.NoNaNsFPMath)
7622       Condition = getFCmpCodeWithoutNaN(Condition);
7623   } else {
7624     Condition = getICmpCondCode(CondCode);
7625   }
7626 
7627   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7628   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7629   // #2 is the condition code
7630   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7631   SDValue EVL = getValue(VPIntrin.getOperand(4));
7632   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7633   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7634          "Unexpected target EVL type");
7635   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7636 
7637   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7638                                                         VPIntrin.getType());
7639   setValue(&VPIntrin,
7640            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7641 }
7642 
7643 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7644     const VPIntrinsic &VPIntrin) {
7645   SDLoc DL = getCurSDLoc();
7646   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7647 
7648   auto IID = VPIntrin.getIntrinsicID();
7649 
7650   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7651     return visitVPCmp(*CmpI);
7652 
7653   SmallVector<EVT, 4> ValueVTs;
7654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7655   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7656   SDVTList VTs = DAG.getVTList(ValueVTs);
7657 
7658   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7659 
7660   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7661   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7662          "Unexpected target EVL type");
7663 
7664   // Request operands.
7665   SmallVector<SDValue, 7> OpValues;
7666   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7667     auto Op = getValue(VPIntrin.getArgOperand(I));
7668     if (I == EVLParamPos)
7669       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7670     OpValues.push_back(Op);
7671   }
7672 
7673   switch (Opcode) {
7674   default: {
7675     SDNodeFlags SDFlags;
7676     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7677       SDFlags.copyFMF(*FPMO);
7678     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7679     setValue(&VPIntrin, Result);
7680     break;
7681   }
7682   case ISD::VP_LOAD:
7683     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7684     break;
7685   case ISD::VP_GATHER:
7686     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7687     break;
7688   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7689     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7690     break;
7691   case ISD::VP_STORE:
7692     visitVPStore(VPIntrin, OpValues);
7693     break;
7694   case ISD::VP_SCATTER:
7695     visitVPScatter(VPIntrin, OpValues);
7696     break;
7697   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7698     visitVPStridedStore(VPIntrin, OpValues);
7699     break;
7700   }
7701 }
7702 
7703 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7704                                           const BasicBlock *EHPadBB,
7705                                           MCSymbol *&BeginLabel) {
7706   MachineFunction &MF = DAG.getMachineFunction();
7707   MachineModuleInfo &MMI = MF.getMMI();
7708 
7709   // Insert a label before the invoke call to mark the try range.  This can be
7710   // used to detect deletion of the invoke via the MachineModuleInfo.
7711   BeginLabel = MMI.getContext().createTempSymbol();
7712 
7713   // For SjLj, keep track of which landing pads go with which invokes
7714   // so as to maintain the ordering of pads in the LSDA.
7715   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7716   if (CallSiteIndex) {
7717     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7718     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7719 
7720     // Now that the call site is handled, stop tracking it.
7721     MMI.setCurrentCallSite(0);
7722   }
7723 
7724   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7725 }
7726 
7727 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7728                                         const BasicBlock *EHPadBB,
7729                                         MCSymbol *BeginLabel) {
7730   assert(BeginLabel && "BeginLabel should've been set");
7731 
7732   MachineFunction &MF = DAG.getMachineFunction();
7733   MachineModuleInfo &MMI = MF.getMMI();
7734 
7735   // Insert a label at the end of the invoke call to mark the try range.  This
7736   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7737   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7738   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7739 
7740   // Inform MachineModuleInfo of range.
7741   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7742   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7743   // actually use outlined funclets and their LSDA info style.
7744   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7745     assert(II && "II should've been set");
7746     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7747     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7748   } else if (!isScopedEHPersonality(Pers)) {
7749     assert(EHPadBB);
7750     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7751   }
7752 
7753   return Chain;
7754 }
7755 
7756 std::pair<SDValue, SDValue>
7757 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7758                                     const BasicBlock *EHPadBB) {
7759   MCSymbol *BeginLabel = nullptr;
7760 
7761   if (EHPadBB) {
7762     // Both PendingLoads and PendingExports must be flushed here;
7763     // this call might not return.
7764     (void)getRoot();
7765     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7766     CLI.setChain(getRoot());
7767   }
7768 
7769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7770   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7771 
7772   assert((CLI.IsTailCall || Result.second.getNode()) &&
7773          "Non-null chain expected with non-tail call!");
7774   assert((Result.second.getNode() || !Result.first.getNode()) &&
7775          "Null value expected with tail call!");
7776 
7777   if (!Result.second.getNode()) {
7778     // As a special case, a null chain means that a tail call has been emitted
7779     // and the DAG root is already updated.
7780     HasTailCall = true;
7781 
7782     // Since there's no actual continuation from this block, nothing can be
7783     // relying on us setting vregs for them.
7784     PendingExports.clear();
7785   } else {
7786     DAG.setRoot(Result.second);
7787   }
7788 
7789   if (EHPadBB) {
7790     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7791                            BeginLabel));
7792   }
7793 
7794   return Result;
7795 }
7796 
7797 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7798                                       bool isTailCall,
7799                                       bool isMustTailCall,
7800                                       const BasicBlock *EHPadBB) {
7801   auto &DL = DAG.getDataLayout();
7802   FunctionType *FTy = CB.getFunctionType();
7803   Type *RetTy = CB.getType();
7804 
7805   TargetLowering::ArgListTy Args;
7806   Args.reserve(CB.arg_size());
7807 
7808   const Value *SwiftErrorVal = nullptr;
7809   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7810 
7811   if (isTailCall) {
7812     // Avoid emitting tail calls in functions with the disable-tail-calls
7813     // attribute.
7814     auto *Caller = CB.getParent()->getParent();
7815     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7816         "true" && !isMustTailCall)
7817       isTailCall = false;
7818 
7819     // We can't tail call inside a function with a swifterror argument. Lowering
7820     // does not support this yet. It would have to move into the swifterror
7821     // register before the call.
7822     if (TLI.supportSwiftError() &&
7823         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7824       isTailCall = false;
7825   }
7826 
7827   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7828     TargetLowering::ArgListEntry Entry;
7829     const Value *V = *I;
7830 
7831     // Skip empty types
7832     if (V->getType()->isEmptyTy())
7833       continue;
7834 
7835     SDValue ArgNode = getValue(V);
7836     Entry.Node = ArgNode; Entry.Ty = V->getType();
7837 
7838     Entry.setAttributes(&CB, I - CB.arg_begin());
7839 
7840     // Use swifterror virtual register as input to the call.
7841     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7842       SwiftErrorVal = V;
7843       // We find the virtual register for the actual swifterror argument.
7844       // Instead of using the Value, we use the virtual register instead.
7845       Entry.Node =
7846           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7847                           EVT(TLI.getPointerTy(DL)));
7848     }
7849 
7850     Args.push_back(Entry);
7851 
7852     // If we have an explicit sret argument that is an Instruction, (i.e., it
7853     // might point to function-local memory), we can't meaningfully tail-call.
7854     if (Entry.IsSRet && isa<Instruction>(V))
7855       isTailCall = false;
7856   }
7857 
7858   // If call site has a cfguardtarget operand bundle, create and add an
7859   // additional ArgListEntry.
7860   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7861     TargetLowering::ArgListEntry Entry;
7862     Value *V = Bundle->Inputs[0];
7863     SDValue ArgNode = getValue(V);
7864     Entry.Node = ArgNode;
7865     Entry.Ty = V->getType();
7866     Entry.IsCFGuardTarget = true;
7867     Args.push_back(Entry);
7868   }
7869 
7870   // Check if target-independent constraints permit a tail call here.
7871   // Target-dependent constraints are checked within TLI->LowerCallTo.
7872   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7873     isTailCall = false;
7874 
7875   // Disable tail calls if there is an swifterror argument. Targets have not
7876   // been updated to support tail calls.
7877   if (TLI.supportSwiftError() && SwiftErrorVal)
7878     isTailCall = false;
7879 
7880   ConstantInt *CFIType = nullptr;
7881   if (CB.isIndirectCall()) {
7882     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7883       if (!TLI.supportKCFIBundles())
7884         report_fatal_error(
7885             "Target doesn't support calls with kcfi operand bundles.");
7886       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7887       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7888     }
7889   }
7890 
7891   TargetLowering::CallLoweringInfo CLI(DAG);
7892   CLI.setDebugLoc(getCurSDLoc())
7893       .setChain(getRoot())
7894       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7895       .setTailCall(isTailCall)
7896       .setConvergent(CB.isConvergent())
7897       .setIsPreallocated(
7898           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
7899       .setCFIType(CFIType);
7900   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7901 
7902   if (Result.first.getNode()) {
7903     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7904     setValue(&CB, Result.first);
7905   }
7906 
7907   // The last element of CLI.InVals has the SDValue for swifterror return.
7908   // Here we copy it to a virtual register and update SwiftErrorMap for
7909   // book-keeping.
7910   if (SwiftErrorVal && TLI.supportSwiftError()) {
7911     // Get the last element of InVals.
7912     SDValue Src = CLI.InVals.back();
7913     Register VReg =
7914         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7915     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7916     DAG.setRoot(CopyNode);
7917   }
7918 }
7919 
7920 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7921                              SelectionDAGBuilder &Builder) {
7922   // Check to see if this load can be trivially constant folded, e.g. if the
7923   // input is from a string literal.
7924   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7925     // Cast pointer to the type we really want to load.
7926     Type *LoadTy =
7927         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7928     if (LoadVT.isVector())
7929       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7930 
7931     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7932                                          PointerType::getUnqual(LoadTy));
7933 
7934     if (const Constant *LoadCst =
7935             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7936                                          LoadTy, Builder.DAG.getDataLayout()))
7937       return Builder.getValue(LoadCst);
7938   }
7939 
7940   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7941   // still constant memory, the input chain can be the entry node.
7942   SDValue Root;
7943   bool ConstantMemory = false;
7944 
7945   // Do not serialize (non-volatile) loads of constant memory with anything.
7946   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7947     Root = Builder.DAG.getEntryNode();
7948     ConstantMemory = true;
7949   } else {
7950     // Do not serialize non-volatile loads against each other.
7951     Root = Builder.DAG.getRoot();
7952   }
7953 
7954   SDValue Ptr = Builder.getValue(PtrVal);
7955   SDValue LoadVal =
7956       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7957                           MachinePointerInfo(PtrVal), Align(1));
7958 
7959   if (!ConstantMemory)
7960     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7961   return LoadVal;
7962 }
7963 
7964 /// Record the value for an instruction that produces an integer result,
7965 /// converting the type where necessary.
7966 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7967                                                   SDValue Value,
7968                                                   bool IsSigned) {
7969   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7970                                                     I.getType(), true);
7971   if (IsSigned)
7972     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7973   else
7974     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7975   setValue(&I, Value);
7976 }
7977 
7978 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7979 /// true and lower it. Otherwise return false, and it will be lowered like a
7980 /// normal call.
7981 /// The caller already checked that \p I calls the appropriate LibFunc with a
7982 /// correct prototype.
7983 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7984   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7985   const Value *Size = I.getArgOperand(2);
7986   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7987   if (CSize && CSize->getZExtValue() == 0) {
7988     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7989                                                           I.getType(), true);
7990     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7991     return true;
7992   }
7993 
7994   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7995   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7996       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7997       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7998   if (Res.first.getNode()) {
7999     processIntegerCallValue(I, Res.first, true);
8000     PendingLoads.push_back(Res.second);
8001     return true;
8002   }
8003 
8004   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8005   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8006   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8007     return false;
8008 
8009   // If the target has a fast compare for the given size, it will return a
8010   // preferred load type for that size. Require that the load VT is legal and
8011   // that the target supports unaligned loads of that type. Otherwise, return
8012   // INVALID.
8013   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8014     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8015     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8016     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8017       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8018       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8019       // TODO: Check alignment of src and dest ptrs.
8020       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8021       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8022       if (!TLI.isTypeLegal(LVT) ||
8023           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8024           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8025         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8026     }
8027 
8028     return LVT;
8029   };
8030 
8031   // This turns into unaligned loads. We only do this if the target natively
8032   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8033   // we'll only produce a small number of byte loads.
8034   MVT LoadVT;
8035   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8036   switch (NumBitsToCompare) {
8037   default:
8038     return false;
8039   case 16:
8040     LoadVT = MVT::i16;
8041     break;
8042   case 32:
8043     LoadVT = MVT::i32;
8044     break;
8045   case 64:
8046   case 128:
8047   case 256:
8048     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8049     break;
8050   }
8051 
8052   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8053     return false;
8054 
8055   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8056   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8057 
8058   // Bitcast to a wide integer type if the loads are vectors.
8059   if (LoadVT.isVector()) {
8060     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8061     LoadL = DAG.getBitcast(CmpVT, LoadL);
8062     LoadR = DAG.getBitcast(CmpVT, LoadR);
8063   }
8064 
8065   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8066   processIntegerCallValue(I, Cmp, false);
8067   return true;
8068 }
8069 
8070 /// See if we can lower a memchr call into an optimized form. If so, return
8071 /// true and lower it. Otherwise return false, and it will be lowered like a
8072 /// normal call.
8073 /// The caller already checked that \p I calls the appropriate LibFunc with a
8074 /// correct prototype.
8075 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8076   const Value *Src = I.getArgOperand(0);
8077   const Value *Char = I.getArgOperand(1);
8078   const Value *Length = I.getArgOperand(2);
8079 
8080   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8081   std::pair<SDValue, SDValue> Res =
8082     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8083                                 getValue(Src), getValue(Char), getValue(Length),
8084                                 MachinePointerInfo(Src));
8085   if (Res.first.getNode()) {
8086     setValue(&I, Res.first);
8087     PendingLoads.push_back(Res.second);
8088     return true;
8089   }
8090 
8091   return false;
8092 }
8093 
8094 /// See if we can lower a mempcpy call into an optimized form. If so, return
8095 /// true and lower it. Otherwise return false, and it will be lowered like a
8096 /// normal call.
8097 /// The caller already checked that \p I calls the appropriate LibFunc with a
8098 /// correct prototype.
8099 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8100   SDValue Dst = getValue(I.getArgOperand(0));
8101   SDValue Src = getValue(I.getArgOperand(1));
8102   SDValue Size = getValue(I.getArgOperand(2));
8103 
8104   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8105   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8106   // DAG::getMemcpy needs Alignment to be defined.
8107   Align Alignment = std::min(DstAlign, SrcAlign);
8108 
8109   bool isVol = false;
8110   SDLoc sdl = getCurSDLoc();
8111 
8112   // In the mempcpy context we need to pass in a false value for isTailCall
8113   // because the return pointer needs to be adjusted by the size of
8114   // the copied memory.
8115   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8116   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8117                              /*isTailCall=*/false,
8118                              MachinePointerInfo(I.getArgOperand(0)),
8119                              MachinePointerInfo(I.getArgOperand(1)),
8120                              I.getAAMetadata());
8121   assert(MC.getNode() != nullptr &&
8122          "** memcpy should not be lowered as TailCall in mempcpy context **");
8123   DAG.setRoot(MC);
8124 
8125   // Check if Size needs to be truncated or extended.
8126   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8127 
8128   // Adjust return pointer to point just past the last dst byte.
8129   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8130                                     Dst, Size);
8131   setValue(&I, DstPlusSize);
8132   return true;
8133 }
8134 
8135 /// See if we can lower a strcpy call into an optimized form.  If so, return
8136 /// true and lower it, otherwise return false and it will be lowered like a
8137 /// normal call.
8138 /// The caller already checked that \p I calls the appropriate LibFunc with a
8139 /// correct prototype.
