xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 601e102bdb55e12a2f791e0d68fd6f81ffc21e21)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/InstructionCost.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/TargetParser/Triple.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <cstddef>
106 #include <iterator>
107 #include <limits>
108 #include <optional>
109 #include <tuple>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 using namespace SwitchCG;
114 
115 #define DEBUG_TYPE "isel"
116 
117 /// LimitFloatPrecision - Generate low-precision inline sequences for
118 /// some float libcalls (6, 8 or 12 bits).
119 static unsigned LimitFloatPrecision;
120 
121 static cl::opt<bool>
122     InsertAssertAlign("insert-assert-align", cl::init(true),
123                       cl::desc("Insert the experimental `assertalign` node."),
124                       cl::ReallyHidden);
125 
126 static cl::opt<unsigned, true>
127     LimitFPPrecision("limit-float-precision",
128                      cl::desc("Generate low-precision inline sequences "
129                               "for some float libcalls"),
130                      cl::location(LimitFloatPrecision), cl::Hidden,
131                      cl::init(0));
132 
133 static cl::opt<unsigned> SwitchPeelThreshold(
134     "switch-peel-threshold", cl::Hidden, cl::init(66),
135     cl::desc("Set the case probability threshold for peeling the case from a "
136              "switch statement. A value greater than 100 will void this "
137              "optimization"));
138 
139 // Limit the width of DAG chains. This is important in general to prevent
140 // DAG-based analysis from blowing up. For example, alias analysis and
141 // load clustering may not complete in reasonable time. It is difficult to
142 // recognize and avoid this situation within each individual analysis, and
143 // future analyses are likely to have the same behavior. Limiting DAG width is
144 // the safe approach and will be especially important with global DAGs.
145 //
146 // MaxParallelChains default is arbitrarily high to avoid affecting
147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
148 // sequence over this should have been converted to llvm.memcpy by the
149 // frontend. It is easy to induce this behavior with .ll code such as:
150 // %buffer = alloca [4096 x i8]
151 // %data = load [4096 x i8]* %argPtr
152 // store [4096 x i8] %data, [4096 x i8]* %buffer
153 static const unsigned MaxParallelChains = 64;
154 
155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
156                                       const SDValue *Parts, unsigned NumParts,
157                                       MVT PartVT, EVT ValueVT, const Value *V,
158                                       SDValue InChain,
159                                       std::optional<CallingConv::ID> CC);
160 
161 /// getCopyFromParts - Create a value that contains the specified legal parts
162 /// combined into the value they represent.  If the parts combine to a type
163 /// larger than ValueVT then AssertOp can be used to specify whether the extra
164 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
165 /// (ISD::AssertSext).
166 static SDValue
167 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
168                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
169                  SDValue InChain,
170                  std::optional<CallingConv::ID> CC = std::nullopt,
171                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
172   // Let the target assemble the parts if it wants to
173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
174   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
175                                                    PartVT, ValueVT, CC))
176     return Val;
177 
178   if (ValueVT.isVector())
179     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
180                                   InChain, CC);
181 
182   assert(NumParts > 0 && "No parts to assemble!");
183   SDValue Val = Parts[0];
184 
185   if (NumParts > 1) {
186     // Assemble the value from multiple parts.
187     if (ValueVT.isInteger()) {
188       unsigned PartBits = PartVT.getSizeInBits();
189       unsigned ValueBits = ValueVT.getSizeInBits();
190 
191       // Assemble the power of 2 part.
192       unsigned RoundParts = llvm::bit_floor(NumParts);
193       unsigned RoundBits = PartBits * RoundParts;
194       EVT RoundVT = RoundBits == ValueBits ?
195         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
196       SDValue Lo, Hi;
197 
198       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
199 
200       if (RoundParts > 2) {
201         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
202                               InChain);
203         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
204                               PartVT, HalfVT, V, InChain);
205       } else {
206         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
207         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
208       }
209 
210       if (DAG.getDataLayout().isBigEndian())
211         std::swap(Lo, Hi);
212 
213       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
214 
215       if (RoundParts < NumParts) {
216         // Assemble the trailing non-power-of-2 part.
217         unsigned OddParts = NumParts - RoundParts;
218         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
219         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
220                               OddVT, V, InChain, CC);
221 
222         // Combine the round and odd parts.
223         Lo = Val;
224         if (DAG.getDataLayout().isBigEndian())
225           std::swap(Lo, Hi);
226         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
227         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
228         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
229                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
230                                          TLI.getShiftAmountTy(
231                                              TotalVT, DAG.getDataLayout())));
232         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
233         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
234       }
235     } else if (PartVT.isFloatingPoint()) {
236       // FP split into multiple FP parts (for ppcf128)
237       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
238              "Unexpected split");
239       SDValue Lo, Hi;
240       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
241       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
242       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
243         std::swap(Lo, Hi);
244       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
245     } else {
246       // FP split into integer parts (soft fp)
247       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
248              !PartVT.isVector() && "Unexpected split");
249       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
250       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
251                              InChain, CC);
252     }
253   }
254 
255   // There is now one part, held in Val.  Correct it to match ValueVT.
256   // PartEVT is the type of the register class that holds the value.
257   // ValueVT is the type of the inline asm operation.
258   EVT PartEVT = Val.getValueType();
259 
260   if (PartEVT == ValueVT)
261     return Val;
262 
263   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
264       ValueVT.bitsLT(PartEVT)) {
265     // For an FP value in an integer part, we need to truncate to the right
266     // width first.
267     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
268     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
269   }
270 
271   // Handle types that have the same size.
272   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
273     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
274 
275   // Handle types with different sizes.
276   if (PartEVT.isInteger() && ValueVT.isInteger()) {
277     if (ValueVT.bitsLT(PartEVT)) {
278       // For a truncate, see if we have any information to
279       // indicate whether the truncated bits will always be
280       // zero or sign-extension.
281       if (AssertOp)
282         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
283                           DAG.getValueType(ValueVT));
284       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
285     }
286     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
287   }
288 
289   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
290     // FP_ROUND's are always exact here.
291     if (ValueVT.bitsLT(Val.getValueType())) {
292 
293       SDValue NoChange =
294           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
295 
296       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
297               llvm::Attribute::StrictFP)) {
298         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
299                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
300                            NoChange);
301       }
302 
303       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
304     }
305 
306     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
307   }
308 
309   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
310   // then truncating.
311   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
312       ValueVT.bitsLT(PartEVT)) {
313     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
314     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
315   }
316 
317   report_fatal_error("Unknown mismatch in getCopyFromParts!");
318 }
319 
320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
321                                               const Twine &ErrMsg) {
322   const Instruction *I = dyn_cast_or_null<Instruction>(V);
323   if (!V)
324     return Ctx.emitError(ErrMsg);
325 
326   const char *AsmError = ", possible invalid constraint for vector type";
327   if (const CallInst *CI = dyn_cast<CallInst>(I))
328     if (CI->isInlineAsm())
329       return Ctx.emitError(I, ErrMsg + AsmError);
330 
331   return Ctx.emitError(I, ErrMsg);
332 }
333 
334 /// getCopyFromPartsVector - Create a value that contains the specified legal
335 /// parts combined into the value they represent.  If the parts combine to a
336 /// type larger than ValueVT then AssertOp can be used to specify whether the
337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
338 /// ValueVT (ISD::AssertSext).
339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
340                                       const SDValue *Parts, unsigned NumParts,
341                                       MVT PartVT, EVT ValueVT, const Value *V,
342                                       SDValue InChain,
343                                       std::optional<CallingConv::ID> CallConv) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const bool IsABIRegCopy = CallConv.has_value();
347 
348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349   SDValue Val = Parts[0];
350 
351   // Handle a multi-element vector.
352   if (NumParts > 1) {
353     EVT IntermediateVT;
354     MVT RegisterVT;
355     unsigned NumIntermediates;
356     unsigned NumRegs;
357 
358     if (IsABIRegCopy) {
359       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
360           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
361           NumIntermediates, RegisterVT);
362     } else {
363       NumRegs =
364           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
365                                      NumIntermediates, RegisterVT);
366     }
367 
368     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
369     NumParts = NumRegs; // Silence a compiler warning.
370     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
371     assert(RegisterVT.getSizeInBits() ==
372            Parts[0].getSimpleValueType().getSizeInBits() &&
373            "Part type sizes don't match!");
374 
375     // Assemble the parts into intermediate operands.
376     SmallVector<SDValue, 8> Ops(NumIntermediates);
377     if (NumIntermediates == NumParts) {
378       // If the register was not expanded, truncate or copy the value,
379       // as appropriate.
380       for (unsigned i = 0; i != NumParts; ++i)
381         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
382                                   V, InChain, CallConv);
383     } else if (NumParts > 0) {
384       // If the intermediate type was expanded, build the intermediate
385       // operands from the parts.
386       assert(NumParts % NumIntermediates == 0 &&
387              "Must expand into a divisible number of parts!");
388       unsigned Factor = NumParts / NumIntermediates;
389       for (unsigned i = 0; i != NumIntermediates; ++i)
390         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
391                                   IntermediateVT, V, InChain, CallConv);
392     }
393 
394     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
395     // intermediate operands.
396     EVT BuiltVectorTy =
397         IntermediateVT.isVector()
398             ? EVT::getVectorVT(
399                   *DAG.getContext(), IntermediateVT.getScalarType(),
400                   IntermediateVT.getVectorElementCount() * NumParts)
401             : EVT::getVectorVT(*DAG.getContext(),
402                                IntermediateVT.getScalarType(),
403                                NumIntermediates);
404     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405                                                 : ISD::BUILD_VECTOR,
406                       DL, BuiltVectorTy, Ops);
407   }
408 
409   // There is now one part, held in Val.  Correct it to match ValueVT.
410   EVT PartEVT = Val.getValueType();
411 
412   if (PartEVT == ValueVT)
413     return Val;
414 
415   if (PartEVT.isVector()) {
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     // If the parts vector has more elements than the value vector, then we
421     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
422     // Extract the elements we want.
423     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
424       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
425               ValueVT.getVectorElementCount().getKnownMinValue()) &&
426              (PartEVT.getVectorElementCount().isScalable() ==
427               ValueVT.getVectorElementCount().isScalable()) &&
428              "Cannot narrow, it would be a lossy transformation");
429       PartEVT =
430           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
431                            ValueVT.getVectorElementCount());
432       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
433                         DAG.getVectorIdxConstant(0, DL));
434       if (PartEVT == ValueVT)
435         return Val;
436       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
437         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438 
439       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
440       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
441         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442     }
443 
444     // Promoted vector extract
445     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
446   }
447 
448   // Trivial bitcast if the types are the same size and the destination
449   // vector type is legal.
450   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
451       TLI.isTypeLegal(ValueVT))
452     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
453 
454   if (ValueVT.getVectorNumElements() != 1) {
455      // Certain ABIs require that vectors are passed as integers. For vectors
456      // are the same size, this is an obvious bitcast.
457      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
458        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
459      } else if (ValueVT.bitsLT(PartEVT)) {
460        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
461        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462        // Drop the extra bits.
463        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
464        return DAG.getBitcast(ValueVT, Val);
465      }
466 
467      diagnosePossiblyInvalidConstraint(
468          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
469      return DAG.getUNDEF(ValueVT);
470   }
471 
472   // Handle cases such as i8 -> <1 x i1>
473   EVT ValueSVT = ValueVT.getVectorElementType();
474   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
475     unsigned ValueSize = ValueSVT.getSizeInBits();
476     if (ValueSize == PartEVT.getSizeInBits()) {
477       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
478     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
479       // It's possible a scalar floating point type gets softened to integer and
480       // then promoted to a larger integer. If PartEVT is the larger integer
481       // we need to truncate it and then bitcast to the FP type.
482       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
483       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
484       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
485       Val = DAG.getBitcast(ValueSVT, Val);
486     } else {
487       Val = ValueVT.isFloatingPoint()
488                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
489                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
490     }
491   }
492 
493   return DAG.getBuildVector(ValueVT, DL, Val);
494 }
495 
496 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
497                                  SDValue Val, SDValue *Parts, unsigned NumParts,
498                                  MVT PartVT, const Value *V,
499                                  std::optional<CallingConv::ID> CallConv);
500 
501 /// getCopyToParts - Create a series of nodes that contain the specified value
502 /// split into legal parts.  If the parts contain more bits than Val, then, for
503 /// integers, ExtendKind can be used to specify how to generate the extra bits.
504 static void
505 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
506                unsigned NumParts, MVT PartVT, const Value *V,
507                std::optional<CallingConv::ID> CallConv = std::nullopt,
508                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
509   // Let the target split the parts if it wants to
510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
511   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
512                                       CallConv))
513     return;
514   EVT ValueVT = Val.getValueType();
515 
516   // Handle the vector case separately.
517   if (ValueVT.isVector())
518     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
519                                 CallConv);
520 
521   unsigned OrigNumParts = NumParts;
522   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
523          "Copying to an illegal type!");
524 
525   if (NumParts == 0)
526     return;
527 
528   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
529   EVT PartEVT = PartVT;
530   if (PartEVT == ValueVT) {
531     assert(NumParts == 1 && "No-op copy with multiple parts!");
532     Parts[0] = Val;
533     return;
534   }
535 
536   unsigned PartBits = PartVT.getSizeInBits();
537   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
538     // If the parts cover more bits than the value has, promote the value.
539     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
540       assert(NumParts == 1 && "Do not know what to promote to!");
541       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
542     } else {
543       if (ValueVT.isFloatingPoint()) {
544         // FP values need to be bitcast, then extended if they are being put
545         // into a larger container.
546         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
547         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
548       }
549       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
550              ValueVT.isInteger() &&
551              "Unknown mismatch!");
552       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
553       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
554       if (PartVT == MVT::x86mmx)
555         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
556     }
557   } else if (PartBits == ValueVT.getSizeInBits()) {
558     // Different types of the same size.
559     assert(NumParts == 1 && PartEVT != ValueVT);
560     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
562     // If the parts cover less bits than value has, truncate the value.
563     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
564            ValueVT.isInteger() &&
565            "Unknown mismatch!");
566     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
567     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
568     if (PartVT == MVT::x86mmx)
569       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
570   }
571 
572   // The value may have changed - recompute ValueVT.
573   ValueVT = Val.getValueType();
574   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
575          "Failed to tile the value with PartVT!");
576 
577   if (NumParts == 1) {
578     if (PartEVT != ValueVT) {
579       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
580                                         "scalar-to-vector conversion failed");
581       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
582     }
583 
584     Parts[0] = Val;
585     return;
586   }
587 
588   // Expand the value into multiple parts.
589   if (NumParts & (NumParts - 1)) {
590     // The number of parts is not a power of 2.  Split off and copy the tail.
591     assert(PartVT.isInteger() && ValueVT.isInteger() &&
592            "Do not know what to expand to!");
593     unsigned RoundParts = llvm::bit_floor(NumParts);
594     unsigned RoundBits = RoundParts * PartBits;
595     unsigned OddParts = NumParts - RoundParts;
596     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
597       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
598 
599     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
600                    CallConv);
601 
602     if (DAG.getDataLayout().isBigEndian())
603       // The odd parts were reversed by getCopyToParts - unreverse them.
604       std::reverse(Parts + RoundParts, Parts + NumParts);
605 
606     NumParts = RoundParts;
607     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
608     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
609   }
610 
611   // The number of parts is a power of 2.  Repeatedly bisect the value using
612   // EXTRACT_ELEMENT.
613   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614                          EVT::getIntegerVT(*DAG.getContext(),
615                                            ValueVT.getSizeInBits()),
616                          Val);
617 
618   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
619     for (unsigned i = 0; i < NumParts; i += StepSize) {
620       unsigned ThisBits = StepSize * PartBits / 2;
621       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
622       SDValue &Part0 = Parts[i];
623       SDValue &Part1 = Parts[i+StepSize/2];
624 
625       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
627       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
629 
630       if (ThisBits == PartBits && ThisVT != PartVT) {
631         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
632         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
633       }
634     }
635   }
636 
637   if (DAG.getDataLayout().isBigEndian())
638     std::reverse(Parts, Parts + OrigNumParts);
639 }
640 
641 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
642                                      const SDLoc &DL, EVT PartVT) {
643   if (!PartVT.isVector())
644     return SDValue();
645 
646   EVT ValueVT = Val.getValueType();
647   EVT PartEVT = PartVT.getVectorElementType();
648   EVT ValueEVT = ValueVT.getVectorElementType();
649   ElementCount PartNumElts = PartVT.getVectorElementCount();
650   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
651 
652   // We only support widening vectors with equivalent element types and
653   // fixed/scalable properties. If a target needs to widen a fixed-length type
654   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
655   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
656       PartNumElts.isScalable() != ValueNumElts.isScalable())
657     return SDValue();
658 
659   // Have a try for bf16 because some targets share its ABI with fp16.
660   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
662            "Cannot widen to illegal type");
663     Val = DAG.getNode(ISD::BITCAST, DL,
664                       ValueVT.changeVectorElementType(MVT::f16), Val);
665   } else if (PartEVT != ValueEVT) {
666     return SDValue();
667   }
668 
669   // Widening a scalable vector to another scalable vector is done by inserting
670   // the vector into a larger undef one.
671   if (PartNumElts.isScalable())
672     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
673                        Val, DAG.getVectorIdxConstant(0, DL));
674 
675   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
676   // undef elements.
677   SmallVector<SDValue, 16> Ops;
678   DAG.ExtractVectorElements(Val, Ops);
679   SDValue EltUndef = DAG.getUNDEF(PartEVT);
680   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
681 
682   // FIXME: Use CONCAT for 2x -> 4x.
683   return DAG.getBuildVector(PartVT, DL, Ops);
684 }
685 
686 /// getCopyToPartsVector - Create a series of nodes that contain the specified
687 /// value split into legal parts.
688 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
689                                  SDValue Val, SDValue *Parts, unsigned NumParts,
690                                  MVT PartVT, const Value *V,
691                                  std::optional<CallingConv::ID> CallConv) {
692   EVT ValueVT = Val.getValueType();
693   assert(ValueVT.isVector() && "Not a vector");
694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
695   const bool IsABIRegCopy = CallConv.has_value();
696 
697   if (NumParts == 1) {
698     EVT PartEVT = PartVT;
699     if (PartEVT == ValueVT) {
700       // Nothing to do.
701     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
702       // Bitconvert vector->vector case.
703       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
704     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
705       Val = Widened;
706     } else if (PartVT.isVector() &&
707                PartEVT.getVectorElementType().bitsGE(
708                    ValueVT.getVectorElementType()) &&
709                PartEVT.getVectorElementCount() ==
710                    ValueVT.getVectorElementCount()) {
711 
712       // Promoted vector extract
713       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
714     } else if (PartEVT.isVector() &&
715                PartEVT.getVectorElementType() !=
716                    ValueVT.getVectorElementType() &&
717                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
718                    TargetLowering::TypeWidenVector) {
719       // Combination of widening and promotion.
720       EVT WidenVT =
721           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
722                            PartVT.getVectorElementCount());
723       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
724       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
725     } else {
726       // Don't extract an integer from a float vector. This can happen if the
727       // FP type gets softened to integer and then promoted. The promotion
728       // prevents it from being picked up by the earlier bitcast case.
729       if (ValueVT.getVectorElementCount().isScalar() &&
730           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
731         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
732                           DAG.getVectorIdxConstant(0, DL));
733       } else {
734         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
735         assert(PartVT.getFixedSizeInBits() > ValueSize &&
736                "lossy conversion of vector to scalar type");
737         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
738         Val = DAG.getBitcast(IntermediateType, Val);
739         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
740       }
741     }
742 
743     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
744     Parts[0] = Val;
745     return;
746   }
747 
748   // Handle a multi-element vector.
749   EVT IntermediateVT;
750   MVT RegisterVT;
751   unsigned NumIntermediates;
752   unsigned NumRegs;
753   if (IsABIRegCopy) {
754     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
755         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
756         RegisterVT);
757   } else {
758     NumRegs =
759         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
760                                    NumIntermediates, RegisterVT);
761   }
762 
763   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
764   NumParts = NumRegs; // Silence a compiler warning.
765   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
766 
767   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
768          "Mixing scalable and fixed vectors when copying in parts");
769 
770   std::optional<ElementCount> DestEltCnt;
771 
772   if (IntermediateVT.isVector())
773     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
774   else
775     DestEltCnt = ElementCount::getFixed(NumIntermediates);
776 
777   EVT BuiltVectorTy = EVT::getVectorVT(
778       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
779 
780   if (ValueVT == BuiltVectorTy) {
781     // Nothing to do.
782   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
783     // Bitconvert vector->vector case.
784     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
785   } else {
786     if (BuiltVectorTy.getVectorElementType().bitsGT(
787             ValueVT.getVectorElementType())) {
788       // Integer promotion.
789       ValueVT = EVT::getVectorVT(*DAG.getContext(),
790                                  BuiltVectorTy.getVectorElementType(),
791                                  ValueVT.getVectorElementCount());
792       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
793     }
794 
795     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
796       Val = Widened;
797     }
798   }
799 
800   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
801 
802   // Split the vector into intermediate operands.
803   SmallVector<SDValue, 8> Ops(NumIntermediates);
804   for (unsigned i = 0; i != NumIntermediates; ++i) {
805     if (IntermediateVT.isVector()) {
806       // This does something sensible for scalable vectors - see the
807       // definition of EXTRACT_SUBVECTOR for further details.
808       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
809       Ops[i] =
810           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
811                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
812     } else {
813       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
814                            DAG.getVectorIdxConstant(i, DL));
815     }
816   }
817 
818   // Split the intermediate operands into legal parts.
819   if (NumParts == NumIntermediates) {
820     // If the register was not expanded, promote or copy the value,
821     // as appropriate.
822     for (unsigned i = 0; i != NumParts; ++i)
823       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
824   } else if (NumParts > 0) {
825     // If the intermediate type was expanded, split each the value into
826     // legal parts.
827     assert(NumIntermediates != 0 && "division by zero");
828     assert(NumParts % NumIntermediates == 0 &&
829            "Must expand into a divisible number of parts!");
830     unsigned Factor = NumParts / NumIntermediates;
831     for (unsigned i = 0; i != NumIntermediates; ++i)
832       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
833                      CallConv);
834   }
835 }
836 
837 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
838                            EVT valuevt, std::optional<CallingConv::ID> CC)
839     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
840       RegCount(1, regs.size()), CallConv(CC) {}
841 
842 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
843                            const DataLayout &DL, unsigned Reg, Type *Ty,
844                            std::optional<CallingConv::ID> CC) {
845   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
846 
847   CallConv = CC;
848 
849   for (EVT ValueVT : ValueVTs) {
850     unsigned NumRegs =
851         isABIMangled()
852             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
853             : TLI.getNumRegisters(Context, ValueVT);
854     MVT RegisterVT =
855         isABIMangled()
856             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
857             : TLI.getRegisterType(Context, ValueVT);
858     for (unsigned i = 0; i != NumRegs; ++i)
859       Regs.push_back(Reg + i);
860     RegVTs.push_back(RegisterVT);
861     RegCount.push_back(NumRegs);
862     Reg += NumRegs;
863   }
864 }
865 
866 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
867                                       FunctionLoweringInfo &FuncInfo,
868                                       const SDLoc &dl, SDValue &Chain,
869                                       SDValue *Glue, const Value *V) const {
870   // A Value with type {} or [0 x %t] needs no registers.
871   if (ValueVTs.empty())
872     return SDValue();
873 
874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
875 
876   // Assemble the legal parts into the final values.
877   SmallVector<SDValue, 4> Values(ValueVTs.size());
878   SmallVector<SDValue, 8> Parts;
879   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
880     // Copy the legal parts from the registers.
881     EVT ValueVT = ValueVTs[Value];
882     unsigned NumRegs = RegCount[Value];
883     MVT RegisterVT = isABIMangled()
884                          ? TLI.getRegisterTypeForCallingConv(
885                                *DAG.getContext(), *CallConv, RegVTs[Value])
886                          : RegVTs[Value];
887 
888     Parts.resize(NumRegs);
889     for (unsigned i = 0; i != NumRegs; ++i) {
890       SDValue P;
891       if (!Glue) {
892         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
893       } else {
894         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
895         *Glue = P.getValue(2);
896       }
897 
898       Chain = P.getValue(1);
899       Parts[i] = P;
900 
901       // If the source register was virtual and if we know something about it,
902       // add an assert node.
903       if (!Register::isVirtualRegister(Regs[Part + i]) ||
904           !RegisterVT.isInteger())
905         continue;
906 
907       const FunctionLoweringInfo::LiveOutInfo *LOI =
908         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
909       if (!LOI)
910         continue;
911 
912       unsigned RegSize = RegisterVT.getScalarSizeInBits();
913       unsigned NumSignBits = LOI->NumSignBits;
914       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
915 
916       if (NumZeroBits == RegSize) {
917         // The current value is a zero.
918         // Explicitly express that as it would be easier for
919         // optimizations to kick in.
920         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
921         continue;
922       }
923 
924       // FIXME: We capture more information than the dag can represent.  For
925       // now, just use the tightest assertzext/assertsext possible.
926       bool isSExt;
927       EVT FromVT(MVT::Other);
928       if (NumZeroBits) {
929         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
930         isSExt = false;
931       } else if (NumSignBits > 1) {
932         FromVT =
933             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
934         isSExt = true;
935       } else {
936         continue;
937       }
938       // Add an assertion node.
939       assert(FromVT != MVT::Other);
940       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
941                              RegisterVT, P, DAG.getValueType(FromVT));
942     }
943 
944     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
945                                      RegisterVT, ValueVT, V, Chain, CallConv);
946     Part += NumRegs;
947     Parts.clear();
948   }
949 
950   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
951 }
952 
953 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
954                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
955                                  const Value *V,
956                                  ISD::NodeType PreferredExtendType) const {
957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
958   ISD::NodeType ExtendKind = PreferredExtendType;
959 
960   // Get the list of the values's legal parts.
961   unsigned NumRegs = Regs.size();
962   SmallVector<SDValue, 8> Parts(NumRegs);
963   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumParts = RegCount[Value];
965 
966     MVT RegisterVT = isABIMangled()
967                          ? TLI.getRegisterTypeForCallingConv(
968                                *DAG.getContext(), *CallConv, RegVTs[Value])
969                          : RegVTs[Value];
970 
971     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
972       ExtendKind = ISD::ZERO_EXTEND;
973 
974     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
975                    NumParts, RegisterVT, V, CallConv, ExtendKind);
976     Part += NumParts;
977   }
978 
979   // Copy the parts into the registers.
980   SmallVector<SDValue, 8> Chains(NumRegs);
981   for (unsigned i = 0; i != NumRegs; ++i) {
982     SDValue Part;
983     if (!Glue) {
984       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
985     } else {
986       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
987       *Glue = Part.getValue(1);
988     }
989 
990     Chains[i] = Part.getValue(0);
991   }
992 
993   if (NumRegs == 1 || Glue)
994     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
995     // flagged to it. That is the CopyToReg nodes and the user are considered
996     // a single scheduling unit. If we create a TokenFactor and return it as
997     // chain, then the TokenFactor is both a predecessor (operand) of the
998     // user as well as a successor (the TF operands are flagged to the user).
999     // c1, f1 = CopyToReg
1000     // c2, f2 = CopyToReg
1001     // c3     = TokenFactor c1, c2
1002     // ...
1003     //        = op c3, ..., f2
1004     Chain = Chains[NumRegs-1];
1005   else
1006     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1007 }
1008 
1009 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1010                                         unsigned MatchingIdx, const SDLoc &dl,
1011                                         SelectionDAG &DAG,
1012                                         std::vector<SDValue> &Ops) const {
1013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1014 
1015   InlineAsm::Flag Flag(Code, Regs.size());
1016   if (HasMatching)
1017     Flag.setMatchingOp(MatchingIdx);
1018   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1019     // Put the register class of the virtual registers in the flag word.  That
1020     // way, later passes can recompute register class constraints for inline
1021     // assembly as well as normal instructions.
1022     // Don't do this for tied operands that can use the regclass information
1023     // from the def.
1024     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1025     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1026     Flag.setRegClass(RC->getID());
1027   }
1028 
1029   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1030   Ops.push_back(Res);
1031 
1032   if (Code == InlineAsm::Kind::Clobber) {
1033     // Clobbers should always have a 1:1 mapping with registers, and may
1034     // reference registers that have illegal (e.g. vector) types. Hence, we
1035     // shouldn't try to apply any sort of splitting logic to them.
1036     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1037            "No 1:1 mapping from clobbers to regs?");
1038     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1039     (void)SP;
1040     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1041       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1042       assert(
1043           (Regs[I] != SP ||
1044            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1045           "If we clobbered the stack pointer, MFI should know about it.");
1046     }
1047     return;
1048   }
1049 
1050   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1051     MVT RegisterVT = RegVTs[Value];
1052     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1053                                            RegisterVT);
1054     for (unsigned i = 0; i != NumRegs; ++i) {
1055       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1056       unsigned TheReg = Regs[Reg++];
1057       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1058     }
1059   }
1060 }
1061 
1062 SmallVector<std::pair<unsigned, TypeSize>, 4>
1063 RegsForValue::getRegsAndSizes() const {
1064   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1065   unsigned I = 0;
1066   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1067     unsigned RegCount = std::get<0>(CountAndVT);
1068     MVT RegisterVT = std::get<1>(CountAndVT);
1069     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1070     for (unsigned E = I + RegCount; I != E; ++I)
1071       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1072   }
1073   return OutVec;
1074 }
1075 
1076 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1077                                AssumptionCache *ac,
1078                                const TargetLibraryInfo *li) {
1079   AA = aa;
1080   AC = ac;
1081   GFI = gfi;
1082   LibInfo = li;
1083   Context = DAG.getContext();
1084   LPadToCallSiteMap.clear();
1085   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1086   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1087       *DAG.getMachineFunction().getFunction().getParent());
1088 }
1089 
1090 void SelectionDAGBuilder::clear() {
1091   NodeMap.clear();
1092   UnusedArgNodeMap.clear();
1093   PendingLoads.clear();
1094   PendingExports.clear();
1095   PendingConstrainedFP.clear();
1096   PendingConstrainedFPStrict.clear();
1097   CurInst = nullptr;
1098   HasTailCall = false;
1099   SDNodeOrder = LowestSDNodeOrder;
1100   StatepointLowering.clear();
1101 }
1102 
1103 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1104   DanglingDebugInfoMap.clear();
1105 }
1106 
1107 // Update DAG root to include dependencies on Pending chains.
1108 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1109   SDValue Root = DAG.getRoot();
1110 
1111   if (Pending.empty())
1112     return Root;
1113 
1114   // Add current root to PendingChains, unless we already indirectly
1115   // depend on it.
1116   if (Root.getOpcode() != ISD::EntryToken) {
1117     unsigned i = 0, e = Pending.size();
1118     for (; i != e; ++i) {
1119       assert(Pending[i].getNode()->getNumOperands() > 1);
1120       if (Pending[i].getNode()->getOperand(0) == Root)
1121         break;  // Don't add the root if we already indirectly depend on it.
1122     }
1123 
1124     if (i == e)
1125       Pending.push_back(Root);
1126   }
1127 
1128   if (Pending.size() == 1)
1129     Root = Pending[0];
1130   else
1131     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1132 
1133   DAG.setRoot(Root);
1134   Pending.clear();
1135   return Root;
1136 }
1137 
1138 SDValue SelectionDAGBuilder::getMemoryRoot() {
1139   return updateRoot(PendingLoads);
1140 }
1141 
1142 SDValue SelectionDAGBuilder::getRoot() {
1143   // Chain up all pending constrained intrinsics together with all
1144   // pending loads, by simply appending them to PendingLoads and
1145   // then calling getMemoryRoot().
1146   PendingLoads.reserve(PendingLoads.size() +
1147                        PendingConstrainedFP.size() +
1148                        PendingConstrainedFPStrict.size());
1149   PendingLoads.append(PendingConstrainedFP.begin(),
1150                       PendingConstrainedFP.end());
1151   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1152                       PendingConstrainedFPStrict.end());
1153   PendingConstrainedFP.clear();
1154   PendingConstrainedFPStrict.clear();
1155   return getMemoryRoot();
1156 }
1157 
1158 SDValue SelectionDAGBuilder::getControlRoot() {
1159   // We need to emit pending fpexcept.strict constrained intrinsics,
1160   // so append them to the PendingExports list.
1161   PendingExports.append(PendingConstrainedFPStrict.begin(),
1162                         PendingConstrainedFPStrict.end());
1163   PendingConstrainedFPStrict.clear();
1164   return updateRoot(PendingExports);
1165 }
1166 
1167 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1168                                              DILocalVariable *Variable,
1169                                              DIExpression *Expression,
1170                                              DebugLoc DL) {
1171   assert(Variable && "Missing variable");
1172 
1173   // Check if address has undef value.
1174   if (!Address || isa<UndefValue>(Address) ||
1175       (Address->use_empty() && !isa<Argument>(Address))) {
1176     LLVM_DEBUG(
1177         dbgs()
1178         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1179     return;
1180   }
1181 
1182   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1183 
1184   SDValue &N = NodeMap[Address];
1185   if (!N.getNode() && isa<Argument>(Address))
1186     // Check unused arguments map.
1187     N = UnusedArgNodeMap[Address];
1188   SDDbgValue *SDV;
1189   if (N.getNode()) {
1190     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1191       Address = BCI->getOperand(0);
1192     // Parameters are handled specially.
1193     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1194     if (IsParameter && FINode) {
1195       // Byval parameter. We have a frame index at this point.
1196       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1197                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1198     } else if (isa<Argument>(Address)) {
1199       // Address is an argument, so try to emit its dbg value using
1200       // virtual register info from the FuncInfo.ValueMap.
1201       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1202                                FuncArgumentDbgValueKind::Declare, N);
1203       return;
1204     } else {
1205       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1206                             true, DL, SDNodeOrder);
1207     }
1208     DAG.AddDbgValue(SDV, IsParameter);
1209   } else {
1210     // If Address is an argument then try to emit its dbg value using
1211     // virtual register info from the FuncInfo.ValueMap.
1212     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213                                   FuncArgumentDbgValueKind::Declare, N)) {
1214       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1215                         << " (could not emit func-arg dbg_value)\n");
1216     }
1217   }
1218   return;
1219 }
1220 
1221 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1222   // Add SDDbgValue nodes for any var locs here. Do so before updating
1223   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1224   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1225     // Add SDDbgValue nodes for any var locs here. Do so before updating
1226     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1227     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1228          It != End; ++It) {
1229       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1230       dropDanglingDebugInfo(Var, It->Expr);
1231       if (It->Values.isKillLocation(It->Expr)) {
1232         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1233         continue;
1234       }
1235       SmallVector<Value *> Values(It->Values.location_ops());
1236       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1237                             It->Values.hasArgList())) {
1238         SmallVector<Value *, 4> Vals;
1239         for (Value *V : It->Values.location_ops())
1240           Vals.push_back(V);
1241         addDanglingDebugInfo(Vals,
1242                              FnVarLocs->getDILocalVariable(It->VariableID),
1243                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1244       }
1245     }
1246   }
1247 
1248   // We must skip DPValues if they've already been processed above as we
1249   // have just emitted the debug values resulting from assignment tracking
1250   // analysis, making any existing DPValues redundant (and probably less
1251   // correct). We still need to process DPLabels. This does sink DPLabels
1252   // to the bottom of the group of debug records. That sholdn't be important
1253   // as it does so deterministcally and ordering between DPLabels and DPValues
1254   // is immaterial (other than for MIR/IR printing).
1255   bool SkipDPValues = DAG.getFunctionVarLocs();
1256   // Is there is any debug-info attached to this instruction, in the form of
1257   // DbgRecord non-instruction debug-info records.
1258   for (DbgRecord &DR : I.getDbgRecordRange()) {
1259     if (DPLabel *DPL = dyn_cast<DPLabel>(&DR)) {
1260       assert(DPL->getLabel() && "Missing label");
1261       SDDbgLabel *SDV =
1262           DAG.getDbgLabel(DPL->getLabel(), DPL->getDebugLoc(), SDNodeOrder);
1263       DAG.AddDbgLabel(SDV);
1264       continue;
1265     }
1266 
1267     if (SkipDPValues)
1268       continue;
1269     DPValue &DPV = cast<DPValue>(DR);
1270     DILocalVariable *Variable = DPV.getVariable();
1271     DIExpression *Expression = DPV.getExpression();
1272     dropDanglingDebugInfo(Variable, Expression);
1273 
1274     if (DPV.getType() == DPValue::LocationType::Declare) {
1275       if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV))
1276         continue;
1277       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV
1278                         << "\n");
1279       handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression,
1280                          DPV.getDebugLoc());
1281       continue;
1282     }
1283 
1284     // A DPValue with no locations is a kill location.
1285     SmallVector<Value *, 4> Values(DPV.location_ops());
1286     if (Values.empty()) {
1287       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1288                            SDNodeOrder);
1289       continue;
1290     }
1291 
1292     // A DPValue with an undef or absent location is also a kill location.
1293     if (llvm::any_of(Values,
1294                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1295       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1296                            SDNodeOrder);
1297       continue;
1298     }
1299 
1300     bool IsVariadic = DPV.hasArgList();
1301     if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(),
1302                           SDNodeOrder, IsVariadic)) {
1303       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1304                            DPV.getDebugLoc(), SDNodeOrder);
1305     }
1306   }
1307 }
1308 
1309 void SelectionDAGBuilder::visit(const Instruction &I) {
1310   visitDbgInfo(I);
1311 
1312   // Set up outgoing PHI node register values before emitting the terminator.
1313   if (I.isTerminator()) {
1314     HandlePHINodesInSuccessorBlocks(I.getParent());
1315   }
1316 
1317   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1318   if (!isa<DbgInfoIntrinsic>(I))
1319     ++SDNodeOrder;
1320 
1321   CurInst = &I;
1322 
1323   // Set inserted listener only if required.
1324   bool NodeInserted = false;
1325   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1326   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1327   if (PCSectionsMD) {
1328     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1329         DAG, [&](SDNode *) { NodeInserted = true; });
1330   }
1331 
1332   visit(I.getOpcode(), I);
1333 
1334   if (!I.isTerminator() && !HasTailCall &&
1335       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1336     CopyToExportRegsIfNeeded(&I);
1337 
1338   // Handle metadata.
1339   if (PCSectionsMD) {
1340     auto It = NodeMap.find(&I);
1341     if (It != NodeMap.end()) {
1342       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1343     } else if (NodeInserted) {
1344       // This should not happen; if it does, don't let it go unnoticed so we can
1345       // fix it. Relevant visit*() function is probably missing a setValue().
1346       errs() << "warning: loosing !pcsections metadata ["
1347              << I.getModule()->getName() << "]\n";
1348       LLVM_DEBUG(I.dump());
1349       assert(false);
1350     }
1351   }
1352 
1353   CurInst = nullptr;
1354 }
1355 
1356 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1357   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1358 }
1359 
1360 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1361   // Note: this doesn't use InstVisitor, because it has to work with
1362   // ConstantExpr's in addition to instructions.
1363   switch (Opcode) {
1364   default: llvm_unreachable("Unknown instruction type encountered!");
1365     // Build the switch statement using the Instruction.def file.
1366 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1367     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1368 #include "llvm/IR/Instruction.def"
1369   }
1370 }
1371 
1372 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1373                                             DILocalVariable *Variable,
1374                                             DebugLoc DL, unsigned Order,
1375                                             SmallVectorImpl<Value *> &Values,
1376                                             DIExpression *Expression) {
1377   // For variadic dbg_values we will now insert an undef.
1378   // FIXME: We can potentially recover these!
1379   SmallVector<SDDbgOperand, 2> Locs;
1380   for (const Value *V : Values) {
1381     auto *Undef = UndefValue::get(V->getType());
1382     Locs.push_back(SDDbgOperand::fromConst(Undef));
1383   }
1384   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1385                                         /*IsIndirect=*/false, DL, Order,
1386                                         /*IsVariadic=*/true);
1387   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1388   return true;
1389 }
1390 
1391 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1392                                                DILocalVariable *Var,
1393                                                DIExpression *Expr,
1394                                                bool IsVariadic, DebugLoc DL,
1395                                                unsigned Order) {
1396   if (IsVariadic) {
1397     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1398     return;
1399   }
1400   // TODO: Dangling debug info will eventually either be resolved or produce
1401   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1402   // between the original dbg.value location and its resolved DBG_VALUE,
1403   // which we should ideally fill with an extra Undef DBG_VALUE.
1404   assert(Values.size() == 1);
1405   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1406 }
1407 
1408 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1409                                                 const DIExpression *Expr) {
1410   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1411     DIVariable *DanglingVariable = DDI.getVariable();
1412     DIExpression *DanglingExpr = DDI.getExpression();
1413     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1414       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1415                         << printDDI(nullptr, DDI) << "\n");
1416       return true;
1417     }
1418     return false;
1419   };
1420 
1421   for (auto &DDIMI : DanglingDebugInfoMap) {
1422     DanglingDebugInfoVector &DDIV = DDIMI.second;
1423 
1424     // If debug info is to be dropped, run it through final checks to see
1425     // whether it can be salvaged.
1426     for (auto &DDI : DDIV)
1427       if (isMatchingDbgValue(DDI))
1428         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1429 
1430     erase_if(DDIV, isMatchingDbgValue);
1431   }
1432 }
1433 
1434 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1435 // generate the debug data structures now that we've seen its definition.
1436 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1437                                                    SDValue Val) {
1438   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1439   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1440     return;
1441 
1442   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1443   for (auto &DDI : DDIV) {
1444     DebugLoc DL = DDI.getDebugLoc();
1445     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1446     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1447     DILocalVariable *Variable = DDI.getVariable();
1448     DIExpression *Expr = DDI.getExpression();
1449     assert(Variable->isValidLocationForIntrinsic(DL) &&
1450            "Expected inlined-at fields to agree");
1451     SDDbgValue *SDV;
1452     if (Val.getNode()) {
1453       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1454       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1455       // we couldn't resolve it directly when examining the DbgValue intrinsic
1456       // in the first place we should not be more successful here). Unless we
1457       // have some test case that prove this to be correct we should avoid
1458       // calling EmitFuncArgumentDbgValue here.
1459       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1460                                     FuncArgumentDbgValueKind::Value, Val)) {
1461         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1462                           << printDDI(V, DDI) << "\n");
1463         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1464         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1465         // inserted after the definition of Val when emitting the instructions
1466         // after ISel. An alternative could be to teach
1467         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1468         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1469                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1470                    << ValSDNodeOrder << "\n");
1471         SDV = getDbgValue(Val, Variable, Expr, DL,
1472                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1473         DAG.AddDbgValue(SDV, false);
1474       } else
1475         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1476                           << printDDI(V, DDI)
1477                           << " in EmitFuncArgumentDbgValue\n");
1478     } else {
1479       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1480                         << "\n");
1481       auto Undef = UndefValue::get(V->getType());
1482       auto SDV =
1483           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1484       DAG.AddDbgValue(SDV, false);
1485     }
1486   }
1487   DDIV.clear();
1488 }
1489 
1490 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1491                                                     DanglingDebugInfo &DDI) {
1492   // TODO: For the variadic implementation, instead of only checking the fail
1493   // state of `handleDebugValue`, we need know specifically which values were
1494   // invalid, so that we attempt to salvage only those values when processing
1495   // a DIArgList.
1496   const Value *OrigV = V;
1497   DILocalVariable *Var = DDI.getVariable();
1498   DIExpression *Expr = DDI.getExpression();
1499   DebugLoc DL = DDI.getDebugLoc();
1500   unsigned SDOrder = DDI.getSDNodeOrder();
1501 
1502   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1503   // that DW_OP_stack_value is desired.
1504   bool StackValue = true;
1505 
1506   // Can this Value can be encoded without any further work?
1507   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1508     return;
1509 
1510   // Attempt to salvage back through as many instructions as possible. Bail if
1511   // a non-instruction is seen, such as a constant expression or global
1512   // variable. FIXME: Further work could recover those too.
1513   while (isa<Instruction>(V)) {
1514     const Instruction &VAsInst = *cast<const Instruction>(V);
1515     // Temporary "0", awaiting real implementation.
1516     SmallVector<uint64_t, 16> Ops;
1517     SmallVector<Value *, 4> AdditionalValues;
1518     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1519                              Expr->getNumLocationOperands(), Ops,
1520                              AdditionalValues);
1521     // If we cannot salvage any further, and haven't yet found a suitable debug
1522     // expression, bail out.
1523     if (!V)
1524       break;
1525 
1526     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1527     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1528     // here for variadic dbg_values, remove that condition.
1529     if (!AdditionalValues.empty())
1530       break;
1531 
1532     // New value and expr now represent this debuginfo.
1533     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1534 
1535     // Some kind of simplification occurred: check whether the operand of the
1536     // salvaged debug expression can be encoded in this DAG.
1537     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1538       LLVM_DEBUG(
1539           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1540                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1541       return;
1542     }
1543   }
1544 
1545   // This was the final opportunity to salvage this debug information, and it
1546   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1547   // any earlier variable location.
1548   assert(OrigV && "V shouldn't be null");
1549   auto *Undef = UndefValue::get(OrigV->getType());
1550   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1551   DAG.AddDbgValue(SDV, false);
1552   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1553                     << printDDI(OrigV, DDI) << "\n");
1554 }
1555 
1556 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1557                                                DIExpression *Expr,
1558                                                DebugLoc DbgLoc,
1559                                                unsigned Order) {
1560   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1561   DIExpression *NewExpr =
1562       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1563   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1564                    /*IsVariadic*/ false);
1565 }
1566 
1567 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1568                                            DILocalVariable *Var,
1569                                            DIExpression *Expr, DebugLoc DbgLoc,
1570                                            unsigned Order, bool IsVariadic) {
1571   if (Values.empty())
1572     return true;
1573 
1574   // Filter EntryValue locations out early.
1575   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1576     return true;
1577 
1578   SmallVector<SDDbgOperand> LocationOps;
1579   SmallVector<SDNode *> Dependencies;
1580   for (const Value *V : Values) {
1581     // Constant value.
1582     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1583         isa<ConstantPointerNull>(V)) {
1584       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1585       continue;
1586     }
1587 
1588     // Look through IntToPtr constants.
1589     if (auto *CE = dyn_cast<ConstantExpr>(V))
1590       if (CE->getOpcode() == Instruction::IntToPtr) {
1591         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1592         continue;
1593       }
1594 
1595     // If the Value is a frame index, we can create a FrameIndex debug value
1596     // without relying on the DAG at all.
1597     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1598       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1599       if (SI != FuncInfo.StaticAllocaMap.end()) {
1600         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1601         continue;
1602       }
1603     }
1604 
1605     // Do not use getValue() in here; we don't want to generate code at
1606     // this point if it hasn't been done yet.
1607     SDValue N = NodeMap[V];
1608     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1609       N = UnusedArgNodeMap[V];
1610     if (N.getNode()) {
1611       // Only emit func arg dbg value for non-variadic dbg.values for now.
1612       if (!IsVariadic &&
1613           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1614                                    FuncArgumentDbgValueKind::Value, N))
1615         return true;
1616       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1617         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1618         // describe stack slot locations.
1619         //
1620         // Consider "int x = 0; int *px = &x;". There are two kinds of
1621         // interesting debug values here after optimization:
1622         //
1623         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1624         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1625         //
1626         // Both describe the direct values of their associated variables.
1627         Dependencies.push_back(N.getNode());
1628         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1629         continue;
1630       }
1631       LocationOps.emplace_back(
1632           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1633       continue;
1634     }
1635 
1636     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1637     // Special rules apply for the first dbg.values of parameter variables in a
1638     // function. Identify them by the fact they reference Argument Values, that
1639     // they're parameters, and they are parameters of the current function. We
1640     // need to let them dangle until they get an SDNode.
1641     bool IsParamOfFunc =
1642         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1643     if (IsParamOfFunc)
1644       return false;
1645 
1646     // The value is not used in this block yet (or it would have an SDNode).
1647     // We still want the value to appear for the user if possible -- if it has
1648     // an associated VReg, we can refer to that instead.
