xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 6025663578cd367b6f1bcba3f42076eee4fce7a2)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
440        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
441        // Drop the extra bits.
442        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
443        return DAG.getBitcast(ValueVT, Val);
444      }
445 
446      diagnosePossiblyInvalidConstraint(
447          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
448      return DAG.getUNDEF(ValueVT);
449   }
450 
451   // Handle cases such as i8 -> <1 x i1>
452   EVT ValueSVT = ValueVT.getVectorElementType();
453   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
454     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     else
457       Val = ValueVT.isFloatingPoint()
458                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
459                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
460   }
461 
462   return DAG.getBuildVector(ValueVT, DL, Val);
463 }
464 
465 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
466                                  SDValue Val, SDValue *Parts, unsigned NumParts,
467                                  MVT PartVT, const Value *V,
468                                  Optional<CallingConv::ID> CallConv);
469 
470 /// getCopyToParts - Create a series of nodes that contain the specified value
471 /// split into legal parts.  If the parts contain more bits than Val, then, for
472 /// integers, ExtendKind can be used to specify how to generate the extra bits.
473 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
474                            SDValue *Parts, unsigned NumParts, MVT PartVT,
475                            const Value *V,
476                            Optional<CallingConv::ID> CallConv = None,
477                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
478   // Let the target split the parts if it wants to
479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
480   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
481                                       CallConv))
482     return;
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 CallConv);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
567 
568     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
569                    CallConv);
570 
571     if (DAG.getDataLayout().isBigEndian())
572       // The odd parts were reversed by getCopyToParts - unreverse them.
573       std::reverse(Parts + RoundParts, Parts + NumParts);
574 
575     NumParts = RoundParts;
576     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
577     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
578   }
579 
580   // The number of parts is a power of 2.  Repeatedly bisect the value using
581   // EXTRACT_ELEMENT.
582   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
583                          EVT::getIntegerVT(*DAG.getContext(),
584                                            ValueVT.getSizeInBits()),
585                          Val);
586 
587   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
588     for (unsigned i = 0; i < NumParts; i += StepSize) {
589       unsigned ThisBits = StepSize * PartBits / 2;
590       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
591       SDValue &Part0 = Parts[i];
592       SDValue &Part1 = Parts[i+StepSize/2];
593 
594       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
596       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
597                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
598 
599       if (ThisBits == PartBits && ThisVT != PartVT) {
600         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
601         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
602       }
603     }
604   }
605 
606   if (DAG.getDataLayout().isBigEndian())
607     std::reverse(Parts, Parts + OrigNumParts);
608 }
609 
610 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
611                                      const SDLoc &DL, EVT PartVT) {
612   if (!PartVT.isVector())
613     return SDValue();
614 
615   EVT ValueVT = Val.getValueType();
616   ElementCount PartNumElts = PartVT.getVectorElementCount();
617   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
618 
619   // We only support widening vectors with equivalent element types and
620   // fixed/scalable properties. If a target needs to widen a fixed-length type
621   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
622   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
623       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
624       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
625     return SDValue();
626 
627   // Widening a scalable vector to another scalable vector is done by inserting
628   // the vector into a larger undef one.
629   if (PartNumElts.isScalable())
630     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
631                        Val, DAG.getVectorIdxConstant(0, DL));
632 
633   EVT ElementVT = PartVT.getVectorElementType();
634   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
635   // undef elements.
636   SmallVector<SDValue, 16> Ops;
637   DAG.ExtractVectorElements(Val, Ops);
638   SDValue EltUndef = DAG.getUNDEF(ElementVT);
639   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
640 
641   // FIXME: Use CONCAT for 2x -> 4x.
642   return DAG.getBuildVector(PartVT, DL, Ops);
643 }
644 
645 /// getCopyToPartsVector - Create a series of nodes that contain the specified
646 /// value split into legal parts.
647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648                                  SDValue Val, SDValue *Parts, unsigned NumParts,
649                                  MVT PartVT, const Value *V,
650                                  Optional<CallingConv::ID> CallConv) {
651   EVT ValueVT = Val.getValueType();
652   assert(ValueVT.isVector() && "Not a vector");
653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654   const bool IsABIRegCopy = CallConv.hasValue();
655 
656   if (NumParts == 1) {
657     EVT PartEVT = PartVT;
658     if (PartEVT == ValueVT) {
659       // Nothing to do.
660     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661       // Bitconvert vector->vector case.
662       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664       Val = Widened;
665     } else if (PartVT.isVector() &&
666                PartEVT.getVectorElementType().bitsGE(
667                    ValueVT.getVectorElementType()) &&
668                PartEVT.getVectorElementCount() ==
669                    ValueVT.getVectorElementCount()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorElementCount().isScalar()) {
675         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676                           DAG.getVectorIdxConstant(0, DL));
677       } else {
678         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
679         assert(PartVT.getFixedSizeInBits() > ValueSize &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
682         Val = DAG.getBitcast(IntermediateType, Val);
683         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
684       }
685     }
686 
687     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
688     Parts[0] = Val;
689     return;
690   }
691 
692   // Handle a multi-element vector.
693   EVT IntermediateVT;
694   MVT RegisterVT;
695   unsigned NumIntermediates;
696   unsigned NumRegs;
697   if (IsABIRegCopy) {
698     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700         NumIntermediates, RegisterVT);
701   } else {
702     NumRegs =
703         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704                                    NumIntermediates, RegisterVT);
705   }
706 
707   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
708   NumParts = NumRegs; // Silence a compiler warning.
709   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
710 
711   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
712          "Mixing scalable and fixed vectors when copying in parts");
713 
714   Optional<ElementCount> DestEltCnt;
715 
716   if (IntermediateVT.isVector())
717     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
718   else
719     DestEltCnt = ElementCount::getFixed(NumIntermediates);
720 
721   EVT BuiltVectorTy = EVT::getVectorVT(
722       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
723 
724   if (ValueVT == BuiltVectorTy) {
725     // Nothing to do.
726   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
727     // Bitconvert vector->vector case.
728     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
729   } else if (SDValue Widened =
730                  widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
731     Val = Widened;
732   } else if (BuiltVectorTy.getVectorElementType().bitsGE(
733                  ValueVT.getVectorElementType()) &&
734              BuiltVectorTy.getVectorElementCount() ==
735                  ValueVT.getVectorElementCount()) {
736     // Promoted vector extract
737     Val = DAG.getAnyExtOrTrunc(Val, DL, BuiltVectorTy);
738   }
739 
740   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
741 
742   // Split the vector into intermediate operands.
743   SmallVector<SDValue, 8> Ops(NumIntermediates);
744   for (unsigned i = 0; i != NumIntermediates; ++i) {
745     if (IntermediateVT.isVector()) {
746       // This does something sensible for scalable vectors - see the
747       // definition of EXTRACT_SUBVECTOR for further details.
748       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
749       Ops[i] =
750           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
751                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
752     } else {
753       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
754                            DAG.getVectorIdxConstant(i, DL));
755     }
756   }
757 
758   // Split the intermediate operands into legal parts.
759   if (NumParts == NumIntermediates) {
760     // If the register was not expanded, promote or copy the value,
761     // as appropriate.
762     for (unsigned i = 0; i != NumParts; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
764   } else if (NumParts > 0) {
765     // If the intermediate type was expanded, split each the value into
766     // legal parts.
767     assert(NumIntermediates != 0 && "division by zero");
768     assert(NumParts % NumIntermediates == 0 &&
769            "Must expand into a divisible number of parts!");
770     unsigned Factor = NumParts / NumIntermediates;
771     for (unsigned i = 0; i != NumIntermediates; ++i)
772       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
773                      CallConv);
774   }
775 }
776 
777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
778                            EVT valuevt, Optional<CallingConv::ID> CC)
779     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
780       RegCount(1, regs.size()), CallConv(CC) {}
781 
782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
783                            const DataLayout &DL, unsigned Reg, Type *Ty,
784                            Optional<CallingConv::ID> CC) {
785   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
786 
787   CallConv = CC;
788 
789   for (EVT ValueVT : ValueVTs) {
790     unsigned NumRegs =
791         isABIMangled()
792             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
793             : TLI.getNumRegisters(Context, ValueVT);
794     MVT RegisterVT =
795         isABIMangled()
796             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
797             : TLI.getRegisterType(Context, ValueVT);
798     for (unsigned i = 0; i != NumRegs; ++i)
799       Regs.push_back(Reg + i);
800     RegVTs.push_back(RegisterVT);
801     RegCount.push_back(NumRegs);
802     Reg += NumRegs;
803   }
804 }
805 
806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
807                                       FunctionLoweringInfo &FuncInfo,
808                                       const SDLoc &dl, SDValue &Chain,
809                                       SDValue *Flag, const Value *V) const {
810   // A Value with type {} or [0 x %t] needs no registers.
811   if (ValueVTs.empty())
812     return SDValue();
813 
814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
815 
816   // Assemble the legal parts into the final values.
817   SmallVector<SDValue, 4> Values(ValueVTs.size());
818   SmallVector<SDValue, 8> Parts;
819   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
820     // Copy the legal parts from the registers.
821     EVT ValueVT = ValueVTs[Value];
822     unsigned NumRegs = RegCount[Value];
823     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
824                                           *DAG.getContext(),
825                                           CallConv.getValue(), RegVTs[Value])
826                                     : RegVTs[Value];
827 
828     Parts.resize(NumRegs);
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       SDValue P;
831       if (!Flag) {
832         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
833       } else {
834         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
835         *Flag = P.getValue(2);
836       }
837 
838       Chain = P.getValue(1);
839       Parts[i] = P;
840 
841       // If the source register was virtual and if we know something about it,
842       // add an assert node.
843       if (!Register::isVirtualRegister(Regs[Part + i]) ||
844           !RegisterVT.isInteger())
845         continue;
846 
847       const FunctionLoweringInfo::LiveOutInfo *LOI =
848         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
849       if (!LOI)
850         continue;
851 
852       unsigned RegSize = RegisterVT.getScalarSizeInBits();
853       unsigned NumSignBits = LOI->NumSignBits;
854       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
855 
856       if (NumZeroBits == RegSize) {
857         // The current value is a zero.
858         // Explicitly express that as it would be easier for
859         // optimizations to kick in.
860         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
861         continue;
862       }
863 
864       // FIXME: We capture more information than the dag can represent.  For
865       // now, just use the tightest assertzext/assertsext possible.
866       bool isSExt;
867       EVT FromVT(MVT::Other);
868       if (NumZeroBits) {
869         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
870         isSExt = false;
871       } else if (NumSignBits > 1) {
872         FromVT =
873             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
874         isSExt = true;
875       } else {
876         continue;
877       }
878       // Add an assertion node.
879       assert(FromVT != MVT::Other);
880       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
881                              RegisterVT, P, DAG.getValueType(FromVT));
882     }
883 
884     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
885                                      RegisterVT, ValueVT, V, CallConv);
886     Part += NumRegs;
887     Parts.clear();
888   }
889 
890   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
891 }
892 
893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
894                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
895                                  const Value *V,
896                                  ISD::NodeType PreferredExtendType) const {
897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
898   ISD::NodeType ExtendKind = PreferredExtendType;
899 
900   // Get the list of the values's legal parts.
901   unsigned NumRegs = Regs.size();
902   SmallVector<SDValue, 8> Parts(NumRegs);
903   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
904     unsigned NumParts = RegCount[Value];
905 
906     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
907                                           *DAG.getContext(),
908                                           CallConv.getValue(), RegVTs[Value])
909                                     : RegVTs[Value];
910 
911     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
912       ExtendKind = ISD::ZERO_EXTEND;
913 
914     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
915                    NumParts, RegisterVT, V, CallConv, ExtendKind);
916     Part += NumParts;
917   }
918 
919   // Copy the parts into the registers.
920   SmallVector<SDValue, 8> Chains(NumRegs);
921   for (unsigned i = 0; i != NumRegs; ++i) {
922     SDValue Part;
923     if (!Flag) {
924       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
925     } else {
926       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
927       *Flag = Part.getValue(1);
928     }
929 
930     Chains[i] = Part.getValue(0);
931   }
932 
933   if (NumRegs == 1 || Flag)
934     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
935     // flagged to it. That is the CopyToReg nodes and the user are considered
936     // a single scheduling unit. If we create a TokenFactor and return it as
937     // chain, then the TokenFactor is both a predecessor (operand) of the
938     // user as well as a successor (the TF operands are flagged to the user).
939     // c1, f1 = CopyToReg
940     // c2, f2 = CopyToReg
941     // c3     = TokenFactor c1, c2
942     // ...
943     //        = op c3, ..., f2
944     Chain = Chains[NumRegs-1];
945   else
946     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
947 }
948 
949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
950                                         unsigned MatchingIdx, const SDLoc &dl,
951                                         SelectionDAG &DAG,
952                                         std::vector<SDValue> &Ops) const {
953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
954 
955   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
956   if (HasMatching)
957     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
958   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
959     // Put the register class of the virtual registers in the flag word.  That
960     // way, later passes can recompute register class constraints for inline
961     // assembly as well as normal instructions.
962     // Don't do this for tied operands that can use the regclass information
963     // from the def.
964     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
965     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
966     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
967   }
968 
969   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
970   Ops.push_back(Res);
971 
972   if (Code == InlineAsm::Kind_Clobber) {
973     // Clobbers should always have a 1:1 mapping with registers, and may
974     // reference registers that have illegal (e.g. vector) types. Hence, we
975     // shouldn't try to apply any sort of splitting logic to them.
976     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
977            "No 1:1 mapping from clobbers to regs?");
978     Register SP = TLI.getStackPointerRegisterToSaveRestore();
979     (void)SP;
980     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
981       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
982       assert(
983           (Regs[I] != SP ||
984            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
985           "If we clobbered the stack pointer, MFI should know about it.");
986     }
987     return;
988   }
989 
990   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
991     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
992     MVT RegisterVT = RegVTs[Value];
993     for (unsigned i = 0; i != NumRegs; ++i) {
994       assert(Reg < Regs.size() && "Mismatch in # registers expected");
995       unsigned TheReg = Regs[Reg++];
996       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
997     }
998   }
999 }
1000 
1001 SmallVector<std::pair<unsigned, TypeSize>, 4>
1002 RegsForValue::getRegsAndSizes() const {
1003   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1004   unsigned I = 0;
1005   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1006     unsigned RegCount = std::get<0>(CountAndVT);
1007     MVT RegisterVT = std::get<1>(CountAndVT);
1008     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1009     for (unsigned E = I + RegCount; I != E; ++I)
1010       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1011   }
1012   return OutVec;
1013 }
1014 
1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1016                                const TargetLibraryInfo *li) {
1017   AA = aa;
1018   GFI = gfi;
1019   LibInfo = li;
1020   DL = &DAG.getDataLayout();
1021   Context = DAG.getContext();
1022   LPadToCallSiteMap.clear();
1023   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1024 }
1025 
1026 void SelectionDAGBuilder::clear() {
1027   NodeMap.clear();
1028   UnusedArgNodeMap.clear();
1029   PendingLoads.clear();
1030   PendingExports.clear();
1031   PendingConstrainedFP.clear();
1032   PendingConstrainedFPStrict.clear();
1033   CurInst = nullptr;
1034   HasTailCall = false;
1035   SDNodeOrder = LowestSDNodeOrder;
1036   StatepointLowering.clear();
1037 }
1038 
1039 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1040   DanglingDebugInfoMap.clear();
1041 }
1042 
1043 // Update DAG root to include dependencies on Pending chains.
1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1045   SDValue Root = DAG.getRoot();
1046 
1047   if (Pending.empty())
1048     return Root;
1049 
1050   // Add current root to PendingChains, unless we already indirectly
1051   // depend on it.
1052   if (Root.getOpcode() != ISD::EntryToken) {
1053     unsigned i = 0, e = Pending.size();
1054     for (; i != e; ++i) {
1055       assert(Pending[i].getNode()->getNumOperands() > 1);
1056       if (Pending[i].getNode()->getOperand(0) == Root)
1057         break;  // Don't add the root if we already indirectly depend on it.
1058     }
1059 
1060     if (i == e)
1061       Pending.push_back(Root);
1062   }
1063 
1064   if (Pending.size() == 1)
1065     Root = Pending[0];
1066   else
1067     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1068 
1069   DAG.setRoot(Root);
1070   Pending.clear();
1071   return Root;
1072 }
1073 
1074 SDValue SelectionDAGBuilder::getMemoryRoot() {
1075   return updateRoot(PendingLoads);
1076 }
1077 
1078 SDValue SelectionDAGBuilder::getRoot() {
1079   // Chain up all pending constrained intrinsics together with all
1080   // pending loads, by simply appending them to PendingLoads and
1081   // then calling getMemoryRoot().
1082   PendingLoads.reserve(PendingLoads.size() +
1083                        PendingConstrainedFP.size() +
1084                        PendingConstrainedFPStrict.size());
1085   PendingLoads.append(PendingConstrainedFP.begin(),
1086                       PendingConstrainedFP.end());
1087   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1088                       PendingConstrainedFPStrict.end());
1089   PendingConstrainedFP.clear();
1090   PendingConstrainedFPStrict.clear();
1091   return getMemoryRoot();
1092 }
1093 
1094 SDValue SelectionDAGBuilder::getControlRoot() {
1095   // We need to emit pending fpexcept.strict constrained intrinsics,
1096   // so append them to the PendingExports list.
1097   PendingExports.append(PendingConstrainedFPStrict.begin(),
1098                         PendingConstrainedFPStrict.end());
1099   PendingConstrainedFPStrict.clear();
1100   return updateRoot(PendingExports);
1101 }
1102 
1103 void SelectionDAGBuilder::visit(const Instruction &I) {
1104   // Set up outgoing PHI node register values before emitting the terminator.
1105   if (I.isTerminator()) {
1106     HandlePHINodesInSuccessorBlocks(I.getParent());
1107   }
1108 
1109   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1110   if (!isa<DbgInfoIntrinsic>(I))
1111     ++SDNodeOrder;
1112 
1113   CurInst = &I;
1114 
1115   visit(I.getOpcode(), I);
1116 
1117   if (!I.isTerminator() && !HasTailCall &&
1118       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1119     CopyToExportRegsIfNeeded(&I);
1120 
1121   CurInst = nullptr;
1122 }
1123 
1124 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1125   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1126 }
1127 
1128 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1129   // Note: this doesn't use InstVisitor, because it has to work with
1130   // ConstantExpr's in addition to instructions.
1131   switch (Opcode) {
1132   default: llvm_unreachable("Unknown instruction type encountered!");
1133     // Build the switch statement using the Instruction.def file.
1134 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1135     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1136 #include "llvm/IR/Instruction.def"
1137   }
1138 }
1139 
1140 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1141                                                DebugLoc DL, unsigned Order) {
1142   // We treat variadic dbg_values differently at this stage.
1143   if (DI->hasArgList()) {
1144     // For variadic dbg_values we will now insert an undef.
1145     // FIXME: We can potentially recover these!
1146     SmallVector<SDDbgOperand, 2> Locs;
1147     for (const Value *V : DI->getValues()) {
1148       auto Undef = UndefValue::get(V->getType());
1149       Locs.push_back(SDDbgOperand::fromConst(Undef));
1150     }
1151     SDDbgValue *SDV = DAG.getDbgValueList(
1152         DI->getVariable(), DI->getExpression(), Locs, {},
1153         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1154     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1155   } else {
1156     // TODO: Dangling debug info will eventually either be resolved or produce
1157     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1158     // between the original dbg.value location and its resolved DBG_VALUE,
1159     // which we should ideally fill with an extra Undef DBG_VALUE.
1160     assert(DI->getNumVariableLocationOps() == 1 &&
1161            "DbgValueInst without an ArgList should have a single location "
1162            "operand.");
1163     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1164   }
1165 }
1166 
1167 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1168                                                 const DIExpression *Expr) {
1169   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1170     const DbgValueInst *DI = DDI.getDI();
1171     DIVariable *DanglingVariable = DI->getVariable();
1172     DIExpression *DanglingExpr = DI->getExpression();
1173     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1174       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1175       return true;
1176     }
1177     return false;
1178   };
1179 
1180   for (auto &DDIMI : DanglingDebugInfoMap) {
1181     DanglingDebugInfoVector &DDIV = DDIMI.second;
1182 
1183     // If debug info is to be dropped, run it through final checks to see
1184     // whether it can be salvaged.
1185     for (auto &DDI : DDIV)
1186       if (isMatchingDbgValue(DDI))
1187         salvageUnresolvedDbgValue(DDI);
1188 
1189     erase_if(DDIV, isMatchingDbgValue);
1190   }
1191 }
1192 
1193 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1194 // generate the debug data structures now that we've seen its definition.
1195 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1196                                                    SDValue Val) {
1197   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1198   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1199     return;
1200 
1201   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1202   for (auto &DDI : DDIV) {
1203     const DbgValueInst *DI = DDI.getDI();
1204     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1205     assert(DI && "Ill-formed DanglingDebugInfo");
1206     DebugLoc dl = DDI.getdl();
1207     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1208     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1209     DILocalVariable *Variable = DI->getVariable();
1210     DIExpression *Expr = DI->getExpression();
1211     assert(Variable->isValidLocationForIntrinsic(dl) &&
1212            "Expected inlined-at fields to agree");
1213     SDDbgValue *SDV;
1214     if (Val.getNode()) {
1215       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1216       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1217       // we couldn't resolve it directly when examining the DbgValue intrinsic
1218       // in the first place we should not be more successful here). Unless we
1219       // have some test case that prove this to be correct we should avoid
1220       // calling EmitFuncArgumentDbgValue here.
1221       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1222         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1223                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1224         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1225         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1226         // inserted after the definition of Val when emitting the instructions
1227         // after ISel. An alternative could be to teach
1228         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1229         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1230                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1231                    << ValSDNodeOrder << "\n");
1232         SDV = getDbgValue(Val, Variable, Expr, dl,
1233                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1234         DAG.AddDbgValue(SDV, false);
1235       } else
1236         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1237                           << "in EmitFuncArgumentDbgValue\n");
1238     } else {
1239       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1240       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1241       auto SDV =
1242           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1243       DAG.AddDbgValue(SDV, false);
1244     }
1245   }
1246   DDIV.clear();
1247 }
1248 
1249 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1250   assert(!DDI.getDI()->hasArgList() &&
1251          "Not implemented for variadic dbg_values");
1252   Value *V = DDI.getDI()->getValue(0);
1253   DILocalVariable *Var = DDI.getDI()->getVariable();
1254   DIExpression *Expr = DDI.getDI()->getExpression();
1255   DebugLoc DL = DDI.getdl();
1256   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1257   unsigned SDOrder = DDI.getSDNodeOrder();
1258   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1259   // that DW_OP_stack_value is desired.
1260   assert(isa<DbgValueInst>(DDI.getDI()));
1261   bool StackValue = true;
1262 
1263   // Can this Value can be encoded without any further work?
1264   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1265     return;
1266 
1267   // Attempt to salvage back through as many instructions as possible. Bail if
1268   // a non-instruction is seen, such as a constant expression or global
1269   // variable. FIXME: Further work could recover those too.
1270   while (isa<Instruction>(V)) {
1271     Instruction &VAsInst = *cast<Instruction>(V);
1272     // Temporary "0", awaiting real implementation.
1273     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0);
1274 
1275     // If we cannot salvage any further, and haven't yet found a suitable debug
1276     // expression, bail out.
1277     if (!NewExpr)
1278       break;
1279 
1280     // New value and expr now represent this debuginfo.
1281     V = VAsInst.getOperand(0);
1282     Expr = NewExpr;
1283 
1284     // Some kind of simplification occurred: check whether the operand of the
1285     // salvaged debug expression can be encoded in this DAG.
1286     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1287                          /*IsVariadic=*/false)) {
1288       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1289                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1290       return;
1291     }
1292   }
1293 
1294   // This was the final opportunity to salvage this debug information, and it
1295   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1296   // any earlier variable location.
1297   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1298   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1299   DAG.AddDbgValue(SDV, false);
1300 
1301   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1302                     << "\n");
1303   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1304                     << "\n");
1305 }
1306 
1307 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1308                                            DILocalVariable *Var,
1309                                            DIExpression *Expr, DebugLoc dl,
1310                                            DebugLoc InstDL, unsigned Order,
1311                                            bool IsVariadic) {
1312   if (Values.empty())
1313     return true;
1314   SmallVector<SDDbgOperand> LocationOps;
1315   SmallVector<SDNode *> Dependencies;
1316   for (const Value *V : Values) {
1317     // Constant value.
1318     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1319         isa<ConstantPointerNull>(V)) {
1320       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1321       continue;
1322     }
1323 
1324     // If the Value is a frame index, we can create a FrameIndex debug value
1325     // without relying on the DAG at all.
1326     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1327       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1328       if (SI != FuncInfo.StaticAllocaMap.end()) {
1329         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1330         continue;
1331       }
1332     }
1333 
1334     // Do not use getValue() in here; we don't want to generate code at
1335     // this point if it hasn't been done yet.
1336     SDValue N = NodeMap[V];
1337     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1338       N = UnusedArgNodeMap[V];
1339     if (N.getNode()) {
1340       // Only emit func arg dbg value for non-variadic dbg.values for now.
1341       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1342         return true;
1343       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1344         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1345         // describe stack slot locations.
1346         //
1347         // Consider "int x = 0; int *px = &x;". There are two kinds of
1348         // interesting debug values here after optimization:
1349         //
1350         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1351         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1352         //
1353         // Both describe the direct values of their associated variables.
1354         Dependencies.push_back(N.getNode());
1355         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1356         continue;
1357       }
1358       LocationOps.emplace_back(
1359           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1360       continue;
1361     }
1362 
1363     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1364     // Special rules apply for the first dbg.values of parameter variables in a
1365     // function. Identify them by the fact they reference Argument Values, that
1366     // they're parameters, and they are parameters of the current function. We
1367     // need to let them dangle until they get an SDNode.
1368     bool IsParamOfFunc =
1369         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1370     if (IsParamOfFunc)
1371       return false;
1372 
1373     // The value is not used in this block yet (or it would have an SDNode).
1374     // We still want the value to appear for the user if possible -- if it has
1375     // an associated VReg, we can refer to that instead.
1376     auto VMI = FuncInfo.ValueMap.find(V);
1377     if (VMI != FuncInfo.ValueMap.end()) {
1378       unsigned Reg = VMI->second;
1379       // If this is a PHI node, it may be split up into several MI PHI nodes
1380       // (in FunctionLoweringInfo::set).
1381       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1382                        V->getType(), None);
1383       if (RFV.occupiesMultipleRegs()) {
1384         // FIXME: We could potentially support variadic dbg_values here.
1385         if (IsVariadic)
1386           return false;
1387         unsigned Offset = 0;
1388         unsigned BitsToDescribe = 0;
1389         if (auto VarSize = Var->getSizeInBits())
1390           BitsToDescribe = *VarSize;
1391         if (auto Fragment = Expr->getFragmentInfo())
1392           BitsToDescribe = Fragment->SizeInBits;
1393         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1394           // Bail out if all bits are described already.
1395           if (Offset >= BitsToDescribe)
1396             break;
1397           // TODO: handle scalable vectors.
1398           unsigned RegisterSize = RegAndSize.second;
1399           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1400                                       ? BitsToDescribe - Offset
1401                                       : RegisterSize;
1402           auto FragmentExpr = DIExpression::createFragmentExpression(
1403               Expr, Offset, FragmentSize);
1404           if (!FragmentExpr)
1405             continue;
1406           SDDbgValue *SDV = DAG.getVRegDbgValue(
1407               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1408           DAG.AddDbgValue(SDV, false);
1409           Offset += RegisterSize;
1410         }
1411         return true;
1412       }
1413       // We can use simple vreg locations for variadic dbg_values as well.
1414       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1415       continue;
1416     }
1417     // We failed to create a SDDbgOperand for V.
1418     return false;
1419   }
1420 
1421   // We have created a SDDbgOperand for each Value in Values.
1422   // Should use Order instead of SDNodeOrder?
1423   assert(!LocationOps.empty());
1424   SDDbgValue *SDV =
1425       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1426                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1427   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1428   return true;
1429 }
1430 
1431 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1432   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1433   for (auto &Pair : DanglingDebugInfoMap)
1434     for (auto &DDI : Pair.second)
1435       salvageUnresolvedDbgValue(DDI);
1436   clearDanglingDebugInfo();
1437 }
1438 
1439 /// getCopyFromRegs - If there was virtual register allocated for the value V
1440 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1441 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1442   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1443   SDValue Result;
1444 
1445   if (It != FuncInfo.ValueMap.end()) {
1446     Register InReg = It->second;
1447 
1448     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1449                      DAG.getDataLayout(), InReg, Ty,
1450                      None); // This is not an ABI copy.
1451     SDValue Chain = DAG.getEntryNode();
1452     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1453                                  V);
1454     resolveDanglingDebugInfo(V, Result);
1455   }
1456 
1457   return Result;
1458 }
1459 
1460 /// getValue - Return an SDValue for the given Value.
1461 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1462   // If we already have an SDValue for this value, use it. It's important
1463   // to do this first, so that we don't create a CopyFromReg if we already
1464   // have a regular SDValue.
1465   SDValue &N = NodeMap[V];
1466   if (N.getNode()) return N;
1467 
1468   // If there's a virtual register allocated and initialized for this
1469   // value, use it.
1470   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1471     return copyFromReg;
1472 
1473   // Otherwise create a new SDValue and remember it.
1474   SDValue Val = getValueImpl(V);
1475   NodeMap[V] = Val;
1476   resolveDanglingDebugInfo(V, Val);
1477   return Val;
1478 }
1479 
1480 /// getNonRegisterValue - Return an SDValue for the given Value, but
1481 /// don't look in FuncInfo.ValueMap for a virtual register.
1482 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1483   // If we already have an SDValue for this value, use it.
1484   SDValue &N = NodeMap[V];
1485   if (N.getNode()) {
1486     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1487       // Remove the debug location from the node as the node is about to be used
1488       // in a location which may differ from the original debug location.  This
1489       // is relevant to Constant and ConstantFP nodes because they can appear
1490       // as constant expressions inside PHI nodes.
1491       N->setDebugLoc(DebugLoc());
1492     }
1493     return N;
1494   }
1495 
1496   // Otherwise create a new SDValue and remember it.
1497   SDValue Val = getValueImpl(V);
1498   NodeMap[V] = Val;
1499   resolveDanglingDebugInfo(V, Val);
1500   return Val;
1501 }
1502 
1503 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1504 /// Create an SDValue for the given value.
1505 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1507 
1508   if (const Constant *C = dyn_cast<Constant>(V)) {
1509     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1510 
1511     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1512       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1513 
1514     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1515       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1516 
1517     if (isa<ConstantPointerNull>(C)) {
1518       unsigned AS = V->getType()->getPointerAddressSpace();
1519       return DAG.getConstant(0, getCurSDLoc(),
1520                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1521     }
1522 
1523     if (match(C, m_VScale(DAG.getDataLayout())))
1524       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1525 
1526     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1527       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1528 
1529     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1530       return DAG.getUNDEF(VT);
1531 
1532     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1533       visit(CE->getOpcode(), *CE);
1534       SDValue N1 = NodeMap[V];
1535       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1536       return N1;
1537     }
1538 
1539     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1540       SmallVector<SDValue, 4> Constants;
1541       for (const Use &U : C->operands()) {
1542         SDNode *Val = getValue(U).getNode();
1543         // If the operand is an empty aggregate, there are no values.
1544         if (!Val) continue;
1545         // Add each leaf value from the operand to the Constants list
1546         // to form a flattened list of all the values.
1547         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1548           Constants.push_back(SDValue(Val, i));
1549       }
1550 
1551       return DAG.getMergeValues(Constants, getCurSDLoc());
1552     }
1553 
1554     if (const ConstantDataSequential *CDS =
1555           dyn_cast<ConstantDataSequential>(C)) {
1556       SmallVector<SDValue, 4> Ops;
1557       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1558         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1559         // Add each leaf value from the operand to the Constants list
1560         // to form a flattened list of all the values.
1561         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1562           Ops.push_back(SDValue(Val, i));
1563       }
1564 
1565       if (isa<ArrayType>(CDS->getType()))
1566         return DAG.getMergeValues(Ops, getCurSDLoc());
1567       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1568     }
1569 
1570     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1571       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1572              "Unknown struct or array constant!");
1573 
1574       SmallVector<EVT, 4> ValueVTs;
1575       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1576       unsigned NumElts = ValueVTs.size();
1577       if (NumElts == 0)
1578         return SDValue(); // empty struct
1579       SmallVector<SDValue, 4> Constants(NumElts);
1580       for (unsigned i = 0; i != NumElts; ++i) {
1581         EVT EltVT = ValueVTs[i];
1582         if (isa<UndefValue>(C))
1583           Constants[i] = DAG.getUNDEF(EltVT);
1584         else if (EltVT.isFloatingPoint())
1585           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1586         else
1587           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1588       }
1589 
1590       return DAG.getMergeValues(Constants, getCurSDLoc());
1591     }
1592 
1593     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1594       return DAG.getBlockAddress(BA, VT);
1595 
1596     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1597       return getValue(Equiv->getGlobalValue());
1598 
1599     VectorType *VecTy = cast<VectorType>(V->getType());
1600 
1601     // Now that we know the number and type of the elements, get that number of
1602     // elements into the Ops array based on what kind of constant it is.
1603     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1604       SmallVector<SDValue, 16> Ops;
1605       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1606       for (unsigned i = 0; i != NumElements; ++i)
1607         Ops.push_back(getValue(CV->getOperand(i)));
1608 
1609       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1610     } else if (isa<ConstantAggregateZero>(C)) {
1611       EVT EltVT =
1612           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1613 
1614       SDValue Op;
1615       if (EltVT.isFloatingPoint())
1616         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1617       else
1618         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1619 
1620       if (isa<ScalableVectorType>(VecTy))
1621         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1622       else {
1623         SmallVector<SDValue, 16> Ops;
1624         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1625         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1626       }
1627     }
1628     llvm_unreachable("Unknown vector constant");
1629   }
1630 
1631   // If this is a static alloca, generate it as the frameindex instead of
1632   // computation.
1633   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1634     DenseMap<const AllocaInst*, int>::iterator SI =
1635       FuncInfo.StaticAllocaMap.find(AI);
1636     if (SI != FuncInfo.StaticAllocaMap.end())
1637       return DAG.getFrameIndex(SI->second,
1638                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1639   }
1640 
1641   // If this is an instruction which fast-isel has deferred, select it now.
1642   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1643     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1644 
1645     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1646                      Inst->getType(), None);
1647     SDValue Chain = DAG.getEntryNode();
1648     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1649   }
1650 
1651   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1652     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1653   }
1654   llvm_unreachable("Can't get register for value!");
1655 }
1656 
1657 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1658   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1659   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1660   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1661   bool IsSEH = isAsynchronousEHPersonality(Pers);
1662   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1663   if (!IsSEH)
1664     CatchPadMBB->setIsEHScopeEntry();
1665   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1666   if (IsMSVCCXX || IsCoreCLR)
1667     CatchPadMBB->setIsEHFuncletEntry();
1668 }
1669 
1670 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1671   // Update machine-CFG edge.
1672   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1673   FuncInfo.MBB->addSuccessor(TargetMBB);
1674   TargetMBB->setIsEHCatchretTarget(true);
1675   DAG.getMachineFunction().setHasEHCatchret(true);
1676 
1677   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1678   bool IsSEH = isAsynchronousEHPersonality(Pers);
1679   if (IsSEH) {
1680     // If this is not a fall-through branch or optimizations are switched off,
1681     // emit the branch.
1682     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1683         TM.getOptLevel() == CodeGenOpt::None)
1684       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1685                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1686     return;
1687   }
1688 
1689   // Figure out the funclet membership for the catchret's successor.
1690   // This will be used by the FuncletLayout pass to determine how to order the
1691   // BB's.
1692   // A 'catchret' returns to the outer scope's color.
1693   Value *ParentPad = I.getCatchSwitchParentPad();
1694   const BasicBlock *SuccessorColor;
1695   if (isa<ConstantTokenNone>(ParentPad))
1696     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1697   else
1698     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1699   assert(SuccessorColor && "No parent funclet for catchret!");
1700   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1701   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1702 
1703   // Create the terminator node.
1704   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1705                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1706                             DAG.getBasicBlock(SuccessorColorMBB));
1707   DAG.setRoot(Ret);
1708 }
1709 
1710 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1711   // Don't emit any special code for the cleanuppad instruction. It just marks
1712   // the start of an EH scope/funclet.
1713   FuncInfo.MBB->setIsEHScopeEntry();
1714   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1715   if (Pers != EHPersonality::Wasm_CXX) {
1716     FuncInfo.MBB->setIsEHFuncletEntry();
1717     FuncInfo.MBB->setIsCleanupFuncletEntry();
1718   }
1719 }
1720 
1721 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1722 // not match, it is OK to add only the first unwind destination catchpad to the
1723 // successors, because there will be at least one invoke instruction within the
1724 // catch scope that points to the next unwind destination, if one exists, so
1725 // CFGSort cannot mess up with BB sorting order.
1726 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1727 // call within them, and catchpads only consisting of 'catch (...)' have a
1728 // '__cxa_end_catch' call within them, both of which generate invokes in case
1729 // the next unwind destination exists, i.e., the next unwind destination is not
1730 // the caller.)
1731 //
1732 // Having at most one EH pad successor is also simpler and helps later
1733 // transformations.
1734 //
1735 // For example,
1736 // current:
1737 //   invoke void @foo to ... unwind label %catch.dispatch
1738 // catch.dispatch:
1739 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1740 // catch.start:
1741 //   ...
1742 //   ... in this BB or some other child BB dominated by this BB there will be an
1743 //   invoke that points to 'next' BB as an unwind destination
1744 //
1745 // next: ; We don't need to add this to 'current' BB's successor
1746 //   ...
1747 static void findWasmUnwindDestinations(
1748     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1749     BranchProbability Prob,
1750     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1751         &UnwindDests) {
1752   while (EHPadBB) {
1753     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1754     if (isa<CleanupPadInst>(Pad)) {
1755       // Stop on cleanup pads.
1756       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1757       UnwindDests.back().first->setIsEHScopeEntry();
1758       break;
1759     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1760       // Add the catchpad handlers to the possible destinations. We don't
1761       // continue to the unwind destination of the catchswitch for wasm.
1762       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1763         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1764         UnwindDests.back().first->setIsEHScopeEntry();
1765       }
1766       break;
1767     } else {
1768       continue;
1769     }
1770   }
1771 }
1772 
1773 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1774 /// many places it could ultimately go. In the IR, we have a single unwind
1775 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1776 /// This function skips over imaginary basic blocks that hold catchswitch
1777 /// instructions, and finds all the "real" machine
1778 /// basic block destinations. As those destinations may not be successors of
1779 /// EHPadBB, here we also calculate the edge probability to those destinations.
1780 /// The passed-in Prob is the edge probability to EHPadBB.
1781 static void findUnwindDestinations(
1782     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1783     BranchProbability Prob,
1784     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1785         &UnwindDests) {
1786   EHPersonality Personality =
1787     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1788   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1789   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1790   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1791   bool IsSEH = isAsynchronousEHPersonality(Personality);
1792 
1793   if (IsWasmCXX) {
1794     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1795     assert(UnwindDests.size() <= 1 &&
1796            "There should be at most one unwind destination for wasm");
1797     return;
1798   }
1799 
1800   while (EHPadBB) {
1801     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1802     BasicBlock *NewEHPadBB = nullptr;
1803     if (isa<LandingPadInst>(Pad)) {
1804       // Stop on landingpads. They are not funclets.
1805       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1806       break;
1807     } else if (isa<CleanupPadInst>(Pad)) {
1808       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1809       // personalities.
1810       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1811       UnwindDests.back().first->setIsEHScopeEntry();
1812       UnwindDests.back().first->setIsEHFuncletEntry();
1813       break;
1814     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1815       // Add the catchpad handlers to the possible destinations.
1816       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1817         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1818         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1819         if (IsMSVCCXX || IsCoreCLR)
1820           UnwindDests.back().first->setIsEHFuncletEntry();
1821         if (!IsSEH)
1822           UnwindDests.back().first->setIsEHScopeEntry();
1823       }
1824       NewEHPadBB = CatchSwitch->getUnwindDest();
1825     } else {
1826       continue;
1827     }
1828 
1829     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1830     if (BPI && NewEHPadBB)
1831       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1832     EHPadBB = NewEHPadBB;
1833   }
1834 }
1835 
1836 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1837   // Update successor info.
1838   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1839   auto UnwindDest = I.getUnwindDest();
1840   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1841   BranchProbability UnwindDestProb =
1842       (BPI && UnwindDest)
1843           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1844           : BranchProbability::getZero();
1845   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1846   for (auto &UnwindDest : UnwindDests) {
1847     UnwindDest.first->setIsEHPad();
1848     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1849   }
1850   FuncInfo.MBB->normalizeSuccProbs();
1851 
1852   // Create the terminator node.
1853   SDValue Ret =
1854       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1855   DAG.setRoot(Ret);
1856 }
1857 
1858 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1859   report_fatal_error("visitCatchSwitch not yet implemented!");
1860 }
1861 
1862 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1864   auto &DL = DAG.getDataLayout();
1865   SDValue Chain = getControlRoot();
1866   SmallVector<ISD::OutputArg, 8> Outs;
1867   SmallVector<SDValue, 8> OutVals;
1868 
1869   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1870   // lower
1871   //
1872   //   %val = call <ty> @llvm.experimental.deoptimize()
1873   //   ret <ty> %val
1874   //
1875   // differently.
