xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 5f17d08f498167c1523136b3e62f51588769152d)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
616 RegsForValue::RegsForValue() {}
617 
618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
837       }
838     }
839   }
840 }
841 
842 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
843                                const TargetLibraryInfo *li) {
844   AA = &aa;
845   GFI = gfi;
846   LibInfo = li;
847   DL = &DAG.getDataLayout();
848   Context = DAG.getContext();
849   LPadToCallSiteMap.clear();
850 }
851 
852 /// clear - Clear out the current SelectionDAG and the associated
853 /// state and prepare this SelectionDAGBuilder object to be used
854 /// for a new block. This doesn't clear out information about
855 /// additional blocks that are needed to complete switch lowering
856 /// or PHI node updating; that information is cleared out as it is
857 /// consumed.
858 void SelectionDAGBuilder::clear() {
859   NodeMap.clear();
860   UnusedArgNodeMap.clear();
861   PendingLoads.clear();
862   PendingExports.clear();
863   CurInst = nullptr;
864   HasTailCall = false;
865   SDNodeOrder = LowestSDNodeOrder;
866   StatepointLowering.clear();
867 }
868 
869 /// clearDanglingDebugInfo - Clear the dangling debug information
870 /// map. This function is separated from the clear so that debug
871 /// information that is dangling in a basic block can be properly
872 /// resolved in a different basic block. This allows the
873 /// SelectionDAG to resolve dangling debug information attached
874 /// to PHI nodes.
875 void SelectionDAGBuilder::clearDanglingDebugInfo() {
876   DanglingDebugInfoMap.clear();
877 }
878 
879 /// getRoot - Return the current virtual root of the Selection DAG,
880 /// flushing any PendingLoad items. This must be done before emitting
881 /// a store or any other node that may need to be ordered after any
882 /// prior load instructions.
883 ///
884 SDValue SelectionDAGBuilder::getRoot() {
885   if (PendingLoads.empty())
886     return DAG.getRoot();
887 
888   if (PendingLoads.size() == 1) {
889     SDValue Root = PendingLoads[0];
890     DAG.setRoot(Root);
891     PendingLoads.clear();
892     return Root;
893   }
894 
895   // Otherwise, we have to make a token factor node.
896   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
897                              PendingLoads);
898   PendingLoads.clear();
899   DAG.setRoot(Root);
900   return Root;
901 }
902 
903 /// getControlRoot - Similar to getRoot, but instead of flushing all the
904 /// PendingLoad items, flush all the PendingExports items. It is necessary
905 /// to do this before emitting a terminator instruction.
906 ///
907 SDValue SelectionDAGBuilder::getControlRoot() {
908   SDValue Root = DAG.getRoot();
909 
910   if (PendingExports.empty())
911     return Root;
912 
913   // Turn all of the CopyToReg chains into one factored node.
914   if (Root.getOpcode() != ISD::EntryToken) {
915     unsigned i = 0, e = PendingExports.size();
916     for (; i != e; ++i) {
917       assert(PendingExports[i].getNode()->getNumOperands() > 1);
918       if (PendingExports[i].getNode()->getOperand(0) == Root)
919         break;  // Don't add the root if we already indirectly depend on it.
920     }
921 
922     if (i == e)
923       PendingExports.push_back(Root);
924   }
925 
926   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
927                      PendingExports);
928   PendingExports.clear();
929   DAG.setRoot(Root);
930   return Root;
931 }
932 
933 /// Copy swift error to the final virtual register at end of a basic block, as
934 /// specified by SwiftErrorWorklist, if necessary.
935 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
936   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
937   if (!TLI.supportSwiftError())
938     return;
939 
940   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
941     return;
942 
943   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
944   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
945       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
946   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
947       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
948   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
949     unsigned WorkReg = WorklistEntry[I];
950 
951     // Find the swifterror virtual register for the value in SwiftErrorMap.
952     unsigned MapReg = MapEntry[I];
953     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
954            "Entries in SwiftErrorMap should be virtual registers");
955 
956     if (WorkReg == MapReg)
957       continue;
958 
959     // Create copy from SwiftErrorMap to SwiftWorklist.
960     auto &DL = SDB.DAG.getDataLayout();
961     SDValue CopyNode = SDB.DAG.getCopyToReg(
962         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
963         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
964     MapEntry[I] = WorkReg;
965     SDB.DAG.setRoot(CopyNode);
966   }
967 }
968 
969 void SelectionDAGBuilder::visit(const Instruction &I) {
970   // Set up outgoing PHI node register values before emitting the terminator.
971   if (isa<TerminatorInst>(&I)) {
972     copySwiftErrorsToFinalVRegs(*this);
973     HandlePHINodesInSuccessorBlocks(I.getParent());
974   }
975 
976   ++SDNodeOrder;
977 
978   CurInst = &I;
979 
980   visit(I.getOpcode(), I);
981 
982   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
983       !isStatepoint(&I)) // statepoints handle their exports internally
984     CopyToExportRegsIfNeeded(&I);
985 
986   CurInst = nullptr;
987 }
988 
989 void SelectionDAGBuilder::visitPHI(const PHINode &) {
990   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
991 }
992 
993 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
994   // Note: this doesn't use InstVisitor, because it has to work with
995   // ConstantExpr's in addition to instructions.
996   switch (Opcode) {
997   default: llvm_unreachable("Unknown instruction type encountered!");
998     // Build the switch statement using the Instruction.def file.
999 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1000     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1001 #include "llvm/IR/Instruction.def"
1002   }
1003 }
1004 
1005 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1006 // generate the debug data structures now that we've seen its definition.
1007 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1008                                                    SDValue Val) {
1009   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1010   if (DDI.getDI()) {
1011     const DbgValueInst *DI = DDI.getDI();
1012     DebugLoc dl = DDI.getdl();
1013     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1014     DILocalVariable *Variable = DI->getVariable();
1015     DIExpression *Expr = DI->getExpression();
1016     assert(Variable->isValidLocationForIntrinsic(dl) &&
1017            "Expected inlined-at fields to agree");
1018     uint64_t Offset = DI->getOffset();
1019     SDDbgValue *SDV;
1020     if (Val.getNode()) {
1021       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1022                                     Val)) {
1023         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
1024         DAG.AddDbgValue(SDV, Val.getNode(), false);
1025       }
1026     } else
1027       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1028     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1029   }
1030 }
1031 
1032 /// getCopyFromRegs - If there was virtual register allocated for the value V
1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1035   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1036   SDValue Result;
1037 
1038   if (It != FuncInfo.ValueMap.end()) {
1039     unsigned InReg = It->second;
1040     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1041                      DAG.getDataLayout(), InReg, Ty);
1042     SDValue Chain = DAG.getEntryNode();
1043     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1044     resolveDanglingDebugInfo(V, Result);
1045   }
1046 
1047   return Result;
1048 }
1049 
1050 /// getValue - Return an SDValue for the given Value.
1051 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1052   // If we already have an SDValue for this value, use it. It's important
1053   // to do this first, so that we don't create a CopyFromReg if we already
1054   // have a regular SDValue.
1055   SDValue &N = NodeMap[V];
1056   if (N.getNode()) return N;
1057 
1058   // If there's a virtual register allocated and initialized for this
1059   // value, use it.
1060   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1061     return copyFromReg;
1062 
1063   // Otherwise create a new SDValue and remember it.
1064   SDValue Val = getValueImpl(V);
1065   NodeMap[V] = Val;
1066   resolveDanglingDebugInfo(V, Val);
1067   return Val;
1068 }
1069 
1070 // Return true if SDValue exists for the given Value
1071 bool SelectionDAGBuilder::findValue(const Value *V) const {
1072   return (NodeMap.find(V) != NodeMap.end()) ||
1073     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1074 }
1075 
1076 /// getNonRegisterValue - Return an SDValue for the given Value, but
1077 /// don't look in FuncInfo.ValueMap for a virtual register.