8140 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8141   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8142 
8143   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8144   std::pair<SDValue, SDValue> Res =
8145     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8146                                 getValue(Arg0), getValue(Arg1),
8147                                 MachinePointerInfo(Arg0),
8148                                 MachinePointerInfo(Arg1), isStpcpy);
8149   if (Res.first.getNode()) {
8150     setValue(&I, Res.first);
8151     DAG.setRoot(Res.second);
8152     return true;
8153   }
8154 
8155   return false;
8156 }
8157 
8158 /// See if we can lower a strcmp call into an optimized form.  If so, return
8159 /// true and lower it, otherwise return false and it will be lowered like a
8160 /// normal call.
8161 /// The caller already checked that \p I calls the appropriate LibFunc with a
8162 /// correct prototype.
8163 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8164   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8165 
8166   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8167   std::pair<SDValue, SDValue> Res =
8168     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8169                                 getValue(Arg0), getValue(Arg1),
8170                                 MachinePointerInfo(Arg0),
8171                                 MachinePointerInfo(Arg1));
8172   if (Res.first.getNode()) {
8173     processIntegerCallValue(I, Res.first, true);
8174     PendingLoads.push_back(Res.second);
8175     return true;
8176   }
8177 
8178   return false;
8179 }
8180 
8181 /// See if we can lower a strlen call into an optimized form.  If so, return
8182 /// true and lower it, otherwise return false and it will be lowered like a
8183 /// normal call.
8184 /// The caller already checked that \p I calls the appropriate LibFunc with a
8185 /// correct prototype.
8186 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8187   const Value *Arg0 = I.getArgOperand(0);
8188 
8189   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8190   std::pair<SDValue, SDValue> Res =
8191     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8192                                 getValue(Arg0), MachinePointerInfo(Arg0));
8193   if (Res.first.getNode()) {
8194     processIntegerCallValue(I, Res.first, false);
8195     PendingLoads.push_back(Res.second);
8196     return true;
8197   }
8198 
8199   return false;
8200 }
8201 
8202 /// See if we can lower a strnlen call into an optimized form.  If so, return
8203 /// true and lower it, otherwise return false and it will be lowered like a
8204 /// normal call.
8205 /// The caller already checked that \p I calls the appropriate LibFunc with a
8206 /// correct prototype.
8207 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8208   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8209 
8210   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8211   std::pair<SDValue, SDValue> Res =
8212     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8213                                  getValue(Arg0), getValue(Arg1),
8214                                  MachinePointerInfo(Arg0));
8215   if (Res.first.getNode()) {
8216     processIntegerCallValue(I, Res.first, false);
8217     PendingLoads.push_back(Res.second);
8218     return true;
8219   }
8220 
8221   return false;
8222 }
8223 
8224 /// See if we can lower a unary floating-point operation into an SDNode with
8225 /// the specified Opcode.  If so, return true and lower it, otherwise return
8226 /// false and it will be lowered like a normal call.
8227 /// The caller already checked that \p I calls the appropriate LibFunc with a
8228 /// correct prototype.
8229 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8230                                               unsigned Opcode) {
8231   // We already checked this call's prototype; verify it doesn't modify errno.
8232   if (!I.onlyReadsMemory())
8233     return false;
8234 
8235   SDNodeFlags Flags;
8236   Flags.copyFMF(cast<FPMathOperator>(I));
8237 
8238   SDValue Tmp = getValue(I.getArgOperand(0));
8239   setValue(&I,
8240            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8241   return true;
8242 }
8243 
8244 /// See if we can lower a binary floating-point operation into an SDNode with
8245 /// the specified Opcode. If so, return true and lower it. Otherwise return
8246 /// false, and it will be lowered like a normal call.
8247 /// The caller already checked that \p I calls the appropriate LibFunc with a
8248 /// correct prototype.
8249 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8250                                                unsigned Opcode) {
8251   // We already checked this call's prototype; verify it doesn't modify errno.
8252   if (!I.onlyReadsMemory())
8253     return false;
8254 
8255   SDNodeFlags Flags;
8256   Flags.copyFMF(cast<FPMathOperator>(I));
8257 
8258   SDValue Tmp0 = getValue(I.getArgOperand(0));
8259   SDValue Tmp1 = getValue(I.getArgOperand(1));
8260   EVT VT = Tmp0.getValueType();
8261   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8262   return true;
8263 }
8264 
8265 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8266   // Handle inline assembly differently.
8267   if (I.isInlineAsm()) {
8268     visitInlineAsm(I);
8269     return;
8270   }
8271 
8272   if (Function *F = I.getCalledFunction()) {
8273     diagnoseDontCall(I);
8274 
8275     if (F->isDeclaration()) {
8276       // Is this an LLVM intrinsic or a target-specific intrinsic?
8277       unsigned IID = F->getIntrinsicID();
8278       if (!IID)
8279         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8280           IID = II->getIntrinsicID(F);
8281 
8282       if (IID) {
8283         visitIntrinsicCall(I, IID);
8284         return;
8285       }
8286     }
8287 
8288     // Check for well-known libc/libm calls.  If the function is internal, it
8289     // can't be a library call.  Don't do the check if marked as nobuiltin for
8290     // some reason or the call site requires strict floating point semantics.
8291     LibFunc Func;
8292     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8293         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8294         LibInfo->hasOptimizedCodeGen(Func)) {
8295       switch (Func) {
8296       default: break;
8297       case LibFunc_bcmp:
8298         if (visitMemCmpBCmpCall(I))
8299           return;
8300         break;
8301       case LibFunc_copysign:
8302       case LibFunc_copysignf:
8303       case LibFunc_copysignl:
8304         // We already checked this call's prototype; verify it doesn't modify
8305         // errno.
8306         if (I.onlyReadsMemory()) {
8307           SDValue LHS = getValue(I.getArgOperand(0));
8308           SDValue RHS = getValue(I.getArgOperand(1));
8309           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8310                                    LHS.getValueType(), LHS, RHS));
8311           return;
8312         }
8313         break;
8314       case LibFunc_fabs:
8315       case LibFunc_fabsf:
8316       case LibFunc_fabsl:
8317         if (visitUnaryFloatCall(I, ISD::FABS))
8318           return;
8319         break;
8320       case LibFunc_fmin:
8321       case LibFunc_fminf:
8322       case LibFunc_fminl:
8323         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8324           return;
8325         break;
8326       case LibFunc_fmax:
8327       case LibFunc_fmaxf:
8328       case LibFunc_fmaxl:
8329         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8330           return;
8331         break;
8332       case LibFunc_sin:
8333       case LibFunc_sinf:
8334       case LibFunc_sinl:
8335         if (visitUnaryFloatCall(I, ISD::FSIN))
8336           return;
8337         break;
8338       case LibFunc_cos:
8339       case LibFunc_cosf:
8340       case LibFunc_cosl:
8341         if (visitUnaryFloatCall(I, ISD::FCOS))
8342           return;
8343         break;
8344       case LibFunc_sqrt:
8345       case LibFunc_sqrtf:
8346       case LibFunc_sqrtl:
8347       case LibFunc_sqrt_finite:
8348       case LibFunc_sqrtf_finite:
8349       case LibFunc_sqrtl_finite:
8350         if (visitUnaryFloatCall(I, ISD::FSQRT))
8351           return;
8352         break;
8353       case LibFunc_floor:
8354       case LibFunc_floorf:
8355       case LibFunc_floorl:
8356         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8357           return;
8358         break;
8359       case LibFunc_nearbyint:
8360       case LibFunc_nearbyintf:
8361       case LibFunc_nearbyintl:
8362         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8363           return;
8364         break;
8365       case LibFunc_ceil:
8366       case LibFunc_ceilf:
8367       case LibFunc_ceill:
8368         if (visitUnaryFloatCall(I, ISD::FCEIL))
8369           return;
8370         break;
8371       case LibFunc_rint:
8372       case LibFunc_rintf:
8373       case LibFunc_rintl:
8374         if (visitUnaryFloatCall(I, ISD::FRINT))
8375           return;
8376         break;
8377       case LibFunc_round:
8378       case LibFunc_roundf:
8379       case LibFunc_roundl:
8380         if (visitUnaryFloatCall(I, ISD::FROUND))
8381           return;
8382         break;
8383       case LibFunc_trunc:
8384       case LibFunc_truncf:
8385       case LibFunc_truncl:
8386         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8387           return;
8388         break;
8389       case LibFunc_log2:
8390       case LibFunc_log2f:
8391       case LibFunc_log2l:
8392         if (visitUnaryFloatCall(I, ISD::FLOG2))
8393           return;
8394         break;
8395       case LibFunc_exp2:
8396       case LibFunc_exp2f:
8397       case LibFunc_exp2l:
8398         if (visitUnaryFloatCall(I, ISD::FEXP2))
8399           return;
8400         break;
8401       case LibFunc_memcmp:
8402         if (visitMemCmpBCmpCall(I))
8403           return;
8404         break;
8405       case LibFunc_mempcpy:
8406         if (visitMemPCpyCall(I))
8407           return;
8408         break;
8409       case LibFunc_memchr:
8410         if (visitMemChrCall(I))
8411           return;
8412         break;
8413       case LibFunc_strcpy:
8414         if (visitStrCpyCall(I, false))
8415           return;
8416         break;
8417       case LibFunc_stpcpy:
8418         if (visitStrCpyCall(I, true))
8419           return;
8420         break;
8421       case LibFunc_strcmp:
8422         if (visitStrCmpCall(I))
8423           return;
8424         break;
8425       case LibFunc_strlen:
8426         if (visitStrLenCall(I))
8427           return;
8428         break;
8429       case LibFunc_strnlen:
8430         if (visitStrNLenCall(I))
8431           return;
8432         break;
8433       }
8434     }
8435   }
8436 
8437   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8438   // have to do anything here to lower funclet bundles.
8439   // CFGuardTarget bundles are lowered in LowerCallTo.
8440   assert(!I.hasOperandBundlesOtherThan(
8441              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8442               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8443               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8444          "Cannot lower calls with arbitrary operand bundles!");
8445 
8446   SDValue Callee = getValue(I.getCalledOperand());
8447 
8448   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8449     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8450   else
8451     // Check if we can potentially perform a tail call. More detailed checking
8452     // is be done within LowerCallTo, after more information about the call is
8453     // known.
8454     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8455 }
8456 
8457 namespace {
8458 
8459 /// AsmOperandInfo - This contains information for each constraint that we are
8460 /// lowering.
8461 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8462 public:
8463   /// CallOperand - If this is the result output operand or a clobber
8464   /// this is null, otherwise it is the incoming operand to the CallInst.
8465   /// This gets modified as the asm is processed.
8466   SDValue CallOperand;
8467 
8468   /// AssignedRegs - If this is a register or register class operand, this
8469   /// contains the set of register corresponding to the operand.
8470   RegsForValue AssignedRegs;
8471 
8472   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8473     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8474   }
8475 
8476   /// Whether or not this operand accesses memory
8477   bool hasMemory(const TargetLowering &TLI) const {
8478     // Indirect operand accesses access memory.
8479     if (isIndirect)
8480       return true;
8481 
8482     for (const auto &Code : Codes)
8483       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8484         return true;
8485 
8486     return false;
8487   }
8488 };
8489 
8490 
8491 } // end anonymous namespace
8492 
8493 /// Make sure that the output operand \p OpInfo and its corresponding input
8494 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8495 /// out).
8496 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8497                                SDISelAsmOperandInfo &MatchingOpInfo,
8498                                SelectionDAG &DAG) {
8499   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8500     return;
8501 
8502   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8503   const auto &TLI = DAG.getTargetLoweringInfo();
8504 
8505   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8506       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8507                                        OpInfo.ConstraintVT);
8508   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8509       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8510                                        MatchingOpInfo.ConstraintVT);
8511   if ((OpInfo.ConstraintVT.isInteger() !=
8512        MatchingOpInfo.ConstraintVT.isInteger()) ||
8513       (MatchRC.second != InputRC.second)) {
8514     // FIXME: error out in a more elegant fashion
8515     report_fatal_error("Unsupported asm: input constraint"
8516                        " with a matching output constraint of"
8517                        " incompatible type!");
8518   }
8519   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8520 }
8521 
8522 /// Get a direct memory input to behave well as an indirect operand.
8523 /// This may introduce stores, hence the need for a \p Chain.
8524 /// \return The (possibly updated) chain.
8525 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8526                                         SDISelAsmOperandInfo &OpInfo,
8527                                         SelectionDAG &DAG) {
8528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8529 
8530   // If we don't have an indirect input, put it in the constpool if we can,
8531   // otherwise spill it to a stack slot.
8532   // TODO: This isn't quite right. We need to handle these according to
8533   // the addressing mode that the constraint wants. Also, this may take
8534   // an additional register for the computation and we don't want that
8535   // either.
8536 
8537   // If the operand is a float, integer, or vector constant, spill to a
8538   // constant pool entry to get its address.
8539   const Value *OpVal = OpInfo.CallOperandVal;
8540   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8541       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8542     OpInfo.CallOperand = DAG.getConstantPool(
8543         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8544     return Chain;
8545   }
8546 
8547   // Otherwise, create a stack slot and emit a store to it before the asm.
8548   Type *Ty = OpVal->getType();
8549   auto &DL = DAG.getDataLayout();
8550   uint64_t TySize = DL.getTypeAllocSize(Ty);
8551   MachineFunction &MF = DAG.getMachineFunction();
8552   int SSFI = MF.getFrameInfo().CreateStackObject(
8553       TySize, DL.getPrefTypeAlign(Ty), false);
8554   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8555   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8556                             MachinePointerInfo::getFixedStack(MF, SSFI),
8557                             TLI.getMemValueType(DL, Ty));
8558   OpInfo.CallOperand = StackSlot;
8559 
8560   return Chain;
8561 }
8562 
8563 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8564 /// specified operand.  We prefer to assign virtual registers, to allow the
8565 /// register allocator to handle the assignment process.  However, if the asm
8566 /// uses features that we can't model on machineinstrs, we have SDISel do the
8567 /// allocation.  This produces generally horrible, but correct, code.
8568 ///
8569 ///   OpInfo describes the operand
8570 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8571 static llvm::Optional<unsigned>
8572 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8573                      SDISelAsmOperandInfo &OpInfo,
8574                      SDISelAsmOperandInfo &RefOpInfo) {
8575   LLVMContext &Context = *DAG.getContext();
8576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8577 
8578   MachineFunction &MF = DAG.getMachineFunction();
8579   SmallVector<unsigned, 4> Regs;
8580   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8581 
8582   // No work to do for memory/address operands.
8583   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8584       OpInfo.ConstraintType == TargetLowering::C_Address)
8585     return None;
8586 
8587   // If this is a constraint for a single physreg, or a constraint for a
8588   // register class, find it.
8589   unsigned AssignedReg;
8590   const TargetRegisterClass *RC;
8591   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8592       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8593   // RC is unset only on failure. Return immediately.
8594   if (!RC)
8595     return None;
8596 
8597   // Get the actual register value type.  This is important, because the user
8598   // may have asked for (e.g.) the AX register in i32 type.  We need to
8599   // remember that AX is actually i16 to get the right extension.
8600   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8601 
8602   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8603     // If this is an FP operand in an integer register (or visa versa), or more
8604     // generally if the operand value disagrees with the register class we plan
8605     // to stick it in, fix the operand type.
8606     //
8607     // If this is an input value, the bitcast to the new type is done now.
8608     // Bitcast for output value is done at the end of visitInlineAsm().