1649     auto VMI = FuncInfo.ValueMap.find(V);
1650     if (VMI != FuncInfo.ValueMap.end()) {
1651       unsigned Reg = VMI->second;
1652       // If this is a PHI node, it may be split up into several MI PHI nodes
1653       // (in FunctionLoweringInfo::set).
1654       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1655                        V->getType(), std::nullopt);
1656       if (RFV.occupiesMultipleRegs()) {
1657         // FIXME: We could potentially support variadic dbg_values here.
1658         if (IsVariadic)
1659           return false;
1660         unsigned Offset = 0;
1661         unsigned BitsToDescribe = 0;
1662         if (auto VarSize = Var->getSizeInBits())
1663           BitsToDescribe = *VarSize;
1664         if (auto Fragment = Expr->getFragmentInfo())
1665           BitsToDescribe = Fragment->SizeInBits;
1666         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1667           // Bail out if all bits are described already.
1668           if (Offset >= BitsToDescribe)
1669             break;
1670           // TODO: handle scalable vectors.
1671           unsigned RegisterSize = RegAndSize.second;
1672           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1673                                       ? BitsToDescribe - Offset
1674                                       : RegisterSize;
1675           auto FragmentExpr = DIExpression::createFragmentExpression(
1676               Expr, Offset, FragmentSize);
1677           if (!FragmentExpr)
1678             continue;
1679           SDDbgValue *SDV = DAG.getVRegDbgValue(
1680               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1681           DAG.AddDbgValue(SDV, false);
1682           Offset += RegisterSize;
1683         }
1684         return true;
1685       }
1686       // We can use simple vreg locations for variadic dbg_values as well.
1687       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1688       continue;
1689     }
1690     // We failed to create a SDDbgOperand for V.
1691     return false;
1692   }
1693 
1694   // We have created a SDDbgOperand for each Value in Values.
1695   // Should use Order instead of SDNodeOrder?
1696   assert(!LocationOps.empty());
1697   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1698                                         /*IsIndirect=*/false, DbgLoc,
1699                                         SDNodeOrder, IsVariadic);
1700   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1701   return true;
1702 }
1703 
1704 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1705   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1706   for (auto &Pair : DanglingDebugInfoMap)
1707     for (auto &DDI : Pair.second)
1708       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1709   clearDanglingDebugInfo();
1710 }
1711 
1712 /// getCopyFromRegs - If there was virtual register allocated for the value V
1713 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1714 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1715   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1716   SDValue Result;
1717 
1718   if (It != FuncInfo.ValueMap.end()) {
1719     Register InReg = It->second;
1720 
1721     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1722                      DAG.getDataLayout(), InReg, Ty,
1723                      std::nullopt); // This is not an ABI copy.
1724     SDValue Chain = DAG.getEntryNode();
1725     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1726                                  V);
1727     resolveDanglingDebugInfo(V, Result);
1728   }
1729 
1730   return Result;
1731 }
1732 
1733 /// getValue - Return an SDValue for the given Value.
1734 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1735   // If we already have an SDValue for this value, use it. It's important
1736   // to do this first, so that we don't create a CopyFromReg if we already
1737   // have a regular SDValue.
1738   SDValue &N = NodeMap[V];
1739   if (N.getNode()) return N;
1740 
1741   // If there's a virtual register allocated and initialized for this
1742   // value, use it.
1743   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1744     return copyFromReg;
1745 
1746   // Otherwise create a new SDValue and remember it.
1747   SDValue Val = getValueImpl(V);
1748   NodeMap[V] = Val;
1749   resolveDanglingDebugInfo(V, Val);
1750   return Val;
1751 }
1752 
1753 /// getNonRegisterValue - Return an SDValue for the given Value, but
1754 /// don't look in FuncInfo.ValueMap for a virtual register.
1755 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1756   // If we already have an SDValue for this value, use it.
1757   SDValue &N = NodeMap[V];
1758   if (N.getNode()) {
1759     if (isIntOrFPConstant(N)) {
1760       // Remove the debug location from the node as the node is about to be used
1761       // in a location which may differ from the original debug location.  This
1762       // is relevant to Constant and ConstantFP nodes because they can appear
1763       // as constant expressions inside PHI nodes.
1764       N->setDebugLoc(DebugLoc());
1765     }
1766     return N;
1767   }
1768 
1769   // Otherwise create a new SDValue and remember it.
1770   SDValue Val = getValueImpl(V);
1771   NodeMap[V] = Val;
1772   resolveDanglingDebugInfo(V, Val);
1773   return Val;
1774 }
1775 
1776 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1777 /// Create an SDValue for the given value.
1778 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1780 
1781   if (const Constant *C = dyn_cast<Constant>(V)) {
1782     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1783 
1784     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1785       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1786 
1787     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1788       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1789 
1790     if (isa<ConstantPointerNull>(C)) {
1791       unsigned AS = V->getType()->getPointerAddressSpace();
1792       return DAG.getConstant(0, getCurSDLoc(),
1793                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1794     }
1795 
1796     if (match(C, m_VScale()))
1797       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1798 
1799     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1800       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1801 
1802     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1803       return DAG.getUNDEF(VT);
1804 
1805     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1806       visit(CE->getOpcode(), *CE);
1807       SDValue N1 = NodeMap[V];
1808       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1809       return N1;
1810     }
1811 
1812     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1813       SmallVector<SDValue, 4> Constants;
1814       for (const Use &U : C->operands()) {
1815         SDNode *Val = getValue(U).getNode();
1816         // If the operand is an empty aggregate, there are no values.
1817         if (!Val) continue;
1818         // Add each leaf value from the operand to the Constants list
1819         // to form a flattened list of all the values.
1820         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1821           Constants.push_back(SDValue(Val, i));
1822       }
1823 
1824       return DAG.getMergeValues(Constants, getCurSDLoc());
1825     }
1826 
1827     if (const ConstantDataSequential *CDS =
1828           dyn_cast<ConstantDataSequential>(C)) {
1829       SmallVector<SDValue, 4> Ops;
1830       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1831         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1832         // Add each leaf value from the operand to the Constants list
1833         // to form a flattened list of all the values.
1834         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1835           Ops.push_back(SDValue(Val, i));
1836       }
1837 
1838       if (isa<ArrayType>(CDS->getType()))
1839         return DAG.getMergeValues(Ops, getCurSDLoc());
1840       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1841     }
1842 
1843     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1844       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1845              "Unknown struct or array constant!");
1846 
1847       SmallVector<EVT, 4> ValueVTs;
1848       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1849       unsigned NumElts = ValueVTs.size();
1850       if (NumElts == 0)
1851         return SDValue(); // empty struct
1852       SmallVector<SDValue, 4> Constants(NumElts);
1853       for (unsigned i = 0; i != NumElts; ++i) {
1854         EVT EltVT = ValueVTs[i];
1855         if (isa<UndefValue>(C))
1856           Constants[i] = DAG.getUNDEF(EltVT);
1857         else if (EltVT.isFloatingPoint())
1858           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1859         else
1860           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1861       }
1862 
1863       return DAG.getMergeValues(Constants, getCurSDLoc());
1864     }
1865 
1866     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1867       return DAG.getBlockAddress(BA, VT);
1868 
1869     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1870       return getValue(Equiv->getGlobalValue());
1871 
1872     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1873       return getValue(NC->getGlobalValue());
1874 
1875     if (VT == MVT::aarch64svcount) {
1876       assert(C->isNullValue() && "Can only zero this target type!");
1877       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1878                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1879     }
1880 
1881     VectorType *VecTy = cast<VectorType>(V->getType());
1882 
1883     // Now that we know the number and type of the elements, get that number of
1884     // elements into the Ops array based on what kind of constant it is.
1885     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1886       SmallVector<SDValue, 16> Ops;
1887       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1888       for (unsigned i = 0; i != NumElements; ++i)
1889         Ops.push_back(getValue(CV->getOperand(i)));
1890 
1891       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1892     }
1893 
1894     if (isa<ConstantAggregateZero>(C)) {
1895       EVT EltVT =
1896           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1897 
1898       SDValue Op;
1899       if (EltVT.isFloatingPoint())
1900         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1901       else
1902         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1903 
1904       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1905     }
1906 
1907     llvm_unreachable("Unknown vector constant");
1908   }
1909 
1910   // If this is a static alloca, generate it as the frameindex instead of
1911   // computation.
1912   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1913     DenseMap<const AllocaInst*, int>::iterator SI =
1914       FuncInfo.StaticAllocaMap.find(AI);
1915     if (SI != FuncInfo.StaticAllocaMap.end())
1916       return DAG.getFrameIndex(
1917           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1918   }
1919 
1920   // If this is an instruction which fast-isel has deferred, select it now.
1921   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1922     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1923 
1924     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1925                      Inst->getType(), std::nullopt);
1926     SDValue Chain = DAG.getEntryNode();
1927     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1928   }
1929 
1930   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1931     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1932 
1933   if (const auto *BB = dyn_cast<BasicBlock>(V))
1934     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1935 
1936   llvm_unreachable("Can't get register for value!");
1937 }
1938 
1939 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1940   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1941   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1942   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1943   bool IsSEH = isAsynchronousEHPersonality(Pers);
1944   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1945   if (!IsSEH)
1946     CatchPadMBB->setIsEHScopeEntry();
1947   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1948   if (IsMSVCCXX || IsCoreCLR)
1949     CatchPadMBB->setIsEHFuncletEntry();
1950 }
1951 
1952 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1953   // Update machine-CFG edge.
1954   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1955   FuncInfo.MBB->addSuccessor(TargetMBB);
1956   TargetMBB->setIsEHCatchretTarget(true);
1957   DAG.getMachineFunction().setHasEHCatchret(true);
1958 
1959   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1960   bool IsSEH = isAsynchronousEHPersonality(Pers);
1961   if (IsSEH) {
1962     // If this is not a fall-through branch or optimizations are switched off,
1963     // emit the branch.
1964     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1965         TM.getOptLevel() == CodeGenOptLevel::None)
1966       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1967                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1968     return;
1969   }
1970 
1971   // Figure out the funclet membership for the catchret's successor.
1972   // This will be used by the FuncletLayout pass to determine how to order the
1973   // BB's.
1974   // A 'catchret' returns to the outer scope's color.
1975   Value *ParentPad = I.getCatchSwitchParentPad();
1976   const BasicBlock *SuccessorColor;
1977   if (isa<ConstantTokenNone>(ParentPad))
1978     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1979   else
1980     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1981   assert(SuccessorColor && "No parent funclet for catchret!");
1982   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1983   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1984 
1985   // Create the terminator node.
1986   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1987                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1988                             DAG.getBasicBlock(SuccessorColorMBB));
1989   DAG.setRoot(Ret);
1990 }
1991 
1992 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1993   // Don't emit any special code for the cleanuppad instruction. It just marks
1994   // the start of an EH scope/funclet.
1995   FuncInfo.MBB->setIsEHScopeEntry();
1996   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1997   if (Pers != EHPersonality::Wasm_CXX) {
1998     FuncInfo.MBB->setIsEHFuncletEntry();
1999     FuncInfo.MBB->setIsCleanupFuncletEntry();
2000   }
2001 }
2002 
2003 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2004 // not match, it is OK to add only the first unwind destination catchpad to the
2005 // successors, because there will be at least one invoke instruction within the
2006 // catch scope that points to the next unwind destination, if one exists, so
2007 // CFGSort cannot mess up with BB sorting order.
2008 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2009 // call within them, and catchpads only consisting of 'catch (...)' have a
2010 // '__cxa_end_catch' call within them, both of which generate invokes in case
2011 // the next unwind destination exists, i.e., the next unwind destination is not
2012 // the caller.)
2013 //
2014 // Having at most one EH pad successor is also simpler and helps later
2015 // transformations.
2016 //
2017 // For example,
2018 // current:
2019 //   invoke void @foo to ... unwind label %catch.dispatch
2020 // catch.dispatch:
2021 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2022 // catch.start:
2023 //   ...
2024 //   ... in this BB or some other child BB dominated by this BB there will be an
2025 //   invoke that points to 'next' BB as an unwind destination
2026 //
2027 // next: ; We don't need to add this to 'current' BB's successor
2028 //   ...
2029 static void findWasmUnwindDestinations(
2030     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2031     BranchProbability Prob,
2032     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2033         &UnwindDests) {
2034   while (EHPadBB) {
2035     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2036     if (isa<CleanupPadInst>(Pad)) {
2037       // Stop on cleanup pads.
2038       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2039       UnwindDests.back().first->setIsEHScopeEntry();
2040       break;
2041     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2042       // Add the catchpad handlers to the possible destinations. We don't
2043       // continue to the unwind destination of the catchswitch for wasm.
2044       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2045         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2046         UnwindDests.back().first->setIsEHScopeEntry();
2047       }
2048       break;
2049     } else {
2050       continue;
2051     }
2052   }
2053 }
2054 
2055 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2056 /// many places it could ultimately go. In the IR, we have a single unwind
2057 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2058 /// This function skips over imaginary basic blocks that hold catchswitch
2059 /// instructions, and finds all the "real" machine
2060 /// basic block destinations. As those destinations may not be successors of
2061 /// EHPadBB, here we also calculate the edge probability to those destinations.
2062 /// The passed-in Prob is the edge probability to EHPadBB.
2063 static void findUnwindDestinations(
2064     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2065     BranchProbability Prob,
2066     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2067         &UnwindDests) {
2068   EHPersonality Personality =
2069     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2070   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2071   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2072   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2073   bool IsSEH = isAsynchronousEHPersonality(Personality);
2074 
2075   if (IsWasmCXX) {
2076     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2077     assert(UnwindDests.size() <= 1 &&
2078            "There should be at most one unwind destination for wasm");
2079     return;
2080   }
2081 
2082   while (EHPadBB) {
2083     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2084     BasicBlock *NewEHPadBB = nullptr;
2085     if (isa<LandingPadInst>(Pad)) {
2086       // Stop on landingpads. They are not funclets.
2087       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2088       break;
2089     } else if (isa<CleanupPadInst>(Pad)) {
2090       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2091       // personalities.
2092       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2093       UnwindDests.back().first->setIsEHScopeEntry();
2094       UnwindDests.back().first->setIsEHFuncletEntry();
2095       break;
2096     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2097       // Add the catchpad handlers to the possible destinations.
2098       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2099         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2100         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2101         if (IsMSVCCXX || IsCoreCLR)
2102           UnwindDests.back().first->setIsEHFuncletEntry();
2103         if (!IsSEH)
2104           UnwindDests.back().first->setIsEHScopeEntry();
2105       }
2106       NewEHPadBB = CatchSwitch->getUnwindDest();
2107     } else {
2108       continue;
2109     }
2110 
2111     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2112     if (BPI && NewEHPadBB)
2113       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2114     EHPadBB = NewEHPadBB;
2115   }
2116 }
2117 
2118 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2119   // Update successor info.
2120   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2121   auto UnwindDest = I.getUnwindDest();
2122   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2123   BranchProbability UnwindDestProb =
2124       (BPI && UnwindDest)
2125           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2126           : BranchProbability::getZero();
2127   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2128   for (auto &UnwindDest : UnwindDests) {
2129     UnwindDest.first->setIsEHPad();
2130     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2131   }
2132   FuncInfo.MBB->normalizeSuccProbs();
2133 
2134   // Create the terminator node.
2135   SDValue Ret =
2136       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2137   DAG.setRoot(Ret);
2138 }
2139 
2140 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2141   report_fatal_error("visitCatchSwitch not yet implemented!");
2142 }
2143 
2144 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2145   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2146   auto &DL = DAG.getDataLayout();
2147   SDValue Chain = getControlRoot();
2148   SmallVector<ISD::OutputArg, 8> Outs;
2149   SmallVector<SDValue, 8> OutVals;
2150 
2151   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2152   // lower
2153   //
2154   //   %val = call <ty> @llvm.experimental.deoptimize()
2155   //   ret <ty> %val
2156   //
2157   // differently.
2158   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2159     LowerDeoptimizingReturn();
2160     return;
2161   }
2162 
2163   if (!FuncInfo.CanLowerReturn) {
2164     unsigned DemoteReg = FuncInfo.DemoteRegister;
2165     const Function *F = I.getParent()->getParent();
2166 
2167     // Emit a store of the return value through the virtual register.
2168     // Leave Outs empty so that LowerReturn won't try to load return
2169     // registers the usual way.
2170     SmallVector<EVT, 1> PtrValueVTs;
2171     ComputeValueVTs(TLI, DL,
2172                     PointerType::get(F->getContext(),
2173                                      DAG.getDataLayout().getAllocaAddrSpace()),
2174                     PtrValueVTs);
2175 
2176     SDValue RetPtr =
2177         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2178     SDValue RetOp = getValue(I.getOperand(0));
2179 
2180     SmallVector<EVT, 4> ValueVTs, MemVTs;
2181     SmallVector<uint64_t, 4> Offsets;
2182     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2183                     &Offsets, 0);
2184     unsigned NumValues = ValueVTs.size();
2185 
2186     SmallVector<SDValue, 4> Chains(NumValues);
2187     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2188     for (unsigned i = 0; i != NumValues; ++i) {
2189       // An aggregate return value cannot wrap around the address space, so
2190       // offsets to its parts don't wrap either.
2191       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2192                                            TypeSize::getFixed(Offsets[i]));
2193 
2194       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2195       if (MemVTs[i] != ValueVTs[i])
2196         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2197       Chains[i] = DAG.getStore(
2198           Chain, getCurSDLoc(), Val,
2199           // FIXME: better loc info would be nice.
2200           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2201           commonAlignment(BaseAlign, Offsets[i]));
2202     }
2203 
2204     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2205                         MVT::Other, Chains);
2206   } else if (I.getNumOperands() != 0) {
2207     SmallVector<EVT, 4> ValueVTs;
2208     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2209     unsigned NumValues = ValueVTs.size();
2210     if (NumValues) {
2211       SDValue RetOp = getValue(I.getOperand(0));
2212 
2213       const Function *F = I.getParent()->getParent();
2214 
2215       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2216           I.getOperand(0)->getType(), F->getCallingConv(),
2217           /*IsVarArg*/ false, DL);
2218 
2219       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2220       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2221         ExtendKind = ISD::SIGN_EXTEND;
2222       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2223         ExtendKind = ISD::ZERO_EXTEND;
2224 
2225       LLVMContext &Context = F->getContext();
2226       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2227 
2228       for (unsigned j = 0; j != NumValues; ++j) {
2229         EVT VT = ValueVTs[j];
2230 
2231         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2232           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2233 
2234         CallingConv::ID CC = F->getCallingConv();
2235 
2236         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2237         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2238         SmallVector<SDValue, 4> Parts(NumParts);
2239         getCopyToParts(DAG, getCurSDLoc(),
2240                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2241                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2242 
2243         // 'inreg' on function refers to return value
2244         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2245         if (RetInReg)
2246           Flags.setInReg();
2247 
2248         if (I.getOperand(0)->getType()->isPointerTy()) {
2249           Flags.setPointer();
2250           Flags.setPointerAddrSpace(
2251               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2252         }
2253 
2254         if (NeedsRegBlock) {
2255           Flags.setInConsecutiveRegs();
2256           if (j == NumValues - 1)
2257             Flags.setInConsecutiveRegsLast();
2258         }
2259 
2260         // Propagate extension type if any
2261         if (ExtendKind == ISD::SIGN_EXTEND)
2262           Flags.setSExt();
2263         else if (ExtendKind == ISD::ZERO_EXTEND)
2264           Flags.setZExt();
2265 
2266         for (unsigned i = 0; i < NumParts; ++i) {
2267           Outs.push_back(ISD::OutputArg(Flags,
2268                                         Parts[i].getValueType().getSimpleVT(),
2269                                         VT, /*isfixed=*/true, 0, 0));
2270           OutVals.push_back(Parts[i]);
2271         }
2272       }
2273     }
2274   }
2275 
2276   // Push in swifterror virtual register as the last element of Outs. This makes
2277   // sure swifterror virtual register will be returned in the swifterror
2278   // physical register.
2279   const Function *F = I.getParent()->getParent();
2280   if (TLI.supportSwiftError() &&
2281       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2282     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2283     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2284     Flags.setSwiftError();
2285     Outs.push_back(ISD::OutputArg(
2286         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2287         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2288     // Create SDNode for the swifterror virtual register.
2289     OutVals.push_back(
2290         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2291                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2292                         EVT(TLI.getPointerTy(DL))));
2293   }
2294 
2295   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2296   CallingConv::ID CallConv =
2297     DAG.getMachineFunction().getFunction().getCallingConv();
2298   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2299       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2300 
2301   // Verify that the target's LowerReturn behaved as expected.
2302   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2303          "LowerReturn didn't return a valid chain!");
2304 
2305   // Update the DAG with the new chain value resulting from return lowering.
2306   DAG.setRoot(Chain);
2307 }
2308 
2309 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2310 /// created for it, emit nodes to copy the value into the virtual
2311 /// registers.
2312 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2313   // Skip empty types
2314   if (V->getType()->isEmptyTy())
2315     return;
2316 
2317   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2318   if (VMI != FuncInfo.ValueMap.end()) {
2319     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2320            "Unused value assigned virtual registers!");
2321     CopyValueToVirtualRegister(V, VMI->second);
2322   }
2323 }
2324 
2325 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2326 /// the current basic block, add it to ValueMap now so that we'll get a
2327 /// CopyTo/FromReg.
2328 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2329   // No need to export constants.
2330   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2331 
2332   // Already exported?
2333   if (FuncInfo.isExportedInst(V)) return;
2334 
2335   Register Reg = FuncInfo.InitializeRegForValue(V);
2336   CopyValueToVirtualRegister(V, Reg);
2337 }
2338 
2339 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2340                                                      const BasicBlock *FromBB) {
2341   // The operands of the setcc have to be in this block.  We don't know
2342   // how to export them from some other block.
2343   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2344     // Can export from current BB.
2345     if (VI->getParent() == FromBB)
2346       return true;
2347 
2348     // Is already exported, noop.
2349     return FuncInfo.isExportedInst(V);
2350   }
2351 
2352   // If this is an argument, we can export it if the BB is the entry block or
2353   // if it is already exported.
2354   if (isa<Argument>(V)) {
2355     if (FromBB->isEntryBlock())
2356       return true;
2357 
2358     // Otherwise, can only export this if it is already exported.
2359     return FuncInfo.isExportedInst(V);
2360   }
2361 
2362   // Otherwise, constants can always be exported.
2363   return true;
2364 }
2365 
2366 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2367 BranchProbability
2368 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2369                                         const MachineBasicBlock *Dst) const {
2370   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2371   const BasicBlock *SrcBB = Src->getBasicBlock();
2372   const BasicBlock *DstBB = Dst->getBasicBlock();
2373   if (!BPI) {
2374     // If BPI is not available, set the default probability as 1 / N, where N is
2375     // the number of successors.
2376     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2377     return BranchProbability(1, SuccSize);
2378   }
2379   return BPI->getEdgeProbability(SrcBB, DstBB);
2380 }
2381 
2382 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2383                                                MachineBasicBlock *Dst,
2384                                                BranchProbability Prob) {
2385   if (!FuncInfo.BPI)
2386     Src->addSuccessorWithoutProb(Dst);
2387   else {
2388     if (Prob.isUnknown())
2389       Prob = getEdgeProbability(Src, Dst);
2390     Src->addSuccessor(Dst, Prob);
2391   }
2392 }
2393 
2394 static bool InBlock(const Value *V, const BasicBlock *BB) {
2395   if (const Instruction *I = dyn_cast<Instruction>(V))
2396     return I->getParent() == BB;
2397   return true;
2398 }
2399 
2400 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2401 /// This function emits a branch and is used at the leaves of an OR or an
2402 /// AND operator tree.
2403 void
2404 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2405                                                   MachineBasicBlock *TBB,
2406                                                   MachineBasicBlock *FBB,
2407                                                   MachineBasicBlock *CurBB,
2408                                                   MachineBasicBlock *SwitchBB,
2409                                                   BranchProbability TProb,
2410                                                   BranchProbability FProb,
2411                                                   bool InvertCond) {
2412   const BasicBlock *BB = CurBB->getBasicBlock();
2413 
2414   // If the leaf of the tree is a comparison, merge the condition into
2415   // the caseblock.
2416   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2417     // The operands of the cmp have to be in this block.  We don't know
2418     // how to export them from some other block.  If this is the first block
2419     // of the sequence, no exporting is needed.
2420     if (CurBB == SwitchBB ||
2421         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2422          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2423       ISD::CondCode Condition;
2424       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2425         ICmpInst::Predicate Pred =
2426             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2427         Condition = getICmpCondCode(Pred);
2428       } else {
2429         const FCmpInst *FC = cast<FCmpInst>(Cond);
2430         FCmpInst::Predicate Pred =
2431             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2432         Condition = getFCmpCondCode(Pred);
2433         if (TM.Options.NoNaNsFPMath)
2434           Condition = getFCmpCodeWithoutNaN(Condition);
2435       }
2436 
2437       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2438                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2439       SL->SwitchCases.push_back(CB);
2440       return;
2441     }
2442   }
2443 
2444   // Create a CaseBlock record representing this branch.
2445   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2446   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2447                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2448   SL->SwitchCases.push_back(CB);
2449 }
2450 
2451 // Collect dependencies on V recursively. This is used for the cost analysis in
2452 // `shouldKeepJumpConditionsTogether`.
2453 static bool collectInstructionDeps(
2454     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2455     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2456     unsigned Depth = 0) {
2457   // Return false if we have an incomplete count.
2458   if (Depth >= SelectionDAG::MaxRecursionDepth)
2459     return false;
2460 
2461   auto *I = dyn_cast<Instruction>(V);
2462   if (I == nullptr)
2463     return true;
2464 
2465   if (Necessary != nullptr) {
2466     // This instruction is necessary for the other side of the condition so
2467     // don't count it.
2468     if (Necessary->contains(I))
2469       return true;
2470   }
2471 
2472   // Already added this dep.
2473   if (!Deps->try_emplace(I, false).second)
2474     return true;
2475 
2476   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2477     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2478                                 Depth + 1))
2479       return false;
2480   return true;
2481 }
2482 
2483 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2484     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2485     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2486     TargetLoweringBase::CondMergingParams Params) const {
2487   if (I.getNumSuccessors() != 2)
2488     return false;
2489 
2490   if (!I.isConditional())
2491     return false;
2492 
2493   if (Params.BaseCost < 0)
2494     return false;
2495 
2496   // Baseline cost.
2497   InstructionCost CostThresh = Params.BaseCost;
2498 
2499   BranchProbabilityInfo *BPI = nullptr;
2500   if (Params.LikelyBias || Params.UnlikelyBias)
2501     BPI = FuncInfo.BPI;
2502   if (BPI != nullptr) {
2503     // See if we are either likely to get an early out or compute both lhs/rhs
2504     // of the condition.
2505     BasicBlock *IfFalse = I.getSuccessor(0);
2506     BasicBlock *IfTrue = I.getSuccessor(1);
2507 
2508     std::optional<bool> Likely;
2509     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2510       Likely = true;
2511     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2512       Likely = false;
2513 
2514     if (Likely) {
2515       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2516         // Its likely we will have to compute both lhs and rhs of condition
2517         CostThresh += Params.LikelyBias;
2518       else {
2519         if (Params.UnlikelyBias < 0)
2520           return false;
2521         // Its likely we will get an early out.
2522         CostThresh -= Params.UnlikelyBias;
2523       }
2524     }
2525   }
2526 
2527   if (CostThresh <= 0)
2528     return false;
2529 
2530   // Collect "all" instructions that lhs condition is dependent on.
2531   // Use map for stable iteration (to avoid non-determanism of iteration of
2532   // SmallPtrSet). The `bool` value is just a dummy.
2533   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2534   collectInstructionDeps(&LhsDeps, Lhs);
2535   // Collect "all" instructions that rhs condition is dependent on AND are
2536   // dependencies of lhs. This gives us an estimate on which instructions we
2537   // stand to save by splitting the condition.
2538   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2539     return false;
2540   // Add the compare instruction itself unless its a dependency on the LHS.
2541   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2542     if (!LhsDeps.contains(RhsI))
2543       RhsDeps.try_emplace(RhsI, false);
2544 
2545   const auto &TLI = DAG.getTargetLoweringInfo();
2546   const auto &TTI =
2547       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2548 
2549   InstructionCost CostOfIncluding = 0;
2550   // See if this instruction will need to computed independently of whether RHS
2551   // is.
2552   Value *BrCond = I.getCondition();
2553   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2554     for (const auto *U : Ins->users()) {
2555       // If user is independent of RHS calculation we don't need to count it.
2556       if (auto *UIns = dyn_cast<Instruction>(U))
2557         if (UIns != BrCond && !RhsDeps.contains(UIns))
2558           return false;
2559     }
2560     return true;
2561   };
2562 
2563   // Prune instructions from RHS Deps that are dependencies of unrelated
2564   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2565   // arbitrary and just meant to cap the how much time we spend in the pruning
2566   // loop. Its highly unlikely to come into affect.
2567   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2568   // Stop after a certain point. No incorrectness from including too many
2569   // instructions.
2570   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2571     const Instruction *ToDrop = nullptr;
2572     for (const auto &InsPair : RhsDeps) {
2573       if (!ShouldCountInsn(InsPair.first)) {
2574         ToDrop = InsPair.first;
2575         break;
2576       }
2577     }
2578     if (ToDrop == nullptr)
2579       break;
2580     RhsDeps.erase(ToDrop);
2581   }
2582 
2583   for (const auto &InsPair : RhsDeps) {
2584     // Finally accumulate latency that we can only attribute to computing the
2585     // RHS condition. Use latency because we are essentially trying to calculate
2586     // the cost of the dependency chain.
2587     // Possible TODO: We could try to estimate ILP and make this more precise.
2588     CostOfIncluding +=
2589         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2590 
2591     if (CostOfIncluding > CostThresh)
2592       return false;
2593   }
2594   return true;
2595 }
2596 
2597 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2598                                                MachineBasicBlock *TBB,
2599                                                MachineBasicBlock *FBB,
2600                                                MachineBasicBlock *CurBB,
2601                                                MachineBasicBlock *SwitchBB,
2602                                                Instruction::BinaryOps Opc,
2603                                                BranchProbability TProb,
2604                                                BranchProbability FProb,
2605                                                bool InvertCond) {
2606   // Skip over not part of the tree and remember to invert op and operands at
2607   // next level.
2608   Value *NotCond;
2609   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2610       InBlock(NotCond, CurBB->getBasicBlock())) {
2611     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2612                          !InvertCond);
2613     return;
2614   }
2615 
2616   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2617   const Value *BOpOp0, *BOpOp1;
2618   // Compute the effective opcode for Cond, taking into account whether it needs
2619   // to be inverted, e.g.
2620   //   and (not (or A, B)), C
2621   // gets lowered as
2622   //   and (and (not A, not B), C)
2623   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2624   if (BOp) {
2625     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2626                ? Instruction::And
2627                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2628                       ? Instruction::Or
2629                       : (Instruction::BinaryOps)0);
2630     if (InvertCond) {
2631       if (BOpc == Instruction::And)
2632         BOpc = Instruction::Or;
2633       else if (BOpc == Instruction::Or)
2634         BOpc = Instruction::And;
2635     }
2636   }
2637 
2638   // If this node is not part of the or/and tree, emit it as a branch.
2639   // Note that all nodes in the tree should have same opcode.
2640   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2641   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2642       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2643       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2644     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2645                                  TProb, FProb, InvertCond);
2646     return;
2647   }
2648 
2649   //  Create TmpBB after CurBB.
2650   MachineFunction::iterator BBI(CurBB);
2651   MachineFunction &MF = DAG.getMachineFunction();
2652   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2653   CurBB->getParent()->insert(++BBI, TmpBB);
2654 
2655   if (Opc == Instruction::Or) {
2656     // Codegen X | Y as:
2657     // BB1:
2658     //   jmp_if_X TBB
2659     //   jmp TmpBB
2660     // TmpBB:
2661     //   jmp_if_Y TBB
2662     //   jmp FBB
2663     //
2664 
2665     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2666     // The requirement is that
2667     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2668     //     = TrueProb for original BB.
2669     // Assuming the original probabilities are A and B, one choice is to set
2670     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2671     // A/(1+B) and 2B/(1+B). This choice assumes that
2672     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2673     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2674     // TmpBB, but the math is more complicated.
2675 
2676     auto NewTrueProb = TProb / 2;
2677     auto NewFalseProb = TProb / 2 + FProb;
2678     // Emit the LHS condition.
2679     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2680                          NewFalseProb, InvertCond);
2681 
2682     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2683     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2684     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2685     // Emit the RHS condition into TmpBB.
2686     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2687                          Probs[1], InvertCond);
2688   } else {
2689     assert(Opc == Instruction::And && "Unknown merge op!");
2690     // Codegen X & Y as:
2691     // BB1:
2692     //   jmp_if_X TmpBB
2693     //   jmp FBB
2694     // TmpBB:
2695     //   jmp_if_Y TBB
2696     //   jmp FBB
2697     //
2698     //  This requires creation of TmpBB after CurBB.
2699 
2700     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2701     // The requirement is that
2702     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2703     //     = FalseProb for original BB.
2704     // Assuming the original probabilities are A and B, one choice is to set
2705     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2706     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2707     // TrueProb for BB1 * FalseProb for TmpBB.
2708 
2709     auto NewTrueProb = TProb + FProb / 2;
2710     auto NewFalseProb = FProb / 2;
2711     // Emit the LHS condition.
2712     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2713                          NewFalseProb, InvertCond);
2714 
2715     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2716     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2717     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2718     // Emit the RHS condition into TmpBB.
2719     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2720                          Probs[1], InvertCond);
2721   }
2722 }
2723 
2724 /// If the set of cases should be emitted as a series of branches, return true.
2725 /// If we should emit this as a bunch of and/or'd together conditions, return
2726 /// false.
2727 bool
2728 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2729   if (Cases.size() != 2) return true;
2730 
2731   // If this is two comparisons of the same values or'd or and'd together, they
2732   // will get folded into a single comparison, so don't emit two blocks.
2733   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2734        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2735       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2736        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2737     return false;
2738   }
2739 
2740   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2741   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2742   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2743       Cases[0].CC == Cases[1].CC &&
2744       isa<Constant>(Cases[0].CmpRHS) &&
2745       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2746     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2747       return false;
2748     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2749       return false;
2750   }
2751 
2752   return true;
2753 }
2754 
2755 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2756   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2757 
2758   // Update machine-CFG edges.
2759   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2760 
2761   if (I.isUnconditional()) {
2762     // Update machine-CFG edges.
2763     BrMBB->addSuccessor(Succ0MBB);
2764 
2765     // If this is not a fall-through branch or optimizations are switched off,
2766     // emit the branch.
2767     if (Succ0MBB != NextBlock(BrMBB) ||
2768         TM.getOptLevel() == CodeGenOptLevel::None) {
2769       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2770                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2771       setValue(&I, Br);
2772       DAG.setRoot(Br);
2773     }
2774 
2775     return;
2776   }
2777 
2778   // If this condition is one of the special cases we handle, do special stuff
2779   // now.
2780   const Value *CondVal = I.getCondition();
2781   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2782 
2783   // If this is a series of conditions that are or'd or and'd together, emit
2784   // this as a sequence of branches instead of setcc's with and/or operations.
2785   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2786   // unpredictable branches, and vector extracts because those jumps are likely
2787   // expensive for any target), this should improve performance.
2788   // For example, instead of something like:
2789   //     cmp A, B
2790   //     C = seteq
2791   //     cmp D, E
2792   //     F = setle
2793   //     or C, F
2794   //     jnz foo
2795   // Emit:
2796   //     cmp A, B
2797   //     je foo
2798   //     cmp D, E
2799   //     jle foo
2800   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2801   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2802       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2803     Value *Vec;
2804     const Value *BOp0, *BOp1;
2805     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2806     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2807       Opcode = Instruction::And;
2808     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2809       Opcode = Instruction::Or;
2810 
2811     if (Opcode &&
2812         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2813           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2814         !shouldKeepJumpConditionsTogether(
2815             FuncInfo, I, Opcode, BOp0, BOp1,
2816             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2817                 Opcode, BOp0, BOp1))) {
2818       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2819                            getEdgeProbability(BrMBB, Succ0MBB),
2820                            getEdgeProbability(BrMBB, Succ1MBB),
2821                            /*InvertCond=*/false);
2822       // If the compares in later blocks need to use values not currently
2823       // exported from this block, export them now.  This block should always
2824       // be the first entry.
2825       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2826 
2827       // Allow some cases to be rejected.
2828       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2829         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2830           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2831           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2832         }
2833 
2834         // Emit the branch for this block.
2835         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2836         SL->SwitchCases.erase(SL->SwitchCases.begin());
2837         return;
2838       }
2839 
2840       // Okay, we decided not to do this, remove any inserted MBB's and clear
2841       // SwitchCases.
2842       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2843         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2844 
2845       SL->SwitchCases.clear();
2846     }
2847   }
2848 
2849   // Create a CaseBlock record representing this branch.
2850   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2851                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2852 
2853   // Use visitSwitchCase to actually insert the fast branch sequence for this
2854   // cond branch.
2855   visitSwitchCase(CB, BrMBB);
2856 }
2857 
2858 /// visitSwitchCase - Emits the necessary code to represent a single node in
2859 /// the binary search tree resulting from lowering a switch instruction.
2860 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2861                                           MachineBasicBlock *SwitchBB) {
2862   SDValue Cond;
2863   SDValue CondLHS = getValue(CB.CmpLHS);
2864   SDLoc dl = CB.DL;
2865 
2866   if (CB.CC == ISD::SETTRUE) {
2867     // Branch or fall through to TrueBB.
2868     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2869     SwitchBB->normalizeSuccProbs();
2870     if (CB.TrueBB != NextBlock(SwitchBB)) {
2871       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2872                               DAG.getBasicBlock(CB.TrueBB)));
2873     }
2874     return;
2875   }
2876 
2877   auto &TLI = DAG.getTargetLoweringInfo();
2878   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2879 
2880   // Build the setcc now.
2881   if (!CB.CmpMHS) {
2882     // Fold "(X == true)" to X and "(X == false)" to !X to
2883     // handle common cases produced by branch lowering.
2884     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2885         CB.CC == ISD::SETEQ)
2886       Cond = CondLHS;
2887     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2888              CB.CC == ISD::SETEQ) {
2889       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2890       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2891     } else {
2892       SDValue CondRHS = getValue(CB.CmpRHS);
2893 
2894       // If a pointer's DAG type is larger than its memory type then the DAG
2895       // values are zero-extended. This breaks signed comparisons so truncate
2896       // back to the underlying type before doing the compare.
2897       if (CondLHS.getValueType() != MemVT) {
2898         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2899         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2900       }
2901       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2902     }
2903   } else {
2904     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2905 
2906     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2907     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2908 
2909     SDValue CmpOp = getValue(CB.CmpMHS);
2910     EVT VT = CmpOp.getValueType();
2911 
2912     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2913       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2914                           ISD::SETLE);
2915     } else {
2916       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2917                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2918       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2919                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2920     }
2921   }
2922 
2923   // Update successor info
2924   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2925   // TrueBB and FalseBB are always different unless the incoming IR is
2926   // degenerate. This only happens when running llc on weird IR.
2927   if (CB.TrueBB != CB.FalseBB)
2928     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2929   SwitchBB->normalizeSuccProbs();
2930 
2931   // If the lhs block is the next block, invert the condition so that we can
2932   // fall through to the lhs instead of the rhs block.
2933   if (CB.TrueBB == NextBlock(SwitchBB)) {
2934     std::swap(CB.TrueBB, CB.FalseBB);
2935     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2936     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2937   }
2938 
2939   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2940                                MVT::Other, getControlRoot(), Cond,
2941                                DAG.getBasicBlock(CB.TrueBB));
2942 
2943   setValue(CurInst, BrCond);
2944 
2945   // Insert the false branch. Do this even if it's a fall through branch,
2946   // this makes it easier to do DAG optimizations which require inverting
2947   // the branch condition.
2948   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2949                        DAG.getBasicBlock(CB.FalseBB));
2950 
2951   DAG.setRoot(BrCond);
2952 }
2953 
2954 /// visitJumpTable - Emit JumpTable node in the current MBB
2955 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2956   // Emit the code for the jump table
2957   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2958   assert(JT.Reg != -1U && "Should lower JT Header first!");
2959   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2960   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2961   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2962   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2963                                     Index.getValue(1), Table, Index);
2964   DAG.setRoot(BrJumpTable);
2965 }
2966 
2967 /// visitJumpTableHeader - This function emits necessary code to produce index
2968 /// in the JumpTable from switch case.
2969 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2970                                                JumpTableHeader &JTH,
2971                                                MachineBasicBlock *SwitchBB) {
2972   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2973   const SDLoc &dl = *JT.SL;
2974 
2975   // Subtract the lowest switch case value from the value being switched on.
2976   SDValue SwitchOp = getValue(JTH.SValue);
2977   EVT VT = SwitchOp.getValueType();
2978   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2979                             DAG.getConstant(JTH.First, dl, VT));
2980 
2981   // The SDNode we just created, which holds the value being switched on minus
2982   // the smallest case value, needs to be copied to a virtual register so it
2983   // can be used as an index into the jump table in a subsequent basic block.
2984   // This value may be smaller or larger than the target's pointer type, and
2985   // therefore require extension or truncating.
2986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2987   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2988 
2989   unsigned JumpTableReg =
2990       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2991   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2992                                     JumpTableReg, SwitchOp);
2993   JT.Reg = JumpTableReg;
2994 
2995   if (!JTH.FallthroughUnreachable) {
2996     // Emit the range check for the jump table, and branch to the default block
2997     // for the switch statement if the value being switched on exceeds the
2998     // largest case in the switch.
2999     SDValue CMP = DAG.getSetCC(
3000         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3001                                    Sub.getValueType()),
3002         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3003 
3004     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3005                                  MVT::Other, CopyTo, CMP,
3006                                  DAG.getBasicBlock(JT.Default));
3007 
3008     // Avoid emitting unnecessary branches to the next block.
3009     if (JT.MBB != NextBlock(SwitchBB))
3010       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3011                            DAG.getBasicBlock(JT.MBB));
3012 
3013     DAG.setRoot(BrCond);
3014   } else {
3015     // Avoid emitting unnecessary branches to the next block.
3016     if (JT.MBB != NextBlock(SwitchBB))
3017       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3018                               DAG.getBasicBlock(JT.MBB)));
3019     else
3020       DAG.setRoot(CopyTo);
3021   }
3022 }
3023 
3024 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3025 /// variable if there exists one.
3026 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3027                                  SDValue &Chain) {
3028   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3029   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3030   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3031   MachineFunction &MF = DAG.getMachineFunction();
3032   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3033   MachineSDNode *Node =
3034       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3035   if (Global) {
3036     MachinePointerInfo MPInfo(Global);
3037     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3038                  MachineMemOperand::MODereferenceable;
3039     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3040         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3041         DAG.getEVTAlign(PtrTy));
3042     DAG.setNodeMemRefs(Node, {MemRef});
3043   }
3044   if (PtrTy != PtrMemTy)
3045     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3046   return SDValue(Node, 0);
3047 }
3048 
3049 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3050 /// tail spliced into a stack protector check success bb.
3051 ///
3052 /// For a high level explanation of how this fits into the stack protector
3053 /// generation see the comment on the declaration of class
3054 /// StackProtectorDescriptor.
3055 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3056                                                   MachineBasicBlock *ParentBB) {
3057 
3058   // First create the loads to the guard/stack slot for the comparison.
3059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3060   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3061   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3062 
3063   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3064   int FI = MFI.getStackProtectorIndex();
3065 
3066   SDValue Guard;
3067   SDLoc dl = getCurSDLoc();
3068   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3069   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3070   Align Align =
3071       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3072 
3073   // Generate code to load the content of the guard slot.
3074   SDValue GuardVal = DAG.getLoad(
3075       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3076       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3077       MachineMemOperand::MOVolatile);
3078 
3079   if (TLI.useStackGuardXorFP())
3080     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3081 
3082   // Retrieve guard check function, nullptr if instrumentation is inlined.
3083   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3084     // The target provides a guard check function to validate the guard value.
3085     // Generate a call to that function with the content of the guard slot as
3086     // argument.
3087     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3088     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3089 
3090     TargetLowering::ArgListTy Args;
3091     TargetLowering::ArgListEntry Entry;
3092     Entry.Node = GuardVal;
3093     Entry.Ty = FnTy->getParamType(0);
3094     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3095       Entry.IsInReg = true;
3096     Args.push_back(Entry);
3097 
3098     TargetLowering::CallLoweringInfo CLI(DAG);
3099     CLI.setDebugLoc(getCurSDLoc())
3100         .setChain(DAG.getEntryNode())
3101         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3102                    getValue(GuardCheckFn), std::move(Args));
3103 
3104     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3105     DAG.setRoot(Result.second);
3106     return;
3107   }
3108 
3109   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3110   // Otherwise, emit a volatile load to retrieve the stack guard value.
3111   SDValue Chain = DAG.getEntryNode();
3112   if (TLI.useLoadStackGuardNode()) {
3113     Guard = getLoadStackGuard(DAG, dl, Chain);
3114   } else {
3115     const Value *IRGuard = TLI.getSDagStackGuard(M);
3116     SDValue GuardPtr = getValue(IRGuard);
3117 
3118     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3119                         MachinePointerInfo(IRGuard, 0), Align,
3120                         MachineMemOperand::MOVolatile);
3121   }
3122 
3123   // Perform the comparison via a getsetcc.
3124   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3125                                                         *DAG.getContext(),
3126                                                         Guard.getValueType()),
3127                              Guard, GuardVal, ISD::SETNE);
3128 
3129   // If the guard/stackslot do not equal, branch to failure MBB.
3130   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3131                                MVT::Other, GuardVal.getOperand(0),
3132                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3133   // Otherwise branch to success MBB.
3134   SDValue Br = DAG.getNode(ISD::BR, dl,
3135                            MVT::Other, BrCond,
3136                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3137 
3138   DAG.setRoot(Br);
3139 }
3140 
3141 /// Codegen the failure basic block for a stack protector check.
3142 ///
3143 /// A failure stack protector machine basic block consists simply of a call to
3144 /// __stack_chk_fail().
3145 ///
3146 /// For a high level explanation of how this fits into the stack protector
3147 /// generation see the comment on the declaration of class
3148 /// StackProtectorDescriptor.
3149 void
3150 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3152   TargetLowering::MakeLibCallOptions CallOptions;
3153   CallOptions.setDiscardResult(true);
3154   SDValue Chain =
3155       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3156                       std::nullopt, CallOptions, getCurSDLoc())
3157           .second;
3158   // On PS4/PS5, the "return address" must still be within the calling
3159   // function, even if it's at the very end, so emit an explicit TRAP here.
3160   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3161   if (TM.getTargetTriple().isPS())
3162     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3163   // WebAssembly needs an unreachable instruction after a non-returning call,
3164   // because the function return type can be different from __stack_chk_fail's
3165   // return type (void).
3166   if (TM.getTargetTriple().isWasm())
3167     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3168 
3169   DAG.setRoot(Chain);
3170 }
3171 
3172 /// visitBitTestHeader - This function emits necessary code to produce value
3173 /// suitable for "bit tests"
3174 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3175                                              MachineBasicBlock *SwitchBB) {
3176   SDLoc dl = getCurSDLoc();
3177 
3178   // Subtract the minimum value.
3179   SDValue SwitchOp = getValue(B.SValue);
3180   EVT VT = SwitchOp.getValueType();
3181   SDValue RangeSub =
3182       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3183 
3184   // Determine the type of the test operands.
3185   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3186   bool UsePtrType = false;
3187   if (!TLI.isTypeLegal(VT)) {
3188     UsePtrType = true;
3189   } else {
3190     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3191       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3192         // Switch table case range are encoded into series of masks.
3193         // Just use pointer type, it's guaranteed to fit.