1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1079   // If we already have an SDValue for this value, use it.
1080   SDValue &N = NodeMap[V];
1081   if (N.getNode()) {
1082     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1083       // Remove the debug location from the node as the node is about to be used
1084       // in a location which may differ from the original debug location.  This
1085       // is relevant to Constant and ConstantFP nodes because they can appear
1086       // as constant expressions inside PHI nodes.
1087       N->setDebugLoc(DebugLoc());
1088     }
1089     return N;
1090   }
1091 
1092   // Otherwise create a new SDValue and remember it.
1093   SDValue Val = getValueImpl(V);
1094   NodeMap[V] = Val;
1095   resolveDanglingDebugInfo(V, Val);
1096   return Val;
1097 }
1098 
1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1100 /// Create an SDValue for the given value.
1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1103 
1104   if (const Constant *C = dyn_cast<Constant>(V)) {
1105     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1106 
1107     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1108       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1109 
1110     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1111       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1112 
1113     if (isa<ConstantPointerNull>(C)) {
1114       unsigned AS = V->getType()->getPointerAddressSpace();
1115       return DAG.getConstant(0, getCurSDLoc(),
1116                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1117     }
1118 
1119     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1120       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1121 
1122     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1123       return DAG.getUNDEF(VT);
1124 
1125     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1126       visit(CE->getOpcode(), *CE);
1127       SDValue N1 = NodeMap[V];
1128       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1129       return N1;
1130     }
1131 
1132     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1133       SmallVector<SDValue, 4> Constants;
1134       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1135            OI != OE; ++OI) {
1136         SDNode *Val = getValue(*OI).getNode();
1137         // If the operand is an empty aggregate, there are no values.
1138         if (!Val) continue;
1139         // Add each leaf value from the operand to the Constants list
1140         // to form a flattened list of all the values.
1141         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1142           Constants.push_back(SDValue(Val, i));
1143       }
1144 
1145       return DAG.getMergeValues(Constants, getCurSDLoc());
1146     }
1147 
1148     if (const ConstantDataSequential *CDS =
1149           dyn_cast<ConstantDataSequential>(C)) {
1150       SmallVector<SDValue, 4> Ops;
1151       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1152         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1153         // Add each leaf value from the operand to the Constants list
1154         // to form a flattened list of all the values.
1155         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1156           Ops.push_back(SDValue(Val, i));
1157       }
1158 
1159       if (isa<ArrayType>(CDS->getType()))
1160         return DAG.getMergeValues(Ops, getCurSDLoc());
1161       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1162                                       VT, Ops);
1163     }
1164 
1165     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1166       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1167              "Unknown struct or array constant!");
1168 
1169       SmallVector<EVT, 4> ValueVTs;
1170       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1171       unsigned NumElts = ValueVTs.size();
1172       if (NumElts == 0)
1173         return SDValue(); // empty struct
1174       SmallVector<SDValue, 4> Constants(NumElts);
1175       for (unsigned i = 0; i != NumElts; ++i) {
1176         EVT EltVT = ValueVTs[i];
1177         if (isa<UndefValue>(C))
1178           Constants[i] = DAG.getUNDEF(EltVT);
1179         else if (EltVT.isFloatingPoint())
1180           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1181         else
1182           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1183       }
1184 
1185       return DAG.getMergeValues(Constants, getCurSDLoc());
1186     }
1187 
1188     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1189       return DAG.getBlockAddress(BA, VT);
1190 
1191     VectorType *VecTy = cast<VectorType>(V->getType());
1192     unsigned NumElements = VecTy->getNumElements();
1193 
1194     // Now that we know the number and type of the elements, get that number of
1195     // elements into the Ops array based on what kind of constant it is.
1196     SmallVector<SDValue, 16> Ops;
1197     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1198       for (unsigned i = 0; i != NumElements; ++i)
1199         Ops.push_back(getValue(CV->getOperand(i)));
1200     } else {
1201       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1202       EVT EltVT =
1203           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1204 
1205       SDValue Op;
1206       if (EltVT.isFloatingPoint())
1207         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1208       else
1209         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1210       Ops.assign(NumElements, Op);
1211     }
1212 
1213     // Create a BUILD_VECTOR node.
1214     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1215   }
1216 
1217   // If this is a static alloca, generate it as the frameindex instead of
1218   // computation.
1219   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1220     DenseMap<const AllocaInst*, int>::iterator SI =
1221       FuncInfo.StaticAllocaMap.find(AI);
1222     if (SI != FuncInfo.StaticAllocaMap.end())
1223       return DAG.getFrameIndex(SI->second,
1224                                TLI.getPointerTy(DAG.getDataLayout()));
1225   }
1226 
1227   // If this is an instruction which fast-isel has deferred, select it now.
1228   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1229     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1230     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1231                      Inst->getType());
1232     SDValue Chain = DAG.getEntryNode();
1233     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1234   }
1235 
1236   llvm_unreachable("Can't get register for value!");
1237 }
1238 
1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1240   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1241   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1242   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1243   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1244   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1245   if (IsMSVCCXX || IsCoreCLR)
1246     CatchPadMBB->setIsEHFuncletEntry();
1247 
1248   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1249 }
1250 
1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1252   // Update machine-CFG edge.
1253   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1254   FuncInfo.MBB->addSuccessor(TargetMBB);
1255 
1256   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1257   bool IsSEH = isAsynchronousEHPersonality(Pers);
1258   if (IsSEH) {
1259     // If this is not a fall-through branch or optimizations are switched off,
1260     // emit the branch.
1261     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1262         TM.getOptLevel() == CodeGenOpt::None)
1263       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1264                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1265     return;
1266   }
1267 
1268   // Figure out the funclet membership for the catchret's successor.
1269   // This will be used by the FuncletLayout pass to determine how to order the
1270   // BB's.
1271   // A 'catchret' returns to the outer scope's color.
1272   Value *ParentPad = I.getCatchSwitchParentPad();
1273   const BasicBlock *SuccessorColor;
1274   if (isa<ConstantTokenNone>(ParentPad))
1275     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1276   else
1277     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1278   assert(SuccessorColor && "No parent funclet for catchret!");
1279   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1280   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1281 
1282   // Create the terminator node.
1283   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1284                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1285                             DAG.getBasicBlock(SuccessorColorMBB));
1286   DAG.setRoot(Ret);
1287 }
1288 
1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1290   // Don't emit any special code for the cleanuppad instruction. It just marks
1291   // the start of a funclet.
1292   FuncInfo.MBB->setIsEHFuncletEntry();
1293   FuncInfo.MBB->setIsCleanupFuncletEntry();
1294 }
1295 
1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1297 /// many places it could ultimately go. In the IR, we have a single unwind
1298 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1299 /// This function skips over imaginary basic blocks that hold catchswitch
1300 /// instructions, and finds all the "real" machine
1301 /// basic block destinations. As those destinations may not be successors of
1302 /// EHPadBB, here we also calculate the edge probability to those destinations.
1303 /// The passed-in Prob is the edge probability to EHPadBB.
1304 static void findUnwindDestinations(
1305     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1306     BranchProbability Prob,
1307     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1308         &UnwindDests) {
1309   EHPersonality Personality =
1310     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1311   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1312   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1313 
1314   while (EHPadBB) {
1315     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1316     BasicBlock *NewEHPadBB = nullptr;
1317     if (isa<LandingPadInst>(Pad)) {
1318       // Stop on landingpads. They are not funclets.