8609     if ((OpInfo.Type == InlineAsm::isOutput ||
8610          OpInfo.Type == InlineAsm::isInput) &&
8611         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8612       // Try to convert to the first EVT that the reg class contains.  If the
8613       // types are identical size, use a bitcast to convert (e.g. two differing
8614       // vector types).  Note: output bitcast is done at the end of
8615       // visitInlineAsm().
8616       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8617         // Exclude indirect inputs while they are unsupported because the code
8618         // to perform the load is missing and thus OpInfo.CallOperand still
8619         // refers to the input address rather than the pointed-to value.
8620         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8621           OpInfo.CallOperand =
8622               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8623         OpInfo.ConstraintVT = RegVT;
8624         // If the operand is an FP value and we want it in integer registers,
8625         // use the corresponding integer type. This turns an f64 value into
8626         // i64, which can be passed with two i32 values on a 32-bit machine.
8627       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8628         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8629         if (OpInfo.Type == InlineAsm::isInput)
8630           OpInfo.CallOperand =
8631               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8632         OpInfo.ConstraintVT = VT;
8633       }
8634     }
8635   }
8636 
8637   // No need to allocate a matching input constraint since the constraint it's
8638   // matching to has already been allocated.
8639   if (OpInfo.isMatchingInputConstraint())
8640     return None;
8641 
8642   EVT ValueVT = OpInfo.ConstraintVT;
8643   if (OpInfo.ConstraintVT == MVT::Other)
8644     ValueVT = RegVT;
8645 
8646   // Initialize NumRegs.
8647   unsigned NumRegs = 1;
8648   if (OpInfo.ConstraintVT != MVT::Other)
8649     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8650 
8651   // If this is a constraint for a specific physical register, like {r17},
8652   // assign it now.
8653 
8654   // If this associated to a specific register, initialize iterator to correct
8655   // place. If virtual, make sure we have enough registers
8656 
8657   // Initialize iterator if necessary
8658   TargetRegisterClass::iterator I = RC->begin();
8659   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8660 
8661   // Do not check for single registers.
8662   if (AssignedReg) {
8663     I = std::find(I, RC->end(), AssignedReg);
8664     if (I == RC->end()) {
8665       // RC does not contain the selected register, which indicates a
8666       // mismatch between the register and the required type/bitwidth.
8667       return {AssignedReg};
8668     }
8669   }
8670 
8671   for (; NumRegs; --NumRegs, ++I) {
8672     assert(I != RC->end() && "Ran out of registers to allocate!");
8673     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8674     Regs.push_back(R);
8675   }
8676 
8677   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8678   return None;
8679 }
8680 
8681 static unsigned
8682 findMatchingInlineAsmOperand(unsigned OperandNo,
8683                              const std::vector<SDValue> &AsmNodeOperands) {
8684   // Scan until we find the definition we already emitted of this operand.
8685   unsigned CurOp = InlineAsm::Op_FirstOperand;
8686   for (; OperandNo; --OperandNo) {
8687     // Advance to the next operand.
8688     unsigned OpFlag =
8689         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8690     assert((InlineAsm::isRegDefKind(OpFlag) ||
8691             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8692             InlineAsm::isMemKind(OpFlag)) &&
8693            "Skipped past definitions?");
8694     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8695   }
8696   return CurOp;
8697 }
8698 
8699 namespace {
8700 
8701 class ExtraFlags {
8702   unsigned Flags = 0;
8703 
8704 public:
8705   explicit ExtraFlags(const CallBase &Call) {
8706     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8707     if (IA->hasSideEffects())
8708       Flags |= InlineAsm::Extra_HasSideEffects;
8709     if (IA->isAlignStack())
8710       Flags |= InlineAsm::Extra_IsAlignStack;
8711     if (Call.isConvergent())
8712       Flags |= InlineAsm::Extra_IsConvergent;
8713     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8714   }
8715 
8716   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8717     // Ideally, we would only check against memory constraints.  However, the
8718     // meaning of an Other constraint can be target-specific and we can't easily
8719     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8720     // for Other constraints as well.
8721     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8722         OpInfo.ConstraintType == TargetLowering::C_Other) {
8723       if (OpInfo.Type == InlineAsm::isInput)
8724         Flags |= InlineAsm::Extra_MayLoad;
8725       else if (OpInfo.Type == InlineAsm::isOutput)
8726         Flags |= InlineAsm::Extra_MayStore;
8727       else if (OpInfo.Type == InlineAsm::isClobber)
8728         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8729     }
8730   }
8731 
8732   unsigned get() const { return Flags; }
8733 };
8734 
8735 } // end anonymous namespace
8736 
8737 /// visitInlineAsm - Handle a call to an InlineAsm object.
8738 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8739                                          const BasicBlock *EHPadBB) {
8740   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8741 
8742   /// ConstraintOperands - Information about all of the constraints.
8743   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8744 
8745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8746   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8747       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8748 
8749   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8750   // AsmDialect, MayLoad, MayStore).
8751   bool HasSideEffect = IA->hasSideEffects();
8752   ExtraFlags ExtraInfo(Call);
8753 
8754   for (auto &T : TargetConstraints) {
8755     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8756     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8757 
8758     if (OpInfo.CallOperandVal)
8759       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8760 
8761     if (!HasSideEffect)
8762       HasSideEffect = OpInfo.hasMemory(TLI);
8763 
8764     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8765     // FIXME: Could we compute this on OpInfo rather than T?
8766 
8767     // Compute the constraint code and ConstraintType to use.
8768     TLI.ComputeConstraintToUse(T, SDValue());
8769 
8770     if (T.ConstraintType == TargetLowering::C_Immediate &&
8771         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8772       // We've delayed emitting a diagnostic like the "n" constraint because
8773       // inlining could cause an integer showing up.
8774       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8775                                           "' expects an integer constant "
8776                                           "expression");
8777 
8778     ExtraInfo.update(T);
8779   }
8780 
8781   // We won't need to flush pending loads if this asm doesn't touch
8782   // memory and is nonvolatile.
8783   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8784 
8785   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8786   if (EmitEHLabels) {
8787     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8788   }
8789   bool IsCallBr = isa<CallBrInst>(Call);
8790 
8791   if (IsCallBr || EmitEHLabels) {
8792     // If this is a callbr or invoke we need to flush pending exports since
8793     // inlineasm_br and invoke are terminators.
8794     // We need to do this before nodes are glued to the inlineasm_br node.
8795     Chain = getControlRoot();
8796   }
8797 
8798   MCSymbol *BeginLabel = nullptr;
8799   if (EmitEHLabels) {
8800     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8801   }
8802 
8803   // Second pass over the constraints: compute which constraint option to use.
8804   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8805     // If this is an output operand with a matching input operand, look up the
8806     // matching input. If their types mismatch, e.g. one is an integer, the
8807     // other is floating point, or their sizes are different, flag it as an
8808     // error.
8809     if (OpInfo.hasMatchingInput()) {
8810       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8811       patchMatchingInput(OpInfo, Input, DAG);
8812     }
8813 
8814     // Compute the constraint code and ConstraintType to use.
8815     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8816 
8817     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8818          OpInfo.Type == InlineAsm::isClobber) ||
8819         OpInfo.ConstraintType == TargetLowering::C_Address)
8820       continue;
8821 
8822     // If this is a memory input, and if the operand is not indirect, do what we
8823     // need to provide an address for the memory input.
8824     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8825         !OpInfo.isIndirect) {
8826       assert((OpInfo.isMultipleAlternative ||
8827               (OpInfo.Type == InlineAsm::isInput)) &&
8828              "Can only indirectify direct input operands!");
8829 
8830       // Memory operands really want the address of the value.
8831       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8832 
8833       // There is no longer a Value* corresponding to this operand.
8834       OpInfo.CallOperandVal = nullptr;
8835 
8836       // It is now an indirect operand.
8837       OpInfo.isIndirect = true;
8838     }
8839 
8840   }
8841 
8842   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8843   std::vector<SDValue> AsmNodeOperands;
8844   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8845   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8846       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8847 
8848   // If we have a !srcloc metadata node associated with it, we want to attach
8849   // this to the ultimately generated inline asm machineinstr.  To do this, we
8850   // pass in the third operand as this (potentially null) inline asm MDNode.
8851   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8852   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8853 
8854   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8855   // bits as operand 3.
8856   AsmNodeOperands.push_back(DAG.getTargetConstant(
8857       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8858 
8859   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8860   // this, assign virtual and physical registers for inputs and otput.
8861   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8862     // Assign Registers.
8863     SDISelAsmOperandInfo &RefOpInfo =
8864         OpInfo.isMatchingInputConstraint()
8865             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8866             : OpInfo;
8867     const auto RegError =
8868         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8869     if (RegError) {
8870       const MachineFunction &MF = DAG.getMachineFunction();
8871       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8872       const char *RegName = TRI.getName(RegError.value());
8873       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8874                                    "' allocated for constraint '" +
8875                                    Twine(OpInfo.ConstraintCode) +
8876                                    "' does not match required type");
8877       return;
8878     }
8879 
8880     auto DetectWriteToReservedRegister = [&]() {
8881       const MachineFunction &MF = DAG.getMachineFunction();
8882       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8883       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8884         if (Register::isPhysicalRegister(Reg) &&
8885             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8886           const char *RegName = TRI.getName(Reg);
8887           emitInlineAsmError(Call, "write to reserved register '" +
8888                                        Twine(RegName) + "'");
8889           return true;
8890         }
8891       }
8892       return false;
8893     };
8894     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8895             (OpInfo.Type == InlineAsm::isInput &&
8896              !OpInfo.isMatchingInputConstraint())) &&
8897            "Only address as input operand is allowed.");
8898 
8899     switch (OpInfo.Type) {
8900     case InlineAsm::isOutput:
8901       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8902         unsigned ConstraintID =
8903             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8904         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8905                "Failed to convert memory constraint code to constraint id.");
8906 
8907         // Add information to the INLINEASM node to know about this output.
8908         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8909         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8910         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8911                                                         MVT::i32));
8912         AsmNodeOperands.push_back(OpInfo.CallOperand);
8913       } else {
8914         // Otherwise, this outputs to a register (directly for C_Register /
8915         // C_RegisterClass, and a target-defined fashion for
8916         // C_Immediate/C_Other). Find a register that we can use.
8917         if (OpInfo.AssignedRegs.Regs.empty()) {
8918           emitInlineAsmError(
8919               Call, "couldn't allocate output register for constraint '" +
8920                         Twine(OpInfo.ConstraintCode) + "'");
8921           return;
8922         }
8923 
8924         if (DetectWriteToReservedRegister())
8925           return;
8926 
8927         // Add information to the INLINEASM node to know that this register is
8928         // set.
8929         OpInfo.AssignedRegs.AddInlineAsmOperands(
8930             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8931                                   : InlineAsm::Kind_RegDef,
8932             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8933       }
8934       break;
8935 
8936     case InlineAsm::isInput:
8937     case InlineAsm::isLabel: {
8938       SDValue InOperandVal = OpInfo.CallOperand;
8939 
8940       if (OpInfo.isMatchingInputConstraint()) {
8941         // If this is required to match an output register we have already set,
8942         // just use its register.
8943         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8944                                                   AsmNodeOperands);
8945         unsigned OpFlag =
8946           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8947         if (InlineAsm::isRegDefKind(OpFlag) ||
8948             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8949           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8950           if (OpInfo.isIndirect) {
8951             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8952             emitInlineAsmError(Call, "inline asm not supported yet: "
8953                                      "don't know how to handle tied "
8954                                      "indirect register inputs");
8955             return;
8956           }
8957 
8958           SmallVector<unsigned, 4> Regs;
8959           MachineFunction &MF = DAG.getMachineFunction();
8960           MachineRegisterInfo &MRI = MF.getRegInfo();
8961           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8962           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8963           Register TiedReg = R->getReg();
8964           MVT RegVT = R->getSimpleValueType(0);
8965           const TargetRegisterClass *RC =
8966               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8967               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8968                                       : TRI.getMinimalPhysRegClass(TiedReg);
8969           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8970           for (unsigned i = 0; i != NumRegs; ++i)
8971             Regs.push_back(MRI.createVirtualRegister(RC));
8972 
8973           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8974 
8975           SDLoc dl = getCurSDLoc();
8976           // Use the produced MatchedRegs object to
8977           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8978           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8979                                            true, OpInfo.getMatchedOperand(), dl,
8980                                            DAG, AsmNodeOperands);
8981           break;
8982         }
8983 
8984         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8985         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8986                "Unexpected number of operands");
8987         // Add information to the INLINEASM node to know about this input.
8988         // See InlineAsm.h isUseOperandTiedToDef.
8989         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8990         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8991                                                     OpInfo.getMatchedOperand());
8992         AsmNodeOperands.push_back(DAG.getTargetConstant(
8993             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8994         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8995         break;
8996       }
8997 
8998       // Treat indirect 'X' constraint as memory.
8999       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9000           OpInfo.isIndirect)
9001         OpInfo.ConstraintType = TargetLowering::C_Memory;
9002 
9003       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9004           OpInfo.ConstraintType == TargetLowering::C_Other) {
9005         std::vector<SDValue> Ops;
9006         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9007                                           Ops, DAG);
9008         if (Ops.empty()) {
9009           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9010             if (isa<ConstantSDNode>(InOperandVal)) {
9011               emitInlineAsmError(Call, "value out of range for constraint '" +
9012                                            Twine(OpInfo.ConstraintCode) + "'");
9013               return;
9014             }
9015 
9016           emitInlineAsmError(Call,
9017                              "invalid operand for inline asm constraint '" +
9018                                  Twine(OpInfo.ConstraintCode) + "'");
9019           return;
9020         }
9021 
9022         // Add information to the INLINEASM node to know about this input.
9023         unsigned ResOpType =
9024           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9025         AsmNodeOperands.push_back(DAG.getTargetConstant(
9026             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9027         llvm::append_range(AsmNodeOperands, Ops);
9028         break;
9029       }
9030 
9031       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9032           OpInfo.ConstraintType == TargetLowering::C_Address) {
9033         assert((OpInfo.isIndirect ||
9034                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9035                "Operand must be indirect to be a mem!");
9036         assert(InOperandVal.getValueType() ==
9037                    TLI.getPointerTy(DAG.getDataLayout()) &&
9038                "Memory operands expect pointer values");
9039 
9040         unsigned ConstraintID =
9041             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9042         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9043                "Failed to convert memory constraint code to constraint id.");
9044 
9045         // Add information to the INLINEASM node to know about this input.
9046         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9047         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9048         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9049                                                         getCurSDLoc(),
9050                                                         MVT::i32));
9051         AsmNodeOperands.push_back(InOperandVal);
9052         break;
9053       }
9054 
9055       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9056               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9057              "Unknown constraint type!");
9058 
9059       // TODO: Support this.
9060       if (OpInfo.isIndirect) {
9061         emitInlineAsmError(
9062             Call, "Don't know how to handle indirect register inputs yet "
9063                   "for constraint '" +
9064                       Twine(OpInfo.ConstraintCode) + "'");
9065         return;
9066       }
9067 
9068       // Copy the input into the appropriate registers.
9069       if (OpInfo.AssignedRegs.Regs.empty()) {
9070         emitInlineAsmError(Call,
9071                            "couldn't allocate input reg for constraint '" +
9072                                Twine(OpInfo.ConstraintCode) + "'");
9073         return;
9074       }
9075 
9076       if (DetectWriteToReservedRegister())
9077         return;
9078 
9079       SDLoc dl = getCurSDLoc();
9080 
9081       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9082                                         &Call);
9083 
9084       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9085                                                dl, DAG, AsmNodeOperands);
9086       break;
9087     }
9088     case InlineAsm::isClobber:
9089       // Add the clobbered value to the operand list, so that the register
9090       // allocator is aware that the physreg got clobbered.