1876   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1877     LowerDeoptimizingReturn();
1878     return;
1879   }
1880 
1881   if (!FuncInfo.CanLowerReturn) {
1882     unsigned DemoteReg = FuncInfo.DemoteRegister;
1883     const Function *F = I.getParent()->getParent();
1884 
1885     // Emit a store of the return value through the virtual register.
1886     // Leave Outs empty so that LowerReturn won't try to load return
1887     // registers the usual way.
1888     SmallVector<EVT, 1> PtrValueVTs;
1889     ComputeValueVTs(TLI, DL,
1890                     F->getReturnType()->getPointerTo(
1891                         DAG.getDataLayout().getAllocaAddrSpace()),
1892                     PtrValueVTs);
1893 
1894     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1895                                         DemoteReg, PtrValueVTs[0]);
1896     SDValue RetOp = getValue(I.getOperand(0));
1897 
1898     SmallVector<EVT, 4> ValueVTs, MemVTs;
1899     SmallVector<uint64_t, 4> Offsets;
1900     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1901                     &Offsets);
1902     unsigned NumValues = ValueVTs.size();
1903 
1904     SmallVector<SDValue, 4> Chains(NumValues);
1905     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1906     for (unsigned i = 0; i != NumValues; ++i) {
1907       // An aggregate return value cannot wrap around the address space, so
1908       // offsets to its parts don't wrap either.
1909       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1910                                            TypeSize::Fixed(Offsets[i]));
1911 
1912       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1913       if (MemVTs[i] != ValueVTs[i])
1914         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1915       Chains[i] = DAG.getStore(
1916           Chain, getCurSDLoc(), Val,
1917           // FIXME: better loc info would be nice.
1918           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1919           commonAlignment(BaseAlign, Offsets[i]));
1920     }
1921 
1922     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1923                         MVT::Other, Chains);
1924   } else if (I.getNumOperands() != 0) {
1925     SmallVector<EVT, 4> ValueVTs;
1926     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1927     unsigned NumValues = ValueVTs.size();
1928     if (NumValues) {
1929       SDValue RetOp = getValue(I.getOperand(0));
1930 
1931       const Function *F = I.getParent()->getParent();
1932 
1933       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1934           I.getOperand(0)->getType(), F->getCallingConv(),
1935           /*IsVarArg*/ false);
1936 
1937       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1938       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1939                                           Attribute::SExt))
1940         ExtendKind = ISD::SIGN_EXTEND;
1941       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1942                                                Attribute::ZExt))
1943         ExtendKind = ISD::ZERO_EXTEND;
1944 
1945       LLVMContext &Context = F->getContext();
1946       bool RetInReg = F->getAttributes().hasAttribute(
1947           AttributeList::ReturnIndex, Attribute::InReg);
1948 
1949       for (unsigned j = 0; j != NumValues; ++j) {
1950         EVT VT = ValueVTs[j];
1951 
1952         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1953           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1954 
1955         CallingConv::ID CC = F->getCallingConv();
1956 
1957         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1958         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1959         SmallVector<SDValue, 4> Parts(NumParts);
1960         getCopyToParts(DAG, getCurSDLoc(),
1961                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1962                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1963 
1964         // 'inreg' on function refers to return value
1965         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1966         if (RetInReg)
1967           Flags.setInReg();
1968 
1969         if (I.getOperand(0)->getType()->isPointerTy()) {
1970           Flags.setPointer();
1971           Flags.setPointerAddrSpace(
1972               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1973         }
1974 
1975         if (NeedsRegBlock) {
1976           Flags.setInConsecutiveRegs();
1977           if (j == NumValues - 1)
1978             Flags.setInConsecutiveRegsLast();
1979         }
1980 
1981         // Propagate extension type if any
1982         if (ExtendKind == ISD::SIGN_EXTEND)
1983           Flags.setSExt();
1984         else if (ExtendKind == ISD::ZERO_EXTEND)
1985           Flags.setZExt();
1986 
1987         for (unsigned i = 0; i < NumParts; ++i) {
1988           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1989                                         VT, /*isfixed=*/true, 0, 0));
1990           OutVals.push_back(Parts[i]);
1991         }
1992       }
1993     }
1994   }
1995 
1996   // Push in swifterror virtual register as the last element of Outs. This makes
1997   // sure swifterror virtual register will be returned in the swifterror
1998   // physical register.
1999   const Function *F = I.getParent()->getParent();
2000   if (TLI.supportSwiftError() &&
2001       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2002     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2003     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2004     Flags.setSwiftError();
2005     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
2006                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
2007                                   true /*isfixed*/, 1 /*origidx*/,
2008                                   0 /*partOffs*/));
2009     // Create SDNode for the swifterror virtual register.
2010     OutVals.push_back(
2011         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2012                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2013                         EVT(TLI.getPointerTy(DL))));
2014   }
2015 
2016   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2017   CallingConv::ID CallConv =
2018     DAG.getMachineFunction().getFunction().getCallingConv();
2019   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2020       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2021 
2022   // Verify that the target's LowerReturn behaved as expected.
2023   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2024          "LowerReturn didn't return a valid chain!");
2025 
2026   // Update the DAG with the new chain value resulting from return lowering.
2027   DAG.setRoot(Chain);
2028 }
2029 
2030 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2031 /// created for it, emit nodes to copy the value into the virtual
2032 /// registers.
2033 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2034   // Skip empty types
2035   if (V->getType()->isEmptyTy())
2036     return;
2037 
2038   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2039   if (VMI != FuncInfo.ValueMap.end()) {
2040     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2041     CopyValueToVirtualRegister(V, VMI->second);
2042   }
2043 }
2044 
2045 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2046 /// the current basic block, add it to ValueMap now so that we'll get a
2047 /// CopyTo/FromReg.
2048 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2049   // No need to export constants.
2050   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2051 
2052   // Already exported?
2053   if (FuncInfo.isExportedInst(V)) return;
2054 
2055   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2056   CopyValueToVirtualRegister(V, Reg);
2057 }
2058 
2059 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2060                                                      const BasicBlock *FromBB) {
2061   // The operands of the setcc have to be in this block.  We don't know
2062   // how to export them from some other block.
2063   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2064     // Can export from current BB.
2065     if (VI->getParent() == FromBB)
2066       return true;
2067 
2068     // Is already exported, noop.
2069     return FuncInfo.isExportedInst(V);
2070   }
2071 
2072   // If this is an argument, we can export it if the BB is the entry block or
2073   // if it is already exported.
2074   if (isa<Argument>(V)) {
2075     if (FromBB->isEntryBlock())
2076       return true;
2077 
2078     // Otherwise, can only export this if it is already exported.
2079     return FuncInfo.isExportedInst(V);
2080   }
2081 
2082   // Otherwise, constants can always be exported.
2083   return true;
2084 }
2085 
2086 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2087 BranchProbability
2088 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2089                                         const MachineBasicBlock *Dst) const {
2090   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2091   const BasicBlock *SrcBB = Src->getBasicBlock();
2092   const BasicBlock *DstBB = Dst->getBasicBlock();
2093   if (!BPI) {
2094     // If BPI is not available, set the default probability as 1 / N, where N is
2095     // the number of successors.
2096     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2097     return BranchProbability(1, SuccSize);
2098   }
2099   return BPI->getEdgeProbability(SrcBB, DstBB);
2100 }
2101 
2102 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2103                                                MachineBasicBlock *Dst,
2104                                                BranchProbability Prob) {
2105   if (!FuncInfo.BPI)
2106     Src->addSuccessorWithoutProb(Dst);
2107   else {
2108     if (Prob.isUnknown())
2109       Prob = getEdgeProbability(Src, Dst);
2110     Src->addSuccessor(Dst, Prob);
2111   }
2112 }
2113 
2114 static bool InBlock(const Value *V, const BasicBlock *BB) {
2115   if (const Instruction *I = dyn_cast<Instruction>(V))
2116     return I->getParent() == BB;
2117   return true;
2118 }
2119 
2120 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2121 /// This function emits a branch and is used at the leaves of an OR or an
2122 /// AND operator tree.
2123 void
2124 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2125                                                   MachineBasicBlock *TBB,
2126                                                   MachineBasicBlock *FBB,
2127                                                   MachineBasicBlock *CurBB,
2128                                                   MachineBasicBlock *SwitchBB,
2129                                                   BranchProbability TProb,
2130                                                   BranchProbability FProb,
2131                                                   bool InvertCond) {
2132   const BasicBlock *BB = CurBB->getBasicBlock();
2133 
2134   // If the leaf of the tree is a comparison, merge the condition into
2135   // the caseblock.
2136   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2137     // The operands of the cmp have to be in this block.  We don't know
2138     // how to export them from some other block.  If this is the first block
2139     // of the sequence, no exporting is needed.
2140     if (CurBB == SwitchBB ||
2141         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2142          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2143       ISD::CondCode Condition;
2144       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2145         ICmpInst::Predicate Pred =
2146             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2147         Condition = getICmpCondCode(Pred);
2148       } else {
2149         const FCmpInst *FC = cast<FCmpInst>(Cond);
2150         FCmpInst::Predicate Pred =
2151             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2152         Condition = getFCmpCondCode(Pred);
2153         if (TM.Options.NoNaNsFPMath)
2154           Condition = getFCmpCodeWithoutNaN(Condition);
2155       }
2156 
2157       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2158                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2159       SL->SwitchCases.push_back(CB);
2160       return;
2161     }
2162   }
2163 
2164   // Create a CaseBlock record representing this branch.
2165   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2166   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2167                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2168   SL->SwitchCases.push_back(CB);
2169 }
2170 
2171 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2172                                                MachineBasicBlock *TBB,
2173                                                MachineBasicBlock *FBB,
2174                                                MachineBasicBlock *CurBB,
2175                                                MachineBasicBlock *SwitchBB,
2176                                                Instruction::BinaryOps Opc,
2177                                                BranchProbability TProb,
2178                                                BranchProbability FProb,
2179                                                bool InvertCond) {
2180   // Skip over not part of the tree and remember to invert op and operands at
2181   // next level.
2182   Value *NotCond;
2183   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2184       InBlock(NotCond, CurBB->getBasicBlock())) {
2185     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2186                          !InvertCond);
2187     return;
2188   }
2189 
2190   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2191   const Value *BOpOp0, *BOpOp1;
2192   // Compute the effective opcode for Cond, taking into account whether it needs
2193   // to be inverted, e.g.
2194   //   and (not (or A, B)), C
2195   // gets lowered as
2196   //   and (and (not A, not B), C)
2197   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2198   if (BOp) {
2199     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2200                ? Instruction::And
2201                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2202                       ? Instruction::Or
2203                       : (Instruction::BinaryOps)0);
2204     if (InvertCond) {
2205       if (BOpc == Instruction::And)
2206         BOpc = Instruction::Or;
2207       else if (BOpc == Instruction::Or)
2208         BOpc = Instruction::And;
2209     }
2210   }
2211 
2212   // If this node is not part of the or/and tree, emit it as a branch.
2213   // Note that all nodes in the tree should have same opcode.
2214   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2215   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2216       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2217       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2218     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2219                                  TProb, FProb, InvertCond);
2220     return;
2221   }
2222 
2223   //  Create TmpBB after CurBB.
2224   MachineFunction::iterator BBI(CurBB);
2225   MachineFunction &MF = DAG.getMachineFunction();
2226   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2227   CurBB->getParent()->insert(++BBI, TmpBB);
2228 
2229   if (Opc == Instruction::Or) {
2230     // Codegen X | Y as:
2231     // BB1:
2232     //   jmp_if_X TBB
2233     //   jmp TmpBB
2234     // TmpBB:
2235     //   jmp_if_Y TBB
2236     //   jmp FBB
2237     //
2238 
2239     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2240     // The requirement is that
2241     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2242     //     = TrueProb for original BB.
2243     // Assuming the original probabilities are A and B, one choice is to set
2244     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2245     // A/(1+B) and 2B/(1+B). This choice assumes that
2246     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2247     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2248     // TmpBB, but the math is more complicated.
2249 
2250     auto NewTrueProb = TProb / 2;
2251     auto NewFalseProb = TProb / 2 + FProb;
2252     // Emit the LHS condition.
2253     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2254                          NewFalseProb, InvertCond);
2255 
2256     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2257     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2258     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2259     // Emit the RHS condition into TmpBB.
2260     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2261                          Probs[1], InvertCond);
2262   } else {
2263     assert(Opc == Instruction::And && "Unknown merge op!");
2264     // Codegen X & Y as:
2265     // BB1:
2266     //   jmp_if_X TmpBB
2267     //   jmp FBB
2268     // TmpBB:
2269     //   jmp_if_Y TBB
2270     //   jmp FBB
2271     //
2272     //  This requires creation of TmpBB after CurBB.
2273 
2274     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2275     // The requirement is that
2276     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2277     //     = FalseProb for original BB.
2278     // Assuming the original probabilities are A and B, one choice is to set
2279     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2280     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2281     // TrueProb for BB1 * FalseProb for TmpBB.
2282 
2283     auto NewTrueProb = TProb + FProb / 2;
2284     auto NewFalseProb = FProb / 2;
2285     // Emit the LHS condition.
2286     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2287                          NewFalseProb, InvertCond);
2288 
2289     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2290     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2291     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2292     // Emit the RHS condition into TmpBB.
2293     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2294                          Probs[1], InvertCond);
2295   }
2296 }
2297 
2298 /// If the set of cases should be emitted as a series of branches, return true.
2299 /// If we should emit this as a bunch of and/or'd together conditions, return
2300 /// false.
2301 bool
2302 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2303   if (Cases.size() != 2) return true;
2304 
2305   // If this is two comparisons of the same values or'd or and'd together, they
2306   // will get folded into a single comparison, so don't emit two blocks.
2307   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2308        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2309       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2310        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2311     return false;
2312   }
2313 
2314   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2315   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2316   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2317       Cases[0].CC == Cases[1].CC &&
2318       isa<Constant>(Cases[0].CmpRHS) &&
2319       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2320     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2321       return false;
2322     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2323       return false;
2324   }
2325 
2326   return true;
2327 }
2328 
2329 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2330   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2331 
2332   // Update machine-CFG edges.
2333   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2334 
2335   if (I.isUnconditional()) {
2336     // Update machine-CFG edges.
2337     BrMBB->addSuccessor(Succ0MBB);
2338 
2339     // If this is not a fall-through branch or optimizations are switched off,
2340     // emit the branch.
2341     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2342       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2343                               MVT::Other, getControlRoot(),
2344                               DAG.getBasicBlock(Succ0MBB)));
2345 
2346     return;
2347   }
2348 
2349   // If this condition is one of the special cases we handle, do special stuff
2350   // now.
2351   const Value *CondVal = I.getCondition();
2352   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2353 
2354   // If this is a series of conditions that are or'd or and'd together, emit
2355   // this as a sequence of branches instead of setcc's with and/or operations.
2356   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2357   // unpredictable branches, and vector extracts because those jumps are likely
2358   // expensive for any target), this should improve performance.
2359   // For example, instead of something like:
2360   //     cmp A, B
2361   //     C = seteq
2362   //     cmp D, E
2363   //     F = setle
2364   //     or C, F
2365   //     jnz foo
2366   // Emit:
2367   //     cmp A, B
2368   //     je foo
2369   //     cmp D, E
2370   //     jle foo
2371   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2372   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2373       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2374     Value *Vec;
2375     const Value *BOp0, *BOp1;
2376     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2377     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2378       Opcode = Instruction::And;
2379     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2380       Opcode = Instruction::Or;
2381 
2382     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2383                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2384       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2385                            getEdgeProbability(BrMBB, Succ0MBB),
2386                            getEdgeProbability(BrMBB, Succ1MBB),
2387                            /*InvertCond=*/false);
2388       // If the compares in later blocks need to use values not currently
2389       // exported from this block, export them now.  This block should always
2390       // be the first entry.
2391       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2392 
2393       // Allow some cases to be rejected.
2394       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2395         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2396           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2397           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2398         }
2399 
2400         // Emit the branch for this block.
2401         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2402         SL->SwitchCases.erase(SL->SwitchCases.begin());
2403         return;
2404       }
2405 
2406       // Okay, we decided not to do this, remove any inserted MBB's and clear
2407       // SwitchCases.
2408       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2409         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2410 
2411       SL->SwitchCases.clear();
2412     }
2413   }
2414 
2415   // Create a CaseBlock record representing this branch.
2416   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2417                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2418 
2419   // Use visitSwitchCase to actually insert the fast branch sequence for this
2420   // cond branch.
2421   visitSwitchCase(CB, BrMBB);
2422 }
2423 
2424 /// visitSwitchCase - Emits the necessary code to represent a single node in
2425 /// the binary search tree resulting from lowering a switch instruction.
2426 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2427                                           MachineBasicBlock *SwitchBB) {
2428   SDValue Cond;
2429   SDValue CondLHS = getValue(CB.CmpLHS);
2430   SDLoc dl = CB.DL;
2431 
2432   if (CB.CC == ISD::SETTRUE) {
2433     // Branch or fall through to TrueBB.
2434     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2435     SwitchBB->normalizeSuccProbs();
2436     if (CB.TrueBB != NextBlock(SwitchBB)) {
2437       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2438                               DAG.getBasicBlock(CB.TrueBB)));
2439     }
2440     return;
2441   }
2442 
2443   auto &TLI = DAG.getTargetLoweringInfo();
2444   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2445 
2446   // Build the setcc now.
2447   if (!CB.CmpMHS) {
2448     // Fold "(X == true)" to X and "(X == false)" to !X to
2449     // handle common cases produced by branch lowering.
2450     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2451         CB.CC == ISD::SETEQ)
2452       Cond = CondLHS;
2453     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2454              CB.CC == ISD::SETEQ) {
2455       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2456       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2457     } else {
2458       SDValue CondRHS = getValue(CB.CmpRHS);
2459 
2460       // If a pointer's DAG type is larger than its memory type then the DAG
2461       // values are zero-extended. This breaks signed comparisons so truncate
2462       // back to the underlying type before doing the compare.
2463       if (CondLHS.getValueType() != MemVT) {
2464         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2465         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2466       }
2467       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2468     }
2469   } else {
2470     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2471 
2472     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2473     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2474 
2475     SDValue CmpOp = getValue(CB.CmpMHS);
2476     EVT VT = CmpOp.getValueType();
2477 
2478     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2479       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2480                           ISD::SETLE);
2481     } else {
2482       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2483                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2484       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2485                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2486     }
2487   }
2488 
2489   // Update successor info
2490   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2491   // TrueBB and FalseBB are always different unless the incoming IR is
2492   // degenerate. This only happens when running llc on weird IR.
2493   if (CB.TrueBB != CB.FalseBB)
2494     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2495   SwitchBB->normalizeSuccProbs();
2496 
2497   // If the lhs block is the next block, invert the condition so that we can
2498   // fall through to the lhs instead of the rhs block.
2499   if (CB.TrueBB == NextBlock(SwitchBB)) {
2500     std::swap(CB.TrueBB, CB.FalseBB);
2501     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2502     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2503   }
2504 
2505   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2506                                MVT::Other, getControlRoot(), Cond,
2507                                DAG.getBasicBlock(CB.TrueBB));
2508 
2509   // Insert the false branch. Do this even if it's a fall through branch,
2510   // this makes it easier to do DAG optimizations which require inverting
2511   // the branch condition.
2512   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2513                        DAG.getBasicBlock(CB.FalseBB));
2514 
2515   DAG.setRoot(BrCond);
2516 }
2517 
2518 /// visitJumpTable - Emit JumpTable node in the current MBB
2519 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2520   // Emit the code for the jump table
2521   assert(JT.Reg != -1U && "Should lower JT Header first!");
2522   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2523   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2524                                      JT.Reg, PTy);
2525   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2526   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2527                                     MVT::Other, Index.getValue(1),
2528                                     Table, Index);
2529   DAG.setRoot(BrJumpTable);
2530 }
2531 
2532 /// visitJumpTableHeader - This function emits necessary code to produce index
2533 /// in the JumpTable from switch case.
2534 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2535                                                JumpTableHeader &JTH,
2536                                                MachineBasicBlock *SwitchBB) {
2537   SDLoc dl = getCurSDLoc();
2538 
2539   // Subtract the lowest switch case value from the value being switched on.
2540   SDValue SwitchOp = getValue(JTH.SValue);
2541   EVT VT = SwitchOp.getValueType();
2542   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2543                             DAG.getConstant(JTH.First, dl, VT));
2544 
2545   // The SDNode we just created, which holds the value being switched on minus
2546   // the smallest case value, needs to be copied to a virtual register so it
2547   // can be used as an index into the jump table in a subsequent basic block.
2548   // This value may be smaller or larger than the target's pointer type, and
2549   // therefore require extension or truncating.
2550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2551   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2552 
2553   unsigned JumpTableReg =
2554       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2555   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2556                                     JumpTableReg, SwitchOp);
2557   JT.Reg = JumpTableReg;
2558 
2559   if (!JTH.OmitRangeCheck) {
2560     // Emit the range check for the jump table, and branch to the default block
2561     // for the switch statement if the value being switched on exceeds the
2562     // largest case in the switch.
2563     SDValue CMP = DAG.getSetCC(
2564         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2565                                    Sub.getValueType()),
2566         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2567 
2568     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2569                                  MVT::Other, CopyTo, CMP,
2570                                  DAG.getBasicBlock(JT.Default));
2571 
2572     // Avoid emitting unnecessary branches to the next block.
2573     if (JT.MBB != NextBlock(SwitchBB))
2574       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2575                            DAG.getBasicBlock(JT.MBB));
2576 
2577     DAG.setRoot(BrCond);
2578   } else {
2579     // Avoid emitting unnecessary branches to the next block.
2580     if (JT.MBB != NextBlock(SwitchBB))
2581       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2582                               DAG.getBasicBlock(JT.MBB)));
2583     else
2584       DAG.setRoot(CopyTo);
2585   }
2586 }
2587 
2588 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2589 /// variable if there exists one.
2590 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2591                                  SDValue &Chain) {
2592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2593   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2594   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2595   MachineFunction &MF = DAG.getMachineFunction();
2596   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2597   MachineSDNode *Node =
2598       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2599   if (Global) {
2600     MachinePointerInfo MPInfo(Global);
2601     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2602                  MachineMemOperand::MODereferenceable;
2603     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2604         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2605     DAG.setNodeMemRefs(Node, {MemRef});
2606   }
2607   if (PtrTy != PtrMemTy)
2608     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2609   return SDValue(Node, 0);
2610 }
2611 
2612 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2613 /// tail spliced into a stack protector check success bb.
2614 ///
2615 /// For a high level explanation of how this fits into the stack protector
2616 /// generation see the comment on the declaration of class
2617 /// StackProtectorDescriptor.
2618 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2619                                                   MachineBasicBlock *ParentBB) {
2620 
2621   // First create the loads to the guard/stack slot for the comparison.
2622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2623   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2624   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2625 
2626   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2627   int FI = MFI.getStackProtectorIndex();
2628 
2629   SDValue Guard;
2630   SDLoc dl = getCurSDLoc();
2631   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2632   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2633   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2634 
2635   // Generate code to load the content of the guard slot.
2636   SDValue GuardVal = DAG.getLoad(
2637       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2638       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2639       MachineMemOperand::MOVolatile);
2640 
2641   if (TLI.useStackGuardXorFP())
2642     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2643 
2644   // Retrieve guard check function, nullptr if instrumentation is inlined.
2645   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2646     // The target provides a guard check function to validate the guard value.
2647     // Generate a call to that function with the content of the guard slot as
2648     // argument.
2649     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2650     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2651 
2652     TargetLowering::ArgListTy Args;
2653     TargetLowering::ArgListEntry Entry;
2654     Entry.Node = GuardVal;
2655     Entry.Ty = FnTy->getParamType(0);
2656     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2657       Entry.IsInReg = true;
2658     Args.push_back(Entry);
2659 
2660     TargetLowering::CallLoweringInfo CLI(DAG);
2661     CLI.setDebugLoc(getCurSDLoc())
2662         .setChain(DAG.getEntryNode())
2663         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2664                    getValue(GuardCheckFn), std::move(Args));
2665 
2666     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2667     DAG.setRoot(Result.second);
2668     return;
2669   }
2670 
2671   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2672   // Otherwise, emit a volatile load to retrieve the stack guard value.
2673   SDValue Chain = DAG.getEntryNode();
2674   if (TLI.useLoadStackGuardNode()) {
2675     Guard = getLoadStackGuard(DAG, dl, Chain);
2676   } else {
2677     const Value *IRGuard = TLI.getSDagStackGuard(M);
2678     SDValue GuardPtr = getValue(IRGuard);
2679 
2680     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2681                         MachinePointerInfo(IRGuard, 0), Align,
2682                         MachineMemOperand::MOVolatile);
2683   }
2684 
2685   // Perform the comparison via a getsetcc.
2686   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2687                                                         *DAG.getContext(),
2688                                                         Guard.getValueType()),
2689                              Guard, GuardVal, ISD::SETNE);
2690 
2691   // If the guard/stackslot do not equal, branch to failure MBB.
2692   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2693                                MVT::Other, GuardVal.getOperand(0),
2694                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2695   // Otherwise branch to success MBB.
2696   SDValue Br = DAG.getNode(ISD::BR, dl,
2697                            MVT::Other, BrCond,
2698                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2699 
2700   DAG.setRoot(Br);
2701 }
2702 
2703 /// Codegen the failure basic block for a stack protector check.
2704 ///
2705 /// A failure stack protector machine basic block consists simply of a call to
2706 /// __stack_chk_fail().
2707 ///
2708 /// For a high level explanation of how this fits into the stack protector
2709 /// generation see the comment on the declaration of class
2710 /// StackProtectorDescriptor.
2711 void
2712 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2713   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2714   TargetLowering::MakeLibCallOptions CallOptions;
2715   CallOptions.setDiscardResult(true);
2716   SDValue Chain =
2717       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2718                       None, CallOptions, getCurSDLoc()).second;
2719   // On PS4, the "return address" must still be within the calling function,
2720   // even if it's at the very end, so emit an explicit TRAP here.
2721   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2722   if (TM.getTargetTriple().isPS4CPU())
2723     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2724   // WebAssembly needs an unreachable instruction after a non-returning call,
2725   // because the function return type can be different from __stack_chk_fail's
2726   // return type (void).
2727   if (TM.getTargetTriple().isWasm())
2728     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2729 
2730   DAG.setRoot(Chain);
2731 }
2732 
2733 /// visitBitTestHeader - This function emits necessary code to produce value
2734 /// suitable for "bit tests"
2735 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2736                                              MachineBasicBlock *SwitchBB) {
2737   SDLoc dl = getCurSDLoc();
2738 
2739   // Subtract the minimum value.
2740   SDValue SwitchOp = getValue(B.SValue);
2741   EVT VT = SwitchOp.getValueType();
2742   SDValue RangeSub =
2743       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2744 
2745   // Determine the type of the test operands.
2746   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2747   bool UsePtrType = false;
2748   if (!TLI.isTypeLegal(VT)) {
2749     UsePtrType = true;
2750   } else {
2751     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2752       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2753         // Switch table case range are encoded into series of masks.
2754         // Just use pointer type, it's guaranteed to fit.
2755         UsePtrType = true;
2756         break;
2757       }
2758   }
2759   SDValue Sub = RangeSub;
2760   if (UsePtrType) {
2761     VT = TLI.getPointerTy(DAG.getDataLayout());
2762     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2763   }
2764 
2765   B.RegVT = VT.getSimpleVT();
2766   B.Reg = FuncInfo.CreateReg(B.RegVT);
2767   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2768 
2769   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2770 
2771   if (!B.OmitRangeCheck)
2772     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2773   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2774   SwitchBB->normalizeSuccProbs();
2775 
2776   SDValue Root = CopyTo;
2777   if (!B.OmitRangeCheck) {
2778     // Conditional branch to the default block.
2779     SDValue RangeCmp = DAG.getSetCC(dl,
2780         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2781                                RangeSub.getValueType()),
2782         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2783         ISD::SETUGT);
2784 
2785     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2786                        DAG.getBasicBlock(B.Default));
2787   }
2788 
2789   // Avoid emitting unnecessary branches to the next block.
2790   if (MBB != NextBlock(SwitchBB))
2791     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2792 
2793   DAG.setRoot(Root);
2794 }
2795 
2796 /// visitBitTestCase - this function produces one "bit test"
2797 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2798                                            MachineBasicBlock* NextMBB,
2799                                            BranchProbability BranchProbToNext,
2800                                            unsigned Reg,
2801                                            BitTestCase &B,
2802                                            MachineBasicBlock *SwitchBB) {
2803   SDLoc dl = getCurSDLoc();
2804   MVT VT = BB.RegVT;
2805   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2806   SDValue Cmp;
2807   unsigned PopCount = countPopulation(B.Mask);
2808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2809   if (PopCount == 1) {
2810     // Testing for a single bit; just compare the shift count with what it
2811     // would need to be to shift a 1 bit in that position.
2812     Cmp = DAG.getSetCC(
2813         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2814         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2815         ISD::SETEQ);
2816   } else if (PopCount == BB.Range) {
2817     // There is only one zero bit in the range, test for it directly.
2818     Cmp = DAG.getSetCC(
2819         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2820         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2821         ISD::SETNE);
2822   } else {
2823     // Make desired shift
2824     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2825                                     DAG.getConstant(1, dl, VT), ShiftOp);
2826 
2827     // Emit bit tests and jumps
2828     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2829                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2830     Cmp = DAG.getSetCC(
2831         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2832         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2833   }
2834 
2835   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2836   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2837   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2838   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2839   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2840   // one as they are relative probabilities (and thus work more like weights),
2841   // and hence we need to normalize them to let the sum of them become one.
2842   SwitchBB->normalizeSuccProbs();
2843 
2844   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2845                               MVT::Other, getControlRoot(),
2846                               Cmp, DAG.getBasicBlock(B.TargetBB));
2847 
2848   // Avoid emitting unnecessary branches to the next block.
2849   if (NextMBB != NextBlock(SwitchBB))
2850     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2851                         DAG.getBasicBlock(NextMBB));
2852 
2853   DAG.setRoot(BrAnd);
2854 }
2855 
2856 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2857   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2858 
2859   // Retrieve successors. Look through artificial IR level blocks like
2860   // catchswitch for successors.
2861   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2862   const BasicBlock *EHPadBB = I.getSuccessor(1);
2863 
2864   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2865   // have to do anything here to lower funclet bundles.
2866   assert(!I.hasOperandBundlesOtherThan(
2867              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2868               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2869               LLVMContext::OB_cfguardtarget,
2870               LLVMContext::OB_clang_arc_attachedcall}) &&
2871          "Cannot lower invokes with arbitrary operand bundles yet!");
2872 
2873   const Value *Callee(I.getCalledOperand());
2874   const Function *Fn = dyn_cast<Function>(Callee);
2875   if (isa<InlineAsm>(Callee))
2876     visitInlineAsm(I, EHPadBB);
2877   else if (Fn && Fn->isIntrinsic()) {
2878     switch (Fn->getIntrinsicID()) {
2879     default:
2880       llvm_unreachable("Cannot invoke this intrinsic");
2881     case Intrinsic::donothing:
2882       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2883     case Intrinsic::seh_try_begin:
2884     case Intrinsic::seh_scope_begin:
2885     case Intrinsic::seh_try_end:
2886     case Intrinsic::seh_scope_end:
2887       break;
2888     case Intrinsic::experimental_patchpoint_void:
2889     case Intrinsic::experimental_patchpoint_i64:
2890       visitPatchpoint(I, EHPadBB);
2891       break;
2892     case Intrinsic::experimental_gc_statepoint:
2893       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2894       break;
2895     case Intrinsic::wasm_rethrow: {
2896       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2897       // special because it can be invoked, so we manually lower it to a DAG
2898       // node here.
2899       SmallVector<SDValue, 8> Ops;
2900       Ops.push_back(getRoot()); // inchain
2901       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2902       Ops.push_back(
2903           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2904                                 TLI.getPointerTy(DAG.getDataLayout())));
2905       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2906       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2907       break;
2908     }
2909     }
2910   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2911     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2912     // Eventually we will support lowering the @llvm.experimental.deoptimize
2913     // intrinsic, and right now there are no plans to support other intrinsics
2914     // with deopt state.
2915     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2916   } else {
2917     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2918   }
2919 
2920   // If the value of the invoke is used outside of its defining block, make it
2921   // available as a virtual register.
2922   // We already took care of the exported value for the statepoint instruction
2923   // during call to the LowerStatepoint.
2924   if (!isa<GCStatepointInst>(I)) {
2925     CopyToExportRegsIfNeeded(&I);
2926   }
2927 
2928   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2929   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2930   BranchProbability EHPadBBProb =
2931       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2932           : BranchProbability::getZero();
2933   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2934 
2935   // Update successor info.
2936   addSuccessorWithProb(InvokeMBB, Return);
2937   for (auto &UnwindDest : UnwindDests) {
2938     UnwindDest.first->setIsEHPad();
2939     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2940   }
2941   InvokeMBB->normalizeSuccProbs();
2942 
2943   // Drop into normal successor.
2944   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2945                           DAG.getBasicBlock(Return)));
2946 }
2947 
2948 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2949   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2950 
2951   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2952   // have to do anything here to lower funclet bundles.
2953   assert(!I.hasOperandBundlesOtherThan(
2954              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2955          "Cannot lower callbrs with arbitrary operand bundles yet!");
2956 
2957   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2958   visitInlineAsm(I);
2959   CopyToExportRegsIfNeeded(&I);
2960 
2961   // Retrieve successors.
2962   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2963 
2964   // Update successor info.
2965   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2966   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2967     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2968     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2969     Target->setIsInlineAsmBrIndirectTarget();
2970   }
2971   CallBrMBB->normalizeSuccProbs();
2972 
2973   // Drop into default successor.
2974   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2975                           MVT::Other, getControlRoot(),
2976                           DAG.getBasicBlock(Return)));
2977 }
2978 
2979 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2980   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2981 }
2982 
2983 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2984   assert(FuncInfo.MBB->isEHPad() &&
2985          "Call to landingpad not in landing pad!");
2986 
2987   // If there aren't registers to copy the values into (e.g., during SjLj
2988   // exceptions), then don't bother to create these DAG nodes.
2989   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2990   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2991   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2992       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2993     return;
2994 
2995   // If landingpad's return type is token type, we don't create DAG nodes
2996   // for its exception pointer and selector value. The extraction of exception
2997   // pointer or selector value from token type landingpads is not currently
2998   // supported.
2999   if (LP.getType()->isTokenTy())
3000     return;
3001 
3002   SmallVector<EVT, 2> ValueVTs;
3003   SDLoc dl = getCurSDLoc();
3004   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3005   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3006 
3007   // Get the two live-in registers as SDValues. The physregs have already been
3008   // copied into virtual registers.
3009   SDValue Ops[2];
3010   if (FuncInfo.ExceptionPointerVirtReg) {
3011     Ops[0] = DAG.getZExtOrTrunc(
3012         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3013                            FuncInfo.ExceptionPointerVirtReg,
3014                            TLI.getPointerTy(DAG.getDataLayout())),
3015         dl, ValueVTs[0]);
3016   } else {
3017     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3018   }
3019   Ops[1] = DAG.getZExtOrTrunc(
3020       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3021                          FuncInfo.ExceptionSelectorVirtReg,
3022                          TLI.getPointerTy(DAG.getDataLayout())),
3023       dl, ValueVTs[1]);
3024 
3025   // Merge into one.
3026   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3027                             DAG.getVTList(ValueVTs), Ops);
3028   setValue(&LP, Res);
3029 }
3030 
3031 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3032                                            MachineBasicBlock *Last) {
3033   // Update JTCases.
3034   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3035     if (SL->JTCases[i].first.HeaderBB == First)
3036       SL->JTCases[i].first.HeaderBB = Last;
3037 
3038   // Update BitTestCases.
3039   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3040     if (SL->BitTestCases[i].Parent == First)
3041       SL->BitTestCases[i].Parent = Last;
3042 }
3043 
3044 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3045   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3046 
3047   // Update machine-CFG edges with unique successors.
3048   SmallSet<BasicBlock*, 32> Done;
3049   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3050     BasicBlock *BB = I.getSuccessor(i);
3051     bool Inserted = Done.insert(BB).second;
3052     if (!Inserted)
3053         continue;
3054 
3055     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3056     addSuccessorWithProb(IndirectBrMBB, Succ);
3057   }
3058   IndirectBrMBB->normalizeSuccProbs();
3059 
3060   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3061                           MVT::Other, getControlRoot(),
3062                           getValue(I.getAddress())));
3063 }
3064 
3065 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3066   if (!DAG.getTarget().Options.TrapUnreachable)
3067     return;
3068 
3069   // We may be able to ignore unreachable behind a noreturn call.
3070   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3071     const BasicBlock &BB = *I.getParent();
3072     if (&I != &BB.front()) {
3073       BasicBlock::const_iterator PredI =
3074         std::prev(BasicBlock::const_iterator(&I));
3075       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3076         if (Call->doesNotReturn())
3077           return;
3078       }
3079     }
3080   }
3081 
3082   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3083 }
3084 
3085 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3086   SDNodeFlags Flags;
3087 
3088   SDValue Op = getValue(I.getOperand(0));
3089   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3090                                     Op, Flags);
3091   setValue(&I, UnNodeValue);
3092 }
3093 
3094 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3095   SDNodeFlags Flags;
3096   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3097     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3098     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3099   }
3100   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3101     Flags.setExact(ExactOp->isExact());
3102   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3103     Flags.copyFMF(*FPOp);
3104 
3105   SDValue Op1 = getValue(I.getOperand(0));
3106   SDValue Op2 = getValue(I.getOperand(1));
3107   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3108                                      Op1, Op2, Flags);
3109   setValue(&I, BinNodeValue);
3110 }
3111 
3112 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3113   SDValue Op1 = getValue(I.getOperand(0));
3114   SDValue Op2 = getValue(I.getOperand(1));
3115 
3116   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3117       Op1.getValueType(), DAG.getDataLayout());
3118 
3119   // Coerce the shift amount to the right type if we can.
3120   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3121     unsigned ShiftSize = ShiftTy.getSizeInBits();
3122     unsigned Op2Size = Op2.getValueSizeInBits();
3123     SDLoc DL = getCurSDLoc();
3124 
3125     // If the operand is smaller than the shift count type, promote it.
3126     if (ShiftSize > Op2Size)
3127       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3128 
3129     // If the operand is larger than the shift count type but the shift
3130     // count type has enough bits to represent any shift value, truncate
3131     // it now. This is a common case and it exposes the truncate to
3132     // optimization early.
3133     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3134       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3135     // Otherwise we'll need to temporarily settle for some other convenient
3136     // type.  Type legalization will make adjustments once the shiftee is split.
3137     else
3138       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3139   }
3140 
3141   bool nuw = false;
3142   bool nsw = false;
3143   bool exact = false;
3144 
3145   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3146 
3147     if (const OverflowingBinaryOperator *OFBinOp =
3148             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3149       nuw = OFBinOp->hasNoUnsignedWrap();
3150       nsw = OFBinOp->hasNoSignedWrap();
3151     }
3152     if (const PossiblyExactOperator *ExactOp =
3153             dyn_cast<const PossiblyExactOperator>(&I))
3154       exact = ExactOp->isExact();
3155   }
3156   SDNodeFlags Flags;
3157   Flags.setExact(exact);
3158   Flags.setNoSignedWrap(nsw);
3159   Flags.setNoUnsignedWrap(nuw);
3160   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3161                             Flags);
3162   setValue(&I, Res);
3163 }
3164 
3165 void SelectionDAGBuilder::visitSDiv(const User &I) {
3166   SDValue Op1 = getValue(I.getOperand(0));
3167   SDValue Op2 = getValue(I.getOperand(1));
3168 
3169   SDNodeFlags Flags;
3170   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3171                  cast<PossiblyExactOperator>(&I)->isExact());
3172   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3173                            Op2, Flags));
3174 }
3175 
3176 void SelectionDAGBuilder::visitICmp(const User &I) {
3177   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3178   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3179     predicate = IC->getPredicate();
3180   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3181     predicate = ICmpInst::Predicate(IC->getPredicate());
3182   SDValue Op1 = getValue(I.getOperand(0));
3183   SDValue Op2 = getValue(I.getOperand(1));
3184   ISD::CondCode Opcode = getICmpCondCode(predicate);
3185 
3186   auto &TLI = DAG.getTargetLoweringInfo();
3187   EVT MemVT =
3188       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3189 
3190   // If a pointer's DAG type is larger than its memory type then the DAG values
3191   // are zero-extended. This breaks signed comparisons so truncate back to the
3192   // underlying type before doing the compare.
3193   if (Op1.getValueType() != MemVT) {
3194     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3195     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3196   }
3197 
3198   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3199                                                         I.getType());
3200   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3201 }
3202 
3203 void SelectionDAGBuilder::visitFCmp(const User &I) {
3204   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3205   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3206     predicate = FC->getPredicate();
3207   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3208     predicate = FCmpInst::Predicate(FC->getPredicate());
3209   SDValue Op1 = getValue(I.getOperand(0));
3210   SDValue Op2 = getValue(I.getOperand(1));
3211 
3212   ISD::CondCode Condition = getFCmpCondCode(predicate);
3213   auto *FPMO = cast<FPMathOperator>(&I);
3214   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3215     Condition = getFCmpCodeWithoutNaN(Condition);
3216 
3217   SDNodeFlags Flags;
3218   Flags.copyFMF(*FPMO);
3219   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3220 
3221   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3222                                                         I.getType());
3223   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3224 }
3225 
3226 // Check if the condition of the select has one use or two users that are both
3227 // selects with the same condition.