3194         UsePtrType = true;
3195         break;
3196       }
3197   }
3198   SDValue Sub = RangeSub;
3199   if (UsePtrType) {
3200     VT = TLI.getPointerTy(DAG.getDataLayout());
3201     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3202   }
3203 
3204   B.RegVT = VT.getSimpleVT();
3205   B.Reg = FuncInfo.CreateReg(B.RegVT);
3206   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3207 
3208   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3209 
3210   if (!B.FallthroughUnreachable)
3211     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3212   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3213   SwitchBB->normalizeSuccProbs();
3214 
3215   SDValue Root = CopyTo;
3216   if (!B.FallthroughUnreachable) {
3217     // Conditional branch to the default block.
3218     SDValue RangeCmp = DAG.getSetCC(dl,
3219         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3220                                RangeSub.getValueType()),
3221         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3222         ISD::SETUGT);
3223 
3224     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3225                        DAG.getBasicBlock(B.Default));
3226   }
3227 
3228   // Avoid emitting unnecessary branches to the next block.
3229   if (MBB != NextBlock(SwitchBB))
3230     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3231 
3232   DAG.setRoot(Root);
3233 }
3234 
3235 /// visitBitTestCase - this function produces one "bit test"
3236 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3237                                            MachineBasicBlock* NextMBB,
3238                                            BranchProbability BranchProbToNext,
3239                                            unsigned Reg,
3240                                            BitTestCase &B,
3241                                            MachineBasicBlock *SwitchBB) {
3242   SDLoc dl = getCurSDLoc();
3243   MVT VT = BB.RegVT;
3244   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3245   SDValue Cmp;
3246   unsigned PopCount = llvm::popcount(B.Mask);
3247   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3248   if (PopCount == 1) {
3249     // Testing for a single bit; just compare the shift count with what it
3250     // would need to be to shift a 1 bit in that position.
3251     Cmp = DAG.getSetCC(
3252         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3253         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3254         ISD::SETEQ);
3255   } else if (PopCount == BB.Range) {
3256     // There is only one zero bit in the range, test for it directly.
3257     Cmp = DAG.getSetCC(
3258         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3259         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3260   } else {
3261     // Make desired shift
3262     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3263                                     DAG.getConstant(1, dl, VT), ShiftOp);
3264 
3265     // Emit bit tests and jumps
3266     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3267                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3268     Cmp = DAG.getSetCC(
3269         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3270         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3271   }
3272 
3273   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3274   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3275   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3276   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3277   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3278   // one as they are relative probabilities (and thus work more like weights),
3279   // and hence we need to normalize them to let the sum of them become one.
3280   SwitchBB->normalizeSuccProbs();
3281 
3282   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3283                               MVT::Other, getControlRoot(),
3284                               Cmp, DAG.getBasicBlock(B.TargetBB));
3285 
3286   // Avoid emitting unnecessary branches to the next block.
3287   if (NextMBB != NextBlock(SwitchBB))
3288     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3289                         DAG.getBasicBlock(NextMBB));
3290 
3291   DAG.setRoot(BrAnd);
3292 }
3293 
3294 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3295   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3296 
3297   // Retrieve successors. Look through artificial IR level blocks like
3298   // catchswitch for successors.
3299   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3300   const BasicBlock *EHPadBB = I.getSuccessor(1);
3301   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3302 
3303   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3304   // have to do anything here to lower funclet bundles.
3305   assert(!I.hasOperandBundlesOtherThan(
3306              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3307               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3308               LLVMContext::OB_cfguardtarget,
3309               LLVMContext::OB_clang_arc_attachedcall}) &&
3310          "Cannot lower invokes with arbitrary operand bundles yet!");
3311 
3312   const Value *Callee(I.getCalledOperand());
3313   const Function *Fn = dyn_cast<Function>(Callee);
3314   if (isa<InlineAsm>(Callee))
3315     visitInlineAsm(I, EHPadBB);
3316   else if (Fn && Fn->isIntrinsic()) {
3317     switch (Fn->getIntrinsicID()) {
3318     default:
3319       llvm_unreachable("Cannot invoke this intrinsic");
3320     case Intrinsic::donothing:
3321       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3322     case Intrinsic::seh_try_begin:
3323     case Intrinsic::seh_scope_begin:
3324     case Intrinsic::seh_try_end:
3325     case Intrinsic::seh_scope_end:
3326       if (EHPadMBB)
3327           // a block referenced by EH table
3328           // so dtor-funclet not removed by opts
3329           EHPadMBB->setMachineBlockAddressTaken();
3330       break;
3331     case Intrinsic::experimental_patchpoint_void:
3332     case Intrinsic::experimental_patchpoint_i64:
3333       visitPatchpoint(I, EHPadBB);
3334       break;
3335     case Intrinsic::experimental_gc_statepoint:
3336       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3337       break;
3338     case Intrinsic::wasm_rethrow: {
3339       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3340       // special because it can be invoked, so we manually lower it to a DAG
3341       // node here.
3342       SmallVector<SDValue, 8> Ops;
3343       Ops.push_back(getRoot()); // inchain
3344       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3345       Ops.push_back(
3346           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3347                                 TLI.getPointerTy(DAG.getDataLayout())));
3348       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3349       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3350       break;
3351     }
3352     }
3353   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3354     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3355     // Eventually we will support lowering the @llvm.experimental.deoptimize
3356     // intrinsic, and right now there are no plans to support other intrinsics
3357     // with deopt state.
3358     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3359   } else {
3360     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3361   }
3362 
3363   // If the value of the invoke is used outside of its defining block, make it
3364   // available as a virtual register.
3365   // We already took care of the exported value for the statepoint instruction
3366   // during call to the LowerStatepoint.
3367   if (!isa<GCStatepointInst>(I)) {
3368     CopyToExportRegsIfNeeded(&I);
3369   }
3370 
3371   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3372   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3373   BranchProbability EHPadBBProb =
3374       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3375           : BranchProbability::getZero();
3376   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3377 
3378   // Update successor info.
3379   addSuccessorWithProb(InvokeMBB, Return);
3380   for (auto &UnwindDest : UnwindDests) {
3381     UnwindDest.first->setIsEHPad();
3382     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3383   }
3384   InvokeMBB->normalizeSuccProbs();
3385 
3386   // Drop into normal successor.
3387   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3388                           DAG.getBasicBlock(Return)));
3389 }
3390 
3391 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3392   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3393 
3394   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3395   // have to do anything here to lower funclet bundles.
3396   assert(!I.hasOperandBundlesOtherThan(
3397              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3398          "Cannot lower callbrs with arbitrary operand bundles yet!");
3399 
3400   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3401   visitInlineAsm(I);
3402   CopyToExportRegsIfNeeded(&I);
3403 
3404   // Retrieve successors.
3405   SmallPtrSet<BasicBlock *, 8> Dests;
3406   Dests.insert(I.getDefaultDest());
3407   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3408 
3409   // Update successor info.
3410   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3411   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3412     BasicBlock *Dest = I.getIndirectDest(i);
3413     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3414     Target->setIsInlineAsmBrIndirectTarget();
3415     Target->setMachineBlockAddressTaken();
3416     Target->setLabelMustBeEmitted();
3417     // Don't add duplicate machine successors.
3418     if (Dests.insert(Dest).second)
3419       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3420   }
3421   CallBrMBB->normalizeSuccProbs();
3422 
3423   // Drop into default successor.
3424   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3425                           MVT::Other, getControlRoot(),
3426                           DAG.getBasicBlock(Return)));
3427 }
3428 
3429 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3430   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3431 }
3432 
3433 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3434   assert(FuncInfo.MBB->isEHPad() &&
3435          "Call to landingpad not in landing pad!");
3436 
3437   // If there aren't registers to copy the values into (e.g., during SjLj
3438   // exceptions), then don't bother to create these DAG nodes.
3439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3440   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3441   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3442       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3443     return;
3444 
3445   // If landingpad's return type is token type, we don't create DAG nodes
3446   // for its exception pointer and selector value. The extraction of exception
3447   // pointer or selector value from token type landingpads is not currently
3448   // supported.
3449   if (LP.getType()->isTokenTy())
3450     return;
3451 
3452   SmallVector<EVT, 2> ValueVTs;
3453   SDLoc dl = getCurSDLoc();
3454   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3455   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3456 
3457   // Get the two live-in registers as SDValues. The physregs have already been
3458   // copied into virtual registers.
3459   SDValue Ops[2];
3460   if (FuncInfo.ExceptionPointerVirtReg) {
3461     Ops[0] = DAG.getZExtOrTrunc(
3462         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3463                            FuncInfo.ExceptionPointerVirtReg,
3464                            TLI.getPointerTy(DAG.getDataLayout())),
3465         dl, ValueVTs[0]);
3466   } else {
3467     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3468   }
3469   Ops[1] = DAG.getZExtOrTrunc(
3470       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3471                          FuncInfo.ExceptionSelectorVirtReg,
3472                          TLI.getPointerTy(DAG.getDataLayout())),
3473       dl, ValueVTs[1]);
3474 
3475   // Merge into one.
3476   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3477                             DAG.getVTList(ValueVTs), Ops);
3478   setValue(&LP, Res);
3479 }
3480 
3481 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3482                                            MachineBasicBlock *Last) {
3483   // Update JTCases.
3484   for (JumpTableBlock &JTB : SL->JTCases)
3485     if (JTB.first.HeaderBB == First)
3486       JTB.first.HeaderBB = Last;
3487 
3488   // Update BitTestCases.
3489   for (BitTestBlock &BTB : SL->BitTestCases)
3490     if (BTB.Parent == First)
3491       BTB.Parent = Last;
3492 }
3493 
3494 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3495   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3496 
3497   // Update machine-CFG edges with unique successors.
3498   SmallSet<BasicBlock*, 32> Done;
3499   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3500     BasicBlock *BB = I.getSuccessor(i);
3501     bool Inserted = Done.insert(BB).second;
3502     if (!Inserted)
3503         continue;
3504 
3505     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3506     addSuccessorWithProb(IndirectBrMBB, Succ);
3507   }
3508   IndirectBrMBB->normalizeSuccProbs();
3509 
3510   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3511                           MVT::Other, getControlRoot(),
3512                           getValue(I.getAddress())));
3513 }
3514 
3515 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3516   if (!DAG.getTarget().Options.TrapUnreachable)
3517     return;
3518 
3519   // We may be able to ignore unreachable behind a noreturn call.
3520   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3521     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3522       if (Call->doesNotReturn())
3523         return;
3524     }
3525   }
3526 
3527   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3528 }
3529 
3530 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3531   SDNodeFlags Flags;
3532   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3533     Flags.copyFMF(*FPOp);
3534 
3535   SDValue Op = getValue(I.getOperand(0));
3536   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3537                                     Op, Flags);
3538   setValue(&I, UnNodeValue);
3539 }
3540 
3541 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3542   SDNodeFlags Flags;
3543   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3544     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3545     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3546   }
3547   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3548     Flags.setExact(ExactOp->isExact());
3549   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3550     Flags.setDisjoint(DisjointOp->isDisjoint());
3551   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3552     Flags.copyFMF(*FPOp);
3553 
3554   SDValue Op1 = getValue(I.getOperand(0));
3555   SDValue Op2 = getValue(I.getOperand(1));
3556   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3557                                      Op1, Op2, Flags);
3558   setValue(&I, BinNodeValue);
3559 }
3560 
3561 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3562   SDValue Op1 = getValue(I.getOperand(0));
3563   SDValue Op2 = getValue(I.getOperand(1));
3564 
3565   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3566       Op1.getValueType(), DAG.getDataLayout());
3567 
3568   // Coerce the shift amount to the right type if we can. This exposes the
3569   // truncate or zext to optimization early.
3570   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3571     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3572            "Unexpected shift type");
3573     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3574   }
3575 
3576   bool nuw = false;
3577   bool nsw = false;
3578   bool exact = false;
3579 
3580   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3581 
3582     if (const OverflowingBinaryOperator *OFBinOp =
3583             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3584       nuw = OFBinOp->hasNoUnsignedWrap();
3585       nsw = OFBinOp->hasNoSignedWrap();
3586     }
3587     if (const PossiblyExactOperator *ExactOp =
3588             dyn_cast<const PossiblyExactOperator>(&I))
3589       exact = ExactOp->isExact();
3590   }
3591   SDNodeFlags Flags;
3592   Flags.setExact(exact);
3593   Flags.setNoSignedWrap(nsw);
3594   Flags.setNoUnsignedWrap(nuw);
3595   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3596                             Flags);
3597   setValue(&I, Res);
3598 }
3599 
3600 void SelectionDAGBuilder::visitSDiv(const User &I) {
3601   SDValue Op1 = getValue(I.getOperand(0));
3602   SDValue Op2 = getValue(I.getOperand(1));
3603 
3604   SDNodeFlags Flags;
3605   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3606                  cast<PossiblyExactOperator>(&I)->isExact());
3607   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3608                            Op2, Flags));
3609 }
3610 
3611 void SelectionDAGBuilder::visitICmp(const User &I) {
3612   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3613   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3614     predicate = IC->getPredicate();
3615   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3616     predicate = ICmpInst::Predicate(IC->getPredicate());
3617   SDValue Op1 = getValue(I.getOperand(0));
3618   SDValue Op2 = getValue(I.getOperand(1));
3619   ISD::CondCode Opcode = getICmpCondCode(predicate);
3620 
3621   auto &TLI = DAG.getTargetLoweringInfo();
3622   EVT MemVT =
3623       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3624 
3625   // If a pointer's DAG type is larger than its memory type then the DAG values
3626   // are zero-extended. This breaks signed comparisons so truncate back to the
3627   // underlying type before doing the compare.
3628   if (Op1.getValueType() != MemVT) {
3629     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3630     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3631   }
3632 
3633   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3634                                                         I.getType());
3635   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3636 }
3637 
3638 void SelectionDAGBuilder::visitFCmp(const User &I) {
3639   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3640   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3641     predicate = FC->getPredicate();
3642   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3643     predicate = FCmpInst::Predicate(FC->getPredicate());
3644   SDValue Op1 = getValue(I.getOperand(0));
3645   SDValue Op2 = getValue(I.getOperand(1));
3646 
3647   ISD::CondCode Condition = getFCmpCondCode(predicate);
3648   auto *FPMO = cast<FPMathOperator>(&I);
3649   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3650     Condition = getFCmpCodeWithoutNaN(Condition);
3651 
3652   SDNodeFlags Flags;
3653   Flags.copyFMF(*FPMO);
3654   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3655 
3656   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3657                                                         I.getType());
3658   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3659 }
3660 
3661 // Check if the condition of the select has one use or two users that are both
3662 // selects with the same condition.
3663 static bool hasOnlySelectUsers(const Value *Cond) {
3664   return llvm::all_of(Cond->users(), [](const Value *V) {
3665     return isa<SelectInst>(V);
3666   });
3667 }
3668 
3669 void SelectionDAGBuilder::visitSelect(const User &I) {
3670   SmallVector<EVT, 4> ValueVTs;
3671   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3672                   ValueVTs);
3673   unsigned NumValues = ValueVTs.size();
3674   if (NumValues == 0) return;
3675 
3676   SmallVector<SDValue, 4> Values(NumValues);
3677   SDValue Cond     = getValue(I.getOperand(0));
3678   SDValue LHSVal   = getValue(I.getOperand(1));
3679   SDValue RHSVal   = getValue(I.getOperand(2));
3680   SmallVector<SDValue, 1> BaseOps(1, Cond);
3681   ISD::NodeType OpCode =
3682       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3683 
3684   bool IsUnaryAbs = false;
3685   bool Negate = false;
3686 
3687   SDNodeFlags Flags;
3688   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3689     Flags.copyFMF(*FPOp);
3690 
3691   Flags.setUnpredictable(
3692       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3693 
3694   // Min/max matching is only viable if all output VTs are the same.
3695   if (all_equal(ValueVTs)) {
3696     EVT VT = ValueVTs[0];
3697     LLVMContext &Ctx = *DAG.getContext();
3698     auto &TLI = DAG.getTargetLoweringInfo();
3699 
3700     // We care about the legality of the operation after it has been type
3701     // legalized.
3702     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3703       VT = TLI.getTypeToTransformTo(Ctx, VT);
3704 
3705     // If the vselect is legal, assume we want to leave this as a vector setcc +
3706     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3707     // min/max is legal on the scalar type.
3708     bool UseScalarMinMax = VT.isVector() &&
3709       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3710 
3711     // ValueTracking's select pattern matching does not account for -0.0,
3712     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3713     // -0.0 is less than +0.0.
3714     Value *LHS, *RHS;
3715     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3716     ISD::NodeType Opc = ISD::DELETED_NODE;
3717     switch (SPR.Flavor) {
3718     case SPF_UMAX:    Opc = ISD::UMAX; break;
3719     case SPF_UMIN:    Opc = ISD::UMIN; break;
3720     case SPF_SMAX:    Opc = ISD::SMAX; break;
3721     case SPF_SMIN:    Opc = ISD::SMIN; break;
3722     case SPF_FMINNUM:
3723       switch (SPR.NaNBehavior) {
3724       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3725       case SPNB_RETURNS_NAN: break;
3726       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3727       case SPNB_RETURNS_ANY:
3728         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3729             (UseScalarMinMax &&
3730              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3731           Opc = ISD::FMINNUM;
3732         break;
3733       }
3734       break;
3735     case SPF_FMAXNUM:
3736       switch (SPR.NaNBehavior) {
3737       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3738       case SPNB_RETURNS_NAN: break;
3739       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3740       case SPNB_RETURNS_ANY:
3741         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3742             (UseScalarMinMax &&
3743              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3744           Opc = ISD::FMAXNUM;
3745         break;
3746       }
3747       break;
3748     case SPF_NABS:
3749       Negate = true;
3750       [[fallthrough]];
3751     case SPF_ABS:
3752       IsUnaryAbs = true;
3753       Opc = ISD::ABS;
3754       break;
3755     default: break;
3756     }
3757 
3758     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3759         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3760          (UseScalarMinMax &&
3761           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3762         // If the underlying comparison instruction is used by any other
3763         // instruction, the consumed instructions won't be destroyed, so it is
3764         // not profitable to convert to a min/max.
3765         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3766       OpCode = Opc;
3767       LHSVal = getValue(LHS);
3768       RHSVal = getValue(RHS);
3769       BaseOps.clear();
3770     }
3771 
3772     if (IsUnaryAbs) {
3773       OpCode = Opc;
3774       LHSVal = getValue(LHS);
3775       BaseOps.clear();
3776     }
3777   }
3778 
3779   if (IsUnaryAbs) {
3780     for (unsigned i = 0; i != NumValues; ++i) {
3781       SDLoc dl = getCurSDLoc();
3782       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3783       Values[i] =
3784           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3785       if (Negate)
3786         Values[i] = DAG.getNegative(Values[i], dl, VT);
3787     }
3788   } else {
3789     for (unsigned i = 0; i != NumValues; ++i) {
3790       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3791       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3792       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3793       Values[i] = DAG.getNode(
3794           OpCode, getCurSDLoc(),
3795           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3796     }
3797   }
3798 
3799   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3800                            DAG.getVTList(ValueVTs), Values));
3801 }
3802 
3803 void SelectionDAGBuilder::visitTrunc(const User &I) {
3804   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3805   SDValue N = getValue(I.getOperand(0));
3806   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3807                                                         I.getType());
3808   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3809 }
3810 
3811 void SelectionDAGBuilder::visitZExt(const User &I) {
3812   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3813   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3814   SDValue N = getValue(I.getOperand(0));
3815   auto &TLI = DAG.getTargetLoweringInfo();
3816   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3817 
3818   SDNodeFlags Flags;
3819   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3820     Flags.setNonNeg(PNI->hasNonNeg());
3821 
3822   // Eagerly use nonneg information to canonicalize towards sign_extend if
3823   // that is the target's preference.
3824   // TODO: Let the target do this later.
3825   if (Flags.hasNonNeg() &&
3826       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3827     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3828     return;
3829   }
3830 
3831   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3832 }
3833 
3834 void SelectionDAGBuilder::visitSExt(const User &I) {
3835   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3836   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3837   SDValue N = getValue(I.getOperand(0));
3838   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3839                                                         I.getType());
3840   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3841 }
3842 
3843 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3844   // FPTrunc is never a no-op cast, no need to check
3845   SDValue N = getValue(I.getOperand(0));
3846   SDLoc dl = getCurSDLoc();
3847   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3848   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3849   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3850                            DAG.getTargetConstant(
3851                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3852 }
3853 
3854 void SelectionDAGBuilder::visitFPExt(const User &I) {
3855   // FPExt is never a no-op cast, no need to check
3856   SDValue N = getValue(I.getOperand(0));
3857   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3858                                                         I.getType());
3859   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3860 }
3861 
3862 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3863   // FPToUI is never a no-op cast, no need to check
3864   SDValue N = getValue(I.getOperand(0));
3865   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3866                                                         I.getType());
3867   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3868 }
3869 
3870 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3871   // FPToSI is never a no-op cast, no need to check
3872   SDValue N = getValue(I.getOperand(0));
3873   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3874                                                         I.getType());
3875   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3876 }
3877 
3878 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3879   // UIToFP is never a no-op cast, no need to check
3880   SDValue N = getValue(I.getOperand(0));
3881   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3882                                                         I.getType());
3883   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3884 }
3885 
3886 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3887   // SIToFP is never a no-op cast, no need to check
3888   SDValue N = getValue(I.getOperand(0));
3889   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3890                                                         I.getType());
3891   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3892 }
3893 
3894 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3895   // What to do depends on the size of the integer and the size of the pointer.
3896   // We can either truncate, zero extend, or no-op, accordingly.
3897   SDValue N = getValue(I.getOperand(0));
3898   auto &TLI = DAG.getTargetLoweringInfo();
3899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3900                                                         I.getType());
3901   EVT PtrMemVT =
3902       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3903   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3904   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3905   setValue(&I, N);
3906 }
3907 
3908 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3909   // What to do depends on the size of the integer and the size of the pointer.
3910   // We can either truncate, zero extend, or no-op, accordingly.
3911   SDValue N = getValue(I.getOperand(0));
3912   auto &TLI = DAG.getTargetLoweringInfo();
3913   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3914   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3915   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3916   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3917   setValue(&I, N);
3918 }
3919 
3920 void SelectionDAGBuilder::visitBitCast(const User &I) {
3921   SDValue N = getValue(I.getOperand(0));
3922   SDLoc dl = getCurSDLoc();
3923   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3924                                                         I.getType());
3925 
3926   // BitCast assures us that source and destination are the same size so this is
3927   // either a BITCAST or a no-op.
3928   if (DestVT != N.getValueType())
3929     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3930                              DestVT, N)); // convert types.
3931   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3932   // might fold any kind of constant expression to an integer constant and that
3933   // is not what we are looking for. Only recognize a bitcast of a genuine
3934   // constant integer as an opaque constant.
3935   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3936     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3937                                  /*isOpaque*/true));
3938   else
3939     setValue(&I, N);            // noop cast.
3940 }
3941 
3942 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3943   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3944   const Value *SV = I.getOperand(0);
3945   SDValue N = getValue(SV);
3946   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3947 
3948   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3949   unsigned DestAS = I.getType()->getPointerAddressSpace();
3950 
3951   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3952     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3953 
3954   setValue(&I, N);
3955 }
3956 
3957 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3959   SDValue InVec = getValue(I.getOperand(0));
3960   SDValue InVal = getValue(I.getOperand(1));
3961   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3962                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3963   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3964                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3965                            InVec, InVal, InIdx));
3966 }
3967 
3968 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3970   SDValue InVec = getValue(I.getOperand(0));
3971   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3972                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3973   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3974                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3975                            InVec, InIdx));
3976 }
3977 
3978 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3979   SDValue Src1 = getValue(I.getOperand(0));
3980   SDValue Src2 = getValue(I.getOperand(1));
3981   ArrayRef<int> Mask;
3982   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3983     Mask = SVI->getShuffleMask();
3984   else
3985     Mask = cast<ConstantExpr>(I).getShuffleMask();
3986   SDLoc DL = getCurSDLoc();
3987   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3988   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3989   EVT SrcVT = Src1.getValueType();
3990 
3991   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3992       VT.isScalableVector()) {
3993     // Canonical splat form of first element of first input vector.
3994     SDValue FirstElt =
3995         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3996                     DAG.getVectorIdxConstant(0, DL));
3997     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3998     return;
3999   }
4000 
4001   // For now, we only handle splats for scalable vectors.
4002   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4003   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4004   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4005 
4006   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4007   unsigned MaskNumElts = Mask.size();
4008 
4009   if (SrcNumElts == MaskNumElts) {
4010     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4011     return;
4012   }
4013 
4014   // Normalize the shuffle vector since mask and vector length don't match.
4015   if (SrcNumElts < MaskNumElts) {
4016     // Mask is longer than the source vectors. We can use concatenate vector to
4017     // make the mask and vectors lengths match.
4018 
4019     if (MaskNumElts % SrcNumElts == 0) {
4020       // Mask length is a multiple of the source vector length.
4021       // Check if the shuffle is some kind of concatenation of the input
4022       // vectors.
4023       unsigned NumConcat = MaskNumElts / SrcNumElts;
4024       bool IsConcat = true;
4025       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4026       for (unsigned i = 0; i != MaskNumElts; ++i) {
4027         int Idx = Mask[i];
4028         if (Idx < 0)
4029           continue;
4030         // Ensure the indices in each SrcVT sized piece are sequential and that
4031         // the same source is used for the whole piece.
4032         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4033             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4034              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4035           IsConcat = false;
4036           break;
4037         }
4038         // Remember which source this index came from.
4039         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4040       }
4041 
4042       // The shuffle is concatenating multiple vectors together. Just emit
4043       // a CONCAT_VECTORS operation.
4044       if (IsConcat) {
4045         SmallVector<SDValue, 8> ConcatOps;
4046         for (auto Src : ConcatSrcs) {
4047           if (Src < 0)
4048             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4049           else if (Src == 0)
4050             ConcatOps.push_back(Src1);
4051           else
4052             ConcatOps.push_back(Src2);
4053         }
4054         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4055         return;
4056       }
4057     }
4058 
4059     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4060     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4061     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4062                                     PaddedMaskNumElts);
4063 
4064     // Pad both vectors with undefs to make them the same length as the mask.
4065     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4066 
4067     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4068     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4069     MOps1[0] = Src1;
4070     MOps2[0] = Src2;
4071 
4072     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4073     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4074 
4075     // Readjust mask for new input vector length.
4076     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4077     for (unsigned i = 0; i != MaskNumElts; ++i) {
4078       int Idx = Mask[i];
4079       if (Idx >= (int)SrcNumElts)
4080         Idx -= SrcNumElts - PaddedMaskNumElts;
4081       MappedOps[i] = Idx;
4082     }
4083 
4084     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4085 
4086     // If the concatenated vector was padded, extract a subvector with the
4087     // correct number of elements.
4088     if (MaskNumElts != PaddedMaskNumElts)
4089       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4090                            DAG.getVectorIdxConstant(0, DL));
4091 
4092     setValue(&I, Result);
4093     return;
4094   }
4095 
4096   if (SrcNumElts > MaskNumElts) {
4097     // Analyze the access pattern of the vector to see if we can extract
4098     // two subvectors and do the shuffle.
4099     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4100     bool CanExtract = true;
4101     for (int Idx : Mask) {
4102       unsigned Input = 0;
4103       if (Idx < 0)
4104         continue;
4105 
4106       if (Idx >= (int)SrcNumElts) {
4107         Input = 1;
4108         Idx -= SrcNumElts;
4109       }
4110 
4111       // If all the indices come from the same MaskNumElts sized portion of
4112       // the sources we can use extract. Also make sure the extract wouldn't
4113       // extract past the end of the source.
4114       int NewStartIdx = alignDown(Idx, MaskNumElts);
4115       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4116           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4117         CanExtract = false;
4118       // Make sure we always update StartIdx as we use it to track if all
4119       // elements are undef.
4120       StartIdx[Input] = NewStartIdx;
4121     }
4122 
4123     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4124       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4125       return;
4126     }
4127     if (CanExtract) {
4128       // Extract appropriate subvector and generate a vector shuffle
4129       for (unsigned Input = 0; Input < 2; ++Input) {
4130         SDValue &Src = Input == 0 ? Src1 : Src2;
4131         if (StartIdx[Input] < 0)
4132           Src = DAG.getUNDEF(VT);
4133         else {
4134           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4135                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4136         }
4137       }
4138 
4139       // Calculate new mask.
4140       SmallVector<int, 8> MappedOps(Mask);
4141       for (int &Idx : MappedOps) {
4142         if (Idx >= (int)SrcNumElts)
4143           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4144         else if (Idx >= 0)
4145           Idx -= StartIdx[0];
4146       }
4147 
4148       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4149       return;
4150     }
4151   }
4152 
4153   // We can't use either concat vectors or extract subvectors so fall back to
4154   // replacing the shuffle with extract and build vector.
4155   // to insert and build vector.
4156   EVT EltVT = VT.getVectorElementType();
4157   SmallVector<SDValue,8> Ops;
4158   for (int Idx : Mask) {
4159     SDValue Res;
4160 
4161     if (Idx < 0) {
4162       Res = DAG.getUNDEF(EltVT);
4163     } else {
4164       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4165       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4166 
4167       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4168                         DAG.getVectorIdxConstant(Idx, DL));
4169     }
4170 
4171     Ops.push_back(Res);
4172   }
4173 
4174   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4175 }
4176 
4177 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4178   ArrayRef<unsigned> Indices = I.getIndices();
4179   const Value *Op0 = I.getOperand(0);
4180   const Value *Op1 = I.getOperand(1);
4181   Type *AggTy = I.getType();
4182   Type *ValTy = Op1->getType();
4183   bool IntoUndef = isa<UndefValue>(Op0);
4184   bool FromUndef = isa<UndefValue>(Op1);
4185 
4186   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4187 
4188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4189   SmallVector<EVT, 4> AggValueVTs;
4190   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4191   SmallVector<EVT, 4> ValValueVTs;
4192   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4193 
4194   unsigned NumAggValues = AggValueVTs.size();
4195   unsigned NumValValues = ValValueVTs.size();
4196   SmallVector<SDValue, 4> Values(NumAggValues);
4197 
4198   // Ignore an insertvalue that produces an empty object
4199   if (!NumAggValues) {
4200     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4201     return;
4202   }
4203 
4204   SDValue Agg = getValue(Op0);
4205   unsigned i = 0;
4206   // Copy the beginning value(s) from the original aggregate.
4207   for (; i != LinearIndex; ++i)
4208     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4209                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4210   // Copy values from the inserted value(s).
4211   if (NumValValues) {
4212     SDValue Val = getValue(Op1);
4213     for (; i != LinearIndex + NumValValues; ++i)
4214       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4215                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4216   }
4217   // Copy remaining value(s) from the original aggregate.
4218   for (; i != NumAggValues; ++i)
4219     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4220                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4221 
4222   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4223                            DAG.getVTList(AggValueVTs), Values));
4224 }
4225 
4226 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4227   ArrayRef<unsigned> Indices = I.getIndices();
4228   const Value *Op0 = I.getOperand(0);
4229   Type *AggTy = Op0->getType();
4230   Type *ValTy = I.getType();
4231   bool OutOfUndef = isa<UndefValue>(Op0);
4232 
4233   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4234 
4235   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4236   SmallVector<EVT, 4> ValValueVTs;
4237   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4238 
4239   unsigned NumValValues = ValValueVTs.size();
4240 
4241   // Ignore a extractvalue that produces an empty object
4242   if (!NumValValues) {
4243     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4244     return;
4245   }
4246 
4247   SmallVector<SDValue, 4> Values(NumValValues);
4248 
4249   SDValue Agg = getValue(Op0);
4250   // Copy out the selected value(s).
4251   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4252     Values[i - LinearIndex] =
4253       OutOfUndef ?
4254         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4255         SDValue(Agg.getNode(), Agg.getResNo() + i);
4256 
4257   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4258                            DAG.getVTList(ValValueVTs), Values));
4259 }
4260 
4261 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4262   Value *Op0 = I.getOperand(0);
4263   // Note that the pointer operand may be a vector of pointers. Take the scalar
4264   // element which holds a pointer.
4265   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4266   SDValue N = getValue(Op0);
4267   SDLoc dl = getCurSDLoc();
4268   auto &TLI = DAG.getTargetLoweringInfo();
4269 
4270   // Normalize Vector GEP - all scalar operands should be converted to the
4271   // splat vector.
4272   bool IsVectorGEP = I.getType()->isVectorTy();
4273   ElementCount VectorElementCount =
4274       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4275                   : ElementCount::getFixed(0);
4276 
4277   if (IsVectorGEP && !N.getValueType().isVector()) {
4278     LLVMContext &Context = *DAG.getContext();
4279     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4280     N = DAG.getSplat(VT, dl, N);
4281   }
4282 
4283   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4284        GTI != E; ++GTI) {
4285     const Value *Idx = GTI.getOperand();
4286     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4287       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4288       if (Field) {
4289         // N = N + Offset
4290         uint64_t Offset =
4291             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4292 
4293         // In an inbounds GEP with an offset that is nonnegative even when
4294         // interpreted as signed, assume there is no unsigned overflow.
4295         SDNodeFlags Flags;
4296         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4297           Flags.setNoUnsignedWrap(true);
4298 
4299         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4300                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4301       }
4302     } else {
4303       // IdxSize is the width of the arithmetic according to IR semantics.
4304       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4305       // (and fix up the result later).
4306       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4307       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4308       TypeSize ElementSize =
4309           GTI.getSequentialElementStride(DAG.getDataLayout());
4310       // We intentionally mask away the high bits here; ElementSize may not
4311       // fit in IdxTy.
4312       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4313       bool ElementScalable = ElementSize.isScalable();
4314 
4315       // If this is a scalar constant or a splat vector of constants,
4316       // handle it quickly.
4317       const auto *C = dyn_cast<Constant>(Idx);
4318       if (C && isa<VectorType>(C->getType()))
4319         C = C->getSplatValue();
4320 
4321       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4322       if (CI && CI->isZero())
4323         continue;
4324       if (CI && !ElementScalable) {
4325         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4326         LLVMContext &Context = *DAG.getContext();
4327         SDValue OffsVal;
4328         if (IsVectorGEP)
4329           OffsVal = DAG.getConstant(
4330               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4331         else
4332           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4333 
4334         // In an inbounds GEP with an offset that is nonnegative even when
4335         // interpreted as signed, assume there is no unsigned overflow.
4336         SDNodeFlags Flags;
4337         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4338           Flags.setNoUnsignedWrap(true);
4339 
4340         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4341 
4342         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4343         continue;
4344       }
4345 
4346       // N = N + Idx * ElementMul;
4347       SDValue IdxN = getValue(Idx);
4348 
4349       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4350         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4351                                   VectorElementCount);
4352         IdxN = DAG.getSplat(VT, dl, IdxN);
4353       }
4354 
4355       // If the index is smaller or larger than intptr_t, truncate or extend
4356       // it.
4357       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4358 
4359       if (ElementScalable) {
4360         EVT VScaleTy = N.getValueType().getScalarType();
4361         SDValue VScale = DAG.getNode(
4362             ISD::VSCALE, dl, VScaleTy,
4363             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4364         if (IsVectorGEP)
4365           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4366         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4367       } else {
4368         // If this is a multiply by a power of two, turn it into a shl
4369         // immediately.  This is a very common case.
4370         if (ElementMul != 1) {
4371           if (ElementMul.isPowerOf2()) {
4372             unsigned Amt = ElementMul.logBase2();
4373             IdxN = DAG.getNode(ISD::SHL, dl,
4374                                N.getValueType(), IdxN,
4375                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4376           } else {
4377             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4378                                             IdxN.getValueType());
4379             IdxN = DAG.getNode(ISD::MUL, dl,
4380                                N.getValueType(), IdxN, Scale);
4381           }
4382         }
4383       }
4384 
4385       N = DAG.getNode(ISD::ADD, dl,
4386                       N.getValueType(), N, IdxN);
4387     }
4388   }
4389 
4390   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4391   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4392   if (IsVectorGEP) {
4393     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4394     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4395   }
4396 
4397   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4398     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4399 
4400   setValue(&I, N);
4401 }
4402 
4403 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4404   // If this is a fixed sized alloca in the entry block of the function,
4405   // allocate it statically on the stack.
4406   if (FuncInfo.StaticAllocaMap.count(&I))
4407     return;   // getValue will auto-populate this.
4408 
4409   SDLoc dl = getCurSDLoc();
4410   Type *Ty = I.getAllocatedType();
4411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4412   auto &DL = DAG.getDataLayout();
4413   TypeSize TySize = DL.getTypeAllocSize(Ty);
4414   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4415 
4416   SDValue AllocSize = getValue(I.getArraySize());
4417 
4418   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4419   if (AllocSize.getValueType() != IntPtr)
4420     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4421 
4422   if (TySize.isScalable())
4423     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4424                             DAG.getVScale(dl, IntPtr,
4425                                           APInt(IntPtr.getScalarSizeInBits(),
4426                                                 TySize.getKnownMinValue())));
4427   else {
4428     SDValue TySizeValue =
4429         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4430     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4431                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4432   }
4433 
4434   // Handle alignment.  If the requested alignment is less than or equal to
4435   // the stack alignment, ignore it.  If the size is greater than or equal to
4436   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4437   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4438   if (*Alignment <= StackAlign)
4439     Alignment = std::nullopt;
4440 
4441   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4442   // Round the size of the allocation up to the stack alignment size
4443   // by add SA-1 to the size. This doesn't overflow because we're computing
4444   // an address inside an alloca.
4445   SDNodeFlags Flags;
4446   Flags.setNoUnsignedWrap(true);
4447   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4448                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4449 
4450   // Mask out the low bits for alignment purposes.
4451   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4452                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4453 
4454   SDValue Ops[] = {
4455       getRoot(), AllocSize,
4456       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4457   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4458   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4459   setValue(&I, DSA);
4460   DAG.setRoot(DSA.getValue(1));
4461 
4462   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4463 }
4464 
4465 static const MDNode *getRangeMetadata(const Instruction &I) {
4466   // If !noundef is not present, then !range violation results in a poison
4467   // value rather than immediate undefined behavior. In theory, transferring
4468   // these annotations to SDAG is fine, but in practice there are key SDAG
4469   // transforms that are known not to be poison-safe, such as folding logical
4470   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4471   // also present.
4472   if (!I.hasMetadata(LLVMContext::MD_noundef))
4473     return nullptr;
4474   return I.getMetadata(LLVMContext::MD_range);
4475 }
4476 
4477 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4478   if (I.isAtomic())
4479     return visitAtomicLoad(I);
4480 
4481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4482   const Value *SV = I.getOperand(0);
4483   if (TLI.supportSwiftError()) {
4484     // Swifterror values can come from either a function parameter with
4485     // swifterror attribute or an alloca with swifterror attribute.
4486     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4487       if (Arg->hasSwiftErrorAttr())
4488         return visitLoadFromSwiftError(I);
4489     }
4490 
4491     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4492       if (Alloca->isSwiftError())
4493         return visitLoadFromSwiftError(I);
4494     }
4495   }
4496 
4497   SDValue Ptr = getValue(SV);
4498 
4499   Type *Ty = I.getType();
4500   SmallVector<EVT, 4> ValueVTs, MemVTs;
4501   SmallVector<TypeSize, 4> Offsets;
4502   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4503   unsigned NumValues = ValueVTs.size();
4504   if (NumValues == 0)
4505     return;
4506 
4507   Align Alignment = I.getAlign();
4508   AAMDNodes AAInfo = I.getAAMetadata();
4509   const MDNode *Ranges = getRangeMetadata(I);
4510   bool isVolatile = I.isVolatile();
4511   MachineMemOperand::Flags MMOFlags =
4512       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4513 
4514   SDValue Root;
4515   bool ConstantMemory = false;
4516   if (isVolatile)
4517     // Serialize volatile loads with other side effects.
4518     Root = getRoot();
4519   else if (NumValues > MaxParallelChains)
4520     Root = getMemoryRoot();
4521   else if (AA &&
4522            AA->pointsToConstantMemory(MemoryLocation(
4523                SV,
4524                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4525                AAInfo))) {
4526     // Do not serialize (non-volatile) loads of constant memory with anything.
4527     Root = DAG.getEntryNode();
4528     ConstantMemory = true;
4529     MMOFlags |= MachineMemOperand::MOInvariant;
4530   } else {
4531     // Do not serialize non-volatile loads against each other.
4532     Root = DAG.getRoot();
4533   }
4534 
4535   SDLoc dl = getCurSDLoc();
4536 
4537   if (isVolatile)
4538     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4539 
4540   SmallVector<SDValue, 4> Values(NumValues);
4541   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4542 
4543   unsigned ChainI = 0;
4544   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4545     // Serializing loads here may result in excessive register pressure, and
4546     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4547     // could recover a bit by hoisting nodes upward in the chain by recognizing
4548     // they are side-effect free or do not alias. The optimizer should really
4549     // avoid this case by converting large object/array copies to llvm.memcpy
4550     // (MaxParallelChains should always remain as failsafe).
4551     if (ChainI == MaxParallelChains) {
4552       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4553       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4554                                   ArrayRef(Chains.data(), ChainI));
4555       Root = Chain;
4556       ChainI = 0;
4557     }
4558 
4559     // TODO: MachinePointerInfo only supports a fixed length offset.
4560     MachinePointerInfo PtrInfo =
4561         !Offsets[i].isScalable() || Offsets[i].isZero()
4562             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4563             : MachinePointerInfo();
4564 
4565     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4566     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4567                             MMOFlags, AAInfo, Ranges);
4568     Chains[ChainI] = L.getValue(1);
4569 
4570     if (MemVTs[i] != ValueVTs[i])
4571       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4572 
4573     Values[i] = L;
4574   }
4575 
4576   if (!ConstantMemory) {
4577     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4578                                 ArrayRef(Chains.data(), ChainI));
4579     if (isVolatile)
4580       DAG.setRoot(Chain);
4581     else
4582       PendingLoads.push_back(Chain);
4583   }
4584 
4585   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4586                            DAG.getVTList(ValueVTs), Values));
4587 }
4588 
4589 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4590   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4591          "call visitStoreToSwiftError when backend supports swifterror");
4592 
4593   SmallVector<EVT, 4> ValueVTs;
4594   SmallVector<uint64_t, 4> Offsets;
4595   const Value *SrcV = I.getOperand(0);
4596   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4597                   SrcV->getType(), ValueVTs, &Offsets, 0);
4598   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4599          "expect a single EVT for swifterror");
4600 
4601   SDValue Src = getValue(SrcV);
4602   // Create a virtual register, then update the virtual register.
4603   Register VReg =
4604       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4605   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4606   // Chain can be getRoot or getControlRoot.
4607   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4608                                       SDValue(Src.getNode(), Src.getResNo()));
4609   DAG.setRoot(CopyNode);
4610 }
4611 
4612 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4613   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4614          "call visitLoadFromSwiftError when backend supports swifterror");
4615 
4616   assert(!I.isVolatile() &&
4617          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4618          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4619          "Support volatile, non temporal, invariant for load_from_swift_error");
4620 
4621   const Value *SV = I.getOperand(0);
4622   Type *Ty = I.getType();
4623   assert(
4624       (!AA ||
4625        !AA->pointsToConstantMemory(MemoryLocation(
4626            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4627            I.getAAMetadata()))) &&
4628       "load_from_swift_error should not be constant memory");
4629 
4630   SmallVector<EVT, 4> ValueVTs;
4631   SmallVector<uint64_t, 4> Offsets;
4632   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4633                   ValueVTs, &Offsets, 0);
4634   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4635          "expect a single EVT for swifterror");
4636 
4637   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4638   SDValue L = DAG.getCopyFromReg(
4639       getRoot(), getCurSDLoc(),
4640       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4641 
4642   setValue(&I, L);
4643 }
4644 
4645 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4646   if (I.isAtomic())
4647     return visitAtomicStore(I);
4648 
4649   const Value *SrcV = I.getOperand(0);
4650   const Value *PtrV = I.getOperand(1);
4651 
4652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4653   if (TLI.supportSwiftError()) {
4654     // Swifterror values can come from either a function parameter with
4655     // swifterror attribute or an alloca with swifterror attribute.
4656     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4657       if (Arg->hasSwiftErrorAttr())
4658         return visitStoreToSwiftError(I);
4659     }
4660 
4661     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4662       if (Alloca->isSwiftError())
4663         return visitStoreToSwiftError(I);
4664     }
4665   }
4666 
4667   SmallVector<EVT, 4> ValueVTs, MemVTs;
4668   SmallVector<TypeSize, 4> Offsets;
4669   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4670                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4671   unsigned NumValues = ValueVTs.size();
4672   if (NumValues == 0)
4673     return;
4674 
4675   // Get the lowered operands. Note that we do this after
4676   // checking if NumResults is zero, because with zero results
4677   // the operands won't have values in the map.
4678   SDValue Src = getValue(SrcV);
4679   SDValue Ptr = getValue(PtrV);
4680 
4681   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4682   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4683   SDLoc dl = getCurSDLoc();
4684   Align Alignment = I.getAlign();
4685   AAMDNodes AAInfo = I.getAAMetadata();
4686 
4687   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4688 
4689   unsigned ChainI = 0;
4690   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4691     // See visitLoad comments.
4692     if (ChainI == MaxParallelChains) {
4693       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4694                                   ArrayRef(Chains.data(), ChainI));
4695       Root = Chain;
4696       ChainI = 0;
4697     }
4698 
4699     // TODO: MachinePointerInfo only supports a fixed length offset.
4700     MachinePointerInfo PtrInfo =
4701         !Offsets[i].isScalable() || Offsets[i].isZero()
4702             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4703             : MachinePointerInfo();
4704 
4705     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4706     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4707     if (MemVTs[i] != ValueVTs[i])
4708       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4709     SDValue St =
4710         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4711     Chains[ChainI] = St;
4712   }
4713 
4714   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4715                                   ArrayRef(Chains.data(), ChainI));
4716   setValue(&I, StoreNode);
4717   DAG.setRoot(StoreNode);
4718 }
4719 
4720 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4721                                            bool IsCompressing) {
4722   SDLoc sdl = getCurSDLoc();
4723 
4724   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4725                                Align &Alignment) {
4726     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4727     Src0 = I.getArgOperand(0);
4728     Ptr = I.getArgOperand(1);
4729     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4730     Mask = I.getArgOperand(3);
4731   };
4732   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4733                                     Align &Alignment) {
4734     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4735     Src0 = I.getArgOperand(0);
4736     Ptr = I.getArgOperand(1);
4737     Mask = I.getArgOperand(2);
4738     Alignment = I.getParamAlign(1).valueOrOne();
4739   };
4740 
4741   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4742   Align Alignment;
4743   if (IsCompressing)
4744     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4745   else
4746     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4747 
4748   SDValue Ptr = getValue(PtrOperand);
4749   SDValue Src0 = getValue(Src0Operand);
4750   SDValue Mask = getValue(MaskOperand);
4751   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4752 
4753   EVT VT = Src0.getValueType();
4754 
4755   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4756       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4757       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4758   SDValue StoreNode =
4759       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4760                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4761   DAG.setRoot(StoreNode);
4762   setValue(&I, StoreNode);
4763 }
4764 
4765 // Get a uniform base for the Gather/Scatter intrinsic.
4766 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4767 // We try to represent it as a base pointer + vector of indices.
4768 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4769 // The first operand of the GEP may be a single pointer or a vector of pointers
4770 // Example:
4771 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4772 //  or
4773 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4774 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4775 //
4776 // When the first GEP operand is a single pointer - it is the uniform base we
4777 // are looking for. If first operand of the GEP is a splat vector - we
4778 // extract the splat value and use it as a uniform base.
4779 // In all other cases the function returns 'false'.
4780 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4781                            ISD::MemIndexType &IndexType, SDValue &Scale,
4782                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4783                            uint64_t ElemSize) {
4784   SelectionDAG& DAG = SDB->DAG;
4785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4786   const DataLayout &DL = DAG.getDataLayout();
4787 
4788   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4789 
4790   // Handle splat constant pointer.