1319       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1320       break;
1321     } else if (isa<CleanupPadInst>(Pad)) {
1322       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1323       // personalities.
1324       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1325       UnwindDests.back().first->setIsEHFuncletEntry();
1326       break;
1327     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1328       // Add the catchpad handlers to the possible destinations.
1329       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1330         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1331         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1332         if (IsMSVCCXX || IsCoreCLR)
1333           UnwindDests.back().first->setIsEHFuncletEntry();
1334       }
1335       NewEHPadBB = CatchSwitch->getUnwindDest();
1336     } else {
1337       continue;
1338     }
1339 
1340     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1341     if (BPI && NewEHPadBB)
1342       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1343     EHPadBB = NewEHPadBB;
1344   }
1345 }
1346 
1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1348   // Update successor info.
1349   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1350   auto UnwindDest = I.getUnwindDest();
1351   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1352   BranchProbability UnwindDestProb =
1353       (BPI && UnwindDest)
1354           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1355           : BranchProbability::getZero();
1356   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1357   for (auto &UnwindDest : UnwindDests) {
1358     UnwindDest.first->setIsEHPad();
1359     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1360   }
1361   FuncInfo.MBB->normalizeSuccProbs();
1362 
1363   // Create the terminator node.
1364   SDValue Ret =
1365       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1366   DAG.setRoot(Ret);
1367 }
1368 
1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1370   report_fatal_error("visitCatchSwitch not yet implemented!");
1371 }
1372 
1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1375   auto &DL = DAG.getDataLayout();
1376   SDValue Chain = getControlRoot();
1377   SmallVector<ISD::OutputArg, 8> Outs;
1378   SmallVector<SDValue, 8> OutVals;
1379 
1380   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1381   // lower
1382   //
1383   //   %val = call <ty> @llvm.experimental.deoptimize()
1384   //   ret <ty> %val
1385   //
1386   // differently.
1387   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1388     LowerDeoptimizingReturn();
1389     return;
1390   }
1391 
1392   if (!FuncInfo.CanLowerReturn) {
1393     unsigned DemoteReg = FuncInfo.DemoteRegister;
1394     const Function *F = I.getParent()->getParent();
1395 
1396     // Emit a store of the return value through the virtual register.
1397     // Leave Outs empty so that LowerReturn won't try to load return
1398     // registers the usual way.
1399     SmallVector<EVT, 1> PtrValueVTs;
1400     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1401                     PtrValueVTs);
1402 
1403     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1404                                         DemoteReg, PtrValueVTs[0]);
1405     SDValue RetOp = getValue(I.getOperand(0));
1406 
1407     SmallVector<EVT, 4> ValueVTs;
1408     SmallVector<uint64_t, 4> Offsets;
1409     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1410     unsigned NumValues = ValueVTs.size();
1411 
1412     // An aggregate return value cannot wrap around the address space, so
1413     // offsets to its parts don't wrap either.
1414     SDNodeFlags Flags;
1415     Flags.setNoUnsignedWrap(true);
1416 
1417     SmallVector<SDValue, 4> Chains(NumValues);
1418     for (unsigned i = 0; i != NumValues; ++i) {
1419       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1420                                 RetPtr.getValueType(), RetPtr,
1421                                 DAG.getIntPtrConstant(Offsets[i],
1422                                                       getCurSDLoc()),
1423                                 &Flags);
1424       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1425                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1426                                // FIXME: better loc info would be nice.
1427                                Add, MachinePointerInfo());
1428     }
1429 
1430     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1431                         MVT::Other, Chains);
1432   } else if (I.getNumOperands() != 0) {
1433     SmallVector<EVT, 4> ValueVTs;
1434     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1435     unsigned NumValues = ValueVTs.size();
1436     if (NumValues) {
1437       SDValue RetOp = getValue(I.getOperand(0));
1438 
1439       const Function *F = I.getParent()->getParent();
1440 
1441       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1442       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1443                                           Attribute::SExt))
1444         ExtendKind = ISD::SIGN_EXTEND;
1445       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1446                                                Attribute::ZExt))
1447         ExtendKind = ISD::ZERO_EXTEND;
1448 
1449       LLVMContext &Context = F->getContext();
1450       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1451                                                       Attribute::InReg);
1452 
1453       for (unsigned j = 0; j != NumValues; ++j) {
1454         EVT VT = ValueVTs[j];
1455 
1456         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1457           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1458 
1459         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1460         MVT PartVT = TLI.getRegisterType(Context, VT);
1461         SmallVector<SDValue, 4> Parts(NumParts);
1462         getCopyToParts(DAG, getCurSDLoc(),
1463                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1464                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1465 
1466         // 'inreg' on function refers to return value
1467         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1468         if (RetInReg)
1469           Flags.setInReg();
1470 
1471         // Propagate extension type if any
1472         if (ExtendKind == ISD::SIGN_EXTEND)
1473           Flags.setSExt();
1474         else if (ExtendKind == ISD::ZERO_EXTEND)
1475           Flags.setZExt();
1476 
1477         for (unsigned i = 0; i < NumParts; ++i) {
1478           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1479                                         VT, /*isfixed=*/true, 0, 0));
1480           OutVals.push_back(Parts[i]);
1481         }
1482       }
1483     }
1484   }
1485 
1486   // Push in swifterror virtual register as the last element of Outs. This makes
1487   // sure swifterror virtual register will be returned in the swifterror
1488   // physical register.
1489   const Function *F = I.getParent()->getParent();
1490   if (TLI.supportSwiftError() &&
1491       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1492     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1493     Flags.setSwiftError();
1494     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1495                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1496                                   true /*isfixed*/, 1 /*origidx*/,
1497                                   0 /*partOffs*/));
1498     // Create SDNode for the swifterror virtual register.
1499     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1500                                       EVT(TLI.getPointerTy(DL))));
1501   }
1502 
1503   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1504   CallingConv::ID CallConv =
1505     DAG.getMachineFunction().getFunction()->getCallingConv();
1506   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1507       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1508 
1509   // Verify that the target's LowerReturn behaved as expected.
1510   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1511          "LowerReturn didn't return a valid chain!");
1512 
1513   // Update the DAG with the new chain value resulting from return lowering.
1514   DAG.setRoot(Chain);
1515 }
1516 
1517 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1518 /// created for it, emit nodes to copy the value into the virtual
1519 /// registers.
1520 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1521   // Skip empty types
1522   if (V->getType()->isEmptyTy())
1523     return;
1524 
1525   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1526   if (VMI != FuncInfo.ValueMap.end()) {
1527     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1528     CopyValueToVirtualRegister(V, VMI->second);
1529   }
1530 }
1531 
1532 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1533 /// the current basic block, add it to ValueMap now so that we'll get a
1534 /// CopyTo/FromReg.
1535 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1536   // No need to export constants.
1537   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1538 
1539   // Already exported?
1540   if (FuncInfo.isExportedInst(V)) return;
1541 
1542   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1543   CopyValueToVirtualRegister(V, Reg);
1544 }
1545 
1546 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1547                                                      const BasicBlock *FromBB) {
1548   // The operands of the setcc have to be in this block.  We don't know
1549   // how to export them from some other block.
1550   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1551     // Can export from current BB.
1552     if (VI->getParent() == FromBB)
1553       return true;
1554 
1555     // Is already exported, noop.
1556     return FuncInfo.isExportedInst(V);
1557   }
1558 
1559   // If this is an argument, we can export it if the BB is the entry block or
1560   // if it is already exported.