9091       if (!OpInfo.AssignedRegs.Regs.empty())
9092         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9093                                                  false, 0, getCurSDLoc(), DAG,
9094                                                  AsmNodeOperands);
9095       break;
9096     }
9097   }
9098 
9099   // Finish up input operands.  Set the input chain and add the flag last.
9100   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9101   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9102 
9103   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9104   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9105                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9106   Flag = Chain.getValue(1);
9107 
9108   // Do additional work to generate outputs.
9109 
9110   SmallVector<EVT, 1> ResultVTs;
9111   SmallVector<SDValue, 1> ResultValues;
9112   SmallVector<SDValue, 8> OutChains;
9113 
9114   llvm::Type *CallResultType = Call.getType();
9115   ArrayRef<Type *> ResultTypes;
9116   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9117     ResultTypes = StructResult->elements();
9118   else if (!CallResultType->isVoidTy())
9119     ResultTypes = makeArrayRef(CallResultType);
9120 
9121   auto CurResultType = ResultTypes.begin();
9122   auto handleRegAssign = [&](SDValue V) {
9123     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9124     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9125     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9126     ++CurResultType;
9127     // If the type of the inline asm call site return value is different but has
9128     // same size as the type of the asm output bitcast it.  One example of this
9129     // is for vectors with different width / number of elements.  This can
9130     // happen for register classes that can contain multiple different value
9131     // types.  The preg or vreg allocated may not have the same VT as was
9132     // expected.
9133     //
9134     // This can also happen for a return value that disagrees with the register
9135     // class it is put in, eg. a double in a general-purpose register on a
9136     // 32-bit machine.
9137     if (ResultVT != V.getValueType() &&
9138         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9139       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9140     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9141              V.getValueType().isInteger()) {
9142       // If a result value was tied to an input value, the computed result
9143       // may have a wider width than the expected result.  Extract the
9144       // relevant portion.
9145       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9146     }
9147     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9148     ResultVTs.push_back(ResultVT);
9149     ResultValues.push_back(V);
9150   };
9151 
9152   // Deal with output operands.
9153   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9154     if (OpInfo.Type == InlineAsm::isOutput) {
9155       SDValue Val;
9156       // Skip trivial output operands.
9157       if (OpInfo.AssignedRegs.Regs.empty())
9158         continue;
9159 
9160       switch (OpInfo.ConstraintType) {
9161       case TargetLowering::C_Register:
9162       case TargetLowering::C_RegisterClass:
9163         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9164                                                   Chain, &Flag, &Call);
9165         break;
9166       case TargetLowering::C_Immediate:
9167       case TargetLowering::C_Other:
9168         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9169                                               OpInfo, DAG);
9170         break;
9171       case TargetLowering::C_Memory:
9172         break; // Already handled.
9173       case TargetLowering::C_Address:
9174         break; // Silence warning.
9175       case TargetLowering::C_Unknown:
9176         assert(false && "Unexpected unknown constraint");
9177       }
9178 
9179       // Indirect output manifest as stores. Record output chains.
9180       if (OpInfo.isIndirect) {
9181         const Value *Ptr = OpInfo.CallOperandVal;
9182         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9183         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9184                                      MachinePointerInfo(Ptr));
9185         OutChains.push_back(Store);
9186       } else {
9187         // generate CopyFromRegs to associated registers.
9188         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9189         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9190           for (const SDValue &V : Val->op_values())
9191             handleRegAssign(V);
9192         } else
9193           handleRegAssign(Val);
9194       }
9195     }
9196   }
9197 
9198   // Set results.
9199   if (!ResultValues.empty()) {
9200     assert(CurResultType == ResultTypes.end() &&
9201            "Mismatch in number of ResultTypes");
9202     assert(ResultValues.size() == ResultTypes.size() &&
9203            "Mismatch in number of output operands in asm result");
9204 
9205     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9206                             DAG.getVTList(ResultVTs), ResultValues);
9207     setValue(&Call, V);
9208   }
9209 
9210   // Collect store chains.
9211   if (!OutChains.empty())
9212     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9213 
9214   if (EmitEHLabels) {
9215     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9216   }
9217 
9218   // Only Update Root if inline assembly has a memory effect.
9219   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9220       EmitEHLabels)
9221     DAG.setRoot(Chain);
9222 }
9223 
9224 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9225                                              const Twine &Message) {
9226   LLVMContext &Ctx = *DAG.getContext();
9227   Ctx.emitError(&Call, Message);
9228 
9229   // Make sure we leave the DAG in a valid state
9230   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9231   SmallVector<EVT, 1> ValueVTs;
9232   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9233 
9234   if (ValueVTs.empty())
9235     return;
9236 
9237   SmallVector<SDValue, 1> Ops;
9238   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9239     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9240 
9241   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9242 }
9243 
9244 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9245   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9246                           MVT::Other, getRoot(),
9247                           getValue(I.getArgOperand(0)),
9248                           DAG.getSrcValue(I.getArgOperand(0))));
9249 }
9250 
9251 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9252   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9253   const DataLayout &DL = DAG.getDataLayout();
9254   SDValue V = DAG.getVAArg(
9255       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9256       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9257       DL.getABITypeAlign(I.getType()).value());
9258   DAG.setRoot(V.getValue(1));
9259 
9260   if (I.getType()->isPointerTy())
9261     V = DAG.getPtrExtOrTrunc(
9262         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9263   setValue(&I, V);
9264 }
9265 
9266 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9267   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9268                           MVT::Other, getRoot(),
9269                           getValue(I.getArgOperand(0)),
9270                           DAG.getSrcValue(I.getArgOperand(0))));
9271 }
9272 
9273 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9274   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9275                           MVT::Other, getRoot(),
9276                           getValue(I.getArgOperand(0)),
9277                           getValue(I.getArgOperand(1)),
9278                           DAG.getSrcValue(I.getArgOperand(0)),
9279                           DAG.getSrcValue(I.getArgOperand(1))));
9280 }
9281 
9282 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9283                                                     const Instruction &I,
9284                                                     SDValue Op) {
9285   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9286   if (!Range)
9287     return Op;
9288 
9289   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9290   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9291     return Op;
9292 
9293   APInt Lo = CR.getUnsignedMin();
9294   if (!Lo.isMinValue())
9295     return Op;
9296 
9297   APInt Hi = CR.getUnsignedMax();
9298   unsigned Bits = std::max(Hi.getActiveBits(),
9299                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9300 
9301   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9302 
9303   SDLoc SL = getCurSDLoc();
9304 
9305   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9306                              DAG.getValueType(SmallVT));
9307   unsigned NumVals = Op.getNode()->getNumValues();
9308   if (NumVals == 1)
9309     return ZExt;
9310 
9311   SmallVector<SDValue, 4> Ops;
9312 
9313   Ops.push_back(ZExt);
9314   for (unsigned I = 1; I != NumVals; ++I)
9315     Ops.push_back(Op.getValue(I));
9316 
9317   return DAG.getMergeValues(Ops, SL);
9318 }
9319 
9320 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9321 /// the call being lowered.
9322 ///
9323 /// This is a helper for lowering intrinsics that follow a target calling
9324 /// convention or require stack pointer adjustment. Only a subset of the
9325 /// intrinsic's operands need to participate in the calling convention.
9326 void SelectionDAGBuilder::populateCallLoweringInfo(
9327     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9328     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9329     bool IsPatchPoint) {
9330   TargetLowering::ArgListTy Args;
9331   Args.reserve(NumArgs);
9332 
9333   // Populate the argument list.
9334   // Attributes for args start at offset 1, after the return attribute.
9335   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9336        ArgI != ArgE; ++ArgI) {
9337     const Value *V = Call->getOperand(ArgI);
9338 
9339     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9340 
9341     TargetLowering::ArgListEntry Entry;
9342     Entry.Node = getValue(V);
9343     Entry.Ty = V->getType();
9344     Entry.setAttributes(Call, ArgI);
9345     Args.push_back(Entry);
9346   }
9347 
9348   CLI.setDebugLoc(getCurSDLoc())
9349       .setChain(getRoot())
9350       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9351       .setDiscardResult(Call->use_empty())
9352       .setIsPatchPoint(IsPatchPoint)
9353       .setIsPreallocated(
9354           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9355 }
9356 
9357 /// Add a stack map intrinsic call's live variable operands to a stackmap
9358 /// or patchpoint target node's operand list.
9359 ///
9360 /// Constants are converted to TargetConstants purely as an optimization to
9361 /// avoid constant materialization and register allocation.
9362 ///
9363 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9364 /// generate addess computation nodes, and so FinalizeISel can convert the
9365 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9366 /// address materialization and register allocation, but may also be required
9367 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9368 /// alloca in the entry block, then the runtime may assume that the alloca's
9369 /// StackMap location can be read immediately after compilation and that the
9370 /// location is valid at any point during execution (this is similar to the
9371 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9372 /// only available in a register, then the runtime would need to trap when
9373 /// execution reaches the StackMap in order to read the alloca's location.
9374 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9375                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9376                                 SelectionDAGBuilder &Builder) {
9377   SelectionDAG &DAG = Builder.DAG;
9378   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9379     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9380 
9381     // Things on the stack are pointer-typed, meaning that they are already
9382     // legal and can be emitted directly to target nodes.
9383     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9384       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9385     } else {
9386       // Otherwise emit a target independent node to be legalised.
9387       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9388     }
9389   }
9390 }
9391 
9392 /// Lower llvm.experimental.stackmap.
9393 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9394   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9395   //                                  [live variables...])
9396 
9397   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9398 
9399   SDValue Chain, InFlag, Callee;
9400   SmallVector<SDValue, 32> Ops;
9401 
9402   SDLoc DL = getCurSDLoc();
9403   Callee = getValue(CI.getCalledOperand());
9404 
9405   // The stackmap intrinsic only records the live variables (the arguments
9406   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9407   // intrinsic, this won't be lowered to a function call. This means we don't
9408   // have to worry about calling conventions and target specific lowering code.
9409   // Instead we perform the call lowering right here.
9410   //
9411   // chain, flag = CALLSEQ_START(chain, 0, 0)
9412   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9413   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9414   //
9415   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9416   InFlag = Chain.getValue(1);
9417 
9418   // Add the STACKMAP operands, starting with DAG house-keeping.
9419   Ops.push_back(Chain);
9420   Ops.push_back(InFlag);
9421 
9422   // Add the <id>, <numShadowBytes> operands.
9423   //
9424   // These do not require legalisation, and can be emitted directly to target
9425   // constant nodes.
9426   SDValue ID = getValue(CI.getArgOperand(0));
9427   assert(ID.getValueType() == MVT::i64);
9428   SDValue IDConst = DAG.getTargetConstant(
9429       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9430   Ops.push_back(IDConst);
9431 
9432   SDValue Shad = getValue(CI.getArgOperand(1));
9433   assert(Shad.getValueType() == MVT::i32);
9434   SDValue ShadConst = DAG.getTargetConstant(
9435       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9436   Ops.push_back(ShadConst);
9437 
9438   // Add the live variables.
9439   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9440 
9441   // Create the STACKMAP node.
9442   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9443   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9444   InFlag = Chain.getValue(1);
9445 
9446   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9447 
9448   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9449 
9450   // Set the root to the target-lowered call chain.
9451   DAG.setRoot(Chain);
9452 
9453   // Inform the Frame Information that we have a stackmap in this function.
9454   FuncInfo.MF->getFrameInfo().setHasStackMap();
9455 }
9456 
9457 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9458 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9459                                           const BasicBlock *EHPadBB) {
9460   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9461   //                                                 i32 <numBytes>,
9462   //                                                 i8* <target>,
9463   //                                                 i32 <numArgs>,
9464   //                                                 [Args...],
9465   //                                                 [live variables...])
9466 
9467   CallingConv::ID CC = CB.getCallingConv();
9468   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9469   bool HasDef = !CB.getType()->isVoidTy();
9470   SDLoc dl = getCurSDLoc();
9471   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9472 
9473   // Handle immediate and symbolic callees.
9474   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9475     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9476                                    /*isTarget=*/true);
9477   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9478     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9479                                          SDLoc(SymbolicCallee),
9480                                          SymbolicCallee->getValueType(0));
9481 
9482   // Get the real number of arguments participating in the call <numArgs>
9483   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9484   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9485 
9486   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9487   // Intrinsics include all meta-operands up to but not including CC.
9488   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9489   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9490          "Not enough arguments provided to the patchpoint intrinsic");
9491 
9492   // For AnyRegCC the arguments are lowered later on manually.
9493   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9494   Type *ReturnTy =
9495       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9496 
9497   TargetLowering::CallLoweringInfo CLI(DAG);
9498   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9499                            ReturnTy, true);
9500   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9501 
9502   SDNode *CallEnd = Result.second.getNode();
9503   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9504     CallEnd = CallEnd->getOperand(0).getNode();
9505 
9506   /// Get a call instruction from the call sequence chain.
9507   /// Tail calls are not allowed.
9508   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9509          "Expected a callseq node.");
9510   SDNode *Call = CallEnd->getOperand(0).getNode();
9511   bool HasGlue = Call->getGluedNode();
9512 
9513   // Replace the target specific call node with the patchable intrinsic.
9514   SmallVector<SDValue, 8> Ops;
9515 
9516   // Push the chain.
9517   Ops.push_back(*(Call->op_begin()));
9518 
9519   // Optionally, push the glue (if any).
9520   if (HasGlue)
9521     Ops.push_back(*(Call->op_end() - 1));
9522 
9523   // Push the register mask info.
9524   if (HasGlue)
9525     Ops.push_back(*(Call->op_end() - 2));
9526   else
9527     Ops.push_back(*(Call->op_end() - 1));
9528 
9529   // Add the <id> and <numBytes> constants.
9530   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9531   Ops.push_back(DAG.getTargetConstant(
9532                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9533   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9534   Ops.push_back(DAG.getTargetConstant(
9535                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9536                   MVT::i32));
9537 
9538   // Add the callee.
9539   Ops.push_back(Callee);
9540 
9541   // Adjust <numArgs> to account for any arguments that have been passed on the
9542   // stack instead.
9543   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9544   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9545   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9546   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9547 
9548   // Add the calling convention
9549   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9550 
9551   // Add the arguments we omitted previously. The register allocator should
9552   // place these in any free register.
9553   if (IsAnyRegCC)
9554     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9555       Ops.push_back(getValue(CB.getArgOperand(i)));
9556 
9557   // Push the arguments from the call instruction.
9558   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9559   Ops.append(Call->op_begin() + 2, e);
9560 
9561   // Push live variables for the stack map.
9562   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9563 
9564   SDVTList NodeTys;
9565   if (IsAnyRegCC && HasDef) {
9566     // Create the return types based on the intrinsic definition
9567     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9568     SmallVector<EVT, 3> ValueVTs;
9569     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9570     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9571 
9572     // There is always a chain and a glue type at the end
9573     ValueVTs.push_back(MVT::Other);
9574     ValueVTs.push_back(MVT::Glue);
9575     NodeTys = DAG.getVTList(ValueVTs);
9576   } else
9577     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9578 
9579   // Replace the target specific call node with a PATCHPOINT node.
9580   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9581 
9582   // Update the NodeMap.
9583   if (HasDef) {
9584     if (IsAnyRegCC)
9585       setValue(&CB, SDValue(PPV.getNode(), 0));
9586     else
9587       setValue(&CB, Result.first);
9588   }
9589 
9590   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9591   // call sequence. Furthermore the location of the chain and glue can change
9592   // when the AnyReg calling convention is used and the intrinsic returns a
9593   // value.