4791   if (auto *C = dyn_cast<Constant>(Ptr)) {
4792     C = C->getSplatValue();
4793     if (!C)
4794       return false;
4795 
4796     Base = SDB->getValue(C);
4797 
4798     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4799     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4800     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4801     IndexType = ISD::SIGNED_SCALED;
4802     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4803     return true;
4804   }
4805 
4806   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4807   if (!GEP || GEP->getParent() != CurBB)
4808     return false;
4809 
4810   if (GEP->getNumOperands() != 2)
4811     return false;
4812 
4813   const Value *BasePtr = GEP->getPointerOperand();
4814   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4815 
4816   // Make sure the base is scalar and the index is a vector.
4817   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4818     return false;
4819 
4820   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4821   if (ScaleVal.isScalable())
4822     return false;
4823 
4824   // Target may not support the required addressing mode.
4825   if (ScaleVal != 1 &&
4826       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4827     return false;
4828 
4829   Base = SDB->getValue(BasePtr);
4830   Index = SDB->getValue(IndexVal);
4831   IndexType = ISD::SIGNED_SCALED;
4832 
4833   Scale =
4834       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4835   return true;
4836 }
4837 
4838 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4839   SDLoc sdl = getCurSDLoc();
4840 
4841   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4842   const Value *Ptr = I.getArgOperand(1);
4843   SDValue Src0 = getValue(I.getArgOperand(0));
4844   SDValue Mask = getValue(I.getArgOperand(3));
4845   EVT VT = Src0.getValueType();
4846   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4847                         ->getMaybeAlignValue()
4848                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4849   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4850 
4851   SDValue Base;
4852   SDValue Index;
4853   ISD::MemIndexType IndexType;
4854   SDValue Scale;
4855   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4856                                     I.getParent(), VT.getScalarStoreSize());
4857 
4858   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4859   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4860       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4861       // TODO: Make MachineMemOperands aware of scalable
4862       // vectors.
4863       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4864   if (!UniformBase) {
4865     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4866     Index = getValue(Ptr);
4867     IndexType = ISD::SIGNED_SCALED;
4868     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4869   }
4870 
4871   EVT IdxVT = Index.getValueType();
4872   EVT EltTy = IdxVT.getVectorElementType();
4873   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4874     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4875     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4876   }
4877 
4878   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4879   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4880                                          Ops, MMO, IndexType, false);
4881   DAG.setRoot(Scatter);
4882   setValue(&I, Scatter);
4883 }
4884 
4885 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4886   SDLoc sdl = getCurSDLoc();
4887 
4888   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4889                               Align &Alignment) {
4890     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4891     Ptr = I.getArgOperand(0);
4892     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4893     Mask = I.getArgOperand(2);
4894     Src0 = I.getArgOperand(3);
4895   };
4896   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4897                                  Align &Alignment) {
4898     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4899     Ptr = I.getArgOperand(0);
4900     Alignment = I.getParamAlign(0).valueOrOne();
4901     Mask = I.getArgOperand(1);
4902     Src0 = I.getArgOperand(2);
4903   };
4904 
4905   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4906   Align Alignment;
4907   if (IsExpanding)
4908     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4909   else
4910     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4911 
4912   SDValue Ptr = getValue(PtrOperand);
4913   SDValue Src0 = getValue(Src0Operand);
4914   SDValue Mask = getValue(MaskOperand);
4915   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4916 
4917   EVT VT = Src0.getValueType();
4918   AAMDNodes AAInfo = I.getAAMetadata();
4919   const MDNode *Ranges = getRangeMetadata(I);
4920 
4921   // Do not serialize masked loads of constant memory with anything.
4922   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4923   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4924 
4925   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4926 
4927   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4928       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4929       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4930 
4931   SDValue Load =
4932       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4933                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4934   if (AddToChain)
4935     PendingLoads.push_back(Load.getValue(1));
4936   setValue(&I, Load);
4937 }
4938 
4939 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4940   SDLoc sdl = getCurSDLoc();
4941 
4942   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4943   const Value *Ptr = I.getArgOperand(0);
4944   SDValue Src0 = getValue(I.getArgOperand(3));
4945   SDValue Mask = getValue(I.getArgOperand(2));
4946 
4947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4948   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4949   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4950                         ->getMaybeAlignValue()
4951                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4952 
4953   const MDNode *Ranges = getRangeMetadata(I);
4954 
4955   SDValue Root = DAG.getRoot();
4956   SDValue Base;
4957   SDValue Index;
4958   ISD::MemIndexType IndexType;
4959   SDValue Scale;
4960   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4961                                     I.getParent(), VT.getScalarStoreSize());
4962   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4963   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4964       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4965       // TODO: Make MachineMemOperands aware of scalable
4966       // vectors.
4967       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4968 
4969   if (!UniformBase) {
4970     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4971     Index = getValue(Ptr);
4972     IndexType = ISD::SIGNED_SCALED;
4973     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4974   }
4975 
4976   EVT IdxVT = Index.getValueType();
4977   EVT EltTy = IdxVT.getVectorElementType();
4978   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4979     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4980     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4981   }
4982 
4983   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4984   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4985                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4986 
4987   PendingLoads.push_back(Gather.getValue(1));
4988   setValue(&I, Gather);
4989 }
4990 
4991 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4992   SDLoc dl = getCurSDLoc();
4993   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4994   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4995   SyncScope::ID SSID = I.getSyncScopeID();
4996 
4997   SDValue InChain = getRoot();
4998 
4999   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5000   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5001 
5002   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5003   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5004 
5005   MachineFunction &MF = DAG.getMachineFunction();
5006   MachineMemOperand *MMO = MF.getMachineMemOperand(
5007       MachinePointerInfo(I.getPointerOperand()), Flags,
5008       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5009       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5010 
5011   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5012                                    dl, MemVT, VTs, InChain,
5013                                    getValue(I.getPointerOperand()),
5014                                    getValue(I.getCompareOperand()),
5015                                    getValue(I.getNewValOperand()), MMO);
5016 
5017   SDValue OutChain = L.getValue(2);
5018 
5019   setValue(&I, L);
5020   DAG.setRoot(OutChain);
5021 }
5022 
5023 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5024   SDLoc dl = getCurSDLoc();
5025   ISD::NodeType NT;
5026   switch (I.getOperation()) {
5027   default: llvm_unreachable("Unknown atomicrmw operation");
5028   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5029   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5030   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5031   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5032   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5033   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5034   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5035   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5036   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5037   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5038   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5039   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5040   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5041   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5042   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5043   case AtomicRMWInst::UIncWrap:
5044     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5045     break;
5046   case AtomicRMWInst::UDecWrap:
5047     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5048     break;
5049   }
5050   AtomicOrdering Ordering = I.getOrdering();
5051   SyncScope::ID SSID = I.getSyncScopeID();
5052 
5053   SDValue InChain = getRoot();
5054 
5055   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5056   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5057   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5058 
5059   MachineFunction &MF = DAG.getMachineFunction();
5060   MachineMemOperand *MMO = MF.getMachineMemOperand(
5061       MachinePointerInfo(I.getPointerOperand()), Flags,
5062       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5063       AAMDNodes(), nullptr, SSID, Ordering);
5064 
5065   SDValue L =
5066     DAG.getAtomic(NT, dl, MemVT, InChain,
5067                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5068                   MMO);
5069 
5070   SDValue OutChain = L.getValue(1);
5071 
5072   setValue(&I, L);
5073   DAG.setRoot(OutChain);
5074 }
5075 
5076 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5077   SDLoc dl = getCurSDLoc();
5078   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5079   SDValue Ops[3];
5080   Ops[0] = getRoot();
5081   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5082                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5083   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5084                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5085   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5086   setValue(&I, N);
5087   DAG.setRoot(N);
5088 }
5089 
5090 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5091   SDLoc dl = getCurSDLoc();
5092   AtomicOrdering Order = I.getOrdering();
5093   SyncScope::ID SSID = I.getSyncScopeID();
5094 
5095   SDValue InChain = getRoot();
5096 
5097   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5098   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5099   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5100 
5101   if (!TLI.supportsUnalignedAtomics() &&
5102       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5103     report_fatal_error("Cannot generate unaligned atomic load");
5104 
5105   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5106 
5107   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5108       MachinePointerInfo(I.getPointerOperand()), Flags,
5109       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5110       nullptr, SSID, Order);
5111 
5112   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5113 
5114   SDValue Ptr = getValue(I.getPointerOperand());
5115   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5116                             Ptr, MMO);
5117 
5118   SDValue OutChain = L.getValue(1);
5119   if (MemVT != VT)
5120     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5121 
5122   setValue(&I, L);
5123   DAG.setRoot(OutChain);
5124 }
5125 
5126 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5127   SDLoc dl = getCurSDLoc();
5128 
5129   AtomicOrdering Ordering = I.getOrdering();
5130   SyncScope::ID SSID = I.getSyncScopeID();
5131 
5132   SDValue InChain = getRoot();
5133 
5134   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5135   EVT MemVT =
5136       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5137 
5138   if (!TLI.supportsUnalignedAtomics() &&
5139       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5140     report_fatal_error("Cannot generate unaligned atomic store");
5141 
5142   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5143 
5144   MachineFunction &MF = DAG.getMachineFunction();
5145   MachineMemOperand *MMO = MF.getMachineMemOperand(
5146       MachinePointerInfo(I.getPointerOperand()), Flags,
5147       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5148       nullptr, SSID, Ordering);
5149 
5150   SDValue Val = getValue(I.getValueOperand());
5151   if (Val.getValueType() != MemVT)
5152     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5153   SDValue Ptr = getValue(I.getPointerOperand());
5154 
5155   SDValue OutChain =
5156       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5157 
5158   setValue(&I, OutChain);
5159   DAG.setRoot(OutChain);
5160 }
5161 
5162 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5163 /// node.
5164 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5165                                                unsigned Intrinsic) {
5166   // Ignore the callsite's attributes. A specific call site may be marked with
5167   // readnone, but the lowering code will expect the chain based on the
5168   // definition.
5169   const Function *F = I.getCalledFunction();
5170   bool HasChain = !F->doesNotAccessMemory();
5171   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5172 
5173   // Build the operand list.
5174   SmallVector<SDValue, 8> Ops;
5175   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5176     if (OnlyLoad) {
5177       // We don't need to serialize loads against other loads.
5178       Ops.push_back(DAG.getRoot());
5179     } else {
5180       Ops.push_back(getRoot());
5181     }
5182   }
5183 
5184   // Info is set by getTgtMemIntrinsic
5185   TargetLowering::IntrinsicInfo Info;
5186   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5187   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5188                                                DAG.getMachineFunction(),
5189                                                Intrinsic);
5190 
5191   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5192   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5193       Info.opc == ISD::INTRINSIC_W_CHAIN)
5194     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5195                                         TLI.getPointerTy(DAG.getDataLayout())));
5196 
5197   // Add all operands of the call to the operand list.
5198   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5199     const Value *Arg = I.getArgOperand(i);
5200     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5201       Ops.push_back(getValue(Arg));
5202       continue;
5203     }
5204 
5205     // Use TargetConstant instead of a regular constant for immarg.
5206     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5207     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5208       assert(CI->getBitWidth() <= 64 &&
5209              "large intrinsic immediates not handled");
5210       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5211     } else {
5212       Ops.push_back(
5213           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5214     }
5215   }
5216 
5217   SmallVector<EVT, 4> ValueVTs;
5218   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5219 
5220   if (HasChain)
5221     ValueVTs.push_back(MVT::Other);
5222 
5223   SDVTList VTs = DAG.getVTList(ValueVTs);
5224 
5225   // Propagate fast-math-flags from IR to node(s).
5226   SDNodeFlags Flags;
5227   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5228     Flags.copyFMF(*FPMO);
5229   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5230 
5231   // Create the node.
5232   SDValue Result;
5233 
5234   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5235     auto *Token = Bundle->Inputs[0].get();
5236     SDValue ConvControlToken = getValue(Token);
5237     assert(Ops.back().getValueType() != MVT::Glue &&
5238            "Did not expected another glue node here.");
5239     ConvControlToken =
5240         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5241     Ops.push_back(ConvControlToken);
5242   }
5243 
5244   // In some cases, custom collection of operands from CallInst I may be needed.
5245   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5246   if (IsTgtIntrinsic) {
5247     // This is target intrinsic that touches memory
5248     //
5249     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5250     //       didn't yield anything useful.
5251     MachinePointerInfo MPI;
5252     if (Info.ptrVal)
5253       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5254     else if (Info.fallbackAddressSpace)
5255       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5256     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5257                                      Info.memVT, MPI, Info.align, Info.flags,
5258                                      Info.size, I.getAAMetadata());
5259   } else if (!HasChain) {
5260     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5261   } else if (!I.getType()->isVoidTy()) {
5262     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5263   } else {
5264     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5265   }
5266 
5267   if (HasChain) {
5268     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5269     if (OnlyLoad)
5270       PendingLoads.push_back(Chain);
5271     else
5272       DAG.setRoot(Chain);
5273   }
5274 
5275   if (!I.getType()->isVoidTy()) {
5276     if (!isa<VectorType>(I.getType()))
5277       Result = lowerRangeToAssertZExt(DAG, I, Result);
5278 
5279     MaybeAlign Alignment = I.getRetAlign();
5280 
5281     // Insert `assertalign` node if there's an alignment.
5282     if (InsertAssertAlign && Alignment) {
5283       Result =
5284           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5285     }
5286 
5287     setValue(&I, Result);
5288   }
5289 }
5290 
5291 /// GetSignificand - Get the significand and build it into a floating-point
5292 /// number with exponent of 1:
5293 ///
5294 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5295 ///
5296 /// where Op is the hexadecimal representation of floating point value.
5297 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5298   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5299                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5300   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5301                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5302   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5303 }
5304 
5305 /// GetExponent - Get the exponent:
5306 ///
5307 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5308 ///
5309 /// where Op is the hexadecimal representation of floating point value.
5310 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5311                            const TargetLowering &TLI, const SDLoc &dl) {
5312   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5313                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5314   SDValue t1 = DAG.getNode(
5315       ISD::SRL, dl, MVT::i32, t0,
5316       DAG.getConstant(23, dl,
5317                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5318   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5319                            DAG.getConstant(127, dl, MVT::i32));
5320   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5321 }
5322 
5323 /// getF32Constant - Get 32-bit floating point constant.
5324 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5325                               const SDLoc &dl) {
5326   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5327                            MVT::f32);
5328 }
5329 
5330 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5331                                        SelectionDAG &DAG) {
5332   // TODO: What fast-math-flags should be set on the floating-point nodes?
5333 
5334   //   IntegerPartOfX = ((int32_t)(t0);
5335   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5336 
5337   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5338   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5339   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5340 
5341   //   IntegerPartOfX <<= 23;
5342   IntegerPartOfX =
5343       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5344                   DAG.getConstant(23, dl,
5345                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5346                                       MVT::i32, DAG.getDataLayout())));
5347 
5348   SDValue TwoToFractionalPartOfX;
5349   if (LimitFloatPrecision <= 6) {
5350     // For floating-point precision of 6:
5351     //
5352     //   TwoToFractionalPartOfX =
5353     //     0.997535578f +
5354     //       (0.735607626f + 0.252464424f * x) * x;
5355     //
5356     // error 0.0144103317, which is 6 bits
5357     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5358                              getF32Constant(DAG, 0x3e814304, dl));
5359     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5360                              getF32Constant(DAG, 0x3f3c50c8, dl));
5361     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5362     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5363                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5364   } else if (LimitFloatPrecision <= 12) {
5365     // For floating-point precision of 12:
5366     //
5367     //   TwoToFractionalPartOfX =
5368     //     0.999892986f +
5369     //       (0.696457318f +
5370     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5371     //
5372     // error 0.000107046256, which is 13 to 14 bits
5373     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5374                              getF32Constant(DAG, 0x3da235e3, dl));
5375     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5376                              getF32Constant(DAG, 0x3e65b8f3, dl));
5377     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5378     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5379                              getF32Constant(DAG, 0x3f324b07, dl));
5380     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5381     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5382                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5383   } else { // LimitFloatPrecision <= 18
5384     // For floating-point precision of 18:
5385     //
5386     //   TwoToFractionalPartOfX =
5387     //     0.999999982f +
5388     //       (0.693148872f +
5389     //         (0.240227044f +
5390     //           (0.554906021e-1f +
5391     //             (0.961591928e-2f +
5392     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5393     // error 2.47208000*10^(-7), which is better than 18 bits
5394     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5395                              getF32Constant(DAG, 0x3924b03e, dl));
5396     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5397                              getF32Constant(DAG, 0x3ab24b87, dl));
5398     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5399     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5400                              getF32Constant(DAG, 0x3c1d8c17, dl));
5401     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5402     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5403                              getF32Constant(DAG, 0x3d634a1d, dl));
5404     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5405     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5406                              getF32Constant(DAG, 0x3e75fe14, dl));
5407     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5408     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5409                               getF32Constant(DAG, 0x3f317234, dl));
5410     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5411     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5412                                          getF32Constant(DAG, 0x3f800000, dl));
5413   }
5414 
5415   // Add the exponent into the result in integer domain.
5416   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5417   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5418                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5419 }
5420 
5421 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5422 /// limited-precision mode.
5423 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5424                          const TargetLowering &TLI, SDNodeFlags Flags) {
5425   if (Op.getValueType() == MVT::f32 &&
5426       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5427 
5428     // Put the exponent in the right bit position for later addition to the
5429     // final result:
5430     //
5431     // t0 = Op * log2(e)
5432 
5433     // TODO: What fast-math-flags should be set here?
5434     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5435                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5436     return getLimitedPrecisionExp2(t0, dl, DAG);
5437   }
5438 
5439   // No special expansion.
5440   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5441 }
5442 
5443 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5444 /// limited-precision mode.
5445 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5446                          const TargetLowering &TLI, SDNodeFlags Flags) {
5447   // TODO: What fast-math-flags should be set on the floating-point nodes?
5448 
5449   if (Op.getValueType() == MVT::f32 &&
5450       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5451     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5452 
5453     // Scale the exponent by log(2).
5454     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5455     SDValue LogOfExponent =
5456         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5457                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5458 
5459     // Get the significand and build it into a floating-point number with
5460     // exponent of 1.
5461     SDValue X = GetSignificand(DAG, Op1, dl);
5462 
5463     SDValue LogOfMantissa;
5464     if (LimitFloatPrecision <= 6) {
5465       // For floating-point precision of 6:
5466       //
5467       //   LogofMantissa =
5468       //     -1.1609546f +
5469       //       (1.4034025f - 0.23903021f * x) * x;
5470       //
5471       // error 0.0034276066, which is better than 8 bits
5472       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5473                                getF32Constant(DAG, 0xbe74c456, dl));
5474       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5475                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5476       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5477       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5478                                   getF32Constant(DAG, 0x3f949a29, dl));
5479     } else if (LimitFloatPrecision <= 12) {
5480       // For floating-point precision of 12:
5481       //
5482       //   LogOfMantissa =
5483       //     -1.7417939f +
5484       //       (2.8212026f +
5485       //         (-1.4699568f +
5486       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5487       //
5488       // error 0.000061011436, which is 14 bits
5489       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5490                                getF32Constant(DAG, 0xbd67b6d6, dl));
5491       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5492                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5493       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5494       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5495                                getF32Constant(DAG, 0x3fbc278b, dl));
5496       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5497       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5498                                getF32Constant(DAG, 0x40348e95, dl));
5499       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5500       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5501                                   getF32Constant(DAG, 0x3fdef31a, dl));
5502     } else { // LimitFloatPrecision <= 18
5503       // For floating-point precision of 18:
5504       //
5505       //   LogOfMantissa =
5506       //     -2.1072184f +
5507       //       (4.2372794f +
5508       //         (-3.7029485f +
5509       //           (2.2781945f +
5510       //             (-0.87823314f +
5511       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5512       //
5513       // error 0.0000023660568, which is better than 18 bits
5514       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5515                                getF32Constant(DAG, 0xbc91e5ac, dl));
5516       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5517                                getF32Constant(DAG, 0x3e4350aa, dl));
5518       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5519       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5520                                getF32Constant(DAG, 0x3f60d3e3, dl));
5521       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5522       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5523                                getF32Constant(DAG, 0x4011cdf0, dl));
5524       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5525       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5526                                getF32Constant(DAG, 0x406cfd1c, dl));
5527       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5528       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5529                                getF32Constant(DAG, 0x408797cb, dl));
5530       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5531       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5532                                   getF32Constant(DAG, 0x4006dcab, dl));
5533     }
5534 
5535     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5536   }
5537 
5538   // No special expansion.
5539   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5540 }
5541 
5542 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5543 /// limited-precision mode.
5544 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5545                           const TargetLowering &TLI, SDNodeFlags Flags) {
5546   // TODO: What fast-math-flags should be set on the floating-point nodes?
5547 
5548   if (Op.getValueType() == MVT::f32 &&
5549       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5550     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5551 
5552     // Get the exponent.
5553     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5554 
5555     // Get the significand and build it into a floating-point number with
5556     // exponent of 1.
5557     SDValue X = GetSignificand(DAG, Op1, dl);
5558 
5559     // Different possible minimax approximations of significand in
5560     // floating-point for various degrees of accuracy over [1,2].
5561     SDValue Log2ofMantissa;
5562     if (LimitFloatPrecision <= 6) {
5563       // For floating-point precision of 6:
5564       //
5565       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5566       //
5567       // error 0.0049451742, which is more than 7 bits
5568       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5569                                getF32Constant(DAG, 0xbeb08fe0, dl));
5570       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5571                                getF32Constant(DAG, 0x40019463, dl));
5572       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5573       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5574                                    getF32Constant(DAG, 0x3fd6633d, dl));
5575     } else if (LimitFloatPrecision <= 12) {
5576       // For floating-point precision of 12:
5577       //
5578       //   Log2ofMantissa =
5579       //     -2.51285454f +
5580       //       (4.07009056f +
5581       //         (-2.12067489f +
5582       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5583       //
5584       // error 0.0000876136000, which is better than 13 bits
5585       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5586                                getF32Constant(DAG, 0xbda7262e, dl));
5587       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5588                                getF32Constant(DAG, 0x3f25280b, dl));
5589       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5590       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5591                                getF32Constant(DAG, 0x4007b923, dl));
5592       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5593       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5594                                getF32Constant(DAG, 0x40823e2f, dl));
5595       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5596       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5597                                    getF32Constant(DAG, 0x4020d29c, dl));
5598     } else { // LimitFloatPrecision <= 18
5599       // For floating-point precision of 18:
5600       //
5601       //   Log2ofMantissa =
5602       //     -3.0400495f +
5603       //       (6.1129976f +
5604       //         (-5.3420409f +
5605       //           (3.2865683f +
5606       //             (-1.2669343f +
5607       //               (0.27515199f -
5608       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5609       //
5610       // error 0.0000018516, which is better than 18 bits
5611       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5612                                getF32Constant(DAG, 0xbcd2769e, dl));
5613       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5614                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5615       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5616       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5617                                getF32Constant(DAG, 0x3fa22ae7, dl));
5618       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5619       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5620                                getF32Constant(DAG, 0x40525723, dl));
5621       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5622       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5623                                getF32Constant(DAG, 0x40aaf200, dl));
5624       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5625       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5626                                getF32Constant(DAG, 0x40c39dad, dl));
5627       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5628       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5629                                    getF32Constant(DAG, 0x4042902c, dl));
5630     }
5631 
5632     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5633   }
5634 
5635   // No special expansion.
5636   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5637 }
5638 
5639 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5640 /// limited-precision mode.
5641 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5642                            const TargetLowering &TLI, SDNodeFlags Flags) {
5643   // TODO: What fast-math-flags should be set on the floating-point nodes?
5644 
5645   if (Op.getValueType() == MVT::f32 &&
5646       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5647     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5648 
5649     // Scale the exponent by log10(2) [0.30102999f].
5650     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5651     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5652                                         getF32Constant(DAG, 0x3e9a209a, dl));
5653 
5654     // Get the significand and build it into a floating-point number with
5655     // exponent of 1.
5656     SDValue X = GetSignificand(DAG, Op1, dl);
5657 
5658     SDValue Log10ofMantissa;
5659     if (LimitFloatPrecision <= 6) {
5660       // For floating-point precision of 6:
5661       //
5662       //   Log10ofMantissa =
5663       //     -0.50419619f +
5664       //       (0.60948995f - 0.10380950f * x) * x;
5665       //
5666       // error 0.0014886165, which is 6 bits
5667       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5668                                getF32Constant(DAG, 0xbdd49a13, dl));
5669       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5670                                getF32Constant(DAG, 0x3f1c0789, dl));
5671       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5672       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5673                                     getF32Constant(DAG, 0x3f011300, dl));
5674     } else if (LimitFloatPrecision <= 12) {
5675       // For floating-point precision of 12:
5676       //
5677       //   Log10ofMantissa =
5678       //     -0.64831180f +
5679       //       (0.91751397f +
5680       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5681       //
5682       // error 0.00019228036, which is better than 12 bits
5683       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5684                                getF32Constant(DAG, 0x3d431f31, dl));
5685       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5686                                getF32Constant(DAG, 0x3ea21fb2, dl));
5687       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5688       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5689                                getF32Constant(DAG, 0x3f6ae232, dl));
5690       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5691       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5692                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5693     } else { // LimitFloatPrecision <= 18
5694       // For floating-point precision of 18:
5695       //
5696       //   Log10ofMantissa =
5697       //     -0.84299375f +
5698       //       (1.5327582f +
5699       //         (-1.0688956f +
5700       //           (0.49102474f +
5701       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5702       //
5703       // error 0.0000037995730, which is better than 18 bits
5704       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5705                                getF32Constant(DAG, 0x3c5d51ce, dl));
5706       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5707                                getF32Constant(DAG, 0x3e00685a, dl));
5708       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5709       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5710                                getF32Constant(DAG, 0x3efb6798, dl));
5711       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5712       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5713                                getF32Constant(DAG, 0x3f88d192, dl));
5714       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5715       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5716                                getF32Constant(DAG, 0x3fc4316c, dl));
5717       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5718       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5719                                     getF32Constant(DAG, 0x3f57ce70, dl));
5720     }
5721 
5722     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5723   }
5724 
5725   // No special expansion.
5726   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5727 }
5728 
5729 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5730 /// limited-precision mode.
5731 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5732                           const TargetLowering &TLI, SDNodeFlags Flags) {
5733   if (Op.getValueType() == MVT::f32 &&
5734       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5735     return getLimitedPrecisionExp2(Op, dl, DAG);
5736 
5737   // No special expansion.
5738   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5739 }
5740 
5741 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5742 /// limited-precision mode with x == 10.0f.
5743 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5744                          SelectionDAG &DAG, const TargetLowering &TLI,
5745                          SDNodeFlags Flags) {
5746   bool IsExp10 = false;
5747   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5748       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5749     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5750       APFloat Ten(10.0f);
5751       IsExp10 = LHSC->isExactlyValue(Ten);
5752     }
5753   }
5754 
5755   // TODO: What fast-math-flags should be set on the FMUL node?
5756   if (IsExp10) {
5757     // Put the exponent in the right bit position for later addition to the
5758     // final result:
5759     //
5760     //   #define LOG2OF10 3.3219281f
5761     //   t0 = Op * LOG2OF10;
5762     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5763                              getF32Constant(DAG, 0x40549a78, dl));
5764     return getLimitedPrecisionExp2(t0, dl, DAG);
5765   }
5766 
5767   // No special expansion.
5768   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5769 }
5770 
5771 /// ExpandPowI - Expand a llvm.powi intrinsic.
5772 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5773                           SelectionDAG &DAG) {
5774   // If RHS is a constant, we can expand this out to a multiplication tree if
5775   // it's beneficial on the target, otherwise we end up lowering to a call to
5776   // __powidf2 (for example).
5777   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5778     unsigned Val = RHSC->getSExtValue();
5779 
5780     // powi(x, 0) -> 1.0
5781     if (Val == 0)
5782       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5783 
5784     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5785             Val, DAG.shouldOptForSize())) {
5786       // Get the exponent as a positive value.
5787       if ((int)Val < 0)
5788         Val = -Val;
5789       // We use the simple binary decomposition method to generate the multiply
5790       // sequence.  There are more optimal ways to do this (for example,
5791       // powi(x,15) generates one more multiply than it should), but this has
5792       // the benefit of being both really simple and much better than a libcall.
5793       SDValue Res; // Logically starts equal to 1.0
5794       SDValue CurSquare = LHS;
5795       // TODO: Intrinsics should have fast-math-flags that propagate to these
5796       // nodes.
5797       while (Val) {
5798         if (Val & 1) {
5799           if (Res.getNode())
5800             Res =
5801                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5802           else
5803             Res = CurSquare; // 1.0*CurSquare.
5804         }
5805 
5806         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5807                                 CurSquare, CurSquare);
5808         Val >>= 1;
5809       }
5810 
5811       // If the original was negative, invert the result, producing 1/(x*x*x).
5812       if (RHSC->getSExtValue() < 0)
5813         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5814                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5815       return Res;
5816     }
5817   }
5818 
5819   // Otherwise, expand to a libcall.
5820   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5821 }
5822 
5823 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5824                             SDValue LHS, SDValue RHS, SDValue Scale,
5825                             SelectionDAG &DAG, const TargetLowering &TLI) {
5826   EVT VT = LHS.getValueType();
5827   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5828   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5829   LLVMContext &Ctx = *DAG.getContext();
5830 
5831   // If the type is legal but the operation isn't, this node might survive all
5832   // the way to operation legalization. If we end up there and we do not have
5833   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5834   // node.
5835 
5836   // Coax the legalizer into expanding the node during type legalization instead
5837   // by bumping the size by one bit. This will force it to Promote, enabling the
5838   // early expansion and avoiding the need to expand later.
5839 
5840   // We don't have to do this if Scale is 0; that can always be expanded, unless
5841   // it's a saturating signed operation. Those can experience true integer
5842   // division overflow, a case which we must avoid.
5843 
5844   // FIXME: We wouldn't have to do this (or any of the early
5845   // expansion/promotion) if it was possible to expand a libcall of an
5846   // illegal type during operation legalization. But it's not, so things
5847   // get a bit hacky.
5848   unsigned ScaleInt = Scale->getAsZExtVal();
5849   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5850       (TLI.isTypeLegal(VT) ||
5851        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5852     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5853         Opcode, VT, ScaleInt);
5854     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5855       EVT PromVT;
5856       if (VT.isScalarInteger())
5857         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5858       else if (VT.isVector()) {
5859         PromVT = VT.getVectorElementType();
5860         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5861         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5862       } else
5863         llvm_unreachable("Wrong VT for DIVFIX?");
5864       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5865       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5866       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5867       // For saturating operations, we need to shift up the LHS to get the
5868       // proper saturation width, and then shift down again afterwards.
5869       if (Saturating)
5870         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5871                           DAG.getConstant(1, DL, ShiftTy));
5872       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5873       if (Saturating)
5874         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5875                           DAG.getConstant(1, DL, ShiftTy));
5876       return DAG.getZExtOrTrunc(Res, DL, VT);
5877     }
5878   }
5879 
5880   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5881 }
5882 
5883 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5884 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5885 static void
5886 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5887                      const SDValue &N) {
5888   switch (N.getOpcode()) {
5889   case ISD::CopyFromReg: {
5890     SDValue Op = N.getOperand(1);
5891     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5892                       Op.getValueType().getSizeInBits());
5893     return;
5894   }
5895   case ISD::BITCAST:
5896   case ISD::AssertZext:
5897   case ISD::AssertSext:
5898   case ISD::TRUNCATE:
5899     getUnderlyingArgRegs(Regs, N.getOperand(0));
5900     return;
5901   case ISD::BUILD_PAIR:
5902   case ISD::BUILD_VECTOR:
5903   case ISD::CONCAT_VECTORS:
5904     for (SDValue Op : N->op_values())
5905       getUnderlyingArgRegs(Regs, Op);
5906     return;
5907   default:
5908     return;
5909   }
5910 }
5911 
5912 /// If the DbgValueInst is a dbg_value of a function argument, create the
5913 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5914 /// instruction selection, they will be inserted to the entry BB.
5915 /// We don't currently support this for variadic dbg_values, as they shouldn't
5916 /// appear for function arguments or in the prologue.
5917 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5918     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5919     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5920   const Argument *Arg = dyn_cast<Argument>(V);
5921   if (!Arg)
5922     return false;
5923 
5924   MachineFunction &MF = DAG.getMachineFunction();
5925   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5926 
5927   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5928   // we've been asked to pursue.
5929   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5930                               bool Indirect) {
5931     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5932       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5933       // pointing at the VReg, which will be patched up later.
5934       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5935       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5936           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5937           /* isKill */ false, /* isDead */ false,
5938           /* isUndef */ false, /* isEarlyClobber */ false,
5939           /* SubReg */ 0, /* isDebug */ true)});
5940 
5941       auto *NewDIExpr = FragExpr;
5942       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5943       // the DIExpression.
5944       if (Indirect)
5945         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5946       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5947       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5948       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5949     } else {
5950       // Create a completely standard DBG_VALUE.
5951       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5952       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5953     }
5954   };
5955 
5956   if (Kind == FuncArgumentDbgValueKind::Value) {
5957     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5958     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5959     // the entry block.
5960     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5961     if (!IsInEntryBlock)
5962       return false;
5963 
5964     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5965     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5966     // variable that also is a param.
5967     //
5968     // Although, if we are at the top of the entry block already, we can still
5969     // emit using ArgDbgValue. This might catch some situations when the
5970     // dbg.value refers to an argument that isn't used in the entry block, so
5971     // any CopyToReg node would be optimized out and the only way to express
5972     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5973     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5974     // we should only emit as ArgDbgValue if the Variable is an argument to the
5975     // current function, and the dbg.value intrinsic is found in the entry
5976     // block.
5977     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5978         !DL->getInlinedAt();
5979     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5980     if (!IsInPrologue && !VariableIsFunctionInputArg)
5981       return false;
5982 
5983     // Here we assume that a function argument on IR level only can be used to
5984     // describe one input parameter on source level. If we for example have
5985     // source code like this
5986     //
5987     //    struct A { long x, y; };
5988     //    void foo(struct A a, long b) {
5989     //      ...
5990     //      b = a.x;
5991     //      ...
5992     //    }
5993     //
5994     // and IR like this
5995     //
5996     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5997     //  entry:
5998     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5999     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6000     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6001     //    ...
6002     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6003     //    ...
6004     //
6005     // then the last dbg.value is describing a parameter "b" using a value that
6006     // is an argument. But since we already has used %a1 to describe a parameter
6007     // we should not handle that last dbg.value here (that would result in an
6008     // incorrect hoisting of the DBG_VALUE to the function entry).
6009     // Notice that we allow one dbg.value per IR level argument, to accommodate
6010     // for the situation with fragments above.
6011     if (VariableIsFunctionInputArg) {
6012       unsigned ArgNo = Arg->getArgNo();
6013       if (ArgNo >= FuncInfo.DescribedArgs.size())
6014         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6015       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6016         return false;
6017       FuncInfo.DescribedArgs.set(ArgNo);
6018     }
6019   }
6020 
6021   bool IsIndirect = false;
6022   std::optional<MachineOperand> Op;
6023   // Some arguments' frame index is recorded during argument lowering.
6024   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6025   if (FI != std::numeric_limits<int>::max())
6026     Op = MachineOperand::CreateFI(FI);
6027 
6028   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6029   if (!Op && N.getNode()) {
6030     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6031     Register Reg;
6032     if (ArgRegsAndSizes.size() == 1)
6033       Reg = ArgRegsAndSizes.front().first;
6034 
6035     if (Reg && Reg.isVirtual()) {
6036       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6037       Register PR = RegInfo.getLiveInPhysReg(Reg);
6038       if (PR)
6039         Reg = PR;
6040     }
6041     if (Reg) {
6042       Op = MachineOperand::CreateReg(Reg, false);
6043       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6044     }
6045   }
6046 
6047   if (!Op && N.getNode()) {
6048     // Check if frame index is available.
6049     SDValue LCandidate = peekThroughBitcasts(N);
6050     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6051       if (FrameIndexSDNode *FINode =
6052           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6053         Op = MachineOperand::CreateFI(FINode->getIndex());
6054   }
6055 
6056   if (!Op) {
6057     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6058     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6059                                          SplitRegs) {
6060       unsigned Offset = 0;
6061       for (const auto &RegAndSize : SplitRegs) {
6062         // If the expression is already a fragment, the current register
6063         // offset+size might extend beyond the fragment. In this case, only
6064         // the register bits that are inside the fragment are relevant.
6065         int RegFragmentSizeInBits = RegAndSize.second;
6066         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6067           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6068           // The register is entirely outside the expression fragment,
6069           // so is irrelevant for debug info.
6070           if (Offset >= ExprFragmentSizeInBits)
6071             break;
6072           // The register is partially outside the expression fragment, only
6073           // the low bits within the fragment are relevant for debug info.
6074           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6075             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6076           }
6077         }
6078 
6079         auto FragmentExpr = DIExpression::createFragmentExpression(
6080             Expr, Offset, RegFragmentSizeInBits);
6081         Offset += RegAndSize.second;
6082         // If a valid fragment expression cannot be created, the variable's
6083         // correct value cannot be determined and so it is set as Undef.
6084         if (!FragmentExpr) {
6085           SDDbgValue *SDV = DAG.getConstantDbgValue(
6086               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6087           DAG.AddDbgValue(SDV, false);
6088           continue;
6089         }
6090         MachineInstr *NewMI =
6091             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6092                              Kind != FuncArgumentDbgValueKind::Value);
6093         FuncInfo.ArgDbgValues.push_back(NewMI);
6094       }
6095     };
6096 
6097     // Check if ValueMap has reg number.
6098     DenseMap<const Value *, Register>::const_iterator
6099       VMI = FuncInfo.ValueMap.find(V);
6100     if (VMI != FuncInfo.ValueMap.end()) {
6101       const auto &TLI = DAG.getTargetLoweringInfo();
6102       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6103                        V->getType(), std::nullopt);
6104       if (RFV.occupiesMultipleRegs()) {
6105         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6106         return true;
6107       }
6108 
6109       Op = MachineOperand::CreateReg(VMI->second, false);
6110       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6111     } else if (ArgRegsAndSizes.size() > 1) {
6112       // This was split due to the calling convention, and no virtual register
6113       // mapping exists for the value.
6114       splitMultiRegDbgValue(ArgRegsAndSizes);
6115       return true;
6116     }
6117   }
6118 
6119   if (!Op)
6120     return false;
6121 
6122   assert(Variable->isValidLocationForIntrinsic(DL) &&
6123          "Expected inlined-at fields to agree");
6124   MachineInstr *NewMI = nullptr;
6125 
6126   if (Op->isReg())
6127     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6128   else
6129     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6130                     Variable, Expr);
6131 
6132   // Otherwise, use ArgDbgValues.
6133   FuncInfo.ArgDbgValues.push_back(NewMI);
6134   return true;
6135 }
6136 
6137 /// Return the appropriate SDDbgValue based on N.
6138 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6139                                              DILocalVariable *Variable,
6140                                              DIExpression *Expr,
6141                                              const DebugLoc &dl,
6142                                              unsigned DbgSDNodeOrder) {
6143   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6144     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6145     // stack slot locations.
6146     //
6147     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6148     // debug values here after optimization:
6149     //
6150     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6151     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6152     //
6153     // Both describe the direct values of their associated variables.
6154     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6155                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6156   }
6157   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6158                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6159 }
6160 
6161 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6162   switch (Intrinsic) {
6163   case Intrinsic::smul_fix:
6164     return ISD::SMULFIX;
6165   case Intrinsic::umul_fix:
6166     return ISD::UMULFIX;
6167   case Intrinsic::smul_fix_sat:
6168     return ISD::SMULFIXSAT;
6169   case Intrinsic::umul_fix_sat:
6170     return ISD::UMULFIXSAT;
6171   case Intrinsic::sdiv_fix:
6172     return ISD::SDIVFIX;
6173   case Intrinsic::udiv_fix:
6174     return ISD::UDIVFIX;
6175   case Intrinsic::sdiv_fix_sat:
6176     return ISD::SDIVFIXSAT;
6177   case Intrinsic::udiv_fix_sat:
6178     return ISD::UDIVFIXSAT;
6179   default:
6180     llvm_unreachable("Unhandled fixed point intrinsic");
6181   }
6182 }
6183 
6184 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6185                                            const char *FunctionName) {
6186   assert(FunctionName && "FunctionName must not be nullptr");
6187   SDValue Callee = DAG.getExternalSymbol(
6188       FunctionName,
6189       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6190   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6191 }
6192 
6193 /// Given a @llvm.call.preallocated.setup, return the corresponding
6194 /// preallocated call.
6195 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6196   assert(cast<CallBase>(PreallocatedSetup)
6197                  ->getCalledFunction()
6198                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6199          "expected call_preallocated_setup Value");
6200   for (const auto *U : PreallocatedSetup->users()) {
6201     auto *UseCall = cast<CallBase>(U);
6202     const Function *Fn = UseCall->getCalledFunction();
6203     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6204       return UseCall;
6205     }
6206   }
6207   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6208 }
6209 
6210 /// If DI is a debug value with an EntryValue expression, lower it using the
6211 /// corresponding physical register of the associated Argument value
6212 /// (guaranteed to exist by the verifier).
6213 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6214     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6215     DIExpression *Expr, DebugLoc DbgLoc) {
6216   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6217     return false;
6218 
6219   // These properties are guaranteed by the verifier.
6220   const Argument *Arg = cast<Argument>(Values[0]);
6221   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6222 
6223   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6224   if (ArgIt == FuncInfo.ValueMap.end()) {
6225     LLVM_DEBUG(
6226         dbgs() << "Dropping dbg.value: expression is entry_value but "
6227                   "couldn't find an associated register for the Argument\n");
6228     return true;
6229   }
6230   Register ArgVReg = ArgIt->getSecond();
6231 
6232   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6233     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6234       SDDbgValue *SDV = DAG.getVRegDbgValue(
6235           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6236       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6237       return true;
6238     }
6239   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6240                        "couldn't find a physical register\n");
6241   return true;
6242 }
6243 
6244 /// Lower the call to the specified intrinsic function.
6245 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6246                                                   unsigned Intrinsic) {
6247   SDLoc sdl = getCurSDLoc();
6248   switch (Intrinsic) {
6249   case Intrinsic::experimental_convergence_anchor:
6250     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6251     break;
6252   case Intrinsic::experimental_convergence_entry:
6253     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6254     break;
6255   case Intrinsic::experimental_convergence_loop: {
6256     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6257     auto *Token = Bundle->Inputs[0].get();
6258     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6259                              getValue(Token)));
6260     break;
6261   }
6262   }
6263 }
6264 
6265 /// Lower the call to the specified intrinsic function.
6266 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6267                                              unsigned Intrinsic) {
6268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6269   SDLoc sdl = getCurSDLoc();
6270   DebugLoc dl = getCurDebugLoc();
6271   SDValue Res;
6272 
6273   SDNodeFlags Flags;
6274   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6275     Flags.copyFMF(*FPOp);
6276 
6277   switch (Intrinsic) {
6278   default:
6279     // By default, turn this into a target intrinsic node.
6280     visitTargetIntrinsic(I, Intrinsic);
6281     return;
6282   case Intrinsic::vscale: {
6283     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6284     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6285     return;
6286   }
6287   case Intrinsic::vastart:  visitVAStart(I); return;
6288   case Intrinsic::vaend:    visitVAEnd(I); return;
6289   case Intrinsic::vacopy:   visitVACopy(I); return;
6290   case Intrinsic::returnaddress:
6291     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6292                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6293                              getValue(I.getArgOperand(0))));
6294     return;
6295   case Intrinsic::addressofreturnaddress:
6296     setValue(&I,
6297              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6298                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6299     return;
6300   case Intrinsic::sponentry:
6301     setValue(&I,
6302              DAG.getNode(ISD::SPONENTRY, sdl,
6303                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6304     return;
6305   case Intrinsic::frameaddress:
6306     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6307                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6308                              getValue(I.getArgOperand(0))));
6309     return;
6310   case Intrinsic::read_volatile_register:
6311   case Intrinsic::read_register: {
6312     Value *Reg = I.getArgOperand(0);
6313     SDValue Chain = getRoot();
6314     SDValue RegName =
6315         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6316     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6317     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6318       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6319     setValue(&I, Res);
6320     DAG.setRoot(Res.getValue(1));
6321     return;
6322   }
6323   case Intrinsic::write_register: {
6324     Value *Reg = I.getArgOperand(0);
6325     Value *RegValue = I.getArgOperand(1);
6326     SDValue Chain = getRoot();
6327     SDValue RegName =
6328         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6329     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6330                             RegName, getValue(RegValue)));
6331     return;
6332   }
6333   case Intrinsic::memcpy: {
6334     const auto &MCI = cast<MemCpyInst>(I);
6335     SDValue Op1 = getValue(I.getArgOperand(0));
6336     SDValue Op2 = getValue(I.getArgOperand(1));
6337     SDValue Op3 = getValue(I.getArgOperand(2));
6338     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6339     Align DstAlign = MCI.getDestAlign().valueOrOne();
6340     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6341     Align Alignment = std::min(DstAlign, SrcAlign);
6342     bool isVol = MCI.isVolatile();
6343     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6344     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6345     // node.
6346     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6347     SDValue MC = DAG.getMemcpy(
6348         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6349         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6350         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6351     updateDAGForMaybeTailCall(MC);
6352     return;
6353   }
6354   case Intrinsic::memcpy_inline: {
6355     const auto &MCI = cast<MemCpyInlineInst>(I);
6356     SDValue Dst = getValue(I.getArgOperand(0));
6357     SDValue Src = getValue(I.getArgOperand(1));
6358     SDValue Size = getValue(I.getArgOperand(2));
6359     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6360     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6361     Align DstAlign = MCI.getDestAlign().valueOrOne();
6362     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6363     Align Alignment = std::min(DstAlign, SrcAlign);
6364     bool isVol = MCI.isVolatile();
6365     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6366     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6367     // node.
6368     SDValue MC = DAG.getMemcpy(
6369         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6370         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6371         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6372     updateDAGForMaybeTailCall(MC);
6373     return;
6374   }
6375   case Intrinsic::memset: {
6376     const auto &MSI = cast<MemSetInst>(I);
6377     SDValue Op1 = getValue(I.getArgOperand(0));
6378     SDValue Op2 = getValue(I.getArgOperand(1));
6379     SDValue Op3 = getValue(I.getArgOperand(2));
6380     // @llvm.memset defines 0 and 1 to both mean no alignment.
6381     Align Alignment = MSI.getDestAlign().valueOrOne();
6382     bool isVol = MSI.isVolatile();
6383     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6384     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6385     SDValue MS = DAG.getMemset(
6386         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6387         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6388     updateDAGForMaybeTailCall(MS);
6389     return;
6390   }
6391   case Intrinsic::memset_inline: {
6392     const auto &MSII = cast<MemSetInlineInst>(I);
6393     SDValue Dst = getValue(I.getArgOperand(0));
6394     SDValue Value = getValue(I.getArgOperand(1));
6395     SDValue Size = getValue(I.getArgOperand(2));
6396     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6397     // @llvm.memset defines 0 and 1 to both mean no alignment.
6398     Align DstAlign = MSII.getDestAlign().valueOrOne();
6399     bool isVol = MSII.isVolatile();
6400     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6401     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6402     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6403                                /* AlwaysInline */ true, isTC,
6404                                MachinePointerInfo(I.getArgOperand(0)),
6405                                I.getAAMetadata());
6406     updateDAGForMaybeTailCall(MC);
6407     return;
6408   }
6409   case Intrinsic::memmove: {
6410     const auto &MMI = cast<MemMoveInst>(I);
6411     SDValue Op1 = getValue(I.getArgOperand(0));
6412     SDValue Op2 = getValue(I.getArgOperand(1));
6413     SDValue Op3 = getValue(I.getArgOperand(2));
6414     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6415     Align DstAlign = MMI.getDestAlign().valueOrOne();
6416     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6417     Align Alignment = std::min(DstAlign, SrcAlign);
6418     bool isVol = MMI.isVolatile();
6419     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6420     // FIXME: Support passing different dest/src alignments to the memmove DAG
6421     // node.