3228 static bool hasOnlySelectUsers(const Value *Cond) {
3229   return llvm::all_of(Cond->users(), [](const Value *V) {
3230     return isa<SelectInst>(V);
3231   });
3232 }
3233 
3234 void SelectionDAGBuilder::visitSelect(const User &I) {
3235   SmallVector<EVT, 4> ValueVTs;
3236   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3237                   ValueVTs);
3238   unsigned NumValues = ValueVTs.size();
3239   if (NumValues == 0) return;
3240 
3241   SmallVector<SDValue, 4> Values(NumValues);
3242   SDValue Cond     = getValue(I.getOperand(0));
3243   SDValue LHSVal   = getValue(I.getOperand(1));
3244   SDValue RHSVal   = getValue(I.getOperand(2));
3245   SmallVector<SDValue, 1> BaseOps(1, Cond);
3246   ISD::NodeType OpCode =
3247       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3248 
3249   bool IsUnaryAbs = false;
3250   bool Negate = false;
3251 
3252   SDNodeFlags Flags;
3253   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3254     Flags.copyFMF(*FPOp);
3255 
3256   // Min/max matching is only viable if all output VTs are the same.
3257   if (is_splat(ValueVTs)) {
3258     EVT VT = ValueVTs[0];
3259     LLVMContext &Ctx = *DAG.getContext();
3260     auto &TLI = DAG.getTargetLoweringInfo();
3261 
3262     // We care about the legality of the operation after it has been type
3263     // legalized.
3264     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3265       VT = TLI.getTypeToTransformTo(Ctx, VT);
3266 
3267     // If the vselect is legal, assume we want to leave this as a vector setcc +
3268     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3269     // min/max is legal on the scalar type.
3270     bool UseScalarMinMax = VT.isVector() &&
3271       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3272 
3273     Value *LHS, *RHS;
3274     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3275     ISD::NodeType Opc = ISD::DELETED_NODE;
3276     switch (SPR.Flavor) {
3277     case SPF_UMAX:    Opc = ISD::UMAX; break;
3278     case SPF_UMIN:    Opc = ISD::UMIN; break;
3279     case SPF_SMAX:    Opc = ISD::SMAX; break;
3280     case SPF_SMIN:    Opc = ISD::SMIN; break;
3281     case SPF_FMINNUM:
3282       switch (SPR.NaNBehavior) {
3283       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3284       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3285       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3286       case SPNB_RETURNS_ANY: {
3287         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3288           Opc = ISD::FMINNUM;
3289         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3290           Opc = ISD::FMINIMUM;
3291         else if (UseScalarMinMax)
3292           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3293             ISD::FMINNUM : ISD::FMINIMUM;
3294         break;
3295       }
3296       }
3297       break;
3298     case SPF_FMAXNUM:
3299       switch (SPR.NaNBehavior) {
3300       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3301       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3302       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3303       case SPNB_RETURNS_ANY:
3304 
3305         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3306           Opc = ISD::FMAXNUM;
3307         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3308           Opc = ISD::FMAXIMUM;
3309         else if (UseScalarMinMax)
3310           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3311             ISD::FMAXNUM : ISD::FMAXIMUM;
3312         break;
3313       }
3314       break;
3315     case SPF_NABS:
3316       Negate = true;
3317       LLVM_FALLTHROUGH;
3318     case SPF_ABS:
3319       IsUnaryAbs = true;
3320       Opc = ISD::ABS;
3321       break;
3322     default: break;
3323     }
3324 
3325     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3326         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3327          (UseScalarMinMax &&
3328           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3329         // If the underlying comparison instruction is used by any other
3330         // instruction, the consumed instructions won't be destroyed, so it is
3331         // not profitable to convert to a min/max.
3332         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3333       OpCode = Opc;
3334       LHSVal = getValue(LHS);
3335       RHSVal = getValue(RHS);
3336       BaseOps.clear();
3337     }
3338 
3339     if (IsUnaryAbs) {
3340       OpCode = Opc;
3341       LHSVal = getValue(LHS);
3342       BaseOps.clear();
3343     }
3344   }
3345 
3346   if (IsUnaryAbs) {
3347     for (unsigned i = 0; i != NumValues; ++i) {
3348       SDLoc dl = getCurSDLoc();
3349       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3350       Values[i] =
3351           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3352       if (Negate)
3353         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3354                                 Values[i]);
3355     }
3356   } else {
3357     for (unsigned i = 0; i != NumValues; ++i) {
3358       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3359       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3360       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3361       Values[i] = DAG.getNode(
3362           OpCode, getCurSDLoc(),
3363           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3364     }
3365   }
3366 
3367   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3368                            DAG.getVTList(ValueVTs), Values));
3369 }
3370 
3371 void SelectionDAGBuilder::visitTrunc(const User &I) {
3372   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3373   SDValue N = getValue(I.getOperand(0));
3374   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3375                                                         I.getType());
3376   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3377 }
3378 
3379 void SelectionDAGBuilder::visitZExt(const User &I) {
3380   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3381   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3382   SDValue N = getValue(I.getOperand(0));
3383   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3384                                                         I.getType());
3385   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3386 }
3387 
3388 void SelectionDAGBuilder::visitSExt(const User &I) {
3389   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3390   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3391   SDValue N = getValue(I.getOperand(0));
3392   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3393                                                         I.getType());
3394   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3395 }
3396 
3397 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3398   // FPTrunc is never a no-op cast, no need to check
3399   SDValue N = getValue(I.getOperand(0));
3400   SDLoc dl = getCurSDLoc();
3401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3402   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3403   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3404                            DAG.getTargetConstant(
3405                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3406 }
3407 
3408 void SelectionDAGBuilder::visitFPExt(const User &I) {
3409   // FPExt is never a no-op cast, no need to check
3410   SDValue N = getValue(I.getOperand(0));
3411   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3412                                                         I.getType());
3413   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3414 }
3415 
3416 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3417   // FPToUI is never a no-op cast, no need to check
3418   SDValue N = getValue(I.getOperand(0));
3419   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3420                                                         I.getType());
3421   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3422 }
3423 
3424 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3425   // FPToSI is never a no-op cast, no need to check
3426   SDValue N = getValue(I.getOperand(0));
3427   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3428                                                         I.getType());
3429   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3430 }
3431 
3432 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3433   // UIToFP is never a no-op cast, no need to check
3434   SDValue N = getValue(I.getOperand(0));
3435   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3436                                                         I.getType());
3437   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3438 }
3439 
3440 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3441   // SIToFP is never a no-op cast, no need to check
3442   SDValue N = getValue(I.getOperand(0));
3443   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3444                                                         I.getType());
3445   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3446 }
3447 
3448 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3449   // What to do depends on the size of the integer and the size of the pointer.
3450   // We can either truncate, zero extend, or no-op, accordingly.
3451   SDValue N = getValue(I.getOperand(0));
3452   auto &TLI = DAG.getTargetLoweringInfo();
3453   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3454                                                         I.getType());
3455   EVT PtrMemVT =
3456       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3457   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3458   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3459   setValue(&I, N);
3460 }
3461 
3462 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3463   // What to do depends on the size of the integer and the size of the pointer.
3464   // We can either truncate, zero extend, or no-op, accordingly.
3465   SDValue N = getValue(I.getOperand(0));
3466   auto &TLI = DAG.getTargetLoweringInfo();
3467   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3468   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3469   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3470   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3471   setValue(&I, N);
3472 }
3473 
3474 void SelectionDAGBuilder::visitBitCast(const User &I) {
3475   SDValue N = getValue(I.getOperand(0));
3476   SDLoc dl = getCurSDLoc();
3477   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3478                                                         I.getType());
3479 
3480   // BitCast assures us that source and destination are the same size so this is
3481   // either a BITCAST or a no-op.
3482   if (DestVT != N.getValueType())
3483     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3484                              DestVT, N)); // convert types.
3485   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3486   // might fold any kind of constant expression to an integer constant and that
3487   // is not what we are looking for. Only recognize a bitcast of a genuine
3488   // constant integer as an opaque constant.
3489   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3490     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3491                                  /*isOpaque*/true));
3492   else
3493     setValue(&I, N);            // noop cast.
3494 }
3495 
3496 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3498   const Value *SV = I.getOperand(0);
3499   SDValue N = getValue(SV);
3500   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3501 
3502   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3503   unsigned DestAS = I.getType()->getPointerAddressSpace();
3504 
3505   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3506     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3507 
3508   setValue(&I, N);
3509 }
3510 
3511 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3513   SDValue InVec = getValue(I.getOperand(0));
3514   SDValue InVal = getValue(I.getOperand(1));
3515   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3516                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3517   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3518                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3519                            InVec, InVal, InIdx));
3520 }
3521 
3522 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3524   SDValue InVec = getValue(I.getOperand(0));
3525   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3526                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3527   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3528                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3529                            InVec, InIdx));
3530 }
3531 
3532 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3533   SDValue Src1 = getValue(I.getOperand(0));
3534   SDValue Src2 = getValue(I.getOperand(1));
3535   ArrayRef<int> Mask;
3536   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3537     Mask = SVI->getShuffleMask();
3538   else
3539     Mask = cast<ConstantExpr>(I).getShuffleMask();
3540   SDLoc DL = getCurSDLoc();
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3543   EVT SrcVT = Src1.getValueType();
3544 
3545   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3546       VT.isScalableVector()) {
3547     // Canonical splat form of first element of first input vector.
3548     SDValue FirstElt =
3549         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3550                     DAG.getVectorIdxConstant(0, DL));
3551     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3552     return;
3553   }
3554 
3555   // For now, we only handle splats for scalable vectors.
3556   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3557   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3558   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3559 
3560   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3561   unsigned MaskNumElts = Mask.size();
3562 
3563   if (SrcNumElts == MaskNumElts) {
3564     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3565     return;
3566   }
3567 
3568   // Normalize the shuffle vector since mask and vector length don't match.
3569   if (SrcNumElts < MaskNumElts) {
3570     // Mask is longer than the source vectors. We can use concatenate vector to
3571     // make the mask and vectors lengths match.
3572 
3573     if (MaskNumElts % SrcNumElts == 0) {
3574       // Mask length is a multiple of the source vector length.
3575       // Check if the shuffle is some kind of concatenation of the input
3576       // vectors.
3577       unsigned NumConcat = MaskNumElts / SrcNumElts;
3578       bool IsConcat = true;
3579       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3580       for (unsigned i = 0; i != MaskNumElts; ++i) {
3581         int Idx = Mask[i];
3582         if (Idx < 0)
3583           continue;
3584         // Ensure the indices in each SrcVT sized piece are sequential and that
3585         // the same source is used for the whole piece.
3586         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3587             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3588              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3589           IsConcat = false;
3590           break;
3591         }
3592         // Remember which source this index came from.
3593         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3594       }
3595 
3596       // The shuffle is concatenating multiple vectors together. Just emit
3597       // a CONCAT_VECTORS operation.
3598       if (IsConcat) {
3599         SmallVector<SDValue, 8> ConcatOps;
3600         for (auto Src : ConcatSrcs) {
3601           if (Src < 0)
3602             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3603           else if (Src == 0)
3604             ConcatOps.push_back(Src1);
3605           else
3606             ConcatOps.push_back(Src2);
3607         }
3608         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3609         return;
3610       }
3611     }
3612 
3613     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3614     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3615     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3616                                     PaddedMaskNumElts);
3617 
3618     // Pad both vectors with undefs to make them the same length as the mask.
3619     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3620 
3621     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3622     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3623     MOps1[0] = Src1;
3624     MOps2[0] = Src2;
3625 
3626     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3627     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3628 
3629     // Readjust mask for new input vector length.
3630     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3631     for (unsigned i = 0; i != MaskNumElts; ++i) {
3632       int Idx = Mask[i];
3633       if (Idx >= (int)SrcNumElts)
3634         Idx -= SrcNumElts - PaddedMaskNumElts;
3635       MappedOps[i] = Idx;
3636     }
3637 
3638     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3639 
3640     // If the concatenated vector was padded, extract a subvector with the
3641     // correct number of elements.
3642     if (MaskNumElts != PaddedMaskNumElts)
3643       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3644                            DAG.getVectorIdxConstant(0, DL));
3645 
3646     setValue(&I, Result);
3647     return;
3648   }
3649 
3650   if (SrcNumElts > MaskNumElts) {
3651     // Analyze the access pattern of the vector to see if we can extract
3652     // two subvectors and do the shuffle.
3653     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3654     bool CanExtract = true;
3655     for (int Idx : Mask) {
3656       unsigned Input = 0;
3657       if (Idx < 0)
3658         continue;
3659 
3660       if (Idx >= (int)SrcNumElts) {
3661         Input = 1;
3662         Idx -= SrcNumElts;
3663       }
3664 
3665       // If all the indices come from the same MaskNumElts sized portion of
3666       // the sources we can use extract. Also make sure the extract wouldn't
3667       // extract past the end of the source.
3668       int NewStartIdx = alignDown(Idx, MaskNumElts);
3669       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3670           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3671         CanExtract = false;
3672       // Make sure we always update StartIdx as we use it to track if all
3673       // elements are undef.
3674       StartIdx[Input] = NewStartIdx;
3675     }
3676 
3677     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3678       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3679       return;
3680     }
3681     if (CanExtract) {
3682       // Extract appropriate subvector and generate a vector shuffle
3683       for (unsigned Input = 0; Input < 2; ++Input) {
3684         SDValue &Src = Input == 0 ? Src1 : Src2;
3685         if (StartIdx[Input] < 0)
3686           Src = DAG.getUNDEF(VT);
3687         else {
3688           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3689                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3690         }
3691       }
3692 
3693       // Calculate new mask.
3694       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3695       for (int &Idx : MappedOps) {
3696         if (Idx >= (int)SrcNumElts)
3697           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3698         else if (Idx >= 0)
3699           Idx -= StartIdx[0];
3700       }
3701 
3702       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3703       return;
3704     }
3705   }
3706 
3707   // We can't use either concat vectors or extract subvectors so fall back to
3708   // replacing the shuffle with extract and build vector.
3709   // to insert and build vector.
3710   EVT EltVT = VT.getVectorElementType();
3711   SmallVector<SDValue,8> Ops;
3712   for (int Idx : Mask) {
3713     SDValue Res;
3714 
3715     if (Idx < 0) {
3716       Res = DAG.getUNDEF(EltVT);
3717     } else {
3718       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3719       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3720 
3721       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3722                         DAG.getVectorIdxConstant(Idx, DL));
3723     }
3724 
3725     Ops.push_back(Res);
3726   }
3727 
3728   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3729 }
3730 
3731 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3732   ArrayRef<unsigned> Indices;
3733   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3734     Indices = IV->getIndices();
3735   else
3736     Indices = cast<ConstantExpr>(&I)->getIndices();
3737 
3738   const Value *Op0 = I.getOperand(0);
3739   const Value *Op1 = I.getOperand(1);
3740   Type *AggTy = I.getType();
3741   Type *ValTy = Op1->getType();
3742   bool IntoUndef = isa<UndefValue>(Op0);
3743   bool FromUndef = isa<UndefValue>(Op1);
3744 
3745   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3746 
3747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3748   SmallVector<EVT, 4> AggValueVTs;
3749   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3750   SmallVector<EVT, 4> ValValueVTs;
3751   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3752 
3753   unsigned NumAggValues = AggValueVTs.size();
3754   unsigned NumValValues = ValValueVTs.size();
3755   SmallVector<SDValue, 4> Values(NumAggValues);
3756 
3757   // Ignore an insertvalue that produces an empty object
3758   if (!NumAggValues) {
3759     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3760     return;
3761   }
3762 
3763   SDValue Agg = getValue(Op0);
3764   unsigned i = 0;
3765   // Copy the beginning value(s) from the original aggregate.
3766   for (; i != LinearIndex; ++i)
3767     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3768                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3769   // Copy values from the inserted value(s).
3770   if (NumValValues) {
3771     SDValue Val = getValue(Op1);
3772     for (; i != LinearIndex + NumValValues; ++i)
3773       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3774                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3775   }
3776   // Copy remaining value(s) from the original aggregate.
3777   for (; i != NumAggValues; ++i)
3778     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3779                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3780 
3781   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3782                            DAG.getVTList(AggValueVTs), Values));
3783 }
3784 
3785 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3786   ArrayRef<unsigned> Indices;
3787   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3788     Indices = EV->getIndices();
3789   else
3790     Indices = cast<ConstantExpr>(&I)->getIndices();
3791 
3792   const Value *Op0 = I.getOperand(0);
3793   Type *AggTy = Op0->getType();
3794   Type *ValTy = I.getType();
3795   bool OutOfUndef = isa<UndefValue>(Op0);
3796 
3797   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3798 
3799   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3800   SmallVector<EVT, 4> ValValueVTs;
3801   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3802 
3803   unsigned NumValValues = ValValueVTs.size();
3804 
3805   // Ignore a extractvalue that produces an empty object
3806   if (!NumValValues) {
3807     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3808     return;
3809   }
3810 
3811   SmallVector<SDValue, 4> Values(NumValValues);
3812 
3813   SDValue Agg = getValue(Op0);
3814   // Copy out the selected value(s).
3815   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3816     Values[i - LinearIndex] =
3817       OutOfUndef ?
3818         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3819         SDValue(Agg.getNode(), Agg.getResNo() + i);
3820 
3821   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3822                            DAG.getVTList(ValValueVTs), Values));
3823 }
3824 
3825 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3826   Value *Op0 = I.getOperand(0);
3827   // Note that the pointer operand may be a vector of pointers. Take the scalar
3828   // element which holds a pointer.
3829   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3830   SDValue N = getValue(Op0);
3831   SDLoc dl = getCurSDLoc();
3832   auto &TLI = DAG.getTargetLoweringInfo();
3833 
3834   // Normalize Vector GEP - all scalar operands should be converted to the
3835   // splat vector.
3836   bool IsVectorGEP = I.getType()->isVectorTy();
3837   ElementCount VectorElementCount =
3838       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3839                   : ElementCount::getFixed(0);
3840 
3841   if (IsVectorGEP && !N.getValueType().isVector()) {
3842     LLVMContext &Context = *DAG.getContext();
3843     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3844     if (VectorElementCount.isScalable())
3845       N = DAG.getSplatVector(VT, dl, N);
3846     else
3847       N = DAG.getSplatBuildVector(VT, dl, N);
3848   }
3849 
3850   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3851        GTI != E; ++GTI) {
3852     const Value *Idx = GTI.getOperand();
3853     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3854       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3855       if (Field) {
3856         // N = N + Offset
3857         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3858 
3859         // In an inbounds GEP with an offset that is nonnegative even when
3860         // interpreted as signed, assume there is no unsigned overflow.
3861         SDNodeFlags Flags;
3862         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3863           Flags.setNoUnsignedWrap(true);
3864 
3865         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3866                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3867       }
3868     } else {
3869       // IdxSize is the width of the arithmetic according to IR semantics.
3870       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3871       // (and fix up the result later).
3872       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3873       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3874       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3875       // We intentionally mask away the high bits here; ElementSize may not
3876       // fit in IdxTy.
3877       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3878       bool ElementScalable = ElementSize.isScalable();
3879 
3880       // If this is a scalar constant or a splat vector of constants,
3881       // handle it quickly.
3882       const auto *C = dyn_cast<Constant>(Idx);
3883       if (C && isa<VectorType>(C->getType()))
3884         C = C->getSplatValue();
3885 
3886       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3887       if (CI && CI->isZero())
3888         continue;
3889       if (CI && !ElementScalable) {
3890         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3891         LLVMContext &Context = *DAG.getContext();
3892         SDValue OffsVal;
3893         if (IsVectorGEP)
3894           OffsVal = DAG.getConstant(
3895               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3896         else
3897           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3898 
3899         // In an inbounds GEP with an offset that is nonnegative even when
3900         // interpreted as signed, assume there is no unsigned overflow.
3901         SDNodeFlags Flags;
3902         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3903           Flags.setNoUnsignedWrap(true);
3904 
3905         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3906 
3907         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3908         continue;
3909       }
3910 
3911       // N = N + Idx * ElementMul;
3912       SDValue IdxN = getValue(Idx);
3913 
3914       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3915         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3916                                   VectorElementCount);
3917         if (VectorElementCount.isScalable())
3918           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3919         else
3920           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3921       }
3922 
3923       // If the index is smaller or larger than intptr_t, truncate or extend
3924       // it.
3925       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3926 
3927       if (ElementScalable) {
3928         EVT VScaleTy = N.getValueType().getScalarType();
3929         SDValue VScale = DAG.getNode(
3930             ISD::VSCALE, dl, VScaleTy,
3931             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3932         if (IsVectorGEP)
3933           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3934         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3935       } else {
3936         // If this is a multiply by a power of two, turn it into a shl
3937         // immediately.  This is a very common case.
3938         if (ElementMul != 1) {
3939           if (ElementMul.isPowerOf2()) {
3940             unsigned Amt = ElementMul.logBase2();
3941             IdxN = DAG.getNode(ISD::SHL, dl,
3942                                N.getValueType(), IdxN,
3943                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3944           } else {
3945             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3946                                             IdxN.getValueType());
3947             IdxN = DAG.getNode(ISD::MUL, dl,
3948                                N.getValueType(), IdxN, Scale);
3949           }
3950         }
3951       }
3952 
3953       N = DAG.getNode(ISD::ADD, dl,
3954                       N.getValueType(), N, IdxN);
3955     }
3956   }
3957 
3958   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3959   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3960   if (IsVectorGEP) {
3961     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3962     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3963   }
3964 
3965   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3966     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3967 
3968   setValue(&I, N);
3969 }
3970 
3971 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3972   // If this is a fixed sized alloca in the entry block of the function,
3973   // allocate it statically on the stack.
3974   if (FuncInfo.StaticAllocaMap.count(&I))
3975     return;   // getValue will auto-populate this.
3976 
3977   SDLoc dl = getCurSDLoc();
3978   Type *Ty = I.getAllocatedType();
3979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3980   auto &DL = DAG.getDataLayout();
3981   uint64_t TySize = DL.getTypeAllocSize(Ty);
3982   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3983 
3984   SDValue AllocSize = getValue(I.getArraySize());
3985 
3986   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3987   if (AllocSize.getValueType() != IntPtr)
3988     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3989 
3990   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3991                           AllocSize,
3992                           DAG.getConstant(TySize, dl, IntPtr));
3993 
3994   // Handle alignment.  If the requested alignment is less than or equal to
3995   // the stack alignment, ignore it.  If the size is greater than or equal to
3996   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3997   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3998   if (*Alignment <= StackAlign)
3999     Alignment = None;
4000 
4001   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4002   // Round the size of the allocation up to the stack alignment size
4003   // by add SA-1 to the size. This doesn't overflow because we're computing
4004   // an address inside an alloca.
4005   SDNodeFlags Flags;
4006   Flags.setNoUnsignedWrap(true);
4007   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4008                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4009 
4010   // Mask out the low bits for alignment purposes.
4011   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4012                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4013 
4014   SDValue Ops[] = {
4015       getRoot(), AllocSize,
4016       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4017   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4018   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4019   setValue(&I, DSA);
4020   DAG.setRoot(DSA.getValue(1));
4021 
4022   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4023 }
4024 
4025 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4026   if (I.isAtomic())
4027     return visitAtomicLoad(I);
4028 
4029   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4030   const Value *SV = I.getOperand(0);
4031   if (TLI.supportSwiftError()) {
4032     // Swifterror values can come from either a function parameter with
4033     // swifterror attribute or an alloca with swifterror attribute.
4034     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4035       if (Arg->hasSwiftErrorAttr())
4036         return visitLoadFromSwiftError(I);
4037     }
4038 
4039     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4040       if (Alloca->isSwiftError())
4041         return visitLoadFromSwiftError(I);
4042     }
4043   }
4044 
4045   SDValue Ptr = getValue(SV);
4046 
4047   Type *Ty = I.getType();
4048   Align Alignment = I.getAlign();
4049 
4050   AAMDNodes AAInfo;
4051   I.getAAMetadata(AAInfo);
4052   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4053 
4054   SmallVector<EVT, 4> ValueVTs, MemVTs;
4055   SmallVector<uint64_t, 4> Offsets;
4056   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4057   unsigned NumValues = ValueVTs.size();
4058   if (NumValues == 0)
4059     return;
4060 
4061   bool isVolatile = I.isVolatile();
4062 
4063   SDValue Root;
4064   bool ConstantMemory = false;
4065   if (isVolatile)
4066     // Serialize volatile loads with other side effects.
4067     Root = getRoot();
4068   else if (NumValues > MaxParallelChains)
4069     Root = getMemoryRoot();
4070   else if (AA &&
4071            AA->pointsToConstantMemory(MemoryLocation(
4072                SV,
4073                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4074                AAInfo))) {
4075     // Do not serialize (non-volatile) loads of constant memory with anything.
4076     Root = DAG.getEntryNode();
4077     ConstantMemory = true;
4078   } else {
4079     // Do not serialize non-volatile loads against each other.
4080     Root = DAG.getRoot();
4081   }
4082 
4083   SDLoc dl = getCurSDLoc();
4084 
4085   if (isVolatile)
4086     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4087 
4088   // An aggregate load cannot wrap around the address space, so offsets to its
4089   // parts don't wrap either.
4090   SDNodeFlags Flags;
4091   Flags.setNoUnsignedWrap(true);
4092 
4093   SmallVector<SDValue, 4> Values(NumValues);
4094   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4095   EVT PtrVT = Ptr.getValueType();
4096 
4097   MachineMemOperand::Flags MMOFlags
4098     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4099 
4100   unsigned ChainI = 0;
4101   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4102     // Serializing loads here may result in excessive register pressure, and
4103     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4104     // could recover a bit by hoisting nodes upward in the chain by recognizing
4105     // they are side-effect free or do not alias. The optimizer should really
4106     // avoid this case by converting large object/array copies to llvm.memcpy
4107     // (MaxParallelChains should always remain as failsafe).
4108     if (ChainI == MaxParallelChains) {
4109       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4110       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4111                                   makeArrayRef(Chains.data(), ChainI));
4112       Root = Chain;
4113       ChainI = 0;
4114     }
4115     SDValue A = DAG.getNode(ISD::ADD, dl,
4116                             PtrVT, Ptr,
4117                             DAG.getConstant(Offsets[i], dl, PtrVT),
4118                             Flags);
4119 
4120     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4121                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4122                             MMOFlags, AAInfo, Ranges);
4123     Chains[ChainI] = L.getValue(1);
4124 
4125     if (MemVTs[i] != ValueVTs[i])
4126       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4127 
4128     Values[i] = L;
4129   }
4130 
4131   if (!ConstantMemory) {
4132     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4133                                 makeArrayRef(Chains.data(), ChainI));
4134     if (isVolatile)
4135       DAG.setRoot(Chain);
4136     else
4137       PendingLoads.push_back(Chain);
4138   }
4139 
4140   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4141                            DAG.getVTList(ValueVTs), Values));
4142 }
4143 
4144 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4145   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4146          "call visitStoreToSwiftError when backend supports swifterror");
4147 
4148   SmallVector<EVT, 4> ValueVTs;
4149   SmallVector<uint64_t, 4> Offsets;
4150   const Value *SrcV = I.getOperand(0);
4151   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4152                   SrcV->getType(), ValueVTs, &Offsets);
4153   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4154          "expect a single EVT for swifterror");
4155 
4156   SDValue Src = getValue(SrcV);
4157   // Create a virtual register, then update the virtual register.
4158   Register VReg =
4159       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4160   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4161   // Chain can be getRoot or getControlRoot.
4162   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4163                                       SDValue(Src.getNode(), Src.getResNo()));
4164   DAG.setRoot(CopyNode);
4165 }
4166 
4167 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4168   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4169          "call visitLoadFromSwiftError when backend supports swifterror");
4170 
4171   assert(!I.isVolatile() &&
4172          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4173          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4174          "Support volatile, non temporal, invariant for load_from_swift_error");
4175 
4176   const Value *SV = I.getOperand(0);
4177   Type *Ty = I.getType();
4178   AAMDNodes AAInfo;
4179   I.getAAMetadata(AAInfo);
4180   assert(
4181       (!AA ||
4182        !AA->pointsToConstantMemory(MemoryLocation(
4183            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4184            AAInfo))) &&
4185       "load_from_swift_error should not be constant memory");
4186 
4187   SmallVector<EVT, 4> ValueVTs;
4188   SmallVector<uint64_t, 4> Offsets;
4189   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4190                   ValueVTs, &Offsets);
4191   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4192          "expect a single EVT for swifterror");
4193 
4194   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4195   SDValue L = DAG.getCopyFromReg(
4196       getRoot(), getCurSDLoc(),
4197       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4198 
4199   setValue(&I, L);
4200 }
4201 
4202 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4203   if (I.isAtomic())
4204     return visitAtomicStore(I);
4205 
4206   const Value *SrcV = I.getOperand(0);
4207   const Value *PtrV = I.getOperand(1);
4208 
4209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4210   if (TLI.supportSwiftError()) {
4211     // Swifterror values can come from either a function parameter with
4212     // swifterror attribute or an alloca with swifterror attribute.
4213     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4214       if (Arg->hasSwiftErrorAttr())
4215         return visitStoreToSwiftError(I);
4216     }
4217 
4218     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4219       if (Alloca->isSwiftError())
4220         return visitStoreToSwiftError(I);
4221     }
4222   }
4223 
4224   SmallVector<EVT, 4> ValueVTs, MemVTs;
4225   SmallVector<uint64_t, 4> Offsets;
4226   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4227                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4228   unsigned NumValues = ValueVTs.size();
4229   if (NumValues == 0)
4230     return;
4231 
4232   // Get the lowered operands. Note that we do this after
4233   // checking if NumResults is zero, because with zero results
4234   // the operands won't have values in the map.
4235   SDValue Src = getValue(SrcV);
4236   SDValue Ptr = getValue(PtrV);
4237 
4238   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4239   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4240   SDLoc dl = getCurSDLoc();
4241   Align Alignment = I.getAlign();
4242   AAMDNodes AAInfo;
4243   I.getAAMetadata(AAInfo);
4244 
4245   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4246 
4247   // An aggregate load cannot wrap around the address space, so offsets to its
4248   // parts don't wrap either.
4249   SDNodeFlags Flags;
4250   Flags.setNoUnsignedWrap(true);
4251 
4252   unsigned ChainI = 0;
4253   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4254     // See visitLoad comments.
4255     if (ChainI == MaxParallelChains) {
4256       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4257                                   makeArrayRef(Chains.data(), ChainI));
4258       Root = Chain;
4259       ChainI = 0;
4260     }
4261     SDValue Add =
4262         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4263     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4264     if (MemVTs[i] != ValueVTs[i])
4265       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4266     SDValue St =
4267         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4268                      Alignment, MMOFlags, AAInfo);
4269     Chains[ChainI] = St;
4270   }
4271 
4272   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4273                                   makeArrayRef(Chains.data(), ChainI));
4274   DAG.setRoot(StoreNode);
4275 }
4276 
4277 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4278                                            bool IsCompressing) {
4279   SDLoc sdl = getCurSDLoc();
4280 
4281   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4282                                MaybeAlign &Alignment) {
4283     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4284     Src0 = I.getArgOperand(0);
4285     Ptr = I.getArgOperand(1);
4286     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4287     Mask = I.getArgOperand(3);
4288   };
4289   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4290                                     MaybeAlign &Alignment) {
4291     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4292     Src0 = I.getArgOperand(0);
4293     Ptr = I.getArgOperand(1);
4294     Mask = I.getArgOperand(2);
4295     Alignment = None;
4296   };
4297 
4298   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4299   MaybeAlign Alignment;
4300   if (IsCompressing)
4301     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4302   else
4303     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4304 
4305   SDValue Ptr = getValue(PtrOperand);
4306   SDValue Src0 = getValue(Src0Operand);
4307   SDValue Mask = getValue(MaskOperand);
4308   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4309 
4310   EVT VT = Src0.getValueType();
4311   if (!Alignment)
4312     Alignment = DAG.getEVTAlign(VT);
4313 
4314   AAMDNodes AAInfo;
4315   I.getAAMetadata(AAInfo);
4316 
4317   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4318       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4319       // TODO: Make MachineMemOperands aware of scalable
4320       // vectors.
4321       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4322   SDValue StoreNode =
4323       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4324                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4325   DAG.setRoot(StoreNode);
4326   setValue(&I, StoreNode);
4327 }
4328 
4329 // Get a uniform base for the Gather/Scatter intrinsic.
4330 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4331 // We try to represent it as a base pointer + vector of indices.
4332 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4333 // The first operand of the GEP may be a single pointer or a vector of pointers
4334 // Example:
4335 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4336 //  or
4337 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4338 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4339 //
4340 // When the first GEP operand is a single pointer - it is the uniform base we
4341 // are looking for. If first operand of the GEP is a splat vector - we
4342 // extract the splat value and use it as a uniform base.
4343 // In all other cases the function returns 'false'.
4344 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4345                            ISD::MemIndexType &IndexType, SDValue &Scale,
4346                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4347   SelectionDAG& DAG = SDB->DAG;
4348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4349   const DataLayout &DL = DAG.getDataLayout();
4350 
4351   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4352 
4353   // Handle splat constant pointer.
4354   if (auto *C = dyn_cast<Constant>(Ptr)) {
4355     C = C->getSplatValue();
4356     if (!C)
4357       return false;
4358 
4359     Base = SDB->getValue(C);
4360 
4361     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4362     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4363     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4364     IndexType = ISD::SIGNED_SCALED;
4365     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4366     return true;
4367   }
4368 
4369   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4370   if (!GEP || GEP->getParent() != CurBB)
4371     return false;
4372 
4373   if (GEP->getNumOperands() != 2)
4374     return false;
4375 
4376   const Value *BasePtr = GEP->getPointerOperand();
4377   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4378 
4379   // Make sure the base is scalar and the index is a vector.
4380   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4381     return false;
4382 
4383   Base = SDB->getValue(BasePtr);
4384   Index = SDB->getValue(IndexVal);
4385   IndexType = ISD::SIGNED_SCALED;
4386   Scale = DAG.getTargetConstant(
4387               DL.getTypeAllocSize(GEP->getResultElementType()),
4388               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4389   return true;
4390 }
4391 
4392 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4393   SDLoc sdl = getCurSDLoc();
4394 
4395   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4396   const Value *Ptr = I.getArgOperand(1);
4397   SDValue Src0 = getValue(I.getArgOperand(0));
4398   SDValue Mask = getValue(I.getArgOperand(3));
4399   EVT VT = Src0.getValueType();
4400   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4401                         ->getMaybeAlignValue()
4402                         .getValueOr(DAG.getEVTAlign(VT));
4403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4404 
4405   AAMDNodes AAInfo;
4406   I.getAAMetadata(AAInfo);
4407 
4408   SDValue Base;
4409   SDValue Index;
4410   ISD::MemIndexType IndexType;
4411   SDValue Scale;
4412   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4413                                     I.getParent());
4414 
4415   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4416   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4417       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4418       // TODO: Make MachineMemOperands aware of scalable
4419       // vectors.
4420       MemoryLocation::UnknownSize, Alignment, AAInfo);
4421   if (!UniformBase) {
4422     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4423     Index = getValue(Ptr);
4424     IndexType = ISD::SIGNED_UNSCALED;
4425     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4426   }
4427 
4428   EVT IdxVT = Index.getValueType();
4429   EVT EltTy = IdxVT.getVectorElementType();
4430   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4431     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4432     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4433   }
4434 
4435   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4436   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4437                                          Ops, MMO, IndexType, false);
4438   DAG.setRoot(Scatter);
4439   setValue(&I, Scatter);
4440 }
4441 
4442 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4443   SDLoc sdl = getCurSDLoc();
4444 
4445   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4446                               MaybeAlign &Alignment) {
4447     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4448     Ptr = I.getArgOperand(0);
4449     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4450     Mask = I.getArgOperand(2);
4451     Src0 = I.getArgOperand(3);
4452   };
4453   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4454                                  MaybeAlign &Alignment) {
4455     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4456     Ptr = I.getArgOperand(0);
4457     Alignment = None;
4458     Mask = I.getArgOperand(1);
4459     Src0 = I.getArgOperand(2);
4460   };
4461 
4462   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4463   MaybeAlign Alignment;
4464   if (IsExpanding)
4465     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4466   else
4467     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4468 
4469   SDValue Ptr = getValue(PtrOperand);
4470   SDValue Src0 = getValue(Src0Operand);
4471   SDValue Mask = getValue(MaskOperand);
4472   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4473 
4474   EVT VT = Src0.getValueType();
4475   if (!Alignment)
4476     Alignment = DAG.getEVTAlign(VT);
4477 
4478   AAMDNodes AAInfo;
4479   I.getAAMetadata(AAInfo);
4480   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4481 
4482   // Do not serialize masked loads of constant memory with anything.
4483   MemoryLocation ML;
4484   if (VT.isScalableVector())
4485     ML = MemoryLocation::getAfter(PtrOperand);
4486   else
4487     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4488                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4489                            AAInfo);
4490   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4491 
4492   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4493 
4494   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4495       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4496       // TODO: Make MachineMemOperands aware of scalable
4497       // vectors.
4498       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4499 
4500   SDValue Load =
4501       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4502                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4503   if (AddToChain)
4504     PendingLoads.push_back(Load.getValue(1));
4505   setValue(&I, Load);
4506 }
4507 
4508 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4509   SDLoc sdl = getCurSDLoc();
4510 
4511   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4512   const Value *Ptr = I.getArgOperand(0);
4513   SDValue Src0 = getValue(I.getArgOperand(3));
4514   SDValue Mask = getValue(I.getArgOperand(2));
4515 
4516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4517   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4518   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4519                         ->getMaybeAlignValue()
4520                         .getValueOr(DAG.getEVTAlign(VT));
4521 
4522   AAMDNodes AAInfo;
4523   I.getAAMetadata(AAInfo);
4524   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4525 
4526   SDValue Root = DAG.getRoot();
4527   SDValue Base;
4528   SDValue Index;
4529   ISD::MemIndexType IndexType;
4530   SDValue Scale;
4531   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4532                                     I.getParent());
4533   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4534   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4535       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4536       // TODO: Make MachineMemOperands aware of scalable
4537       // vectors.
4538       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4539 
4540   if (!UniformBase) {
4541     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4542     Index = getValue(Ptr);
4543     IndexType = ISD::SIGNED_UNSCALED;
4544     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4545   }
4546 
4547   EVT IdxVT = Index.getValueType();
4548   EVT EltTy = IdxVT.getVectorElementType();
4549   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4550     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4551     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4552   }
4553 
4554   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4555   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4556                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4557 
4558   PendingLoads.push_back(Gather.getValue(1));
4559   setValue(&I, Gather);
4560 }
4561 
4562 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4563   SDLoc dl = getCurSDLoc();
4564   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4565   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4566   SyncScope::ID SSID = I.getSyncScopeID();
4567 
4568   SDValue InChain = getRoot();
4569 
4570   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4571   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4572 
4573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4574   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4575 
4576   MachineFunction &MF = DAG.getMachineFunction();
4577   MachineMemOperand *MMO = MF.getMachineMemOperand(
4578       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4579       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4580       FailureOrdering);
4581 
4582   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4583                                    dl, MemVT, VTs, InChain,
4584                                    getValue(I.getPointerOperand()),
4585                                    getValue(I.getCompareOperand()),
4586                                    getValue(I.getNewValOperand()), MMO);
4587 
4588   SDValue OutChain = L.getValue(2);
4589 
4590   setValue(&I, L);
4591   DAG.setRoot(OutChain);
4592 }
4593 
4594 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4595   SDLoc dl = getCurSDLoc();
4596   ISD::NodeType NT;
4597   switch (I.getOperation()) {
4598   default: llvm_unreachable("Unknown atomicrmw operation");
4599   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4600   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4601   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4602   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4603   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4604   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4605   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4606   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4607   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4608   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4609   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4610   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4611   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4612   }
4613   AtomicOrdering Ordering = I.getOrdering();
4614   SyncScope::ID SSID = I.getSyncScopeID();
4615 
4616   SDValue InChain = getRoot();
4617 
4618   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4619   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4620   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4621 
4622   MachineFunction &MF = DAG.getMachineFunction();
4623   MachineMemOperand *MMO = MF.getMachineMemOperand(
4624       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4625       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4626 
4627   SDValue L =
4628     DAG.getAtomic(NT, dl, MemVT, InChain,
4629                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4630                   MMO);
4631 
4632   SDValue OutChain = L.getValue(1);
4633 
4634   setValue(&I, L);
4635   DAG.setRoot(OutChain);
4636 }
4637 
4638 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4639   SDLoc dl = getCurSDLoc();
4640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4641   SDValue Ops[3];
4642   Ops[0] = getRoot();
4643   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4644                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4645   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4646                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4647   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4648 }
4649 
4650 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4651   SDLoc dl = getCurSDLoc();
4652   AtomicOrdering Order = I.getOrdering();
4653   SyncScope::ID SSID = I.getSyncScopeID();
4654 
4655   SDValue InChain = getRoot();
4656 
4657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4658   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4659   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4660 
4661   if (!TLI.supportsUnalignedAtomics() &&
4662       I.getAlignment() < MemVT.getSizeInBits() / 8)
4663     report_fatal_error("Cannot generate unaligned atomic load");
4664 
4665   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4666 
4667   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4668       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4669       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4670 
4671   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4672 
4673   SDValue Ptr = getValue(I.getPointerOperand());
4674 
4675   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4676     // TODO: Once this is better exercised by tests, it should be merged with
4677     // the normal path for loads to prevent future divergence.