1561   if (isa<Argument>(V)) {
1562     if (FromBB == &FromBB->getParent()->getEntryBlock())
1563       return true;
1564 
1565     // Otherwise, can only export this if it is already exported.
1566     return FuncInfo.isExportedInst(V);
1567   }
1568 
1569   // Otherwise, constants can always be exported.
1570   return true;
1571 }
1572 
1573 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1574 BranchProbability
1575 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1576                                         const MachineBasicBlock *Dst) const {
1577   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1578   const BasicBlock *SrcBB = Src->getBasicBlock();
1579   const BasicBlock *DstBB = Dst->getBasicBlock();
1580   if (!BPI) {
1581     // If BPI is not available, set the default probability as 1 / N, where N is
1582     // the number of successors.
1583     auto SuccSize = std::max<uint32_t>(
1584         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1585     return BranchProbability(1, SuccSize);
1586   }
1587   return BPI->getEdgeProbability(SrcBB, DstBB);
1588 }
1589 
1590 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1591                                                MachineBasicBlock *Dst,
1592                                                BranchProbability Prob) {
1593   if (!FuncInfo.BPI)
1594     Src->addSuccessorWithoutProb(Dst);
1595   else {
1596     if (Prob.isUnknown())
1597       Prob = getEdgeProbability(Src, Dst);
1598     Src->addSuccessor(Dst, Prob);
1599   }
1600 }
1601 
1602 static bool InBlock(const Value *V, const BasicBlock *BB) {
1603   if (const Instruction *I = dyn_cast<Instruction>(V))
1604     return I->getParent() == BB;
1605   return true;
1606 }
1607 
1608 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1609 /// This function emits a branch and is used at the leaves of an OR or an
1610 /// AND operator tree.
1611 ///
1612 void
1613 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1614                                                   MachineBasicBlock *TBB,
1615                                                   MachineBasicBlock *FBB,
1616                                                   MachineBasicBlock *CurBB,
1617                                                   MachineBasicBlock *SwitchBB,
1618                                                   BranchProbability TProb,
1619                                                   BranchProbability FProb) {
1620   const BasicBlock *BB = CurBB->getBasicBlock();
1621 
1622   // If the leaf of the tree is a comparison, merge the condition into
1623   // the caseblock.
1624   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1625     // The operands of the cmp have to be in this block.  We don't know
1626     // how to export them from some other block.  If this is the first block
1627     // of the sequence, no exporting is needed.
1628     if (CurBB == SwitchBB ||
1629         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1630          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1631       ISD::CondCode Condition;
1632       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1633         Condition = getICmpCondCode(IC->getPredicate());
1634       } else {
1635         const FCmpInst *FC = cast<FCmpInst>(Cond);
1636         Condition = getFCmpCondCode(FC->getPredicate());
1637         if (TM.Options.NoNaNsFPMath)
1638           Condition = getFCmpCodeWithoutNaN(Condition);
1639       }
1640 
1641       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1642                    TBB, FBB, CurBB, TProb, FProb);
1643       SwitchCases.push_back(CB);
1644       return;
1645     }
1646   }
1647 
1648   // Create a CaseBlock record representing this branch.
1649   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1650                nullptr, TBB, FBB, CurBB, TProb, FProb);
1651   SwitchCases.push_back(CB);
1652 }
1653 
1654 /// FindMergedConditions - If Cond is an expression like
1655 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1656                                                MachineBasicBlock *TBB,
1657                                                MachineBasicBlock *FBB,
1658                                                MachineBasicBlock *CurBB,
1659                                                MachineBasicBlock *SwitchBB,
1660                                                Instruction::BinaryOps Opc,
1661                                                BranchProbability TProb,
1662                                                BranchProbability FProb) {
1663   // If this node is not part of the or/and tree, emit it as a branch.
1664   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1665   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1666       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1667       BOp->getParent() != CurBB->getBasicBlock() ||
1668       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1669       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1670     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1671                                  TProb, FProb);
1672     return;
1673   }
1674 
1675   //  Create TmpBB after CurBB.
1676   MachineFunction::iterator BBI(CurBB);
1677   MachineFunction &MF = DAG.getMachineFunction();
1678   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1679   CurBB->getParent()->insert(++BBI, TmpBB);
1680 
1681   if (Opc == Instruction::Or) {
1682     // Codegen X | Y as:
1683     // BB1:
1684     //   jmp_if_X TBB
1685     //   jmp TmpBB
1686     // TmpBB:
1687     //   jmp_if_Y TBB
1688     //   jmp FBB
1689     //
1690 
1691     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1692     // The requirement is that
1693     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1694     //     = TrueProb for original BB.
1695     // Assuming the original probabilities are A and B, one choice is to set
1696     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1697     // A/(1+B) and 2B/(1+B). This choice assumes that
1698     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1699     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1700     // TmpBB, but the math is more complicated.
1701 
1702     auto NewTrueProb = TProb / 2;
1703     auto NewFalseProb = TProb / 2 + FProb;
1704     // Emit the LHS condition.
1705     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1706                          NewTrueProb, NewFalseProb);
1707 
1708     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1709     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1710     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1711     // Emit the RHS condition into TmpBB.
1712     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1713                          Probs[0], Probs[1]);
1714   } else {
1715     assert(Opc == Instruction::And && "Unknown merge op!");
1716     // Codegen X & Y as:
1717     // BB1:
1718     //   jmp_if_X TmpBB
1719     //   jmp FBB
1720     // TmpBB:
1721     //   jmp_if_Y TBB
1722     //   jmp FBB
1723     //
1724     //  This requires creation of TmpBB after CurBB.
1725 
1726     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1727     // The requirement is that
1728     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1729     //     = FalseProb for original BB.
1730     // Assuming the original probabilities are A and B, one choice is to set
1731     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1732     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1733     // TrueProb for BB1 * FalseProb for TmpBB.
1734 
1735     auto NewTrueProb = TProb + FProb / 2;
1736     auto NewFalseProb = FProb / 2;
1737     // Emit the LHS condition.
1738     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1739                          NewTrueProb, NewFalseProb);
1740 
1741     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1742     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1743     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1744     // Emit the RHS condition into TmpBB.
1745     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1746                          Probs[0], Probs[1]);
1747   }
1748 }
1749 
1750 /// If the set of cases should be emitted as a series of branches, return true.
1751 /// If we should emit this as a bunch of and/or'd together conditions, return
1752 /// false.
1753 bool
1754 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1755   if (Cases.size() != 2) return true;
1756 
1757   // If this is two comparisons of the same values or'd or and'd together, they
1758   // will get folded into a single comparison, so don't emit two blocks.
1759   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1760        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1761       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1762        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1763     return false;
1764   }
1765 
1766   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1767   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1768   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1769       Cases[0].CC == Cases[1].CC &&
1770       isa<Constant>(Cases[0].CmpRHS) &&
1771       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1772     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1773       return false;
1774     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1775       return false;
1776   }
1777 
1778   return true;
1779 }
1780 
1781 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1782   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1783 
1784   // Update machine-CFG edges.
1785   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1786 
1787   if (I.isUnconditional()) {
1788     // Update machine-CFG edges.
1789     BrMBB->addSuccessor(Succ0MBB);
1790 
1791     // If this is not a fall-through branch or optimizations are switched off,
1792     // emit the branch.
1793     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1794       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1795                               MVT::Other, getControlRoot(),
1796                               DAG.getBasicBlock(Succ0MBB)));
1797 
1798     return;
1799   }
1800 
1801   // If this condition is one of the special cases we handle, do special stuff
1802   // now.
1803   const Value *CondVal = I.getCondition();
1804   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1805 
1806   // If this is a series of conditions that are or'd or and'd together, emit
1807   // this as a sequence of branches instead of setcc's with and/or operations.