6422     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6423     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6424                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6425                                 MachinePointerInfo(I.getArgOperand(1)),
6426                                 I.getAAMetadata(), AA);
6427     updateDAGForMaybeTailCall(MM);
6428     return;
6429   }
6430   case Intrinsic::memcpy_element_unordered_atomic: {
6431     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6432     SDValue Dst = getValue(MI.getRawDest());
6433     SDValue Src = getValue(MI.getRawSource());
6434     SDValue Length = getValue(MI.getLength());
6435 
6436     Type *LengthTy = MI.getLength()->getType();
6437     unsigned ElemSz = MI.getElementSizeInBytes();
6438     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6439     SDValue MC =
6440         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6441                             isTC, MachinePointerInfo(MI.getRawDest()),
6442                             MachinePointerInfo(MI.getRawSource()));
6443     updateDAGForMaybeTailCall(MC);
6444     return;
6445   }
6446   case Intrinsic::memmove_element_unordered_atomic: {
6447     auto &MI = cast<AtomicMemMoveInst>(I);
6448     SDValue Dst = getValue(MI.getRawDest());
6449     SDValue Src = getValue(MI.getRawSource());
6450     SDValue Length = getValue(MI.getLength());
6451 
6452     Type *LengthTy = MI.getLength()->getType();
6453     unsigned ElemSz = MI.getElementSizeInBytes();
6454     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6455     SDValue MC =
6456         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6457                              isTC, MachinePointerInfo(MI.getRawDest()),
6458                              MachinePointerInfo(MI.getRawSource()));
6459     updateDAGForMaybeTailCall(MC);
6460     return;
6461   }
6462   case Intrinsic::memset_element_unordered_atomic: {
6463     auto &MI = cast<AtomicMemSetInst>(I);
6464     SDValue Dst = getValue(MI.getRawDest());
6465     SDValue Val = getValue(MI.getValue());
6466     SDValue Length = getValue(MI.getLength());
6467 
6468     Type *LengthTy = MI.getLength()->getType();
6469     unsigned ElemSz = MI.getElementSizeInBytes();
6470     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6471     SDValue MC =
6472         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6473                             isTC, MachinePointerInfo(MI.getRawDest()));
6474     updateDAGForMaybeTailCall(MC);
6475     return;
6476   }
6477   case Intrinsic::call_preallocated_setup: {
6478     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6479     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6480     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6481                               getRoot(), SrcValue);
6482     setValue(&I, Res);
6483     DAG.setRoot(Res);
6484     return;
6485   }
6486   case Intrinsic::call_preallocated_arg: {
6487     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6488     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6489     SDValue Ops[3];
6490     Ops[0] = getRoot();
6491     Ops[1] = SrcValue;
6492     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6493                                    MVT::i32); // arg index
6494     SDValue Res = DAG.getNode(
6495         ISD::PREALLOCATED_ARG, sdl,
6496         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6497     setValue(&I, Res);
6498     DAG.setRoot(Res.getValue(1));
6499     return;
6500   }
6501   case Intrinsic::dbg_declare: {
6502     const auto &DI = cast<DbgDeclareInst>(I);
6503     // Debug intrinsics are handled separately in assignment tracking mode.
6504     // Some intrinsics are handled right after Argument lowering.
6505     if (AssignmentTrackingEnabled ||
6506         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6507       return;
6508     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6509     DILocalVariable *Variable = DI.getVariable();
6510     DIExpression *Expression = DI.getExpression();
6511     dropDanglingDebugInfo(Variable, Expression);
6512     // Assume dbg.declare can not currently use DIArgList, i.e.
6513     // it is non-variadic.
6514     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6515     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6516                        DI.getDebugLoc());
6517     return;
6518   }
6519   case Intrinsic::dbg_label: {
6520     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6521     DILabel *Label = DI.getLabel();
6522     assert(Label && "Missing label");
6523 
6524     SDDbgLabel *SDV;
6525     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6526     DAG.AddDbgLabel(SDV);
6527     return;
6528   }
6529   case Intrinsic::dbg_assign: {
6530     // Debug intrinsics are handled seperately in assignment tracking mode.
6531     if (AssignmentTrackingEnabled)
6532       return;
6533     // If assignment tracking hasn't been enabled then fall through and treat
6534     // the dbg.assign as a dbg.value.
6535     [[fallthrough]];
6536   }
6537   case Intrinsic::dbg_value: {
6538     // Debug intrinsics are handled seperately in assignment tracking mode.
6539     if (AssignmentTrackingEnabled)
6540       return;
6541     const DbgValueInst &DI = cast<DbgValueInst>(I);
6542     assert(DI.getVariable() && "Missing variable");
6543 
6544     DILocalVariable *Variable = DI.getVariable();
6545     DIExpression *Expression = DI.getExpression();
6546     dropDanglingDebugInfo(Variable, Expression);
6547 
6548     if (DI.isKillLocation()) {
6549       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6550       return;
6551     }
6552 
6553     SmallVector<Value *, 4> Values(DI.getValues());
6554     if (Values.empty())
6555       return;
6556 
6557     bool IsVariadic = DI.hasArgList();
6558     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6559                           SDNodeOrder, IsVariadic))
6560       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6561                            DI.getDebugLoc(), SDNodeOrder);
6562     return;
6563   }
6564 
6565   case Intrinsic::eh_typeid_for: {
6566     // Find the type id for the given typeinfo.
6567     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6568     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6569     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6570     setValue(&I, Res);
6571     return;
6572   }
6573 
6574   case Intrinsic::eh_return_i32:
6575   case Intrinsic::eh_return_i64:
6576     DAG.getMachineFunction().setCallsEHReturn(true);
6577     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6578                             MVT::Other,
6579                             getControlRoot(),
6580                             getValue(I.getArgOperand(0)),
6581                             getValue(I.getArgOperand(1))));
6582     return;
6583   case Intrinsic::eh_unwind_init:
6584     DAG.getMachineFunction().setCallsUnwindInit(true);
6585     return;
6586   case Intrinsic::eh_dwarf_cfa:
6587     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6588                              TLI.getPointerTy(DAG.getDataLayout()),
6589                              getValue(I.getArgOperand(0))));
6590     return;
6591   case Intrinsic::eh_sjlj_callsite: {
6592     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6593     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6594     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6595 
6596     MMI.setCurrentCallSite(CI->getZExtValue());
6597     return;
6598   }
6599   case Intrinsic::eh_sjlj_functioncontext: {
6600     // Get and store the index of the function context.
6601     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6602     AllocaInst *FnCtx =
6603       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6604     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6605     MFI.setFunctionContextIndex(FI);
6606     return;
6607   }
6608   case Intrinsic::eh_sjlj_setjmp: {
6609     SDValue Ops[2];
6610     Ops[0] = getRoot();
6611     Ops[1] = getValue(I.getArgOperand(0));
6612     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6613                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6614     setValue(&I, Op.getValue(0));
6615     DAG.setRoot(Op.getValue(1));
6616     return;
6617   }
6618   case Intrinsic::eh_sjlj_longjmp:
6619     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6620                             getRoot(), getValue(I.getArgOperand(0))));
6621     return;
6622   case Intrinsic::eh_sjlj_setup_dispatch:
6623     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6624                             getRoot()));
6625     return;
6626   case Intrinsic::masked_gather:
6627     visitMaskedGather(I);
6628     return;
6629   case Intrinsic::masked_load:
6630     visitMaskedLoad(I);
6631     return;
6632   case Intrinsic::masked_scatter:
6633     visitMaskedScatter(I);
6634     return;
6635   case Intrinsic::masked_store:
6636     visitMaskedStore(I);
6637     return;
6638   case Intrinsic::masked_expandload:
6639     visitMaskedLoad(I, true /* IsExpanding */);
6640     return;
6641   case Intrinsic::masked_compressstore:
6642     visitMaskedStore(I, true /* IsCompressing */);
6643     return;
6644   case Intrinsic::powi:
6645     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6646                             getValue(I.getArgOperand(1)), DAG));
6647     return;
6648   case Intrinsic::log:
6649     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6650     return;
6651   case Intrinsic::log2:
6652     setValue(&I,
6653              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6654     return;
6655   case Intrinsic::log10:
6656     setValue(&I,
6657              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6658     return;
6659   case Intrinsic::exp:
6660     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6661     return;
6662   case Intrinsic::exp2:
6663     setValue(&I,
6664              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6665     return;
6666   case Intrinsic::pow:
6667     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6668                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6669     return;
6670   case Intrinsic::sqrt:
6671   case Intrinsic::fabs:
6672   case Intrinsic::sin:
6673   case Intrinsic::cos:
6674   case Intrinsic::exp10:
6675   case Intrinsic::floor:
6676   case Intrinsic::ceil:
6677   case Intrinsic::trunc:
6678   case Intrinsic::rint:
6679   case Intrinsic::nearbyint:
6680   case Intrinsic::round:
6681   case Intrinsic::roundeven:
6682   case Intrinsic::canonicalize: {
6683     unsigned Opcode;
6684     switch (Intrinsic) {
6685     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6686     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6687     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6688     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6689     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6690     case Intrinsic::exp10:     Opcode = ISD::FEXP10;     break;
6691     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6692     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6693     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6694     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6695     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6696     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6697     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6698     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6699     }
6700 
6701     setValue(&I, DAG.getNode(Opcode, sdl,
6702                              getValue(I.getArgOperand(0)).getValueType(),
6703                              getValue(I.getArgOperand(0)), Flags));
6704     return;
6705   }
6706   case Intrinsic::lround:
6707   case Intrinsic::llround:
6708   case Intrinsic::lrint:
6709   case Intrinsic::llrint: {
6710     unsigned Opcode;
6711     switch (Intrinsic) {
6712     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6713     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6714     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6715     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6716     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6717     }
6718 
6719     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6720     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6721                              getValue(I.getArgOperand(0))));
6722     return;
6723   }
6724   case Intrinsic::minnum:
6725     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6726                              getValue(I.getArgOperand(0)).getValueType(),
6727                              getValue(I.getArgOperand(0)),
6728                              getValue(I.getArgOperand(1)), Flags));
6729     return;
6730   case Intrinsic::maxnum:
6731     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6732                              getValue(I.getArgOperand(0)).getValueType(),
6733                              getValue(I.getArgOperand(0)),
6734                              getValue(I.getArgOperand(1)), Flags));
6735     return;
6736   case Intrinsic::minimum:
6737     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6738                              getValue(I.getArgOperand(0)).getValueType(),
6739                              getValue(I.getArgOperand(0)),
6740                              getValue(I.getArgOperand(1)), Flags));
6741     return;
6742   case Intrinsic::maximum:
6743     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6744                              getValue(I.getArgOperand(0)).getValueType(),
6745                              getValue(I.getArgOperand(0)),
6746                              getValue(I.getArgOperand(1)), Flags));
6747     return;
6748   case Intrinsic::copysign:
6749     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6750                              getValue(I.getArgOperand(0)).getValueType(),
6751                              getValue(I.getArgOperand(0)),
6752                              getValue(I.getArgOperand(1)), Flags));
6753     return;
6754   case Intrinsic::ldexp:
6755     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6756                              getValue(I.getArgOperand(0)).getValueType(),
6757                              getValue(I.getArgOperand(0)),
6758                              getValue(I.getArgOperand(1)), Flags));
6759     return;
6760   case Intrinsic::frexp: {
6761     SmallVector<EVT, 2> ValueVTs;
6762     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6763     SDVTList VTs = DAG.getVTList(ValueVTs);
6764     setValue(&I,
6765              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6766     return;
6767   }
6768   case Intrinsic::arithmetic_fence: {
6769     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6770                              getValue(I.getArgOperand(0)).getValueType(),
6771                              getValue(I.getArgOperand(0)), Flags));
6772     return;
6773   }
6774   case Intrinsic::fma:
6775     setValue(&I, DAG.getNode(
6776                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6777                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6778                      getValue(I.getArgOperand(2)), Flags));
6779     return;
6780 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6781   case Intrinsic::INTRINSIC:
6782 #include "llvm/IR/ConstrainedOps.def"
6783     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6784     return;
6785 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6786 #include "llvm/IR/VPIntrinsics.def"
6787     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6788     return;
6789   case Intrinsic::fptrunc_round: {
6790     // Get the last argument, the metadata and convert it to an integer in the
6791     // call
6792     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6793     std::optional<RoundingMode> RoundMode =
6794         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6795 
6796     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6797 
6798     // Propagate fast-math-flags from IR to node(s).
6799     SDNodeFlags Flags;
6800     Flags.copyFMF(*cast<FPMathOperator>(&I));
6801     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6802 
6803     SDValue Result;
6804     Result = DAG.getNode(
6805         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6806         DAG.getTargetConstant((int)*RoundMode, sdl,
6807                               TLI.getPointerTy(DAG.getDataLayout())));
6808     setValue(&I, Result);
6809 
6810     return;
6811   }
6812   case Intrinsic::fmuladd: {
6813     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6814     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6815         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6816       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6817                                getValue(I.getArgOperand(0)).getValueType(),
6818                                getValue(I.getArgOperand(0)),
6819                                getValue(I.getArgOperand(1)),
6820                                getValue(I.getArgOperand(2)), Flags));
6821     } else {
6822       // TODO: Intrinsic calls should have fast-math-flags.
6823       SDValue Mul = DAG.getNode(
6824           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6825           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6826       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6827                                 getValue(I.getArgOperand(0)).getValueType(),
6828                                 Mul, getValue(I.getArgOperand(2)), Flags);
6829       setValue(&I, Add);
6830     }
6831     return;
6832   }
6833   case Intrinsic::convert_to_fp16:
6834     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6835                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6836                                          getValue(I.getArgOperand(0)),
6837                                          DAG.getTargetConstant(0, sdl,
6838                                                                MVT::i32))));
6839     return;
6840   case Intrinsic::convert_from_fp16:
6841     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6842                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6843                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6844                                          getValue(I.getArgOperand(0)))));
6845     return;
6846   case Intrinsic::fptosi_sat: {
6847     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6848     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6849                              getValue(I.getArgOperand(0)),
6850                              DAG.getValueType(VT.getScalarType())));
6851     return;
6852   }
6853   case Intrinsic::fptoui_sat: {
6854     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6855     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6856                              getValue(I.getArgOperand(0)),
6857                              DAG.getValueType(VT.getScalarType())));
6858     return;
6859   }
6860   case Intrinsic::set_rounding:
6861     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6862                       {getRoot(), getValue(I.getArgOperand(0))});
6863     setValue(&I, Res);
6864     DAG.setRoot(Res.getValue(0));
6865     return;
6866   case Intrinsic::is_fpclass: {
6867     const DataLayout DLayout = DAG.getDataLayout();
6868     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6869     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6870     FPClassTest Test = static_cast<FPClassTest>(
6871         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6872     MachineFunction &MF = DAG.getMachineFunction();
6873     const Function &F = MF.getFunction();
6874     SDValue Op = getValue(I.getArgOperand(0));
6875     SDNodeFlags Flags;
6876     Flags.setNoFPExcept(
6877         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6878     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6879     // expansion can use illegal types. Making expansion early allows
6880     // legalizing these types prior to selection.
6881     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6882       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6883       setValue(&I, Result);
6884       return;
6885     }
6886 
6887     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6888     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6889     setValue(&I, V);
6890     return;
6891   }
6892   case Intrinsic::get_fpenv: {
6893     const DataLayout DLayout = DAG.getDataLayout();
6894     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6895     Align TempAlign = DAG.getEVTAlign(EnvVT);
6896     SDValue Chain = getRoot();
6897     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6898     // and temporary storage in stack.
6899     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6900       Res = DAG.getNode(
6901           ISD::GET_FPENV, sdl,
6902           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6903                         MVT::Other),
6904           Chain);
6905     } else {
6906       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6907       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6908       auto MPI =
6909           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6910       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6911           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
6912           TempAlign);
6913       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6914       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6915     }
6916     setValue(&I, Res);
6917     DAG.setRoot(Res.getValue(1));
6918     return;
6919   }
6920   case Intrinsic::set_fpenv: {
6921     const DataLayout DLayout = DAG.getDataLayout();
6922     SDValue Env = getValue(I.getArgOperand(0));
6923     EVT EnvVT = Env.getValueType();
6924     Align TempAlign = DAG.getEVTAlign(EnvVT);
6925     SDValue Chain = getRoot();
6926     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6927     // environment from memory.
6928     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6929       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6930     } else {
6931       // Allocate space in stack, copy environment bits into it and use this
6932       // memory in SET_FPENV_MEM.
6933       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6934       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6935       auto MPI =
6936           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6937       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6938                            MachineMemOperand::MOStore);
6939       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6940           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
6941           TempAlign);
6942       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6943     }
6944     DAG.setRoot(Chain);
6945     return;
6946   }
6947   case Intrinsic::reset_fpenv:
6948     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6949     return;
6950   case Intrinsic::get_fpmode:
6951     Res = DAG.getNode(
6952         ISD::GET_FPMODE, sdl,
6953         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6954                       MVT::Other),
6955         DAG.getRoot());
6956     setValue(&I, Res);
6957     DAG.setRoot(Res.getValue(1));
6958     return;
6959   case Intrinsic::set_fpmode:
6960     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6961                       getValue(I.getArgOperand(0)));
6962     DAG.setRoot(Res);
6963     return;
6964   case Intrinsic::reset_fpmode: {
6965     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6966     DAG.setRoot(Res);
6967     return;
6968   }
6969   case Intrinsic::pcmarker: {
6970     SDValue Tmp = getValue(I.getArgOperand(0));
6971     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6972     return;
6973   }
6974   case Intrinsic::readcyclecounter: {
6975     SDValue Op = getRoot();
6976     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6977                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6978     setValue(&I, Res);
6979     DAG.setRoot(Res.getValue(1));
6980     return;
6981   }
6982   case Intrinsic::readsteadycounter: {
6983     SDValue Op = getRoot();
6984     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
6985                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6986     setValue(&I, Res);
6987     DAG.setRoot(Res.getValue(1));
6988     return;
6989   }
6990   case Intrinsic::bitreverse:
6991     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6992                              getValue(I.getArgOperand(0)).getValueType(),
6993                              getValue(I.getArgOperand(0))));
6994     return;
6995   case Intrinsic::bswap:
6996     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6997                              getValue(I.getArgOperand(0)).getValueType(),
6998                              getValue(I.getArgOperand(0))));
6999     return;
7000   case Intrinsic::cttz: {
7001     SDValue Arg = getValue(I.getArgOperand(0));
7002     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7003     EVT Ty = Arg.getValueType();
7004     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7005                              sdl, Ty, Arg));
7006     return;
7007   }
7008   case Intrinsic::ctlz: {
7009     SDValue Arg = getValue(I.getArgOperand(0));
7010     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7011     EVT Ty = Arg.getValueType();
7012     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7013                              sdl, Ty, Arg));
7014     return;
7015   }
7016   case Intrinsic::ctpop: {
7017     SDValue Arg = getValue(I.getArgOperand(0));
7018     EVT Ty = Arg.getValueType();
7019     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7020     return;
7021   }
7022   case Intrinsic::fshl:
7023   case Intrinsic::fshr: {
7024     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7025     SDValue X = getValue(I.getArgOperand(0));
7026     SDValue Y = getValue(I.getArgOperand(1));
7027     SDValue Z = getValue(I.getArgOperand(2));
7028     EVT VT = X.getValueType();
7029 
7030     if (X == Y) {
7031       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7032       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7033     } else {
7034       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7035       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7036     }
7037     return;
7038   }
7039   case Intrinsic::sadd_sat: {
7040     SDValue Op1 = getValue(I.getArgOperand(0));
7041     SDValue Op2 = getValue(I.getArgOperand(1));
7042     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7043     return;
7044   }
7045   case Intrinsic::uadd_sat: {
7046     SDValue Op1 = getValue(I.getArgOperand(0));
7047     SDValue Op2 = getValue(I.getArgOperand(1));
7048     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7049     return;
7050   }
7051   case Intrinsic::ssub_sat: {
7052     SDValue Op1 = getValue(I.getArgOperand(0));
7053     SDValue Op2 = getValue(I.getArgOperand(1));
7054     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7055     return;
7056   }
7057   case Intrinsic::usub_sat: {
7058     SDValue Op1 = getValue(I.getArgOperand(0));
7059     SDValue Op2 = getValue(I.getArgOperand(1));
7060     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7061     return;
7062   }
7063   case Intrinsic::sshl_sat: {
7064     SDValue Op1 = getValue(I.getArgOperand(0));
7065     SDValue Op2 = getValue(I.getArgOperand(1));
7066     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7067     return;
7068   }
7069   case Intrinsic::ushl_sat: {
7070     SDValue Op1 = getValue(I.getArgOperand(0));
7071     SDValue Op2 = getValue(I.getArgOperand(1));
7072     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7073     return;
7074   }
7075   case Intrinsic::smul_fix:
7076   case Intrinsic::umul_fix:
7077   case Intrinsic::smul_fix_sat:
7078   case Intrinsic::umul_fix_sat: {
7079     SDValue Op1 = getValue(I.getArgOperand(0));
7080     SDValue Op2 = getValue(I.getArgOperand(1));
7081     SDValue Op3 = getValue(I.getArgOperand(2));
7082     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7083                              Op1.getValueType(), Op1, Op2, Op3));
7084     return;
7085   }
7086   case Intrinsic::sdiv_fix:
7087   case Intrinsic::udiv_fix:
7088   case Intrinsic::sdiv_fix_sat:
7089   case Intrinsic::udiv_fix_sat: {
7090     SDValue Op1 = getValue(I.getArgOperand(0));
7091     SDValue Op2 = getValue(I.getArgOperand(1));
7092     SDValue Op3 = getValue(I.getArgOperand(2));
7093     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7094                               Op1, Op2, Op3, DAG, TLI));
7095     return;
7096   }
7097   case Intrinsic::smax: {
7098     SDValue Op1 = getValue(I.getArgOperand(0));
7099     SDValue Op2 = getValue(I.getArgOperand(1));
7100     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7101     return;
7102   }
7103   case Intrinsic::smin: {
7104     SDValue Op1 = getValue(I.getArgOperand(0));
7105     SDValue Op2 = getValue(I.getArgOperand(1));
7106     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7107     return;
7108   }
7109   case Intrinsic::umax: {
7110     SDValue Op1 = getValue(I.getArgOperand(0));
7111     SDValue Op2 = getValue(I.getArgOperand(1));
7112     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7113     return;
7114   }
7115   case Intrinsic::umin: {
7116     SDValue Op1 = getValue(I.getArgOperand(0));
7117     SDValue Op2 = getValue(I.getArgOperand(1));
7118     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7119     return;
7120   }
7121   case Intrinsic::abs: {
7122     // TODO: Preserve "int min is poison" arg in SDAG?
7123     SDValue Op1 = getValue(I.getArgOperand(0));
7124     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7125     return;
7126   }
7127   case Intrinsic::stacksave: {
7128     SDValue Op = getRoot();
7129     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7130     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7131     setValue(&I, Res);
7132     DAG.setRoot(Res.getValue(1));
7133     return;
7134   }
7135   case Intrinsic::stackrestore:
7136     Res = getValue(I.getArgOperand(0));
7137     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7138     return;
7139   case Intrinsic::get_dynamic_area_offset: {
7140     SDValue Op = getRoot();
7141     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7142     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7143     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7144     // target.
7145     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7146       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7147                          " intrinsic!");
7148     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7149                       Op);
7150     DAG.setRoot(Op);
7151     setValue(&I, Res);
7152     return;
7153   }
7154   case Intrinsic::stackguard: {
7155     MachineFunction &MF = DAG.getMachineFunction();
7156     const Module &M = *MF.getFunction().getParent();
7157     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7158     SDValue Chain = getRoot();
7159     if (TLI.useLoadStackGuardNode()) {
7160       Res = getLoadStackGuard(DAG, sdl, Chain);
7161       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7162     } else {
7163       const Value *Global = TLI.getSDagStackGuard(M);
7164       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7165       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7166                         MachinePointerInfo(Global, 0), Align,
7167                         MachineMemOperand::MOVolatile);
7168     }
7169     if (TLI.useStackGuardXorFP())
7170       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7171     DAG.setRoot(Chain);
7172     setValue(&I, Res);
7173     return;
7174   }
7175   case Intrinsic::stackprotector: {
7176     // Emit code into the DAG to store the stack guard onto the stack.
7177     MachineFunction &MF = DAG.getMachineFunction();
7178     MachineFrameInfo &MFI = MF.getFrameInfo();
7179     SDValue Src, Chain = getRoot();
7180 
7181     if (TLI.useLoadStackGuardNode())
7182       Src = getLoadStackGuard(DAG, sdl, Chain);
7183     else
7184       Src = getValue(I.getArgOperand(0));   // The guard's value.
7185 
7186     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7187 
7188     int FI = FuncInfo.StaticAllocaMap[Slot];
7189     MFI.setStackProtectorIndex(FI);
7190     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7191 
7192     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7193 
7194     // Store the stack protector onto the stack.
7195     Res = DAG.getStore(
7196         Chain, sdl, Src, FIN,
7197         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7198         MaybeAlign(), MachineMemOperand::MOVolatile);
7199     setValue(&I, Res);
7200     DAG.setRoot(Res);
7201     return;
7202   }
7203   case Intrinsic::objectsize:
7204     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7205 
7206   case Intrinsic::is_constant:
7207     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7208 
7209   case Intrinsic::annotation:
7210   case Intrinsic::ptr_annotation:
7211   case Intrinsic::launder_invariant_group:
7212   case Intrinsic::strip_invariant_group:
7213     // Drop the intrinsic, but forward the value
7214     setValue(&I, getValue(I.getOperand(0)));
7215     return;
7216 
7217   case Intrinsic::assume:
7218   case Intrinsic::experimental_noalias_scope_decl:
7219   case Intrinsic::var_annotation:
7220   case Intrinsic::sideeffect:
7221     // Discard annotate attributes, noalias scope declarations, assumptions, and
7222     // artificial side-effects.
7223     return;
7224 
7225   case Intrinsic::codeview_annotation: {
7226     // Emit a label associated with this metadata.
7227     MachineFunction &MF = DAG.getMachineFunction();
7228     MCSymbol *Label =
7229         MF.getMMI().getContext().createTempSymbol("annotation", true);
7230     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7231     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7232     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7233     DAG.setRoot(Res);
7234     return;
7235   }
7236 
7237   case Intrinsic::init_trampoline: {
7238     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7239 
7240     SDValue Ops[6];
7241     Ops[0] = getRoot();
7242     Ops[1] = getValue(I.getArgOperand(0));
7243     Ops[2] = getValue(I.getArgOperand(1));
7244     Ops[3] = getValue(I.getArgOperand(2));
7245     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7246     Ops[5] = DAG.getSrcValue(F);
7247 
7248     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7249 
7250     DAG.setRoot(Res);
7251     return;
7252   }
7253   case Intrinsic::adjust_trampoline:
7254     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7255                              TLI.getPointerTy(DAG.getDataLayout()),
7256                              getValue(I.getArgOperand(0))));
7257     return;
7258   case Intrinsic::gcroot: {
7259     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7260            "only valid in functions with gc specified, enforced by Verifier");
7261     assert(GFI && "implied by previous");
7262     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7263     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7264 
7265     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7266     GFI->addStackRoot(FI->getIndex(), TypeMap);
7267     return;
7268   }
7269   case Intrinsic::gcread:
7270   case Intrinsic::gcwrite:
7271     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7272   case Intrinsic::get_rounding:
7273     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7274     setValue(&I, Res);
7275     DAG.setRoot(Res.getValue(1));
7276     return;
7277 
7278   case Intrinsic::expect:
7279     // Just replace __builtin_expect(exp, c) with EXP.
7280     setValue(&I, getValue(I.getArgOperand(0)));
7281     return;
7282 
7283   case Intrinsic::ubsantrap:
7284   case Intrinsic::debugtrap:
7285   case Intrinsic::trap: {
7286     StringRef TrapFuncName =
7287         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7288     if (TrapFuncName.empty()) {
7289       switch (Intrinsic) {
7290       case Intrinsic::trap:
7291         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7292         break;
7293       case Intrinsic::debugtrap:
7294         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7295         break;
7296       case Intrinsic::ubsantrap:
7297         DAG.setRoot(DAG.getNode(
7298             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7299             DAG.getTargetConstant(
7300                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7301                 MVT::i32)));
7302         break;
7303       default: llvm_unreachable("unknown trap intrinsic");
7304       }
7305       return;
7306     }
7307     TargetLowering::ArgListTy Args;
7308     if (Intrinsic == Intrinsic::ubsantrap) {
7309       Args.push_back(TargetLoweringBase::ArgListEntry());
7310       Args[0].Val = I.getArgOperand(0);
7311       Args[0].Node = getValue(Args[0].Val);
7312       Args[0].Ty = Args[0].Val->getType();
7313     }
7314 
7315     TargetLowering::CallLoweringInfo CLI(DAG);
7316     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7317         CallingConv::C, I.getType(),
7318         DAG.getExternalSymbol(TrapFuncName.data(),
7319                               TLI.getPointerTy(DAG.getDataLayout())),
7320         std::move(Args));
7321 
7322     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7323     DAG.setRoot(Result.second);
7324     return;
7325   }
7326 
7327   case Intrinsic::uadd_with_overflow:
7328   case Intrinsic::sadd_with_overflow:
7329   case Intrinsic::usub_with_overflow:
7330   case Intrinsic::ssub_with_overflow:
7331   case Intrinsic::umul_with_overflow:
7332   case Intrinsic::smul_with_overflow: {
7333     ISD::NodeType Op;
7334     switch (Intrinsic) {
7335     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7336     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7337     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7338     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7339     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7340     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7341     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7342     }
7343     SDValue Op1 = getValue(I.getArgOperand(0));
7344     SDValue Op2 = getValue(I.getArgOperand(1));
7345 
7346     EVT ResultVT = Op1.getValueType();
7347     EVT OverflowVT = MVT::i1;
7348     if (ResultVT.isVector())
7349       OverflowVT = EVT::getVectorVT(
7350           *Context, OverflowVT, ResultVT.getVectorElementCount());
7351 
7352     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7353     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7354     return;
7355   }
7356   case Intrinsic::prefetch: {
7357     SDValue Ops[5];
7358     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7359     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7360     Ops[0] = DAG.getRoot();
7361     Ops[1] = getValue(I.getArgOperand(0));
7362     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7363                                    MVT::i32);
7364     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7365                                    MVT::i32);
7366     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7367                                    MVT::i32);
7368     SDValue Result = DAG.getMemIntrinsicNode(
7369         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7370         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7371         /* align */ std::nullopt, Flags);
7372 
7373     // Chain the prefetch in parallel with any pending loads, to stay out of
7374     // the way of later optimizations.
7375     PendingLoads.push_back(Result);
7376     Result = getRoot();
7377     DAG.setRoot(Result);
7378     return;
7379   }
7380   case Intrinsic::lifetime_start:
7381   case Intrinsic::lifetime_end: {
7382     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7383     // Stack coloring is not enabled in O0, discard region information.
7384     if (TM.getOptLevel() == CodeGenOptLevel::None)
7385       return;
7386 
7387     const int64_t ObjectSize =
7388         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7389     Value *const ObjectPtr = I.getArgOperand(1);
7390     SmallVector<const Value *, 4> Allocas;
7391     getUnderlyingObjects(ObjectPtr, Allocas);
7392 
7393     for (const Value *Alloca : Allocas) {
7394       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7395 
7396       // Could not find an Alloca.
7397       if (!LifetimeObject)
7398         continue;
7399 
7400       // First check that the Alloca is static, otherwise it won't have a
7401       // valid frame index.
7402       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7403       if (SI == FuncInfo.StaticAllocaMap.end())
7404         return;
7405 
7406       const int FrameIndex = SI->second;
7407       int64_t Offset;
7408       if (GetPointerBaseWithConstantOffset(
7409               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7410         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7411       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7412                                 Offset);
7413       DAG.setRoot(Res);
7414     }
7415     return;
7416   }
7417   case Intrinsic::pseudoprobe: {
7418     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7419     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7420     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7421     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7422     DAG.setRoot(Res);
7423     return;
7424   }
7425   case Intrinsic::invariant_start:
7426     // Discard region information.
7427     setValue(&I,
7428              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7429     return;
7430   case Intrinsic::invariant_end:
7431     // Discard region information.
7432     return;
7433   case Intrinsic::clear_cache:
7434     /// FunctionName may be null.
7435     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7436       lowerCallToExternalSymbol(I, FunctionName);
7437     return;
7438   case Intrinsic::donothing:
7439   case Intrinsic::seh_try_begin:
7440   case Intrinsic::seh_scope_begin:
7441   case Intrinsic::seh_try_end:
7442   case Intrinsic::seh_scope_end:
7443     // ignore
7444     return;
7445   case Intrinsic::experimental_stackmap:
7446     visitStackmap(I);
7447     return;
7448   case Intrinsic::experimental_patchpoint_void:
7449   case Intrinsic::experimental_patchpoint_i64:
7450     visitPatchpoint(I);
7451     return;
7452   case Intrinsic::experimental_gc_statepoint:
7453     LowerStatepoint(cast<GCStatepointInst>(I));
7454     return;
7455   case Intrinsic::experimental_gc_result:
7456     visitGCResult(cast<GCResultInst>(I));
7457     return;
7458   case Intrinsic::experimental_gc_relocate:
7459     visitGCRelocate(cast<GCRelocateInst>(I));
7460     return;
7461   case Intrinsic::instrprof_cover:
7462     llvm_unreachable("instrprof failed to lower a cover");
7463   case Intrinsic::instrprof_increment:
7464     llvm_unreachable("instrprof failed to lower an increment");
7465   case Intrinsic::instrprof_timestamp:
7466     llvm_unreachable("instrprof failed to lower a timestamp");
7467   case Intrinsic::instrprof_value_profile:
7468     llvm_unreachable("instrprof failed to lower a value profiling call");
7469   case Intrinsic::instrprof_mcdc_parameters:
7470     llvm_unreachable("instrprof failed to lower mcdc parameters");
7471   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7472     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7473   case Intrinsic::instrprof_mcdc_condbitmap_update:
7474     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7475   case Intrinsic::localescape: {
7476     MachineFunction &MF = DAG.getMachineFunction();
7477     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7478 
7479     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7480     // is the same on all targets.
7481     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7482       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7483       if (isa<ConstantPointerNull>(Arg))
7484         continue; // Skip null pointers. They represent a hole in index space.
7485       AllocaInst *Slot = cast<AllocaInst>(Arg);
7486       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7487              "can only escape static allocas");
7488       int FI = FuncInfo.StaticAllocaMap[Slot];
7489       MCSymbol *FrameAllocSym =
7490           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7491               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7492       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7493               TII->get(TargetOpcode::LOCAL_ESCAPE))
7494           .addSym(FrameAllocSym)
7495           .addFrameIndex(FI);
7496     }
7497 
7498     return;
7499   }
7500 
7501   case Intrinsic::localrecover: {
7502     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7503     MachineFunction &MF = DAG.getMachineFunction();
7504 
7505     // Get the symbol that defines the frame offset.
7506     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7507     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7508     unsigned IdxVal =
7509         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7510     MCSymbol *FrameAllocSym =
7511         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7512             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7513 
7514     Value *FP = I.getArgOperand(1);
7515     SDValue FPVal = getValue(FP);
7516     EVT PtrVT = FPVal.getValueType();
7517 
7518     // Create a MCSymbol for the label to avoid any target lowering
7519     // that would make this PC relative.
7520     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7521     SDValue OffsetVal =
7522         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7523 
7524     // Add the offset to the FP.
7525     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7526     setValue(&I, Add);
7527 
7528     return;
7529   }
7530 
7531   case Intrinsic::eh_exceptionpointer:
7532   case Intrinsic::eh_exceptioncode: {
7533     // Get the exception pointer vreg, copy from it, and resize it to fit.
7534     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7535     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7536     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7537     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7538     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7539     if (Intrinsic == Intrinsic::eh_exceptioncode)
7540       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7541     setValue(&I, N);
7542     return;
7543   }
7544   case Intrinsic::xray_customevent: {
7545     // Here we want to make sure that the intrinsic behaves as if it has a
7546     // specific calling convention.
7547     const auto &Triple = DAG.getTarget().getTargetTriple();
7548     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7549       return;
7550 
7551     SmallVector<SDValue, 8> Ops;
7552 
7553     // We want to say that we always want the arguments in registers.
7554     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7555     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7556     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7557     SDValue Chain = getRoot();
7558     Ops.push_back(LogEntryVal);
7559     Ops.push_back(StrSizeVal);
7560     Ops.push_back(Chain);
7561 
7562     // We need to enforce the calling convention for the callsite, so that
7563     // argument ordering is enforced correctly, and that register allocation can
7564     // see that some registers may be assumed clobbered and have to preserve
7565     // them across calls to the intrinsic.
7566     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7567                                            sdl, NodeTys, Ops);
7568     SDValue patchableNode = SDValue(MN, 0);
7569     DAG.setRoot(patchableNode);
7570     setValue(&I, patchableNode);
7571     return;
7572   }
7573   case Intrinsic::xray_typedevent: {
7574     // Here we want to make sure that the intrinsic behaves as if it has a
7575     // specific calling convention.
7576     const auto &Triple = DAG.getTarget().getTargetTriple();
7577     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7578       return;
7579 
7580     SmallVector<SDValue, 8> Ops;
7581 
7582     // We want to say that we always want the arguments in registers.
7583     // It's unclear to me how manipulating the selection DAG here forces callers
7584     // to provide arguments in registers instead of on the stack.
7585     SDValue LogTypeId = getValue(I.getArgOperand(0));
7586     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7587     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7588     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7589     SDValue Chain = getRoot();
7590     Ops.push_back(LogTypeId);
7591     Ops.push_back(LogEntryVal);
7592     Ops.push_back(StrSizeVal);
7593     Ops.push_back(Chain);
7594 
7595     // We need to enforce the calling convention for the callsite, so that
7596     // argument ordering is enforced correctly, and that register allocation can
7597     // see that some registers may be assumed clobbered and have to preserve
7598     // them across calls to the intrinsic.
7599     MachineSDNode *MN = DAG.getMachineNode(
7600         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7601     SDValue patchableNode = SDValue(MN, 0);
7602     DAG.setRoot(patchableNode);
7603     setValue(&I, patchableNode);
7604     return;
7605   }
7606   case Intrinsic::experimental_deoptimize:
7607     LowerDeoptimizeCall(&I);
7608     return;
7609   case Intrinsic::experimental_stepvector:
7610     visitStepVector(I);
7611     return;
7612   case Intrinsic::vector_reduce_fadd:
7613   case Intrinsic::vector_reduce_fmul:
7614   case Intrinsic::vector_reduce_add:
7615   case Intrinsic::vector_reduce_mul:
7616   case Intrinsic::vector_reduce_and:
7617   case Intrinsic::vector_reduce_or:
7618   case Intrinsic::vector_reduce_xor:
7619   case Intrinsic::vector_reduce_smax:
7620   case Intrinsic::vector_reduce_smin:
7621   case Intrinsic::vector_reduce_umax:
7622   case Intrinsic::vector_reduce_umin:
7623   case Intrinsic::vector_reduce_fmax:
7624   case Intrinsic::vector_reduce_fmin:
7625   case Intrinsic::vector_reduce_fmaximum:
7626   case Intrinsic::vector_reduce_fminimum:
7627     visitVectorReduce(I, Intrinsic);
7628     return;
7629 
7630   case Intrinsic::icall_branch_funnel: {
7631     SmallVector<SDValue, 16> Ops;
7632     Ops.push_back(getValue(I.getArgOperand(0)));
7633 
7634     int64_t Offset;
7635     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7636         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7637     if (!Base)
7638       report_fatal_error(
7639           "llvm.icall.branch.funnel operand must be a GlobalValue");
7640     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7641 
7642     struct BranchFunnelTarget {
7643       int64_t Offset;
7644       SDValue Target;
7645     };
7646     SmallVector<BranchFunnelTarget, 8> Targets;
7647 
7648     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7649       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7650           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7651       if (ElemBase != Base)
7652         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7653                            "to the same GlobalValue");
7654 
7655       SDValue Val = getValue(I.getArgOperand(Op + 1));
7656       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7657       if (!GA)
7658         report_fatal_error(
7659             "llvm.icall.branch.funnel operand must be a GlobalValue");
7660       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7661                                      GA->getGlobal(), sdl, Val.getValueType(),
7662                                      GA->getOffset())});
7663     }
7664     llvm::sort(Targets,
7665                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7666                  return T1.Offset < T2.Offset;
7667                });
7668 
7669     for (auto &T : Targets) {
7670       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7671       Ops.push_back(T.Target);
7672     }
7673 
7674     Ops.push_back(DAG.getRoot()); // Chain
7675     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7676                                  MVT::Other, Ops),
7677               0);
7678     DAG.setRoot(N);
7679     setValue(&I, N);
7680     HasTailCall = true;
7681     return;
7682   }
7683 
7684   case Intrinsic::wasm_landingpad_index:
7685     // Information this intrinsic contained has been transferred to
7686     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7687     // delete it now.
7688     return;
7689 
7690   case Intrinsic::aarch64_settag:
7691   case Intrinsic::aarch64_settag_zero: {
7692     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7693     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7694     SDValue Val = TSI.EmitTargetCodeForSetTag(
7695         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7696         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7697         ZeroMemory);
7698     DAG.setRoot(Val);
7699     setValue(&I, Val);
7700     return;
7701   }
7702   case Intrinsic::amdgcn_cs_chain: {
7703     assert(I.arg_size() == 5 && "Additional args not supported yet");
7704     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7705            "Non-zero flags not supported yet");
7706 
7707     // At this point we don't care if it's amdgpu_cs_chain or
7708     // amdgpu_cs_chain_preserve.
7709     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7710 
7711     Type *RetTy = I.getType();
7712     assert(RetTy->isVoidTy() && "Should not return");
7713 
7714     SDValue Callee = getValue(I.getOperand(0));
7715 
7716     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7717     // We'll also tack the value of the EXEC mask at the end.
7718     TargetLowering::ArgListTy Args;
7719     Args.reserve(3);
7720 
7721     for (unsigned Idx : {2, 3, 1}) {
7722       TargetLowering::ArgListEntry Arg;
7723       Arg.Node = getValue(I.getOperand(Idx));
7724       Arg.Ty = I.getOperand(Idx)->getType();
7725       Arg.setAttributes(&I, Idx);
7726       Args.push_back(Arg);
7727     }
7728 
7729     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7730     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7731     Args[2].IsInReg = true; // EXEC should be inreg
7732 
7733     TargetLowering::CallLoweringInfo CLI(DAG);
7734     CLI.setDebugLoc(getCurSDLoc())
7735         .setChain(getRoot())
7736         .setCallee(CC, RetTy, Callee, std::move(Args))
7737         .setNoReturn(true)
7738         .setTailCall(true)
7739         .setConvergent(I.isConvergent());
7740     CLI.CB = &I;
7741     std::pair<SDValue, SDValue> Result =
7742         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7743     (void)Result;
7744     assert(!Result.first.getNode() && !Result.second.getNode() &&
7745            "Should've lowered as tail call");
7746 
7747     HasTailCall = true;
7748     return;
7749   }
7750   case Intrinsic::ptrmask: {
7751     SDValue Ptr = getValue(I.getOperand(0));
7752     SDValue Mask = getValue(I.getOperand(1));
7753 
7754     EVT PtrVT = Ptr.getValueType();
7755     assert(PtrVT == Mask.getValueType() &&
7756            "Pointers with different index type are not supported by SDAG");
7757     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7758     return;
7759   }
7760   case Intrinsic::threadlocal_address: {
7761     setValue(&I, getValue(I.getOperand(0)));
7762     return;
7763   }
7764   case Intrinsic::get_active_lane_mask: {
7765     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7766     SDValue Index = getValue(I.getOperand(0));
7767     EVT ElementVT = Index.getValueType();
7768 
7769     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7770       visitTargetIntrinsic(I, Intrinsic);
7771       return;
7772     }
7773 
7774     SDValue TripCount = getValue(I.getOperand(1));
7775     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7776                                  CCVT.getVectorElementCount());
7777 
7778     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7779     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7780     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7781     SDValue VectorInduction = DAG.getNode(
7782         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7783     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7784                                  VectorTripCount, ISD::CondCode::SETULT);
7785     setValue(&I, SetCC);
7786     return;
7787   }
7788   case Intrinsic::experimental_get_vector_length: {
7789     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7790            "Expected positive VF");
7791     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7792     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7793 
7794     SDValue Count = getValue(I.getOperand(0));
7795     EVT CountVT = Count.getValueType();
7796 
7797     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7798       visitTargetIntrinsic(I, Intrinsic);
7799       return;
7800     }
7801 
7802     // Expand to a umin between the trip count and the maximum elements the type
7803     // can hold.
7804     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7805 
7806     // Extend the trip count to at least the result VT.
7807     if (CountVT.bitsLT(VT)) {
7808       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7809       CountVT = VT;
7810     }
7811 
7812     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7813                                          ElementCount::get(VF, IsScalable));
7814 
7815     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7816     // Clip to the result type if needed.
7817     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7818 
7819     setValue(&I, Trunc);
7820     return;
7821   }
7822   case Intrinsic::experimental_cttz_elts: {
7823     auto DL = getCurSDLoc();
7824     SDValue Op = getValue(I.getOperand(0));
7825     EVT OpVT = Op.getValueType();
7826 
7827     if (!TLI.shouldExpandCttzElements(OpVT)) {
7828       visitTargetIntrinsic(I, Intrinsic);
7829       return;
7830     }
7831 
7832     if (OpVT.getScalarType() != MVT::i1) {
7833       // Compare the input vector elements to zero & use to count trailing zeros
7834       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7835       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7836                               OpVT.getVectorElementCount());
7837       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7838     }
7839 
7840     // Find the smallest "sensible" element type to use for the expansion.
7841     ConstantRange CR(
7842         APInt(64, OpVT.getVectorElementCount().getKnownMinValue()));
7843     if (OpVT.isScalableVT())
7844       CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64));
7845 
7846     // If the zero-is-poison flag is set, we can assume the upper limit
7847     // of the result is VF-1.
7848     if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero())
7849       CR = CR.subtract(APInt(64, 1));
7850 
7851     unsigned EltWidth = I.getType()->getScalarSizeInBits();
7852     EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
7853     EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
7854 
7855     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7856 
7857     // Create the new vector type & get the vector length
7858     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7859                                  OpVT.getVectorElementCount());
7860 
7861     SDValue VL =
7862         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7863 
7864     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7865     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7866     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7867     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7868     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7869     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7870     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7871 
7872     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7873     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7874 
7875     setValue(&I, Ret);
7876     return;
7877   }
7878   case Intrinsic::vector_insert: {
7879     SDValue Vec = getValue(I.getOperand(0));
7880     SDValue SubVec = getValue(I.getOperand(1));
7881     SDValue Index = getValue(I.getOperand(2));
7882 
7883     // The intrinsic's index type is i64, but the SDNode requires an index type
7884     // suitable for the target. Convert the index as required.
7885     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7886     if (Index.getValueType() != VectorIdxTy)
7887       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7888 
7889     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7890     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7891                              Index));
7892     return;
7893   }
7894   case Intrinsic::vector_extract: {
7895     SDValue Vec = getValue(I.getOperand(0));
7896     SDValue Index = getValue(I.getOperand(1));
7897     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7898 
7899     // The intrinsic's index type is i64, but the SDNode requires an index type
7900     // suitable for the target. Convert the index as required.