4678     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4679     if (MemVT != VT)
4680       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4681 
4682     setValue(&I, L);
4683     SDValue OutChain = L.getValue(1);
4684     if (!I.isUnordered())
4685       DAG.setRoot(OutChain);
4686     else
4687       PendingLoads.push_back(OutChain);
4688     return;
4689   }
4690 
4691   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4692                             Ptr, MMO);
4693 
4694   SDValue OutChain = L.getValue(1);
4695   if (MemVT != VT)
4696     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4697 
4698   setValue(&I, L);
4699   DAG.setRoot(OutChain);
4700 }
4701 
4702 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4703   SDLoc dl = getCurSDLoc();
4704 
4705   AtomicOrdering Ordering = I.getOrdering();
4706   SyncScope::ID SSID = I.getSyncScopeID();
4707 
4708   SDValue InChain = getRoot();
4709 
4710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4711   EVT MemVT =
4712       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4713 
4714   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4715     report_fatal_error("Cannot generate unaligned atomic store");
4716 
4717   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4718 
4719   MachineFunction &MF = DAG.getMachineFunction();
4720   MachineMemOperand *MMO = MF.getMachineMemOperand(
4721       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4722       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4723 
4724   SDValue Val = getValue(I.getValueOperand());
4725   if (Val.getValueType() != MemVT)
4726     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4727   SDValue Ptr = getValue(I.getPointerOperand());
4728 
4729   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4730     // TODO: Once this is better exercised by tests, it should be merged with
4731     // the normal path for stores to prevent future divergence.
4732     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4733     DAG.setRoot(S);
4734     return;
4735   }
4736   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4737                                    Ptr, Val, MMO);
4738 
4739 
4740   DAG.setRoot(OutChain);
4741 }
4742 
4743 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4744 /// node.
4745 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4746                                                unsigned Intrinsic) {
4747   // Ignore the callsite's attributes. A specific call site may be marked with
4748   // readnone, but the lowering code will expect the chain based on the
4749   // definition.
4750   const Function *F = I.getCalledFunction();
4751   bool HasChain = !F->doesNotAccessMemory();
4752   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4753 
4754   // Build the operand list.
4755   SmallVector<SDValue, 8> Ops;
4756   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4757     if (OnlyLoad) {
4758       // We don't need to serialize loads against other loads.
4759       Ops.push_back(DAG.getRoot());
4760     } else {
4761       Ops.push_back(getRoot());
4762     }
4763   }
4764 
4765   // Info is set by getTgtMemInstrinsic
4766   TargetLowering::IntrinsicInfo Info;
4767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4768   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4769                                                DAG.getMachineFunction(),
4770                                                Intrinsic);
4771 
4772   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4773   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4774       Info.opc == ISD::INTRINSIC_W_CHAIN)
4775     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4776                                         TLI.getPointerTy(DAG.getDataLayout())));
4777 
4778   // Add all operands of the call to the operand list.
4779   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4780     const Value *Arg = I.getArgOperand(i);
4781     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4782       Ops.push_back(getValue(Arg));
4783       continue;
4784     }
4785 
4786     // Use TargetConstant instead of a regular constant for immarg.
4787     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4788     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4789       assert(CI->getBitWidth() <= 64 &&
4790              "large intrinsic immediates not handled");
4791       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4792     } else {
4793       Ops.push_back(
4794           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4795     }
4796   }
4797 
4798   SmallVector<EVT, 4> ValueVTs;
4799   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4800 
4801   if (HasChain)
4802     ValueVTs.push_back(MVT::Other);
4803 
4804   SDVTList VTs = DAG.getVTList(ValueVTs);
4805 
4806   // Propagate fast-math-flags from IR to node(s).
4807   SDNodeFlags Flags;
4808   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4809     Flags.copyFMF(*FPMO);
4810   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4811 
4812   // Create the node.
4813   SDValue Result;
4814   if (IsTgtIntrinsic) {
4815     // This is target intrinsic that touches memory
4816     AAMDNodes AAInfo;
4817     I.getAAMetadata(AAInfo);
4818     Result =
4819         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4820                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4821                                 Info.align, Info.flags, Info.size, AAInfo);
4822   } else if (!HasChain) {
4823     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4824   } else if (!I.getType()->isVoidTy()) {
4825     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4826   } else {
4827     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4828   }
4829 
4830   if (HasChain) {
4831     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4832     if (OnlyLoad)
4833       PendingLoads.push_back(Chain);
4834     else
4835       DAG.setRoot(Chain);
4836   }
4837 
4838   if (!I.getType()->isVoidTy()) {
4839     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4840       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4841       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4842     } else
4843       Result = lowerRangeToAssertZExt(DAG, I, Result);
4844 
4845     MaybeAlign Alignment = I.getRetAlign();
4846     if (!Alignment)
4847       Alignment = F->getAttributes().getRetAlignment();
4848     // Insert `assertalign` node if there's an alignment.
4849     if (InsertAssertAlign && Alignment) {
4850       Result =
4851           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4852     }
4853 
4854     setValue(&I, Result);
4855   }
4856 }
4857 
4858 /// GetSignificand - Get the significand and build it into a floating-point
4859 /// number with exponent of 1:
4860 ///
4861 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4862 ///
4863 /// where Op is the hexadecimal representation of floating point value.
4864 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4865   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4866                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4867   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4868                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4869   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4870 }
4871 
4872 /// GetExponent - Get the exponent:
4873 ///
4874 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4875 ///
4876 /// where Op is the hexadecimal representation of floating point value.
4877 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4878                            const TargetLowering &TLI, const SDLoc &dl) {
4879   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4880                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4881   SDValue t1 = DAG.getNode(
4882       ISD::SRL, dl, MVT::i32, t0,
4883       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4884   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4885                            DAG.getConstant(127, dl, MVT::i32));
4886   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4887 }
4888 
4889 /// getF32Constant - Get 32-bit floating point constant.
4890 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4891                               const SDLoc &dl) {
4892   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4893                            MVT::f32);
4894 }
4895 
4896 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4897                                        SelectionDAG &DAG) {
4898   // TODO: What fast-math-flags should be set on the floating-point nodes?
4899 
4900   //   IntegerPartOfX = ((int32_t)(t0);
4901   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4902 
4903   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4904   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4905   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4906 
4907   //   IntegerPartOfX <<= 23;
4908   IntegerPartOfX = DAG.getNode(
4909       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4910       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4911                                   DAG.getDataLayout())));
4912 
4913   SDValue TwoToFractionalPartOfX;
4914   if (LimitFloatPrecision <= 6) {
4915     // For floating-point precision of 6:
4916     //
4917     //   TwoToFractionalPartOfX =
4918     //     0.997535578f +
4919     //       (0.735607626f + 0.252464424f * x) * x;
4920     //
4921     // error 0.0144103317, which is 6 bits
4922     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4923                              getF32Constant(DAG, 0x3e814304, dl));
4924     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4925                              getF32Constant(DAG, 0x3f3c50c8, dl));
4926     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4927     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4928                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4929   } else if (LimitFloatPrecision <= 12) {
4930     // For floating-point precision of 12:
4931     //
4932     //   TwoToFractionalPartOfX =
4933     //     0.999892986f +
4934     //       (0.696457318f +
4935     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4936     //
4937     // error 0.000107046256, which is 13 to 14 bits
4938     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4939                              getF32Constant(DAG, 0x3da235e3, dl));
4940     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4941                              getF32Constant(DAG, 0x3e65b8f3, dl));
4942     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4943     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4944                              getF32Constant(DAG, 0x3f324b07, dl));
4945     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4946     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4947                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4948   } else { // LimitFloatPrecision <= 18
4949     // For floating-point precision of 18:
4950     //
4951     //   TwoToFractionalPartOfX =
4952     //     0.999999982f +
4953     //       (0.693148872f +
4954     //         (0.240227044f +
4955     //           (0.554906021e-1f +
4956     //             (0.961591928e-2f +
4957     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4958     // error 2.47208000*10^(-7), which is better than 18 bits
4959     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4960                              getF32Constant(DAG, 0x3924b03e, dl));
4961     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4962                              getF32Constant(DAG, 0x3ab24b87, dl));
4963     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4964     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4965                              getF32Constant(DAG, 0x3c1d8c17, dl));
4966     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4967     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4968                              getF32Constant(DAG, 0x3d634a1d, dl));
4969     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4970     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4971                              getF32Constant(DAG, 0x3e75fe14, dl));
4972     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4973     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4974                               getF32Constant(DAG, 0x3f317234, dl));
4975     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4976     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4977                                          getF32Constant(DAG, 0x3f800000, dl));
4978   }
4979 
4980   // Add the exponent into the result in integer domain.
4981   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4982   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4983                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4984 }
4985 
4986 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4987 /// limited-precision mode.
4988 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4989                          const TargetLowering &TLI, SDNodeFlags Flags) {
4990   if (Op.getValueType() == MVT::f32 &&
4991       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4992 
4993     // Put the exponent in the right bit position for later addition to the
4994     // final result:
4995     //
4996     // t0 = Op * log2(e)
4997 
4998     // TODO: What fast-math-flags should be set here?
4999     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5000                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5001     return getLimitedPrecisionExp2(t0, dl, DAG);
5002   }
5003 
5004   // No special expansion.
5005   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5006 }
5007 
5008 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5009 /// limited-precision mode.
5010 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5011                          const TargetLowering &TLI, SDNodeFlags Flags) {
5012   // TODO: What fast-math-flags should be set on the floating-point nodes?
5013 
5014   if (Op.getValueType() == MVT::f32 &&
5015       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5016     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5017 
5018     // Scale the exponent by log(2).
5019     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5020     SDValue LogOfExponent =
5021         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5022                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5023 
5024     // Get the significand and build it into a floating-point number with
5025     // exponent of 1.
5026     SDValue X = GetSignificand(DAG, Op1, dl);
5027 
5028     SDValue LogOfMantissa;
5029     if (LimitFloatPrecision <= 6) {
5030       // For floating-point precision of 6:
5031       //
5032       //   LogofMantissa =
5033       //     -1.1609546f +
5034       //       (1.4034025f - 0.23903021f * x) * x;
5035       //
5036       // error 0.0034276066, which is better than 8 bits
5037       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5038                                getF32Constant(DAG, 0xbe74c456, dl));
5039       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5040                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5041       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5042       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5043                                   getF32Constant(DAG, 0x3f949a29, dl));
5044     } else if (LimitFloatPrecision <= 12) {
5045       // For floating-point precision of 12:
5046       //
5047       //   LogOfMantissa =
5048       //     -1.7417939f +
5049       //       (2.8212026f +
5050       //         (-1.4699568f +
5051       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5052       //
5053       // error 0.000061011436, which is 14 bits
5054       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5055                                getF32Constant(DAG, 0xbd67b6d6, dl));
5056       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5057                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5058       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5059       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5060                                getF32Constant(DAG, 0x3fbc278b, dl));
5061       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5062       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5063                                getF32Constant(DAG, 0x40348e95, dl));
5064       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5065       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5066                                   getF32Constant(DAG, 0x3fdef31a, dl));
5067     } else { // LimitFloatPrecision <= 18
5068       // For floating-point precision of 18:
5069       //
5070       //   LogOfMantissa =
5071       //     -2.1072184f +
5072       //       (4.2372794f +
5073       //         (-3.7029485f +
5074       //           (2.2781945f +
5075       //             (-0.87823314f +
5076       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5077       //
5078       // error 0.0000023660568, which is better than 18 bits
5079       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5080                                getF32Constant(DAG, 0xbc91e5ac, dl));
5081       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5082                                getF32Constant(DAG, 0x3e4350aa, dl));
5083       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5084       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5085                                getF32Constant(DAG, 0x3f60d3e3, dl));
5086       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5087       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5088                                getF32Constant(DAG, 0x4011cdf0, dl));
5089       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5090       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5091                                getF32Constant(DAG, 0x406cfd1c, dl));
5092       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5093       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5094                                getF32Constant(DAG, 0x408797cb, dl));
5095       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5096       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5097                                   getF32Constant(DAG, 0x4006dcab, dl));
5098     }
5099 
5100     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5101   }
5102 
5103   // No special expansion.
5104   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5105 }
5106 
5107 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5108 /// limited-precision mode.
5109 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5110                           const TargetLowering &TLI, SDNodeFlags Flags) {
5111   // TODO: What fast-math-flags should be set on the floating-point nodes?
5112 
5113   if (Op.getValueType() == MVT::f32 &&
5114       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5115     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5116 
5117     // Get the exponent.
5118     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5119 
5120     // Get the significand and build it into a floating-point number with
5121     // exponent of 1.
5122     SDValue X = GetSignificand(DAG, Op1, dl);
5123 
5124     // Different possible minimax approximations of significand in
5125     // floating-point for various degrees of accuracy over [1,2].
5126     SDValue Log2ofMantissa;
5127     if (LimitFloatPrecision <= 6) {
5128       // For floating-point precision of 6:
5129       //
5130       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5131       //
5132       // error 0.0049451742, which is more than 7 bits
5133       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5134                                getF32Constant(DAG, 0xbeb08fe0, dl));
5135       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5136                                getF32Constant(DAG, 0x40019463, dl));
5137       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5138       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5139                                    getF32Constant(DAG, 0x3fd6633d, dl));
5140     } else if (LimitFloatPrecision <= 12) {
5141       // For floating-point precision of 12:
5142       //
5143       //   Log2ofMantissa =
5144       //     -2.51285454f +
5145       //       (4.07009056f +
5146       //         (-2.12067489f +
5147       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5148       //
5149       // error 0.0000876136000, which is better than 13 bits
5150       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5151                                getF32Constant(DAG, 0xbda7262e, dl));
5152       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5153                                getF32Constant(DAG, 0x3f25280b, dl));
5154       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5155       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5156                                getF32Constant(DAG, 0x4007b923, dl));
5157       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5158       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5159                                getF32Constant(DAG, 0x40823e2f, dl));
5160       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5161       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5162                                    getF32Constant(DAG, 0x4020d29c, dl));
5163     } else { // LimitFloatPrecision <= 18
5164       // For floating-point precision of 18:
5165       //
5166       //   Log2ofMantissa =
5167       //     -3.0400495f +
5168       //       (6.1129976f +
5169       //         (-5.3420409f +
5170       //           (3.2865683f +
5171       //             (-1.2669343f +
5172       //               (0.27515199f -
5173       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5174       //
5175       // error 0.0000018516, which is better than 18 bits
5176       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5177                                getF32Constant(DAG, 0xbcd2769e, dl));
5178       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5179                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5180       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5181       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5182                                getF32Constant(DAG, 0x3fa22ae7, dl));
5183       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5184       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5185                                getF32Constant(DAG, 0x40525723, dl));
5186       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5187       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5188                                getF32Constant(DAG, 0x40aaf200, dl));
5189       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5190       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5191                                getF32Constant(DAG, 0x40c39dad, dl));
5192       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5193       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5194                                    getF32Constant(DAG, 0x4042902c, dl));
5195     }
5196 
5197     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5198   }
5199 
5200   // No special expansion.
5201   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5202 }
5203 
5204 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5205 /// limited-precision mode.
5206 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5207                            const TargetLowering &TLI, SDNodeFlags Flags) {
5208   // TODO: What fast-math-flags should be set on the floating-point nodes?
5209 
5210   if (Op.getValueType() == MVT::f32 &&
5211       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5212     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5213 
5214     // Scale the exponent by log10(2) [0.30102999f].
5215     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5216     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5217                                         getF32Constant(DAG, 0x3e9a209a, dl));
5218 
5219     // Get the significand and build it into a floating-point number with
5220     // exponent of 1.
5221     SDValue X = GetSignificand(DAG, Op1, dl);
5222 
5223     SDValue Log10ofMantissa;
5224     if (LimitFloatPrecision <= 6) {
5225       // For floating-point precision of 6:
5226       //
5227       //   Log10ofMantissa =
5228       //     -0.50419619f +
5229       //       (0.60948995f - 0.10380950f * x) * x;
5230       //
5231       // error 0.0014886165, which is 6 bits
5232       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5233                                getF32Constant(DAG, 0xbdd49a13, dl));
5234       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5235                                getF32Constant(DAG, 0x3f1c0789, dl));
5236       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5237       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5238                                     getF32Constant(DAG, 0x3f011300, dl));
5239     } else if (LimitFloatPrecision <= 12) {
5240       // For floating-point precision of 12:
5241       //
5242       //   Log10ofMantissa =
5243       //     -0.64831180f +
5244       //       (0.91751397f +
5245       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5246       //
5247       // error 0.00019228036, which is better than 12 bits
5248       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5249                                getF32Constant(DAG, 0x3d431f31, dl));
5250       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5251                                getF32Constant(DAG, 0x3ea21fb2, dl));
5252       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5253       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5254                                getF32Constant(DAG, 0x3f6ae232, dl));
5255       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5256       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5257                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5258     } else { // LimitFloatPrecision <= 18
5259       // For floating-point precision of 18:
5260       //
5261       //   Log10ofMantissa =
5262       //     -0.84299375f +
5263       //       (1.5327582f +
5264       //         (-1.0688956f +
5265       //           (0.49102474f +
5266       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5267       //
5268       // error 0.0000037995730, which is better than 18 bits
5269       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5270                                getF32Constant(DAG, 0x3c5d51ce, dl));
5271       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5272                                getF32Constant(DAG, 0x3e00685a, dl));
5273       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5274       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5275                                getF32Constant(DAG, 0x3efb6798, dl));
5276       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5277       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5278                                getF32Constant(DAG, 0x3f88d192, dl));
5279       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5280       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5281                                getF32Constant(DAG, 0x3fc4316c, dl));
5282       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5283       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5284                                     getF32Constant(DAG, 0x3f57ce70, dl));
5285     }
5286 
5287     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5288   }
5289 
5290   // No special expansion.
5291   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5292 }
5293 
5294 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5295 /// limited-precision mode.
5296 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5297                           const TargetLowering &TLI, SDNodeFlags Flags) {
5298   if (Op.getValueType() == MVT::f32 &&
5299       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5300     return getLimitedPrecisionExp2(Op, dl, DAG);
5301 
5302   // No special expansion.
5303   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5304 }
5305 
5306 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5307 /// limited-precision mode with x == 10.0f.
5308 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5309                          SelectionDAG &DAG, const TargetLowering &TLI,
5310                          SDNodeFlags Flags) {
5311   bool IsExp10 = false;
5312   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5313       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5314     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5315       APFloat Ten(10.0f);
5316       IsExp10 = LHSC->isExactlyValue(Ten);
5317     }
5318   }
5319 
5320   // TODO: What fast-math-flags should be set on the FMUL node?
5321   if (IsExp10) {
5322     // Put the exponent in the right bit position for later addition to the
5323     // final result:
5324     //
5325     //   #define LOG2OF10 3.3219281f
5326     //   t0 = Op * LOG2OF10;
5327     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5328                              getF32Constant(DAG, 0x40549a78, dl));
5329     return getLimitedPrecisionExp2(t0, dl, DAG);
5330   }
5331 
5332   // No special expansion.
5333   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5334 }
5335 
5336 /// ExpandPowI - Expand a llvm.powi intrinsic.
5337 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5338                           SelectionDAG &DAG) {
5339   // If RHS is a constant, we can expand this out to a multiplication tree,
5340   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5341   // optimizing for size, we only want to do this if the expansion would produce
5342   // a small number of multiplies, otherwise we do the full expansion.
5343   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5344     // Get the exponent as a positive value.
5345     unsigned Val = RHSC->getSExtValue();
5346     if ((int)Val < 0) Val = -Val;
5347 
5348     // powi(x, 0) -> 1.0
5349     if (Val == 0)
5350       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5351 
5352     bool OptForSize = DAG.shouldOptForSize();
5353     if (!OptForSize ||
5354         // If optimizing for size, don't insert too many multiplies.
5355         // This inserts up to 5 multiplies.
5356         countPopulation(Val) + Log2_32(Val) < 7) {
5357       // We use the simple binary decomposition method to generate the multiply
5358       // sequence.  There are more optimal ways to do this (for example,
5359       // powi(x,15) generates one more multiply than it should), but this has
5360       // the benefit of being both really simple and much better than a libcall.
5361       SDValue Res;  // Logically starts equal to 1.0
5362       SDValue CurSquare = LHS;
5363       // TODO: Intrinsics should have fast-math-flags that propagate to these
5364       // nodes.
5365       while (Val) {
5366         if (Val & 1) {
5367           if (Res.getNode())
5368             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5369           else
5370             Res = CurSquare;  // 1.0*CurSquare.
5371         }
5372 
5373         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5374                                 CurSquare, CurSquare);
5375         Val >>= 1;
5376       }
5377 
5378       // If the original was negative, invert the result, producing 1/(x*x*x).
5379       if (RHSC->getSExtValue() < 0)
5380         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5381                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5382       return Res;
5383     }
5384   }
5385 
5386   // Otherwise, expand to a libcall.
5387   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5388 }
5389 
5390 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5391                             SDValue LHS, SDValue RHS, SDValue Scale,
5392                             SelectionDAG &DAG, const TargetLowering &TLI) {
5393   EVT VT = LHS.getValueType();
5394   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5395   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5396   LLVMContext &Ctx = *DAG.getContext();
5397 
5398   // If the type is legal but the operation isn't, this node might survive all
5399   // the way to operation legalization. If we end up there and we do not have
5400   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5401   // node.
5402 
5403   // Coax the legalizer into expanding the node during type legalization instead
5404   // by bumping the size by one bit. This will force it to Promote, enabling the
5405   // early expansion and avoiding the need to expand later.
5406 
5407   // We don't have to do this if Scale is 0; that can always be expanded, unless
5408   // it's a saturating signed operation. Those can experience true integer
5409   // division overflow, a case which we must avoid.
5410 
5411   // FIXME: We wouldn't have to do this (or any of the early
5412   // expansion/promotion) if it was possible to expand a libcall of an
5413   // illegal type during operation legalization. But it's not, so things
5414   // get a bit hacky.
5415   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5416   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5417       (TLI.isTypeLegal(VT) ||
5418        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5419     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5420         Opcode, VT, ScaleInt);
5421     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5422       EVT PromVT;
5423       if (VT.isScalarInteger())
5424         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5425       else if (VT.isVector()) {
5426         PromVT = VT.getVectorElementType();
5427         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5428         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5429       } else
5430         llvm_unreachable("Wrong VT for DIVFIX?");
5431       if (Signed) {
5432         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5433         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5434       } else {
5435         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5436         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5437       }
5438       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5439       // For saturating operations, we need to shift up the LHS to get the
5440       // proper saturation width, and then shift down again afterwards.
5441       if (Saturating)
5442         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5443                           DAG.getConstant(1, DL, ShiftTy));
5444       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5445       if (Saturating)
5446         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5447                           DAG.getConstant(1, DL, ShiftTy));
5448       return DAG.getZExtOrTrunc(Res, DL, VT);
5449     }
5450   }
5451 
5452   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5453 }
5454 
5455 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5456 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5457 static void
5458 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5459                      const SDValue &N) {
5460   switch (N.getOpcode()) {
5461   case ISD::CopyFromReg: {
5462     SDValue Op = N.getOperand(1);
5463     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5464                       Op.getValueType().getSizeInBits());
5465     return;
5466   }
5467   case ISD::BITCAST:
5468   case ISD::AssertZext:
5469   case ISD::AssertSext:
5470   case ISD::TRUNCATE:
5471     getUnderlyingArgRegs(Regs, N.getOperand(0));
5472     return;
5473   case ISD::BUILD_PAIR:
5474   case ISD::BUILD_VECTOR:
5475   case ISD::CONCAT_VECTORS:
5476     for (SDValue Op : N->op_values())
5477       getUnderlyingArgRegs(Regs, Op);
5478     return;
5479   default:
5480     return;
5481   }
5482 }
5483 
5484 /// If the DbgValueInst is a dbg_value of a function argument, create the
5485 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5486 /// instruction selection, they will be inserted to the entry BB.
5487 /// We don't currently support this for variadic dbg_values, as they shouldn't
5488 /// appear for function arguments or in the prologue.
5489 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5490     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5491     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5492   const Argument *Arg = dyn_cast<Argument>(V);
5493   if (!Arg)
5494     return false;
5495 
5496   if (!IsDbgDeclare) {
5497     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5498     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5499     // the entry block.
5500     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5501     if (!IsInEntryBlock)
5502       return false;
5503 
5504     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5505     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5506     // variable that also is a param.
5507     //
5508     // Although, if we are at the top of the entry block already, we can still
5509     // emit using ArgDbgValue. This might catch some situations when the
5510     // dbg.value refers to an argument that isn't used in the entry block, so
5511     // any CopyToReg node would be optimized out and the only way to express
5512     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5513     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5514     // we should only emit as ArgDbgValue if the Variable is an argument to the
5515     // current function, and the dbg.value intrinsic is found in the entry
5516     // block.
5517     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5518         !DL->getInlinedAt();
5519     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5520     if (!IsInPrologue && !VariableIsFunctionInputArg)
5521       return false;
5522 
5523     // Here we assume that a function argument on IR level only can be used to
5524     // describe one input parameter on source level. If we for example have
5525     // source code like this
5526     //
5527     //    struct A { long x, y; };
5528     //    void foo(struct A a, long b) {
5529     //      ...
5530     //      b = a.x;
5531     //      ...
5532     //    }
5533     //
5534     // and IR like this
5535     //
5536     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5537     //  entry:
5538     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5539     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5540     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5541     //    ...
5542     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5543     //    ...
5544     //
5545     // then the last dbg.value is describing a parameter "b" using a value that
5546     // is an argument. But since we already has used %a1 to describe a parameter
5547     // we should not handle that last dbg.value here (that would result in an
5548     // incorrect hoisting of the DBG_VALUE to the function entry).
5549     // Notice that we allow one dbg.value per IR level argument, to accommodate
5550     // for the situation with fragments above.
5551     if (VariableIsFunctionInputArg) {
5552       unsigned ArgNo = Arg->getArgNo();
5553       if (ArgNo >= FuncInfo.DescribedArgs.size())
5554         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5555       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5556         return false;
5557       FuncInfo.DescribedArgs.set(ArgNo);
5558     }
5559   }
5560 
5561   MachineFunction &MF = DAG.getMachineFunction();
5562   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5563 
5564   bool IsIndirect = false;
5565   Optional<MachineOperand> Op;
5566   // Some arguments' frame index is recorded during argument lowering.
5567   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5568   if (FI != std::numeric_limits<int>::max())
5569     Op = MachineOperand::CreateFI(FI);
5570 
5571   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5572   if (!Op && N.getNode()) {
5573     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5574     Register Reg;
5575     if (ArgRegsAndSizes.size() == 1)
5576       Reg = ArgRegsAndSizes.front().first;
5577 
5578     if (Reg && Reg.isVirtual()) {
5579       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5580       Register PR = RegInfo.getLiveInPhysReg(Reg);
5581       if (PR)
5582         Reg = PR;
5583     }
5584     if (Reg) {
5585       Op = MachineOperand::CreateReg(Reg, false);
5586       IsIndirect = IsDbgDeclare;
5587     }
5588   }
5589 
5590   if (!Op && N.getNode()) {
5591     // Check if frame index is available.
5592     SDValue LCandidate = peekThroughBitcasts(N);
5593     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5594       if (FrameIndexSDNode *FINode =
5595           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5596         Op = MachineOperand::CreateFI(FINode->getIndex());
5597   }
5598 
5599   if (!Op) {
5600     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5601     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5602                                          SplitRegs) {
5603       unsigned Offset = 0;
5604       for (auto RegAndSize : SplitRegs) {
5605         // If the expression is already a fragment, the current register
5606         // offset+size might extend beyond the fragment. In this case, only
5607         // the register bits that are inside the fragment are relevant.
5608         int RegFragmentSizeInBits = RegAndSize.second;
5609         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5610           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5611           // The register is entirely outside the expression fragment,
5612           // so is irrelevant for debug info.
5613           if (Offset >= ExprFragmentSizeInBits)
5614             break;
5615           // The register is partially outside the expression fragment, only
5616           // the low bits within the fragment are relevant for debug info.
5617           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5618             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5619           }
5620         }
5621 
5622         auto FragmentExpr = DIExpression::createFragmentExpression(
5623             Expr, Offset, RegFragmentSizeInBits);
5624         Offset += RegAndSize.second;
5625         // If a valid fragment expression cannot be created, the variable's
5626         // correct value cannot be determined and so it is set as Undef.
5627         if (!FragmentExpr) {
5628           SDDbgValue *SDV = DAG.getConstantDbgValue(
5629               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5630           DAG.AddDbgValue(SDV, false);
5631           continue;
5632         }
5633         FuncInfo.ArgDbgValues.push_back(
5634           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5635                   RegAndSize.first, Variable, *FragmentExpr));
5636       }
5637     };
5638 
5639     // Check if ValueMap has reg number.
5640     DenseMap<const Value *, Register>::const_iterator
5641       VMI = FuncInfo.ValueMap.find(V);
5642     if (VMI != FuncInfo.ValueMap.end()) {
5643       const auto &TLI = DAG.getTargetLoweringInfo();
5644       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5645                        V->getType(), None);
5646       if (RFV.occupiesMultipleRegs()) {
5647         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5648         return true;
5649       }
5650 
5651       Op = MachineOperand::CreateReg(VMI->second, false);
5652       IsIndirect = IsDbgDeclare;
5653     } else if (ArgRegsAndSizes.size() > 1) {
5654       // This was split due to the calling convention, and no virtual register
5655       // mapping exists for the value.
5656       splitMultiRegDbgValue(ArgRegsAndSizes);
5657       return true;
5658     }
5659   }
5660 
5661   if (!Op)
5662     return false;
5663 
5664   assert(Variable->isValidLocationForIntrinsic(DL) &&
5665          "Expected inlined-at fields to agree");
5666   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5667   FuncInfo.ArgDbgValues.push_back(
5668       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5669               *Op, Variable, Expr));
5670 
5671   return true;
5672 }
5673 
5674 /// Return the appropriate SDDbgValue based on N.
5675 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5676                                              DILocalVariable *Variable,
5677                                              DIExpression *Expr,
5678                                              const DebugLoc &dl,
5679                                              unsigned DbgSDNodeOrder) {
5680   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5681     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5682     // stack slot locations.
5683     //
5684     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5685     // debug values here after optimization:
5686     //
5687     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5688     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5689     //
5690     // Both describe the direct values of their associated variables.
5691     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5692                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5693   }
5694   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5695                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5696 }
5697 
5698 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5699   switch (Intrinsic) {
5700   case Intrinsic::smul_fix:
5701     return ISD::SMULFIX;
5702   case Intrinsic::umul_fix:
5703     return ISD::UMULFIX;
5704   case Intrinsic::smul_fix_sat:
5705     return ISD::SMULFIXSAT;
5706   case Intrinsic::umul_fix_sat:
5707     return ISD::UMULFIXSAT;
5708   case Intrinsic::sdiv_fix:
5709     return ISD::SDIVFIX;
5710   case Intrinsic::udiv_fix:
5711     return ISD::UDIVFIX;
5712   case Intrinsic::sdiv_fix_sat:
5713     return ISD::SDIVFIXSAT;
5714   case Intrinsic::udiv_fix_sat:
5715     return ISD::UDIVFIXSAT;
5716   default:
5717     llvm_unreachable("Unhandled fixed point intrinsic");
5718   }
5719 }
5720 
5721 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5722                                            const char *FunctionName) {
5723   assert(FunctionName && "FunctionName must not be nullptr");
5724   SDValue Callee = DAG.getExternalSymbol(
5725       FunctionName,
5726       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5727   LowerCallTo(I, Callee, I.isTailCall());
5728 }
5729 
5730 /// Given a @llvm.call.preallocated.setup, return the corresponding
5731 /// preallocated call.
5732 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5733   assert(cast<CallBase>(PreallocatedSetup)
5734                  ->getCalledFunction()
5735                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5736          "expected call_preallocated_setup Value");
5737   for (auto *U : PreallocatedSetup->users()) {
5738     auto *UseCall = cast<CallBase>(U);
5739     const Function *Fn = UseCall->getCalledFunction();
5740     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5741       return UseCall;
5742     }
5743   }
5744   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5745 }
5746 
5747 /// Lower the call to the specified intrinsic function.
5748 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5749                                              unsigned Intrinsic) {
5750   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5751   SDLoc sdl = getCurSDLoc();
5752   DebugLoc dl = getCurDebugLoc();
5753   SDValue Res;
5754 
5755   SDNodeFlags Flags;
5756   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5757     Flags.copyFMF(*FPOp);
5758 
5759   switch (Intrinsic) {
5760   default:
5761     // By default, turn this into a target intrinsic node.
5762     visitTargetIntrinsic(I, Intrinsic);
5763     return;
5764   case Intrinsic::vscale: {
5765     match(&I, m_VScale(DAG.getDataLayout()));
5766     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5767     setValue(&I,
5768              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5769     return;
5770   }
5771   case Intrinsic::vastart:  visitVAStart(I); return;
5772   case Intrinsic::vaend:    visitVAEnd(I); return;
5773   case Intrinsic::vacopy:   visitVACopy(I); return;
5774   case Intrinsic::returnaddress:
5775     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5776                              TLI.getPointerTy(DAG.getDataLayout()),
5777                              getValue(I.getArgOperand(0))));
5778     return;
5779   case Intrinsic::addressofreturnaddress:
5780     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5781                              TLI.getPointerTy(DAG.getDataLayout())));
5782     return;
5783   case Intrinsic::sponentry:
5784     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5785                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5786     return;
5787   case Intrinsic::frameaddress:
5788     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5789                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5790                              getValue(I.getArgOperand(0))));
5791     return;
5792   case Intrinsic::read_volatile_register:
5793   case Intrinsic::read_register: {
5794     Value *Reg = I.getArgOperand(0);
5795     SDValue Chain = getRoot();
5796     SDValue RegName =
5797         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5798     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5799     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5800       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5801     setValue(&I, Res);
5802     DAG.setRoot(Res.getValue(1));
5803     return;
5804   }
5805   case Intrinsic::write_register: {
5806     Value *Reg = I.getArgOperand(0);
5807     Value *RegValue = I.getArgOperand(1);
5808     SDValue Chain = getRoot();
5809     SDValue RegName =
5810         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5811     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5812                             RegName, getValue(RegValue)));
5813     return;
5814   }
5815   case Intrinsic::memcpy: {
5816     const auto &MCI = cast<MemCpyInst>(I);
5817     SDValue Op1 = getValue(I.getArgOperand(0));
5818     SDValue Op2 = getValue(I.getArgOperand(1));
5819     SDValue Op3 = getValue(I.getArgOperand(2));
5820     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5821     Align DstAlign = MCI.getDestAlign().valueOrOne();
5822     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5823     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5824     bool isVol = MCI.isVolatile();
5825     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5826     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5827     // node.
5828     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5829     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5830                                /* AlwaysInline */ false, isTC,
5831                                MachinePointerInfo(I.getArgOperand(0)),
5832                                MachinePointerInfo(I.getArgOperand(1)));
5833     updateDAGForMaybeTailCall(MC);
5834     return;
5835   }
5836   case Intrinsic::memcpy_inline: {
5837     const auto &MCI = cast<MemCpyInlineInst>(I);
5838     SDValue Dst = getValue(I.getArgOperand(0));
5839     SDValue Src = getValue(I.getArgOperand(1));
5840     SDValue Size = getValue(I.getArgOperand(2));
5841     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5842     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5843     Align DstAlign = MCI.getDestAlign().valueOrOne();
5844     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5845     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5846     bool isVol = MCI.isVolatile();
5847     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5848     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5849     // node.
5850     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5851                                /* AlwaysInline */ true, isTC,
5852                                MachinePointerInfo(I.getArgOperand(0)),
5853                                MachinePointerInfo(I.getArgOperand(1)));
5854     updateDAGForMaybeTailCall(MC);
5855     return;
5856   }
5857   case Intrinsic::memset: {
5858     const auto &MSI = cast<MemSetInst>(I);
5859     SDValue Op1 = getValue(I.getArgOperand(0));
5860     SDValue Op2 = getValue(I.getArgOperand(1));
5861     SDValue Op3 = getValue(I.getArgOperand(2));
5862     // @llvm.memset defines 0 and 1 to both mean no alignment.
5863     Align Alignment = MSI.getDestAlign().valueOrOne();
5864     bool isVol = MSI.isVolatile();
5865     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5866     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5867     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5868                                MachinePointerInfo(I.getArgOperand(0)));
5869     updateDAGForMaybeTailCall(MS);
5870     return;
5871   }
5872   case Intrinsic::memmove: {
5873     const auto &MMI = cast<MemMoveInst>(I);
5874     SDValue Op1 = getValue(I.getArgOperand(0));
5875     SDValue Op2 = getValue(I.getArgOperand(1));
5876     SDValue Op3 = getValue(I.getArgOperand(2));
5877     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5878     Align DstAlign = MMI.getDestAlign().valueOrOne();
5879     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5880     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5881     bool isVol = MMI.isVolatile();
5882     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5883     // FIXME: Support passing different dest/src alignments to the memmove DAG
5884     // node.
5885     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5886     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5887                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5888                                 MachinePointerInfo(I.getArgOperand(1)));
5889     updateDAGForMaybeTailCall(MM);
5890     return;
5891   }
5892   case Intrinsic::memcpy_element_unordered_atomic: {
5893     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5894     SDValue Dst = getValue(MI.getRawDest());
5895     SDValue Src = getValue(MI.getRawSource());
5896     SDValue Length = getValue(MI.getLength());
5897 
5898     unsigned DstAlign = MI.getDestAlignment();
5899     unsigned SrcAlign = MI.getSourceAlignment();
5900     Type *LengthTy = MI.getLength()->getType();
5901     unsigned ElemSz = MI.getElementSizeInBytes();
5902     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5903     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5904                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5905                                      MachinePointerInfo(MI.getRawDest()),
5906                                      MachinePointerInfo(MI.getRawSource()));
5907     updateDAGForMaybeTailCall(MC);
5908     return;
5909   }
5910   case Intrinsic::memmove_element_unordered_atomic: {
5911     auto &MI = cast<AtomicMemMoveInst>(I);
5912     SDValue Dst = getValue(MI.getRawDest());
5913     SDValue Src = getValue(MI.getRawSource());
5914     SDValue Length = getValue(MI.getLength());
5915 
5916     unsigned DstAlign = MI.getDestAlignment();
5917     unsigned SrcAlign = MI.getSourceAlignment();
5918     Type *LengthTy = MI.getLength()->getType();
5919     unsigned ElemSz = MI.getElementSizeInBytes();
5920     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5921     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5922                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5923                                       MachinePointerInfo(MI.getRawDest()),
5924                                       MachinePointerInfo(MI.getRawSource()));
5925     updateDAGForMaybeTailCall(MC);
5926     return;
5927   }
5928   case Intrinsic::memset_element_unordered_atomic: {
5929     auto &MI = cast<AtomicMemSetInst>(I);
5930     SDValue Dst = getValue(MI.getRawDest());
5931     SDValue Val = getValue(MI.getValue());
5932     SDValue Length = getValue(MI.getLength());
5933 
5934     unsigned DstAlign = MI.getDestAlignment();
5935     Type *LengthTy = MI.getLength()->getType();
5936     unsigned ElemSz = MI.getElementSizeInBytes();
5937     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5938     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5939                                      LengthTy, ElemSz, isTC,
5940                                      MachinePointerInfo(MI.getRawDest()));
5941     updateDAGForMaybeTailCall(MC);
5942     return;
5943   }
5944   case Intrinsic::call_preallocated_setup: {
5945     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5946     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5947     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5948                               getRoot(), SrcValue);
5949     setValue(&I, Res);
5950     DAG.setRoot(Res);
5951     return;
5952   }
5953   case Intrinsic::call_preallocated_arg: {
5954     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5955     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5956     SDValue Ops[3];
5957     Ops[0] = getRoot();
5958     Ops[1] = SrcValue;
5959     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5960                                    MVT::i32); // arg index
5961     SDValue Res = DAG.getNode(
5962         ISD::PREALLOCATED_ARG, sdl,
5963         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5964     setValue(&I, Res);
5965     DAG.setRoot(Res.getValue(1));
5966     return;
5967   }
5968   case Intrinsic::dbg_addr:
5969   case Intrinsic::dbg_declare: {
5970     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
5971     // they are non-variadic.
5972     const auto &DI = cast<DbgVariableIntrinsic>(I);
5973     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
5974     DILocalVariable *Variable = DI.getVariable();
5975     DIExpression *Expression = DI.getExpression();
5976     dropDanglingDebugInfo(Variable, Expression);
5977     assert(Variable && "Missing variable");
5978     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5979                       << "\n");
5980     // Check if address has undef value.
5981     const Value *Address = DI.getVariableLocationOp(0);
5982     if (!Address || isa<UndefValue>(Address) ||
5983         (Address->use_empty() && !isa<Argument>(Address))) {
5984       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5985                         << " (bad/undef/unused-arg address)\n");
5986       return;
5987     }
5988 
5989     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5990 
5991     // Check if this variable can be described by a frame index, typically
5992     // either as a static alloca or a byval parameter.