9594   if (IsAnyRegCC && HasDef) {
9595     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9596     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9597     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9598   } else
9599     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9600   DAG.DeleteNode(Call);
9601 
9602   // Inform the Frame Information that we have a patchpoint in this function.
9603   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9604 }
9605 
9606 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9607                                             unsigned Intrinsic) {
9608   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9609   SDValue Op1 = getValue(I.getArgOperand(0));
9610   SDValue Op2;
9611   if (I.arg_size() > 1)
9612     Op2 = getValue(I.getArgOperand(1));
9613   SDLoc dl = getCurSDLoc();
9614   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9615   SDValue Res;
9616   SDNodeFlags SDFlags;
9617   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9618     SDFlags.copyFMF(*FPMO);
9619 
9620   switch (Intrinsic) {
9621   case Intrinsic::vector_reduce_fadd:
9622     if (SDFlags.hasAllowReassociation())
9623       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9624                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9625                         SDFlags);
9626     else
9627       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9628     break;
9629   case Intrinsic::vector_reduce_fmul:
9630     if (SDFlags.hasAllowReassociation())
9631       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9632                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9633                         SDFlags);
9634     else
9635       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9636     break;
9637   case Intrinsic::vector_reduce_add:
9638     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9639     break;
9640   case Intrinsic::vector_reduce_mul:
9641     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9642     break;
9643   case Intrinsic::vector_reduce_and:
9644     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9645     break;
9646   case Intrinsic::vector_reduce_or:
9647     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9648     break;
9649   case Intrinsic::vector_reduce_xor:
9650     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9651     break;
9652   case Intrinsic::vector_reduce_smax:
9653     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9654     break;
9655   case Intrinsic::vector_reduce_smin:
9656     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9657     break;
9658   case Intrinsic::vector_reduce_umax:
9659     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9660     break;
9661   case Intrinsic::vector_reduce_umin:
9662     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9663     break;
9664   case Intrinsic::vector_reduce_fmax:
9665     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9666     break;
9667   case Intrinsic::vector_reduce_fmin:
9668     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9669     break;
9670   default:
9671     llvm_unreachable("Unhandled vector reduce intrinsic");
9672   }
9673   setValue(&I, Res);
9674 }
9675 
9676 /// Returns an AttributeList representing the attributes applied to the return
9677 /// value of the given call.
9678 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9679   SmallVector<Attribute::AttrKind, 2> Attrs;
9680   if (CLI.RetSExt)
9681     Attrs.push_back(Attribute::SExt);
9682   if (CLI.RetZExt)
9683     Attrs.push_back(Attribute::ZExt);
9684   if (CLI.IsInReg)
9685     Attrs.push_back(Attribute::InReg);
9686 
9687   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9688                             Attrs);
9689 }
9690 
9691 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9692 /// implementation, which just calls LowerCall.
9693 /// FIXME: When all targets are
9694 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9695 std::pair<SDValue, SDValue>
9696 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9697   // Handle the incoming return values from the call.
9698   CLI.Ins.clear();
9699   Type *OrigRetTy = CLI.RetTy;
9700   SmallVector<EVT, 4> RetTys;
9701   SmallVector<uint64_t, 4> Offsets;
9702   auto &DL = CLI.DAG.getDataLayout();
9703   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9704 
9705   if (CLI.IsPostTypeLegalization) {
9706     // If we are lowering a libcall after legalization, split the return type.
9707     SmallVector<EVT, 4> OldRetTys;
9708     SmallVector<uint64_t, 4> OldOffsets;
9709     RetTys.swap(OldRetTys);
9710     Offsets.swap(OldOffsets);
9711 
9712     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9713       EVT RetVT = OldRetTys[i];
9714       uint64_t Offset = OldOffsets[i];
9715       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9716       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9717       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9718       RetTys.append(NumRegs, RegisterVT);
9719       for (unsigned j = 0; j != NumRegs; ++j)
9720         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9721     }
9722   }
9723 
9724   SmallVector<ISD::OutputArg, 4> Outs;
9725   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9726 
9727   bool CanLowerReturn =
9728       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9729                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9730 
9731   SDValue DemoteStackSlot;
9732   int DemoteStackIdx = -100;
9733   if (!CanLowerReturn) {
9734     // FIXME: equivalent assert?
9735     // assert(!CS.hasInAllocaArgument() &&
9736     //        "sret demotion is incompatible with inalloca");
9737     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9738     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9739     MachineFunction &MF = CLI.DAG.getMachineFunction();
9740     DemoteStackIdx =
9741         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9742     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9743                                               DL.getAllocaAddrSpace());
9744 
9745     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9746     ArgListEntry Entry;
9747     Entry.Node = DemoteStackSlot;
9748     Entry.Ty = StackSlotPtrType;
9749     Entry.IsSExt = false;
9750     Entry.IsZExt = false;
9751     Entry.IsInReg = false;
9752     Entry.IsSRet = true;
9753     Entry.IsNest = false;
9754     Entry.IsByVal = false;
9755     Entry.IsByRef = false;
9756     Entry.IsReturned = false;
9757     Entry.IsSwiftSelf = false;
9758     Entry.IsSwiftAsync = false;
9759     Entry.IsSwiftError = false;
9760     Entry.IsCFGuardTarget = false;
9761     Entry.Alignment = Alignment;
9762     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9763     CLI.NumFixedArgs += 1;
9764     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9765 
9766     // sret demotion isn't compatible with tail-calls, since the sret argument
9767     // points into the callers stack frame.
9768     CLI.IsTailCall = false;
9769   } else {
9770     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9771         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9772     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9773       ISD::ArgFlagsTy Flags;
9774       if (NeedsRegBlock) {
9775         Flags.setInConsecutiveRegs();
9776         if (I == RetTys.size() - 1)
9777           Flags.setInConsecutiveRegsLast();
9778       }
9779       EVT VT = RetTys[I];
9780       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9781                                                      CLI.CallConv, VT);
9782       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9783                                                        CLI.CallConv, VT);
9784       for (unsigned i = 0; i != NumRegs; ++i) {
9785         ISD::InputArg MyFlags;
9786         MyFlags.Flags = Flags;
9787         MyFlags.VT = RegisterVT;
9788         MyFlags.ArgVT = VT;
9789         MyFlags.Used = CLI.IsReturnValueUsed;
9790         if (CLI.RetTy->isPointerTy()) {
9791           MyFlags.Flags.setPointer();
9792           MyFlags.Flags.setPointerAddrSpace(
9793               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9794         }
9795         if (CLI.RetSExt)
9796           MyFlags.Flags.setSExt();
9797         if (CLI.RetZExt)
9798           MyFlags.Flags.setZExt();
9799         if (CLI.IsInReg)
9800           MyFlags.Flags.setInReg();
9801         CLI.Ins.push_back(MyFlags);
9802       }
9803     }
9804   }
9805 
9806   // We push in swifterror return as the last element of CLI.Ins.
9807   ArgListTy &Args = CLI.getArgs();
9808   if (supportSwiftError()) {
9809     for (const ArgListEntry &Arg : Args) {
9810       if (Arg.IsSwiftError) {
9811         ISD::InputArg MyFlags;
9812         MyFlags.VT = getPointerTy(DL);
9813         MyFlags.ArgVT = EVT(getPointerTy(DL));
9814         MyFlags.Flags.setSwiftError();
9815         CLI.Ins.push_back(MyFlags);
9816       }
9817     }
9818   }
9819 
9820   // Handle all of the outgoing arguments.
9821   CLI.Outs.clear();
9822   CLI.OutVals.clear();
9823   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9824     SmallVector<EVT, 4> ValueVTs;
9825     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9826     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9827     Type *FinalType = Args[i].Ty;
9828     if (Args[i].IsByVal)
9829       FinalType = Args[i].IndirectType;
9830     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9831         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9832     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9833          ++Value) {
9834       EVT VT = ValueVTs[Value];
9835       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9836       SDValue Op = SDValue(Args[i].Node.getNode(),
9837                            Args[i].Node.getResNo() + Value);
9838       ISD::ArgFlagsTy Flags;
9839 
9840       // Certain targets (such as MIPS), may have a different ABI alignment
9841       // for a type depending on the context. Give the target a chance to
9842       // specify the alignment it wants.
9843       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9844       Flags.setOrigAlign(OriginalAlignment);
9845 
9846       if (Args[i].Ty->isPointerTy()) {
9847         Flags.setPointer();
9848         Flags.setPointerAddrSpace(
9849             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9850       }
9851       if (Args[i].IsZExt)
9852         Flags.setZExt();
9853       if (Args[i].IsSExt)
9854         Flags.setSExt();
9855       if (Args[i].IsInReg) {
9856         // If we are using vectorcall calling convention, a structure that is
9857         // passed InReg - is surely an HVA
9858         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9859             isa<StructType>(FinalType)) {
9860           // The first value of a structure is marked
9861           if (0 == Value)
9862             Flags.setHvaStart();
9863           Flags.setHva();
9864         }
9865         // Set InReg Flag
9866         Flags.setInReg();
9867       }
9868       if (Args[i].IsSRet)
9869         Flags.setSRet();
9870       if (Args[i].IsSwiftSelf)
9871         Flags.setSwiftSelf();
9872       if (Args[i].IsSwiftAsync)
9873         Flags.setSwiftAsync();
9874       if (Args[i].IsSwiftError)
9875         Flags.setSwiftError();
9876       if (Args[i].IsCFGuardTarget)
9877         Flags.setCFGuardTarget();
9878       if (Args[i].IsByVal)
9879         Flags.setByVal();
9880       if (Args[i].IsByRef)
9881         Flags.setByRef();
9882       if (Args[i].IsPreallocated) {
9883         Flags.setPreallocated();
9884         // Set the byval flag for CCAssignFn callbacks that don't know about
9885         // preallocated.  This way we can know how many bytes we should've
9886         // allocated and how many bytes a callee cleanup function will pop.  If
9887         // we port preallocated to more targets, we'll have to add custom
9888         // preallocated handling in the various CC lowering callbacks.
9889         Flags.setByVal();
9890       }
9891       if (Args[i].IsInAlloca) {
9892         Flags.setInAlloca();
9893         // Set the byval flag for CCAssignFn callbacks that don't know about
9894         // inalloca.  This way we can know how many bytes we should've allocated
9895         // and how many bytes a callee cleanup function will pop.  If we port
9896         // inalloca to more targets, we'll have to add custom inalloca handling
9897         // in the various CC lowering callbacks.
9898         Flags.setByVal();
9899       }
9900       Align MemAlign;
9901       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9902         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9903         Flags.setByValSize(FrameSize);
9904 
9905         // info is not there but there are cases it cannot get right.
9906         if (auto MA = Args[i].Alignment)
9907           MemAlign = *MA;
9908         else
9909           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9910       } else if (auto MA = Args[i].Alignment) {
9911         MemAlign = *MA;
9912       } else {
9913         MemAlign = OriginalAlignment;
9914       }
9915       Flags.setMemAlign(MemAlign);
9916       if (Args[i].IsNest)
9917         Flags.setNest();
9918       if (NeedsRegBlock)
9919         Flags.setInConsecutiveRegs();
9920 
9921       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9922                                                  CLI.CallConv, VT);
9923       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9924                                                         CLI.CallConv, VT);
9925       SmallVector<SDValue, 4> Parts(NumParts);
9926       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9927 
9928       if (Args[i].IsSExt)
9929         ExtendKind = ISD::SIGN_EXTEND;
9930       else if (Args[i].IsZExt)
9931         ExtendKind = ISD::ZERO_EXTEND;
9932 
9933       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9934       // for now.
9935       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9936           CanLowerReturn) {
9937         assert((CLI.RetTy == Args[i].Ty ||
9938                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9939                  CLI.RetTy->getPointerAddressSpace() ==
9940                      Args[i].Ty->getPointerAddressSpace())) &&
9941                RetTys.size() == NumValues && "unexpected use of 'returned'");
9942         // Before passing 'returned' to the target lowering code, ensure that
9943         // either the register MVT and the actual EVT are the same size or that
9944         // the return value and argument are extended in the same way; in these
9945         // cases it's safe to pass the argument register value unchanged as the
9946         // return register value (although it's at the target's option whether
9947         // to do so)
9948         // TODO: allow code generation to take advantage of partially preserved
9949         // registers rather than clobbering the entire register when the
9950         // parameter extension method is not compatible with the return
9951         // extension method
9952         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9953             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9954              CLI.RetZExt == Args[i].IsZExt))
9955           Flags.setReturned();
9956       }
9957 
9958       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9959                      CLI.CallConv, ExtendKind);
9960 
9961       for (unsigned j = 0; j != NumParts; ++j) {
9962         // if it isn't first piece, alignment must be 1
9963         // For scalable vectors the scalable part is currently handled
9964         // by individual targets, so we just use the known minimum size here.
9965         ISD::OutputArg MyFlags(
9966             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9967             i < CLI.NumFixedArgs, i,
9968             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9969         if (NumParts > 1 && j == 0)
9970           MyFlags.Flags.setSplit();
9971         else if (j != 0) {
9972           MyFlags.Flags.setOrigAlign(Align(1));
9973           if (j == NumParts - 1)
9974             MyFlags.Flags.setSplitEnd();
9975         }
9976 
9977         CLI.Outs.push_back(MyFlags);
9978         CLI.OutVals.push_back(Parts[j]);
9979       }
9980 
9981       if (NeedsRegBlock && Value == NumValues - 1)
9982         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9983     }
9984   }
9985 
9986   SmallVector<SDValue, 4> InVals;
9987   CLI.Chain = LowerCall(CLI, InVals);
9988 
9989   // Update CLI.InVals to use outside of this function.
9990   CLI.InVals = InVals;
9991 
9992   // Verify that the target's LowerCall behaved as expected.
9993   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9994          "LowerCall didn't return a valid chain!");
9995   assert((!CLI.IsTailCall || InVals.empty()) &&
9996          "LowerCall emitted a return value for a tail call!");
9997   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9998          "LowerCall didn't emit the correct number of values!");
9999 
10000   // For a tail call, the return value is merely live-out and there aren't
10001   // any nodes in the DAG representing it. Return a special value to
10002   // indicate that a tail call has been emitted and no more Instructions
10003   // should be processed in the current block.
10004   if (CLI.IsTailCall) {
10005     CLI.DAG.setRoot(CLI.Chain);
10006     return std::make_pair(SDValue(), SDValue());
10007   }
10008 
10009 #ifndef NDEBUG
10010   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10011     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10012     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10013            "LowerCall emitted a value with the wrong type!");
10014   }
10015 #endif
10016 
10017   SmallVector<SDValue, 4> ReturnValues;
10018   if (!CanLowerReturn) {
10019     // The instruction result is the result of loading from the
10020     // hidden sret parameter.
10021     SmallVector<EVT, 1> PVTs;
10022     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10023 
10024     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10025     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10026     EVT PtrVT = PVTs[0];
10027 
10028     unsigned NumValues = RetTys.size();
10029     ReturnValues.resize(NumValues);
10030     SmallVector<SDValue, 4> Chains(NumValues);
10031 
10032     // An aggregate return value cannot wrap around the address space, so
10033     // offsets to its parts don't wrap either.
10034     SDNodeFlags Flags;
10035     Flags.setNoUnsignedWrap(true);
10036 
10037     MachineFunction &MF = CLI.DAG.getMachineFunction();
10038     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10039     for (unsigned i = 0; i < NumValues; ++i) {
10040       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10041                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10042                                                         PtrVT), Flags);
10043       SDValue L = CLI.DAG.getLoad(
10044           RetTys[i], CLI.DL, CLI.Chain, Add,
10045           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10046                                             DemoteStackIdx, Offsets[i]),
10047           HiddenSRetAlign);
10048       ReturnValues[i] = L;
10049       Chains[i] = L.getValue(1);
10050     }
10051 
10052     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10053   } else {
10054     // Collect the legal value parts into potentially illegal values
10055     // that correspond to the original function's return values.