7901     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7902     if (Index.getValueType() != VectorIdxTy)
7903       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7904 
7905     setValue(&I,
7906              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7907     return;
7908   }
7909   case Intrinsic::experimental_vector_reverse:
7910     visitVectorReverse(I);
7911     return;
7912   case Intrinsic::experimental_vector_splice:
7913     visitVectorSplice(I);
7914     return;
7915   case Intrinsic::callbr_landingpad:
7916     visitCallBrLandingPad(I);
7917     return;
7918   case Intrinsic::experimental_vector_interleave2:
7919     visitVectorInterleave(I);
7920     return;
7921   case Intrinsic::experimental_vector_deinterleave2:
7922     visitVectorDeinterleave(I);
7923     return;
7924   case Intrinsic::experimental_convergence_anchor:
7925   case Intrinsic::experimental_convergence_entry:
7926   case Intrinsic::experimental_convergence_loop:
7927     visitConvergenceControl(I, Intrinsic);
7928   }
7929 }
7930 
7931 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7932     const ConstrainedFPIntrinsic &FPI) {
7933   SDLoc sdl = getCurSDLoc();
7934 
7935   // We do not need to serialize constrained FP intrinsics against
7936   // each other or against (nonvolatile) loads, so they can be
7937   // chained like loads.
7938   SDValue Chain = DAG.getRoot();
7939   SmallVector<SDValue, 4> Opers;
7940   Opers.push_back(Chain);
7941   if (FPI.isUnaryOp()) {
7942     Opers.push_back(getValue(FPI.getArgOperand(0)));
7943   } else if (FPI.isTernaryOp()) {
7944     Opers.push_back(getValue(FPI.getArgOperand(0)));
7945     Opers.push_back(getValue(FPI.getArgOperand(1)));
7946     Opers.push_back(getValue(FPI.getArgOperand(2)));
7947   } else {
7948     Opers.push_back(getValue(FPI.getArgOperand(0)));
7949     Opers.push_back(getValue(FPI.getArgOperand(1)));
7950   }
7951 
7952   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7953     assert(Result.getNode()->getNumValues() == 2);
7954 
7955     // Push node to the appropriate list so that future instructions can be
7956     // chained up correctly.
7957     SDValue OutChain = Result.getValue(1);
7958     switch (EB) {
7959     case fp::ExceptionBehavior::ebIgnore:
7960       // The only reason why ebIgnore nodes still need to be chained is that
7961       // they might depend on the current rounding mode, and therefore must
7962       // not be moved across instruction that may change that mode.
7963       [[fallthrough]];
7964     case fp::ExceptionBehavior::ebMayTrap:
7965       // These must not be moved across calls or instructions that may change
7966       // floating-point exception masks.
7967       PendingConstrainedFP.push_back(OutChain);
7968       break;
7969     case fp::ExceptionBehavior::ebStrict:
7970       // These must not be moved across calls or instructions that may change
7971       // floating-point exception masks or read floating-point exception flags.
7972       // In addition, they cannot be optimized out even if unused.
7973       PendingConstrainedFPStrict.push_back(OutChain);
7974       break;
7975     }
7976   };
7977 
7978   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7979   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7980   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7981   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7982 
7983   SDNodeFlags Flags;
7984   if (EB == fp::ExceptionBehavior::ebIgnore)
7985     Flags.setNoFPExcept(true);
7986 
7987   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7988     Flags.copyFMF(*FPOp);
7989 
7990   unsigned Opcode;
7991   switch (FPI.getIntrinsicID()) {
7992   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7993 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7994   case Intrinsic::INTRINSIC:                                                   \
7995     Opcode = ISD::STRICT_##DAGN;                                               \
7996     break;
7997 #include "llvm/IR/ConstrainedOps.def"
7998   case Intrinsic::experimental_constrained_fmuladd: {
7999     Opcode = ISD::STRICT_FMA;
8000     // Break fmuladd into fmul and fadd.
8001     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8002         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8003       Opers.pop_back();
8004       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8005       pushOutChain(Mul, EB);
8006       Opcode = ISD::STRICT_FADD;
8007       Opers.clear();
8008       Opers.push_back(Mul.getValue(1));
8009       Opers.push_back(Mul.getValue(0));
8010       Opers.push_back(getValue(FPI.getArgOperand(2)));
8011     }
8012     break;
8013   }
8014   }
8015 
8016   // A few strict DAG nodes carry additional operands that are not
8017   // set up by the default code above.
8018   switch (Opcode) {
8019   default: break;
8020   case ISD::STRICT_FP_ROUND:
8021     Opers.push_back(
8022         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8023     break;
8024   case ISD::STRICT_FSETCC:
8025   case ISD::STRICT_FSETCCS: {
8026     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8027     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8028     if (TM.Options.NoNaNsFPMath)
8029       Condition = getFCmpCodeWithoutNaN(Condition);
8030     Opers.push_back(DAG.getCondCode(Condition));
8031     break;
8032   }
8033   }
8034 
8035   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8036   pushOutChain(Result, EB);
8037 
8038   SDValue FPResult = Result.getValue(0);
8039   setValue(&FPI, FPResult);
8040 }
8041 
8042 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8043   std::optional<unsigned> ResOPC;
8044   switch (VPIntrin.getIntrinsicID()) {
8045   case Intrinsic::vp_ctlz: {
8046     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8047     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8048     break;
8049   }
8050   case Intrinsic::vp_cttz: {
8051     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8052     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8053     break;
8054   }
8055 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8056   case Intrinsic::VPID:                                                        \
8057     ResOPC = ISD::VPSD;                                                        \
8058     break;
8059 #include "llvm/IR/VPIntrinsics.def"
8060   }
8061 
8062   if (!ResOPC)
8063     llvm_unreachable(
8064         "Inconsistency: no SDNode available for this VPIntrinsic!");
8065 
8066   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8067       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8068     if (VPIntrin.getFastMathFlags().allowReassoc())
8069       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8070                                                 : ISD::VP_REDUCE_FMUL;
8071   }
8072 
8073   return *ResOPC;
8074 }
8075 
8076 void SelectionDAGBuilder::visitVPLoad(
8077     const VPIntrinsic &VPIntrin, EVT VT,
8078     const SmallVectorImpl<SDValue> &OpValues) {
8079   SDLoc DL = getCurSDLoc();
8080   Value *PtrOperand = VPIntrin.getArgOperand(0);
8081   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8082   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8083   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8084   SDValue LD;
8085   // Do not serialize variable-length loads of constant memory with
8086   // anything.
8087   if (!Alignment)
8088     Alignment = DAG.getEVTAlign(VT);
8089   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8090   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8091   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8092   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8093       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8094       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8095   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8096                      MMO, false /*IsExpanding */);
8097   if (AddToChain)
8098     PendingLoads.push_back(LD.getValue(1));
8099   setValue(&VPIntrin, LD);
8100 }
8101 
8102 void SelectionDAGBuilder::visitVPGather(
8103     const VPIntrinsic &VPIntrin, EVT VT,
8104     const SmallVectorImpl<SDValue> &OpValues) {
8105   SDLoc DL = getCurSDLoc();
8106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8107   Value *PtrOperand = VPIntrin.getArgOperand(0);
8108   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8109   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8110   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8111   SDValue LD;
8112   if (!Alignment)
8113     Alignment = DAG.getEVTAlign(VT.getScalarType());
8114   unsigned AS =
8115     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8116   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8117       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8118       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8119   SDValue Base, Index, Scale;
8120   ISD::MemIndexType IndexType;
8121   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8122                                     this, VPIntrin.getParent(),
8123                                     VT.getScalarStoreSize());
8124   if (!UniformBase) {
8125     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8126     Index = getValue(PtrOperand);
8127     IndexType = ISD::SIGNED_SCALED;
8128     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8129   }
8130   EVT IdxVT = Index.getValueType();
8131   EVT EltTy = IdxVT.getVectorElementType();
8132   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8133     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8134     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8135   }
8136   LD = DAG.getGatherVP(
8137       DAG.getVTList(VT, MVT::Other), VT, DL,
8138       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8139       IndexType);
8140   PendingLoads.push_back(LD.getValue(1));
8141   setValue(&VPIntrin, LD);
8142 }
8143 
8144 void SelectionDAGBuilder::visitVPStore(
8145     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8146   SDLoc DL = getCurSDLoc();
8147   Value *PtrOperand = VPIntrin.getArgOperand(1);
8148   EVT VT = OpValues[0].getValueType();
8149   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8150   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8151   SDValue ST;
8152   if (!Alignment)
8153     Alignment = DAG.getEVTAlign(VT);
8154   SDValue Ptr = OpValues[1];
8155   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8156   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8157       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8158       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8159   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8160                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8161                       /* IsTruncating */ false, /*IsCompressing*/ false);
8162   DAG.setRoot(ST);
8163   setValue(&VPIntrin, ST);
8164 }
8165 
8166 void SelectionDAGBuilder::visitVPScatter(
8167     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8168   SDLoc DL = getCurSDLoc();
8169   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8170   Value *PtrOperand = VPIntrin.getArgOperand(1);
8171   EVT VT = OpValues[0].getValueType();
8172   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8173   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8174   SDValue ST;
8175   if (!Alignment)
8176     Alignment = DAG.getEVTAlign(VT.getScalarType());
8177   unsigned AS =
8178       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8179   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8180       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8181       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8182   SDValue Base, Index, Scale;
8183   ISD::MemIndexType IndexType;
8184   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8185                                     this, VPIntrin.getParent(),
8186                                     VT.getScalarStoreSize());
8187   if (!UniformBase) {
8188     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8189     Index = getValue(PtrOperand);
8190     IndexType = ISD::SIGNED_SCALED;
8191     Scale =
8192       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8193   }
8194   EVT IdxVT = Index.getValueType();
8195   EVT EltTy = IdxVT.getVectorElementType();
8196   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8197     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8198     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8199   }
8200   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8201                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8202                          OpValues[2], OpValues[3]},
8203                         MMO, IndexType);
8204   DAG.setRoot(ST);
8205   setValue(&VPIntrin, ST);
8206 }
8207 
8208 void SelectionDAGBuilder::visitVPStridedLoad(
8209     const VPIntrinsic &VPIntrin, EVT VT,
8210     const SmallVectorImpl<SDValue> &OpValues) {
8211   SDLoc DL = getCurSDLoc();
8212   Value *PtrOperand = VPIntrin.getArgOperand(0);
8213   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8214   if (!Alignment)
8215     Alignment = DAG.getEVTAlign(VT.getScalarType());
8216   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8217   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8218   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8219   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8220   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8221   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8222   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8223       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8224       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8225 
8226   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8227                                     OpValues[2], OpValues[3], MMO,
8228                                     false /*IsExpanding*/);
8229 
8230   if (AddToChain)
8231     PendingLoads.push_back(LD.getValue(1));
8232   setValue(&VPIntrin, LD);
8233 }
8234 
8235 void SelectionDAGBuilder::visitVPStridedStore(
8236     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8237   SDLoc DL = getCurSDLoc();
8238   Value *PtrOperand = VPIntrin.getArgOperand(1);
8239   EVT VT = OpValues[0].getValueType();
8240   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8241   if (!Alignment)
8242     Alignment = DAG.getEVTAlign(VT.getScalarType());
8243   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8244   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8245   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8246       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8247       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8248 
8249   SDValue ST = DAG.getStridedStoreVP(
8250       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8251       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8252       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8253       /*IsCompressing*/ false);
8254 
8255   DAG.setRoot(ST);
8256   setValue(&VPIntrin, ST);
8257 }
8258 
8259 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8260   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8261   SDLoc DL = getCurSDLoc();
8262 
8263   ISD::CondCode Condition;
8264   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8265   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8266   if (IsFP) {
8267     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8268     // flags, but calls that don't return floating-point types can't be
8269     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8270     Condition = getFCmpCondCode(CondCode);
8271     if (TM.Options.NoNaNsFPMath)
8272       Condition = getFCmpCodeWithoutNaN(Condition);
8273   } else {
8274     Condition = getICmpCondCode(CondCode);
8275   }
8276 
8277   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8278   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8279   // #2 is the condition code
8280   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8281   SDValue EVL = getValue(VPIntrin.getOperand(4));
8282   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8283   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8284          "Unexpected target EVL type");
8285   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8286 
8287   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8288                                                         VPIntrin.getType());
8289   setValue(&VPIntrin,
8290            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8291 }
8292 
8293 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8294     const VPIntrinsic &VPIntrin) {
8295   SDLoc DL = getCurSDLoc();
8296   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8297 
8298   auto IID = VPIntrin.getIntrinsicID();
8299 
8300   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8301     return visitVPCmp(*CmpI);
8302 
8303   SmallVector<EVT, 4> ValueVTs;
8304   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8305   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8306   SDVTList VTs = DAG.getVTList(ValueVTs);
8307 
8308   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8309 
8310   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8311   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8312          "Unexpected target EVL type");
8313 
8314   // Request operands.
8315   SmallVector<SDValue, 7> OpValues;
8316   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8317     auto Op = getValue(VPIntrin.getArgOperand(I));
8318     if (I == EVLParamPos)
8319       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8320     OpValues.push_back(Op);
8321   }
8322 
8323   switch (Opcode) {
8324   default: {
8325     SDNodeFlags SDFlags;
8326     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8327       SDFlags.copyFMF(*FPMO);
8328     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8329     setValue(&VPIntrin, Result);
8330     break;
8331   }
8332   case ISD::VP_LOAD:
8333     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8334     break;
8335   case ISD::VP_GATHER:
8336     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8337     break;
8338   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8339     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8340     break;
8341   case ISD::VP_STORE:
8342     visitVPStore(VPIntrin, OpValues);
8343     break;
8344   case ISD::VP_SCATTER:
8345     visitVPScatter(VPIntrin, OpValues);
8346     break;
8347   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8348     visitVPStridedStore(VPIntrin, OpValues);
8349     break;
8350   case ISD::VP_FMULADD: {
8351     assert(OpValues.size() == 5 && "Unexpected number of operands");
8352     SDNodeFlags SDFlags;
8353     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8354       SDFlags.copyFMF(*FPMO);
8355     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8356         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8357       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8358     } else {
8359       SDValue Mul = DAG.getNode(
8360           ISD::VP_FMUL, DL, VTs,
8361           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8362       SDValue Add =
8363           DAG.getNode(ISD::VP_FADD, DL, VTs,
8364                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8365       setValue(&VPIntrin, Add);
8366     }
8367     break;
8368   }
8369   case ISD::VP_IS_FPCLASS: {
8370     const DataLayout DLayout = DAG.getDataLayout();
8371     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8372     auto Constant = OpValues[1]->getAsZExtVal();
8373     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8374     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8375                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8376     setValue(&VPIntrin, V);
8377     return;
8378   }
8379   case ISD::VP_INTTOPTR: {
8380     SDValue N = OpValues[0];
8381     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8382     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8383     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8384                                OpValues[2]);
8385     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8386                              OpValues[2]);
8387     setValue(&VPIntrin, N);
8388     break;
8389   }
8390   case ISD::VP_PTRTOINT: {
8391     SDValue N = OpValues[0];
8392     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8393                                                           VPIntrin.getType());
8394     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8395                                        VPIntrin.getOperand(0)->getType());
8396     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8397                                OpValues[2]);
8398     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8399                              OpValues[2]);
8400     setValue(&VPIntrin, N);
8401     break;
8402   }
8403   case ISD::VP_ABS:
8404   case ISD::VP_CTLZ:
8405   case ISD::VP_CTLZ_ZERO_UNDEF:
8406   case ISD::VP_CTTZ:
8407   case ISD::VP_CTTZ_ZERO_UNDEF: {
8408     SDValue Result =
8409         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8410     setValue(&VPIntrin, Result);
8411     break;
8412   }
8413   }
8414 }
8415 
8416 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8417                                           const BasicBlock *EHPadBB,
8418                                           MCSymbol *&BeginLabel) {
8419   MachineFunction &MF = DAG.getMachineFunction();
8420   MachineModuleInfo &MMI = MF.getMMI();
8421 
8422   // Insert a label before the invoke call to mark the try range.  This can be
8423   // used to detect deletion of the invoke via the MachineModuleInfo.
8424   BeginLabel = MMI.getContext().createTempSymbol();
8425 
8426   // For SjLj, keep track of which landing pads go with which invokes
8427   // so as to maintain the ordering of pads in the LSDA.
8428   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8429   if (CallSiteIndex) {
8430     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8431     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8432 
8433     // Now that the call site is handled, stop tracking it.
8434     MMI.setCurrentCallSite(0);
8435   }
8436 
8437   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8438 }
8439 
8440 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8441                                         const BasicBlock *EHPadBB,
8442                                         MCSymbol *BeginLabel) {
8443   assert(BeginLabel && "BeginLabel should've been set");
8444 
8445   MachineFunction &MF = DAG.getMachineFunction();
8446   MachineModuleInfo &MMI = MF.getMMI();
8447 
8448   // Insert a label at the end of the invoke call to mark the try range.  This
8449   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8450   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8451   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8452 
8453   // Inform MachineModuleInfo of range.
8454   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8455   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8456   // actually use outlined funclets and their LSDA info style.
8457   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8458     assert(II && "II should've been set");
8459     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8460     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8461   } else if (!isScopedEHPersonality(Pers)) {
8462     assert(EHPadBB);
8463     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8464   }
8465 
8466   return Chain;
8467 }
8468 
8469 std::pair<SDValue, SDValue>
8470 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8471                                     const BasicBlock *EHPadBB) {
8472   MCSymbol *BeginLabel = nullptr;
8473 
8474   if (EHPadBB) {
8475     // Both PendingLoads and PendingExports must be flushed here;
8476     // this call might not return.
8477     (void)getRoot();
8478     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8479     CLI.setChain(getRoot());
8480   }
8481 
8482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8483   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8484 
8485   assert((CLI.IsTailCall || Result.second.getNode()) &&
8486          "Non-null chain expected with non-tail call!");
8487   assert((Result.second.getNode() || !Result.first.getNode()) &&
8488          "Null value expected with tail call!");
8489 
8490   if (!Result.second.getNode()) {
8491     // As a special case, a null chain means that a tail call has been emitted
8492     // and the DAG root is already updated.
8493     HasTailCall = true;
8494 
8495     // Since there's no actual continuation from this block, nothing can be
8496     // relying on us setting vregs for them.
8497     PendingExports.clear();
8498   } else {
8499     DAG.setRoot(Result.second);
8500   }
8501 
8502   if (EHPadBB) {
8503     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8504                            BeginLabel));
8505   }
8506 
8507   return Result;
8508 }
8509 
8510 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8511                                       bool isTailCall,
8512                                       bool isMustTailCall,
8513                                       const BasicBlock *EHPadBB) {
8514   auto &DL = DAG.getDataLayout();
8515   FunctionType *FTy = CB.getFunctionType();
8516   Type *RetTy = CB.getType();
8517 
8518   TargetLowering::ArgListTy Args;
8519   Args.reserve(CB.arg_size());
8520 
8521   const Value *SwiftErrorVal = nullptr;
8522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8523 
8524   if (isTailCall) {
8525     // Avoid emitting tail calls in functions with the disable-tail-calls
8526     // attribute.
8527     auto *Caller = CB.getParent()->getParent();
8528     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8529         "true" && !isMustTailCall)
8530       isTailCall = false;
8531 
8532     // We can't tail call inside a function with a swifterror argument. Lowering
8533     // does not support this yet. It would have to move into the swifterror
8534     // register before the call.
8535     if (TLI.supportSwiftError() &&
8536         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8537       isTailCall = false;
8538   }
8539 
8540   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8541     TargetLowering::ArgListEntry Entry;
8542     const Value *V = *I;
8543 
8544     // Skip empty types
8545     if (V->getType()->isEmptyTy())
8546       continue;
8547 
8548     SDValue ArgNode = getValue(V);
8549     Entry.Node = ArgNode; Entry.Ty = V->getType();
8550 
8551     Entry.setAttributes(&CB, I - CB.arg_begin());
8552 
8553     // Use swifterror virtual register as input to the call.
8554     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8555       SwiftErrorVal = V;
8556       // We find the virtual register for the actual swifterror argument.
8557       // Instead of using the Value, we use the virtual register instead.
8558       Entry.Node =
8559           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8560                           EVT(TLI.getPointerTy(DL)));
8561     }
8562 
8563     Args.push_back(Entry);
8564 
8565     // If we have an explicit sret argument that is an Instruction, (i.e., it
8566     // might point to function-local memory), we can't meaningfully tail-call.
8567     if (Entry.IsSRet && isa<Instruction>(V))
8568       isTailCall = false;
8569   }
8570 
8571   // If call site has a cfguardtarget operand bundle, create and add an
8572   // additional ArgListEntry.
8573   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8574     TargetLowering::ArgListEntry Entry;
8575     Value *V = Bundle->Inputs[0];
8576     SDValue ArgNode = getValue(V);
8577     Entry.Node = ArgNode;
8578     Entry.Ty = V->getType();
8579     Entry.IsCFGuardTarget = true;
8580     Args.push_back(Entry);
8581   }
8582 
8583   // Check if target-independent constraints permit a tail call here.
8584   // Target-dependent constraints are checked within TLI->LowerCallTo.
8585   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8586     isTailCall = false;
8587 
8588   // Disable tail calls if there is an swifterror argument. Targets have not
8589   // been updated to support tail calls.
8590   if (TLI.supportSwiftError() && SwiftErrorVal)
8591     isTailCall = false;
8592 
8593   ConstantInt *CFIType = nullptr;
8594   if (CB.isIndirectCall()) {
8595     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8596       if (!TLI.supportKCFIBundles())
8597         report_fatal_error(
8598             "Target doesn't support calls with kcfi operand bundles.");
8599       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8600       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8601     }
8602   }
8603 
8604   SDValue ConvControlToken;
8605   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8606     auto *Token = Bundle->Inputs[0].get();
8607     ConvControlToken = getValue(Token);
8608   } else {
8609     ConvControlToken = DAG.getUNDEF(MVT::Untyped);
8610   }
8611 
8612   TargetLowering::CallLoweringInfo CLI(DAG);
8613   CLI.setDebugLoc(getCurSDLoc())
8614       .setChain(getRoot())
8615       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8616       .setTailCall(isTailCall)
8617       .setConvergent(CB.isConvergent())
8618       .setIsPreallocated(
8619           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8620       .setCFIType(CFIType)
8621       .setConvergenceControlToken(ConvControlToken);
8622   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8623 
8624   if (Result.first.getNode()) {
8625     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8626     setValue(&CB, Result.first);
8627   }
8628 
8629   // The last element of CLI.InVals has the SDValue for swifterror return.
8630   // Here we copy it to a virtual register and update SwiftErrorMap for
8631   // book-keeping.
8632   if (SwiftErrorVal && TLI.supportSwiftError()) {
8633     // Get the last element of InVals.
8634     SDValue Src = CLI.InVals.back();
8635     Register VReg =
8636         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8637     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8638     DAG.setRoot(CopyNode);
8639   }
8640 }
8641 
8642 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8643                              SelectionDAGBuilder &Builder) {
8644   // Check to see if this load can be trivially constant folded, e.g. if the
8645   // input is from a string literal.
8646   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8647     // Cast pointer to the type we really want to load.
8648     Type *LoadTy =
8649         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8650     if (LoadVT.isVector())
8651       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8652 
8653     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8654                                          PointerType::getUnqual(LoadTy));
8655 
8656     if (const Constant *LoadCst =
8657             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8658                                          LoadTy, Builder.DAG.getDataLayout()))
8659       return Builder.getValue(LoadCst);
8660   }
8661 
8662   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8663   // still constant memory, the input chain can be the entry node.
8664   SDValue Root;
8665   bool ConstantMemory = false;
8666 
8667   // Do not serialize (non-volatile) loads of constant memory with anything.
8668   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8669     Root = Builder.DAG.getEntryNode();
8670     ConstantMemory = true;
8671   } else {
8672     // Do not serialize non-volatile loads against each other.
8673     Root = Builder.DAG.getRoot();
8674   }
8675 
8676   SDValue Ptr = Builder.getValue(PtrVal);
8677   SDValue LoadVal =
8678       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8679                           MachinePointerInfo(PtrVal), Align(1));
8680 
8681   if (!ConstantMemory)
8682     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8683   return LoadVal;
8684 }
8685 
8686 /// Record the value for an instruction that produces an integer result,
8687 /// converting the type where necessary.
8688 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8689                                                   SDValue Value,
8690                                                   bool IsSigned) {
8691   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8692                                                     I.getType(), true);
8693   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8694   setValue(&I, Value);
8695 }
8696 
8697 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8698 /// true and lower it. Otherwise return false, and it will be lowered like a
8699 /// normal call.
8700 /// The caller already checked that \p I calls the appropriate LibFunc with a
8701 /// correct prototype.
8702 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8703   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8704   const Value *Size = I.getArgOperand(2);
8705   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8706   if (CSize && CSize->getZExtValue() == 0) {
8707     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8708                                                           I.getType(), true);
8709     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8710     return true;
8711   }
8712 
8713   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8714   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8715       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8716       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8717   if (Res.first.getNode()) {
8718     processIntegerCallValue(I, Res.first, true);
8719     PendingLoads.push_back(Res.second);
8720     return true;
8721   }
8722 
8723   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8724   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8725   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8726     return false;
8727 
8728   // If the target has a fast compare for the given size, it will return a
8729   // preferred load type for that size. Require that the load VT is legal and
8730   // that the target supports unaligned loads of that type. Otherwise, return
8731   // INVALID.
8732   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8733     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8734     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8735     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8736       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8737       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8738       // TODO: Check alignment of src and dest ptrs.
8739       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8740       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8741       if (!TLI.isTypeLegal(LVT) ||
8742           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8743           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8744         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8745     }
8746 
8747     return LVT;
8748   };
8749 
8750   // This turns into unaligned loads. We only do this if the target natively
8751   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8752   // we'll only produce a small number of byte loads.
8753   MVT LoadVT;
8754   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8755   switch (NumBitsToCompare) {
8756   default:
8757     return false;
8758   case 16:
8759     LoadVT = MVT::i16;
8760     break;
8761   case 32:
8762     LoadVT = MVT::i32;
8763     break;
8764   case 64:
8765   case 128:
8766   case 256:
8767     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8768     break;
8769   }
8770 
8771   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8772     return false;
8773 
8774   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8775   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8776 
8777   // Bitcast to a wide integer type if the loads are vectors.
8778   if (LoadVT.isVector()) {
8779     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8780     LoadL = DAG.getBitcast(CmpVT, LoadL);
8781     LoadR = DAG.getBitcast(CmpVT, LoadR);
8782   }
8783 
8784   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8785   processIntegerCallValue(I, Cmp, false);
8786   return true;
8787 }
8788 
8789 /// See if we can lower a memchr call into an optimized form. If so, return
8790 /// true and lower it. Otherwise return false, and it will be lowered like a
8791 /// normal call.
8792 /// The caller already checked that \p I calls the appropriate LibFunc with a
8793 /// correct prototype.
8794 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8795   const Value *Src = I.getArgOperand(0);
8796   const Value *Char = I.getArgOperand(1);
8797   const Value *Length = I.getArgOperand(2);
8798 
8799   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8800   std::pair<SDValue, SDValue> Res =
8801     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8802                                 getValue(Src), getValue(Char), getValue(Length),
8803                                 MachinePointerInfo(Src));
8804   if (Res.first.getNode()) {
8805     setValue(&I, Res.first);
8806     PendingLoads.push_back(Res.second);
8807     return true;
8808   }
8809 
8810   return false;
8811 }
8812 
8813 /// See if we can lower a mempcpy call into an optimized form. If so, return
8814 /// true and lower it. Otherwise return false, and it will be lowered like a
8815 /// normal call.
8816 /// The caller already checked that \p I calls the appropriate LibFunc with a
8817 /// correct prototype.
8818 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8819   SDValue Dst = getValue(I.getArgOperand(0));
8820   SDValue Src = getValue(I.getArgOperand(1));
8821   SDValue Size = getValue(I.getArgOperand(2));
8822 
8823   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8824   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8825   // DAG::getMemcpy needs Alignment to be defined.
8826   Align Alignment = std::min(DstAlign, SrcAlign);
8827 
8828   SDLoc sdl = getCurSDLoc();
8829 
8830   // In the mempcpy context we need to pass in a false value for isTailCall
8831   // because the return pointer needs to be adjusted by the size of
8832   // the copied memory.
8833   SDValue Root = getMemoryRoot();
8834   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8835                              /*isTailCall=*/false,
8836                              MachinePointerInfo(I.getArgOperand(0)),
8837                              MachinePointerInfo(I.getArgOperand(1)),
8838                              I.getAAMetadata());
8839   assert(MC.getNode() != nullptr &&
8840          "** memcpy should not be lowered as TailCall in mempcpy context **");
8841   DAG.setRoot(MC);
8842 
8843   // Check if Size needs to be truncated or extended.
8844   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8845 
8846   // Adjust return pointer to point just past the last dst byte.
8847   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8848                                     Dst, Size);
8849   setValue(&I, DstPlusSize);
8850   return true;
8851 }
8852 
8853 /// See if we can lower a strcpy call into an optimized form.  If so, return
8854 /// true and lower it, otherwise return false and it will be lowered like a
8855 /// normal call.
8856 /// The caller already checked that \p I calls the appropriate LibFunc with a
8857 /// correct prototype.
8858 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8859   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8860 
8861   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8862   std::pair<SDValue, SDValue> Res =
8863     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8864                                 getValue(Arg0), getValue(Arg1),
8865                                 MachinePointerInfo(Arg0),
8866                                 MachinePointerInfo(Arg1), isStpcpy);
8867   if (Res.first.getNode()) {
8868     setValue(&I, Res.first);
8869     DAG.setRoot(Res.second);
8870     return true;
8871   }
8872 
8873   return false;
8874 }
8875 
8876 /// See if we can lower a strcmp call into an optimized form.  If so, return
8877 /// true and lower it, otherwise return false and it will be lowered like a
8878 /// normal call.
8879 /// The caller already checked that \p I calls the appropriate LibFunc with a
8880 /// correct prototype.
8881 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8882   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8883 
8884   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8885   std::pair<SDValue, SDValue> Res =
8886     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8887                                 getValue(Arg0), getValue(Arg1),
8888                                 MachinePointerInfo(Arg0),
8889                                 MachinePointerInfo(Arg1));
8890   if (Res.first.getNode()) {
8891     processIntegerCallValue(I, Res.first, true);
8892     PendingLoads.push_back(Res.second);
8893     return true;
8894   }
8895 
8896   return false;
8897 }
8898 
8899 /// See if we can lower a strlen call into an optimized form.  If so, return
8900 /// true and lower it, otherwise return false and it will be lowered like a
8901 /// normal call.
8902 /// The caller already checked that \p I calls the appropriate LibFunc with a
8903 /// correct prototype.
8904 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8905   const Value *Arg0 = I.getArgOperand(0);
8906 
8907   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8908   std::pair<SDValue, SDValue> Res =
8909     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8910                                 getValue(Arg0), MachinePointerInfo(Arg0));
8911   if (Res.first.getNode()) {
8912     processIntegerCallValue(I, Res.first, false);
8913     PendingLoads.push_back(Res.second);
8914     return true;
8915   }
8916 
8917   return false;
8918 }
8919 
8920 /// See if we can lower a strnlen call into an optimized form.  If so, return
8921 /// true and lower it, otherwise return false and it will be lowered like a
8922 /// normal call.
8923 /// The caller already checked that \p I calls the appropriate LibFunc with a
8924 /// correct prototype.
8925 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8926   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8927 
8928   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8929   std::pair<SDValue, SDValue> Res =
8930     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8931                                  getValue(Arg0), getValue(Arg1),
8932                                  MachinePointerInfo(Arg0));
8933   if (Res.first.getNode()) {
8934     processIntegerCallValue(I, Res.first, false);
8935     PendingLoads.push_back(Res.second);
8936     return true;
8937   }
8938 
8939   return false;
8940 }
8941 
8942 /// See if we can lower a unary floating-point operation into an SDNode with
8943 /// the specified Opcode.  If so, return true and lower it, otherwise return
8944 /// false and it will be lowered like a normal call.
8945 /// The caller already checked that \p I calls the appropriate LibFunc with a
8946 /// correct prototype.
8947 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8948                                               unsigned Opcode) {
8949   // We already checked this call's prototype; verify it doesn't modify errno.
8950   if (!I.onlyReadsMemory())
8951     return false;
8952 
8953   SDNodeFlags Flags;
8954   Flags.copyFMF(cast<FPMathOperator>(I));
8955 
8956   SDValue Tmp = getValue(I.getArgOperand(0));
8957   setValue(&I,
8958            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8959   return true;
8960 }
8961 
8962 /// See if we can lower a binary floating-point operation into an SDNode with
8963 /// the specified Opcode. If so, return true and lower it. Otherwise return
8964 /// false, and it will be lowered like a normal call.
8965 /// The caller already checked that \p I calls the appropriate LibFunc with a
8966 /// correct prototype.
8967 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8968                                                unsigned Opcode) {
8969   // We already checked this call's prototype; verify it doesn't modify errno.
8970   if (!I.onlyReadsMemory())
8971     return false;
8972 
8973   SDNodeFlags Flags;
8974   Flags.copyFMF(cast<FPMathOperator>(I));
8975 
8976   SDValue Tmp0 = getValue(I.getArgOperand(0));
8977   SDValue Tmp1 = getValue(I.getArgOperand(1));
8978   EVT VT = Tmp0.getValueType();
8979   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8980   return true;
8981 }
8982 
8983 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8984   // Handle inline assembly differently.
8985   if (I.isInlineAsm()) {
8986     visitInlineAsm(I);
8987     return;
8988   }
8989 
8990   diagnoseDontCall(I);
8991 
8992   if (Function *F = I.getCalledFunction()) {
8993     if (F->isDeclaration()) {
8994       // Is this an LLVM intrinsic or a target-specific intrinsic?
8995       unsigned IID = F->getIntrinsicID();
8996       if (!IID)
8997         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8998           IID = II->getIntrinsicID(F);
8999 
9000       if (IID) {
9001         visitIntrinsicCall(I, IID);
9002         return;
9003       }
9004     }
9005 
9006     // Check for well-known libc/libm calls.  If the function is internal, it
9007     // can't be a library call.  Don't do the check if marked as nobuiltin for
9008     // some reason or the call site requires strict floating point semantics.
9009     LibFunc Func;
9010     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9011         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9012         LibInfo->hasOptimizedCodeGen(Func)) {
9013       switch (Func) {
9014       default: break;
9015       case LibFunc_bcmp:
9016         if (visitMemCmpBCmpCall(I))
9017           return;
9018         break;
9019       case LibFunc_copysign:
9020       case LibFunc_copysignf:
9021       case LibFunc_copysignl:
9022         // We already checked this call's prototype; verify it doesn't modify
9023         // errno.
9024         if (I.onlyReadsMemory()) {
9025           SDValue LHS = getValue(I.getArgOperand(0));
9026           SDValue RHS = getValue(I.getArgOperand(1));
9027           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9028                                    LHS.getValueType(), LHS, RHS));
9029           return;
9030         }
9031         break;
9032       case LibFunc_fabs:
9033       case LibFunc_fabsf:
9034       case LibFunc_fabsl:
9035         if (visitUnaryFloatCall(I, ISD::FABS))
9036           return;
9037         break;
9038       case LibFunc_fmin:
9039       case LibFunc_fminf:
9040       case LibFunc_fminl:
9041         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9042           return;
9043         break;
9044       case LibFunc_fmax:
9045       case LibFunc_fmaxf:
9046       case LibFunc_fmaxl:
9047         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9048           return;
9049         break;
9050       case LibFunc_sin:
9051       case LibFunc_sinf:
9052       case LibFunc_sinl:
9053         if (visitUnaryFloatCall(I, ISD::FSIN))
9054           return;
9055         break;
9056       case LibFunc_cos:
9057       case LibFunc_cosf:
9058       case LibFunc_cosl:
9059         if (visitUnaryFloatCall(I, ISD::FCOS))
9060           return;
9061         break;
9062       case LibFunc_sqrt:
9063       case LibFunc_sqrtf:
9064       case LibFunc_sqrtl:
9065       case LibFunc_sqrt_finite:
9066       case LibFunc_sqrtf_finite:
9067       case LibFunc_sqrtl_finite:
9068         if (visitUnaryFloatCall(I, ISD::FSQRT))
9069           return;
9070         break;
9071       case LibFunc_floor:
9072       case LibFunc_floorf:
9073       case LibFunc_floorl:
9074         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9075           return;
9076         break;
9077       case LibFunc_nearbyint:
9078       case LibFunc_nearbyintf:
9079       case LibFunc_nearbyintl:
9080         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9081           return;
9082         break;
9083       case LibFunc_ceil:
9084       case LibFunc_ceilf:
9085       case LibFunc_ceill:
9086         if (visitUnaryFloatCall(I, ISD::FCEIL))
9087           return;
9088         break;
9089       case LibFunc_rint:
9090       case LibFunc_rintf:
9091       case LibFunc_rintl:
9092         if (visitUnaryFloatCall(I, ISD::FRINT))
9093           return;
9094         break;
9095       case LibFunc_round:
9096       case LibFunc_roundf:
9097       case LibFunc_roundl:
9098         if (visitUnaryFloatCall(I, ISD::FROUND))
9099           return;
9100         break;
9101       case LibFunc_trunc:
9102       case LibFunc_truncf:
9103       case LibFunc_truncl:
9104         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9105           return;
9106         break;
9107       case LibFunc_log2:
9108       case LibFunc_log2f:
9109       case LibFunc_log2l:
9110         if (visitUnaryFloatCall(I, ISD::FLOG2))
9111           return;
9112         break;
9113       case LibFunc_exp2:
9114       case LibFunc_exp2f:
9115       case LibFunc_exp2l:
9116         if (visitUnaryFloatCall(I, ISD::FEXP2))
9117           return;
9118         break;
9119       case LibFunc_exp10:
9120       case LibFunc_exp10f:
9121       case LibFunc_exp10l:
9122         if (visitUnaryFloatCall(I, ISD::FEXP10))
9123           return;
9124         break;
9125       case LibFunc_ldexp:
9126       case LibFunc_ldexpf:
9127       case LibFunc_ldexpl:
9128         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9129           return;
9130         break;
9131       case LibFunc_memcmp:
9132         if (visitMemCmpBCmpCall(I))
9133           return;
9134         break;
9135       case LibFunc_mempcpy:
9136         if (visitMemPCpyCall(I))
9137           return;
9138         break;
9139       case LibFunc_memchr:
9140         if (visitMemChrCall(I))
9141           return;
9142         break;
9143       case LibFunc_strcpy:
9144         if (visitStrCpyCall(I, false))
9145           return;
9146         break;
9147       case LibFunc_stpcpy:
9148         if (visitStrCpyCall(I, true))
9149           return;
9150         break;
9151       case LibFunc_strcmp:
9152         if (visitStrCmpCall(I))
9153           return;
9154         break;
9155       case LibFunc_strlen:
9156         if (visitStrLenCall(I))
9157           return;
9158         break;
9159       case LibFunc_strnlen:
9160         if (visitStrNLenCall(I))
9161           return;
9162         break;
9163       }
9164     }
9165   }
9166 
9167   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9168   // have to do anything here to lower funclet bundles.
9169   // CFGuardTarget bundles are lowered in LowerCallTo.
9170   assert(!I.hasOperandBundlesOtherThan(
9171              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9172               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9173               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9174               LLVMContext::OB_convergencectrl}) &&
9175          "Cannot lower calls with arbitrary operand bundles!");
9176 
9177   SDValue Callee = getValue(I.getCalledOperand());
9178 
9179   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
9180     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9181   else
9182     // Check if we can potentially perform a tail call. More detailed checking
9183     // is be done within LowerCallTo, after more information about the call is
9184     // known.
9185     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9186 }
9187 
9188 namespace {
9189 
9190 /// AsmOperandInfo - This contains information for each constraint that we are
9191 /// lowering.
9192 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9193 public:
9194   /// CallOperand - If this is the result output operand or a clobber
9195   /// this is null, otherwise it is the incoming operand to the CallInst.
9196   /// This gets modified as the asm is processed.
9197   SDValue CallOperand;
9198 
9199   /// AssignedRegs - If this is a register or register class operand, this
9200   /// contains the set of register corresponding to the operand.
9201   RegsForValue AssignedRegs;
9202 
9203   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9204     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9205   }
9206 
9207   /// Whether or not this operand accesses memory
9208   bool hasMemory(const TargetLowering &TLI) const {
9209     // Indirect operand accesses access memory.
9210     if (isIndirect)
9211       return true;
9212 
9213     for (const auto &Code : Codes)
9214       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9215         return true;
9216 
9217     return false;
9218   }
9219 };
9220 
9221 
9222 } // end anonymous namespace
9223 
9224 /// Make sure that the output operand \p OpInfo and its corresponding input
9225 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9226 /// out).
9227 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9228                                SDISelAsmOperandInfo &MatchingOpInfo,
9229                                SelectionDAG &DAG) {
9230   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9231     return;
9232 
9233   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9234   const auto &TLI = DAG.getTargetLoweringInfo();
9235 
9236   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9237       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9238                                        OpInfo.ConstraintVT);
9239   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9240       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9241                                        MatchingOpInfo.ConstraintVT);
9242   if ((OpInfo.ConstraintVT.isInteger() !=
9243        MatchingOpInfo.ConstraintVT.isInteger()) ||
9244       (MatchRC.second != InputRC.second)) {
9245     // FIXME: error out in a more elegant fashion
9246     report_fatal_error("Unsupported asm: input constraint"
9247                        " with a matching output constraint of"
9248                        " incompatible type!");
9249   }
9250   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9251 }
9252 
9253 /// Get a direct memory input to behave well as an indirect operand.
9254 /// This may introduce stores, hence the need for a \p Chain.
9255 /// \return The (possibly updated) chain.
9256 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9257                                         SDISelAsmOperandInfo &OpInfo,
9258                                         SelectionDAG &DAG) {
9259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9260 
9261   // If we don't have an indirect input, put it in the constpool if we can,
9262   // otherwise spill it to a stack slot.
9263   // TODO: This isn't quite right. We need to handle these according to
9264   // the addressing mode that the constraint wants. Also, this may take
9265   // an additional register for the computation and we don't want that
9266   // either.
9267 
9268   // If the operand is a float, integer, or vector constant, spill to a
9269   // constant pool entry to get its address.
9270   const Value *OpVal = OpInfo.CallOperandVal;
9271   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9272       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9273     OpInfo.CallOperand = DAG.getConstantPool(
9274         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9275     return Chain;
9276   }
9277 
9278   // Otherwise, create a stack slot and emit a store to it before the asm.
9279   Type *Ty = OpVal->getType();
9280   auto &DL = DAG.getDataLayout();
9281   uint64_t TySize = DL.getTypeAllocSize(Ty);
9282   MachineFunction &MF = DAG.getMachineFunction();
9283   int SSFI = MF.getFrameInfo().CreateStackObject(
9284       TySize, DL.getPrefTypeAlign(Ty), false);
9285   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9286   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9287                             MachinePointerInfo::getFixedStack(MF, SSFI),
9288                             TLI.getMemValueType(DL, Ty));
9289   OpInfo.CallOperand = StackSlot;
9290 
9291   return Chain;
9292 }
9293 
9294 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9295 /// specified operand.  We prefer to assign virtual registers, to allow the
9296 /// register allocator to handle the assignment process.  However, if the asm
9297 /// uses features that we can't model on machineinstrs, we have SDISel do the
9298 /// allocation.  This produces generally horrible, but correct, code.
9299 ///
9300 ///   OpInfo describes the operand
9301 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9302 static std::optional<unsigned>
9303 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9304                      SDISelAsmOperandInfo &OpInfo,
9305                      SDISelAsmOperandInfo &RefOpInfo) {
9306   LLVMContext &Context = *DAG.getContext();
9307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9308 
9309   MachineFunction &MF = DAG.getMachineFunction();
9310   SmallVector<unsigned, 4> Regs;
9311   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9312 
9313   // No work to do for memory/address operands.
9314   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9315       OpInfo.ConstraintType == TargetLowering::C_Address)
9316     return std::nullopt;
9317 
9318   // If this is a constraint for a single physreg, or a constraint for a
9319   // register class, find it.
9320   unsigned AssignedReg;
9321   const TargetRegisterClass *RC;
9322   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9323       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9324   // RC is unset only on failure. Return immediately.
9325   if (!RC)
9326     return std::nullopt;
9327 
9328   // Get the actual register value type.  This is important, because the user
9329   // may have asked for (e.g.) the AX register in i32 type.  We need to
9330   // remember that AX is actually i16 to get the right extension.
9331   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9332 
9333   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9334     // If this is an FP operand in an integer register (or visa versa), or more
9335     // generally if the operand value disagrees with the register class we plan
9336     // to stick it in, fix the operand type.
9337     //
9338     // If this is an input value, the bitcast to the new type is done now.
9339     // Bitcast for output value is done at the end of visitInlineAsm().
9340     if ((OpInfo.Type == InlineAsm::isOutput ||
9341          OpInfo.Type == InlineAsm::isInput) &&
9342         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9343       // Try to convert to the first EVT that the reg class contains.  If the
9344       // types are identical size, use a bitcast to convert (e.g. two differing
9345       // vector types).  Note: output bitcast is done at the end of
9346       // visitInlineAsm().
9347       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9348         // Exclude indirect inputs while they are unsupported because the code
9349         // to perform the load is missing and thus OpInfo.CallOperand still
9350         // refers to the input address rather than the pointed-to value.
9351         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9352           OpInfo.CallOperand =
9353               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9354         OpInfo.ConstraintVT = RegVT;
9355         // If the operand is an FP value and we want it in integer registers,
9356         // use the corresponding integer type. This turns an f64 value into
9357         // i64, which can be passed with two i32 values on a 32-bit machine.
9358       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9359         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9360         if (OpInfo.Type == InlineAsm::isInput)
9361           OpInfo.CallOperand =
9362               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9363         OpInfo.ConstraintVT = VT;
9364       }
9365     }
9366   }
9367 
9368   // No need to allocate a matching input constraint since the constraint it's
9369   // matching to has already been allocated.
9370   if (OpInfo.isMatchingInputConstraint())
9371     return std::nullopt;
9372 
9373   EVT ValueVT = OpInfo.ConstraintVT;
9374   if (OpInfo.ConstraintVT == MVT::Other)
9375     ValueVT = RegVT;
9376 
9377   // Initialize NumRegs.
9378   unsigned NumRegs = 1;
9379   if (OpInfo.ConstraintVT != MVT::Other)
9380     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9381 
9382   // If this is a constraint for a specific physical register, like {r17},
9383   // assign it now.
9384 
9385   // If this associated to a specific register, initialize iterator to correct
9386   // place. If virtual, make sure we have enough registers
9387 
9388   // Initialize iterator if necessary
9389   TargetRegisterClass::iterator I = RC->begin();
9390   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9391 
9392   // Do not check for single registers.
9393   if (AssignedReg) {
9394     I = std::find(I, RC->end(), AssignedReg);
9395     if (I == RC->end()) {
9396       // RC does not contain the selected register, which indicates a
9397       // mismatch between the register and the required type/bitwidth.
9398       return {AssignedReg};
9399     }
9400   }
9401 
9402   for (; NumRegs; --NumRegs, ++I) {
9403     assert(I != RC->end() && "Ran out of registers to allocate!");
9404     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9405     Regs.push_back(R);
9406   }
9407 
9408   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9409   return std::nullopt;
9410 }
9411 
9412 static unsigned
9413 findMatchingInlineAsmOperand(unsigned OperandNo,
9414                              const std::vector<SDValue> &AsmNodeOperands) {
9415   // Scan until we find the definition we already emitted of this operand.
9416   unsigned CurOp = InlineAsm::Op_FirstOperand;
9417   for (; OperandNo; --OperandNo) {
9418     // Advance to the next operand.