5993     int FI = std::numeric_limits<int>::max();
5994     if (const auto *AI =
5995             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5996       if (AI->isStaticAlloca()) {
5997         auto I = FuncInfo.StaticAllocaMap.find(AI);
5998         if (I != FuncInfo.StaticAllocaMap.end())
5999           FI = I->second;
6000       }
6001     } else if (const auto *Arg = dyn_cast<Argument>(
6002                    Address->stripInBoundsConstantOffsets())) {
6003       FI = FuncInfo.getArgumentFrameIndex(Arg);
6004     }
6005 
6006     // llvm.dbg.addr is control dependent and always generates indirect
6007     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6008     // the MachineFunction variable table.
6009     if (FI != std::numeric_limits<int>::max()) {
6010       if (Intrinsic == Intrinsic::dbg_addr) {
6011         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6012             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6013             dl, SDNodeOrder);
6014         DAG.AddDbgValue(SDV, isParameter);
6015       } else {
6016         LLVM_DEBUG(dbgs() << "Skipping " << DI
6017                           << " (variable info stashed in MF side table)\n");
6018       }
6019       return;
6020     }
6021 
6022     SDValue &N = NodeMap[Address];
6023     if (!N.getNode() && isa<Argument>(Address))
6024       // Check unused arguments map.
6025       N = UnusedArgNodeMap[Address];
6026     SDDbgValue *SDV;
6027     if (N.getNode()) {
6028       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6029         Address = BCI->getOperand(0);
6030       // Parameters are handled specially.
6031       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6032       if (isParameter && FINode) {
6033         // Byval parameter. We have a frame index at this point.
6034         SDV =
6035             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6036                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6037       } else if (isa<Argument>(Address)) {
6038         // Address is an argument, so try to emit its dbg value using
6039         // virtual register info from the FuncInfo.ValueMap.
6040         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6041         return;
6042       } else {
6043         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6044                               true, dl, SDNodeOrder);
6045       }
6046       DAG.AddDbgValue(SDV, isParameter);
6047     } else {
6048       // If Address is an argument then try to emit its dbg value using
6049       // virtual register info from the FuncInfo.ValueMap.
6050       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6051                                     N)) {
6052         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6053                           << " (could not emit func-arg dbg_value)\n");
6054       }
6055     }
6056     return;
6057   }
6058   case Intrinsic::dbg_label: {
6059     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6060     DILabel *Label = DI.getLabel();
6061     assert(Label && "Missing label");
6062 
6063     SDDbgLabel *SDV;
6064     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6065     DAG.AddDbgLabel(SDV);
6066     return;
6067   }
6068   case Intrinsic::dbg_value: {
6069     const DbgValueInst &DI = cast<DbgValueInst>(I);
6070     assert(DI.getVariable() && "Missing variable");
6071 
6072     DILocalVariable *Variable = DI.getVariable();
6073     DIExpression *Expression = DI.getExpression();
6074     dropDanglingDebugInfo(Variable, Expression);
6075     SmallVector<Value *, 4> Values(DI.getValues());
6076     if (Values.empty())
6077       return;
6078 
6079     if (std::count(Values.begin(), Values.end(), nullptr))
6080       return;
6081 
6082     bool IsVariadic = DI.hasArgList();
6083     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6084                           SDNodeOrder, IsVariadic))
6085       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6086     return;
6087   }
6088 
6089   case Intrinsic::eh_typeid_for: {
6090     // Find the type id for the given typeinfo.
6091     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6092     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6093     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6094     setValue(&I, Res);
6095     return;
6096   }
6097 
6098   case Intrinsic::eh_return_i32:
6099   case Intrinsic::eh_return_i64:
6100     DAG.getMachineFunction().setCallsEHReturn(true);
6101     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6102                             MVT::Other,
6103                             getControlRoot(),
6104                             getValue(I.getArgOperand(0)),
6105                             getValue(I.getArgOperand(1))));
6106     return;
6107   case Intrinsic::eh_unwind_init:
6108     DAG.getMachineFunction().setCallsUnwindInit(true);
6109     return;
6110   case Intrinsic::eh_dwarf_cfa:
6111     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6112                              TLI.getPointerTy(DAG.getDataLayout()),
6113                              getValue(I.getArgOperand(0))));
6114     return;
6115   case Intrinsic::eh_sjlj_callsite: {
6116     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6117     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6118     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6119     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6120 
6121     MMI.setCurrentCallSite(CI->getZExtValue());
6122     return;
6123   }
6124   case Intrinsic::eh_sjlj_functioncontext: {
6125     // Get and store the index of the function context.
6126     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6127     AllocaInst *FnCtx =
6128       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6129     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6130     MFI.setFunctionContextIndex(FI);
6131     return;
6132   }
6133   case Intrinsic::eh_sjlj_setjmp: {
6134     SDValue Ops[2];
6135     Ops[0] = getRoot();
6136     Ops[1] = getValue(I.getArgOperand(0));
6137     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6138                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6139     setValue(&I, Op.getValue(0));
6140     DAG.setRoot(Op.getValue(1));
6141     return;
6142   }
6143   case Intrinsic::eh_sjlj_longjmp:
6144     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6145                             getRoot(), getValue(I.getArgOperand(0))));
6146     return;
6147   case Intrinsic::eh_sjlj_setup_dispatch:
6148     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6149                             getRoot()));
6150     return;
6151   case Intrinsic::masked_gather:
6152     visitMaskedGather(I);
6153     return;
6154   case Intrinsic::masked_load:
6155     visitMaskedLoad(I);
6156     return;
6157   case Intrinsic::masked_scatter:
6158     visitMaskedScatter(I);
6159     return;
6160   case Intrinsic::masked_store:
6161     visitMaskedStore(I);
6162     return;
6163   case Intrinsic::masked_expandload:
6164     visitMaskedLoad(I, true /* IsExpanding */);
6165     return;
6166   case Intrinsic::masked_compressstore:
6167     visitMaskedStore(I, true /* IsCompressing */);
6168     return;
6169   case Intrinsic::powi:
6170     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6171                             getValue(I.getArgOperand(1)), DAG));
6172     return;
6173   case Intrinsic::log:
6174     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6175     return;
6176   case Intrinsic::log2:
6177     setValue(&I,
6178              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6179     return;
6180   case Intrinsic::log10:
6181     setValue(&I,
6182              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6183     return;
6184   case Intrinsic::exp:
6185     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6186     return;
6187   case Intrinsic::exp2:
6188     setValue(&I,
6189              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6190     return;
6191   case Intrinsic::pow:
6192     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6193                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6194     return;
6195   case Intrinsic::sqrt:
6196   case Intrinsic::fabs:
6197   case Intrinsic::sin:
6198   case Intrinsic::cos:
6199   case Intrinsic::floor:
6200   case Intrinsic::ceil:
6201   case Intrinsic::trunc:
6202   case Intrinsic::rint:
6203   case Intrinsic::nearbyint:
6204   case Intrinsic::round:
6205   case Intrinsic::roundeven:
6206   case Intrinsic::canonicalize: {
6207     unsigned Opcode;
6208     switch (Intrinsic) {
6209     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6210     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6211     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6212     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6213     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6214     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6215     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6216     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6217     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6218     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6219     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6220     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6221     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6222     }
6223 
6224     setValue(&I, DAG.getNode(Opcode, sdl,
6225                              getValue(I.getArgOperand(0)).getValueType(),
6226                              getValue(I.getArgOperand(0)), Flags));
6227     return;
6228   }
6229   case Intrinsic::lround:
6230   case Intrinsic::llround:
6231   case Intrinsic::lrint:
6232   case Intrinsic::llrint: {
6233     unsigned Opcode;
6234     switch (Intrinsic) {
6235     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6236     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6237     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6238     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6239     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6240     }
6241 
6242     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6243     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6244                              getValue(I.getArgOperand(0))));
6245     return;
6246   }
6247   case Intrinsic::minnum:
6248     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6249                              getValue(I.getArgOperand(0)).getValueType(),
6250                              getValue(I.getArgOperand(0)),
6251                              getValue(I.getArgOperand(1)), Flags));
6252     return;
6253   case Intrinsic::maxnum:
6254     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6255                              getValue(I.getArgOperand(0)).getValueType(),
6256                              getValue(I.getArgOperand(0)),
6257                              getValue(I.getArgOperand(1)), Flags));
6258     return;
6259   case Intrinsic::minimum:
6260     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6261                              getValue(I.getArgOperand(0)).getValueType(),
6262                              getValue(I.getArgOperand(0)),
6263                              getValue(I.getArgOperand(1)), Flags));
6264     return;
6265   case Intrinsic::maximum:
6266     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6267                              getValue(I.getArgOperand(0)).getValueType(),
6268                              getValue(I.getArgOperand(0)),
6269                              getValue(I.getArgOperand(1)), Flags));
6270     return;
6271   case Intrinsic::copysign:
6272     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6273                              getValue(I.getArgOperand(0)).getValueType(),
6274                              getValue(I.getArgOperand(0)),
6275                              getValue(I.getArgOperand(1)), Flags));
6276     return;
6277   case Intrinsic::fma:
6278     setValue(&I, DAG.getNode(
6279                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6280                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6281                      getValue(I.getArgOperand(2)), Flags));
6282     return;
6283 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6284   case Intrinsic::INTRINSIC:
6285 #include "llvm/IR/ConstrainedOps.def"
6286     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6287     return;
6288 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6289 #include "llvm/IR/VPIntrinsics.def"
6290     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6291     return;
6292   case Intrinsic::fmuladd: {
6293     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6294     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6295         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6296       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6297                                getValue(I.getArgOperand(0)).getValueType(),
6298                                getValue(I.getArgOperand(0)),
6299                                getValue(I.getArgOperand(1)),
6300                                getValue(I.getArgOperand(2)), Flags));
6301     } else {
6302       // TODO: Intrinsic calls should have fast-math-flags.
6303       SDValue Mul = DAG.getNode(
6304           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6305           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6306       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6307                                 getValue(I.getArgOperand(0)).getValueType(),
6308                                 Mul, getValue(I.getArgOperand(2)), Flags);
6309       setValue(&I, Add);
6310     }
6311     return;
6312   }
6313   case Intrinsic::convert_to_fp16:
6314     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6315                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6316                                          getValue(I.getArgOperand(0)),
6317                                          DAG.getTargetConstant(0, sdl,
6318                                                                MVT::i32))));
6319     return;
6320   case Intrinsic::convert_from_fp16:
6321     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6322                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6323                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6324                                          getValue(I.getArgOperand(0)))));
6325     return;
6326   case Intrinsic::fptosi_sat: {
6327     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6328     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6329                              getValue(I.getArgOperand(0)),
6330                              DAG.getValueType(VT.getScalarType())));
6331     return;
6332   }
6333   case Intrinsic::fptoui_sat: {
6334     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6335     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6336                              getValue(I.getArgOperand(0)),
6337                              DAG.getValueType(VT.getScalarType())));
6338     return;
6339   }
6340   case Intrinsic::set_rounding:
6341     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6342                       {getRoot(), getValue(I.getArgOperand(0))});
6343     setValue(&I, Res);
6344     DAG.setRoot(Res.getValue(0));
6345     return;
6346   case Intrinsic::pcmarker: {
6347     SDValue Tmp = getValue(I.getArgOperand(0));
6348     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6349     return;
6350   }
6351   case Intrinsic::readcyclecounter: {
6352     SDValue Op = getRoot();
6353     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6354                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6355     setValue(&I, Res);
6356     DAG.setRoot(Res.getValue(1));
6357     return;
6358   }
6359   case Intrinsic::bitreverse:
6360     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6361                              getValue(I.getArgOperand(0)).getValueType(),
6362                              getValue(I.getArgOperand(0))));
6363     return;
6364   case Intrinsic::bswap:
6365     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6366                              getValue(I.getArgOperand(0)).getValueType(),
6367                              getValue(I.getArgOperand(0))));
6368     return;
6369   case Intrinsic::cttz: {
6370     SDValue Arg = getValue(I.getArgOperand(0));
6371     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6372     EVT Ty = Arg.getValueType();
6373     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6374                              sdl, Ty, Arg));
6375     return;
6376   }
6377   case Intrinsic::ctlz: {
6378     SDValue Arg = getValue(I.getArgOperand(0));
6379     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6380     EVT Ty = Arg.getValueType();
6381     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6382                              sdl, Ty, Arg));
6383     return;
6384   }
6385   case Intrinsic::ctpop: {
6386     SDValue Arg = getValue(I.getArgOperand(0));
6387     EVT Ty = Arg.getValueType();
6388     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6389     return;
6390   }
6391   case Intrinsic::fshl:
6392   case Intrinsic::fshr: {
6393     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6394     SDValue X = getValue(I.getArgOperand(0));
6395     SDValue Y = getValue(I.getArgOperand(1));
6396     SDValue Z = getValue(I.getArgOperand(2));
6397     EVT VT = X.getValueType();
6398 
6399     if (X == Y) {
6400       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6401       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6402     } else {
6403       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6404       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6405     }
6406     return;
6407   }
6408   case Intrinsic::sadd_sat: {
6409     SDValue Op1 = getValue(I.getArgOperand(0));
6410     SDValue Op2 = getValue(I.getArgOperand(1));
6411     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6412     return;
6413   }
6414   case Intrinsic::uadd_sat: {
6415     SDValue Op1 = getValue(I.getArgOperand(0));
6416     SDValue Op2 = getValue(I.getArgOperand(1));
6417     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6418     return;
6419   }
6420   case Intrinsic::ssub_sat: {
6421     SDValue Op1 = getValue(I.getArgOperand(0));
6422     SDValue Op2 = getValue(I.getArgOperand(1));
6423     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6424     return;
6425   }
6426   case Intrinsic::usub_sat: {
6427     SDValue Op1 = getValue(I.getArgOperand(0));
6428     SDValue Op2 = getValue(I.getArgOperand(1));
6429     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6430     return;
6431   }
6432   case Intrinsic::sshl_sat: {
6433     SDValue Op1 = getValue(I.getArgOperand(0));
6434     SDValue Op2 = getValue(I.getArgOperand(1));
6435     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6436     return;
6437   }
6438   case Intrinsic::ushl_sat: {
6439     SDValue Op1 = getValue(I.getArgOperand(0));
6440     SDValue Op2 = getValue(I.getArgOperand(1));
6441     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6442     return;
6443   }
6444   case Intrinsic::smul_fix:
6445   case Intrinsic::umul_fix:
6446   case Intrinsic::smul_fix_sat:
6447   case Intrinsic::umul_fix_sat: {
6448     SDValue Op1 = getValue(I.getArgOperand(0));
6449     SDValue Op2 = getValue(I.getArgOperand(1));
6450     SDValue Op3 = getValue(I.getArgOperand(2));
6451     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6452                              Op1.getValueType(), Op1, Op2, Op3));
6453     return;
6454   }
6455   case Intrinsic::sdiv_fix:
6456   case Intrinsic::udiv_fix:
6457   case Intrinsic::sdiv_fix_sat:
6458   case Intrinsic::udiv_fix_sat: {
6459     SDValue Op1 = getValue(I.getArgOperand(0));
6460     SDValue Op2 = getValue(I.getArgOperand(1));
6461     SDValue Op3 = getValue(I.getArgOperand(2));
6462     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6463                               Op1, Op2, Op3, DAG, TLI));
6464     return;
6465   }
6466   case Intrinsic::smax: {
6467     SDValue Op1 = getValue(I.getArgOperand(0));
6468     SDValue Op2 = getValue(I.getArgOperand(1));
6469     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6470     return;
6471   }
6472   case Intrinsic::smin: {
6473     SDValue Op1 = getValue(I.getArgOperand(0));
6474     SDValue Op2 = getValue(I.getArgOperand(1));
6475     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6476     return;
6477   }
6478   case Intrinsic::umax: {
6479     SDValue Op1 = getValue(I.getArgOperand(0));
6480     SDValue Op2 = getValue(I.getArgOperand(1));
6481     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6482     return;
6483   }
6484   case Intrinsic::umin: {
6485     SDValue Op1 = getValue(I.getArgOperand(0));
6486     SDValue Op2 = getValue(I.getArgOperand(1));
6487     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6488     return;
6489   }
6490   case Intrinsic::abs: {
6491     // TODO: Preserve "int min is poison" arg in SDAG?
6492     SDValue Op1 = getValue(I.getArgOperand(0));
6493     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6494     return;
6495   }
6496   case Intrinsic::stacksave: {
6497     SDValue Op = getRoot();
6498     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6499     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6500     setValue(&I, Res);
6501     DAG.setRoot(Res.getValue(1));
6502     return;
6503   }
6504   case Intrinsic::stackrestore:
6505     Res = getValue(I.getArgOperand(0));
6506     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6507     return;
6508   case Intrinsic::get_dynamic_area_offset: {
6509     SDValue Op = getRoot();
6510     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6511     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6512     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6513     // target.
6514     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6515       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6516                          " intrinsic!");
6517     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6518                       Op);
6519     DAG.setRoot(Op);
6520     setValue(&I, Res);
6521     return;
6522   }
6523   case Intrinsic::stackguard: {
6524     MachineFunction &MF = DAG.getMachineFunction();
6525     const Module &M = *MF.getFunction().getParent();
6526     SDValue Chain = getRoot();
6527     if (TLI.useLoadStackGuardNode()) {
6528       Res = getLoadStackGuard(DAG, sdl, Chain);
6529     } else {
6530       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6531       const Value *Global = TLI.getSDagStackGuard(M);
6532       Align Align = DL->getPrefTypeAlign(Global->getType());
6533       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6534                         MachinePointerInfo(Global, 0), Align,
6535                         MachineMemOperand::MOVolatile);
6536     }
6537     if (TLI.useStackGuardXorFP())
6538       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6539     DAG.setRoot(Chain);
6540     setValue(&I, Res);
6541     return;
6542   }
6543   case Intrinsic::stackprotector: {
6544     // Emit code into the DAG to store the stack guard onto the stack.
6545     MachineFunction &MF = DAG.getMachineFunction();
6546     MachineFrameInfo &MFI = MF.getFrameInfo();
6547     SDValue Src, Chain = getRoot();
6548 
6549     if (TLI.useLoadStackGuardNode())
6550       Src = getLoadStackGuard(DAG, sdl, Chain);
6551     else
6552       Src = getValue(I.getArgOperand(0));   // The guard's value.
6553 
6554     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6555 
6556     int FI = FuncInfo.StaticAllocaMap[Slot];
6557     MFI.setStackProtectorIndex(FI);
6558     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6559 
6560     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6561 
6562     // Store the stack protector onto the stack.
6563     Res = DAG.getStore(
6564         Chain, sdl, Src, FIN,
6565         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6566         MaybeAlign(), MachineMemOperand::MOVolatile);
6567     setValue(&I, Res);
6568     DAG.setRoot(Res);
6569     return;
6570   }
6571   case Intrinsic::objectsize:
6572     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6573 
6574   case Intrinsic::is_constant:
6575     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6576 
6577   case Intrinsic::annotation:
6578   case Intrinsic::ptr_annotation:
6579   case Intrinsic::launder_invariant_group:
6580   case Intrinsic::strip_invariant_group:
6581     // Drop the intrinsic, but forward the value
6582     setValue(&I, getValue(I.getOperand(0)));
6583     return;
6584 
6585   case Intrinsic::assume:
6586   case Intrinsic::experimental_noalias_scope_decl:
6587   case Intrinsic::var_annotation:
6588   case Intrinsic::sideeffect:
6589     // Discard annotate attributes, noalias scope declarations, assumptions, and
6590     // artificial side-effects.
6591     return;
6592 
6593   case Intrinsic::codeview_annotation: {
6594     // Emit a label associated with this metadata.
6595     MachineFunction &MF = DAG.getMachineFunction();
6596     MCSymbol *Label =
6597         MF.getMMI().getContext().createTempSymbol("annotation", true);
6598     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6599     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6600     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6601     DAG.setRoot(Res);
6602     return;
6603   }
6604 
6605   case Intrinsic::init_trampoline: {
6606     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6607 
6608     SDValue Ops[6];
6609     Ops[0] = getRoot();
6610     Ops[1] = getValue(I.getArgOperand(0));
6611     Ops[2] = getValue(I.getArgOperand(1));
6612     Ops[3] = getValue(I.getArgOperand(2));
6613     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6614     Ops[5] = DAG.getSrcValue(F);
6615 
6616     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6617 
6618     DAG.setRoot(Res);
6619     return;
6620   }
6621   case Intrinsic::adjust_trampoline:
6622     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6623                              TLI.getPointerTy(DAG.getDataLayout()),
6624                              getValue(I.getArgOperand(0))));
6625     return;
6626   case Intrinsic::gcroot: {
6627     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6628            "only valid in functions with gc specified, enforced by Verifier");
6629     assert(GFI && "implied by previous");
6630     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6631     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6632 
6633     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6634     GFI->addStackRoot(FI->getIndex(), TypeMap);
6635     return;
6636   }
6637   case Intrinsic::gcread:
6638   case Intrinsic::gcwrite:
6639     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6640   case Intrinsic::flt_rounds:
6641     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6642     setValue(&I, Res);
6643     DAG.setRoot(Res.getValue(1));
6644     return;
6645 
6646   case Intrinsic::expect:
6647     // Just replace __builtin_expect(exp, c) with EXP.
6648     setValue(&I, getValue(I.getArgOperand(0)));
6649     return;
6650 
6651   case Intrinsic::ubsantrap:
6652   case Intrinsic::debugtrap:
6653   case Intrinsic::trap: {
6654     StringRef TrapFuncName =
6655         I.getAttributes()
6656             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6657             .getValueAsString();
6658     if (TrapFuncName.empty()) {
6659       switch (Intrinsic) {
6660       case Intrinsic::trap:
6661         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6662         break;
6663       case Intrinsic::debugtrap:
6664         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6665         break;
6666       case Intrinsic::ubsantrap:
6667         DAG.setRoot(DAG.getNode(
6668             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6669             DAG.getTargetConstant(
6670                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6671                 MVT::i32)));
6672         break;
6673       default: llvm_unreachable("unknown trap intrinsic");
6674       }
6675       return;
6676     }
6677     TargetLowering::ArgListTy Args;
6678     if (Intrinsic == Intrinsic::ubsantrap) {
6679       Args.push_back(TargetLoweringBase::ArgListEntry());
6680       Args[0].Val = I.getArgOperand(0);
6681       Args[0].Node = getValue(Args[0].Val);
6682       Args[0].Ty = Args[0].Val->getType();
6683     }
6684 
6685     TargetLowering::CallLoweringInfo CLI(DAG);
6686     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6687         CallingConv::C, I.getType(),
6688         DAG.getExternalSymbol(TrapFuncName.data(),
6689                               TLI.getPointerTy(DAG.getDataLayout())),
6690         std::move(Args));
6691 
6692     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6693     DAG.setRoot(Result.second);
6694     return;
6695   }
6696 
6697   case Intrinsic::uadd_with_overflow:
6698   case Intrinsic::sadd_with_overflow:
6699   case Intrinsic::usub_with_overflow:
6700   case Intrinsic::ssub_with_overflow:
6701   case Intrinsic::umul_with_overflow:
6702   case Intrinsic::smul_with_overflow: {
6703     ISD::NodeType Op;
6704     switch (Intrinsic) {
6705     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6706     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6707     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6708     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6709     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6710     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6711     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6712     }
6713     SDValue Op1 = getValue(I.getArgOperand(0));
6714     SDValue Op2 = getValue(I.getArgOperand(1));
6715 
6716     EVT ResultVT = Op1.getValueType();
6717     EVT OverflowVT = MVT::i1;
6718     if (ResultVT.isVector())
6719       OverflowVT = EVT::getVectorVT(
6720           *Context, OverflowVT, ResultVT.getVectorElementCount());
6721 
6722     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6723     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6724     return;
6725   }
6726   case Intrinsic::prefetch: {
6727     SDValue Ops[5];
6728     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6729     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6730     Ops[0] = DAG.getRoot();
6731     Ops[1] = getValue(I.getArgOperand(0));
6732     Ops[2] = getValue(I.getArgOperand(1));
6733     Ops[3] = getValue(I.getArgOperand(2));
6734     Ops[4] = getValue(I.getArgOperand(3));
6735     SDValue Result = DAG.getMemIntrinsicNode(
6736         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6737         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6738         /* align */ None, Flags);
6739 
6740     // Chain the prefetch in parallell with any pending loads, to stay out of
6741     // the way of later optimizations.
6742     PendingLoads.push_back(Result);
6743     Result = getRoot();
6744     DAG.setRoot(Result);
6745     return;
6746   }
6747   case Intrinsic::lifetime_start:
6748   case Intrinsic::lifetime_end: {
6749     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6750     // Stack coloring is not enabled in O0, discard region information.
6751     if (TM.getOptLevel() == CodeGenOpt::None)
6752       return;
6753 
6754     const int64_t ObjectSize =
6755         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6756     Value *const ObjectPtr = I.getArgOperand(1);
6757     SmallVector<const Value *, 4> Allocas;
6758     getUnderlyingObjects(ObjectPtr, Allocas);
6759 
6760     for (const Value *Alloca : Allocas) {
6761       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6762 
6763       // Could not find an Alloca.
6764       if (!LifetimeObject)
6765         continue;
6766 
6767       // First check that the Alloca is static, otherwise it won't have a
6768       // valid frame index.
6769       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6770       if (SI == FuncInfo.StaticAllocaMap.end())
6771         return;
6772 
6773       const int FrameIndex = SI->second;
6774       int64_t Offset;
6775       if (GetPointerBaseWithConstantOffset(
6776               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6777         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6778       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6779                                 Offset);
6780       DAG.setRoot(Res);
6781     }
6782     return;
6783   }
6784   case Intrinsic::pseudoprobe: {
6785     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6786     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6787     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6788     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6789     DAG.setRoot(Res);
6790     return;
6791   }
6792   case Intrinsic::invariant_start:
6793     // Discard region information.
6794     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6795     return;
6796   case Intrinsic::invariant_end:
6797     // Discard region information.
6798     return;
6799   case Intrinsic::clear_cache:
6800     /// FunctionName may be null.
6801     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6802       lowerCallToExternalSymbol(I, FunctionName);
6803     return;
6804   case Intrinsic::donothing:
6805   case Intrinsic::seh_try_begin:
6806   case Intrinsic::seh_scope_begin:
6807   case Intrinsic::seh_try_end:
6808   case Intrinsic::seh_scope_end:
6809     // ignore
6810     return;
6811   case Intrinsic::experimental_stackmap:
6812     visitStackmap(I);
6813     return;
6814   case Intrinsic::experimental_patchpoint_void:
6815   case Intrinsic::experimental_patchpoint_i64:
6816     visitPatchpoint(I);
6817     return;
6818   case Intrinsic::experimental_gc_statepoint:
6819     LowerStatepoint(cast<GCStatepointInst>(I));
6820     return;
6821   case Intrinsic::experimental_gc_result:
6822     visitGCResult(cast<GCResultInst>(I));
6823     return;
6824   case Intrinsic::experimental_gc_relocate:
6825     visitGCRelocate(cast<GCRelocateInst>(I));
6826     return;
6827   case Intrinsic::instrprof_increment:
6828     llvm_unreachable("instrprof failed to lower an increment");
6829   case Intrinsic::instrprof_value_profile:
6830     llvm_unreachable("instrprof failed to lower a value profiling call");
6831   case Intrinsic::localescape: {
6832     MachineFunction &MF = DAG.getMachineFunction();
6833     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6834 
6835     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6836     // is the same on all targets.
6837     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6838       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6839       if (isa<ConstantPointerNull>(Arg))
6840         continue; // Skip null pointers. They represent a hole in index space.
6841       AllocaInst *Slot = cast<AllocaInst>(Arg);
6842       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6843              "can only escape static allocas");
6844       int FI = FuncInfo.StaticAllocaMap[Slot];
6845       MCSymbol *FrameAllocSym =
6846           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6847               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6848       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6849               TII->get(TargetOpcode::LOCAL_ESCAPE))
6850           .addSym(FrameAllocSym)
6851           .addFrameIndex(FI);
6852     }
6853 
6854     return;
6855   }
6856 
6857   case Intrinsic::localrecover: {
6858     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6859     MachineFunction &MF = DAG.getMachineFunction();
6860 
6861     // Get the symbol that defines the frame offset.
6862     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6863     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6864     unsigned IdxVal =
6865         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6866     MCSymbol *FrameAllocSym =
6867         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6868             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6869 
6870     Value *FP = I.getArgOperand(1);
6871     SDValue FPVal = getValue(FP);
6872     EVT PtrVT = FPVal.getValueType();
6873 
6874     // Create a MCSymbol for the label to avoid any target lowering
6875     // that would make this PC relative.
6876     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6877     SDValue OffsetVal =
6878         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6879 
6880     // Add the offset to the FP.
6881     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6882     setValue(&I, Add);
6883 
6884     return;
6885   }
6886 
6887   case Intrinsic::eh_exceptionpointer:
6888   case Intrinsic::eh_exceptioncode: {
6889     // Get the exception pointer vreg, copy from it, and resize it to fit.
6890     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6891     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6892     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6893     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6894     SDValue N =
6895         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6896     if (Intrinsic == Intrinsic::eh_exceptioncode)
6897       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6898     setValue(&I, N);
6899     return;
6900   }
6901   case Intrinsic::xray_customevent: {
6902     // Here we want to make sure that the intrinsic behaves as if it has a
6903     // specific calling convention, and only for x86_64.
6904     // FIXME: Support other platforms later.
6905     const auto &Triple = DAG.getTarget().getTargetTriple();
6906     if (Triple.getArch() != Triple::x86_64)
6907       return;
6908 
6909     SDLoc DL = getCurSDLoc();
6910     SmallVector<SDValue, 8> Ops;
6911 
6912     // We want to say that we always want the arguments in registers.
6913     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6914     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6915     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6916     SDValue Chain = getRoot();
6917     Ops.push_back(LogEntryVal);
6918     Ops.push_back(StrSizeVal);
6919     Ops.push_back(Chain);
6920 
6921     // We need to enforce the calling convention for the callsite, so that
6922     // argument ordering is enforced correctly, and that register allocation can
6923     // see that some registers may be assumed clobbered and have to preserve
6924     // them across calls to the intrinsic.
6925     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6926                                            DL, NodeTys, Ops);
6927     SDValue patchableNode = SDValue(MN, 0);
6928     DAG.setRoot(patchableNode);
6929     setValue(&I, patchableNode);
6930     return;
6931   }
6932   case Intrinsic::xray_typedevent: {
6933     // Here we want to make sure that the intrinsic behaves as if it has a
6934     // specific calling convention, and only for x86_64.
6935     // FIXME: Support other platforms later.
6936     const auto &Triple = DAG.getTarget().getTargetTriple();
6937     if (Triple.getArch() != Triple::x86_64)
6938       return;
6939 
6940     SDLoc DL = getCurSDLoc();
6941     SmallVector<SDValue, 8> Ops;
6942 
6943     // We want to say that we always want the arguments in registers.
6944     // It's unclear to me how manipulating the selection DAG here forces callers
6945     // to provide arguments in registers instead of on the stack.
6946     SDValue LogTypeId = getValue(I.getArgOperand(0));
6947     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6948     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6949     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6950     SDValue Chain = getRoot();
6951     Ops.push_back(LogTypeId);
6952     Ops.push_back(LogEntryVal);
6953     Ops.push_back(StrSizeVal);
6954     Ops.push_back(Chain);
6955 
6956     // We need to enforce the calling convention for the callsite, so that
6957     // argument ordering is enforced correctly, and that register allocation can
6958     // see that some registers may be assumed clobbered and have to preserve
6959     // them across calls to the intrinsic.
6960     MachineSDNode *MN = DAG.getMachineNode(
6961         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6962     SDValue patchableNode = SDValue(MN, 0);
6963     DAG.setRoot(patchableNode);
6964     setValue(&I, patchableNode);
6965     return;
6966   }
6967   case Intrinsic::experimental_deoptimize:
6968     LowerDeoptimizeCall(&I);
6969     return;
6970   case Intrinsic::experimental_stepvector:
6971     visitStepVector(I);
6972     return;
6973   case Intrinsic::vector_reduce_fadd:
6974   case Intrinsic::vector_reduce_fmul:
6975   case Intrinsic::vector_reduce_add:
6976   case Intrinsic::vector_reduce_mul:
6977   case Intrinsic::vector_reduce_and:
6978   case Intrinsic::vector_reduce_or:
6979   case Intrinsic::vector_reduce_xor:
6980   case Intrinsic::vector_reduce_smax:
6981   case Intrinsic::vector_reduce_smin:
6982   case Intrinsic::vector_reduce_umax:
6983   case Intrinsic::vector_reduce_umin:
6984   case Intrinsic::vector_reduce_fmax:
6985   case Intrinsic::vector_reduce_fmin:
6986     visitVectorReduce(I, Intrinsic);
6987     return;
6988 
6989   case Intrinsic::icall_branch_funnel: {
6990     SmallVector<SDValue, 16> Ops;
6991     Ops.push_back(getValue(I.getArgOperand(0)));
6992 
6993     int64_t Offset;
6994     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6995         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6996     if (!Base)
6997       report_fatal_error(
6998           "llvm.icall.branch.funnel operand must be a GlobalValue");
6999     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
7000 
7001     struct BranchFunnelTarget {
7002       int64_t Offset;
7003       SDValue Target;
7004     };
7005     SmallVector<BranchFunnelTarget, 8> Targets;
7006 
7007     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
7008       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7009           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7010       if (ElemBase != Base)
7011         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7012                            "to the same GlobalValue");
7013 
7014       SDValue Val = getValue(I.getArgOperand(Op + 1));
7015       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7016       if (!GA)
7017         report_fatal_error(
7018             "llvm.icall.branch.funnel operand must be a GlobalValue");
7019       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7020                                      GA->getGlobal(), getCurSDLoc(),
7021                                      Val.getValueType(), GA->getOffset())});
7022     }
7023     llvm::sort(Targets,
7024                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7025                  return T1.Offset < T2.Offset;
7026                });
7027 
7028     for (auto &T : Targets) {
7029       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
7030       Ops.push_back(T.Target);
7031     }
7032 
7033     Ops.push_back(DAG.getRoot()); // Chain
7034     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7035                                  getCurSDLoc(), MVT::Other, Ops),
7036               0);
7037     DAG.setRoot(N);
7038     setValue(&I, N);
7039     HasTailCall = true;
7040     return;
7041   }
7042 
7043   case Intrinsic::wasm_landingpad_index:
7044     // Information this intrinsic contained has been transferred to
7045     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7046     // delete it now.
7047     return;
7048 
7049   case Intrinsic::aarch64_settag:
7050   case Intrinsic::aarch64_settag_zero: {
7051     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7052     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7053     SDValue Val = TSI.EmitTargetCodeForSetTag(
7054         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7055         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7056         ZeroMemory);
7057     DAG.setRoot(Val);
7058     setValue(&I, Val);
7059     return;
7060   }
7061   case Intrinsic::ptrmask: {
7062     SDValue Ptr = getValue(I.getOperand(0));
7063     SDValue Const = getValue(I.getOperand(1));
7064 
7065     EVT PtrVT = Ptr.getValueType();
7066     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7067                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7068     return;
7069   }
7070   case Intrinsic::get_active_lane_mask: {
7071     auto DL = getCurSDLoc();
7072     SDValue Index = getValue(I.getOperand(0));
7073     SDValue TripCount = getValue(I.getOperand(1));
7074     Type *ElementTy = I.getOperand(0)->getType();
7075     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7076     unsigned VecWidth = VT.getVectorNumElements();
7077 
7078     SmallVector<SDValue, 16> OpsTripCount;
7079     SmallVector<SDValue, 16> OpsIndex;
7080     SmallVector<SDValue, 16> OpsStepConstants;
7081     for (unsigned i = 0; i < VecWidth; i++) {
7082       OpsTripCount.push_back(TripCount);
7083       OpsIndex.push_back(Index);
7084       OpsStepConstants.push_back(
7085           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7086     }
7087 
7088     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7089 
7090     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7091     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7092     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7093     SDValue VectorInduction = DAG.getNode(
7094        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7095     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7096     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7097                                  VectorTripCount, ISD::CondCode::SETULT);
7098     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7099                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7100                              SetCC));
7101     return;
7102   }
7103   case Intrinsic::experimental_vector_insert: {
7104     auto DL = getCurSDLoc();
7105 
7106     SDValue Vec = getValue(I.getOperand(0));
7107     SDValue SubVec = getValue(I.getOperand(1));
7108     SDValue Index = getValue(I.getOperand(2));
7109 
7110     // The intrinsic's index type is i64, but the SDNode requires an index type
7111     // suitable for the target. Convert the index as required.
7112     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7113     if (Index.getValueType() != VectorIdxTy)
7114       Index = DAG.getVectorIdxConstant(
7115           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7116 
7117     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7118     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7119                              Index));
7120     return;
7121   }
7122   case Intrinsic::experimental_vector_extract: {
7123     auto DL = getCurSDLoc();
7124 
7125     SDValue Vec = getValue(I.getOperand(0));
7126     SDValue Index = getValue(I.getOperand(1));
7127     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7128 
7129     // The intrinsic's index type is i64, but the SDNode requires an index type
7130     // suitable for the target. Convert the index as required.
7131     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7132     if (Index.getValueType() != VectorIdxTy)
7133       Index = DAG.getVectorIdxConstant(
7134           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7135 
7136     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7137     return;
7138   }
7139   case Intrinsic::experimental_vector_reverse:
7140     visitVectorReverse(I);
7141     return;
7142   case Intrinsic::experimental_vector_splice:
7143     visitVectorSplice(I);
7144     return;
7145   }
7146 }
7147 
7148 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7149     const ConstrainedFPIntrinsic &FPI) {
7150   SDLoc sdl = getCurSDLoc();
7151 
7152   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7153   SmallVector<EVT, 4> ValueVTs;
7154   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7155   ValueVTs.push_back(MVT::Other); // Out chain
7156 
7157   // We do not need to serialize constrained FP intrinsics against
7158   // each other or against (nonvolatile) loads, so they can be
7159   // chained like loads.
7160   SDValue Chain = DAG.getRoot();
7161   SmallVector<SDValue, 4> Opers;
7162   Opers.push_back(Chain);
7163   if (FPI.isUnaryOp()) {
7164     Opers.push_back(getValue(FPI.getArgOperand(0)));
7165   } else if (FPI.isTernaryOp()) {
7166     Opers.push_back(getValue(FPI.getArgOperand(0)));
7167     Opers.push_back(getValue(FPI.getArgOperand(1)));
7168     Opers.push_back(getValue(FPI.getArgOperand(2)));
7169   } else {
7170     Opers.push_back(getValue(FPI.getArgOperand(0)));
7171     Opers.push_back(getValue(FPI.getArgOperand(1)));
7172   }
7173 
7174   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7175     assert(Result.getNode()->getNumValues() == 2);
7176 
7177     // Push node to the appropriate list so that future instructions can be
7178     // chained up correctly.
7179     SDValue OutChain = Result.getValue(1);
7180     switch (EB) {
7181     case fp::ExceptionBehavior::ebIgnore:
7182       // The only reason why ebIgnore nodes still need to be chained is that
7183       // they might depend on the current rounding mode, and therefore must
7184       // not be moved across instruction that may change that mode.
7185       LLVM_FALLTHROUGH;
7186     case fp::ExceptionBehavior::ebMayTrap:
7187       // These must not be moved across calls or instructions that may change
7188       // floating-point exception masks.
7189       PendingConstrainedFP.push_back(OutChain);
7190       break;
7191     case fp::ExceptionBehavior::ebStrict:
7192       // These must not be moved across calls or instructions that may change
7193       // floating-point exception masks or read floating-point exception flags.
7194       // In addition, they cannot be optimized out even if unused.
7195       PendingConstrainedFPStrict.push_back(OutChain);
7196       break;
7197     }
7198   };
7199 
7200   SDVTList VTs = DAG.getVTList(ValueVTs);
7201   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7202 
7203   SDNodeFlags Flags;
7204   if (EB == fp::ExceptionBehavior::ebIgnore)
7205     Flags.setNoFPExcept(true);
7206 
7207   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7208     Flags.copyFMF(*FPOp);
7209 
7210   unsigned Opcode;
7211   switch (FPI.getIntrinsicID()) {
7212   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7213 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7214   case Intrinsic::INTRINSIC:                                                   \
7215     Opcode = ISD::STRICT_##DAGN;                                               \
7216     break;
7217 #include "llvm/IR/ConstrainedOps.def"
7218   case Intrinsic::experimental_constrained_fmuladd: {
7219     Opcode = ISD::STRICT_FMA;
7220     // Break fmuladd into fmul and fadd.
7221     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7222         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7223                                         ValueVTs[0])) {
7224       Opers.pop_back();
7225       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7226       pushOutChain(Mul, EB);
7227       Opcode = ISD::STRICT_FADD;
7228       Opers.clear();
7229       Opers.push_back(Mul.getValue(1));
7230       Opers.push_back(Mul.getValue(0));
7231       Opers.push_back(getValue(FPI.getArgOperand(2)));
7232     }
7233     break;
7234   }
7235   }
7236 
7237   // A few strict DAG nodes carry additional operands that are not
7238   // set up by the default code above.