1808   // As long as jumps are not expensive, this should improve performance.
1809   // For example, instead of something like:
1810   //     cmp A, B
1811   //     C = seteq
1812   //     cmp D, E
1813   //     F = setle
1814   //     or C, F
1815   //     jnz foo
1816   // Emit:
1817   //     cmp A, B
1818   //     je foo
1819   //     cmp D, E
1820   //     jle foo
1821   //
1822   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1823     Instruction::BinaryOps Opcode = BOp->getOpcode();
1824     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1825         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1826         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1827       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1828                            Opcode,
1829                            getEdgeProbability(BrMBB, Succ0MBB),
1830                            getEdgeProbability(BrMBB, Succ1MBB));
1831       // If the compares in later blocks need to use values not currently
1832       // exported from this block, export them now.  This block should always
1833       // be the first entry.
1834       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1835 
1836       // Allow some cases to be rejected.
1837       if (ShouldEmitAsBranches(SwitchCases)) {
1838         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1839           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1840           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1841         }
1842 
1843         // Emit the branch for this block.
1844         visitSwitchCase(SwitchCases[0], BrMBB);
1845         SwitchCases.erase(SwitchCases.begin());
1846         return;
1847       }
1848 
1849       // Okay, we decided not to do this, remove any inserted MBB's and clear
1850       // SwitchCases.
1851       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1852         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1853 
1854       SwitchCases.clear();
1855     }
1856   }
1857 
1858   // Create a CaseBlock record representing this branch.
1859   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1860                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1861 
1862   // Use visitSwitchCase to actually insert the fast branch sequence for this
1863   // cond branch.
1864   visitSwitchCase(CB, BrMBB);
1865 }
1866 
1867 /// visitSwitchCase - Emits the necessary code to represent a single node in
1868 /// the binary search tree resulting from lowering a switch instruction.
1869 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1870                                           MachineBasicBlock *SwitchBB) {
1871   SDValue Cond;
1872   SDValue CondLHS = getValue(CB.CmpLHS);
1873   SDLoc dl = getCurSDLoc();
1874 
1875   // Build the setcc now.
1876   if (!CB.CmpMHS) {
1877     // Fold "(X == true)" to X and "(X == false)" to !X to
1878     // handle common cases produced by branch lowering.
1879     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1880         CB.CC == ISD::SETEQ)
1881       Cond = CondLHS;
1882     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1883              CB.CC == ISD::SETEQ) {
1884       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1885       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1886     } else
1887       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1888   } else {
1889     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1890 
1891     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1892     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1893 
1894     SDValue CmpOp = getValue(CB.CmpMHS);
1895     EVT VT = CmpOp.getValueType();
1896 
1897     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1898       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1899                           ISD::SETLE);
1900     } else {
1901       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1902                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1903       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1904                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1905     }
1906   }
1907 
1908   // Update successor info
1909   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1910   // TrueBB and FalseBB are always different unless the incoming IR is
1911   // degenerate. This only happens when running llc on weird IR.
1912   if (CB.TrueBB != CB.FalseBB)
1913     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1914   SwitchBB->normalizeSuccProbs();
1915 
1916   // If the lhs block is the next block, invert the condition so that we can
1917   // fall through to the lhs instead of the rhs block.
1918   if (CB.TrueBB == NextBlock(SwitchBB)) {
1919     std::swap(CB.TrueBB, CB.FalseBB);
1920     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1921     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1922   }
1923 
1924   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1925                                MVT::Other, getControlRoot(), Cond,
1926                                DAG.getBasicBlock(CB.TrueBB));
1927 
1928   // Insert the false branch. Do this even if it's a fall through branch,
1929   // this makes it easier to do DAG optimizations which require inverting
1930   // the branch condition.
1931   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1932                        DAG.getBasicBlock(CB.FalseBB));
1933 
1934   DAG.setRoot(BrCond);
1935 }
1936 
1937 /// visitJumpTable - Emit JumpTable node in the current MBB
1938 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1939   // Emit the code for the jump table
1940   assert(JT.Reg != -1U && "Should lower JT Header first!");
1941   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1942   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1943                                      JT.Reg, PTy);
1944   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1945   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1946                                     MVT::Other, Index.getValue(1),
1947                                     Table, Index);
1948   DAG.setRoot(BrJumpTable);
1949 }
1950 
1951 /// visitJumpTableHeader - This function emits necessary code to produce index
1952 /// in the JumpTable from switch case.
1953 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1954                                                JumpTableHeader &JTH,
1955                                                MachineBasicBlock *SwitchBB) {
1956   SDLoc dl = getCurSDLoc();
1957 
1958   // Subtract the lowest switch case value from the value being switched on and
1959   // conditional branch to default mbb if the result is greater than the
1960   // difference between smallest and largest cases.
1961   SDValue SwitchOp = getValue(JTH.SValue);
1962   EVT VT = SwitchOp.getValueType();
1963   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1964                             DAG.getConstant(JTH.First, dl, VT));
1965 
1966   // The SDNode we just created, which holds the value being switched on minus
1967   // the smallest case value, needs to be copied to a virtual register so it
1968   // can be used as an index into the jump table in a subsequent basic block.
1969   // This value may be smaller or larger than the target's pointer type, and
1970   // therefore require extension or truncating.
1971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1972   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1973 
1974   unsigned JumpTableReg =
1975       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1976   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1977                                     JumpTableReg, SwitchOp);
1978   JT.Reg = JumpTableReg;
1979 
1980   // Emit the range check for the jump table, and branch to the default block
1981   // for the switch statement if the value being switched on exceeds the largest
1982   // case in the switch.
1983   SDValue CMP = DAG.getSetCC(
1984       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1985                                  Sub.getValueType()),
1986       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1987 
1988   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1989                                MVT::Other, CopyTo, CMP,
1990                                DAG.getBasicBlock(JT.Default));
1991 
1992   // Avoid emitting unnecessary branches to the next block.
1993   if (JT.MBB != NextBlock(SwitchBB))
1994     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1995                          DAG.getBasicBlock(JT.MBB));
1996 
1997   DAG.setRoot(BrCond);
1998 }
1999 
2000 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2001 /// variable if there exists one.
2002 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2003                                  SDValue &Chain) {
2004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2005   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2006   MachineFunction &MF = DAG.getMachineFunction();
2007   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2008   MachineSDNode *Node =
2009       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2010   if (Global) {
2011     MachinePointerInfo MPInfo(Global);
2012     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2013     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
2014     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2015                                        DAG.getEVTAlignment(PtrTy));
2016     Node->setMemRefs(MemRefs, MemRefs + 1);
2017   }
2018   return SDValue(Node, 0);
2019 }
2020 
2021 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2022 /// tail spliced into a stack protector check success bb.
2023 ///
2024 /// For a high level explanation of how this fits into the stack protector
2025 /// generation see the comment on the declaration of class
2026 /// StackProtectorDescriptor.
2027 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2028                                                   MachineBasicBlock *ParentBB) {
2029 
2030   // First create the loads to the guard/stack slot for the comparison.
2031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2032   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2033 
2034   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2035   int FI = MFI.getStackProtectorIndex();
2036 
2037   SDValue Guard;
2038   SDLoc dl = getCurSDLoc();
2039   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2040   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2041   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2042 
2043   // Generate code to load the content of the guard slot.
2044   SDValue StackSlot = DAG.getLoad(
2045       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2046       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2047       MachineMemOperand::MOVolatile);
2048 
2049   // Retrieve guard check function, nullptr if instrumentation is inlined.
2050   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2051     // The target provides a guard check function to validate the guard value.