9419     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9420     const InlineAsm::Flag F(OpFlag);
9421     assert(
9422         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9423         "Skipped past definitions?");
9424     CurOp += F.getNumOperandRegisters() + 1;
9425   }
9426   return CurOp;
9427 }
9428 
9429 namespace {
9430 
9431 class ExtraFlags {
9432   unsigned Flags = 0;
9433 
9434 public:
9435   explicit ExtraFlags(const CallBase &Call) {
9436     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9437     if (IA->hasSideEffects())
9438       Flags |= InlineAsm::Extra_HasSideEffects;
9439     if (IA->isAlignStack())
9440       Flags |= InlineAsm::Extra_IsAlignStack;
9441     if (Call.isConvergent())
9442       Flags |= InlineAsm::Extra_IsConvergent;
9443     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9444   }
9445 
9446   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9447     // Ideally, we would only check against memory constraints.  However, the
9448     // meaning of an Other constraint can be target-specific and we can't easily
9449     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9450     // for Other constraints as well.
9451     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9452         OpInfo.ConstraintType == TargetLowering::C_Other) {
9453       if (OpInfo.Type == InlineAsm::isInput)
9454         Flags |= InlineAsm::Extra_MayLoad;
9455       else if (OpInfo.Type == InlineAsm::isOutput)
9456         Flags |= InlineAsm::Extra_MayStore;
9457       else if (OpInfo.Type == InlineAsm::isClobber)
9458         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9459     }
9460   }
9461 
9462   unsigned get() const { return Flags; }
9463 };
9464 
9465 } // end anonymous namespace
9466 
9467 static bool isFunction(SDValue Op) {
9468   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9469     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9470       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9471 
9472       // In normal "call dllimport func" instruction (non-inlineasm) it force
9473       // indirect access by specifing call opcode. And usually specially print
9474       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9475       // not do in this way now. (In fact, this is similar with "Data Access"
9476       // action). So here we ignore dllimport function.
9477       if (Fn && !Fn->hasDLLImportStorageClass())
9478         return true;
9479     }
9480   }
9481   return false;
9482 }
9483 
9484 /// visitInlineAsm - Handle a call to an InlineAsm object.
9485 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9486                                          const BasicBlock *EHPadBB) {
9487   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9488 
9489   /// ConstraintOperands - Information about all of the constraints.
9490   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9491 
9492   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9493   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9494       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9495 
9496   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9497   // AsmDialect, MayLoad, MayStore).
9498   bool HasSideEffect = IA->hasSideEffects();
9499   ExtraFlags ExtraInfo(Call);
9500 
9501   for (auto &T : TargetConstraints) {
9502     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9503     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9504 
9505     if (OpInfo.CallOperandVal)
9506       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9507 
9508     if (!HasSideEffect)
9509       HasSideEffect = OpInfo.hasMemory(TLI);
9510 
9511     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9512     // FIXME: Could we compute this on OpInfo rather than T?
9513 
9514     // Compute the constraint code and ConstraintType to use.
9515     TLI.ComputeConstraintToUse(T, SDValue());
9516 
9517     if (T.ConstraintType == TargetLowering::C_Immediate &&
9518         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9519       // We've delayed emitting a diagnostic like the "n" constraint because
9520       // inlining could cause an integer showing up.
9521       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9522                                           "' expects an integer constant "
9523                                           "expression");
9524 
9525     ExtraInfo.update(T);
9526   }
9527 
9528   // We won't need to flush pending loads if this asm doesn't touch
9529   // memory and is nonvolatile.
9530   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9531 
9532   bool EmitEHLabels = isa<InvokeInst>(Call);
9533   if (EmitEHLabels) {
9534     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9535   }
9536   bool IsCallBr = isa<CallBrInst>(Call);
9537 
9538   if (IsCallBr || EmitEHLabels) {
9539     // If this is a callbr or invoke we need to flush pending exports since
9540     // inlineasm_br and invoke are terminators.
9541     // We need to do this before nodes are glued to the inlineasm_br node.
9542     Chain = getControlRoot();
9543   }
9544 
9545   MCSymbol *BeginLabel = nullptr;
9546   if (EmitEHLabels) {
9547     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9548   }
9549 
9550   int OpNo = -1;
9551   SmallVector<StringRef> AsmStrs;
9552   IA->collectAsmStrs(AsmStrs);
9553 
9554   // Second pass over the constraints: compute which constraint option to use.
9555   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9556     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9557       OpNo++;
9558 
9559     // If this is an output operand with a matching input operand, look up the
9560     // matching input. If their types mismatch, e.g. one is an integer, the
9561     // other is floating point, or their sizes are different, flag it as an
9562     // error.
9563     if (OpInfo.hasMatchingInput()) {
9564       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9565       patchMatchingInput(OpInfo, Input, DAG);
9566     }
9567 
9568     // Compute the constraint code and ConstraintType to use.
9569     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9570 
9571     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9572          OpInfo.Type == InlineAsm::isClobber) ||
9573         OpInfo.ConstraintType == TargetLowering::C_Address)
9574       continue;
9575 
9576     // In Linux PIC model, there are 4 cases about value/label addressing:
9577     //
9578     // 1: Function call or Label jmp inside the module.
9579     // 2: Data access (such as global variable, static variable) inside module.
9580     // 3: Function call or Label jmp outside the module.
9581     // 4: Data access (such as global variable) outside the module.
9582     //
9583     // Due to current llvm inline asm architecture designed to not "recognize"
9584     // the asm code, there are quite troubles for us to treat mem addressing
9585     // differently for same value/adress used in different instuctions.
9586     // For example, in pic model, call a func may in plt way or direclty
9587     // pc-related, but lea/mov a function adress may use got.
9588     //
9589     // Here we try to "recognize" function call for the case 1 and case 3 in
9590     // inline asm. And try to adjust the constraint for them.
9591     //
9592     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9593     // label, so here we don't handle jmp function label now, but we need to
9594     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9595     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9596         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9597         TM.getCodeModel() != CodeModel::Large) {
9598       OpInfo.isIndirect = false;
9599       OpInfo.ConstraintType = TargetLowering::C_Address;
9600     }
9601 
9602     // If this is a memory input, and if the operand is not indirect, do what we
9603     // need to provide an address for the memory input.
9604     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9605         !OpInfo.isIndirect) {
9606       assert((OpInfo.isMultipleAlternative ||
9607               (OpInfo.Type == InlineAsm::isInput)) &&
9608              "Can only indirectify direct input operands!");
9609 
9610       // Memory operands really want the address of the value.
9611       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9612 
9613       // There is no longer a Value* corresponding to this operand.
9614       OpInfo.CallOperandVal = nullptr;
9615 
9616       // It is now an indirect operand.
9617       OpInfo.isIndirect = true;
9618     }
9619 
9620   }
9621 
9622   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9623   std::vector<SDValue> AsmNodeOperands;
9624   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9625   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9626       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9627 
9628   // If we have a !srcloc metadata node associated with it, we want to attach
9629   // this to the ultimately generated inline asm machineinstr.  To do this, we
9630   // pass in the third operand as this (potentially null) inline asm MDNode.
9631   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9632   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9633 
9634   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9635   // bits as operand 3.
9636   AsmNodeOperands.push_back(DAG.getTargetConstant(
9637       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9638 
9639   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9640   // this, assign virtual and physical registers for inputs and otput.
9641   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9642     // Assign Registers.
9643     SDISelAsmOperandInfo &RefOpInfo =
9644         OpInfo.isMatchingInputConstraint()
9645             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9646             : OpInfo;
9647     const auto RegError =
9648         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9649     if (RegError) {
9650       const MachineFunction &MF = DAG.getMachineFunction();
9651       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9652       const char *RegName = TRI.getName(*RegError);
9653       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9654                                    "' allocated for constraint '" +
9655                                    Twine(OpInfo.ConstraintCode) +
9656                                    "' does not match required type");
9657       return;
9658     }
9659 
9660     auto DetectWriteToReservedRegister = [&]() {
9661       const MachineFunction &MF = DAG.getMachineFunction();
9662       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9663       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9664         if (Register::isPhysicalRegister(Reg) &&
9665             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9666           const char *RegName = TRI.getName(Reg);
9667           emitInlineAsmError(Call, "write to reserved register '" +
9668                                        Twine(RegName) + "'");
9669           return true;
9670         }
9671       }
9672       return false;
9673     };
9674     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9675             (OpInfo.Type == InlineAsm::isInput &&
9676              !OpInfo.isMatchingInputConstraint())) &&
9677            "Only address as input operand is allowed.");
9678 
9679     switch (OpInfo.Type) {
9680     case InlineAsm::isOutput:
9681       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9682         const InlineAsm::ConstraintCode ConstraintID =
9683             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9684         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9685                "Failed to convert memory constraint code to constraint id.");
9686 
9687         // Add information to the INLINEASM node to know about this output.
9688         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9689         OpFlags.setMemConstraint(ConstraintID);
9690         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9691                                                         MVT::i32));
9692         AsmNodeOperands.push_back(OpInfo.CallOperand);
9693       } else {
9694         // Otherwise, this outputs to a register (directly for C_Register /
9695         // C_RegisterClass, and a target-defined fashion for
9696         // C_Immediate/C_Other). Find a register that we can use.
9697         if (OpInfo.AssignedRegs.Regs.empty()) {
9698           emitInlineAsmError(
9699               Call, "couldn't allocate output register for constraint '" +
9700                         Twine(OpInfo.ConstraintCode) + "'");
9701           return;
9702         }
9703 
9704         if (DetectWriteToReservedRegister())
9705           return;
9706 
9707         // Add information to the INLINEASM node to know that this register is
9708         // set.
9709         OpInfo.AssignedRegs.AddInlineAsmOperands(
9710             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9711                                   : InlineAsm::Kind::RegDef,
9712             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9713       }
9714       break;
9715 
9716     case InlineAsm::isInput:
9717     case InlineAsm::isLabel: {
9718       SDValue InOperandVal = OpInfo.CallOperand;
9719 
9720       if (OpInfo.isMatchingInputConstraint()) {
9721         // If this is required to match an output register we have already set,
9722         // just use its register.
9723         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9724                                                   AsmNodeOperands);
9725         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9726         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9727           if (OpInfo.isIndirect) {
9728             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9729             emitInlineAsmError(Call, "inline asm not supported yet: "
9730                                      "don't know how to handle tied "
9731                                      "indirect register inputs");
9732             return;
9733           }
9734 
9735           SmallVector<unsigned, 4> Regs;
9736           MachineFunction &MF = DAG.getMachineFunction();
9737           MachineRegisterInfo &MRI = MF.getRegInfo();
9738           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9739           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9740           Register TiedReg = R->getReg();
9741           MVT RegVT = R->getSimpleValueType(0);
9742           const TargetRegisterClass *RC =
9743               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9744               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9745                                       : TRI.getMinimalPhysRegClass(TiedReg);
9746           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9747             Regs.push_back(MRI.createVirtualRegister(RC));
9748 
9749           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9750 
9751           SDLoc dl = getCurSDLoc();
9752           // Use the produced MatchedRegs object to
9753           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9754           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9755                                            OpInfo.getMatchedOperand(), dl, DAG,
9756                                            AsmNodeOperands);
9757           break;
9758         }
9759 
9760         assert(Flag.isMemKind() && "Unknown matching constraint!");
9761         assert(Flag.getNumOperandRegisters() == 1 &&
9762                "Unexpected number of operands");
9763         // Add information to the INLINEASM node to know about this input.
9764         // See InlineAsm.h isUseOperandTiedToDef.
9765         Flag.clearMemConstraint();
9766         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9767         AsmNodeOperands.push_back(DAG.getTargetConstant(
9768             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9769         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9770         break;
9771       }
9772 
9773       // Treat indirect 'X' constraint as memory.
9774       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9775           OpInfo.isIndirect)
9776         OpInfo.ConstraintType = TargetLowering::C_Memory;
9777 
9778       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9779           OpInfo.ConstraintType == TargetLowering::C_Other) {
9780         std::vector<SDValue> Ops;
9781         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9782                                           Ops, DAG);
9783         if (Ops.empty()) {
9784           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9785             if (isa<ConstantSDNode>(InOperandVal)) {
9786               emitInlineAsmError(Call, "value out of range for constraint '" +
9787                                            Twine(OpInfo.ConstraintCode) + "'");
9788               return;
9789             }
9790 
9791           emitInlineAsmError(Call,
9792                              "invalid operand for inline asm constraint '" +
9793                                  Twine(OpInfo.ConstraintCode) + "'");
9794           return;
9795         }
9796 
9797         // Add information to the INLINEASM node to know about this input.
9798         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9799         AsmNodeOperands.push_back(DAG.getTargetConstant(
9800             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9801         llvm::append_range(AsmNodeOperands, Ops);
9802         break;
9803       }
9804 
9805       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9806         assert((OpInfo.isIndirect ||
9807                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9808                "Operand must be indirect to be a mem!");
9809         assert(InOperandVal.getValueType() ==
9810                    TLI.getPointerTy(DAG.getDataLayout()) &&
9811                "Memory operands expect pointer values");
9812 
9813         const InlineAsm::ConstraintCode ConstraintID =
9814             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9815         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9816                "Failed to convert memory constraint code to constraint id.");
9817 
9818         // Add information to the INLINEASM node to know about this input.
9819         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9820         ResOpType.setMemConstraint(ConstraintID);
9821         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9822                                                         getCurSDLoc(),
9823                                                         MVT::i32));
9824         AsmNodeOperands.push_back(InOperandVal);
9825         break;
9826       }
9827 
9828       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9829         const InlineAsm::ConstraintCode ConstraintID =
9830             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9831         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9832                "Failed to convert memory constraint code to constraint id.");
9833 
9834         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9835 
9836         SDValue AsmOp = InOperandVal;
9837         if (isFunction(InOperandVal)) {
9838           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9839           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9840           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9841                                              InOperandVal.getValueType(),
9842                                              GA->getOffset());
9843         }
9844 
9845         // Add information to the INLINEASM node to know about this input.
9846         ResOpType.setMemConstraint(ConstraintID);
9847 
9848         AsmNodeOperands.push_back(
9849             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9850 
9851         AsmNodeOperands.push_back(AsmOp);
9852         break;
9853       }
9854 
9855       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9856               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9857              "Unknown constraint type!");
9858 
9859       // TODO: Support this.
9860       if (OpInfo.isIndirect) {
9861         emitInlineAsmError(
9862             Call, "Don't know how to handle indirect register inputs yet "
9863                   "for constraint '" +
9864                       Twine(OpInfo.ConstraintCode) + "'");
9865         return;
9866       }
9867 
9868       // Copy the input into the appropriate registers.
9869       if (OpInfo.AssignedRegs.Regs.empty()) {
9870         emitInlineAsmError(Call,
9871                            "couldn't allocate input reg for constraint '" +
9872                                Twine(OpInfo.ConstraintCode) + "'");
9873         return;
9874       }
9875 
9876       if (DetectWriteToReservedRegister())
9877         return;
9878 
9879       SDLoc dl = getCurSDLoc();
9880 
9881       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9882                                         &Call);
9883 
9884       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9885                                                0, dl, DAG, AsmNodeOperands);
9886       break;
9887     }
9888     case InlineAsm::isClobber:
9889       // Add the clobbered value to the operand list, so that the register
9890       // allocator is aware that the physreg got clobbered.
9891       if (!OpInfo.AssignedRegs.Regs.empty())
9892         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9893                                                  false, 0, getCurSDLoc(), DAG,
9894                                                  AsmNodeOperands);
9895       break;
9896     }
9897   }
9898 
9899   // Finish up input operands.  Set the input chain and add the flag last.
9900   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9901   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9902 
9903   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9904   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9905                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9906   Glue = Chain.getValue(1);
9907 
9908   // Do additional work to generate outputs.
9909 
9910   SmallVector<EVT, 1> ResultVTs;
9911   SmallVector<SDValue, 1> ResultValues;
9912   SmallVector<SDValue, 8> OutChains;
9913 
9914   llvm::Type *CallResultType = Call.getType();
9915   ArrayRef<Type *> ResultTypes;
9916   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9917     ResultTypes = StructResult->elements();
9918   else if (!CallResultType->isVoidTy())
9919     ResultTypes = ArrayRef(CallResultType);
9920 
9921   auto CurResultType = ResultTypes.begin();
9922   auto handleRegAssign = [&](SDValue V) {
9923     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9924     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9925     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9926     ++CurResultType;
9927     // If the type of the inline asm call site return value is different but has
9928     // same size as the type of the asm output bitcast it.  One example of this
9929     // is for vectors with different width / number of elements.  This can
9930     // happen for register classes that can contain multiple different value
9931     // types.  The preg or vreg allocated may not have the same VT as was
9932     // expected.
9933     //
9934     // This can also happen for a return value that disagrees with the register
9935     // class it is put in, eg. a double in a general-purpose register on a
9936     // 32-bit machine.
9937     if (ResultVT != V.getValueType() &&
9938         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9939       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9940     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9941              V.getValueType().isInteger()) {
9942       // If a result value was tied to an input value, the computed result
9943       // may have a wider width than the expected result.  Extract the
9944       // relevant portion.
9945       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9946     }
9947     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9948     ResultVTs.push_back(ResultVT);
9949     ResultValues.push_back(V);
9950   };
9951 
9952   // Deal with output operands.
9953   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9954     if (OpInfo.Type == InlineAsm::isOutput) {
9955       SDValue Val;
9956       // Skip trivial output operands.
9957       if (OpInfo.AssignedRegs.Regs.empty())
9958         continue;
9959 
9960       switch (OpInfo.ConstraintType) {
9961       case TargetLowering::C_Register:
9962       case TargetLowering::C_RegisterClass:
9963         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9964                                                   Chain, &Glue, &Call);
9965         break;
9966       case TargetLowering::C_Immediate:
9967       case TargetLowering::C_Other:
9968         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9969                                               OpInfo, DAG);
9970         break;
9971       case TargetLowering::C_Memory:
9972         break; // Already handled.
9973       case TargetLowering::C_Address:
9974         break; // Silence warning.
9975       case TargetLowering::C_Unknown:
9976         assert(false && "Unexpected unknown constraint");
9977       }
9978 
9979       // Indirect output manifest as stores. Record output chains.
9980       if (OpInfo.isIndirect) {
9981         const Value *Ptr = OpInfo.CallOperandVal;
9982         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9983         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9984                                      MachinePointerInfo(Ptr));
9985         OutChains.push_back(Store);
9986       } else {
9987         // generate CopyFromRegs to associated registers.
9988         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9989         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9990           for (const SDValue &V : Val->op_values())
9991             handleRegAssign(V);
9992         } else
9993           handleRegAssign(Val);
9994       }
9995     }
9996   }
9997 
9998   // Set results.
9999   if (!ResultValues.empty()) {
10000     assert(CurResultType == ResultTypes.end() &&
10001            "Mismatch in number of ResultTypes");
10002     assert(ResultValues.size() == ResultTypes.size() &&
10003            "Mismatch in number of output operands in asm result");
10004 
10005     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10006                             DAG.getVTList(ResultVTs), ResultValues);
10007     setValue(&Call, V);
10008   }
10009 
10010   // Collect store chains.
10011   if (!OutChains.empty())
10012     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10013 
10014   if (EmitEHLabels) {
10015     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10016   }
10017 
10018   // Only Update Root if inline assembly has a memory effect.
10019   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10020       EmitEHLabels)
10021     DAG.setRoot(Chain);
10022 }
10023 
10024 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10025                                              const Twine &Message) {
10026   LLVMContext &Ctx = *DAG.getContext();
10027   Ctx.emitError(&Call, Message);
10028 
10029   // Make sure we leave the DAG in a valid state
10030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10031   SmallVector<EVT, 1> ValueVTs;
10032   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10033 
10034   if (ValueVTs.empty())
10035     return;
10036 
10037   SmallVector<SDValue, 1> Ops;
10038   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
10039     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
10040 
10041   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10042 }
10043 
10044 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10045   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10046                           MVT::Other, getRoot(),
10047                           getValue(I.getArgOperand(0)),
10048                           DAG.getSrcValue(I.getArgOperand(0))));
10049 }
10050 
10051 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10052   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10053   const DataLayout &DL = DAG.getDataLayout();
10054   SDValue V = DAG.getVAArg(
10055       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10056       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10057       DL.getABITypeAlign(I.getType()).value());
10058   DAG.setRoot(V.getValue(1));
10059 
10060   if (I.getType()->isPointerTy())
10061     V = DAG.getPtrExtOrTrunc(
10062         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10063   setValue(&I, V);
10064 }
10065 
10066 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10067   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10068                           MVT::Other, getRoot(),
10069                           getValue(I.getArgOperand(0)),
10070                           DAG.getSrcValue(I.getArgOperand(0))));
10071 }
10072 
10073 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10074   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10075                           MVT::Other, getRoot(),
10076                           getValue(I.getArgOperand(0)),
10077                           getValue(I.getArgOperand(1)),
10078                           DAG.getSrcValue(I.getArgOperand(0)),
10079                           DAG.getSrcValue(I.getArgOperand(1))));
10080 }
10081 
10082 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10083                                                     const Instruction &I,
10084                                                     SDValue Op) {
10085   const MDNode *Range = getRangeMetadata(I);
10086   if (!Range)
10087     return Op;
10088 
10089   ConstantRange CR = getConstantRangeFromMetadata(*Range);
10090   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
10091     return Op;
10092 
10093   APInt Lo = CR.getUnsignedMin();
10094   if (!Lo.isMinValue())
10095     return Op;
10096 
10097   APInt Hi = CR.getUnsignedMax();
10098   unsigned Bits = std::max(Hi.getActiveBits(),
10099                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10100 
10101   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10102 
10103   SDLoc SL = getCurSDLoc();
10104 
10105   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10106                              DAG.getValueType(SmallVT));
10107   unsigned NumVals = Op.getNode()->getNumValues();
10108   if (NumVals == 1)
10109     return ZExt;
10110 
10111   SmallVector<SDValue, 4> Ops;
10112 
10113   Ops.push_back(ZExt);
10114   for (unsigned I = 1; I != NumVals; ++I)
10115     Ops.push_back(Op.getValue(I));
10116 
10117   return DAG.getMergeValues(Ops, SL);
10118 }
10119 
10120 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10121 /// the call being lowered.
10122 ///
10123 /// This is a helper for lowering intrinsics that follow a target calling
10124 /// convention or require stack pointer adjustment. Only a subset of the
10125 /// intrinsic's operands need to participate in the calling convention.
10126 void SelectionDAGBuilder::populateCallLoweringInfo(
10127     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10128     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10129     AttributeSet RetAttrs, bool IsPatchPoint) {
10130   TargetLowering::ArgListTy Args;
10131   Args.reserve(NumArgs);
10132 
10133   // Populate the argument list.
10134   // Attributes for args start at offset 1, after the return attribute.
10135   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10136        ArgI != ArgE; ++ArgI) {
10137     const Value *V = Call->getOperand(ArgI);
10138 
10139     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10140 
10141     TargetLowering::ArgListEntry Entry;
10142     Entry.Node = getValue(V);
10143     Entry.Ty = V->getType();
10144     Entry.setAttributes(Call, ArgI);
10145     Args.push_back(Entry);
10146   }
10147 
10148   CLI.setDebugLoc(getCurSDLoc())
10149       .setChain(getRoot())
10150       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10151                  RetAttrs)
10152       .setDiscardResult(Call->use_empty())
10153       .setIsPatchPoint(IsPatchPoint)
10154       .setIsPreallocated(
10155           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10156 }
10157 
10158 /// Add a stack map intrinsic call's live variable operands to a stackmap
10159 /// or patchpoint target node's operand list.
10160 ///
10161 /// Constants are converted to TargetConstants purely as an optimization to
10162 /// avoid constant materialization and register allocation.
10163 ///
10164 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10165 /// generate addess computation nodes, and so FinalizeISel can convert the
10166 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10167 /// address materialization and register allocation, but may also be required
10168 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10169 /// alloca in the entry block, then the runtime may assume that the alloca's
10170 /// StackMap location can be read immediately after compilation and that the
10171 /// location is valid at any point during execution (this is similar to the
10172 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10173 /// only available in a register, then the runtime would need to trap when
10174 /// execution reaches the StackMap in order to read the alloca's location.
10175 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10176                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10177                                 SelectionDAGBuilder &Builder) {
10178   SelectionDAG &DAG = Builder.DAG;
10179   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10180     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10181 
10182     // Things on the stack are pointer-typed, meaning that they are already
10183     // legal and can be emitted directly to target nodes.
10184     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10185       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10186     } else {
10187       // Otherwise emit a target independent node to be legalised.
10188       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10189     }
10190   }
10191 }
10192 
10193 /// Lower llvm.experimental.stackmap.
10194 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10195   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10196   //                                  [live variables...])
10197 
10198   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10199 
10200   SDValue Chain, InGlue, Callee;
10201   SmallVector<SDValue, 32> Ops;
10202 
10203   SDLoc DL = getCurSDLoc();
10204   Callee = getValue(CI.getCalledOperand());
10205 
10206   // The stackmap intrinsic only records the live variables (the arguments
10207   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10208   // intrinsic, this won't be lowered to a function call. This means we don't
10209   // have to worry about calling conventions and target specific lowering code.
10210   // Instead we perform the call lowering right here.
10211   //
10212   // chain, flag = CALLSEQ_START(chain, 0, 0)
10213   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10214   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10215   //
10216   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10217   InGlue = Chain.getValue(1);
10218 
10219   // Add the STACKMAP operands, starting with DAG house-keeping.
10220   Ops.push_back(Chain);
10221   Ops.push_back(InGlue);
10222 
10223   // Add the <id>, <numShadowBytes> operands.
10224   //
10225   // These do not require legalisation, and can be emitted directly to target
10226   // constant nodes.
10227   SDValue ID = getValue(CI.getArgOperand(0));
10228   assert(ID.getValueType() == MVT::i64);
10229   SDValue IDConst =
10230       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10231   Ops.push_back(IDConst);
10232 
10233   SDValue Shad = getValue(CI.getArgOperand(1));
10234   assert(Shad.getValueType() == MVT::i32);
10235   SDValue ShadConst =
10236       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10237   Ops.push_back(ShadConst);
10238 
10239   // Add the live variables.
10240   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10241 
10242   // Create the STACKMAP node.
10243   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10244   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10245   InGlue = Chain.getValue(1);
10246 
10247   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10248 
10249   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10250 
10251   // Set the root to the target-lowered call chain.
10252   DAG.setRoot(Chain);
10253 
10254   // Inform the Frame Information that we have a stackmap in this function.
10255   FuncInfo.MF->getFrameInfo().setHasStackMap();
10256 }
10257 
10258 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10259 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10260                                           const BasicBlock *EHPadBB) {
10261   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
10262   //                                                 i32 <numBytes>,
10263   //                                                 i8* <target>,
10264   //                                                 i32 <numArgs>,
10265   //                                                 [Args...],
10266   //                                                 [live variables...])
10267 
10268   CallingConv::ID CC = CB.getCallingConv();
10269   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10270   bool HasDef = !CB.getType()->isVoidTy();
10271   SDLoc dl = getCurSDLoc();
10272   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10273 
10274   // Handle immediate and symbolic callees.
10275   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10276     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10277                                    /*isTarget=*/true);
10278   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10279     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10280                                          SDLoc(SymbolicCallee),
10281                                          SymbolicCallee->getValueType(0));
10282 
10283   // Get the real number of arguments participating in the call <numArgs>
10284   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10285   unsigned NumArgs = NArgVal->getAsZExtVal();
10286 
10287   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10288   // Intrinsics include all meta-operands up to but not including CC.
10289   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10290   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10291          "Not enough arguments provided to the patchpoint intrinsic");
10292 
10293   // For AnyRegCC the arguments are lowered later on manually.
10294   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10295   Type *ReturnTy =
10296       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10297 
10298   TargetLowering::CallLoweringInfo CLI(DAG);
10299   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10300                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10301   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10302 
10303   SDNode *CallEnd = Result.second.getNode();
10304   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10305     CallEnd = CallEnd->getOperand(0).getNode();
10306 
10307   /// Get a call instruction from the call sequence chain.
10308   /// Tail calls are not allowed.
10309   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10310          "Expected a callseq node.");
10311   SDNode *Call = CallEnd->getOperand(0).getNode();
10312   bool HasGlue = Call->getGluedNode();
10313 
10314   // Replace the target specific call node with the patchable intrinsic.
10315   SmallVector<SDValue, 8> Ops;
10316 
10317   // Push the chain.
10318   Ops.push_back(*(Call->op_begin()));
10319 
10320   // Optionally, push the glue (if any).
10321   if (HasGlue)
10322     Ops.push_back(*(Call->op_end() - 1));
10323 
10324   // Push the register mask info.
10325   if (HasGlue)
10326     Ops.push_back(*(Call->op_end() - 2));
10327   else
10328     Ops.push_back(*(Call->op_end() - 1));
10329 
10330   // Add the <id> and <numBytes> constants.
10331   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10332   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10333   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10334   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10335 
10336   // Add the callee.
10337   Ops.push_back(Callee);
10338 
10339   // Adjust <numArgs> to account for any arguments that have been passed on the
10340   // stack instead.
10341   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10342   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10343   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10344   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10345 
10346   // Add the calling convention
10347   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10348 
10349   // Add the arguments we omitted previously. The register allocator should
10350   // place these in any free register.
10351   if (IsAnyRegCC)
10352     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10353       Ops.push_back(getValue(CB.getArgOperand(i)));
10354 
10355   // Push the arguments from the call instruction.
10356   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10357   Ops.append(Call->op_begin() + 2, e);
10358 
10359   // Push live variables for the stack map.
10360   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10361 
10362   SDVTList NodeTys;
10363   if (IsAnyRegCC && HasDef) {
10364     // Create the return types based on the intrinsic definition
10365     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10366     SmallVector<EVT, 3> ValueVTs;
10367     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10368     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10369 
10370     // There is always a chain and a glue type at the end
10371     ValueVTs.push_back(MVT::Other);
10372     ValueVTs.push_back(MVT::Glue);
10373     NodeTys = DAG.getVTList(ValueVTs);
10374   } else
10375     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10376 
10377   // Replace the target specific call node with a PATCHPOINT node.
10378   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10379 
10380   // Update the NodeMap.
10381   if (HasDef) {
10382     if (IsAnyRegCC)
10383       setValue(&CB, SDValue(PPV.getNode(), 0));
10384     else
10385       setValue(&CB, Result.first);
10386   }
10387 
10388   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10389   // call sequence. Furthermore the location of the chain and glue can change
10390   // when the AnyReg calling convention is used and the intrinsic returns a
10391   // value.
10392   if (IsAnyRegCC && HasDef) {
10393     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10394     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10395     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10396   } else
10397     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10398   DAG.DeleteNode(Call);
10399 
10400   // Inform the Frame Information that we have a patchpoint in this function.
10401   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10402 }
10403 
10404 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10405                                             unsigned Intrinsic) {
10406   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10407   SDValue Op1 = getValue(I.getArgOperand(0));
10408   SDValue Op2;
10409   if (I.arg_size() > 1)
10410     Op2 = getValue(I.getArgOperand(1));
10411   SDLoc dl = getCurSDLoc();
10412   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10413   SDValue Res;
10414   SDNodeFlags SDFlags;
10415   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10416     SDFlags.copyFMF(*FPMO);
10417 
10418   switch (Intrinsic) {
10419   case Intrinsic::vector_reduce_fadd:
10420     if (SDFlags.hasAllowReassociation())
10421       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10422                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10423                         SDFlags);
10424     else
10425       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10426     break;
10427   case Intrinsic::vector_reduce_fmul:
10428     if (SDFlags.hasAllowReassociation())
10429       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10430                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10431                         SDFlags);
10432     else
10433       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10434     break;
10435   case Intrinsic::vector_reduce_add:
10436     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10437     break;
10438   case Intrinsic::vector_reduce_mul:
10439     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10440     break;
10441   case Intrinsic::vector_reduce_and:
10442     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10443     break;
10444   case Intrinsic::vector_reduce_or:
10445     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10446     break;
10447   case Intrinsic::vector_reduce_xor:
10448     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10449     break;
10450   case Intrinsic::vector_reduce_smax:
10451     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10452     break;
10453   case Intrinsic::vector_reduce_smin:
10454     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10455     break;
10456   case Intrinsic::vector_reduce_umax:
10457     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10458     break;
10459   case Intrinsic::vector_reduce_umin:
10460     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10461     break;
10462   case Intrinsic::vector_reduce_fmax:
10463     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10464     break;
10465   case Intrinsic::vector_reduce_fmin:
10466     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10467     break;
10468   case Intrinsic::vector_reduce_fmaximum:
10469     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10470     break;
10471   case Intrinsic::vector_reduce_fminimum:
10472     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10473     break;
10474   default:
10475     llvm_unreachable("Unhandled vector reduce intrinsic");
10476   }
10477   setValue(&I, Res);
10478 }
10479 
10480 /// Returns an AttributeList representing the attributes applied to the return
10481 /// value of the given call.
10482 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10483   SmallVector<Attribute::AttrKind, 2> Attrs;
10484   if (CLI.RetSExt)
10485     Attrs.push_back(Attribute::SExt);
10486   if (CLI.RetZExt)
10487     Attrs.push_back(Attribute::ZExt);
10488   if (CLI.IsInReg)
10489     Attrs.push_back(Attribute::InReg);
10490 
10491   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10492                             Attrs);
10493 }
10494 
10495 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10496 /// implementation, which just calls LowerCall.
10497 /// FIXME: When all targets are
10498 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10499 std::pair<SDValue, SDValue>
10500 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10501   // Handle the incoming return values from the call.
10502   CLI.Ins.clear();
10503   Type *OrigRetTy = CLI.RetTy;
10504   SmallVector<EVT, 4> RetTys;
10505   SmallVector<uint64_t, 4> Offsets;
10506   auto &DL = CLI.DAG.getDataLayout();
10507   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10508 
10509   if (CLI.IsPostTypeLegalization) {
10510     // If we are lowering a libcall after legalization, split the return type.
10511     SmallVector<EVT, 4> OldRetTys;
10512     SmallVector<uint64_t, 4> OldOffsets;
10513     RetTys.swap(OldRetTys);
10514     Offsets.swap(OldOffsets);
10515 
10516     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10517       EVT RetVT = OldRetTys[i];
10518       uint64_t Offset = OldOffsets[i];
10519       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10520       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10521       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10522       RetTys.append(NumRegs, RegisterVT);
10523       for (unsigned j = 0; j != NumRegs; ++j)
10524         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10525     }
10526   }
10527 
10528   SmallVector<ISD::OutputArg, 4> Outs;
10529   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10530 
10531   bool CanLowerReturn =
10532       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10533                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10534 
10535   SDValue DemoteStackSlot;
10536   int DemoteStackIdx = -100;
10537   if (!CanLowerReturn) {
10538     // FIXME: equivalent assert?
10539     // assert(!CS.hasInAllocaArgument() &&
10540     //        "sret demotion is incompatible with inalloca");
10541     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10542     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10543     MachineFunction &MF = CLI.DAG.getMachineFunction();
10544     DemoteStackIdx =
10545         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10546     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10547                                               DL.getAllocaAddrSpace());
10548 
10549     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10550     ArgListEntry Entry;
10551     Entry.Node = DemoteStackSlot;
10552     Entry.Ty = StackSlotPtrType;
10553     Entry.IsSExt = false;
10554     Entry.IsZExt = false;
10555     Entry.IsInReg = false;
10556     Entry.IsSRet = true;
10557     Entry.IsNest = false;
10558     Entry.IsByVal = false;
10559     Entry.IsByRef = false;
10560     Entry.IsReturned = false;
10561     Entry.IsSwiftSelf = false;
10562     Entry.IsSwiftAsync = false;
10563     Entry.IsSwiftError = false;
10564     Entry.IsCFGuardTarget = false;
10565     Entry.Alignment = Alignment;
10566     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10567     CLI.NumFixedArgs += 1;
10568     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10569     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10570 
10571     // sret demotion isn't compatible with tail-calls, since the sret argument
10572     // points into the callers stack frame.
10573     CLI.IsTailCall = false;
10574   } else {
10575     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10576         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10577     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10578       ISD::ArgFlagsTy Flags;
10579       if (NeedsRegBlock) {
10580         Flags.setInConsecutiveRegs();
10581         if (I == RetTys.size() - 1)
10582           Flags.setInConsecutiveRegsLast();
10583       }
10584       EVT VT = RetTys[I];
10585       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10586                                                      CLI.CallConv, VT);
10587       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10588                                                        CLI.CallConv, VT);
10589       for (unsigned i = 0; i != NumRegs; ++i) {
10590         ISD::InputArg MyFlags;
10591         MyFlags.Flags = Flags;
10592         MyFlags.VT = RegisterVT;
10593         MyFlags.ArgVT = VT;
10594         MyFlags.Used = CLI.IsReturnValueUsed;
10595         if (CLI.RetTy->isPointerTy()) {
10596           MyFlags.Flags.setPointer();
10597           MyFlags.Flags.setPointerAddrSpace(
10598               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10599         }
10600         if (CLI.RetSExt)
10601           MyFlags.Flags.setSExt();
10602         if (CLI.RetZExt)
10603           MyFlags.Flags.setZExt();
10604         if (CLI.IsInReg)
10605           MyFlags.Flags.setInReg();
10606         CLI.Ins.push_back(MyFlags);
10607       }
10608     }
10609   }
10610 
10611   // We push in swifterror return as the last element of CLI.Ins.
10612   ArgListTy &Args = CLI.getArgs();
10613   if (supportSwiftError()) {
10614     for (const ArgListEntry &Arg : Args) {
10615       if (Arg.IsSwiftError) {
10616         ISD::InputArg MyFlags;
10617         MyFlags.VT = getPointerTy(DL);
10618         MyFlags.ArgVT = EVT(getPointerTy(DL));
10619         MyFlags.Flags.setSwiftError();
10620         CLI.Ins.push_back(MyFlags);
10621       }
10622     }
10623   }
10624 
10625   // Handle all of the outgoing arguments.
10626   CLI.Outs.clear();
10627   CLI.OutVals.clear();
10628   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10629     SmallVector<EVT, 4> ValueVTs;
10630     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10631     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10632     Type *FinalType = Args[i].Ty;
10633     if (Args[i].IsByVal)
10634       FinalType = Args[i].IndirectType;
10635     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10636         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10637     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10638          ++Value) {
10639       EVT VT = ValueVTs[Value];
10640       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10641       SDValue Op = SDValue(Args[i].Node.getNode(),
10642                            Args[i].Node.getResNo() + Value);
10643       ISD::ArgFlagsTy Flags;
10644 
10645       // Certain targets (such as MIPS), may have a different ABI alignment
10646       // for a type depending on the context. Give the target a chance to
10647       // specify the alignment it wants.
10648       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10649       Flags.setOrigAlign(OriginalAlignment);
10650 
10651       if (Args[i].Ty->isPointerTy()) {
10652         Flags.setPointer();
10653         Flags.setPointerAddrSpace(
10654             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10655       }
10656       if (Args[i].IsZExt)
10657         Flags.setZExt();
10658       if (Args[i].IsSExt)
10659         Flags.setSExt();
10660       if (Args[i].IsInReg) {
10661         // If we are using vectorcall calling convention, a structure that is
10662         // passed InReg - is surely an HVA
10663         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10664             isa<StructType>(FinalType)) {
10665           // The first value of a structure is marked
10666           if (0 == Value)
10667             Flags.setHvaStart();
10668           Flags.setHva();
10669         }
10670         // Set InReg Flag
10671         Flags.setInReg();
10672       }
10673       if (Args[i].IsSRet)
10674         Flags.setSRet();
10675       if (Args[i].IsSwiftSelf)
10676         Flags.setSwiftSelf();
10677       if (Args[i].IsSwiftAsync)
10678         Flags.setSwiftAsync();
10679       if (Args[i].IsSwiftError)
10680         Flags.setSwiftError();
10681       if (Args[i].IsCFGuardTarget)
10682         Flags.setCFGuardTarget();
10683       if (Args[i].IsByVal)
10684         Flags.setByVal();
10685       if (Args[i].IsByRef)
10686         Flags.setByRef();
10687       if (Args[i].IsPreallocated) {
10688         Flags.setPreallocated();
10689         // Set the byval flag for CCAssignFn callbacks that don't know about
10690         // preallocated.  This way we can know how many bytes we should've
10691         // allocated and how many bytes a callee cleanup function will pop.  If
10692         // we port preallocated to more targets, we'll have to add custom
10693         // preallocated handling in the various CC lowering callbacks.
10694         Flags.setByVal();
10695       }
10696       if (Args[i].IsInAlloca) {
10697         Flags.setInAlloca();
10698         // Set the byval flag for CCAssignFn callbacks that don't know about
10699         // inalloca.  This way we can know how many bytes we should've allocated
10700         // and how many bytes a callee cleanup function will pop.  If we port
10701         // inalloca to more targets, we'll have to add custom inalloca handling
10702         // in the various CC lowering callbacks.
10703         Flags.setByVal();
10704       }
10705       Align MemAlign;
10706       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10707         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10708         Flags.setByValSize(FrameSize);
10709 
10710         // info is not there but there are cases it cannot get right.
10711         if (auto MA = Args[i].Alignment)
10712           MemAlign = *MA;
10713         else
10714           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10715       } else if (auto MA = Args[i].Alignment) {
10716         MemAlign = *MA;
10717       } else {
10718         MemAlign = OriginalAlignment;
10719       }
10720       Flags.setMemAlign(MemAlign);
10721       if (Args[i].IsNest)
10722         Flags.setNest();
10723       if (NeedsRegBlock)
10724         Flags.setInConsecutiveRegs();
10725 
10726       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10727                                                  CLI.CallConv, VT);
10728       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10729                                                         CLI.CallConv, VT);
10730       SmallVector<SDValue, 4> Parts(NumParts);
10731       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10732 
10733       if (Args[i].IsSExt)
10734         ExtendKind = ISD::SIGN_EXTEND;
10735       else if (Args[i].IsZExt)
10736         ExtendKind = ISD::ZERO_EXTEND;
10737 
10738       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10739       // for now.
10740       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10741           CanLowerReturn) {
10742         assert((CLI.RetTy == Args[i].Ty ||
10743                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10744                  CLI.RetTy->getPointerAddressSpace() ==
10745                      Args[i].Ty->getPointerAddressSpace())) &&
10746                RetTys.size() == NumValues && "unexpected use of 'returned'");
10747         // Before passing 'returned' to the target lowering code, ensure that
10748         // either the register MVT and the actual EVT are the same size or that
10749         // the return value and argument are extended in the same way; in these
10750         // cases it's safe to pass the argument register value unchanged as the
10751         // return register value (although it's at the target's option whether
10752         // to do so)
10753         // TODO: allow code generation to take advantage of partially preserved
10754         // registers rather than clobbering the entire register when the
10755         // parameter extension method is not compatible with the return
10756         // extension method
10757         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10758             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10759              CLI.RetZExt == Args[i].IsZExt))
10760           Flags.setReturned();
10761       }
10762 
10763       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10764                      CLI.CallConv, ExtendKind);
10765 
10766       for (unsigned j = 0; j != NumParts; ++j) {
10767         // if it isn't first piece, alignment must be 1
10768         // For scalable vectors the scalable part is currently handled
10769         // by individual targets, so we just use the known minimum size here.
10770         ISD::OutputArg MyFlags(
10771             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10772             i < CLI.NumFixedArgs, i,
10773             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10774         if (NumParts > 1 && j == 0)
10775           MyFlags.Flags.setSplit();
10776         else if (j != 0) {
10777           MyFlags.Flags.setOrigAlign(Align(1));
10778           if (j == NumParts - 1)
10779             MyFlags.Flags.setSplitEnd();
10780         }
10781 
10782         CLI.Outs.push_back(MyFlags);
10783         CLI.OutVals.push_back(Parts[j]);
10784       }
10785 
10786       if (NeedsRegBlock && Value == NumValues - 1)
10787         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10788     }
10789   }
10790 
10791   SmallVector<SDValue, 4> InVals;
10792   CLI.Chain = LowerCall(CLI, InVals);
10793 
10794   // Update CLI.InVals to use outside of this function.
10795   CLI.InVals = InVals;
10796 
10797   // Verify that the target's LowerCall behaved as expected.
10798   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10799          "LowerCall didn't return a valid chain!");
10800   assert((!CLI.IsTailCall || InVals.empty()) &&
10801          "LowerCall emitted a return value for a tail call!");
10802   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10803          "LowerCall didn't emit the correct number of values!");
10804 
10805   // For a tail call, the return value is merely live-out and there aren't
10806   // any nodes in the DAG representing it. Return a special value to
10807   // indicate that a tail call has been emitted and no more Instructions
10808   // should be processed in the current block.
10809   if (CLI.IsTailCall) {
10810     CLI.DAG.setRoot(CLI.Chain);
10811     return std::make_pair(SDValue(), SDValue());
10812   }
10813 
10814 #ifndef NDEBUG
10815   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10816     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10817     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10818            "LowerCall emitted a value with the wrong type!");
10819   }
10820 #endif
10821 
10822   SmallVector<SDValue, 4> ReturnValues;
10823   if (!CanLowerReturn) {
10824     // The instruction result is the result of loading from the
10825     // hidden sret parameter.
10826     SmallVector<EVT, 1> PVTs;
10827     Type *PtrRetTy =
10828         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10829 
10830     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10831     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10832     EVT PtrVT = PVTs[0];
10833 
10834     unsigned NumValues = RetTys.size();
10835     ReturnValues.resize(NumValues);
10836     SmallVector<SDValue, 4> Chains(NumValues);
10837 
10838     // An aggregate return value cannot wrap around the address space, so
10839     // offsets to its parts don't wrap either.
10840     SDNodeFlags Flags;
10841     Flags.setNoUnsignedWrap(true);
10842 
10843     MachineFunction &MF = CLI.DAG.getMachineFunction();
10844     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10845     for (unsigned i = 0; i < NumValues; ++i) {
10846       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10847                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10848                                                         PtrVT), Flags);
10849       SDValue L = CLI.DAG.getLoad(
10850           RetTys[i], CLI.DL, CLI.Chain, Add,
10851           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10852                                             DemoteStackIdx, Offsets[i]),
10853           HiddenSRetAlign);
10854       ReturnValues[i] = L;
10855       Chains[i] = L.getValue(1);
10856     }
10857 
10858     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10859   } else {
10860     // Collect the legal value parts into potentially illegal values
10861     // that correspond to the original function's return values.
10862     std::optional<ISD::NodeType> AssertOp;
10863     if (CLI.RetSExt)
10864       AssertOp = ISD::AssertSext;
10865     else if (CLI.RetZExt)
10866       AssertOp = ISD::AssertZext;
10867     unsigned CurReg = 0;
10868     for (EVT VT : RetTys) {
10869       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10870                                                      CLI.CallConv, VT);
10871       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10872                                                        CLI.CallConv, VT);
10873 
10874       ReturnValues.push_back(getCopyFromParts(
10875           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
10876           CLI.Chain, CLI.CallConv, AssertOp));
10877       CurReg += NumRegs;
10878     }
10879 
10880     // For a function returning void, there is no return value. We can't create
10881     // such a node, so we just return a null return value in that case. In
10882     // that case, nothing will actually look at the value.
10883     if (ReturnValues.empty())
10884       return std::make_pair(SDValue(), CLI.Chain);
10885   }
10886 
10887   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10888                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10889   return std::make_pair(Res, CLI.Chain);
10890 }
10891 
10892 /// Places new result values for the node in Results (their number
10893 /// and types must exactly match those of the original return values of
10894 /// the node), or leaves Results empty, which indicates that the node is not
10895 /// to be custom lowered after all.
10896 void TargetLowering::LowerOperationWrapper(SDNode *N,
10897                                            SmallVectorImpl<SDValue> &Results,
10898                                            SelectionDAG &DAG) const {
10899   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10900 
10901   if (!Res.getNode())
10902     return;
10903 
10904   // If the original node has one result, take the return value from
10905   // LowerOperation as is. It might not be result number 0.
10906   if (N->getNumValues() == 1) {
10907     Results.push_back(Res);
10908     return;
10909   }
10910 
10911   // If the original node has multiple results, then the return node should
10912   // have the same number of results.
10913   assert((N->getNumValues() == Res->getNumValues()) &&
10914       "Lowering returned the wrong number of results!");
10915 
10916   // Places new result values base on N result number.