7239   switch (Opcode) {
7240   default: break;
7241   case ISD::STRICT_FP_ROUND:
7242     Opers.push_back(
7243         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7244     break;
7245   case ISD::STRICT_FSETCC:
7246   case ISD::STRICT_FSETCCS: {
7247     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7248     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7249     if (TM.Options.NoNaNsFPMath)
7250       Condition = getFCmpCodeWithoutNaN(Condition);
7251     Opers.push_back(DAG.getCondCode(Condition));
7252     break;
7253   }
7254   }
7255 
7256   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7257   pushOutChain(Result, EB);
7258 
7259   SDValue FPResult = Result.getValue(0);
7260   setValue(&FPI, FPResult);
7261 }
7262 
7263 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7264   Optional<unsigned> ResOPC;
7265   switch (VPIntrin.getIntrinsicID()) {
7266 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7267 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7268 #define END_REGISTER_VP_INTRINSIC(...) break;
7269 #include "llvm/IR/VPIntrinsics.def"
7270   }
7271 
7272   if (!ResOPC.hasValue())
7273     llvm_unreachable(
7274         "Inconsistency: no SDNode available for this VPIntrinsic!");
7275 
7276   return ResOPC.getValue();
7277 }
7278 
7279 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7280     const VPIntrinsic &VPIntrin) {
7281   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7282 
7283   SmallVector<EVT, 4> ValueVTs;
7284   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7285   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7286   SDVTList VTs = DAG.getVTList(ValueVTs);
7287 
7288   // Request operands.
7289   SmallVector<SDValue, 7> OpValues;
7290   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7291     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7292 
7293   SDLoc DL = getCurSDLoc();
7294   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7295   setValue(&VPIntrin, Result);
7296 }
7297 
7298 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7299                                           const BasicBlock *EHPadBB,
7300                                           MCSymbol *&BeginLabel) {
7301   MachineFunction &MF = DAG.getMachineFunction();
7302   MachineModuleInfo &MMI = MF.getMMI();
7303 
7304   // Insert a label before the invoke call to mark the try range.  This can be
7305   // used to detect deletion of the invoke via the MachineModuleInfo.
7306   BeginLabel = MMI.getContext().createTempSymbol();
7307 
7308   // For SjLj, keep track of which landing pads go with which invokes
7309   // so as to maintain the ordering of pads in the LSDA.
7310   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7311   if (CallSiteIndex) {
7312     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7313     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7314 
7315     // Now that the call site is handled, stop tracking it.
7316     MMI.setCurrentCallSite(0);
7317   }
7318 
7319   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7320 }
7321 
7322 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7323                                         const BasicBlock *EHPadBB,
7324                                         MCSymbol *BeginLabel) {
7325   assert(BeginLabel && "BeginLabel should've been set");
7326 
7327   MachineFunction &MF = DAG.getMachineFunction();
7328   MachineModuleInfo &MMI = MF.getMMI();
7329 
7330   // Insert a label at the end of the invoke call to mark the try range.  This
7331   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7332   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7333   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7334 
7335   // Inform MachineModuleInfo of range.
7336   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7337   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7338   // actually use outlined funclets and their LSDA info style.
7339   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7340     assert(II && "II should've been set");
7341     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7342     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7343   } else if (!isScopedEHPersonality(Pers)) {
7344     assert(EHPadBB);
7345     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7346   }
7347 
7348   return Chain;
7349 }
7350 
7351 std::pair<SDValue, SDValue>
7352 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7353                                     const BasicBlock *EHPadBB) {
7354   MCSymbol *BeginLabel = nullptr;
7355 
7356   if (EHPadBB) {
7357     // Both PendingLoads and PendingExports must be flushed here;
7358     // this call might not return.
7359     (void)getRoot();
7360     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7361     CLI.setChain(getRoot());
7362   }
7363 
7364   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7365   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7366 
7367   assert((CLI.IsTailCall || Result.second.getNode()) &&
7368          "Non-null chain expected with non-tail call!");
7369   assert((Result.second.getNode() || !Result.first.getNode()) &&
7370          "Null value expected with tail call!");
7371 
7372   if (!Result.second.getNode()) {
7373     // As a special case, a null chain means that a tail call has been emitted
7374     // and the DAG root is already updated.
7375     HasTailCall = true;
7376 
7377     // Since there's no actual continuation from this block, nothing can be
7378     // relying on us setting vregs for them.
7379     PendingExports.clear();
7380   } else {
7381     DAG.setRoot(Result.second);
7382   }
7383 
7384   if (EHPadBB) {
7385     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7386                            BeginLabel));
7387   }
7388 
7389   return Result;
7390 }
7391 
7392 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7393                                       bool isTailCall,
7394                                       const BasicBlock *EHPadBB) {
7395   auto &DL = DAG.getDataLayout();
7396   FunctionType *FTy = CB.getFunctionType();
7397   Type *RetTy = CB.getType();
7398 
7399   TargetLowering::ArgListTy Args;
7400   Args.reserve(CB.arg_size());
7401 
7402   const Value *SwiftErrorVal = nullptr;
7403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7404 
7405   if (isTailCall) {
7406     // Avoid emitting tail calls in functions with the disable-tail-calls
7407     // attribute.
7408     auto *Caller = CB.getParent()->getParent();
7409     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7410         "true")
7411       isTailCall = false;
7412 
7413     // We can't tail call inside a function with a swifterror argument. Lowering
7414     // does not support this yet. It would have to move into the swifterror
7415     // register before the call.
7416     if (TLI.supportSwiftError() &&
7417         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7418       isTailCall = false;
7419   }
7420 
7421   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7422     TargetLowering::ArgListEntry Entry;
7423     const Value *V = *I;
7424 
7425     // Skip empty types
7426     if (V->getType()->isEmptyTy())
7427       continue;
7428 
7429     SDValue ArgNode = getValue(V);
7430     Entry.Node = ArgNode; Entry.Ty = V->getType();
7431 
7432     Entry.setAttributes(&CB, I - CB.arg_begin());
7433 
7434     // Use swifterror virtual register as input to the call.
7435     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7436       SwiftErrorVal = V;
7437       // We find the virtual register for the actual swifterror argument.
7438       // Instead of using the Value, we use the virtual register instead.
7439       Entry.Node =
7440           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7441                           EVT(TLI.getPointerTy(DL)));
7442     }
7443 
7444     Args.push_back(Entry);
7445 
7446     // If we have an explicit sret argument that is an Instruction, (i.e., it
7447     // might point to function-local memory), we can't meaningfully tail-call.
7448     if (Entry.IsSRet && isa<Instruction>(V))
7449       isTailCall = false;
7450   }
7451 
7452   // If call site has a cfguardtarget operand bundle, create and add an
7453   // additional ArgListEntry.
7454   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7455     TargetLowering::ArgListEntry Entry;
7456     Value *V = Bundle->Inputs[0];
7457     SDValue ArgNode = getValue(V);
7458     Entry.Node = ArgNode;
7459     Entry.Ty = V->getType();
7460     Entry.IsCFGuardTarget = true;
7461     Args.push_back(Entry);
7462   }
7463 
7464   // Check if target-independent constraints permit a tail call here.
7465   // Target-dependent constraints are checked within TLI->LowerCallTo.
7466   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7467     isTailCall = false;
7468 
7469   // Disable tail calls if there is an swifterror argument. Targets have not
7470   // been updated to support tail calls.
7471   if (TLI.supportSwiftError() && SwiftErrorVal)
7472     isTailCall = false;
7473 
7474   TargetLowering::CallLoweringInfo CLI(DAG);
7475   CLI.setDebugLoc(getCurSDLoc())
7476       .setChain(getRoot())
7477       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7478       .setTailCall(isTailCall)
7479       .setConvergent(CB.isConvergent())
7480       .setIsPreallocated(
7481           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7482   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7483 
7484   if (Result.first.getNode()) {
7485     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7486     setValue(&CB, Result.first);
7487   }
7488 
7489   // The last element of CLI.InVals has the SDValue for swifterror return.
7490   // Here we copy it to a virtual register and update SwiftErrorMap for
7491   // book-keeping.
7492   if (SwiftErrorVal && TLI.supportSwiftError()) {
7493     // Get the last element of InVals.
7494     SDValue Src = CLI.InVals.back();
7495     Register VReg =
7496         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7497     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7498     DAG.setRoot(CopyNode);
7499   }
7500 }
7501 
7502 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7503                              SelectionDAGBuilder &Builder) {
7504   // Check to see if this load can be trivially constant folded, e.g. if the
7505   // input is from a string literal.
7506   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7507     // Cast pointer to the type we really want to load.
7508     Type *LoadTy =
7509         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7510     if (LoadVT.isVector())
7511       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7512 
7513     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7514                                          PointerType::getUnqual(LoadTy));
7515 
7516     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7517             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7518       return Builder.getValue(LoadCst);
7519   }
7520 
7521   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7522   // still constant memory, the input chain can be the entry node.
7523   SDValue Root;
7524   bool ConstantMemory = false;
7525 
7526   // Do not serialize (non-volatile) loads of constant memory with anything.
7527   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7528     Root = Builder.DAG.getEntryNode();
7529     ConstantMemory = true;
7530   } else {
7531     // Do not serialize non-volatile loads against each other.
7532     Root = Builder.DAG.getRoot();
7533   }
7534 
7535   SDValue Ptr = Builder.getValue(PtrVal);
7536   SDValue LoadVal =
7537       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7538                           MachinePointerInfo(PtrVal), Align(1));
7539 
7540   if (!ConstantMemory)
7541     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7542   return LoadVal;
7543 }
7544 
7545 /// Record the value for an instruction that produces an integer result,
7546 /// converting the type where necessary.
7547 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7548                                                   SDValue Value,
7549                                                   bool IsSigned) {
7550   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7551                                                     I.getType(), true);
7552   if (IsSigned)
7553     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7554   else
7555     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7556   setValue(&I, Value);
7557 }
7558 
7559 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7560 /// true and lower it. Otherwise return false, and it will be lowered like a
7561 /// normal call.
7562 /// The caller already checked that \p I calls the appropriate LibFunc with a
7563 /// correct prototype.
7564 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7565   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7566   const Value *Size = I.getArgOperand(2);
7567   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7568   if (CSize && CSize->getZExtValue() == 0) {
7569     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7570                                                           I.getType(), true);
7571     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7572     return true;
7573   }
7574 
7575   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7576   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7577       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7578       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7579   if (Res.first.getNode()) {
7580     processIntegerCallValue(I, Res.first, true);
7581     PendingLoads.push_back(Res.second);
7582     return true;
7583   }
7584 
7585   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7586   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7587   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7588     return false;
7589 
7590   // If the target has a fast compare for the given size, it will return a
7591   // preferred load type for that size. Require that the load VT is legal and
7592   // that the target supports unaligned loads of that type. Otherwise, return
7593   // INVALID.
7594   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7595     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7596     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7597     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7598       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7599       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7600       // TODO: Check alignment of src and dest ptrs.
7601       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7602       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7603       if (!TLI.isTypeLegal(LVT) ||
7604           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7605           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7606         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7607     }
7608 
7609     return LVT;
7610   };
7611 
7612   // This turns into unaligned loads. We only do this if the target natively
7613   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7614   // we'll only produce a small number of byte loads.
7615   MVT LoadVT;
7616   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7617   switch (NumBitsToCompare) {
7618   default:
7619     return false;
7620   case 16:
7621     LoadVT = MVT::i16;
7622     break;
7623   case 32:
7624     LoadVT = MVT::i32;
7625     break;
7626   case 64:
7627   case 128:
7628   case 256:
7629     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7630     break;
7631   }
7632 
7633   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7634     return false;
7635 
7636   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7637   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7638 
7639   // Bitcast to a wide integer type if the loads are vectors.
7640   if (LoadVT.isVector()) {
7641     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7642     LoadL = DAG.getBitcast(CmpVT, LoadL);
7643     LoadR = DAG.getBitcast(CmpVT, LoadR);
7644   }
7645 
7646   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7647   processIntegerCallValue(I, Cmp, false);
7648   return true;
7649 }
7650 
7651 /// See if we can lower a memchr call into an optimized form. If so, return
7652 /// true and lower it. Otherwise return false, and it will be lowered like a
7653 /// normal call.
7654 /// The caller already checked that \p I calls the appropriate LibFunc with a
7655 /// correct prototype.
7656 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7657   const Value *Src = I.getArgOperand(0);
7658   const Value *Char = I.getArgOperand(1);
7659   const Value *Length = I.getArgOperand(2);
7660 
7661   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7662   std::pair<SDValue, SDValue> Res =
7663     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7664                                 getValue(Src), getValue(Char), getValue(Length),
7665                                 MachinePointerInfo(Src));
7666   if (Res.first.getNode()) {
7667     setValue(&I, Res.first);
7668     PendingLoads.push_back(Res.second);
7669     return true;
7670   }
7671 
7672   return false;
7673 }
7674 
7675 /// See if we can lower a mempcpy call into an optimized form. If so, return
7676 /// true and lower it. Otherwise return false, and it will be lowered like a
7677 /// normal call.
7678 /// The caller already checked that \p I calls the appropriate LibFunc with a
7679 /// correct prototype.
7680 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7681   SDValue Dst = getValue(I.getArgOperand(0));
7682   SDValue Src = getValue(I.getArgOperand(1));
7683   SDValue Size = getValue(I.getArgOperand(2));
7684 
7685   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7686   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7687   // DAG::getMemcpy needs Alignment to be defined.
7688   Align Alignment = std::min(DstAlign, SrcAlign);
7689 
7690   bool isVol = false;
7691   SDLoc sdl = getCurSDLoc();
7692 
7693   // In the mempcpy context we need to pass in a false value for isTailCall
7694   // because the return pointer needs to be adjusted by the size of
7695   // the copied memory.
7696   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7697   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7698                              /*isTailCall=*/false,
7699                              MachinePointerInfo(I.getArgOperand(0)),
7700                              MachinePointerInfo(I.getArgOperand(1)));
7701   assert(MC.getNode() != nullptr &&
7702          "** memcpy should not be lowered as TailCall in mempcpy context **");
7703   DAG.setRoot(MC);
7704 
7705   // Check if Size needs to be truncated or extended.
7706   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7707 
7708   // Adjust return pointer to point just past the last dst byte.
7709   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7710                                     Dst, Size);
7711   setValue(&I, DstPlusSize);
7712   return true;
7713 }
7714 
7715 /// See if we can lower a strcpy call into an optimized form.  If so, return
7716 /// true and lower it, otherwise return false and it will be lowered like a
7717 /// normal call.
7718 /// The caller already checked that \p I calls the appropriate LibFunc with a
7719 /// correct prototype.
7720 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7721   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7722 
7723   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7724   std::pair<SDValue, SDValue> Res =
7725     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7726                                 getValue(Arg0), getValue(Arg1),
7727                                 MachinePointerInfo(Arg0),
7728                                 MachinePointerInfo(Arg1), isStpcpy);
7729   if (Res.first.getNode()) {
7730     setValue(&I, Res.first);
7731     DAG.setRoot(Res.second);
7732     return true;
7733   }
7734 
7735   return false;
7736 }
7737 
7738 /// See if we can lower a strcmp call into an optimized form.  If so, return
7739 /// true and lower it, otherwise return false and it will be lowered like a
7740 /// normal call.
7741 /// The caller already checked that \p I calls the appropriate LibFunc with a
7742 /// correct prototype.
7743 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7744   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7745 
7746   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7747   std::pair<SDValue, SDValue> Res =
7748     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7749                                 getValue(Arg0), getValue(Arg1),
7750                                 MachinePointerInfo(Arg0),
7751                                 MachinePointerInfo(Arg1));
7752   if (Res.first.getNode()) {
7753     processIntegerCallValue(I, Res.first, true);
7754     PendingLoads.push_back(Res.second);
7755     return true;
7756   }
7757 
7758   return false;
7759 }
7760 
7761 /// See if we can lower a strlen call into an optimized form.  If so, return
7762 /// true and lower it, otherwise return false and it will be lowered like a
7763 /// normal call.
7764 /// The caller already checked that \p I calls the appropriate LibFunc with a
7765 /// correct prototype.
7766 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7767   const Value *Arg0 = I.getArgOperand(0);
7768 
7769   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7770   std::pair<SDValue, SDValue> Res =
7771     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7772                                 getValue(Arg0), MachinePointerInfo(Arg0));
7773   if (Res.first.getNode()) {
7774     processIntegerCallValue(I, Res.first, false);
7775     PendingLoads.push_back(Res.second);
7776     return true;
7777   }
7778 
7779   return false;
7780 }
7781 
7782 /// See if we can lower a strnlen call into an optimized form.  If so, return
7783 /// true and lower it, otherwise return false and it will be lowered like a
7784 /// normal call.
7785 /// The caller already checked that \p I calls the appropriate LibFunc with a
7786 /// correct prototype.
7787 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7788   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7789 
7790   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7791   std::pair<SDValue, SDValue> Res =
7792     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7793                                  getValue(Arg0), getValue(Arg1),
7794                                  MachinePointerInfo(Arg0));
7795   if (Res.first.getNode()) {
7796     processIntegerCallValue(I, Res.first, false);
7797     PendingLoads.push_back(Res.second);
7798     return true;
7799   }
7800 
7801   return false;
7802 }
7803 
7804 /// See if we can lower a unary floating-point operation into an SDNode with
7805 /// the specified Opcode.  If so, return true and lower it, otherwise return
7806 /// false and it will be lowered like a normal call.
7807 /// The caller already checked that \p I calls the appropriate LibFunc with a
7808 /// correct prototype.
7809 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7810                                               unsigned Opcode) {
7811   // We already checked this call's prototype; verify it doesn't modify errno.
7812   if (!I.onlyReadsMemory())
7813     return false;
7814 
7815   SDNodeFlags Flags;
7816   Flags.copyFMF(cast<FPMathOperator>(I));
7817 
7818   SDValue Tmp = getValue(I.getArgOperand(0));
7819   setValue(&I,
7820            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7821   return true;
7822 }
7823 
7824 /// See if we can lower a binary floating-point operation into an SDNode with
7825 /// the specified Opcode. If so, return true and lower it. Otherwise return
7826 /// false, and it will be lowered like a normal call.
7827 /// The caller already checked that \p I calls the appropriate LibFunc with a
7828 /// correct prototype.
7829 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7830                                                unsigned Opcode) {
7831   // We already checked this call's prototype; verify it doesn't modify errno.
7832   if (!I.onlyReadsMemory())
7833     return false;
7834 
7835   SDNodeFlags Flags;
7836   Flags.copyFMF(cast<FPMathOperator>(I));
7837 
7838   SDValue Tmp0 = getValue(I.getArgOperand(0));
7839   SDValue Tmp1 = getValue(I.getArgOperand(1));
7840   EVT VT = Tmp0.getValueType();
7841   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7842   return true;
7843 }
7844 
7845 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7846   // Handle inline assembly differently.
7847   if (I.isInlineAsm()) {
7848     visitInlineAsm(I);
7849     return;
7850   }
7851 
7852   if (Function *F = I.getCalledFunction()) {
7853     if (F->isDeclaration()) {
7854       // Is this an LLVM intrinsic or a target-specific intrinsic?
7855       unsigned IID = F->getIntrinsicID();
7856       if (!IID)
7857         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7858           IID = II->getIntrinsicID(F);
7859 
7860       if (IID) {
7861         visitIntrinsicCall(I, IID);
7862         return;
7863       }
7864     }
7865 
7866     // Check for well-known libc/libm calls.  If the function is internal, it
7867     // can't be a library call.  Don't do the check if marked as nobuiltin for
7868     // some reason or the call site requires strict floating point semantics.
7869     LibFunc Func;
7870     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7871         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7872         LibInfo->hasOptimizedCodeGen(Func)) {
7873       switch (Func) {
7874       default: break;
7875       case LibFunc_bcmp:
7876         if (visitMemCmpBCmpCall(I))
7877           return;
7878         break;
7879       case LibFunc_copysign:
7880       case LibFunc_copysignf:
7881       case LibFunc_copysignl:
7882         // We already checked this call's prototype; verify it doesn't modify
7883         // errno.
7884         if (I.onlyReadsMemory()) {
7885           SDValue LHS = getValue(I.getArgOperand(0));
7886           SDValue RHS = getValue(I.getArgOperand(1));
7887           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7888                                    LHS.getValueType(), LHS, RHS));
7889           return;
7890         }
7891         break;
7892       case LibFunc_fabs:
7893       case LibFunc_fabsf:
7894       case LibFunc_fabsl:
7895         if (visitUnaryFloatCall(I, ISD::FABS))
7896           return;
7897         break;
7898       case LibFunc_fmin:
7899       case LibFunc_fminf:
7900       case LibFunc_fminl:
7901         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7902           return;
7903         break;
7904       case LibFunc_fmax:
7905       case LibFunc_fmaxf:
7906       case LibFunc_fmaxl:
7907         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7908           return;
7909         break;
7910       case LibFunc_sin:
7911       case LibFunc_sinf:
7912       case LibFunc_sinl:
7913         if (visitUnaryFloatCall(I, ISD::FSIN))
7914           return;
7915         break;
7916       case LibFunc_cos:
7917       case LibFunc_cosf:
7918       case LibFunc_cosl:
7919         if (visitUnaryFloatCall(I, ISD::FCOS))
7920           return;
7921         break;
7922       case LibFunc_sqrt:
7923       case LibFunc_sqrtf:
7924       case LibFunc_sqrtl:
7925       case LibFunc_sqrt_finite:
7926       case LibFunc_sqrtf_finite:
7927       case LibFunc_sqrtl_finite:
7928         if (visitUnaryFloatCall(I, ISD::FSQRT))
7929           return;
7930         break;
7931       case LibFunc_floor:
7932       case LibFunc_floorf:
7933       case LibFunc_floorl:
7934         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7935           return;
7936         break;
7937       case LibFunc_nearbyint:
7938       case LibFunc_nearbyintf:
7939       case LibFunc_nearbyintl:
7940         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7941           return;
7942         break;
7943       case LibFunc_ceil:
7944       case LibFunc_ceilf:
7945       case LibFunc_ceill:
7946         if (visitUnaryFloatCall(I, ISD::FCEIL))
7947           return;
7948         break;
7949       case LibFunc_rint:
7950       case LibFunc_rintf:
7951       case LibFunc_rintl:
7952         if (visitUnaryFloatCall(I, ISD::FRINT))
7953           return;
7954         break;
7955       case LibFunc_round:
7956       case LibFunc_roundf:
7957       case LibFunc_roundl:
7958         if (visitUnaryFloatCall(I, ISD::FROUND))
7959           return;
7960         break;
7961       case LibFunc_trunc:
7962       case LibFunc_truncf:
7963       case LibFunc_truncl:
7964         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7965           return;
7966         break;
7967       case LibFunc_log2:
7968       case LibFunc_log2f:
7969       case LibFunc_log2l:
7970         if (visitUnaryFloatCall(I, ISD::FLOG2))
7971           return;
7972         break;
7973       case LibFunc_exp2:
7974       case LibFunc_exp2f:
7975       case LibFunc_exp2l:
7976         if (visitUnaryFloatCall(I, ISD::FEXP2))
7977           return;
7978         break;
7979       case LibFunc_memcmp:
7980         if (visitMemCmpBCmpCall(I))
7981           return;
7982         break;
7983       case LibFunc_mempcpy:
7984         if (visitMemPCpyCall(I))
7985           return;
7986         break;
7987       case LibFunc_memchr:
7988         if (visitMemChrCall(I))
7989           return;
7990         break;
7991       case LibFunc_strcpy:
7992         if (visitStrCpyCall(I, false))
7993           return;
7994         break;
7995       case LibFunc_stpcpy:
7996         if (visitStrCpyCall(I, true))
7997           return;
7998         break;
7999       case LibFunc_strcmp:
8000         if (visitStrCmpCall(I))
8001           return;
8002         break;
8003       case LibFunc_strlen:
8004         if (visitStrLenCall(I))
8005           return;
8006         break;
8007       case LibFunc_strnlen:
8008         if (visitStrNLenCall(I))
8009           return;
8010         break;
8011       }
8012     }
8013   }
8014 
8015   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8016   // have to do anything here to lower funclet bundles.
8017   // CFGuardTarget bundles are lowered in LowerCallTo.
8018   assert(!I.hasOperandBundlesOtherThan(
8019              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8020               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8021               LLVMContext::OB_clang_arc_attachedcall}) &&
8022          "Cannot lower calls with arbitrary operand bundles!");
8023 
8024   SDValue Callee = getValue(I.getCalledOperand());
8025 
8026   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8027     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8028   else
8029     // Check if we can potentially perform a tail call. More detailed checking
8030     // is be done within LowerCallTo, after more information about the call is
8031     // known.
8032     LowerCallTo(I, Callee, I.isTailCall());
8033 }
8034 
8035 namespace {
8036 
8037 /// AsmOperandInfo - This contains information for each constraint that we are
8038 /// lowering.
8039 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8040 public:
8041   /// CallOperand - If this is the result output operand or a clobber
8042   /// this is null, otherwise it is the incoming operand to the CallInst.
8043   /// This gets modified as the asm is processed.
8044   SDValue CallOperand;
8045 
8046   /// AssignedRegs - If this is a register or register class operand, this
8047   /// contains the set of register corresponding to the operand.
8048   RegsForValue AssignedRegs;
8049 
8050   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8051     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8052   }
8053 
8054   /// Whether or not this operand accesses memory
8055   bool hasMemory(const TargetLowering &TLI) const {
8056     // Indirect operand accesses access memory.
8057     if (isIndirect)
8058       return true;
8059 
8060     for (const auto &Code : Codes)
8061       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8062         return true;
8063 
8064     return false;
8065   }
8066 
8067   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8068   /// corresponds to.  If there is no Value* for this operand, it returns
8069   /// MVT::Other.
8070   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8071                            const DataLayout &DL) const {
8072     if (!CallOperandVal) return MVT::Other;
8073 
8074     if (isa<BasicBlock>(CallOperandVal))
8075       return TLI.getProgramPointerTy(DL);
8076 
8077     llvm::Type *OpTy = CallOperandVal->getType();
8078 
8079     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8080     // If this is an indirect operand, the operand is a pointer to the
8081     // accessed type.
8082     if (isIndirect) {
8083       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8084       if (!PtrTy)
8085         report_fatal_error("Indirect operand for inline asm not a pointer!");
8086       OpTy = PtrTy->getElementType();
8087     }
8088 
8089     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8090     if (StructType *STy = dyn_cast<StructType>(OpTy))
8091       if (STy->getNumElements() == 1)
8092         OpTy = STy->getElementType(0);
8093 
8094     // If OpTy is not a single value, it may be a struct/union that we
8095     // can tile with integers.
8096     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8097       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8098       switch (BitSize) {
8099       default: break;
8100       case 1:
8101       case 8:
8102       case 16:
8103       case 32:
8104       case 64:
8105       case 128:
8106         OpTy = IntegerType::get(Context, BitSize);
8107         break;
8108       }
8109     }
8110 
8111     return TLI.getValueType(DL, OpTy, true);
8112   }
8113 };
8114 
8115 
8116 } // end anonymous namespace
8117 
8118 /// Make sure that the output operand \p OpInfo and its corresponding input
8119 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8120 /// out).
8121 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8122                                SDISelAsmOperandInfo &MatchingOpInfo,
8123                                SelectionDAG &DAG) {
8124   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8125     return;
8126 
8127   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8128   const auto &TLI = DAG.getTargetLoweringInfo();
8129 
8130   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8131       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8132                                        OpInfo.ConstraintVT);
8133   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8134       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8135                                        MatchingOpInfo.ConstraintVT);
8136   if ((OpInfo.ConstraintVT.isInteger() !=
8137        MatchingOpInfo.ConstraintVT.isInteger()) ||
8138       (MatchRC.second != InputRC.second)) {
8139     // FIXME: error out in a more elegant fashion
8140     report_fatal_error("Unsupported asm: input constraint"
8141                        " with a matching output constraint of"
8142                        " incompatible type!");
8143   }
8144   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8145 }
8146 
8147 /// Get a direct memory input to behave well as an indirect operand.
8148 /// This may introduce stores, hence the need for a \p Chain.
8149 /// \return The (possibly updated) chain.
8150 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8151                                         SDISelAsmOperandInfo &OpInfo,
8152                                         SelectionDAG &DAG) {
8153   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8154 
8155   // If we don't have an indirect input, put it in the constpool if we can,
8156   // otherwise spill it to a stack slot.
8157   // TODO: This isn't quite right. We need to handle these according to
8158   // the addressing mode that the constraint wants. Also, this may take
8159   // an additional register for the computation and we don't want that
8160   // either.
8161 
8162   // If the operand is a float, integer, or vector constant, spill to a
8163   // constant pool entry to get its address.
8164   const Value *OpVal = OpInfo.CallOperandVal;
8165   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8166       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8167     OpInfo.CallOperand = DAG.getConstantPool(
8168         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8169     return Chain;
8170   }
8171 
8172   // Otherwise, create a stack slot and emit a store to it before the asm.
8173   Type *Ty = OpVal->getType();
8174   auto &DL = DAG.getDataLayout();
8175   uint64_t TySize = DL.getTypeAllocSize(Ty);
8176   MachineFunction &MF = DAG.getMachineFunction();
8177   int SSFI = MF.getFrameInfo().CreateStackObject(
8178       TySize, DL.getPrefTypeAlign(Ty), false);
8179   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8180   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8181                             MachinePointerInfo::getFixedStack(MF, SSFI),
8182                             TLI.getMemValueType(DL, Ty));
8183   OpInfo.CallOperand = StackSlot;
8184 
8185   return Chain;
8186 }
8187 
8188 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8189 /// specified operand.  We prefer to assign virtual registers, to allow the
8190 /// register allocator to handle the assignment process.  However, if the asm
8191 /// uses features that we can't model on machineinstrs, we have SDISel do the
8192 /// allocation.  This produces generally horrible, but correct, code.
8193 ///
8194 ///   OpInfo describes the operand
8195 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8196 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8197                                  SDISelAsmOperandInfo &OpInfo,
8198                                  SDISelAsmOperandInfo &RefOpInfo) {
8199   LLVMContext &Context = *DAG.getContext();
8200   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8201 
8202   MachineFunction &MF = DAG.getMachineFunction();
8203   SmallVector<unsigned, 4> Regs;
8204   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8205 
8206   // No work to do for memory operations.
8207   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8208     return;
8209 
8210   // If this is a constraint for a single physreg, or a constraint for a
8211   // register class, find it.
8212   unsigned AssignedReg;
8213   const TargetRegisterClass *RC;
8214   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8215       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8216   // RC is unset only on failure. Return immediately.
8217   if (!RC)
8218     return;
8219 
8220   // Get the actual register value type.  This is important, because the user
8221   // may have asked for (e.g.) the AX register in i32 type.  We need to
8222   // remember that AX is actually i16 to get the right extension.
8223   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8224 
8225   if (OpInfo.ConstraintVT != MVT::Other) {
8226     // If this is an FP operand in an integer register (or visa versa), or more
8227     // generally if the operand value disagrees with the register class we plan
8228     // to stick it in, fix the operand type.
8229     //
8230     // If this is an input value, the bitcast to the new type is done now.
8231     // Bitcast for output value is done at the end of visitInlineAsm().
8232     if ((OpInfo.Type == InlineAsm::isOutput ||
8233          OpInfo.Type == InlineAsm::isInput) &&
8234         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8235       // Try to convert to the first EVT that the reg class contains.  If the
8236       // types are identical size, use a bitcast to convert (e.g. two differing
8237       // vector types).  Note: output bitcast is done at the end of
8238       // visitInlineAsm().
8239       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8240         // Exclude indirect inputs while they are unsupported because the code
8241         // to perform the load is missing and thus OpInfo.CallOperand still
8242         // refers to the input address rather than the pointed-to value.
8243         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8244           OpInfo.CallOperand =
8245               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8246         OpInfo.ConstraintVT = RegVT;
8247         // If the operand is an FP value and we want it in integer registers,
8248         // use the corresponding integer type. This turns an f64 value into
8249         // i64, which can be passed with two i32 values on a 32-bit machine.
8250       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8251         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8252         if (OpInfo.Type == InlineAsm::isInput)
8253           OpInfo.CallOperand =
8254               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8255         OpInfo.ConstraintVT = VT;
8256       }
8257     }
8258   }
8259 
8260   // No need to allocate a matching input constraint since the constraint it's
8261   // matching to has already been allocated.
8262   if (OpInfo.isMatchingInputConstraint())
8263     return;
8264 
8265   EVT ValueVT = OpInfo.ConstraintVT;
8266   if (OpInfo.ConstraintVT == MVT::Other)
8267     ValueVT = RegVT;
8268 
8269   // Initialize NumRegs.
8270   unsigned NumRegs = 1;
8271   if (OpInfo.ConstraintVT != MVT::Other)
8272     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8273 
8274   // If this is a constraint for a specific physical register, like {r17},
8275   // assign it now.
8276 
8277   // If this associated to a specific register, initialize iterator to correct
8278   // place. If virtual, make sure we have enough registers
8279 
8280   // Initialize iterator if necessary
8281   TargetRegisterClass::iterator I = RC->begin();
8282   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8283 
8284   // Do not check for single registers.
8285   if (AssignedReg) {
8286       for (; *I != AssignedReg; ++I)
8287         assert(I != RC->end() && "AssignedReg should be member of RC");
8288   }
8289 
8290   for (; NumRegs; --NumRegs, ++I) {
8291     assert(I != RC->end() && "Ran out of registers to allocate!");
8292     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8293     Regs.push_back(R);
8294   }
8295 
8296   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8297 }
8298 
8299 static unsigned
8300 findMatchingInlineAsmOperand(unsigned OperandNo,
8301                              const std::vector<SDValue> &AsmNodeOperands) {
8302   // Scan until we find the definition we already emitted of this operand.
8303   unsigned CurOp = InlineAsm::Op_FirstOperand;
8304   for (; OperandNo; --OperandNo) {
8305     // Advance to the next operand.
8306     unsigned OpFlag =
8307         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8308     assert((InlineAsm::isRegDefKind(OpFlag) ||
8309             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8310             InlineAsm::isMemKind(OpFlag)) &&
8311            "Skipped past definitions?");
8312     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8313   }
8314   return CurOp;
8315 }
8316 
8317 namespace {
8318 
8319 class ExtraFlags {
8320   unsigned Flags = 0;
8321 
8322 public:
8323   explicit ExtraFlags(const CallBase &Call) {
8324     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8325     if (IA->hasSideEffects())
8326       Flags |= InlineAsm::Extra_HasSideEffects;
8327     if (IA->isAlignStack())
8328       Flags |= InlineAsm::Extra_IsAlignStack;
8329     if (Call.isConvergent())
8330       Flags |= InlineAsm::Extra_IsConvergent;
8331     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8332   }
8333 
8334   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8335     // Ideally, we would only check against memory constraints.  However, the
8336     // meaning of an Other constraint can be target-specific and we can't easily
8337     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8338     // for Other constraints as well.
8339     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8340         OpInfo.ConstraintType == TargetLowering::C_Other) {
8341       if (OpInfo.Type == InlineAsm::isInput)
8342         Flags |= InlineAsm::Extra_MayLoad;
8343       else if (OpInfo.Type == InlineAsm::isOutput)
8344         Flags |= InlineAsm::Extra_MayStore;
8345       else if (OpInfo.Type == InlineAsm::isClobber)
8346         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8347     }
8348   }
8349 
8350   unsigned get() const { return Flags; }
8351 };
8352 
8353 } // end anonymous namespace
8354 
8355 /// visitInlineAsm - Handle a call to an InlineAsm object.
8356 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8357                                          const BasicBlock *EHPadBB) {
8358   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8359 
8360   /// ConstraintOperands - Information about all of the constraints.
8361   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8362 
8363   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8364   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8365       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8366 
8367   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8368   // AsmDialect, MayLoad, MayStore).
8369   bool HasSideEffect = IA->hasSideEffects();
8370   ExtraFlags ExtraInfo(Call);
8371 
8372   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8373   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8374   unsigned NumMatchingOps = 0;
8375   for (auto &T : TargetConstraints) {
8376     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8377     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8378 
8379     // Compute the value type for each operand.
8380     if (OpInfo.Type == InlineAsm::isInput ||
8381         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8382       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8383 
8384       // Process the call argument. BasicBlocks are labels, currently appearing
8385       // only in asm's.
8386       if (isa<CallBrInst>(Call) &&
8387           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8388                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8389                         NumMatchingOps) &&
8390           (NumMatchingOps == 0 ||
8391            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8392                         NumMatchingOps))) {
8393         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8394         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8395         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8396       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8397         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8398       } else {
8399         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8400       }
8401 
8402       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8403                                            DAG.getDataLayout());
8404       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8405     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8406       // The return value of the call is this value.  As such, there is no
8407       // corresponding argument.
8408       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8409       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8410         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8411             DAG.getDataLayout(), STy->getElementType(ResNo));
8412       } else {
8413         assert(ResNo == 0 && "Asm only has one result!");
8414         OpInfo.ConstraintVT =
8415             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8416       }
8417       ++ResNo;
8418     } else {
8419       OpInfo.ConstraintVT = MVT::Other;
8420     }
8421 
8422     if (OpInfo.hasMatchingInput())
8423       ++NumMatchingOps;
8424 
8425     if (!HasSideEffect)
8426       HasSideEffect = OpInfo.hasMemory(TLI);
8427 
8428     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8429     // FIXME: Could we compute this on OpInfo rather than T?
8430 
8431     // Compute the constraint code and ConstraintType to use.
8432     TLI.ComputeConstraintToUse(T, SDValue());
8433 
8434     if (T.ConstraintType == TargetLowering::C_Immediate &&
8435         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8436       // We've delayed emitting a diagnostic like the "n" constraint because
8437       // inlining could cause an integer showing up.
8438       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8439                                           "' expects an integer constant "
8440                                           "expression");
8441 
8442     ExtraInfo.update(T);
8443   }
8444 
8445   // We won't need to flush pending loads if this asm doesn't touch
8446   // memory and is nonvolatile.
8447   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8448 
8449   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8450   if (EmitEHLabels) {
8451     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8452   }
8453   bool IsCallBr = isa<CallBrInst>(Call);
8454 
8455   if (IsCallBr || EmitEHLabels) {
8456     // If this is a callbr or invoke we need to flush pending exports since
8457     // inlineasm_br and invoke are terminators.
8458     // We need to do this before nodes are glued to the inlineasm_br node.
8459     Chain = getControlRoot();
8460   }
8461 
8462   MCSymbol *BeginLabel = nullptr;
8463   if (EmitEHLabels) {
8464     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8465   }
8466 
8467   // Second pass over the constraints: compute which constraint option to use.
8468   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8469     // If this is an output operand with a matching input operand, look up the
8470     // matching input. If their types mismatch, e.g. one is an integer, the
8471     // other is floating point, or their sizes are different, flag it as an
8472     // error.
8473     if (OpInfo.hasMatchingInput()) {
8474       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8475       patchMatchingInput(OpInfo, Input, DAG);
8476     }
8477 
8478     // Compute the constraint code and ConstraintType to use.
8479     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8480 
8481     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8482         OpInfo.Type == InlineAsm::isClobber)
8483       continue;
8484 
8485     // If this is a memory input, and if the operand is not indirect, do what we
8486     // need to provide an address for the memory input.
8487     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8488         !OpInfo.isIndirect) {
8489       assert((OpInfo.isMultipleAlternative ||
8490               (OpInfo.Type == InlineAsm::isInput)) &&
8491              "Can only indirectify direct input operands!");
8492 
8493       // Memory operands really want the address of the value.
8494       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8495 
8496       // There is no longer a Value* corresponding to this operand.
8497       OpInfo.CallOperandVal = nullptr;
8498 
8499       // It is now an indirect operand.
8500       OpInfo.isIndirect = true;
8501     }
8502 
8503   }
8504 
8505   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8506   std::vector<SDValue> AsmNodeOperands;
8507   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8508   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8509       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8510 
8511   // If we have a !srcloc metadata node associated with it, we want to attach
8512   // this to the ultimately generated inline asm machineinstr.  To do this, we
8513   // pass in the third operand as this (potentially null) inline asm MDNode.
8514   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8515   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8516 
8517   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8518   // bits as operand 3.
8519   AsmNodeOperands.push_back(DAG.getTargetConstant(
8520       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8521 
8522   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8523   // this, assign virtual and physical registers for inputs and otput.
8524   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8525     // Assign Registers.
8526     SDISelAsmOperandInfo &RefOpInfo =
8527         OpInfo.isMatchingInputConstraint()
8528             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8529             : OpInfo;
8530     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8531 
8532     auto DetectWriteToReservedRegister = [&]() {
8533       const MachineFunction &MF = DAG.getMachineFunction();
8534       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8535       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8536         if (Register::isPhysicalRegister(Reg) &&
8537             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8538           const char *RegName = TRI.getName(Reg);
8539           emitInlineAsmError(Call, "write to reserved register '" +
8540                                        Twine(RegName) + "'");
8541           return true;
8542         }
8543       }
8544       return false;
8545     };
8546 
8547     switch (OpInfo.Type) {
8548     case InlineAsm::isOutput:
8549       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8550         unsigned ConstraintID =
8551             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8552         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8553                "Failed to convert memory constraint code to constraint id.");
8554 
8555         // Add information to the INLINEASM node to know about this output.
8556         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8557         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8558         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8559                                                         MVT::i32));
8560         AsmNodeOperands.push_back(OpInfo.CallOperand);
8561       } else {
8562         // Otherwise, this outputs to a register (directly for C_Register /
8563         // C_RegisterClass, and a target-defined fashion for
8564         // C_Immediate/C_Other). Find a register that we can use.
8565         if (OpInfo.AssignedRegs.Regs.empty()) {
8566           emitInlineAsmError(
8567               Call, "couldn't allocate output register for constraint '" +
8568                         Twine(OpInfo.ConstraintCode) + "'");
8569           return;
8570         }
8571 
8572         if (DetectWriteToReservedRegister())
8573           return;
8574 
8575         // Add information to the INLINEASM node to know that this register is
8576         // set.