2052     // Generate a call to that function with the content of the guard slot as
2053     // argument.
2054     auto *Fn = cast<Function>(GuardCheck);
2055     FunctionType *FnTy = Fn->getFunctionType();
2056     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2057 
2058     TargetLowering::ArgListTy Args;
2059     TargetLowering::ArgListEntry Entry;
2060     Entry.Node = StackSlot;
2061     Entry.Ty = FnTy->getParamType(0);
2062     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2063       Entry.isInReg = true;
2064     Args.push_back(Entry);
2065 
2066     TargetLowering::CallLoweringInfo CLI(DAG);
2067     CLI.setDebugLoc(getCurSDLoc())
2068       .setChain(DAG.getEntryNode())
2069       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2070                  getValue(GuardCheck), std::move(Args));
2071 
2072     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2073     DAG.setRoot(Result.second);
2074     return;
2075   }
2076 
2077   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2078   // Otherwise, emit a volatile load to retrieve the stack guard value.
2079   SDValue Chain = DAG.getEntryNode();
2080   if (TLI.useLoadStackGuardNode()) {
2081     Guard = getLoadStackGuard(DAG, dl, Chain);
2082   } else {
2083     const Value *IRGuard = TLI.getSDagStackGuard(M);
2084     SDValue GuardPtr = getValue(IRGuard);
2085 
2086     Guard =
2087         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2088                     Align, MachineMemOperand::MOVolatile);
2089   }
2090 
2091   // Perform the comparison via a subtract/getsetcc.
2092   EVT VT = Guard.getValueType();
2093   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2094 
2095   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2096                                                         *DAG.getContext(),
2097                                                         Sub.getValueType()),
2098                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2099 
2100   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2101   // branch to failure MBB.
2102   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2103                                MVT::Other, StackSlot.getOperand(0),
2104                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2105   // Otherwise branch to success MBB.
2106   SDValue Br = DAG.getNode(ISD::BR, dl,
2107                            MVT::Other, BrCond,
2108                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2109 
2110   DAG.setRoot(Br);
2111 }
2112 
2113 /// Codegen the failure basic block for a stack protector check.
2114 ///
2115 /// A failure stack protector machine basic block consists simply of a call to
2116 /// __stack_chk_fail().
2117 ///
2118 /// For a high level explanation of how this fits into the stack protector
2119 /// generation see the comment on the declaration of class
2120 /// StackProtectorDescriptor.
2121 void
2122 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2124   SDValue Chain =
2125       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2126                       None, false, getCurSDLoc(), false, false).second;
2127   DAG.setRoot(Chain);
2128 }
2129 
2130 /// visitBitTestHeader - This function emits necessary code to produce value
2131 /// suitable for "bit tests"
2132 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2133                                              MachineBasicBlock *SwitchBB) {
2134   SDLoc dl = getCurSDLoc();
2135 
2136   // Subtract the minimum value
2137   SDValue SwitchOp = getValue(B.SValue);
2138   EVT VT = SwitchOp.getValueType();
2139   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2140                             DAG.getConstant(B.First, dl, VT));
2141 
2142   // Check range
2143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2144   SDValue RangeCmp = DAG.getSetCC(
2145       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2146                                  Sub.getValueType()),
2147       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2148 
2149   // Determine the type of the test operands.
2150   bool UsePtrType = false;
2151   if (!TLI.isTypeLegal(VT))
2152     UsePtrType = true;
2153   else {
2154     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2155       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2156         // Switch table case range are encoded into series of masks.
2157         // Just use pointer type, it's guaranteed to fit.
2158         UsePtrType = true;
2159         break;
2160       }
2161   }
2162   if (UsePtrType) {
2163     VT = TLI.getPointerTy(DAG.getDataLayout());
2164     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2165   }
2166 
2167   B.RegVT = VT.getSimpleVT();
2168   B.Reg = FuncInfo.CreateReg(B.RegVT);
2169   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2170 
2171   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2172 
2173   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2174   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2175   SwitchBB->normalizeSuccProbs();
2176 
2177   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2178                                 MVT::Other, CopyTo, RangeCmp,
2179                                 DAG.getBasicBlock(B.Default));
2180 
2181   // Avoid emitting unnecessary branches to the next block.
2182   if (MBB != NextBlock(SwitchBB))
2183     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2184                           DAG.getBasicBlock(MBB));
2185 
2186   DAG.setRoot(BrRange);
2187 }
2188 
2189 /// visitBitTestCase - this function produces one "bit test"
2190 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2191                                            MachineBasicBlock* NextMBB,
2192                                            BranchProbability BranchProbToNext,
2193                                            unsigned Reg,
2194                                            BitTestCase &B,
2195                                            MachineBasicBlock *SwitchBB) {
2196   SDLoc dl = getCurSDLoc();
2197   MVT VT = BB.RegVT;
2198   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2199   SDValue Cmp;
2200   unsigned PopCount = countPopulation(B.Mask);
2201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2202   if (PopCount == 1) {
2203     // Testing for a single bit; just compare the shift count with what it
2204     // would need to be to shift a 1 bit in that position.
2205     Cmp = DAG.getSetCC(
2206         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2207         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2208         ISD::SETEQ);
2209   } else if (PopCount == BB.Range) {
2210     // There is only one zero bit in the range, test for it directly.
2211     Cmp = DAG.getSetCC(
2212         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2213         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2214         ISD::SETNE);
2215   } else {
2216     // Make desired shift
2217     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2218                                     DAG.getConstant(1, dl, VT), ShiftOp);
2219 
2220     // Emit bit tests and jumps
2221     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2222                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2223     Cmp = DAG.getSetCC(
2224         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2225         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2226   }
2227 
2228   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2229   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2230   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2231   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2232   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2233   // one as they are relative probabilities (and thus work more like weights),
2234   // and hence we need to normalize them to let the sum of them become one.
2235   SwitchBB->normalizeSuccProbs();
2236 
2237   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2238                               MVT::Other, getControlRoot(),
2239                               Cmp, DAG.getBasicBlock(B.TargetBB));
2240 
2241   // Avoid emitting unnecessary branches to the next block.
2242   if (NextMBB != NextBlock(SwitchBB))
2243     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2244                         DAG.getBasicBlock(NextMBB));
2245 
2246   DAG.setRoot(BrAnd);
2247 }
2248 
2249 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2250   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2251 
2252   // Retrieve successors. Look through artificial IR level blocks like
2253   // catchswitch for successors.
2254   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2255   const BasicBlock *EHPadBB = I.getSuccessor(1);
2256 
2257   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2258   // have to do anything here to lower funclet bundles.
2259   assert(!I.hasOperandBundlesOtherThan(
2260              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2261          "Cannot lower invokes with arbitrary operand bundles yet!");
2262 
2263   const Value *Callee(I.getCalledValue());
2264   const Function *Fn = dyn_cast<Function>(Callee);
2265   if (isa<InlineAsm>(Callee))
2266     visitInlineAsm(&I);
2267   else if (Fn && Fn->isIntrinsic()) {
2268     switch (Fn->getIntrinsicID()) {
2269     default:
2270       llvm_unreachable("Cannot invoke this intrinsic");
2271     case Intrinsic::donothing:
2272       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2273       break;
2274     case Intrinsic::experimental_patchpoint_void:
2275     case Intrinsic::experimental_patchpoint_i64:
2276       visitPatchpoint(&I, EHPadBB);
2277       break;
2278     case Intrinsic::experimental_gc_statepoint:
2279       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2280       break;
2281     }
2282   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2283     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2284     // Eventually we will support lowering the @llvm.experimental.deoptimize
2285     // intrinsic, and right now there are no plans to support other intrinsics
2286     // with deopt state.