10917   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10918     Results.push_back(Res.getValue(I));
10919 }
10920 
10921 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10922   llvm_unreachable("LowerOperation not implemented for this target!");
10923 }
10924 
10925 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10926                                                      unsigned Reg,
10927                                                      ISD::NodeType ExtendType) {
10928   SDValue Op = getNonRegisterValue(V);
10929   assert((Op.getOpcode() != ISD::CopyFromReg ||
10930           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10931          "Copy from a reg to the same reg!");
10932   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10933 
10934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10935   // If this is an InlineAsm we have to match the registers required, not the
10936   // notional registers required by the type.
10937 
10938   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10939                    std::nullopt); // This is not an ABI copy.
10940   SDValue Chain = DAG.getEntryNode();
10941 
10942   if (ExtendType == ISD::ANY_EXTEND) {
10943     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10944     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10945       ExtendType = PreferredExtendIt->second;
10946   }
10947   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10948   PendingExports.push_back(Chain);
10949 }
10950 
10951 #include "llvm/CodeGen/SelectionDAGISel.h"
10952 
10953 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10954 /// entry block, return true.  This includes arguments used by switches, since
10955 /// the switch may expand into multiple basic blocks.
10956 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10957   // With FastISel active, we may be splitting blocks, so force creation
10958   // of virtual registers for all non-dead arguments.
10959   if (FastISel)
10960     return A->use_empty();
10961 
10962   const BasicBlock &Entry = A->getParent()->front();
10963   for (const User *U : A->users())
10964     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10965       return false;  // Use not in entry block.
10966 
10967   return true;
10968 }
10969 
10970 using ArgCopyElisionMapTy =
10971     DenseMap<const Argument *,
10972              std::pair<const AllocaInst *, const StoreInst *>>;
10973 
10974 /// Scan the entry block of the function in FuncInfo for arguments that look
10975 /// like copies into a local alloca. Record any copied arguments in
10976 /// ArgCopyElisionCandidates.
10977 static void
10978 findArgumentCopyElisionCandidates(const DataLayout &DL,
10979                                   FunctionLoweringInfo *FuncInfo,
10980                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10981   // Record the state of every static alloca used in the entry block. Argument
10982   // allocas are all used in the entry block, so we need approximately as many
10983   // entries as we have arguments.
10984   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10985   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10986   unsigned NumArgs = FuncInfo->Fn->arg_size();
10987   StaticAllocas.reserve(NumArgs * 2);
10988 
10989   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10990     if (!V)
10991       return nullptr;
10992     V = V->stripPointerCasts();
10993     const auto *AI = dyn_cast<AllocaInst>(V);
10994     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10995       return nullptr;
10996     auto Iter = StaticAllocas.insert({AI, Unknown});
10997     return &Iter.first->second;
10998   };
10999 
11000   // Look for stores of arguments to static allocas. Look through bitcasts and
11001   // GEPs to handle type coercions, as long as the alloca is fully initialized
11002   // by the store. Any non-store use of an alloca escapes it and any subsequent
11003   // unanalyzed store might write it.
11004   // FIXME: Handle structs initialized with multiple stores.
11005   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11006     // Look for stores, and handle non-store uses conservatively.
11007     const auto *SI = dyn_cast<StoreInst>(&I);
11008     if (!SI) {
11009       // We will look through cast uses, so ignore them completely.
11010       if (I.isCast())
11011         continue;
11012       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11013       // to allocas.
11014       if (I.isDebugOrPseudoInst())
11015         continue;
11016       // This is an unknown instruction. Assume it escapes or writes to all
11017       // static alloca operands.
11018       for (const Use &U : I.operands()) {
11019         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11020           *Info = StaticAllocaInfo::Clobbered;
11021       }
11022       continue;
11023     }
11024 
11025     // If the stored value is a static alloca, mark it as escaped.
11026     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11027       *Info = StaticAllocaInfo::Clobbered;
11028 
11029     // Check if the destination is a static alloca.
11030     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11031     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11032     if (!Info)
11033       continue;
11034     const AllocaInst *AI = cast<AllocaInst>(Dst);
11035 
11036     // Skip allocas that have been initialized or clobbered.
11037     if (*Info != StaticAllocaInfo::Unknown)
11038       continue;
11039 
11040     // Check if the stored value is an argument, and that this store fully
11041     // initializes the alloca.
11042     // If the argument type has padding bits we can't directly forward a pointer
11043     // as the upper bits may contain garbage.
11044     // Don't elide copies from the same argument twice.
11045     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11046     const auto *Arg = dyn_cast<Argument>(Val);
11047     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11048         Arg->getType()->isEmptyTy() ||
11049         DL.getTypeStoreSize(Arg->getType()) !=
11050             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11051         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11052         ArgCopyElisionCandidates.count(Arg)) {
11053       *Info = StaticAllocaInfo::Clobbered;
11054       continue;
11055     }
11056 
11057     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11058                       << '\n');
11059 
11060     // Mark this alloca and store for argument copy elision.
11061     *Info = StaticAllocaInfo::Elidable;
11062     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11063 
11064     // Stop scanning if we've seen all arguments. This will happen early in -O0
11065     // builds, which is useful, because -O0 builds have large entry blocks and
11066     // many allocas.
11067     if (ArgCopyElisionCandidates.size() == NumArgs)
11068       break;
11069   }
11070 }
11071 
11072 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11073 /// ArgVal is a load from a suitable fixed stack object.
11074 static void tryToElideArgumentCopy(
11075     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11076     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11077     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11078     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11079     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11080   // Check if this is a load from a fixed stack object.
11081   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11082   if (!LNode)
11083     return;
11084   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11085   if (!FINode)
11086     return;
11087 
11088   // Check that the fixed stack object is the right size and alignment.
11089   // Look at the alignment that the user wrote on the alloca instead of looking
11090   // at the stack object.
11091   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11092   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11093   const AllocaInst *AI = ArgCopyIter->second.first;
11094   int FixedIndex = FINode->getIndex();
11095   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11096   int OldIndex = AllocaIndex;
11097   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11098   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11099     LLVM_DEBUG(
11100         dbgs() << "  argument copy elision failed due to bad fixed stack "
11101                   "object size\n");
11102     return;
11103   }
11104   Align RequiredAlignment = AI->getAlign();
11105   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11106     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11107                          "greater than stack argument alignment ("
11108                       << DebugStr(RequiredAlignment) << " vs "
11109                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11110     return;
11111   }
11112 
11113   // Perform the elision. Delete the old stack object and replace its only use
11114   // in the variable info map. Mark the stack object as mutable.
11115   LLVM_DEBUG({
11116     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11117            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11118            << '\n';
11119   });
11120   MFI.RemoveStackObject(OldIndex);
11121   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11122   AllocaIndex = FixedIndex;
11123   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11124   for (SDValue ArgVal : ArgVals)
11125     Chains.push_back(ArgVal.getValue(1));
11126 
11127   // Avoid emitting code for the store implementing the copy.
11128   const StoreInst *SI = ArgCopyIter->second.second;
11129   ElidedArgCopyInstrs.insert(SI);
11130 
11131   // Check for uses of the argument again so that we can avoid exporting ArgVal
11132   // if it is't used by anything other than the store.
11133   for (const Value *U : Arg.users()) {
11134     if (U != SI) {
11135       ArgHasUses = true;
11136       break;
11137     }
11138   }
11139 }
11140 
11141 void SelectionDAGISel::LowerArguments(const Function &F) {
11142   SelectionDAG &DAG = SDB->DAG;
11143   SDLoc dl = SDB->getCurSDLoc();
11144   const DataLayout &DL = DAG.getDataLayout();
11145   SmallVector<ISD::InputArg, 16> Ins;
11146 
11147   // In Naked functions we aren't going to save any registers.
11148   if (F.hasFnAttribute(Attribute::Naked))
11149     return;
11150 
11151   if (!FuncInfo->CanLowerReturn) {
11152     // Put in an sret pointer parameter before all the other parameters.
11153     SmallVector<EVT, 1> ValueVTs;
11154     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11155                     PointerType::get(F.getContext(),
11156                                      DAG.getDataLayout().getAllocaAddrSpace()),
11157                     ValueVTs);
11158 
11159     // NOTE: Assuming that a pointer will never break down to more than one VT
11160     // or one register.
11161     ISD::ArgFlagsTy Flags;
11162     Flags.setSRet();
11163     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11164     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11165                          ISD::InputArg::NoArgIndex, 0);
11166     Ins.push_back(RetArg);
11167   }
11168 
11169   // Look for stores of arguments to static allocas. Mark such arguments with a
11170   // flag to ask the target to give us the memory location of that argument if
11171   // available.
11172   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11173   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11174                                     ArgCopyElisionCandidates);
11175 
11176   // Set up the incoming argument description vector.
11177   for (const Argument &Arg : F.args()) {
11178     unsigned ArgNo = Arg.getArgNo();
11179     SmallVector<EVT, 4> ValueVTs;
11180     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11181     bool isArgValueUsed = !Arg.use_empty();
11182     unsigned PartBase = 0;
11183     Type *FinalType = Arg.getType();
11184     if (Arg.hasAttribute(Attribute::ByVal))
11185       FinalType = Arg.getParamByValType();
11186     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11187         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11188     for (unsigned Value = 0, NumValues = ValueVTs.size();
11189          Value != NumValues; ++Value) {
11190       EVT VT = ValueVTs[Value];
11191       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11192       ISD::ArgFlagsTy Flags;
11193 
11194 
11195       if (Arg.getType()->isPointerTy()) {
11196         Flags.setPointer();
11197         Flags.setPointerAddrSpace(
11198             cast<PointerType>(Arg.getType())->getAddressSpace());
11199       }
11200       if (Arg.hasAttribute(Attribute::ZExt))
11201         Flags.setZExt();
11202       if (Arg.hasAttribute(Attribute::SExt))
11203         Flags.setSExt();
11204       if (Arg.hasAttribute(Attribute::InReg)) {
11205         // If we are using vectorcall calling convention, a structure that is
11206         // passed InReg - is surely an HVA
11207         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11208             isa<StructType>(Arg.getType())) {
11209           // The first value of a structure is marked
11210           if (0 == Value)
11211             Flags.setHvaStart();
11212           Flags.setHva();
11213         }
11214         // Set InReg Flag
11215         Flags.setInReg();
11216       }
11217       if (Arg.hasAttribute(Attribute::StructRet))
11218         Flags.setSRet();
11219       if (Arg.hasAttribute(Attribute::SwiftSelf))
11220         Flags.setSwiftSelf();
11221       if (Arg.hasAttribute(Attribute::SwiftAsync))
11222         Flags.setSwiftAsync();
11223       if (Arg.hasAttribute(Attribute::SwiftError))
11224         Flags.setSwiftError();
11225       if (Arg.hasAttribute(Attribute::ByVal))
11226         Flags.setByVal();
11227       if (Arg.hasAttribute(Attribute::ByRef))
11228         Flags.setByRef();
11229       if (Arg.hasAttribute(Attribute::InAlloca)) {
11230         Flags.setInAlloca();
11231         // Set the byval flag for CCAssignFn callbacks that don't know about
11232         // inalloca.  This way we can know how many bytes we should've allocated
11233         // and how many bytes a callee cleanup function will pop.  If we port
11234         // inalloca to more targets, we'll have to add custom inalloca handling
11235         // in the various CC lowering callbacks.
11236         Flags.setByVal();
11237       }
11238       if (Arg.hasAttribute(Attribute::Preallocated)) {
11239         Flags.setPreallocated();
11240         // Set the byval flag for CCAssignFn callbacks that don't know about
11241         // preallocated.  This way we can know how many bytes we should've
11242         // allocated and how many bytes a callee cleanup function will pop.  If
11243         // we port preallocated to more targets, we'll have to add custom
11244         // preallocated handling in the various CC lowering callbacks.
11245         Flags.setByVal();
11246       }
11247 
11248       // Certain targets (such as MIPS), may have a different ABI alignment
11249       // for a type depending on the context. Give the target a chance to
11250       // specify the alignment it wants.
11251       const Align OriginalAlignment(
11252           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11253       Flags.setOrigAlign(OriginalAlignment);
11254 
11255       Align MemAlign;
11256       Type *ArgMemTy = nullptr;
11257       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11258           Flags.isByRef()) {
11259         if (!ArgMemTy)
11260           ArgMemTy = Arg.getPointeeInMemoryValueType();
11261 
11262         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11263 
11264         // For in-memory arguments, size and alignment should be passed from FE.
11265         // BE will guess if this info is not there but there are cases it cannot
11266         // get right.
11267         if (auto ParamAlign = Arg.getParamStackAlign())
11268           MemAlign = *ParamAlign;
11269         else if ((ParamAlign = Arg.getParamAlign()))
11270           MemAlign = *ParamAlign;
11271         else
11272           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11273         if (Flags.isByRef())
11274           Flags.setByRefSize(MemSize);
11275         else
11276           Flags.setByValSize(MemSize);
11277       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11278         MemAlign = *ParamAlign;
11279       } else {
11280         MemAlign = OriginalAlignment;
11281       }
11282       Flags.setMemAlign(MemAlign);
11283 
11284       if (Arg.hasAttribute(Attribute::Nest))
11285         Flags.setNest();
11286       if (NeedsRegBlock)
11287         Flags.setInConsecutiveRegs();
11288       if (ArgCopyElisionCandidates.count(&Arg))
11289         Flags.setCopyElisionCandidate();
11290       if (Arg.hasAttribute(Attribute::Returned))
11291         Flags.setReturned();
11292 
11293       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11294           *CurDAG->getContext(), F.getCallingConv(), VT);
11295       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11296           *CurDAG->getContext(), F.getCallingConv(), VT);
11297       for (unsigned i = 0; i != NumRegs; ++i) {
11298         // For scalable vectors, use the minimum size; individual targets
11299         // are responsible for handling scalable vector arguments and
11300         // return values.
11301         ISD::InputArg MyFlags(
11302             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11303             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11304         if (NumRegs > 1 && i == 0)
11305           MyFlags.Flags.setSplit();
11306         // if it isn't first piece, alignment must be 1
11307         else if (i > 0) {
11308           MyFlags.Flags.setOrigAlign(Align(1));
11309           if (i == NumRegs - 1)
11310             MyFlags.Flags.setSplitEnd();
11311         }
11312         Ins.push_back(MyFlags);
11313       }
11314       if (NeedsRegBlock && Value == NumValues - 1)
11315         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11316       PartBase += VT.getStoreSize().getKnownMinValue();
11317     }
11318   }
11319 
11320   // Call the target to set up the argument values.
11321   SmallVector<SDValue, 8> InVals;
11322   SDValue NewRoot = TLI->LowerFormalArguments(
11323       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11324 
11325   // Verify that the target's LowerFormalArguments behaved as expected.
11326   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11327          "LowerFormalArguments didn't return a valid chain!");
11328   assert(InVals.size() == Ins.size() &&
11329          "LowerFormalArguments didn't emit the correct number of values!");
11330   LLVM_DEBUG({
11331     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11332       assert(InVals[i].getNode() &&
11333              "LowerFormalArguments emitted a null value!");
11334       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11335              "LowerFormalArguments emitted a value with the wrong type!");
11336     }
11337   });
11338 
11339   // Update the DAG with the new chain value resulting from argument lowering.
11340   DAG.setRoot(NewRoot);
11341 
11342   // Set up the argument values.
11343   unsigned i = 0;
11344   if (!FuncInfo->CanLowerReturn) {
11345     // Create a virtual register for the sret pointer, and put in a copy
11346     // from the sret argument into it.
11347     SmallVector<EVT, 1> ValueVTs;
11348     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11349                     PointerType::get(F.getContext(),
11350                                      DAG.getDataLayout().getAllocaAddrSpace()),
11351                     ValueVTs);
11352     MVT VT = ValueVTs[0].getSimpleVT();
11353     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11354     std::optional<ISD::NodeType> AssertOp;
11355     SDValue ArgValue =
11356         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11357                          F.getCallingConv(), AssertOp);
11358 
11359     MachineFunction& MF = SDB->DAG.getMachineFunction();
11360     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11361     Register SRetReg =
11362         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11363     FuncInfo->DemoteRegister = SRetReg;
11364     NewRoot =
11365         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11366     DAG.setRoot(NewRoot);
11367 
11368     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11369     ++i;
11370   }
11371 
11372   SmallVector<SDValue, 4> Chains;
11373   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11374   for (const Argument &Arg : F.args()) {
11375     SmallVector<SDValue, 4> ArgValues;
11376     SmallVector<EVT, 4> ValueVTs;
11377     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11378     unsigned NumValues = ValueVTs.size();
11379     if (NumValues == 0)
11380       continue;
11381 
11382     bool ArgHasUses = !Arg.use_empty();
11383 
11384     // Elide the copying store if the target loaded this argument from a
11385     // suitable fixed stack object.
11386     if (Ins[i].Flags.isCopyElisionCandidate()) {
11387       unsigned NumParts = 0;
11388       for (EVT VT : ValueVTs)
11389         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11390                                                        F.getCallingConv(), VT);
11391 
11392       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11393                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11394                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11395     }
11396 
11397     // If this argument is unused then remember its value. It is used to generate
11398     // debugging information.
11399     bool isSwiftErrorArg =
11400         TLI->supportSwiftError() &&
11401         Arg.hasAttribute(Attribute::SwiftError);
11402     if (!ArgHasUses && !isSwiftErrorArg) {
11403       SDB->setUnusedArgValue(&Arg, InVals[i]);
11404 
11405       // Also remember any frame index for use in FastISel.
11406       if (FrameIndexSDNode *FI =
11407           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11408         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11409     }
11410 
11411     for (unsigned Val = 0; Val != NumValues; ++Val) {
11412       EVT VT = ValueVTs[Val];
11413       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11414                                                       F.getCallingConv(), VT);
11415       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11416           *CurDAG->getContext(), F.getCallingConv(), VT);
11417 
11418       // Even an apparent 'unused' swifterror argument needs to be returned. So
11419       // we do generate a copy for it that can be used on return from the
11420       // function.
11421       if (ArgHasUses || isSwiftErrorArg) {
11422         std::optional<ISD::NodeType> AssertOp;
11423         if (Arg.hasAttribute(Attribute::SExt))
11424           AssertOp = ISD::AssertSext;
11425         else if (Arg.hasAttribute(Attribute::ZExt))
11426           AssertOp = ISD::AssertZext;
11427 
11428         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11429                                              PartVT, VT, nullptr, NewRoot,
11430                                              F.getCallingConv(), AssertOp));
11431       }
11432 
11433       i += NumParts;
11434     }
11435 
11436     // We don't need to do anything else for unused arguments.
11437     if (ArgValues.empty())
11438       continue;
11439 
11440     // Note down frame index.
11441     if (FrameIndexSDNode *FI =
11442         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11443       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11444 
11445     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11446                                      SDB->getCurSDLoc());
11447 
11448     SDB->setValue(&Arg, Res);
11449     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11450       // We want to associate the argument with the frame index, among
11451       // involved operands, that correspond to the lowest address. The
11452       // getCopyFromParts function, called earlier, is swapping the order of
11453       // the operands to BUILD_PAIR depending on endianness. The result of
11454       // that swapping is that the least significant bits of the argument will
11455       // be in the first operand of the BUILD_PAIR node, and the most
11456       // significant bits will be in the second operand.
11457       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11458       if (LoadSDNode *LNode =
11459           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11460         if (FrameIndexSDNode *FI =
11461             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11462           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11463     }
11464 
11465     // Analyses past this point are naive and don't expect an assertion.
11466     if (Res.getOpcode() == ISD::AssertZext)
11467       Res = Res.getOperand(0);
11468 
11469     // Update the SwiftErrorVRegDefMap.
11470     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11471       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11472       if (Register::isVirtualRegister(Reg))
11473         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11474                                    Reg);
11475     }
11476 
11477     // If this argument is live outside of the entry block, insert a copy from
11478     // wherever we got it to the vreg that other BB's will reference it as.
11479     if (Res.getOpcode() == ISD::CopyFromReg) {
11480       // If we can, though, try to skip creating an unnecessary vreg.
11481       // FIXME: This isn't very clean... it would be nice to make this more
11482       // general.
11483       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11484       if (Register::isVirtualRegister(Reg)) {
11485         FuncInfo->ValueMap[&Arg] = Reg;
11486         continue;
11487       }
11488     }
11489     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11490       FuncInfo->InitializeRegForValue(&Arg);
11491       SDB->CopyToExportRegsIfNeeded(&Arg);
11492     }
11493   }
11494 
11495   if (!Chains.empty()) {
11496     Chains.push_back(NewRoot);
11497     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11498   }
11499 
11500   DAG.setRoot(NewRoot);
11501 
11502   assert(i == InVals.size() && "Argument register count mismatch!");
11503 
11504   // If any argument copy elisions occurred and we have debug info, update the
11505   // stale frame indices used in the dbg.declare variable info table.
11506   if (!ArgCopyElisionFrameIndexMap.empty()) {
11507     for (MachineFunction::VariableDbgInfo &VI :
11508          MF->getInStackSlotVariableDbgInfo()) {
11509       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11510       if (I != ArgCopyElisionFrameIndexMap.end())
11511         VI.updateStackSlot(I->second);
11512     }
11513   }
11514 
11515   // Finally, if the target has anything special to do, allow it to do so.
11516   emitFunctionEntryCode();
11517 }
11518 
11519 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11520 /// ensure constants are generated when needed.  Remember the virtual registers
11521 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11522 /// directly add them, because expansion might result in multiple MBB's for one
11523 /// BB.  As such, the start of the BB might correspond to a different MBB than
11524 /// the end.
11525 void
11526 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11527   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11528 
11529   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11530 
11531   // Check PHI nodes in successors that expect a value to be available from this
11532   // block.
11533   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11534     if (!isa<PHINode>(SuccBB->begin())) continue;
11535     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11536 
11537     // If this terminator has multiple identical successors (common for
11538     // switches), only handle each succ once.
11539     if (!SuccsHandled.insert(SuccMBB).second)
11540       continue;
11541 
11542     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11543 
11544     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11545     // nodes and Machine PHI nodes, but the incoming operands have not been
11546     // emitted yet.
11547     for (const PHINode &PN : SuccBB->phis()) {
11548       // Ignore dead phi's.
11549       if (PN.use_empty())
11550         continue;
11551 
11552       // Skip empty types
11553       if (PN.getType()->isEmptyTy())
11554         continue;
11555 
11556       unsigned Reg;
11557       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11558 
11559       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11560         unsigned &RegOut = ConstantsOut[C];
11561         if (RegOut == 0) {
11562           RegOut = FuncInfo.CreateRegs(C);
11563           // We need to zero/sign extend ConstantInt phi operands to match
11564           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11565           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11566           if (auto *CI = dyn_cast<ConstantInt>(C))
11567             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11568                                                     : ISD::ZERO_EXTEND;
11569           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11570         }
11571         Reg = RegOut;
11572       } else {
11573         DenseMap<const Value *, Register>::iterator I =
11574           FuncInfo.ValueMap.find(PHIOp);
11575         if (I != FuncInfo.ValueMap.end())
11576           Reg = I->second;
11577         else {
11578           assert(isa<AllocaInst>(PHIOp) &&
11579                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11580                  "Didn't codegen value into a register!??");
11581           Reg = FuncInfo.CreateRegs(PHIOp);
11582           CopyValueToVirtualRegister(PHIOp, Reg);
11583         }
11584       }
11585 
11586       // Remember that this register needs to added to the machine PHI node as
11587       // the input for this MBB.
11588       SmallVector<EVT, 4> ValueVTs;
11589       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11590       for (EVT VT : ValueVTs) {
11591         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11592         for (unsigned i = 0; i != NumRegisters; ++i)
11593           FuncInfo.PHINodesToUpdate.push_back(
11594               std::make_pair(&*MBBI++, Reg + i));
11595         Reg += NumRegisters;
11596       }
11597     }
11598   }
11599 
11600   ConstantsOut.clear();
11601 }
11602 
11603 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11604   MachineFunction::iterator I(MBB);
11605   if (++I == FuncInfo.MF->end())
11606     return nullptr;
11607   return &*I;
11608 }
11609 
11610 /// During lowering new call nodes can be created (such as memset, etc.).
11611 /// Those will become new roots of the current DAG, but complications arise
11612 /// when they are tail calls. In such cases, the call lowering will update
11613 /// the root, but the builder still needs to know that a tail call has been
11614 /// lowered in order to avoid generating an additional return.
11615 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11616   // If the node is null, we do have a tail call.
11617   if (MaybeTC.getNode() != nullptr)
11618     DAG.setRoot(MaybeTC);
11619   else
11620     HasTailCall = true;
11621 }
11622 
11623 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11624                                         MachineBasicBlock *SwitchMBB,
11625                                         MachineBasicBlock *DefaultMBB) {
11626   MachineFunction *CurMF = FuncInfo.MF;
11627   MachineBasicBlock *NextMBB = nullptr;
11628   MachineFunction::iterator BBI(W.MBB);
11629   if (++BBI != FuncInfo.MF->end())
11630     NextMBB = &*BBI;
11631 
11632   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11633 
11634   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11635 
11636   if (Size == 2 && W.MBB == SwitchMBB) {
11637     // If any two of the cases has the same destination, and if one value
11638     // is the same as the other, but has one bit unset that the other has set,
11639     // use bit manipulation to do two compares at once.  For example:
11640     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11641     // TODO: This could be extended to merge any 2 cases in switches with 3
11642     // cases.
11643     // TODO: Handle cases where W.CaseBB != SwitchBB.
11644     CaseCluster &Small = *W.FirstCluster;
11645     CaseCluster &Big = *W.LastCluster;
11646 
11647     if (Small.Low == Small.High && Big.Low == Big.High &&
11648         Small.MBB == Big.MBB) {
11649       const APInt &SmallValue = Small.Low->getValue();
11650       const APInt &BigValue = Big.Low->getValue();
11651 
11652       // Check that there is only one bit different.
11653       APInt CommonBit = BigValue ^ SmallValue;
11654       if (CommonBit.isPowerOf2()) {
11655         SDValue CondLHS = getValue(Cond);
11656         EVT VT = CondLHS.getValueType();
11657         SDLoc DL = getCurSDLoc();
11658 
11659         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11660                                  DAG.getConstant(CommonBit, DL, VT));
11661         SDValue Cond = DAG.getSetCC(
11662             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11663             ISD::SETEQ);
11664 
11665         // Update successor info.
11666         // Both Small and Big will jump to Small.BB, so we sum up the
11667         // probabilities.
11668         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11669         if (BPI)
11670           addSuccessorWithProb(
11671               SwitchMBB, DefaultMBB,
11672               // The default destination is the first successor in IR.
11673               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11674         else
11675           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11676 
11677         // Insert the true branch.
11678         SDValue BrCond =
11679             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11680                         DAG.getBasicBlock(Small.MBB));
11681         // Insert the false branch.
11682         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11683                              DAG.getBasicBlock(DefaultMBB));
11684 
11685         DAG.setRoot(BrCond);
11686         return;
11687       }
11688     }
11689   }
11690 
11691   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11692     // Here, we order cases by probability so the most likely case will be
11693     // checked first. However, two clusters can have the same probability in
11694     // which case their relative ordering is non-deterministic. So we use Low
11695     // as a tie-breaker as clusters are guaranteed to never overlap.
11696     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11697                [](const CaseCluster &a, const CaseCluster &b) {
11698       return a.Prob != b.Prob ?
11699              a.Prob > b.Prob :
11700              a.Low->getValue().slt(b.Low->getValue());
11701     });
11702 
11703     // Rearrange the case blocks so that the last one falls through if possible
11704     // without changing the order of probabilities.
11705     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11706       --I;
11707       if (I->Prob > W.LastCluster->Prob)
11708         break;
11709       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11710         std::swap(*I, *W.LastCluster);
11711         break;
11712       }
11713     }
11714   }
11715 
11716   // Compute total probability.
11717   BranchProbability DefaultProb = W.DefaultProb;
11718   BranchProbability UnhandledProbs = DefaultProb;
11719   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11720     UnhandledProbs += I->Prob;
11721 
11722   MachineBasicBlock *CurMBB = W.MBB;
11723   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11724     bool FallthroughUnreachable = false;
11725     MachineBasicBlock *Fallthrough;
11726     if (I == W.LastCluster) {
11727       // For the last cluster, fall through to the default destination.
11728       Fallthrough = DefaultMBB;
11729       FallthroughUnreachable = isa<UnreachableInst>(
11730           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11731     } else {
11732       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11733       CurMF->insert(BBI, Fallthrough);
11734       // Put Cond in a virtual register to make it available from the new blocks.
11735       ExportFromCurrentBlock(Cond);
11736     }
11737     UnhandledProbs -= I->Prob;
11738 
11739     switch (I->Kind) {
11740       case CC_JumpTable: {
11741         // FIXME: Optimize away range check based on pivot comparisons.
11742         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11743         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11744 
11745         // The jump block hasn't been inserted yet; insert it here.
11746         MachineBasicBlock *JumpMBB = JT->MBB;
11747         CurMF->insert(BBI, JumpMBB);
11748 
11749         auto JumpProb = I->Prob;
11750         auto FallthroughProb = UnhandledProbs;
11751 
11752         // If the default statement is a target of the jump table, we evenly
11753         // distribute the default probability to successors of CurMBB. Also
11754         // update the probability on the edge from JumpMBB to Fallthrough.
11755         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11756                                               SE = JumpMBB->succ_end();
11757              SI != SE; ++SI) {
11758           if (*SI == DefaultMBB) {
11759             JumpProb += DefaultProb / 2;
11760             FallthroughProb -= DefaultProb / 2;
11761             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11762             JumpMBB->normalizeSuccProbs();
11763             break;
11764           }
11765         }
11766 
11767         // If the default clause is unreachable, propagate that knowledge into
11768         // JTH->FallthroughUnreachable which will use it to suppress the range
11769         // check.
11770         //
11771         // However, don't do this if we're doing branch target enforcement,
11772         // because a table branch _without_ a range check can be a tempting JOP
11773         // gadget - out-of-bounds inputs that are impossible in correct
11774         // execution become possible again if an attacker can influence the
11775         // control flow. So if an attacker doesn't already have a BTI bypass
11776         // available, we don't want them to be able to get one out of this
11777         // table branch.
11778         if (FallthroughUnreachable) {
11779           Function &CurFunc = CurMF->getFunction();
11780           bool HasBranchTargetEnforcement = false;
11781           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11782             HasBranchTargetEnforcement =
11783                 CurFunc.getFnAttribute("branch-target-enforcement")
11784                     .getValueAsBool();
11785           } else {
11786             HasBranchTargetEnforcement =
11787                 CurMF->getMMI().getModule()->getModuleFlag(
11788                     "branch-target-enforcement");
11789           }
11790           if (!HasBranchTargetEnforcement)
11791             JTH->FallthroughUnreachable = true;
11792         }
11793 
11794         if (!JTH->FallthroughUnreachable)
11795           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11796         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11797         CurMBB->normalizeSuccProbs();
11798 
11799         // The jump table header will be inserted in our current block, do the
11800         // range check, and fall through to our fallthrough block.
11801         JTH->HeaderBB = CurMBB;
11802         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11803 
11804         // If we're in the right place, emit the jump table header right now.
11805         if (CurMBB == SwitchMBB) {
11806           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11807           JTH->Emitted = true;
11808         }
11809         break;
11810       }
11811       case CC_BitTests: {
11812         // FIXME: Optimize away range check based on pivot comparisons.
11813         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11814 
11815         // The bit test blocks haven't been inserted yet; insert them here.
11816         for (BitTestCase &BTC : BTB->Cases)
11817           CurMF->insert(BBI, BTC.ThisBB);
11818 
11819         // Fill in fields of the BitTestBlock.
11820         BTB->Parent = CurMBB;
11821         BTB->Default = Fallthrough;
11822 
11823         BTB->DefaultProb = UnhandledProbs;
11824         // If the cases in bit test don't form a contiguous range, we evenly
11825         // distribute the probability on the edge to Fallthrough to two
11826         // successors of CurMBB.
11827         if (!BTB->ContiguousRange) {
11828           BTB->Prob += DefaultProb / 2;
11829           BTB->DefaultProb -= DefaultProb / 2;
11830         }
11831 
11832         if (FallthroughUnreachable)
11833           BTB->FallthroughUnreachable = true;
11834 
11835         // If we're in the right place, emit the bit test header right now.
11836         if (CurMBB == SwitchMBB) {
11837           visitBitTestHeader(*BTB, SwitchMBB);
11838           BTB->Emitted = true;
11839         }
11840         break;
11841       }
11842       case CC_Range: {
11843         const Value *RHS, *LHS, *MHS;
11844         ISD::CondCode CC;
11845         if (I->Low == I->High) {
11846           // Check Cond == I->Low.
11847           CC = ISD::SETEQ;
11848           LHS = Cond;
11849           RHS=I->Low;
11850           MHS = nullptr;
11851         } else {
11852           // Check I->Low <= Cond <= I->High.
11853           CC = ISD::SETLE;
11854           LHS = I->Low;
11855           MHS = Cond;
11856           RHS = I->High;
11857         }
11858 
11859         // If Fallthrough is unreachable, fold away the comparison.
11860         if (FallthroughUnreachable)
11861           CC = ISD::SETTRUE;
11862 
11863         // The false probability is the sum of all unhandled cases.
11864         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11865                      getCurSDLoc(), I->Prob, UnhandledProbs);
11866 
11867         if (CurMBB == SwitchMBB)
11868           visitSwitchCase(CB, SwitchMBB);
11869         else
11870           SL->SwitchCases.push_back(CB);
11871 
11872         break;
11873       }
11874     }
11875     CurMBB = Fallthrough;
11876   }
11877 }
11878 
11879 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11880                                         const SwitchWorkListItem &W,
11881                                         Value *Cond,
11882                                         MachineBasicBlock *SwitchMBB) {
11883   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11884          "Clusters not sorted?");
11885   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11886 
11887   auto [LastLeft, FirstRight, LeftProb, RightProb] =
11888       SL->computeSplitWorkItemInfo(W);
11889 
11890   // Use the first element on the right as pivot since we will make less-than
11891   // comparisons against it.
11892   CaseClusterIt PivotCluster = FirstRight;
11893   assert(PivotCluster > W.FirstCluster);
11894   assert(PivotCluster <= W.LastCluster);
11895 
11896   CaseClusterIt FirstLeft = W.FirstCluster;
11897   CaseClusterIt LastRight = W.LastCluster;
11898 
11899   const ConstantInt *Pivot = PivotCluster->Low;
11900 
11901   // New blocks will be inserted immediately after the current one.
11902   MachineFunction::iterator BBI(W.MBB);
11903   ++BBI;
11904 
11905   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11906   // we can branch to its destination directly if it's squeezed exactly in
11907   // between the known lower bound and Pivot - 1.
11908   MachineBasicBlock *LeftMBB;
11909   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11910       FirstLeft->Low == W.GE &&
11911       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11912     LeftMBB = FirstLeft->MBB;
11913   } else {
11914     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11915     FuncInfo.MF->insert(BBI, LeftMBB);
11916     WorkList.push_back(
11917         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11918     // Put Cond in a virtual register to make it available from the new blocks.
11919     ExportFromCurrentBlock(Cond);
11920   }
11921 
11922   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11923   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11924   // directly if RHS.High equals the current upper bound.
11925   MachineBasicBlock *RightMBB;
11926   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11927       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11928     RightMBB = FirstRight->MBB;
11929   } else {
11930     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11931     FuncInfo.MF->insert(BBI, RightMBB);
11932     WorkList.push_back(
11933         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11934     // Put Cond in a virtual register to make it available from the new blocks.
11935     ExportFromCurrentBlock(Cond);
11936   }
11937 
11938   // Create the CaseBlock record that will be used to lower the branch.
11939   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11940                getCurSDLoc(), LeftProb, RightProb);
11941 
11942   if (W.MBB == SwitchMBB)
11943     visitSwitchCase(CB, SwitchMBB);
11944   else
11945     SL->SwitchCases.push_back(CB);
11946 }
11947 
11948 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11949 // from the swith statement.
11950 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11951                                             BranchProbability PeeledCaseProb) {
11952   if (PeeledCaseProb == BranchProbability::getOne())
11953     return BranchProbability::getZero();
11954   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11955 
11956   uint32_t Numerator = CaseProb.getNumerator();
11957   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11958   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11959 }
11960 
11961 // Try to peel the top probability case if it exceeds the threshold.
11962 // Return current MachineBasicBlock for the switch statement if the peeling
11963 // does not occur.
11964 // If the peeling is performed, return the newly created MachineBasicBlock
11965 // for the peeled switch statement. Also update Clusters to remove the peeled
11966 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11967 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11968     const SwitchInst &SI, CaseClusterVector &Clusters,
11969     BranchProbability &PeeledCaseProb) {
11970   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11971   // Don't perform if there is only one cluster or optimizing for size.
11972   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11973       TM.getOptLevel() == CodeGenOptLevel::None ||
11974       SwitchMBB->getParent()->getFunction().hasMinSize())
11975     return SwitchMBB;
11976 
11977   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11978   unsigned PeeledCaseIndex = 0;
11979   bool SwitchPeeled = false;
11980   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11981     CaseCluster &CC = Clusters[Index];
11982     if (CC.Prob < TopCaseProb)
11983       continue;
11984     TopCaseProb = CC.Prob;
11985     PeeledCaseIndex = Index;
11986     SwitchPeeled = true;
11987   }
11988   if (!SwitchPeeled)
11989     return SwitchMBB;
11990 
11991   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11992                     << TopCaseProb << "\n");
11993 
11994   // Record the MBB for the peeled switch statement.
11995   MachineFunction::iterator BBI(SwitchMBB);
11996   ++BBI;
11997   MachineBasicBlock *PeeledSwitchMBB =
11998       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11999   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12000 
12001   ExportFromCurrentBlock(SI.getCondition());
12002   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12003   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12004                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12005   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12006 
12007   Clusters.erase(PeeledCaseIt);
12008   for (CaseCluster &CC : Clusters) {
12009     LLVM_DEBUG(
12010         dbgs() << "Scale the probablity for one cluster, before scaling: "
12011                << CC.Prob << "\n");
12012     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12013     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12014   }
12015   PeeledCaseProb = TopCaseProb;
12016   return PeeledSwitchMBB;
12017 }
12018 
12019 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12020   // Extract cases from the switch.
12021   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12022   CaseClusterVector Clusters;
12023   Clusters.reserve(SI.getNumCases());
12024   for (auto I : SI.cases()) {
12025     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12026     const ConstantInt *CaseVal = I.getCaseValue();
12027     BranchProbability Prob =
12028         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12029             : BranchProbability(1, SI.getNumCases() + 1);
12030     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12031   }
12032 
12033   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12034 
12035   // Cluster adjacent cases with the same destination. We do this at all
12036   // optimization levels because it's cheap to do and will make codegen faster
12037   // if there are many clusters.
12038   sortAndRangeify(Clusters);
12039 
12040   // The branch probablity of the peeled case.
12041   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12042   MachineBasicBlock *PeeledSwitchMBB =
12043       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12044 
12045   // If there is only the default destination, jump there directly.
12046   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12047   if (Clusters.empty()) {
12048     assert(PeeledSwitchMBB == SwitchMBB);
12049     SwitchMBB->addSuccessor(DefaultMBB);
12050     if (DefaultMBB != NextBlock(SwitchMBB)) {
12051       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12052                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12053     }
12054     return;
12055   }
12056 
12057   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12058                      DAG.getBFI());
12059   SL->findBitTestClusters(Clusters, &SI);
12060 
12061   LLVM_DEBUG({
12062     dbgs() << "Case clusters: ";
12063     for (const CaseCluster &C : Clusters) {
12064       if (C.Kind == CC_JumpTable)
12065         dbgs() << "JT:";
12066       if (C.Kind == CC_BitTests)
12067         dbgs() << "BT:";
12068 
12069       C.Low->getValue().print(dbgs(), true);
12070       if (C.Low != C.High) {
12071         dbgs() << '-';
12072         C.High->getValue().print(dbgs(), true);
12073       }
12074       dbgs() << ' ';
12075     }
12076     dbgs() << '\n';
12077   });
12078 
12079   assert(!Clusters.empty());
12080   SwitchWorkList WorkList;
12081   CaseClusterIt First = Clusters.begin();
12082   CaseClusterIt Last = Clusters.end() - 1;
12083   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12084   // Scale the branchprobability for DefaultMBB if the peel occurs and
12085   // DefaultMBB is not replaced.
12086   if (PeeledCaseProb != BranchProbability::getZero() &&
12087       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12088     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12089   WorkList.push_back(
12090       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12091 
12092   while (!WorkList.empty()) {
12093     SwitchWorkListItem W = WorkList.pop_back_val();
12094     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12095 
12096     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12097         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12098       // For optimized builds, lower large range as a balanced binary tree.
12099       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12100       continue;
12101     }
12102 
12103     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12104   }
12105 }
12106 
12107 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12108   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12109   auto DL = getCurSDLoc();
12110   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12111   setValue(&I, DAG.getStepVector(DL, ResultVT));
12112 }
12113 
12114 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12115   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12116   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12117 
12118   SDLoc DL = getCurSDLoc();
12119   SDValue V = getValue(I.getOperand(0));
12120   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12121 
12122   if (VT.isScalableVector()) {
12123     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12124     return;
12125   }
12126 
12127   // Use VECTOR_SHUFFLE for the fixed-length vector
12128   // to maintain existing behavior.
12129   SmallVector<int, 8> Mask;
12130   unsigned NumElts = VT.getVectorMinNumElements();
12131   for (unsigned i = 0; i != NumElts; ++i)
12132     Mask.push_back(NumElts - 1 - i);
12133 
12134   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12135 }
12136 
12137 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12138   auto DL = getCurSDLoc();
12139   SDValue InVec = getValue(I.getOperand(0));
12140   EVT OutVT =
12141       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12142 
12143   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12144 
12145   // ISD Node needs the input vectors split into two equal parts
12146   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12147                            DAG.getVectorIdxConstant(0, DL));
12148   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12149                            DAG.getVectorIdxConstant(OutNumElts, DL));
12150 
12151   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12152   // legalisation and combines.
12153   if (OutVT.isFixedLengthVector()) {
12154     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12155                                         createStrideMask(0, 2, OutNumElts));
12156     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12157                                        createStrideMask(1, 2, OutNumElts));
12158     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12159     setValue(&I, Res);
12160     return;
12161   }
12162 
12163   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12164                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12165   setValue(&I, Res);
12166 }
12167 
12168 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12169   auto DL = getCurSDLoc();
12170   EVT InVT = getValue(I.getOperand(0)).getValueType();
12171   SDValue InVec0 = getValue(I.getOperand(0));
12172   SDValue InVec1 = getValue(I.getOperand(1));
12173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12174   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12175 
12176   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12177   // legalisation and combines.
12178   if (OutVT.isFixedLengthVector()) {
12179     unsigned NumElts = InVT.getVectorMinNumElements();
12180     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12181     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12182                                       createInterleaveMask(NumElts, 2)));
12183     return;
12184   }
12185 
12186   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12187                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12188   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12189                     Res.getValue(1));
12190   setValue(&I, Res);
12191 }
12192 
12193 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12194   SmallVector<EVT, 4> ValueVTs;
12195   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12196                   ValueVTs);
12197   unsigned NumValues = ValueVTs.size();
12198   if (NumValues == 0) return;
12199 
12200   SmallVector<SDValue, 4> Values(NumValues);
12201   SDValue Op = getValue(I.getOperand(0));
12202 
12203   for (unsigned i = 0; i != NumValues; ++i)
12204     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12205                             SDValue(Op.getNode(), Op.getResNo() + i));
12206 
12207   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12208                            DAG.getVTList(ValueVTs), Values));
12209 }
12210 
12211 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12213   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12214 
12215   SDLoc DL = getCurSDLoc();
12216   SDValue V1 = getValue(I.getOperand(0));
12217   SDValue V2 = getValue(I.getOperand(1));
12218   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12219 
12220   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12221   if (VT.isScalableVector()) {
12222     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
12223     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12224                              DAG.getConstant(Imm, DL, IdxVT)));
12225     return;
12226   }
12227 
12228   unsigned NumElts = VT.getVectorNumElements();
12229 
12230   uint64_t Idx = (NumElts + Imm) % NumElts;
12231 
12232   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12233   SmallVector<int, 8> Mask;
12234   for (unsigned i = 0; i < NumElts; ++i)
12235     Mask.push_back(Idx + i);
12236   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12237 }
12238 
12239 // Consider the following MIR after SelectionDAG, which produces output in
12240 // phyregs in the first case or virtregs in the second case.
12241 //
12242 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12243 // %5:gr32 = COPY $ebx
12244 // %6:gr32 = COPY $edx
12245 // %1:gr32 = COPY %6:gr32
12246 // %0:gr32 = COPY %5:gr32
12247 //
12248 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12249 // %1:gr32 = COPY %6:gr32
12250 // %0:gr32 = COPY %5:gr32
12251 //
12252 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12253 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12254 //
12255 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12256 // to a single virtreg (such as %0). The remaining outputs monotonically
12257 // increase in virtreg number from there. If a callbr has no outputs, then it
12258 // should not have a corresponding callbr landingpad; in fact, the callbr
12259 // landingpad would not even be able to refer to such a callbr.
12260 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12261   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12262   // There is definitely at least one copy.
12263   assert(MI->getOpcode() == TargetOpcode::COPY &&
12264          "start of copy chain MUST be COPY");
12265   Reg = MI->getOperand(1).getReg();
12266   MI = MRI.def_begin(Reg)->getParent();
12267   // There may be an optional second copy.
12268   if (MI->getOpcode() == TargetOpcode::COPY) {
12269     assert(Reg.isVirtual() && "expected COPY of virtual register");
12270     Reg = MI->getOperand(1).getReg();
12271     assert(Reg.isPhysical() && "expected COPY of physical register");
12272     MI = MRI.def_begin(Reg)->getParent();
12273   }
12274   // The start of the chain must be an INLINEASM_BR.
12275   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12276          "end of copy chain MUST be INLINEASM_BR");
12277   return Reg;
12278 }
12279 
12280 // We must do this walk rather than the simpler
12281 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12282 // otherwise we will end up with copies of virtregs only valid along direct
12283 // edges.
12284 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12285   SmallVector<EVT, 8> ResultVTs;
12286   SmallVector<SDValue, 8> ResultValues;
12287   const auto *CBR =
12288       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12289 
12290   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12291   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12292   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12293 
12294   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12295   SDValue Chain = DAG.getRoot();
12296 
12297   // Re-parse the asm constraints string.
12298   TargetLowering::AsmOperandInfoVector TargetConstraints =
12299       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12300   for (auto &T : TargetConstraints) {
12301     SDISelAsmOperandInfo OpInfo(T);
12302     if (OpInfo.Type != InlineAsm::isOutput)
12303       continue;
12304 
12305     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12306     // individual constraint.
12307     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12308 
12309     switch (OpInfo.ConstraintType) {
12310     case TargetLowering::C_Register:
12311     case TargetLowering::C_RegisterClass: {
12312       // Fill in OpInfo.AssignedRegs.Regs.
12313       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12314 
12315       // getRegistersForValue may produce 1 to many registers based on whether
12316       // the OpInfo.ConstraintVT is legal on the target or not.
12317       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12318         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12319         if (Register::isPhysicalRegister(OriginalDef))
12320           FuncInfo.MBB->addLiveIn(OriginalDef);
12321         // Update the assigned registers to use the original defs.
12322         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12323       }
12324 
12325       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12326           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12327       ResultValues.push_back(V);
12328       ResultVTs.push_back(OpInfo.ConstraintVT);
12329       break;
12330     }
12331     case TargetLowering::C_Other: {
12332       SDValue Flag;
12333       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12334                                                   OpInfo, DAG);
12335       ++InitialDef;
12336       ResultValues.push_back(V);
12337       ResultVTs.push_back(OpInfo.ConstraintVT);
12338       break;
12339     }
12340     default:
12341       break;
12342     }
12343   }
12344   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12345                           DAG.getVTList(ResultVTs), ResultValues);
12346   setValue(&I, V);
12347 }
12348