8577         OpInfo.AssignedRegs.AddInlineAsmOperands(
8578             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8579                                   : InlineAsm::Kind_RegDef,
8580             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8581       }
8582       break;
8583 
8584     case InlineAsm::isInput: {
8585       SDValue InOperandVal = OpInfo.CallOperand;
8586 
8587       if (OpInfo.isMatchingInputConstraint()) {
8588         // If this is required to match an output register we have already set,
8589         // just use its register.
8590         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8591                                                   AsmNodeOperands);
8592         unsigned OpFlag =
8593           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8594         if (InlineAsm::isRegDefKind(OpFlag) ||
8595             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8596           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8597           if (OpInfo.isIndirect) {
8598             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8599             emitInlineAsmError(Call, "inline asm not supported yet: "
8600                                      "don't know how to handle tied "
8601                                      "indirect register inputs");
8602             return;
8603           }
8604 
8605           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8606           SmallVector<unsigned, 4> Regs;
8607 
8608           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8609             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8610             MachineRegisterInfo &RegInfo =
8611                 DAG.getMachineFunction().getRegInfo();
8612             for (unsigned i = 0; i != NumRegs; ++i)
8613               Regs.push_back(RegInfo.createVirtualRegister(RC));
8614           } else {
8615             emitInlineAsmError(Call,
8616                                "inline asm error: This value type register "
8617                                "class is not natively supported!");
8618             return;
8619           }
8620 
8621           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8622 
8623           SDLoc dl = getCurSDLoc();
8624           // Use the produced MatchedRegs object to
8625           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8626           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8627                                            true, OpInfo.getMatchedOperand(), dl,
8628                                            DAG, AsmNodeOperands);
8629           break;
8630         }
8631 
8632         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8633         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8634                "Unexpected number of operands");
8635         // Add information to the INLINEASM node to know about this input.
8636         // See InlineAsm.h isUseOperandTiedToDef.
8637         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8638         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8639                                                     OpInfo.getMatchedOperand());
8640         AsmNodeOperands.push_back(DAG.getTargetConstant(
8641             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8642         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8643         break;
8644       }
8645 
8646       // Treat indirect 'X' constraint as memory.
8647       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8648           OpInfo.isIndirect)
8649         OpInfo.ConstraintType = TargetLowering::C_Memory;
8650 
8651       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8652           OpInfo.ConstraintType == TargetLowering::C_Other) {
8653         std::vector<SDValue> Ops;
8654         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8655                                           Ops, DAG);
8656         if (Ops.empty()) {
8657           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8658             if (isa<ConstantSDNode>(InOperandVal)) {
8659               emitInlineAsmError(Call, "value out of range for constraint '" +
8660                                            Twine(OpInfo.ConstraintCode) + "'");
8661               return;
8662             }
8663 
8664           emitInlineAsmError(Call,
8665                              "invalid operand for inline asm constraint '" +
8666                                  Twine(OpInfo.ConstraintCode) + "'");
8667           return;
8668         }
8669 
8670         // Add information to the INLINEASM node to know about this input.
8671         unsigned ResOpType =
8672           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8673         AsmNodeOperands.push_back(DAG.getTargetConstant(
8674             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8675         llvm::append_range(AsmNodeOperands, Ops);
8676         break;
8677       }
8678 
8679       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8680         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8681         assert(InOperandVal.getValueType() ==
8682                    TLI.getPointerTy(DAG.getDataLayout()) &&
8683                "Memory operands expect pointer values");
8684 
8685         unsigned ConstraintID =
8686             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8687         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8688                "Failed to convert memory constraint code to constraint id.");
8689 
8690         // Add information to the INLINEASM node to know about this input.
8691         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8692         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8693         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8694                                                         getCurSDLoc(),
8695                                                         MVT::i32));
8696         AsmNodeOperands.push_back(InOperandVal);
8697         break;
8698       }
8699 
8700       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8701               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8702              "Unknown constraint type!");
8703 
8704       // TODO: Support this.
8705       if (OpInfo.isIndirect) {
8706         emitInlineAsmError(
8707             Call, "Don't know how to handle indirect register inputs yet "
8708                   "for constraint '" +
8709                       Twine(OpInfo.ConstraintCode) + "'");
8710         return;
8711       }
8712 
8713       // Copy the input into the appropriate registers.
8714       if (OpInfo.AssignedRegs.Regs.empty()) {
8715         emitInlineAsmError(Call,
8716                            "couldn't allocate input reg for constraint '" +
8717                                Twine(OpInfo.ConstraintCode) + "'");
8718         return;
8719       }
8720 
8721       if (DetectWriteToReservedRegister())
8722         return;
8723 
8724       SDLoc dl = getCurSDLoc();
8725 
8726       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8727                                         &Call);
8728 
8729       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8730                                                dl, DAG, AsmNodeOperands);
8731       break;
8732     }
8733     case InlineAsm::isClobber:
8734       // Add the clobbered value to the operand list, so that the register
8735       // allocator is aware that the physreg got clobbered.
8736       if (!OpInfo.AssignedRegs.Regs.empty())
8737         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8738                                                  false, 0, getCurSDLoc(), DAG,
8739                                                  AsmNodeOperands);
8740       break;
8741     }
8742   }
8743 
8744   // Finish up input operands.  Set the input chain and add the flag last.
8745   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8746   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8747 
8748   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8749   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8750                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8751   Flag = Chain.getValue(1);
8752 
8753   // Do additional work to generate outputs.
8754 
8755   SmallVector<EVT, 1> ResultVTs;
8756   SmallVector<SDValue, 1> ResultValues;
8757   SmallVector<SDValue, 8> OutChains;
8758 
8759   llvm::Type *CallResultType = Call.getType();
8760   ArrayRef<Type *> ResultTypes;
8761   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8762     ResultTypes = StructResult->elements();
8763   else if (!CallResultType->isVoidTy())
8764     ResultTypes = makeArrayRef(CallResultType);
8765 
8766   auto CurResultType = ResultTypes.begin();
8767   auto handleRegAssign = [&](SDValue V) {
8768     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8769     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8770     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8771     ++CurResultType;
8772     // If the type of the inline asm call site return value is different but has
8773     // same size as the type of the asm output bitcast it.  One example of this
8774     // is for vectors with different width / number of elements.  This can
8775     // happen for register classes that can contain multiple different value
8776     // types.  The preg or vreg allocated may not have the same VT as was
8777     // expected.
8778     //
8779     // This can also happen for a return value that disagrees with the register
8780     // class it is put in, eg. a double in a general-purpose register on a
8781     // 32-bit machine.
8782     if (ResultVT != V.getValueType() &&
8783         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8784       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8785     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8786              V.getValueType().isInteger()) {
8787       // If a result value was tied to an input value, the computed result
8788       // may have a wider width than the expected result.  Extract the
8789       // relevant portion.
8790       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8791     }
8792     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8793     ResultVTs.push_back(ResultVT);
8794     ResultValues.push_back(V);
8795   };
8796 
8797   // Deal with output operands.
8798   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8799     if (OpInfo.Type == InlineAsm::isOutput) {
8800       SDValue Val;
8801       // Skip trivial output operands.
8802       if (OpInfo.AssignedRegs.Regs.empty())
8803         continue;
8804 
8805       switch (OpInfo.ConstraintType) {
8806       case TargetLowering::C_Register:
8807       case TargetLowering::C_RegisterClass:
8808         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8809                                                   Chain, &Flag, &Call);
8810         break;
8811       case TargetLowering::C_Immediate:
8812       case TargetLowering::C_Other:
8813         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8814                                               OpInfo, DAG);
8815         break;
8816       case TargetLowering::C_Memory:
8817         break; // Already handled.
8818       case TargetLowering::C_Unknown:
8819         assert(false && "Unexpected unknown constraint");
8820       }
8821 
8822       // Indirect output manifest as stores. Record output chains.
8823       if (OpInfo.isIndirect) {
8824         const Value *Ptr = OpInfo.CallOperandVal;
8825         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8826         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8827                                      MachinePointerInfo(Ptr));
8828         OutChains.push_back(Store);
8829       } else {
8830         // generate CopyFromRegs to associated registers.
8831         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8832         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8833           for (const SDValue &V : Val->op_values())
8834             handleRegAssign(V);
8835         } else
8836           handleRegAssign(Val);
8837       }
8838     }
8839   }
8840 
8841   // Set results.
8842   if (!ResultValues.empty()) {
8843     assert(CurResultType == ResultTypes.end() &&
8844            "Mismatch in number of ResultTypes");
8845     assert(ResultValues.size() == ResultTypes.size() &&
8846            "Mismatch in number of output operands in asm result");
8847 
8848     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8849                             DAG.getVTList(ResultVTs), ResultValues);
8850     setValue(&Call, V);
8851   }
8852 
8853   // Collect store chains.
8854   if (!OutChains.empty())
8855     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8856 
8857   if (EmitEHLabels) {
8858     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
8859   }
8860 
8861   // Only Update Root if inline assembly has a memory effect.
8862   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
8863       EmitEHLabels)
8864     DAG.setRoot(Chain);
8865 }
8866 
8867 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8868                                              const Twine &Message) {
8869   LLVMContext &Ctx = *DAG.getContext();
8870   Ctx.emitError(&Call, Message);
8871 
8872   // Make sure we leave the DAG in a valid state
8873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8874   SmallVector<EVT, 1> ValueVTs;
8875   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8876 
8877   if (ValueVTs.empty())
8878     return;
8879 
8880   SmallVector<SDValue, 1> Ops;
8881   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8882     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8883 
8884   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8885 }
8886 
8887 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8888   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8889                           MVT::Other, getRoot(),
8890                           getValue(I.getArgOperand(0)),
8891                           DAG.getSrcValue(I.getArgOperand(0))));
8892 }
8893 
8894 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8896   const DataLayout &DL = DAG.getDataLayout();
8897   SDValue V = DAG.getVAArg(
8898       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8899       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8900       DL.getABITypeAlign(I.getType()).value());
8901   DAG.setRoot(V.getValue(1));
8902 
8903   if (I.getType()->isPointerTy())
8904     V = DAG.getPtrExtOrTrunc(
8905         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8906   setValue(&I, V);
8907 }
8908 
8909 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8910   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8911                           MVT::Other, getRoot(),
8912                           getValue(I.getArgOperand(0)),
8913                           DAG.getSrcValue(I.getArgOperand(0))));
8914 }
8915 
8916 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8917   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8918                           MVT::Other, getRoot(),
8919                           getValue(I.getArgOperand(0)),
8920                           getValue(I.getArgOperand(1)),
8921                           DAG.getSrcValue(I.getArgOperand(0)),
8922                           DAG.getSrcValue(I.getArgOperand(1))));
8923 }
8924 
8925 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8926                                                     const Instruction &I,
8927                                                     SDValue Op) {
8928   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8929   if (!Range)
8930     return Op;
8931 
8932   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8933   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8934     return Op;
8935 
8936   APInt Lo = CR.getUnsignedMin();
8937   if (!Lo.isMinValue())
8938     return Op;
8939 
8940   APInt Hi = CR.getUnsignedMax();
8941   unsigned Bits = std::max(Hi.getActiveBits(),
8942                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8943 
8944   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8945 
8946   SDLoc SL = getCurSDLoc();
8947 
8948   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8949                              DAG.getValueType(SmallVT));
8950   unsigned NumVals = Op.getNode()->getNumValues();
8951   if (NumVals == 1)
8952     return ZExt;
8953 
8954   SmallVector<SDValue, 4> Ops;
8955 
8956   Ops.push_back(ZExt);
8957   for (unsigned I = 1; I != NumVals; ++I)
8958     Ops.push_back(Op.getValue(I));
8959 
8960   return DAG.getMergeValues(Ops, SL);
8961 }
8962 
8963 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8964 /// the call being lowered.
8965 ///
8966 /// This is a helper for lowering intrinsics that follow a target calling
8967 /// convention or require stack pointer adjustment. Only a subset of the
8968 /// intrinsic's operands need to participate in the calling convention.
8969 void SelectionDAGBuilder::populateCallLoweringInfo(
8970     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8971     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8972     bool IsPatchPoint) {
8973   TargetLowering::ArgListTy Args;
8974   Args.reserve(NumArgs);
8975 
8976   // Populate the argument list.
8977   // Attributes for args start at offset 1, after the return attribute.
8978   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8979        ArgI != ArgE; ++ArgI) {
8980     const Value *V = Call->getOperand(ArgI);
8981 
8982     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8983 
8984     TargetLowering::ArgListEntry Entry;
8985     Entry.Node = getValue(V);
8986     Entry.Ty = V->getType();
8987     Entry.setAttributes(Call, ArgI);
8988     Args.push_back(Entry);
8989   }
8990 
8991   CLI.setDebugLoc(getCurSDLoc())
8992       .setChain(getRoot())
8993       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8994       .setDiscardResult(Call->use_empty())
8995       .setIsPatchPoint(IsPatchPoint)
8996       .setIsPreallocated(
8997           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8998 }
8999 
9000 /// Add a stack map intrinsic call's live variable operands to a stackmap
9001 /// or patchpoint target node's operand list.
9002 ///
9003 /// Constants are converted to TargetConstants purely as an optimization to
9004 /// avoid constant materialization and register allocation.
9005 ///
9006 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9007 /// generate addess computation nodes, and so FinalizeISel can convert the
9008 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9009 /// address materialization and register allocation, but may also be required
9010 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9011 /// alloca in the entry block, then the runtime may assume that the alloca's
9012 /// StackMap location can be read immediately after compilation and that the
9013 /// location is valid at any point during execution (this is similar to the
9014 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9015 /// only available in a register, then the runtime would need to trap when
9016 /// execution reaches the StackMap in order to read the alloca's location.
9017 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9018                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9019                                 SelectionDAGBuilder &Builder) {
9020   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9021     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9022     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9023       Ops.push_back(
9024         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9025       Ops.push_back(
9026         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9027     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9028       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9029       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9030           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9031     } else
9032       Ops.push_back(OpVal);
9033   }
9034 }
9035 
9036 /// Lower llvm.experimental.stackmap directly to its target opcode.
9037 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9038   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9039   //                                  [live variables...])
9040 
9041   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9042 
9043   SDValue Chain, InFlag, Callee, NullPtr;
9044   SmallVector<SDValue, 32> Ops;
9045 
9046   SDLoc DL = getCurSDLoc();
9047   Callee = getValue(CI.getCalledOperand());
9048   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9049 
9050   // The stackmap intrinsic only records the live variables (the arguments
9051   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9052   // intrinsic, this won't be lowered to a function call. This means we don't
9053   // have to worry about calling conventions and target specific lowering code.
9054   // Instead we perform the call lowering right here.
9055   //
9056   // chain, flag = CALLSEQ_START(chain, 0, 0)
9057   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9058   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9059   //
9060   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9061   InFlag = Chain.getValue(1);
9062 
9063   // Add the <id> and <numBytes> constants.
9064   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9065   Ops.push_back(DAG.getTargetConstant(
9066                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9067   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9068   Ops.push_back(DAG.getTargetConstant(
9069                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9070                   MVT::i32));
9071 
9072   // Push live variables for the stack map.
9073   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9074 
9075   // We are not pushing any register mask info here on the operands list,
9076   // because the stackmap doesn't clobber anything.
9077 
9078   // Push the chain and the glue flag.
9079   Ops.push_back(Chain);
9080   Ops.push_back(InFlag);
9081 
9082   // Create the STACKMAP node.
9083   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9084   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9085   Chain = SDValue(SM, 0);
9086   InFlag = Chain.getValue(1);
9087 
9088   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9089 
9090   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9091 
9092   // Set the root to the target-lowered call chain.
9093   DAG.setRoot(Chain);
9094 
9095   // Inform the Frame Information that we have a stackmap in this function.
9096   FuncInfo.MF->getFrameInfo().setHasStackMap();
9097 }
9098 
9099 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9100 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9101                                           const BasicBlock *EHPadBB) {
9102   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9103   //                                                 i32 <numBytes>,
9104   //                                                 i8* <target>,
9105   //                                                 i32 <numArgs>,
9106   //                                                 [Args...],
9107   //                                                 [live variables...])
9108 
9109   CallingConv::ID CC = CB.getCallingConv();
9110   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9111   bool HasDef = !CB.getType()->isVoidTy();
9112   SDLoc dl = getCurSDLoc();
9113   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9114 
9115   // Handle immediate and symbolic callees.
9116   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9117     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9118                                    /*isTarget=*/true);
9119   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9120     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9121                                          SDLoc(SymbolicCallee),
9122                                          SymbolicCallee->getValueType(0));
9123 
9124   // Get the real number of arguments participating in the call <numArgs>
9125   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9126   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9127 
9128   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9129   // Intrinsics include all meta-operands up to but not including CC.
9130   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9131   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9132          "Not enough arguments provided to the patchpoint intrinsic");
9133 
9134   // For AnyRegCC the arguments are lowered later on manually.
9135   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9136   Type *ReturnTy =
9137       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9138 
9139   TargetLowering::CallLoweringInfo CLI(DAG);
9140   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9141                            ReturnTy, true);
9142   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9143 
9144   SDNode *CallEnd = Result.second.getNode();
9145   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9146     CallEnd = CallEnd->getOperand(0).getNode();
9147 
9148   /// Get a call instruction from the call sequence chain.
9149   /// Tail calls are not allowed.
9150   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9151          "Expected a callseq node.");
9152   SDNode *Call = CallEnd->getOperand(0).getNode();
9153   bool HasGlue = Call->getGluedNode();
9154 
9155   // Replace the target specific call node with the patchable intrinsic.
9156   SmallVector<SDValue, 8> Ops;
9157 
9158   // Add the <id> and <numBytes> constants.
9159   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9160   Ops.push_back(DAG.getTargetConstant(
9161                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9162   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9163   Ops.push_back(DAG.getTargetConstant(
9164                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9165                   MVT::i32));
9166 
9167   // Add the callee.
9168   Ops.push_back(Callee);
9169 
9170   // Adjust <numArgs> to account for any arguments that have been passed on the
9171   // stack instead.
9172   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9173   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9174   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9175   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9176 
9177   // Add the calling convention
9178   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9179 
9180   // Add the arguments we omitted previously. The register allocator should
9181   // place these in any free register.
9182   if (IsAnyRegCC)
9183     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9184       Ops.push_back(getValue(CB.getArgOperand(i)));
9185 
9186   // Push the arguments from the call instruction up to the register mask.
9187   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9188   Ops.append(Call->op_begin() + 2, e);
9189 
9190   // Push live variables for the stack map.
9191   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9192 
9193   // Push the register mask info.
9194   if (HasGlue)
9195     Ops.push_back(*(Call->op_end()-2));
9196   else
9197     Ops.push_back(*(Call->op_end()-1));
9198 
9199   // Push the chain (this is originally the first operand of the call, but
9200   // becomes now the last or second to last operand).
9201   Ops.push_back(*(Call->op_begin()));
9202 
9203   // Push the glue flag (last operand).
9204   if (HasGlue)
9205     Ops.push_back(*(Call->op_end()-1));
9206 
9207   SDVTList NodeTys;
9208   if (IsAnyRegCC && HasDef) {
9209     // Create the return types based on the intrinsic definition
9210     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9211     SmallVector<EVT, 3> ValueVTs;
9212     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9213     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9214 
9215     // There is always a chain and a glue type at the end
9216     ValueVTs.push_back(MVT::Other);
9217     ValueVTs.push_back(MVT::Glue);
9218     NodeTys = DAG.getVTList(ValueVTs);
9219   } else
9220     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9221 
9222   // Replace the target specific call node with a PATCHPOINT node.
9223   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9224                                          dl, NodeTys, Ops);
9225 
9226   // Update the NodeMap.
9227   if (HasDef) {
9228     if (IsAnyRegCC)
9229       setValue(&CB, SDValue(MN, 0));
9230     else
9231       setValue(&CB, Result.first);
9232   }
9233 
9234   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9235   // call sequence. Furthermore the location of the chain and glue can change
9236   // when the AnyReg calling convention is used and the intrinsic returns a
9237   // value.
9238   if (IsAnyRegCC && HasDef) {
9239     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9240     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9241     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9242   } else
9243     DAG.ReplaceAllUsesWith(Call, MN);
9244   DAG.DeleteNode(Call);
9245 
9246   // Inform the Frame Information that we have a patchpoint in this function.
9247   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9248 }
9249 
9250 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9251                                             unsigned Intrinsic) {
9252   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9253   SDValue Op1 = getValue(I.getArgOperand(0));
9254   SDValue Op2;
9255   if (I.getNumArgOperands() > 1)
9256     Op2 = getValue(I.getArgOperand(1));
9257   SDLoc dl = getCurSDLoc();
9258   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9259   SDValue Res;
9260   SDNodeFlags SDFlags;
9261   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9262     SDFlags.copyFMF(*FPMO);
9263 
9264   switch (Intrinsic) {
9265   case Intrinsic::vector_reduce_fadd:
9266     if (SDFlags.hasAllowReassociation())
9267       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9268                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9269                         SDFlags);
9270     else
9271       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9272     break;
9273   case Intrinsic::vector_reduce_fmul:
9274     if (SDFlags.hasAllowReassociation())
9275       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9276                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9277                         SDFlags);
9278     else
9279       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9280     break;
9281   case Intrinsic::vector_reduce_add:
9282     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9283     break;
9284   case Intrinsic::vector_reduce_mul:
9285     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9286     break;
9287   case Intrinsic::vector_reduce_and:
9288     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9289     break;
9290   case Intrinsic::vector_reduce_or:
9291     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9292     break;
9293   case Intrinsic::vector_reduce_xor:
9294     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9295     break;
9296   case Intrinsic::vector_reduce_smax:
9297     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9298     break;
9299   case Intrinsic::vector_reduce_smin:
9300     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9301     break;
9302   case Intrinsic::vector_reduce_umax:
9303     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9304     break;
9305   case Intrinsic::vector_reduce_umin:
9306     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9307     break;
9308   case Intrinsic::vector_reduce_fmax:
9309     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9310     break;
9311   case Intrinsic::vector_reduce_fmin:
9312     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9313     break;
9314   default:
9315     llvm_unreachable("Unhandled vector reduce intrinsic");
9316   }
9317   setValue(&I, Res);
9318 }
9319 
9320 /// Returns an AttributeList representing the attributes applied to the return
9321 /// value of the given call.
9322 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9323   SmallVector<Attribute::AttrKind, 2> Attrs;
9324   if (CLI.RetSExt)
9325     Attrs.push_back(Attribute::SExt);
9326   if (CLI.RetZExt)
9327     Attrs.push_back(Attribute::ZExt);
9328   if (CLI.IsInReg)
9329     Attrs.push_back(Attribute::InReg);
9330 
9331   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9332                             Attrs);
9333 }
9334 
9335 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9336 /// implementation, which just calls LowerCall.
9337 /// FIXME: When all targets are
9338 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9339 std::pair<SDValue, SDValue>
9340 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9341   // Handle the incoming return values from the call.
9342   CLI.Ins.clear();
9343   Type *OrigRetTy = CLI.RetTy;
9344   SmallVector<EVT, 4> RetTys;
9345   SmallVector<uint64_t, 4> Offsets;
9346   auto &DL = CLI.DAG.getDataLayout();
9347   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9348 
9349   if (CLI.IsPostTypeLegalization) {
9350     // If we are lowering a libcall after legalization, split the return type.
9351     SmallVector<EVT, 4> OldRetTys;
9352     SmallVector<uint64_t, 4> OldOffsets;
9353     RetTys.swap(OldRetTys);
9354     Offsets.swap(OldOffsets);
9355 
9356     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9357       EVT RetVT = OldRetTys[i];
9358       uint64_t Offset = OldOffsets[i];
9359       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9360       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9361       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9362       RetTys.append(NumRegs, RegisterVT);
9363       for (unsigned j = 0; j != NumRegs; ++j)
9364         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9365     }
9366   }
9367 
9368   SmallVector<ISD::OutputArg, 4> Outs;
9369   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9370 
9371   bool CanLowerReturn =
9372       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9373                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9374 
9375   SDValue DemoteStackSlot;
9376   int DemoteStackIdx = -100;
9377   if (!CanLowerReturn) {
9378     // FIXME: equivalent assert?
9379     // assert(!CS.hasInAllocaArgument() &&
9380     //        "sret demotion is incompatible with inalloca");
9381     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9382     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9383     MachineFunction &MF = CLI.DAG.getMachineFunction();
9384     DemoteStackIdx =
9385         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9386     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9387                                               DL.getAllocaAddrSpace());
9388 
9389     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9390     ArgListEntry Entry;
9391     Entry.Node = DemoteStackSlot;
9392     Entry.Ty = StackSlotPtrType;
9393     Entry.IsSExt = false;
9394     Entry.IsZExt = false;
9395     Entry.IsInReg = false;
9396     Entry.IsSRet = true;
9397     Entry.IsNest = false;
9398     Entry.IsByVal = false;
9399     Entry.IsByRef = false;
9400     Entry.IsReturned = false;
9401     Entry.IsSwiftSelf = false;
9402     Entry.IsSwiftAsync = false;
9403     Entry.IsSwiftError = false;
9404     Entry.IsCFGuardTarget = false;
9405     Entry.Alignment = Alignment;
9406     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9407     CLI.NumFixedArgs += 1;
9408     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9409 
9410     // sret demotion isn't compatible with tail-calls, since the sret argument
9411     // points into the callers stack frame.
9412     CLI.IsTailCall = false;
9413   } else {
9414     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9415         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9416     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9417       ISD::ArgFlagsTy Flags;
9418       if (NeedsRegBlock) {
9419         Flags.setInConsecutiveRegs();
9420         if (I == RetTys.size() - 1)
9421           Flags.setInConsecutiveRegsLast();
9422       }
9423       EVT VT = RetTys[I];
9424       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9425                                                      CLI.CallConv, VT);
9426       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9427                                                        CLI.CallConv, VT);
9428       for (unsigned i = 0; i != NumRegs; ++i) {
9429         ISD::InputArg MyFlags;
9430         MyFlags.Flags = Flags;
9431         MyFlags.VT = RegisterVT;
9432         MyFlags.ArgVT = VT;
9433         MyFlags.Used = CLI.IsReturnValueUsed;
9434         if (CLI.RetTy->isPointerTy()) {
9435           MyFlags.Flags.setPointer();
9436           MyFlags.Flags.setPointerAddrSpace(
9437               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9438         }
9439         if (CLI.RetSExt)
9440           MyFlags.Flags.setSExt();
9441         if (CLI.RetZExt)
9442           MyFlags.Flags.setZExt();
9443         if (CLI.IsInReg)
9444           MyFlags.Flags.setInReg();
9445         CLI.Ins.push_back(MyFlags);
9446       }
9447     }
9448   }
9449 
9450   // We push in swifterror return as the last element of CLI.Ins.
9451   ArgListTy &Args = CLI.getArgs();
9452   if (supportSwiftError()) {
9453     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9454       if (Args[i].IsSwiftError) {
9455         ISD::InputArg MyFlags;
9456         MyFlags.VT = getPointerTy(DL);
9457         MyFlags.ArgVT = EVT(getPointerTy(DL));
9458         MyFlags.Flags.setSwiftError();
9459         CLI.Ins.push_back(MyFlags);
9460       }
9461     }
9462   }
9463 
9464   // Handle all of the outgoing arguments.
9465   CLI.Outs.clear();
9466   CLI.OutVals.clear();
9467   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9468     SmallVector<EVT, 4> ValueVTs;
9469     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9470     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9471     Type *FinalType = Args[i].Ty;
9472     if (Args[i].IsByVal)
9473       FinalType = Args[i].IndirectType;
9474     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9475         FinalType, CLI.CallConv, CLI.IsVarArg);
9476     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9477          ++Value) {
9478       EVT VT = ValueVTs[Value];
9479       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9480       SDValue Op = SDValue(Args[i].Node.getNode(),
9481                            Args[i].Node.getResNo() + Value);
9482       ISD::ArgFlagsTy Flags;
9483 
9484       // Certain targets (such as MIPS), may have a different ABI alignment
9485       // for a type depending on the context. Give the target a chance to
9486       // specify the alignment it wants.
9487       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9488       Flags.setOrigAlign(OriginalAlignment);
9489 
9490       if (Args[i].Ty->isPointerTy()) {
9491         Flags.setPointer();
9492         Flags.setPointerAddrSpace(
9493             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9494       }
9495       if (Args[i].IsZExt)
9496         Flags.setZExt();
9497       if (Args[i].IsSExt)
9498         Flags.setSExt();
9499       if (Args[i].IsInReg) {
9500         // If we are using vectorcall calling convention, a structure that is
9501         // passed InReg - is surely an HVA
9502         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9503             isa<StructType>(FinalType)) {
9504           // The first value of a structure is marked
9505           if (0 == Value)
9506             Flags.setHvaStart();
9507           Flags.setHva();
9508         }
9509         // Set InReg Flag
9510         Flags.setInReg();
9511       }
9512       if (Args[i].IsSRet)
9513         Flags.setSRet();
9514       if (Args[i].IsSwiftSelf)
9515         Flags.setSwiftSelf();
9516       if (Args[i].IsSwiftAsync)
9517         Flags.setSwiftAsync();
9518       if (Args[i].IsSwiftError)
9519         Flags.setSwiftError();
9520       if (Args[i].IsCFGuardTarget)
9521         Flags.setCFGuardTarget();
9522       if (Args[i].IsByVal)
9523         Flags.setByVal();
9524       if (Args[i].IsByRef)
9525         Flags.setByRef();
9526       if (Args[i].IsPreallocated) {
9527         Flags.setPreallocated();
9528         // Set the byval flag for CCAssignFn callbacks that don't know about
9529         // preallocated.  This way we can know how many bytes we should've
9530         // allocated and how many bytes a callee cleanup function will pop.  If
9531         // we port preallocated to more targets, we'll have to add custom
9532         // preallocated handling in the various CC lowering callbacks.
9533         Flags.setByVal();
9534       }
9535       if (Args[i].IsInAlloca) {
9536         Flags.setInAlloca();
9537         // Set the byval flag for CCAssignFn callbacks that don't know about
9538         // inalloca.  This way we can know how many bytes we should've allocated
9539         // and how many bytes a callee cleanup function will pop.  If we port
9540         // inalloca to more targets, we'll have to add custom inalloca handling
9541         // in the various CC lowering callbacks.
9542         Flags.setByVal();
9543       }
9544       Align MemAlign;
9545       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9546         Type *ElementTy = Args[i].IndirectType;
9547         assert(ElementTy && "Indirect type not set in ArgListEntry");
9548 
9549         unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
9550         Flags.setByValSize(FrameSize);
9551 
9552         // info is not there but there are cases it cannot get right.
9553         if (auto MA = Args[i].Alignment)
9554           MemAlign = *MA;
9555         else
9556           MemAlign = Align(getByValTypeAlignment(ElementTy, DL));
9557       } else if (auto MA = Args[i].Alignment) {
9558         MemAlign = *MA;
9559       } else {
9560         MemAlign = OriginalAlignment;
9561       }
9562       Flags.setMemAlign(MemAlign);
9563       if (Args[i].IsNest)
9564         Flags.setNest();
9565       if (NeedsRegBlock)
9566         Flags.setInConsecutiveRegs();
9567 
9568       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9569                                                  CLI.CallConv, VT);
9570       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9571                                                         CLI.CallConv, VT);
9572       SmallVector<SDValue, 4> Parts(NumParts);
9573       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9574 
9575       if (Args[i].IsSExt)
9576         ExtendKind = ISD::SIGN_EXTEND;
9577       else if (Args[i].IsZExt)
9578         ExtendKind = ISD::ZERO_EXTEND;
9579 
9580       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9581       // for now.
9582       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9583           CanLowerReturn) {
9584         assert((CLI.RetTy == Args[i].Ty ||
9585                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9586                  CLI.RetTy->getPointerAddressSpace() ==
9587                      Args[i].Ty->getPointerAddressSpace())) &&
9588                RetTys.size() == NumValues && "unexpected use of 'returned'");
9589         // Before passing 'returned' to the target lowering code, ensure that
9590         // either the register MVT and the actual EVT are the same size or that
9591         // the return value and argument are extended in the same way; in these
9592         // cases it's safe to pass the argument register value unchanged as the
9593         // return register value (although it's at the target's option whether
9594         // to do so)
9595         // TODO: allow code generation to take advantage of partially preserved
9596         // registers rather than clobbering the entire register when the
9597         // parameter extension method is not compatible with the return
9598         // extension method
9599         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9600             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9601              CLI.RetZExt == Args[i].IsZExt))
9602           Flags.setReturned();
9603       }
9604 
9605       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9606                      CLI.CallConv, ExtendKind);
9607 
9608       for (unsigned j = 0; j != NumParts; ++j) {
9609         // if it isn't first piece, alignment must be 1
9610         // For scalable vectors the scalable part is currently handled
9611         // by individual targets, so we just use the known minimum size here.
9612         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9613                     i < CLI.NumFixedArgs, i,
9614                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9615         if (NumParts > 1 && j == 0)
9616           MyFlags.Flags.setSplit();
9617         else if (j != 0) {
9618           MyFlags.Flags.setOrigAlign(Align(1));
9619           if (j == NumParts - 1)
9620             MyFlags.Flags.setSplitEnd();
9621         }
9622 
9623         CLI.Outs.push_back(MyFlags);
9624         CLI.OutVals.push_back(Parts[j]);
9625       }
9626 
9627       if (NeedsRegBlock && Value == NumValues - 1)
9628         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9629     }
9630   }
9631 
9632   SmallVector<SDValue, 4> InVals;
9633   CLI.Chain = LowerCall(CLI, InVals);
9634 
9635   // Update CLI.InVals to use outside of this function.
9636   CLI.InVals = InVals;
9637 
9638   // Verify that the target's LowerCall behaved as expected.
9639   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9640          "LowerCall didn't return a valid chain!");
9641   assert((!CLI.IsTailCall || InVals.empty()) &&
9642          "LowerCall emitted a return value for a tail call!");
9643   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9644          "LowerCall didn't emit the correct number of values!");
9645 
9646   // For a tail call, the return value is merely live-out and there aren't
9647   // any nodes in the DAG representing it. Return a special value to
9648   // indicate that a tail call has been emitted and no more Instructions
9649   // should be processed in the current block.
9650   if (CLI.IsTailCall) {
9651     CLI.DAG.setRoot(CLI.Chain);
9652     return std::make_pair(SDValue(), SDValue());
9653   }
9654 
9655 #ifndef NDEBUG
9656   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9657     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9658     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9659            "LowerCall emitted a value with the wrong type!");
9660   }
9661 #endif
9662 
9663   SmallVector<SDValue, 4> ReturnValues;
9664   if (!CanLowerReturn) {
9665     // The instruction result is the result of loading from the
9666     // hidden sret parameter.
9667     SmallVector<EVT, 1> PVTs;
9668     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9669 
9670     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9671     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9672     EVT PtrVT = PVTs[0];
9673 
9674     unsigned NumValues = RetTys.size();
9675     ReturnValues.resize(NumValues);
9676     SmallVector<SDValue, 4> Chains(NumValues);
9677 
9678     // An aggregate return value cannot wrap around the address space, so
9679     // offsets to its parts don't wrap either.
9680     SDNodeFlags Flags;
9681     Flags.setNoUnsignedWrap(true);
9682 
9683     MachineFunction &MF = CLI.DAG.getMachineFunction();
9684     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9685     for (unsigned i = 0; i < NumValues; ++i) {
9686       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9687                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9688                                                         PtrVT), Flags);
9689       SDValue L = CLI.DAG.getLoad(
9690           RetTys[i], CLI.DL, CLI.Chain, Add,
9691           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9692                                             DemoteStackIdx, Offsets[i]),
9693           HiddenSRetAlign);
9694       ReturnValues[i] = L;
9695       Chains[i] = L.getValue(1);
9696     }
9697 
9698     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9699   } else {
9700     // Collect the legal value parts into potentially illegal values
9701     // that correspond to the original function's return values.
9702     Optional<ISD::NodeType> AssertOp;
9703     if (CLI.RetSExt)
9704       AssertOp = ISD::AssertSext;
9705     else if (CLI.RetZExt)
9706       AssertOp = ISD::AssertZext;
9707     unsigned CurReg = 0;
9708     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9709       EVT VT = RetTys[I];
9710       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9711                                                      CLI.CallConv, VT);
9712       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9713                                                        CLI.CallConv, VT);
9714 
9715       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9716                                               NumRegs, RegisterVT, VT, nullptr,
9717                                               CLI.CallConv, AssertOp));
9718       CurReg += NumRegs;
9719     }
9720 
9721     // For a function returning void, there is no return value. We can't create
9722     // such a node, so we just return a null return value in that case. In
9723     // that case, nothing will actually look at the value.
9724     if (ReturnValues.empty())
9725       return std::make_pair(SDValue(), CLI.Chain);
9726   }
9727 
9728   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9729                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9730   return std::make_pair(Res, CLI.Chain);
9731 }
9732 
9733 /// Places new result values for the node in Results (their number
9734 /// and types must exactly match those of the original return values of
9735 /// the node), or leaves Results empty, which indicates that the node is not
9736 /// to be custom lowered after all.
9737 void TargetLowering::LowerOperationWrapper(SDNode *N,
9738                                            SmallVectorImpl<SDValue> &Results,
9739                                            SelectionDAG &DAG) const {
9740   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9741 
9742   if (!Res.getNode())
9743     return;
9744 
9745   // If the original node has one result, take the return value from
9746   // LowerOperation as is. It might not be result number 0.
9747   if (N->getNumValues() == 1) {
9748     Results.push_back(Res);
9749     return;
9750   }
9751 
9752   // If the original node has multiple results, then the return node should
9753   // have the same number of results.
9754   assert((N->getNumValues() == Res->getNumValues()) &&
9755       "Lowering returned the wrong number of results!");
9756 
9757   // Places new result values base on N result number.
9758   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9759     Results.push_back(Res.getValue(I));
9760 }
9761 
9762 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9763   llvm_unreachable("LowerOperation not implemented for this target!");
9764 }
9765 
9766 void
9767 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9768   SDValue Op = getNonRegisterValue(V);
9769   assert((Op.getOpcode() != ISD::CopyFromReg ||
9770           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9771          "Copy from a reg to the same reg!");
9772   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9773 
9774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9775   // If this is an InlineAsm we have to match the registers required, not the
9776   // notional registers required by the type.
9777 
9778   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9779                    None); // This is not an ABI copy.
9780   SDValue Chain = DAG.getEntryNode();
9781 
9782   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9783                               FuncInfo.PreferredExtendType.end())
9784                                  ? ISD::ANY_EXTEND
9785                                  : FuncInfo.PreferredExtendType[V];
9786   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9787   PendingExports.push_back(Chain);
9788 }
9789 
9790 #include "llvm/CodeGen/SelectionDAGISel.h"
9791 
9792 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9793 /// entry block, return true.  This includes arguments used by switches, since
9794 /// the switch may expand into multiple basic blocks.
9795 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9796   // With FastISel active, we may be splitting blocks, so force creation
9797   // of virtual registers for all non-dead arguments.
9798   if (FastISel)
9799     return A->use_empty();
9800 
9801   const BasicBlock &Entry = A->getParent()->front();
9802   for (const User *U : A->users())
9803     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9804       return false;  // Use not in entry block.
9805 
9806   return true;
9807 }
9808 
9809 using ArgCopyElisionMapTy =
9810     DenseMap<const Argument *,
9811              std::pair<const AllocaInst *, const StoreInst *>>;
9812 
9813 /// Scan the entry block of the function in FuncInfo for arguments that look
9814 /// like copies into a local alloca. Record any copied arguments in
9815 /// ArgCopyElisionCandidates.
9816 static void
9817 findArgumentCopyElisionCandidates(const DataLayout &DL,
9818                                   FunctionLoweringInfo *FuncInfo,
9819                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9820   // Record the state of every static alloca used in the entry block. Argument
9821   // allocas are all used in the entry block, so we need approximately as many
9822   // entries as we have arguments.
9823   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9824   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9825   unsigned NumArgs = FuncInfo->Fn->arg_size();
9826   StaticAllocas.reserve(NumArgs * 2);
9827 
9828   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9829     if (!V)
9830       return nullptr;
9831     V = V->stripPointerCasts();
9832     const auto *AI = dyn_cast<AllocaInst>(V);
9833     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9834       return nullptr;
9835     auto Iter = StaticAllocas.insert({AI, Unknown});
9836     return &Iter.first->second;
9837   };
9838 
9839   // Look for stores of arguments to static allocas. Look through bitcasts and
9840   // GEPs to handle type coercions, as long as the alloca is fully initialized
9841   // by the store. Any non-store use of an alloca escapes it and any subsequent
9842   // unanalyzed store might write it.
9843   // FIXME: Handle structs initialized with multiple stores.
9844   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9845     // Look for stores, and handle non-store uses conservatively.
9846     const auto *SI = dyn_cast<StoreInst>(&I);
9847     if (!SI) {
9848       // We will look through cast uses, so ignore them completely.
9849       if (I.isCast())
9850         continue;
9851       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9852       // to allocas.
9853       if (I.isDebugOrPseudoInst())
9854         continue;
9855       // This is an unknown instruction. Assume it escapes or writes to all
9856       // static alloca operands.
9857       for (const Use &U : I.operands()) {
9858         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9859           *Info = StaticAllocaInfo::Clobbered;
9860       }
9861       continue;
9862     }
9863 
9864     // If the stored value is a static alloca, mark it as escaped.