2287     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2288   } else {
2289     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2290   }
2291 
2292   // If the value of the invoke is used outside of its defining block, make it
2293   // available as a virtual register.
2294   // We already took care of the exported value for the statepoint instruction
2295   // during call to the LowerStatepoint.
2296   if (!isStatepoint(I)) {
2297     CopyToExportRegsIfNeeded(&I);
2298   }
2299 
2300   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2301   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2302   BranchProbability EHPadBBProb =
2303       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2304           : BranchProbability::getZero();
2305   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2306 
2307   // Update successor info.
2308   addSuccessorWithProb(InvokeMBB, Return);
2309   for (auto &UnwindDest : UnwindDests) {
2310     UnwindDest.first->setIsEHPad();
2311     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2312   }
2313   InvokeMBB->normalizeSuccProbs();
2314 
2315   // Drop into normal successor.
2316   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2317                           MVT::Other, getControlRoot(),
2318                           DAG.getBasicBlock(Return)));
2319 }
2320 
2321 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2322   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2323 }
2324 
2325 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2326   assert(FuncInfo.MBB->isEHPad() &&
2327          "Call to landingpad not in landing pad!");
2328 
2329   MachineBasicBlock *MBB = FuncInfo.MBB;
2330   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2331   AddLandingPadInfo(LP, MMI, MBB);
2332 
2333   // If there aren't registers to copy the values into (e.g., during SjLj
2334   // exceptions), then don't bother to create these DAG nodes.
2335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2336   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2337   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2338       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2339     return;
2340 
2341   // If landingpad's return type is token type, we don't create DAG nodes
2342   // for its exception pointer and selector value. The extraction of exception
2343   // pointer or selector value from token type landingpads is not currently
2344   // supported.
2345   if (LP.getType()->isTokenTy())
2346     return;
2347 
2348   SmallVector<EVT, 2> ValueVTs;
2349   SDLoc dl = getCurSDLoc();
2350   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2351   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2352 
2353   // Get the two live-in registers as SDValues. The physregs have already been
2354   // copied into virtual registers.
2355   SDValue Ops[2];
2356   if (FuncInfo.ExceptionPointerVirtReg) {
2357     Ops[0] = DAG.getZExtOrTrunc(
2358         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2359                            FuncInfo.ExceptionPointerVirtReg,
2360                            TLI.getPointerTy(DAG.getDataLayout())),
2361         dl, ValueVTs[0]);
2362   } else {
2363     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2364   }
2365   Ops[1] = DAG.getZExtOrTrunc(
2366       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2367                          FuncInfo.ExceptionSelectorVirtReg,
2368                          TLI.getPointerTy(DAG.getDataLayout())),
2369       dl, ValueVTs[1]);
2370 
2371   // Merge into one.
2372   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2373                             DAG.getVTList(ValueVTs), Ops);
2374   setValue(&LP, Res);
2375 }
2376 
2377 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2378 #ifndef NDEBUG
2379   for (const CaseCluster &CC : Clusters)
2380     assert(CC.Low == CC.High && "Input clusters must be single-case");
2381 #endif
2382 
2383   std::sort(Clusters.begin(), Clusters.end(),
2384             [](const CaseCluster &a, const CaseCluster &b) {
2385     return a.Low->getValue().slt(b.Low->getValue());
2386   });
2387 
2388   // Merge adjacent clusters with the same destination.
2389   const unsigned N = Clusters.size();
2390   unsigned DstIndex = 0;
2391   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2392     CaseCluster &CC = Clusters[SrcIndex];
2393     const ConstantInt *CaseVal = CC.Low;
2394     MachineBasicBlock *Succ = CC.MBB;
2395 
2396     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2397         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2398       // If this case has the same successor and is a neighbour, merge it into
2399       // the previous cluster.
2400       Clusters[DstIndex - 1].High = CaseVal;
2401       Clusters[DstIndex - 1].Prob += CC.Prob;
2402     } else {
2403       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2404                    sizeof(Clusters[SrcIndex]));
2405     }
2406   }
2407   Clusters.resize(DstIndex);
2408 }
2409 
2410 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2411                                            MachineBasicBlock *Last) {
2412   // Update JTCases.
2413   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2414     if (JTCases[i].first.HeaderBB == First)
2415       JTCases[i].first.HeaderBB = Last;
2416 
2417   // Update BitTestCases.
2418   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2419     if (BitTestCases[i].Parent == First)
2420       BitTestCases[i].Parent = Last;
2421 }
2422 
2423 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2424   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2425 
2426   // Update machine-CFG edges with unique successors.
2427   SmallSet<BasicBlock*, 32> Done;
2428   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2429     BasicBlock *BB = I.getSuccessor(i);
2430     bool Inserted = Done.insert(BB).second;
2431     if (!Inserted)
2432         continue;
2433 
2434     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2435     addSuccessorWithProb(IndirectBrMBB, Succ);
2436   }
2437   IndirectBrMBB->normalizeSuccProbs();
2438 
2439   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2440                           MVT::Other, getControlRoot(),
2441                           getValue(I.getAddress())));
2442 }
2443 
2444 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2445   if (DAG.getTarget().Options.TrapUnreachable)
2446     DAG.setRoot(
2447         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2448 }
2449 
2450 void SelectionDAGBuilder::visitFSub(const User &I) {
2451   // -0.0 - X --> fneg
2452   Type *Ty = I.getType();
2453   if (isa<Constant>(I.getOperand(0)) &&
2454       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2455     SDValue Op2 = getValue(I.getOperand(1));
2456     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2457                              Op2.getValueType(), Op2));
2458     return;
2459   }
2460 
2461   visitBinary(I, ISD::FSUB);
2462 }
2463 
2464 /// Checks if the given instruction performs a vector reduction, in which case
2465 /// we have the freedom to alter the elements in the result as long as the
2466 /// reduction of them stays unchanged.
2467 static bool isVectorReductionOp(const User *I) {
2468   const Instruction *Inst = dyn_cast<Instruction>(I);
2469   if (!Inst || !Inst->getType()->isVectorTy())
2470     return false;
2471 
2472   auto OpCode = Inst->getOpcode();
2473   switch (OpCode) {
2474   case Instruction::Add:
2475   case Instruction::Mul:
2476   case Instruction::And:
2477   case Instruction::Or:
2478   case Instruction::Xor:
2479     break;
2480   case Instruction::FAdd:
2481   case Instruction::FMul:
2482     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2483       if (FPOp->getFastMathFlags().unsafeAlgebra())
2484         break;
2485     LLVM_FALLTHROUGH;
2486   default:
2487     return false;
2488   }
2489 
2490   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2491   unsigned ElemNumToReduce = ElemNum;
2492 
2493   // Do DFS search on the def-use chain from the given instruction. We only
2494   // allow four kinds of operations during the search until we reach the
2495   // instruction that extracts the first element from the vector:
2496   //
2497   //   1. The reduction operation of the same opcode as the given instruction.
2498   //
2499   //   2. PHI node.
2500   //
2501   //   3. ShuffleVector instruction together with a reduction operation that
2502   //      does a partial reduction.
2503   //
2504   //   4. ExtractElement that extracts the first element from the vector, and we
2505   //      stop searching the def-use chain here.
2506   //
2507   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2508   // from 1-3 to the stack to continue the DFS. The given instruction is not
2509   // a reduction operation if we meet any other instructions other than those
2510   // listed above.