10056     Optional<ISD::NodeType> AssertOp;
10057     if (CLI.RetSExt)
10058       AssertOp = ISD::AssertSext;
10059     else if (CLI.RetZExt)
10060       AssertOp = ISD::AssertZext;
10061     unsigned CurReg = 0;
10062     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10063       EVT VT = RetTys[I];
10064       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10065                                                      CLI.CallConv, VT);
10066       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10067                                                        CLI.CallConv, VT);
10068 
10069       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10070                                               NumRegs, RegisterVT, VT, nullptr,
10071                                               CLI.CallConv, AssertOp));
10072       CurReg += NumRegs;
10073     }
10074 
10075     // For a function returning void, there is no return value. We can't create
10076     // such a node, so we just return a null return value in that case. In
10077     // that case, nothing will actually look at the value.
10078     if (ReturnValues.empty())
10079       return std::make_pair(SDValue(), CLI.Chain);
10080   }
10081 
10082   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10083                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10084   return std::make_pair(Res, CLI.Chain);
10085 }
10086 
10087 /// Places new result values for the node in Results (their number
10088 /// and types must exactly match those of the original return values of
10089 /// the node), or leaves Results empty, which indicates that the node is not
10090 /// to be custom lowered after all.
10091 void TargetLowering::LowerOperationWrapper(SDNode *N,
10092                                            SmallVectorImpl<SDValue> &Results,
10093                                            SelectionDAG &DAG) const {
10094   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10095 
10096   if (!Res.getNode())
10097     return;
10098 
10099   // If the original node has one result, take the return value from
10100   // LowerOperation as is. It might not be result number 0.
10101   if (N->getNumValues() == 1) {
10102     Results.push_back(Res);
10103     return;
10104   }
10105 
10106   // If the original node has multiple results, then the return node should
10107   // have the same number of results.
10108   assert((N->getNumValues() == Res->getNumValues()) &&
10109       "Lowering returned the wrong number of results!");
10110 
10111   // Places new result values base on N result number.
10112   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10113     Results.push_back(Res.getValue(I));
10114 }
10115 
10116 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10117   llvm_unreachable("LowerOperation not implemented for this target!");
10118 }
10119 
10120 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10121                                                      unsigned Reg,
10122                                                      ISD::NodeType ExtendType) {
10123   SDValue Op = getNonRegisterValue(V);
10124   assert((Op.getOpcode() != ISD::CopyFromReg ||
10125           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10126          "Copy from a reg to the same reg!");
10127   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10128 
10129   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10130   // If this is an InlineAsm we have to match the registers required, not the
10131   // notional registers required by the type.
10132 
10133   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10134                    None); // This is not an ABI copy.
10135   SDValue Chain = DAG.getEntryNode();
10136 
10137   if (ExtendType == ISD::ANY_EXTEND) {
10138     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10139     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10140       ExtendType = PreferredExtendIt->second;
10141   }
10142   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10143   PendingExports.push_back(Chain);
10144 }
10145 
10146 #include "llvm/CodeGen/SelectionDAGISel.h"
10147 
10148 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10149 /// entry block, return true.  This includes arguments used by switches, since
10150 /// the switch may expand into multiple basic blocks.
10151 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10152   // With FastISel active, we may be splitting blocks, so force creation
10153   // of virtual registers for all non-dead arguments.
10154   if (FastISel)
10155     return A->use_empty();
10156 
10157   const BasicBlock &Entry = A->getParent()->front();
10158   for (const User *U : A->users())
10159     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10160       return false;  // Use not in entry block.
10161 
10162   return true;
10163 }
10164 
10165 using ArgCopyElisionMapTy =
10166     DenseMap<const Argument *,
10167              std::pair<const AllocaInst *, const StoreInst *>>;
10168 
10169 /// Scan the entry block of the function in FuncInfo for arguments that look
10170 /// like copies into a local alloca. Record any copied arguments in
10171 /// ArgCopyElisionCandidates.
10172 static void
10173 findArgumentCopyElisionCandidates(const DataLayout &DL,
10174                                   FunctionLoweringInfo *FuncInfo,
10175                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10176   // Record the state of every static alloca used in the entry block. Argument
10177   // allocas are all used in the entry block, so we need approximately as many
10178   // entries as we have arguments.
10179   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10180   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10181   unsigned NumArgs = FuncInfo->Fn->arg_size();
10182   StaticAllocas.reserve(NumArgs * 2);
10183 
10184   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10185     if (!V)
10186       return nullptr;
10187     V = V->stripPointerCasts();
10188     const auto *AI = dyn_cast<AllocaInst>(V);
10189     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10190       return nullptr;
10191     auto Iter = StaticAllocas.insert({AI, Unknown});
10192     return &Iter.first->second;
10193   };
10194 
10195   // Look for stores of arguments to static allocas. Look through bitcasts and
10196   // GEPs to handle type coercions, as long as the alloca is fully initialized
10197   // by the store. Any non-store use of an alloca escapes it and any subsequent
10198   // unanalyzed store might write it.
10199   // FIXME: Handle structs initialized with multiple stores.
10200   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10201     // Look for stores, and handle non-store uses conservatively.
10202     const auto *SI = dyn_cast<StoreInst>(&I);
10203     if (!SI) {
10204       // We will look through cast uses, so ignore them completely.
10205       if (I.isCast())
10206         continue;
10207       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10208       // to allocas.
10209       if (I.isDebugOrPseudoInst())
10210         continue;
10211       // This is an unknown instruction. Assume it escapes or writes to all
10212       // static alloca operands.
10213       for (const Use &U : I.operands()) {
10214         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10215           *Info = StaticAllocaInfo::Clobbered;
10216       }
10217       continue;
10218     }
10219 
10220     // If the stored value is a static alloca, mark it as escaped.
10221     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10222       *Info = StaticAllocaInfo::Clobbered;
10223 
10224     // Check if the destination is a static alloca.
10225     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10226     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10227     if (!Info)
10228       continue;
10229     const AllocaInst *AI = cast<AllocaInst>(Dst);
10230 
10231     // Skip allocas that have been initialized or clobbered.
10232     if (*Info != StaticAllocaInfo::Unknown)
10233       continue;
10234 
10235     // Check if the stored value is an argument, and that this store fully
10236     // initializes the alloca.
10237     // If the argument type has padding bits we can't directly forward a pointer
10238     // as the upper bits may contain garbage.
10239     // Don't elide copies from the same argument twice.
10240     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10241     const auto *Arg = dyn_cast<Argument>(Val);
10242     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10243         Arg->getType()->isEmptyTy() ||
10244         DL.getTypeStoreSize(Arg->getType()) !=
10245             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10246         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10247         ArgCopyElisionCandidates.count(Arg)) {
10248       *Info = StaticAllocaInfo::Clobbered;
10249       continue;
10250     }
10251 
10252     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10253                       << '\n');
10254 
10255     // Mark this alloca and store for argument copy elision.
10256     *Info = StaticAllocaInfo::Elidable;
10257     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10258 
10259     // Stop scanning if we've seen all arguments. This will happen early in -O0
10260     // builds, which is useful, because -O0 builds have large entry blocks and
10261     // many allocas.
10262     if (ArgCopyElisionCandidates.size() == NumArgs)
10263       break;
10264   }
10265 }
10266 
10267 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10268 /// ArgVal is a load from a suitable fixed stack object.
10269 static void tryToElideArgumentCopy(
10270     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10271     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10272     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10273     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10274     SDValue ArgVal, bool &ArgHasUses) {
10275   // Check if this is a load from a fixed stack object.
10276   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10277   if (!LNode)
10278     return;
10279   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10280   if (!FINode)
10281     return;
10282 
10283   // Check that the fixed stack object is the right size and alignment.
10284   // Look at the alignment that the user wrote on the alloca instead of looking
10285   // at the stack object.
10286   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10287   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10288   const AllocaInst *AI = ArgCopyIter->second.first;
10289   int FixedIndex = FINode->getIndex();
10290   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10291   int OldIndex = AllocaIndex;
10292   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10293   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10294     LLVM_DEBUG(
10295         dbgs() << "  argument copy elision failed due to bad fixed stack "
10296                   "object size\n");
10297     return;
10298   }
10299   Align RequiredAlignment = AI->getAlign();
10300   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10301     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10302                          "greater than stack argument alignment ("
10303                       << DebugStr(RequiredAlignment) << " vs "
10304                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10305     return;
10306   }
10307 
10308   // Perform the elision. Delete the old stack object and replace its only use
10309   // in the variable info map. Mark the stack object as mutable.
10310   LLVM_DEBUG({
10311     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10312            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10313            << '\n';
10314   });
10315   MFI.RemoveStackObject(OldIndex);
10316   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10317   AllocaIndex = FixedIndex;
10318   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10319   Chains.push_back(ArgVal.getValue(1));
10320 
10321   // Avoid emitting code for the store implementing the copy.
10322   const StoreInst *SI = ArgCopyIter->second.second;
10323   ElidedArgCopyInstrs.insert(SI);
10324 
10325   // Check for uses of the argument again so that we can avoid exporting ArgVal
10326   // if it is't used by anything other than the store.
10327   for (const Value *U : Arg.users()) {
10328     if (U != SI) {
10329       ArgHasUses = true;
10330       break;
10331     }
10332   }
10333 }
10334 
10335 void SelectionDAGISel::LowerArguments(const Function &F) {
10336   SelectionDAG &DAG = SDB->DAG;
10337   SDLoc dl = SDB->getCurSDLoc();
10338   const DataLayout &DL = DAG.getDataLayout();
10339   SmallVector<ISD::InputArg, 16> Ins;
10340 
10341   // In Naked functions we aren't going to save any registers.
10342   if (F.hasFnAttribute(Attribute::Naked))
10343     return;
10344 
10345   if (!FuncInfo->CanLowerReturn) {
10346     // Put in an sret pointer parameter before all the other parameters.
10347     SmallVector<EVT, 1> ValueVTs;
10348     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10349                     F.getReturnType()->getPointerTo(
10350                         DAG.getDataLayout().getAllocaAddrSpace()),
10351                     ValueVTs);
10352 
10353     // NOTE: Assuming that a pointer will never break down to more than one VT
10354     // or one register.
10355     ISD::ArgFlagsTy Flags;
10356     Flags.setSRet();
10357     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10358     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10359                          ISD::InputArg::NoArgIndex, 0);
10360     Ins.push_back(RetArg);
10361   }
10362 
10363   // Look for stores of arguments to static allocas. Mark such arguments with a
10364   // flag to ask the target to give us the memory location of that argument if
10365   // available.
10366   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10367   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10368                                     ArgCopyElisionCandidates);
10369 
10370   // Set up the incoming argument description vector.
10371   for (const Argument &Arg : F.args()) {
10372     unsigned ArgNo = Arg.getArgNo();
10373     SmallVector<EVT, 4> ValueVTs;
10374     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10375     bool isArgValueUsed = !Arg.use_empty();
10376     unsigned PartBase = 0;
10377     Type *FinalType = Arg.getType();
10378     if (Arg.hasAttribute(Attribute::ByVal))
10379       FinalType = Arg.getParamByValType();
10380     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10381         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10382     for (unsigned Value = 0, NumValues = ValueVTs.size();
10383          Value != NumValues; ++Value) {
10384       EVT VT = ValueVTs[Value];
10385       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10386       ISD::ArgFlagsTy Flags;
10387 
10388 
10389       if (Arg.getType()->isPointerTy()) {
10390         Flags.setPointer();
10391         Flags.setPointerAddrSpace(
10392             cast<PointerType>(Arg.getType())->getAddressSpace());
10393       }
10394       if (Arg.hasAttribute(Attribute::ZExt))
10395         Flags.setZExt();
10396       if (Arg.hasAttribute(Attribute::SExt))
10397         Flags.setSExt();
10398       if (Arg.hasAttribute(Attribute::InReg)) {
10399         // If we are using vectorcall calling convention, a structure that is
10400         // passed InReg - is surely an HVA
10401         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10402             isa<StructType>(Arg.getType())) {
10403           // The first value of a structure is marked
10404           if (0 == Value)
10405             Flags.setHvaStart();
10406           Flags.setHva();
10407         }
10408         // Set InReg Flag
10409         Flags.setInReg();
10410       }
10411       if (Arg.hasAttribute(Attribute::StructRet))
10412         Flags.setSRet();
10413       if (Arg.hasAttribute(Attribute::SwiftSelf))
10414         Flags.setSwiftSelf();
10415       if (Arg.hasAttribute(Attribute::SwiftAsync))
10416         Flags.setSwiftAsync();
10417       if (Arg.hasAttribute(Attribute::SwiftError))
10418         Flags.setSwiftError();
10419       if (Arg.hasAttribute(Attribute::ByVal))
10420         Flags.setByVal();
10421       if (Arg.hasAttribute(Attribute::ByRef))
10422         Flags.setByRef();
10423       if (Arg.hasAttribute(Attribute::InAlloca)) {
10424         Flags.setInAlloca();
10425         // Set the byval flag for CCAssignFn callbacks that don't know about
10426         // inalloca.  This way we can know how many bytes we should've allocated
10427         // and how many bytes a callee cleanup function will pop.  If we port
10428         // inalloca to more targets, we'll have to add custom inalloca handling
10429         // in the various CC lowering callbacks.
10430         Flags.setByVal();
10431       }
10432       if (Arg.hasAttribute(Attribute::Preallocated)) {
10433         Flags.setPreallocated();
10434         // Set the byval flag for CCAssignFn callbacks that don't know about
10435         // preallocated.  This way we can know how many bytes we should've
10436         // allocated and how many bytes a callee cleanup function will pop.  If
10437         // we port preallocated to more targets, we'll have to add custom
10438         // preallocated handling in the various CC lowering callbacks.
10439         Flags.setByVal();
10440       }
10441 
10442       // Certain targets (such as MIPS), may have a different ABI alignment
10443       // for a type depending on the context. Give the target a chance to
10444       // specify the alignment it wants.
10445       const Align OriginalAlignment(
10446           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10447       Flags.setOrigAlign(OriginalAlignment);
10448 
10449       Align MemAlign;
10450       Type *ArgMemTy = nullptr;
10451       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10452           Flags.isByRef()) {
10453         if (!ArgMemTy)
10454           ArgMemTy = Arg.getPointeeInMemoryValueType();
10455 
10456         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10457 
10458         // For in-memory arguments, size and alignment should be passed from FE.
10459         // BE will guess if this info is not there but there are cases it cannot
10460         // get right.
10461         if (auto ParamAlign = Arg.getParamStackAlign())
10462           MemAlign = *ParamAlign;
10463         else if ((ParamAlign = Arg.getParamAlign()))
10464           MemAlign = *ParamAlign;
10465         else
10466           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10467         if (Flags.isByRef())
10468           Flags.setByRefSize(MemSize);
10469         else
10470           Flags.setByValSize(MemSize);
10471       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10472         MemAlign = *ParamAlign;
10473       } else {
10474         MemAlign = OriginalAlignment;
10475       }
10476       Flags.setMemAlign(MemAlign);
10477 
10478       if (Arg.hasAttribute(Attribute::Nest))
10479         Flags.setNest();
10480       if (NeedsRegBlock)
10481         Flags.setInConsecutiveRegs();
10482       if (ArgCopyElisionCandidates.count(&Arg))
10483         Flags.setCopyElisionCandidate();
10484       if (Arg.hasAttribute(Attribute::Returned))
10485         Flags.setReturned();
10486 
10487       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10488           *CurDAG->getContext(), F.getCallingConv(), VT);
10489       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10490           *CurDAG->getContext(), F.getCallingConv(), VT);
10491       for (unsigned i = 0; i != NumRegs; ++i) {
10492         // For scalable vectors, use the minimum size; individual targets
10493         // are responsible for handling scalable vector arguments and
10494         // return values.