9865     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9866       *Info = StaticAllocaInfo::Clobbered;
9867 
9868     // Check if the destination is a static alloca.
9869     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9870     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9871     if (!Info)
9872       continue;
9873     const AllocaInst *AI = cast<AllocaInst>(Dst);
9874 
9875     // Skip allocas that have been initialized or clobbered.
9876     if (*Info != StaticAllocaInfo::Unknown)
9877       continue;
9878 
9879     // Check if the stored value is an argument, and that this store fully
9880     // initializes the alloca. Don't elide copies from the same argument twice.
9881     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9882     const auto *Arg = dyn_cast<Argument>(Val);
9883     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9884         Arg->getType()->isEmptyTy() ||
9885         DL.getTypeStoreSize(Arg->getType()) !=
9886             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9887         ArgCopyElisionCandidates.count(Arg)) {
9888       *Info = StaticAllocaInfo::Clobbered;
9889       continue;
9890     }
9891 
9892     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9893                       << '\n');
9894 
9895     // Mark this alloca and store for argument copy elision.
9896     *Info = StaticAllocaInfo::Elidable;
9897     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9898 
9899     // Stop scanning if we've seen all arguments. This will happen early in -O0
9900     // builds, which is useful, because -O0 builds have large entry blocks and
9901     // many allocas.
9902     if (ArgCopyElisionCandidates.size() == NumArgs)
9903       break;
9904   }
9905 }
9906 
9907 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9908 /// ArgVal is a load from a suitable fixed stack object.
9909 static void tryToElideArgumentCopy(
9910     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9911     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9912     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9913     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9914     SDValue ArgVal, bool &ArgHasUses) {
9915   // Check if this is a load from a fixed stack object.
9916   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9917   if (!LNode)
9918     return;
9919   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9920   if (!FINode)
9921     return;
9922 
9923   // Check that the fixed stack object is the right size and alignment.
9924   // Look at the alignment that the user wrote on the alloca instead of looking
9925   // at the stack object.
9926   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9927   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9928   const AllocaInst *AI = ArgCopyIter->second.first;
9929   int FixedIndex = FINode->getIndex();
9930   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9931   int OldIndex = AllocaIndex;
9932   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9933   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9934     LLVM_DEBUG(
9935         dbgs() << "  argument copy elision failed due to bad fixed stack "
9936                   "object size\n");
9937     return;
9938   }
9939   Align RequiredAlignment = AI->getAlign();
9940   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9941     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9942                          "greater than stack argument alignment ("
9943                       << DebugStr(RequiredAlignment) << " vs "
9944                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9945     return;
9946   }
9947 
9948   // Perform the elision. Delete the old stack object and replace its only use
9949   // in the variable info map. Mark the stack object as mutable.
9950   LLVM_DEBUG({
9951     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9952            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9953            << '\n';
9954   });
9955   MFI.RemoveStackObject(OldIndex);
9956   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9957   AllocaIndex = FixedIndex;
9958   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9959   Chains.push_back(ArgVal.getValue(1));
9960 
9961   // Avoid emitting code for the store implementing the copy.
9962   const StoreInst *SI = ArgCopyIter->second.second;
9963   ElidedArgCopyInstrs.insert(SI);
9964 
9965   // Check for uses of the argument again so that we can avoid exporting ArgVal
9966   // if it is't used by anything other than the store.
9967   for (const Value *U : Arg.users()) {
9968     if (U != SI) {
9969       ArgHasUses = true;
9970       break;
9971     }
9972   }
9973 }
9974 
9975 void SelectionDAGISel::LowerArguments(const Function &F) {
9976   SelectionDAG &DAG = SDB->DAG;
9977   SDLoc dl = SDB->getCurSDLoc();
9978   const DataLayout &DL = DAG.getDataLayout();
9979   SmallVector<ISD::InputArg, 16> Ins;
9980 
9981   // In Naked functions we aren't going to save any registers.
9982   if (F.hasFnAttribute(Attribute::Naked))
9983     return;
9984 
9985   if (!FuncInfo->CanLowerReturn) {
9986     // Put in an sret pointer parameter before all the other parameters.
9987     SmallVector<EVT, 1> ValueVTs;
9988     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9989                     F.getReturnType()->getPointerTo(
9990                         DAG.getDataLayout().getAllocaAddrSpace()),
9991                     ValueVTs);
9992 
9993     // NOTE: Assuming that a pointer will never break down to more than one VT
9994     // or one register.
9995     ISD::ArgFlagsTy Flags;
9996     Flags.setSRet();
9997     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9998     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9999                          ISD::InputArg::NoArgIndex, 0);
10000     Ins.push_back(RetArg);
10001   }
10002 
10003   // Look for stores of arguments to static allocas. Mark such arguments with a
10004   // flag to ask the target to give us the memory location of that argument if
10005   // available.
10006   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10007   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10008                                     ArgCopyElisionCandidates);
10009 
10010   // Set up the incoming argument description vector.
10011   for (const Argument &Arg : F.args()) {
10012     unsigned ArgNo = Arg.getArgNo();
10013     SmallVector<EVT, 4> ValueVTs;
10014     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10015     bool isArgValueUsed = !Arg.use_empty();
10016     unsigned PartBase = 0;
10017     Type *FinalType = Arg.getType();
10018     if (Arg.hasAttribute(Attribute::ByVal))
10019       FinalType = Arg.getParamByValType();
10020     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10021         FinalType, F.getCallingConv(), F.isVarArg());
10022     for (unsigned Value = 0, NumValues = ValueVTs.size();
10023          Value != NumValues; ++Value) {
10024       EVT VT = ValueVTs[Value];
10025       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10026       ISD::ArgFlagsTy Flags;
10027 
10028 
10029       if (Arg.getType()->isPointerTy()) {
10030         Flags.setPointer();
10031         Flags.setPointerAddrSpace(
10032             cast<PointerType>(Arg.getType())->getAddressSpace());
10033       }
10034       if (Arg.hasAttribute(Attribute::ZExt))
10035         Flags.setZExt();
10036       if (Arg.hasAttribute(Attribute::SExt))
10037         Flags.setSExt();
10038       if (Arg.hasAttribute(Attribute::InReg)) {
10039         // If we are using vectorcall calling convention, a structure that is
10040         // passed InReg - is surely an HVA
10041         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10042             isa<StructType>(Arg.getType())) {
10043           // The first value of a structure is marked
10044           if (0 == Value)
10045             Flags.setHvaStart();
10046           Flags.setHva();
10047         }
10048         // Set InReg Flag
10049         Flags.setInReg();
10050       }
10051       if (Arg.hasAttribute(Attribute::StructRet))
10052         Flags.setSRet();
10053       if (Arg.hasAttribute(Attribute::SwiftSelf))
10054         Flags.setSwiftSelf();
10055       if (Arg.hasAttribute(Attribute::SwiftAsync))
10056         Flags.setSwiftAsync();
10057       if (Arg.hasAttribute(Attribute::SwiftError))
10058         Flags.setSwiftError();
10059       if (Arg.hasAttribute(Attribute::ByVal))
10060         Flags.setByVal();
10061       if (Arg.hasAttribute(Attribute::ByRef))
10062         Flags.setByRef();
10063       if (Arg.hasAttribute(Attribute::InAlloca)) {
10064         Flags.setInAlloca();
10065         // Set the byval flag for CCAssignFn callbacks that don't know about
10066         // inalloca.  This way we can know how many bytes we should've allocated
10067         // and how many bytes a callee cleanup function will pop.  If we port
10068         // inalloca to more targets, we'll have to add custom inalloca handling
10069         // in the various CC lowering callbacks.
10070         Flags.setByVal();
10071       }
10072       if (Arg.hasAttribute(Attribute::Preallocated)) {
10073         Flags.setPreallocated();
10074         // Set the byval flag for CCAssignFn callbacks that don't know about
10075         // preallocated.  This way we can know how many bytes we should've
10076         // allocated and how many bytes a callee cleanup function will pop.  If
10077         // we port preallocated to more targets, we'll have to add custom
10078         // preallocated handling in the various CC lowering callbacks.
10079         Flags.setByVal();
10080       }
10081 
10082       // Certain targets (such as MIPS), may have a different ABI alignment
10083       // for a type depending on the context. Give the target a chance to
10084       // specify the alignment it wants.
10085       const Align OriginalAlignment(
10086           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10087       Flags.setOrigAlign(OriginalAlignment);
10088 
10089       Align MemAlign;
10090       Type *ArgMemTy = nullptr;
10091       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10092           Flags.isByRef()) {
10093         if (!ArgMemTy)
10094           ArgMemTy = Arg.getPointeeInMemoryValueType();
10095 
10096         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10097 
10098         // For in-memory arguments, size and alignment should be passed from FE.
10099         // BE will guess if this info is not there but there are cases it cannot
10100         // get right.
10101         if (auto ParamAlign = Arg.getParamStackAlign())
10102           MemAlign = *ParamAlign;
10103         else if ((ParamAlign = Arg.getParamAlign()))
10104           MemAlign = *ParamAlign;
10105         else
10106           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10107         if (Flags.isByRef())
10108           Flags.setByRefSize(MemSize);
10109         else
10110           Flags.setByValSize(MemSize);
10111       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10112         MemAlign = *ParamAlign;
10113       } else {
10114         MemAlign = OriginalAlignment;
10115       }
10116       Flags.setMemAlign(MemAlign);
10117 
10118       if (Arg.hasAttribute(Attribute::Nest))
10119         Flags.setNest();
10120       if (NeedsRegBlock)
10121         Flags.setInConsecutiveRegs();
10122       if (ArgCopyElisionCandidates.count(&Arg))
10123         Flags.setCopyElisionCandidate();
10124       if (Arg.hasAttribute(Attribute::Returned))
10125         Flags.setReturned();
10126 
10127       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10128           *CurDAG->getContext(), F.getCallingConv(), VT);
10129       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10130           *CurDAG->getContext(), F.getCallingConv(), VT);
10131       for (unsigned i = 0; i != NumRegs; ++i) {
10132         // For scalable vectors, use the minimum size; individual targets
10133         // are responsible for handling scalable vector arguments and
10134         // return values.
10135         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10136                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10137         if (NumRegs > 1 && i == 0)
10138           MyFlags.Flags.setSplit();
10139         // if it isn't first piece, alignment must be 1
10140         else if (i > 0) {
10141           MyFlags.Flags.setOrigAlign(Align(1));
10142           if (i == NumRegs - 1)
10143             MyFlags.Flags.setSplitEnd();
10144         }
10145         Ins.push_back(MyFlags);
10146       }
10147       if (NeedsRegBlock && Value == NumValues - 1)
10148         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10149       PartBase += VT.getStoreSize().getKnownMinSize();
10150     }
10151   }
10152 
10153   // Call the target to set up the argument values.
10154   SmallVector<SDValue, 8> InVals;
10155   SDValue NewRoot = TLI->LowerFormalArguments(
10156       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10157 
10158   // Verify that the target's LowerFormalArguments behaved as expected.
10159   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10160          "LowerFormalArguments didn't return a valid chain!");
10161   assert(InVals.size() == Ins.size() &&
10162          "LowerFormalArguments didn't emit the correct number of values!");
10163   LLVM_DEBUG({
10164     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10165       assert(InVals[i].getNode() &&
10166              "LowerFormalArguments emitted a null value!");
10167       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10168              "LowerFormalArguments emitted a value with the wrong type!");
10169     }
10170   });
10171 
10172   // Update the DAG with the new chain value resulting from argument lowering.
10173   DAG.setRoot(NewRoot);
10174 
10175   // Set up the argument values.
10176   unsigned i = 0;
10177   if (!FuncInfo->CanLowerReturn) {
10178     // Create a virtual register for the sret pointer, and put in a copy
10179     // from the sret argument into it.
10180     SmallVector<EVT, 1> ValueVTs;
10181     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10182                     F.getReturnType()->getPointerTo(
10183                         DAG.getDataLayout().getAllocaAddrSpace()),
10184                     ValueVTs);
10185     MVT VT = ValueVTs[0].getSimpleVT();
10186     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10187     Optional<ISD::NodeType> AssertOp = None;
10188     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10189                                         nullptr, F.getCallingConv(), AssertOp);
10190 
10191     MachineFunction& MF = SDB->DAG.getMachineFunction();
10192     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10193     Register SRetReg =
10194         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10195     FuncInfo->DemoteRegister = SRetReg;
10196     NewRoot =
10197         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10198     DAG.setRoot(NewRoot);
10199 
10200     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10201     ++i;
10202   }
10203 
10204   SmallVector<SDValue, 4> Chains;
10205   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10206   for (const Argument &Arg : F.args()) {
10207     SmallVector<SDValue, 4> ArgValues;
10208     SmallVector<EVT, 4> ValueVTs;
10209     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10210     unsigned NumValues = ValueVTs.size();
10211     if (NumValues == 0)
10212       continue;
10213 
10214     bool ArgHasUses = !Arg.use_empty();
10215 
10216     // Elide the copying store if the target loaded this argument from a
10217     // suitable fixed stack object.
10218     if (Ins[i].Flags.isCopyElisionCandidate()) {
10219       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10220                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10221                              InVals[i], ArgHasUses);
10222     }
10223 
10224     // If this argument is unused then remember its value. It is used to generate
10225     // debugging information.
10226     bool isSwiftErrorArg =
10227         TLI->supportSwiftError() &&
10228         Arg.hasAttribute(Attribute::SwiftError);
10229     if (!ArgHasUses && !isSwiftErrorArg) {
10230       SDB->setUnusedArgValue(&Arg, InVals[i]);
10231 
10232       // Also remember any frame index for use in FastISel.
10233       if (FrameIndexSDNode *FI =
10234           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10235         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10236     }
10237 
10238     for (unsigned Val = 0; Val != NumValues; ++Val) {
10239       EVT VT = ValueVTs[Val];
10240       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10241                                                       F.getCallingConv(), VT);
10242       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10243           *CurDAG->getContext(), F.getCallingConv(), VT);
10244 
10245       // Even an apparent 'unused' swifterror argument needs to be returned. So
10246       // we do generate a copy for it that can be used on return from the
10247       // function.
10248       if (ArgHasUses || isSwiftErrorArg) {
10249         Optional<ISD::NodeType> AssertOp;
10250         if (Arg.hasAttribute(Attribute::SExt))
10251           AssertOp = ISD::AssertSext;
10252         else if (Arg.hasAttribute(Attribute::ZExt))
10253           AssertOp = ISD::AssertZext;
10254 
10255         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10256                                              PartVT, VT, nullptr,
10257                                              F.getCallingConv(), AssertOp));
10258       }
10259 
10260       i += NumParts;
10261     }
10262 
10263     // We don't need to do anything else for unused arguments.
10264     if (ArgValues.empty())
10265       continue;
10266 
10267     // Note down frame index.
10268     if (FrameIndexSDNode *FI =
10269         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10270       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10271 
10272     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10273                                      SDB->getCurSDLoc());
10274 
10275     SDB->setValue(&Arg, Res);
10276     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10277       // We want to associate the argument with the frame index, among
10278       // involved operands, that correspond to the lowest address. The
10279       // getCopyFromParts function, called earlier, is swapping the order of
10280       // the operands to BUILD_PAIR depending on endianness. The result of
10281       // that swapping is that the least significant bits of the argument will
10282       // be in the first operand of the BUILD_PAIR node, and the most
10283       // significant bits will be in the second operand.
10284       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10285       if (LoadSDNode *LNode =
10286           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10287         if (FrameIndexSDNode *FI =
10288             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10289           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10290     }
10291 
10292     // Analyses past this point are naive and don't expect an assertion.
10293     if (Res.getOpcode() == ISD::AssertZext)
10294       Res = Res.getOperand(0);
10295 
10296     // Update the SwiftErrorVRegDefMap.
10297     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10298       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10299       if (Register::isVirtualRegister(Reg))
10300         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10301                                    Reg);
10302     }
10303 
10304     // If this argument is live outside of the entry block, insert a copy from
10305     // wherever we got it to the vreg that other BB's will reference it as.
10306     if (Res.getOpcode() == ISD::CopyFromReg) {
10307       // If we can, though, try to skip creating an unnecessary vreg.
10308       // FIXME: This isn't very clean... it would be nice to make this more
10309       // general.
10310       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10311       if (Register::isVirtualRegister(Reg)) {
10312         FuncInfo->ValueMap[&Arg] = Reg;
10313         continue;
10314       }
10315     }
10316     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10317       FuncInfo->InitializeRegForValue(&Arg);
10318       SDB->CopyToExportRegsIfNeeded(&Arg);
10319     }
10320   }
10321 
10322   if (!Chains.empty()) {
10323     Chains.push_back(NewRoot);
10324     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10325   }
10326 
10327   DAG.setRoot(NewRoot);
10328 
10329   assert(i == InVals.size() && "Argument register count mismatch!");
10330 
10331   // If any argument copy elisions occurred and we have debug info, update the
10332   // stale frame indices used in the dbg.declare variable info table.
10333   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10334   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10335     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10336       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10337       if (I != ArgCopyElisionFrameIndexMap.end())
10338         VI.Slot = I->second;
10339     }
10340   }
10341 
10342   // Finally, if the target has anything special to do, allow it to do so.
10343   emitFunctionEntryCode();
10344 }
10345 
10346 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10347 /// ensure constants are generated when needed.  Remember the virtual registers
10348 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10349 /// directly add them, because expansion might result in multiple MBB's for one
10350 /// BB.  As such, the start of the BB might correspond to a different MBB than
10351 /// the end.
10352 void
10353 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10354   const Instruction *TI = LLVMBB->getTerminator();
10355 
10356   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10357 
10358   // Check PHI nodes in successors that expect a value to be available from this
10359   // block.
10360   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10361     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10362     if (!isa<PHINode>(SuccBB->begin())) continue;
10363     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10364 
10365     // If this terminator has multiple identical successors (common for
10366     // switches), only handle each succ once.
10367     if (!SuccsHandled.insert(SuccMBB).second)
10368       continue;
10369 
10370     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10371 
10372     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10373     // nodes and Machine PHI nodes, but the incoming operands have not been
10374     // emitted yet.
10375     for (const PHINode &PN : SuccBB->phis()) {
10376       // Ignore dead phi's.
10377       if (PN.use_empty())
10378         continue;
10379 
10380       // Skip empty types
10381       if (PN.getType()->isEmptyTy())
10382         continue;
10383 
10384       unsigned Reg;
10385       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10386 
10387       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10388         unsigned &RegOut = ConstantsOut[C];
10389         if (RegOut == 0) {
10390           RegOut = FuncInfo.CreateRegs(C);
10391           CopyValueToVirtualRegister(C, RegOut);
10392         }
10393         Reg = RegOut;
10394       } else {
10395         DenseMap<const Value *, Register>::iterator I =
10396           FuncInfo.ValueMap.find(PHIOp);
10397         if (I != FuncInfo.ValueMap.end())
10398           Reg = I->second;
10399         else {
10400           assert(isa<AllocaInst>(PHIOp) &&
10401                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10402                  "Didn't codegen value into a register!??");
10403           Reg = FuncInfo.CreateRegs(PHIOp);
10404           CopyValueToVirtualRegister(PHIOp, Reg);
10405         }
10406       }
10407 
10408       // Remember that this register needs to added to the machine PHI node as
10409       // the input for this MBB.
10410       SmallVector<EVT, 4> ValueVTs;
10411       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10412       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10413       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10414         EVT VT = ValueVTs[vti];
10415         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10416         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10417           FuncInfo.PHINodesToUpdate.push_back(
10418               std::make_pair(&*MBBI++, Reg + i));
10419         Reg += NumRegisters;
10420       }
10421     }
10422   }
10423 
10424   ConstantsOut.clear();
10425 }
10426 
10427 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10428 /// is 0.
10429 MachineBasicBlock *
10430 SelectionDAGBuilder::StackProtectorDescriptor::
10431 AddSuccessorMBB(const BasicBlock *BB,
10432                 MachineBasicBlock *ParentMBB,
10433                 bool IsLikely,
10434                 MachineBasicBlock *SuccMBB) {
10435   // If SuccBB has not been created yet, create it.
10436   if (!SuccMBB) {
10437     MachineFunction *MF = ParentMBB->getParent();
10438     MachineFunction::iterator BBI(ParentMBB);
10439     SuccMBB = MF->CreateMachineBasicBlock(BB);
10440     MF->insert(++BBI, SuccMBB);
10441   }
10442   // Add it as a successor of ParentMBB.
10443   ParentMBB->addSuccessor(
10444       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10445   return SuccMBB;
10446 }
10447 
10448 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10449   MachineFunction::iterator I(MBB);
10450   if (++I == FuncInfo.MF->end())
10451     return nullptr;
10452   return &*I;
10453 }
10454 
10455 /// During lowering new call nodes can be created (such as memset, etc.).
10456 /// Those will become new roots of the current DAG, but complications arise
10457 /// when they are tail calls. In such cases, the call lowering will update
10458 /// the root, but the builder still needs to know that a tail call has been
10459 /// lowered in order to avoid generating an additional return.
10460 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10461   // If the node is null, we do have a tail call.
10462   if (MaybeTC.getNode() != nullptr)
10463     DAG.setRoot(MaybeTC);
10464   else
10465     HasTailCall = true;
10466 }
10467 
10468 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10469                                         MachineBasicBlock *SwitchMBB,
10470                                         MachineBasicBlock *DefaultMBB) {
10471   MachineFunction *CurMF = FuncInfo.MF;
10472   MachineBasicBlock *NextMBB = nullptr;
10473   MachineFunction::iterator BBI(W.MBB);
10474   if (++BBI != FuncInfo.MF->end())
10475     NextMBB = &*BBI;
10476 
10477   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10478 
10479   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10480 
10481   if (Size == 2 && W.MBB == SwitchMBB) {
10482     // If any two of the cases has the same destination, and if one value
10483     // is the same as the other, but has one bit unset that the other has set,
10484     // use bit manipulation to do two compares at once.  For example:
10485     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10486     // TODO: This could be extended to merge any 2 cases in switches with 3
10487     // cases.
10488     // TODO: Handle cases where W.CaseBB != SwitchBB.
10489     CaseCluster &Small = *W.FirstCluster;
10490     CaseCluster &Big = *W.LastCluster;
10491 
10492     if (Small.Low == Small.High && Big.Low == Big.High &&
10493         Small.MBB == Big.MBB) {
10494       const APInt &SmallValue = Small.Low->getValue();
10495       const APInt &BigValue = Big.Low->getValue();
10496 
10497       // Check that there is only one bit different.
10498       APInt CommonBit = BigValue ^ SmallValue;
10499       if (CommonBit.isPowerOf2()) {
10500         SDValue CondLHS = getValue(Cond);
10501         EVT VT = CondLHS.getValueType();
10502         SDLoc DL = getCurSDLoc();
10503 
10504         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10505                                  DAG.getConstant(CommonBit, DL, VT));
10506         SDValue Cond = DAG.getSetCC(
10507             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10508             ISD::SETEQ);
10509 
10510         // Update successor info.
10511         // Both Small and Big will jump to Small.BB, so we sum up the
10512         // probabilities.
10513         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10514         if (BPI)
10515           addSuccessorWithProb(
10516               SwitchMBB, DefaultMBB,
10517               // The default destination is the first successor in IR.
10518               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10519         else
10520           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10521 
10522         // Insert the true branch.
10523         SDValue BrCond =
10524             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10525                         DAG.getBasicBlock(Small.MBB));
10526         // Insert the false branch.
10527         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10528                              DAG.getBasicBlock(DefaultMBB));
10529 
10530         DAG.setRoot(BrCond);
10531         return;
10532       }
10533     }
10534   }
10535 
10536   if (TM.getOptLevel() != CodeGenOpt::None) {
10537     // Here, we order cases by probability so the most likely case will be
10538     // checked first. However, two clusters can have the same probability in
10539     // which case their relative ordering is non-deterministic. So we use Low
10540     // as a tie-breaker as clusters are guaranteed to never overlap.
10541     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10542                [](const CaseCluster &a, const CaseCluster &b) {
10543       return a.Prob != b.Prob ?
10544              a.Prob > b.Prob :
10545              a.Low->getValue().slt(b.Low->getValue());
10546     });
10547 
10548     // Rearrange the case blocks so that the last one falls through if possible
10549     // without changing the order of probabilities.
10550     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10551       --I;
10552       if (I->Prob > W.LastCluster->Prob)
10553         break;
10554       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10555         std::swap(*I, *W.LastCluster);
10556         break;
10557       }
10558     }
10559   }
10560 
10561   // Compute total probability.
10562   BranchProbability DefaultProb = W.DefaultProb;
10563   BranchProbability UnhandledProbs = DefaultProb;
10564   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10565     UnhandledProbs += I->Prob;
10566 
10567   MachineBasicBlock *CurMBB = W.MBB;
10568   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10569     bool FallthroughUnreachable = false;
10570     MachineBasicBlock *Fallthrough;
10571     if (I == W.LastCluster) {
10572       // For the last cluster, fall through to the default destination.
10573       Fallthrough = DefaultMBB;
10574       FallthroughUnreachable = isa<UnreachableInst>(
10575           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10576     } else {
10577       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10578       CurMF->insert(BBI, Fallthrough);
10579       // Put Cond in a virtual register to make it available from the new blocks.
10580       ExportFromCurrentBlock(Cond);
10581     }
10582     UnhandledProbs -= I->Prob;
10583 
10584     switch (I->Kind) {
10585       case CC_JumpTable: {
10586         // FIXME: Optimize away range check based on pivot comparisons.
10587         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10588         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10589 
10590         // The jump block hasn't been inserted yet; insert it here.
10591         MachineBasicBlock *JumpMBB = JT->MBB;
10592         CurMF->insert(BBI, JumpMBB);
10593 
10594         auto JumpProb = I->Prob;
10595         auto FallthroughProb = UnhandledProbs;
10596 
10597         // If the default statement is a target of the jump table, we evenly
10598         // distribute the default probability to successors of CurMBB. Also
10599         // update the probability on the edge from JumpMBB to Fallthrough.
10600         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10601                                               SE = JumpMBB->succ_end();
10602              SI != SE; ++SI) {
10603           if (*SI == DefaultMBB) {
10604             JumpProb += DefaultProb / 2;
10605             FallthroughProb -= DefaultProb / 2;
10606             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10607             JumpMBB->normalizeSuccProbs();
10608             break;
10609           }
10610         }
10611 
10612         if (FallthroughUnreachable) {
10613           // Skip the range check if the fallthrough block is unreachable.
10614           JTH->OmitRangeCheck = true;
10615         }
10616 
10617         if (!JTH->OmitRangeCheck)
10618           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10619         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10620         CurMBB->normalizeSuccProbs();
10621 
10622         // The jump table header will be inserted in our current block, do the
10623         // range check, and fall through to our fallthrough block.
10624         JTH->HeaderBB = CurMBB;
10625         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10626 
10627         // If we're in the right place, emit the jump table header right now.
10628         if (CurMBB == SwitchMBB) {
10629           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10630           JTH->Emitted = true;
10631         }
10632         break;
10633       }
10634       case CC_BitTests: {
10635         // FIXME: Optimize away range check based on pivot comparisons.
10636         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10637 
10638         // The bit test blocks haven't been inserted yet; insert them here.
10639         for (BitTestCase &BTC : BTB->Cases)
10640           CurMF->insert(BBI, BTC.ThisBB);
10641 
10642         // Fill in fields of the BitTestBlock.
10643         BTB->Parent = CurMBB;
10644         BTB->Default = Fallthrough;
10645 
10646         BTB->DefaultProb = UnhandledProbs;
10647         // If the cases in bit test don't form a contiguous range, we evenly
10648         // distribute the probability on the edge to Fallthrough to two
10649         // successors of CurMBB.
10650         if (!BTB->ContiguousRange) {
10651           BTB->Prob += DefaultProb / 2;
10652           BTB->DefaultProb -= DefaultProb / 2;
10653         }
10654 
10655         if (FallthroughUnreachable) {
10656           // Skip the range check if the fallthrough block is unreachable.
10657           BTB->OmitRangeCheck = true;
10658         }
10659 
10660         // If we're in the right place, emit the bit test header right now.
10661         if (CurMBB == SwitchMBB) {
10662           visitBitTestHeader(*BTB, SwitchMBB);
10663           BTB->Emitted = true;
10664         }
10665         break;
10666       }
10667       case CC_Range: {
10668         const Value *RHS, *LHS, *MHS;
10669         ISD::CondCode CC;
10670         if (I->Low == I->High) {
10671           // Check Cond == I->Low.
10672           CC = ISD::SETEQ;
10673           LHS = Cond;
10674           RHS=I->Low;
10675           MHS = nullptr;
10676         } else {
10677           // Check I->Low <= Cond <= I->High.
10678           CC = ISD::SETLE;
10679           LHS = I->Low;
10680           MHS = Cond;
10681           RHS = I->High;
10682         }
10683 
10684         // If Fallthrough is unreachable, fold away the comparison.
10685         if (FallthroughUnreachable)
10686           CC = ISD::SETTRUE;
10687 
10688         // The false probability is the sum of all unhandled cases.
10689         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10690                      getCurSDLoc(), I->Prob, UnhandledProbs);
10691 
10692         if (CurMBB == SwitchMBB)
10693           visitSwitchCase(CB, SwitchMBB);
10694         else
10695           SL->SwitchCases.push_back(CB);
10696 
10697         break;
10698       }
10699     }
10700     CurMBB = Fallthrough;
10701   }
10702 }
10703 
10704 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10705                                               CaseClusterIt First,
10706                                               CaseClusterIt Last) {
10707   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10708     if (X.Prob != CC.Prob)
10709       return X.Prob > CC.Prob;
10710 
10711     // Ties are broken by comparing the case value.
10712     return X.Low->getValue().slt(CC.Low->getValue());
10713   });
10714 }
10715 
10716 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10717                                         const SwitchWorkListItem &W,
10718                                         Value *Cond,
10719                                         MachineBasicBlock *SwitchMBB) {
10720   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10721          "Clusters not sorted?");
10722 
10723   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10724 
10725   // Balance the tree based on branch probabilities to create a near-optimal (in
10726   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10727   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10728   CaseClusterIt LastLeft = W.FirstCluster;
10729   CaseClusterIt FirstRight = W.LastCluster;
10730   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10731   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10732 
10733   // Move LastLeft and FirstRight towards each other from opposite directions to
10734   // find a partitioning of the clusters which balances the probability on both
10735   // sides. If LeftProb and RightProb are equal, alternate which side is
10736   // taken to ensure 0-probability nodes are distributed evenly.
10737   unsigned I = 0;
10738   while (LastLeft + 1 < FirstRight) {
10739     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10740       LeftProb += (++LastLeft)->Prob;
10741     else
10742       RightProb += (--FirstRight)->Prob;
10743     I++;
10744   }
10745 
10746   while (true) {
10747     // Our binary search tree differs from a typical BST in that ours can have up
10748     // to three values in each leaf. The pivot selection above doesn't take that
10749     // into account, which means the tree might require more nodes and be less
10750     // efficient. We compensate for this here.
10751 
10752     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10753     unsigned NumRight = W.LastCluster - FirstRight + 1;
10754 
10755     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10756       // If one side has less than 3 clusters, and the other has more than 3,
10757       // consider taking a cluster from the other side.
10758 
10759       if (NumLeft < NumRight) {
10760         // Consider moving the first cluster on the right to the left side.
10761         CaseCluster &CC = *FirstRight;
10762         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10763         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10764         if (LeftSideRank <= RightSideRank) {
10765           // Moving the cluster to the left does not demote it.
10766           ++LastLeft;
10767           ++FirstRight;
10768           continue;
10769         }
10770       } else {
10771         assert(NumRight < NumLeft);
10772         // Consider moving the last element on the left to the right side.
10773         CaseCluster &CC = *LastLeft;
10774         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10775         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10776         if (RightSideRank <= LeftSideRank) {
10777           // Moving the cluster to the right does not demot it.
10778           --LastLeft;
10779           --FirstRight;
10780           continue;
10781         }
10782       }
10783     }
10784     break;
10785   }
10786 
10787   assert(LastLeft + 1 == FirstRight);
10788   assert(LastLeft >= W.FirstCluster);
10789   assert(FirstRight <= W.LastCluster);
10790 
10791   // Use the first element on the right as pivot since we will make less-than
10792   // comparisons against it.
10793   CaseClusterIt PivotCluster = FirstRight;
10794   assert(PivotCluster > W.FirstCluster);
10795   assert(PivotCluster <= W.LastCluster);
10796 
10797   CaseClusterIt FirstLeft = W.FirstCluster;
10798   CaseClusterIt LastRight = W.LastCluster;
10799 
10800   const ConstantInt *Pivot = PivotCluster->Low;
10801 
10802   // New blocks will be inserted immediately after the current one.
10803   MachineFunction::iterator BBI(W.MBB);
10804   ++BBI;
10805 
10806   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10807   // we can branch to its destination directly if it's squeezed exactly in
10808   // between the known lower bound and Pivot - 1.
10809   MachineBasicBlock *LeftMBB;
10810   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10811       FirstLeft->Low == W.GE &&
10812       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10813     LeftMBB = FirstLeft->MBB;
10814   } else {
10815     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10816     FuncInfo.MF->insert(BBI, LeftMBB);
10817     WorkList.push_back(
10818         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10819     // Put Cond in a virtual register to make it available from the new blocks.
10820     ExportFromCurrentBlock(Cond);
10821   }
10822 
10823   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10824   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10825   // directly if RHS.High equals the current upper bound.
10826   MachineBasicBlock *RightMBB;
10827   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10828       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10829     RightMBB = FirstRight->MBB;
10830   } else {
10831     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10832     FuncInfo.MF->insert(BBI, RightMBB);
10833     WorkList.push_back(
10834         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10835     // Put Cond in a virtual register to make it available from the new blocks.
10836     ExportFromCurrentBlock(Cond);
10837   }
10838 
10839   // Create the CaseBlock record that will be used to lower the branch.
10840   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10841                getCurSDLoc(), LeftProb, RightProb);
10842 
10843   if (W.MBB == SwitchMBB)
10844     visitSwitchCase(CB, SwitchMBB);
10845   else
10846     SL->SwitchCases.push_back(CB);
10847 }
10848 
10849 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10850 // from the swith statement.
10851 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10852                                             BranchProbability PeeledCaseProb) {
10853   if (PeeledCaseProb == BranchProbability::getOne())
10854     return BranchProbability::getZero();
10855   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10856 
10857   uint32_t Numerator = CaseProb.getNumerator();
10858   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10859   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10860 }
10861 
10862 // Try to peel the top probability case if it exceeds the threshold.
10863 // Return current MachineBasicBlock for the switch statement if the peeling
10864 // does not occur.
10865 // If the peeling is performed, return the newly created MachineBasicBlock
10866 // for the peeled switch statement. Also update Clusters to remove the peeled
10867 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10868 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10869     const SwitchInst &SI, CaseClusterVector &Clusters,
10870     BranchProbability &PeeledCaseProb) {
10871   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10872   // Don't perform if there is only one cluster or optimizing for size.
10873   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10874       TM.getOptLevel() == CodeGenOpt::None ||
10875       SwitchMBB->getParent()->getFunction().hasMinSize())
10876     return SwitchMBB;
10877 
10878   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10879   unsigned PeeledCaseIndex = 0;
10880   bool SwitchPeeled = false;
10881   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10882     CaseCluster &CC = Clusters[Index];
10883     if (CC.Prob < TopCaseProb)
10884       continue;
10885     TopCaseProb = CC.Prob;
10886     PeeledCaseIndex = Index;
10887     SwitchPeeled = true;
10888   }
10889   if (!SwitchPeeled)
10890     return SwitchMBB;
10891 
10892   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10893                     << TopCaseProb << "\n");
10894 
10895   // Record the MBB for the peeled switch statement.
10896   MachineFunction::iterator BBI(SwitchMBB);
10897   ++BBI;
10898   MachineBasicBlock *PeeledSwitchMBB =
10899       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10900   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10901 
10902   ExportFromCurrentBlock(SI.getCondition());
10903   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10904   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10905                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10906   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10907 
10908   Clusters.erase(PeeledCaseIt);
10909   for (CaseCluster &CC : Clusters) {
10910     LLVM_DEBUG(
10911         dbgs() << "Scale the probablity for one cluster, before scaling: "
10912                << CC.Prob << "\n");
10913     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10914     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10915   }
10916   PeeledCaseProb = TopCaseProb;
10917   return PeeledSwitchMBB;
10918 }
10919 
10920 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10921   // Extract cases from the switch.
10922   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10923   CaseClusterVector Clusters;
10924   Clusters.reserve(SI.getNumCases());
10925   for (auto I : SI.cases()) {
10926     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10927     const ConstantInt *CaseVal = I.getCaseValue();
10928     BranchProbability Prob =
10929         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10930             : BranchProbability(1, SI.getNumCases() + 1);
10931     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10932   }
10933 
10934   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10935 
10936   // Cluster adjacent cases with the same destination. We do this at all
10937   // optimization levels because it's cheap to do and will make codegen faster
10938   // if there are many clusters.
10939   sortAndRangeify(Clusters);
10940 
10941   // The branch probablity of the peeled case.
10942   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10943   MachineBasicBlock *PeeledSwitchMBB =
10944       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10945 
10946   // If there is only the default destination, jump there directly.
10947   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10948   if (Clusters.empty()) {
10949     assert(PeeledSwitchMBB == SwitchMBB);
10950     SwitchMBB->addSuccessor(DefaultMBB);
10951     if (DefaultMBB != NextBlock(SwitchMBB)) {
10952       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10953                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10954     }
10955     return;
10956   }
10957 
10958   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10959   SL->findBitTestClusters(Clusters, &SI);
10960 
10961   LLVM_DEBUG({
10962     dbgs() << "Case clusters: ";
10963     for (const CaseCluster &C : Clusters) {
10964       if (C.Kind == CC_JumpTable)
10965         dbgs() << "JT:";
10966       if (C.Kind == CC_BitTests)
10967         dbgs() << "BT:";
10968 
10969       C.Low->getValue().print(dbgs(), true);
10970       if (C.Low != C.High) {
10971         dbgs() << '-';
10972         C.High->getValue().print(dbgs(), true);
10973       }
10974       dbgs() << ' ';
10975     }
10976     dbgs() << '\n';
10977   });
10978 
10979   assert(!Clusters.empty());
10980   SwitchWorkList WorkList;
10981   CaseClusterIt First = Clusters.begin();
10982   CaseClusterIt Last = Clusters.end() - 1;
10983   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10984   // Scale the branchprobability for DefaultMBB if the peel occurs and
10985   // DefaultMBB is not replaced.
10986   if (PeeledCaseProb != BranchProbability::getZero() &&
10987       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10988     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10989   WorkList.push_back(
10990       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10991 
10992   while (!WorkList.empty()) {
10993     SwitchWorkListItem W = WorkList.pop_back_val();
10994     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10995 
10996     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10997         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10998       // For optimized builds, lower large range as a balanced binary tree.
10999       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11000       continue;
11001     }
11002 
11003     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11004   }
11005 }
11006 
11007 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11009   auto DL = getCurSDLoc();
11010   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11011   EVT OpVT =
11012       TLI.getTypeToTransformTo(*DAG.getContext(), ResultVT.getScalarType());
11013   SDValue Step = DAG.getConstant(1, DL, OpVT);
11014   setValue(&I, DAG.getStepVector(DL, ResultVT, Step));
11015 }
11016 
11017 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11019   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11020 
11021   SDLoc DL = getCurSDLoc();
11022   SDValue V = getValue(I.getOperand(0));
11023   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11024 
11025   if (VT.isScalableVector()) {
11026     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11027     return;
11028   }
11029 
11030   // Use VECTOR_SHUFFLE for the fixed-length vector
11031   // to maintain existing behavior.
11032   SmallVector<int, 8> Mask;
11033   unsigned NumElts = VT.getVectorMinNumElements();
11034   for (unsigned i = 0; i != NumElts; ++i)
11035     Mask.push_back(NumElts - 1 - i);
11036 
11037   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11038 }
11039 
11040 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11041   SmallVector<EVT, 4> ValueVTs;
11042   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11043                   ValueVTs);
11044   unsigned NumValues = ValueVTs.size();
11045   if (NumValues == 0) return;
11046 
11047   SmallVector<SDValue, 4> Values(NumValues);
11048   SDValue Op = getValue(I.getOperand(0));
11049 
11050   for (unsigned i = 0; i != NumValues; ++i)
11051     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11052                             SDValue(Op.getNode(), Op.getResNo() + i));
11053 
11054   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11055                            DAG.getVTList(ValueVTs), Values));
11056 }
11057 
11058 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11060   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11061 
11062   SDLoc DL = getCurSDLoc();
11063   SDValue V1 = getValue(I.getOperand(0));
11064   SDValue V2 = getValue(I.getOperand(1));
11065   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11066 
11067   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11068   if (VT.isScalableVector()) {
11069     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11070     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11071                              DAG.getConstant(Imm, DL, IdxVT)));
11072     return;
11073   }
11074 
11075   unsigned NumElts = VT.getVectorNumElements();
11076 
11077   if ((-Imm > NumElts) || (Imm >= NumElts)) {
11078     // Result is undefined if immediate is out-of-bounds.
11079     setValue(&I, DAG.getUNDEF(VT));
11080     return;
11081   }
11082 
11083   uint64_t Idx = (NumElts + Imm) % NumElts;
11084 
11085   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11086   SmallVector<int, 8> Mask;
11087   for (unsigned i = 0; i < NumElts; ++i)
11088     Mask.push_back(Idx + i);
11089   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11090 }
11091