10495         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10496                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10497         if (NumRegs > 1 && i == 0)
10498           MyFlags.Flags.setSplit();
10499         // if it isn't first piece, alignment must be 1
10500         else if (i > 0) {
10501           MyFlags.Flags.setOrigAlign(Align(1));
10502           if (i == NumRegs - 1)
10503             MyFlags.Flags.setSplitEnd();
10504         }
10505         Ins.push_back(MyFlags);
10506       }
10507       if (NeedsRegBlock && Value == NumValues - 1)
10508         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10509       PartBase += VT.getStoreSize().getKnownMinSize();
10510     }
10511   }
10512 
10513   // Call the target to set up the argument values.
10514   SmallVector<SDValue, 8> InVals;
10515   SDValue NewRoot = TLI->LowerFormalArguments(
10516       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10517 
10518   // Verify that the target's LowerFormalArguments behaved as expected.
10519   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10520          "LowerFormalArguments didn't return a valid chain!");
10521   assert(InVals.size() == Ins.size() &&
10522          "LowerFormalArguments didn't emit the correct number of values!");
10523   LLVM_DEBUG({
10524     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10525       assert(InVals[i].getNode() &&
10526              "LowerFormalArguments emitted a null value!");
10527       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10528              "LowerFormalArguments emitted a value with the wrong type!");
10529     }
10530   });
10531 
10532   // Update the DAG with the new chain value resulting from argument lowering.
10533   DAG.setRoot(NewRoot);
10534 
10535   // Set up the argument values.
10536   unsigned i = 0;
10537   if (!FuncInfo->CanLowerReturn) {
10538     // Create a virtual register for the sret pointer, and put in a copy
10539     // from the sret argument into it.
10540     SmallVector<EVT, 1> ValueVTs;
10541     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10542                     F.getReturnType()->getPointerTo(
10543                         DAG.getDataLayout().getAllocaAddrSpace()),
10544                     ValueVTs);
10545     MVT VT = ValueVTs[0].getSimpleVT();
10546     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10547     Optional<ISD::NodeType> AssertOp;
10548     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10549                                         nullptr, F.getCallingConv(), AssertOp);
10550 
10551     MachineFunction& MF = SDB->DAG.getMachineFunction();
10552     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10553     Register SRetReg =
10554         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10555     FuncInfo->DemoteRegister = SRetReg;
10556     NewRoot =
10557         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10558     DAG.setRoot(NewRoot);
10559 
10560     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10561     ++i;
10562   }
10563 
10564   SmallVector<SDValue, 4> Chains;
10565   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10566   for (const Argument &Arg : F.args()) {
10567     SmallVector<SDValue, 4> ArgValues;
10568     SmallVector<EVT, 4> ValueVTs;
10569     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10570     unsigned NumValues = ValueVTs.size();
10571     if (NumValues == 0)
10572       continue;
10573 
10574     bool ArgHasUses = !Arg.use_empty();
10575 
10576     // Elide the copying store if the target loaded this argument from a
10577     // suitable fixed stack object.
10578     if (Ins[i].Flags.isCopyElisionCandidate()) {
10579       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10580                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10581                              InVals[i], ArgHasUses);
10582     }
10583 
10584     // If this argument is unused then remember its value. It is used to generate
10585     // debugging information.
10586     bool isSwiftErrorArg =
10587         TLI->supportSwiftError() &&
10588         Arg.hasAttribute(Attribute::SwiftError);
10589     if (!ArgHasUses && !isSwiftErrorArg) {
10590       SDB->setUnusedArgValue(&Arg, InVals[i]);
10591 
10592       // Also remember any frame index for use in FastISel.
10593       if (FrameIndexSDNode *FI =
10594           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10595         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10596     }
10597 
10598     for (unsigned Val = 0; Val != NumValues; ++Val) {
10599       EVT VT = ValueVTs[Val];
10600       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10601                                                       F.getCallingConv(), VT);
10602       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10603           *CurDAG->getContext(), F.getCallingConv(), VT);
10604 
10605       // Even an apparent 'unused' swifterror argument needs to be returned. So
10606       // we do generate a copy for it that can be used on return from the
10607       // function.
10608       if (ArgHasUses || isSwiftErrorArg) {
10609         Optional<ISD::NodeType> AssertOp;
10610         if (Arg.hasAttribute(Attribute::SExt))
10611           AssertOp = ISD::AssertSext;
10612         else if (Arg.hasAttribute(Attribute::ZExt))
10613           AssertOp = ISD::AssertZext;
10614 
10615         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10616                                              PartVT, VT, nullptr,
10617                                              F.getCallingConv(), AssertOp));
10618       }
10619 
10620       i += NumParts;
10621     }
10622 
10623     // We don't need to do anything else for unused arguments.
10624     if (ArgValues.empty())
10625       continue;
10626 
10627     // Note down frame index.
10628     if (FrameIndexSDNode *FI =
10629         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10630       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10631 
10632     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10633                                      SDB->getCurSDLoc());
10634 
10635     SDB->setValue(&Arg, Res);
10636     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10637       // We want to associate the argument with the frame index, among
10638       // involved operands, that correspond to the lowest address. The
10639       // getCopyFromParts function, called earlier, is swapping the order of
10640       // the operands to BUILD_PAIR depending on endianness. The result of
10641       // that swapping is that the least significant bits of the argument will
10642       // be in the first operand of the BUILD_PAIR node, and the most
10643       // significant bits will be in the second operand.
10644       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10645       if (LoadSDNode *LNode =
10646           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10647         if (FrameIndexSDNode *FI =
10648             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10649           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10650     }
10651 
10652     // Analyses past this point are naive and don't expect an assertion.
10653     if (Res.getOpcode() == ISD::AssertZext)
10654       Res = Res.getOperand(0);
10655 
10656     // Update the SwiftErrorVRegDefMap.
10657     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10658       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10659       if (Register::isVirtualRegister(Reg))
10660         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10661                                    Reg);
10662     }
10663 
10664     // If this argument is live outside of the entry block, insert a copy from
10665     // wherever we got it to the vreg that other BB's will reference it as.
10666     if (Res.getOpcode() == ISD::CopyFromReg) {
10667       // If we can, though, try to skip creating an unnecessary vreg.
10668       // FIXME: This isn't very clean... it would be nice to make this more
10669       // general.
10670       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10671       if (Register::isVirtualRegister(Reg)) {
10672         FuncInfo->ValueMap[&Arg] = Reg;
10673         continue;
10674       }
10675     }
10676     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10677       FuncInfo->InitializeRegForValue(&Arg);
10678       SDB->CopyToExportRegsIfNeeded(&Arg);
10679     }
10680   }
10681 
10682   if (!Chains.empty()) {
10683     Chains.push_back(NewRoot);
10684     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10685   }
10686 
10687   DAG.setRoot(NewRoot);
10688 
10689   assert(i == InVals.size() && "Argument register count mismatch!");
10690 
10691   // If any argument copy elisions occurred and we have debug info, update the
10692   // stale frame indices used in the dbg.declare variable info table.
10693   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10694   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10695     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10696       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10697       if (I != ArgCopyElisionFrameIndexMap.end())
10698         VI.Slot = I->second;
10699     }
10700   }
10701 
10702   // Finally, if the target has anything special to do, allow it to do so.
10703   emitFunctionEntryCode();
10704 }
10705 
10706 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10707 /// ensure constants are generated when needed.  Remember the virtual registers
10708 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10709 /// directly add them, because expansion might result in multiple MBB's for one
10710 /// BB.  As such, the start of the BB might correspond to a different MBB than
10711 /// the end.
10712 void
10713 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10715   const Instruction *TI = LLVMBB->getTerminator();
10716 
10717   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10718 
10719   // Check PHI nodes in successors that expect a value to be available from this
10720   // block.
10721   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10722     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10723     if (!isa<PHINode>(SuccBB->begin())) continue;
10724     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10725 
10726     // If this terminator has multiple identical successors (common for
10727     // switches), only handle each succ once.
10728     if (!SuccsHandled.insert(SuccMBB).second)
10729       continue;
10730 
10731     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10732 
10733     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10734     // nodes and Machine PHI nodes, but the incoming operands have not been
10735     // emitted yet.
10736     for (const PHINode &PN : SuccBB->phis()) {
10737       // Ignore dead phi's.
10738       if (PN.use_empty())
10739         continue;
10740 
10741       // Skip empty types
10742       if (PN.getType()->isEmptyTy())
10743         continue;
10744 
10745       unsigned Reg;
10746       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10747 
10748       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10749         unsigned &RegOut = ConstantsOut[C];
10750         if (RegOut == 0) {
10751           RegOut = FuncInfo.CreateRegs(C);
10752           // We need to zero/sign extend ConstantInt phi operands to match
10753           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10754           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10755           if (auto *CI = dyn_cast<ConstantInt>(C))
10756             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10757                                                     : ISD::ZERO_EXTEND;
10758           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10759         }
10760         Reg = RegOut;
10761       } else {
10762         DenseMap<const Value *, Register>::iterator I =
10763           FuncInfo.ValueMap.find(PHIOp);
10764         if (I != FuncInfo.ValueMap.end())
10765           Reg = I->second;
10766         else {
10767           assert(isa<AllocaInst>(PHIOp) &&
10768                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10769                  "Didn't codegen value into a register!??");
10770           Reg = FuncInfo.CreateRegs(PHIOp);
10771           CopyValueToVirtualRegister(PHIOp, Reg);
10772         }
10773       }
10774 
10775       // Remember that this register needs to added to the machine PHI node as
10776       // the input for this MBB.
10777       SmallVector<EVT, 4> ValueVTs;
10778       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10779       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10780         EVT VT = ValueVTs[vti];
10781         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10782         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10783           FuncInfo.PHINodesToUpdate.push_back(
10784               std::make_pair(&*MBBI++, Reg + i));
10785         Reg += NumRegisters;
10786       }
10787     }
10788   }
10789 
10790   ConstantsOut.clear();
10791 }
10792 
10793 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10794   MachineFunction::iterator I(MBB);
10795   if (++I == FuncInfo.MF->end())
10796     return nullptr;
10797   return &*I;
10798 }
10799 
10800 /// During lowering new call nodes can be created (such as memset, etc.).
10801 /// Those will become new roots of the current DAG, but complications arise
10802 /// when they are tail calls. In such cases, the call lowering will update
10803 /// the root, but the builder still needs to know that a tail call has been
10804 /// lowered in order to avoid generating an additional return.
10805 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10806   // If the node is null, we do have a tail call.
10807   if (MaybeTC.getNode() != nullptr)
10808     DAG.setRoot(MaybeTC);
10809   else
10810     HasTailCall = true;
10811 }
10812 
10813 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10814                                         MachineBasicBlock *SwitchMBB,
10815                                         MachineBasicBlock *DefaultMBB) {
10816   MachineFunction *CurMF = FuncInfo.MF;
10817   MachineBasicBlock *NextMBB = nullptr;
10818   MachineFunction::iterator BBI(W.MBB);
10819   if (++BBI != FuncInfo.MF->end())
10820     NextMBB = &*BBI;
10821 
10822   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10823 
10824   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10825 
10826   if (Size == 2 && W.MBB == SwitchMBB) {
10827     // If any two of the cases has the same destination, and if one value
10828     // is the same as the other, but has one bit unset that the other has set,
10829     // use bit manipulation to do two compares at once.  For example:
10830     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10831     // TODO: This could be extended to merge any 2 cases in switches with 3
10832     // cases.
10833     // TODO: Handle cases where W.CaseBB != SwitchBB.
10834     CaseCluster &Small = *W.FirstCluster;
10835     CaseCluster &Big = *W.LastCluster;
10836 
10837     if (Small.Low == Small.High && Big.Low == Big.High &&
10838         Small.MBB == Big.MBB) {
10839       const APInt &SmallValue = Small.Low->getValue();
10840       const APInt &BigValue = Big.Low->getValue();
10841 
10842       // Check that there is only one bit different.
10843       APInt CommonBit = BigValue ^ SmallValue;
10844       if (CommonBit.isPowerOf2()) {
10845         SDValue CondLHS = getValue(Cond);
10846         EVT VT = CondLHS.getValueType();
10847         SDLoc DL = getCurSDLoc();
10848 
10849         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10850                                  DAG.getConstant(CommonBit, DL, VT));
10851         SDValue Cond = DAG.getSetCC(
10852             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10853             ISD::SETEQ);
10854 
10855         // Update successor info.
10856         // Both Small and Big will jump to Small.BB, so we sum up the
10857         // probabilities.
10858         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10859         if (BPI)
10860           addSuccessorWithProb(
10861               SwitchMBB, DefaultMBB,
10862               // The default destination is the first successor in IR.
10863               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10864         else
10865           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10866 
10867         // Insert the true branch.
10868         SDValue BrCond =
10869             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10870                         DAG.getBasicBlock(Small.MBB));
10871         // Insert the false branch.
10872         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10873                              DAG.getBasicBlock(DefaultMBB));
10874 
10875         DAG.setRoot(BrCond);
10876         return;
10877       }
10878     }
10879   }
10880 
10881   if (TM.getOptLevel() != CodeGenOpt::None) {
10882     // Here, we order cases by probability so the most likely case will be
10883     // checked first. However, two clusters can have the same probability in
10884     // which case their relative ordering is non-deterministic. So we use Low
10885     // as a tie-breaker as clusters are guaranteed to never overlap.
10886     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10887                [](const CaseCluster &a, const CaseCluster &b) {
10888       return a.Prob != b.Prob ?
10889              a.Prob > b.Prob :
10890              a.Low->getValue().slt(b.Low->getValue());
10891     });
10892 
10893     // Rearrange the case blocks so that the last one falls through if possible
10894     // without changing the order of probabilities.
10895     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10896       --I;
10897       if (I->Prob > W.LastCluster->Prob)
10898         break;
10899       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10900         std::swap(*I, *W.LastCluster);
10901         break;
10902       }
10903     }
10904   }
10905 
10906   // Compute total probability.
10907   BranchProbability DefaultProb = W.DefaultProb;
10908   BranchProbability UnhandledProbs = DefaultProb;
10909   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10910     UnhandledProbs += I->Prob;
10911 
10912   MachineBasicBlock *CurMBB = W.MBB;
10913   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10914     bool FallthroughUnreachable = false;
10915     MachineBasicBlock *Fallthrough;
10916     if (I == W.LastCluster) {
10917       // For the last cluster, fall through to the default destination.
10918       Fallthrough = DefaultMBB;
10919       FallthroughUnreachable = isa<UnreachableInst>(
10920           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10921     } else {
10922       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10923       CurMF->insert(BBI, Fallthrough);
10924       // Put Cond in a virtual register to make it available from the new blocks.
10925       ExportFromCurrentBlock(Cond);
10926     }
10927     UnhandledProbs -= I->Prob;
10928 
10929     switch (I->Kind) {
10930       case CC_JumpTable: {
10931         // FIXME: Optimize away range check based on pivot comparisons.
10932         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10933         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10934 
10935         // The jump block hasn't been inserted yet; insert it here.
10936         MachineBasicBlock *JumpMBB = JT->MBB;
10937         CurMF->insert(BBI, JumpMBB);
10938 
10939         auto JumpProb = I->Prob;
10940         auto FallthroughProb = UnhandledProbs;
10941 
10942         // If the default statement is a target of the jump table, we evenly
10943         // distribute the default probability to successors of CurMBB. Also
10944         // update the probability on the edge from JumpMBB to Fallthrough.
10945         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10946                                               SE = JumpMBB->succ_end();
10947              SI != SE; ++SI) {
10948           if (*SI == DefaultMBB) {
10949             JumpProb += DefaultProb / 2;
10950             FallthroughProb -= DefaultProb / 2;
10951             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10952             JumpMBB->normalizeSuccProbs();
10953             break;
10954           }
10955         }
10956 
10957         if (FallthroughUnreachable)
10958           JTH->FallthroughUnreachable = true;
10959 
10960         if (!JTH->FallthroughUnreachable)
10961           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10962         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10963         CurMBB->normalizeSuccProbs();
10964 
10965         // The jump table header will be inserted in our current block, do the
10966         // range check, and fall through to our fallthrough block.
10967         JTH->HeaderBB = CurMBB;
10968         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10969 
10970         // If we're in the right place, emit the jump table header right now.
10971         if (CurMBB == SwitchMBB) {
10972           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10973           JTH->Emitted = true;
10974         }
10975         break;
10976       }
10977       case CC_BitTests: {
10978         // FIXME: Optimize away range check based on pivot comparisons.
10979         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10980 
10981         // The bit test blocks haven't been inserted yet; insert them here.
10982         for (BitTestCase &BTC : BTB->Cases)
10983           CurMF->insert(BBI, BTC.ThisBB);
10984 
10985         // Fill in fields of the BitTestBlock.
10986         BTB->Parent = CurMBB;
10987         BTB->Default = Fallthrough;
10988 
10989         BTB->DefaultProb = UnhandledProbs;
10990         // If the cases in bit test don't form a contiguous range, we evenly
10991         // distribute the probability on the edge to Fallthrough to two
10992         // successors of CurMBB.
10993         if (!BTB->ContiguousRange) {
10994           BTB->Prob += DefaultProb / 2;
10995           BTB->DefaultProb -= DefaultProb / 2;
10996         }
10997 
10998         if (FallthroughUnreachable)
10999           BTB->FallthroughUnreachable = true;
11000 
11001         // If we're in the right place, emit the bit test header right now.
11002         if (CurMBB == SwitchMBB) {
11003           visitBitTestHeader(*BTB, SwitchMBB);
11004           BTB->Emitted = true;
11005         }
11006         break;
11007       }
11008       case CC_Range: {
11009         const Value *RHS, *LHS, *MHS;
11010         ISD::CondCode CC;
11011         if (I->Low == I->High) {
11012           // Check Cond == I->Low.
11013           CC = ISD::SETEQ;
11014           LHS = Cond;
11015           RHS=I->Low;
11016           MHS = nullptr;
11017         } else {
11018           // Check I->Low <= Cond <= I->High.
11019           CC = ISD::SETLE;
11020           LHS = I->Low;
11021           MHS = Cond;
11022           RHS = I->High;
11023         }
11024 
11025         // If Fallthrough is unreachable, fold away the comparison.
11026         if (FallthroughUnreachable)
11027           CC = ISD::SETTRUE;
11028 
11029         // The false probability is the sum of all unhandled cases.
11030         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11031                      getCurSDLoc(), I->Prob, UnhandledProbs);
11032 
11033         if (CurMBB == SwitchMBB)
11034           visitSwitchCase(CB, SwitchMBB);
11035         else
11036           SL->SwitchCases.push_back(CB);
11037 
11038         break;
11039       }
11040     }
11041     CurMBB = Fallthrough;
11042   }
11043 }
11044 
11045 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11046                                               CaseClusterIt First,
11047                                               CaseClusterIt Last) {
11048   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11049     if (X.Prob != CC.Prob)
11050       return X.Prob > CC.Prob;
11051 
11052     // Ties are broken by comparing the case value.
11053     return X.Low->getValue().slt(CC.Low->getValue());
11054   });
11055 }
11056 
11057 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11058                                         const SwitchWorkListItem &W,
11059                                         Value *Cond,
11060                                         MachineBasicBlock *SwitchMBB) {
11061   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11062          "Clusters not sorted?");
11063 
11064   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11065 
11066   // Balance the tree based on branch probabilities to create a near-optimal (in
11067   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11068   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11069   CaseClusterIt LastLeft = W.FirstCluster;
11070   CaseClusterIt FirstRight = W.LastCluster;
11071   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11072   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11073 
11074   // Move LastLeft and FirstRight towards each other from opposite directions to
11075   // find a partitioning of the clusters which balances the probability on both
11076   // sides. If LeftProb and RightProb are equal, alternate which side is
11077   // taken to ensure 0-probability nodes are distributed evenly.
11078   unsigned I = 0;
11079   while (LastLeft + 1 < FirstRight) {
11080     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11081       LeftProb += (++LastLeft)->Prob;
11082     else
11083       RightProb += (--FirstRight)->Prob;
11084     I++;
11085   }
11086 
11087   while (true) {
11088     // Our binary search tree differs from a typical BST in that ours can have up
11089     // to three values in each leaf. The pivot selection above doesn't take that
11090     // into account, which means the tree might require more nodes and be less
11091     // efficient. We compensate for this here.
11092 
11093     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11094     unsigned NumRight = W.LastCluster - FirstRight + 1;
11095 
11096     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11097       // If one side has less than 3 clusters, and the other has more than 3,
11098       // consider taking a cluster from the other side.
11099 
11100       if (NumLeft < NumRight) {
11101         // Consider moving the first cluster on the right to the left side.
11102         CaseCluster &CC = *FirstRight;
11103         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11104         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11105         if (LeftSideRank <= RightSideRank) {
11106           // Moving the cluster to the left does not demote it.
11107           ++LastLeft;
11108           ++FirstRight;
11109           continue;
11110         }
11111       } else {
11112         assert(NumRight < NumLeft);
11113         // Consider moving the last element on the left to the right side.
11114         CaseCluster &CC = *LastLeft;
11115         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11116         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11117         if (RightSideRank <= LeftSideRank) {
11118           // Moving the cluster to the right does not demot it.
11119           --LastLeft;
11120           --FirstRight;
11121           continue;
11122         }
11123       }
11124     }
11125     break;
11126   }
11127 
11128   assert(LastLeft + 1 == FirstRight);
11129   assert(LastLeft >= W.FirstCluster);
11130   assert(FirstRight <= W.LastCluster);
11131 
11132   // Use the first element on the right as pivot since we will make less-than
11133   // comparisons against it.
11134   CaseClusterIt PivotCluster = FirstRight;
11135   assert(PivotCluster > W.FirstCluster);
11136   assert(PivotCluster <= W.LastCluster);
11137 
11138   CaseClusterIt FirstLeft = W.FirstCluster;
11139   CaseClusterIt LastRight = W.LastCluster;
11140 
11141   const ConstantInt *Pivot = PivotCluster->Low;
11142 
11143   // New blocks will be inserted immediately after the current one.
11144   MachineFunction::iterator BBI(W.MBB);
11145   ++BBI;
11146 
11147   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11148   // we can branch to its destination directly if it's squeezed exactly in
11149   // between the known lower bound and Pivot - 1.
11150   MachineBasicBlock *LeftMBB;
11151   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11152       FirstLeft->Low == W.GE &&
11153       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11154     LeftMBB = FirstLeft->MBB;
11155   } else {
11156     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11157     FuncInfo.MF->insert(BBI, LeftMBB);
11158     WorkList.push_back(
11159         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11160     // Put Cond in a virtual register to make it available from the new blocks.
11161     ExportFromCurrentBlock(Cond);
11162   }
11163 
11164   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11165   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11166   // directly if RHS.High equals the current upper bound.
11167   MachineBasicBlock *RightMBB;
11168   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11169       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11170     RightMBB = FirstRight->MBB;
11171   } else {
11172     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11173     FuncInfo.MF->insert(BBI, RightMBB);
11174     WorkList.push_back(
11175         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11176     // Put Cond in a virtual register to make it available from the new blocks.
11177     ExportFromCurrentBlock(Cond);
11178   }
11179 
11180   // Create the CaseBlock record that will be used to lower the branch.
11181   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11182                getCurSDLoc(), LeftProb, RightProb);
11183 
11184   if (W.MBB == SwitchMBB)
11185     visitSwitchCase(CB, SwitchMBB);
11186   else
11187     SL->SwitchCases.push_back(CB);
11188 }
11189 
11190 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11191 // from the swith statement.
11192 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11193                                             BranchProbability PeeledCaseProb) {
11194   if (PeeledCaseProb == BranchProbability::getOne())
11195     return BranchProbability::getZero();
11196   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11197 
11198   uint32_t Numerator = CaseProb.getNumerator();
11199   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11200   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11201 }
11202 
11203 // Try to peel the top probability case if it exceeds the threshold.
11204 // Return current MachineBasicBlock for the switch statement if the peeling
11205 // does not occur.
11206 // If the peeling is performed, return the newly created MachineBasicBlock
11207 // for the peeled switch statement. Also update Clusters to remove the peeled
11208 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11209 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11210     const SwitchInst &SI, CaseClusterVector &Clusters,
11211     BranchProbability &PeeledCaseProb) {
11212   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11213   // Don't perform if there is only one cluster or optimizing for size.
11214   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11215       TM.getOptLevel() == CodeGenOpt::None ||
11216       SwitchMBB->getParent()->getFunction().hasMinSize())
11217     return SwitchMBB;
11218 
11219   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11220   unsigned PeeledCaseIndex = 0;
11221   bool SwitchPeeled = false;
11222   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11223     CaseCluster &CC = Clusters[Index];
11224     if (CC.Prob < TopCaseProb)
11225       continue;
11226     TopCaseProb = CC.Prob;
11227     PeeledCaseIndex = Index;
11228     SwitchPeeled = true;
11229   }
11230   if (!SwitchPeeled)
11231     return SwitchMBB;
11232 
11233   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11234                     << TopCaseProb << "\n");
11235 
11236   // Record the MBB for the peeled switch statement.
11237   MachineFunction::iterator BBI(SwitchMBB);
11238   ++BBI;
11239   MachineBasicBlock *PeeledSwitchMBB =
11240       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11241   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11242 
11243   ExportFromCurrentBlock(SI.getCondition());
11244   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11245   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11246                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11247   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11248 
11249   Clusters.erase(PeeledCaseIt);
11250   for (CaseCluster &CC : Clusters) {
11251     LLVM_DEBUG(
11252         dbgs() << "Scale the probablity for one cluster, before scaling: "
11253                << CC.Prob << "\n");
11254     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11255     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11256   }
11257   PeeledCaseProb = TopCaseProb;
11258   return PeeledSwitchMBB;
11259 }
11260 
11261 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11262   // Extract cases from the switch.
11263   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11264   CaseClusterVector Clusters;
11265   Clusters.reserve(SI.getNumCases());
11266   for (auto I : SI.cases()) {
11267     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11268     const ConstantInt *CaseVal = I.getCaseValue();
11269     BranchProbability Prob =
11270         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11271             : BranchProbability(1, SI.getNumCases() + 1);
11272     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11273   }
11274 
11275   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11276 
11277   // Cluster adjacent cases with the same destination. We do this at all
11278   // optimization levels because it's cheap to do and will make codegen faster
11279   // if there are many clusters.
11280   sortAndRangeify(Clusters);
11281 
11282   // The branch probablity of the peeled case.
11283   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11284   MachineBasicBlock *PeeledSwitchMBB =
11285       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11286 
11287   // If there is only the default destination, jump there directly.
11288   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11289   if (Clusters.empty()) {
11290     assert(PeeledSwitchMBB == SwitchMBB);
11291     SwitchMBB->addSuccessor(DefaultMBB);
11292     if (DefaultMBB != NextBlock(SwitchMBB)) {
11293       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11294                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11295     }
11296     return;
11297   }
11298 
11299   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11300   SL->findBitTestClusters(Clusters, &SI);
11301 
11302   LLVM_DEBUG({
11303     dbgs() << "Case clusters: ";
11304     for (const CaseCluster &C : Clusters) {
11305       if (C.Kind == CC_JumpTable)
11306         dbgs() << "JT:";
11307       if (C.Kind == CC_BitTests)
11308         dbgs() << "BT:";
11309 
11310       C.Low->getValue().print(dbgs(), true);
11311       if (C.Low != C.High) {
11312         dbgs() << '-';
11313         C.High->getValue().print(dbgs(), true);
11314       }
11315       dbgs() << ' ';
11316     }
11317     dbgs() << '\n';
11318   });
11319 
11320   assert(!Clusters.empty());
11321   SwitchWorkList WorkList;
11322   CaseClusterIt First = Clusters.begin();
11323   CaseClusterIt Last = Clusters.end() - 1;
11324   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11325   // Scale the branchprobability for DefaultMBB if the peel occurs and
11326   // DefaultMBB is not replaced.
11327   if (PeeledCaseProb != BranchProbability::getZero() &&
11328       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11329     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11330   WorkList.push_back(
11331       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11332 
11333   while (!WorkList.empty()) {
11334     SwitchWorkListItem W = WorkList.pop_back_val();
11335     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11336 
11337     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11338         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11339       // For optimized builds, lower large range as a balanced binary tree.
11340       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11341       continue;
11342     }
11343 
11344     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11345   }
11346 }
11347 
11348 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11350   auto DL = getCurSDLoc();
11351   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11352   setValue(&I, DAG.getStepVector(DL, ResultVT));
11353 }
11354 
11355 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11356   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11357   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11358 
11359   SDLoc DL = getCurSDLoc();
11360   SDValue V = getValue(I.getOperand(0));
11361   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11362 
11363   if (VT.isScalableVector()) {
11364     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11365     return;
11366   }
11367 
11368   // Use VECTOR_SHUFFLE for the fixed-length vector
11369   // to maintain existing behavior.
11370   SmallVector<int, 8> Mask;
11371   unsigned NumElts = VT.getVectorMinNumElements();
11372   for (unsigned i = 0; i != NumElts; ++i)
11373     Mask.push_back(NumElts - 1 - i);
11374 
11375   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11376 }
11377 
11378 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11379   SmallVector<EVT, 4> ValueVTs;
11380   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11381                   ValueVTs);
11382   unsigned NumValues = ValueVTs.size();
11383   if (NumValues == 0) return;
11384 
11385   SmallVector<SDValue, 4> Values(NumValues);
11386   SDValue Op = getValue(I.getOperand(0));
11387 
11388   for (unsigned i = 0; i != NumValues; ++i)
11389     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11390                             SDValue(Op.getNode(), Op.getResNo() + i));
11391 
11392   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11393                            DAG.getVTList(ValueVTs), Values));
11394 }
11395 
11396 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11398   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11399 
11400   SDLoc DL = getCurSDLoc();
11401   SDValue V1 = getValue(I.getOperand(0));
11402   SDValue V2 = getValue(I.getOperand(1));
11403   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11404 
11405   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11406   if (VT.isScalableVector()) {
11407     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11408     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11409                              DAG.getConstant(Imm, DL, IdxVT)));
11410     return;
11411   }
11412 
11413   unsigned NumElts = VT.getVectorNumElements();
11414 
11415   uint64_t Idx = (NumElts + Imm) % NumElts;
11416 
11417   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11418   SmallVector<int, 8> Mask;
11419   for (unsigned i = 0; i < NumElts; ++i)
11420     Mask.push_back(Idx + i);
11421   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11422 }
11423