2511 
2512   SmallVector<const User *, 16> UsersToVisit{Inst};
2513   SmallPtrSet<const User *, 16> Visited;
2514   bool ReduxExtracted = false;
2515 
2516   while (!UsersToVisit.empty()) {
2517     auto User = UsersToVisit.back();
2518     UsersToVisit.pop_back();
2519     if (!Visited.insert(User).second)
2520       continue;
2521 
2522     for (const auto &U : User->users()) {
2523       auto Inst = dyn_cast<Instruction>(U);
2524       if (!Inst)
2525         return false;
2526 
2527       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2528         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2529           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2530             return false;
2531         UsersToVisit.push_back(U);
2532       } else if (const ShuffleVectorInst *ShufInst =
2533                      dyn_cast<ShuffleVectorInst>(U)) {
2534         // Detect the following pattern: A ShuffleVector instruction together
2535         // with a reduction that do partial reduction on the first and second
2536         // ElemNumToReduce / 2 elements, and store the result in
2537         // ElemNumToReduce / 2 elements in another vector.
2538 
2539         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2540         if (ResultElements < ElemNum)
2541           return false;
2542 
2543         if (ElemNumToReduce == 1)
2544           return false;
2545         if (!isa<UndefValue>(U->getOperand(1)))
2546           return false;
2547         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2548           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2549             return false;
2550         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2551           if (ShufInst->getMaskValue(i) != -1)
2552             return false;
2553 
2554         // There is only one user of this ShuffleVector instruction, which
2555         // must be a reduction operation.
2556         if (!U->hasOneUse())
2557           return false;
2558 
2559         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2560         if (!U2 || U2->getOpcode() != OpCode)
2561           return false;
2562 
2563         // Check operands of the reduction operation.
2564         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2565             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2566           UsersToVisit.push_back(U2);
2567           ElemNumToReduce /= 2;
2568         } else
2569           return false;
2570       } else if (isa<ExtractElementInst>(U)) {
2571         // At this moment we should have reduced all elements in the vector.
2572         if (ElemNumToReduce != 1)
2573           return false;
2574 
2575         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2576         if (!Val || Val->getZExtValue() != 0)
2577           return false;
2578 
2579         ReduxExtracted = true;
2580       } else
2581         return false;
2582     }
2583   }
2584   return ReduxExtracted;
2585 }
2586 
2587 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2588   SDValue Op1 = getValue(I.getOperand(0));
2589   SDValue Op2 = getValue(I.getOperand(1));
2590 
2591   bool nuw = false;
2592   bool nsw = false;
2593   bool exact = false;
2594   bool vec_redux = false;
2595   FastMathFlags FMF;
2596 
2597   if (const OverflowingBinaryOperator *OFBinOp =
2598           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2599     nuw = OFBinOp->hasNoUnsignedWrap();
2600     nsw = OFBinOp->hasNoSignedWrap();
2601   }
2602   if (const PossiblyExactOperator *ExactOp =
2603           dyn_cast<const PossiblyExactOperator>(&I))
2604     exact = ExactOp->isExact();
2605   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2606     FMF = FPOp->getFastMathFlags();
2607 
2608   if (isVectorReductionOp(&I)) {
2609     vec_redux = true;
2610     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2611   }
2612 
2613   SDNodeFlags Flags;
2614   Flags.setExact(exact);
2615   Flags.setNoSignedWrap(nsw);
2616   Flags.setNoUnsignedWrap(nuw);
2617   Flags.setVectorReduction(vec_redux);
2618   if (EnableFMFInDAG) {
2619     Flags.setAllowReciprocal(FMF.allowReciprocal());
2620     Flags.setNoInfs(FMF.noInfs());
2621     Flags.setNoNaNs(FMF.noNaNs());
2622     Flags.setNoSignedZeros(FMF.noSignedZeros());
2623     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2624   }
2625   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2626                                      Op1, Op2, &Flags);
2627   setValue(&I, BinNodeValue);
2628 }
2629 
2630 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2631   SDValue Op1 = getValue(I.getOperand(0));
2632   SDValue Op2 = getValue(I.getOperand(1));
2633 
2634   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2635       Op2.getValueType(), DAG.getDataLayout());
2636 
2637   // Coerce the shift amount to the right type if we can.
2638   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2639     unsigned ShiftSize = ShiftTy.getSizeInBits();
2640     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2641     SDLoc DL = getCurSDLoc();
2642 
2643     // If the operand is smaller than the shift count type, promote it.
2644     if (ShiftSize > Op2Size)
2645       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2646 
2647     // If the operand is larger than the shift count type but the shift
2648     // count type has enough bits to represent any shift value, truncate
2649     // it now. This is a common case and it exposes the truncate to
2650     // optimization early.
2651     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2652       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2653     // Otherwise we'll need to temporarily settle for some other convenient
2654     // type.  Type legalization will make adjustments once the shiftee is split.
2655     else
2656       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2657   }
2658 
2659   bool nuw = false;
2660   bool nsw = false;
2661   bool exact = false;
2662 
2663   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2664 
2665     if (const OverflowingBinaryOperator *OFBinOp =
2666             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2667       nuw = OFBinOp->hasNoUnsignedWrap();
2668       nsw = OFBinOp->hasNoSignedWrap();
2669     }
2670     if (const PossiblyExactOperator *ExactOp =
2671             dyn_cast<const PossiblyExactOperator>(&I))
2672       exact = ExactOp->isExact();
2673   }
2674   SDNodeFlags Flags;
2675   Flags.setExact(exact);
2676   Flags.setNoSignedWrap(nsw);
2677   Flags.setNoUnsignedWrap(nuw);
2678   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2679                             &Flags);
2680   setValue(&I, Res);
2681 }
2682 
2683 void SelectionDAGBuilder::visitSDiv(const User &I) {
2684   SDValue Op1 = getValue(I.getOperand(0));
2685   SDValue Op2 = getValue(I.getOperand(1));
2686 
2687   SDNodeFlags Flags;
2688   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2689                  cast<PossiblyExactOperator>(&I)->isExact());
2690   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2691                            Op2, &Flags));
2692 }
2693 
2694 void SelectionDAGBuilder::visitICmp(const User &I) {
2695   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2696   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2697     predicate = IC->getPredicate();
2698   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2699     predicate = ICmpInst::Predicate(IC->getPredicate());
2700   SDValue Op1 = getValue(I.getOperand(0));
2701   SDValue Op2 = getValue(I.getOperand(1));
2702   ISD::CondCode Opcode = getICmpCondCode(predicate);
2703 
2704   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2705                                                         I.getType());
2706   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2707 }
2708 
2709 void SelectionDAGBuilder::visitFCmp(const User &I) {
2710   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2711   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2712     predicate = FC->getPredicate();
2713   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2714     predicate = FCmpInst::Predicate(FC->getPredicate());
2715   SDValue Op1 = getValue(I.getOperand(0));
2716   SDValue Op2 = getValue(I.getOperand(1));
2717   ISD::CondCode Condition = getFCmpCondCode(predicate);
2718 
2719   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2720   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2721   // further optimization, but currently FMF is only applicable to binary nodes.
2722   if (TM.Options.NoNaNsFPMath)
2723     Condition = getFCmpCodeWithoutNaN(Condition);
2724   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2725                                                         I.getType());
2726   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2727 }
2728 
2729 // Check if the condition of the select has one use or two users that are both
2730 // selects with the same condition.
2731 static bool hasOnlySelectUsers(const Value *Cond) {
2732   return all_of(Cond->users(), [](const Value *V) {
2733     return isa<SelectInst>(V);
2734   });
2735 }
2736 
2737 void SelectionDAGBuilder::visitSelect(const User &I) {
2738   SmallVector<EVT, 4> ValueVTs;
2739   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2740                   ValueVTs);
2741   unsigned NumValues = ValueVTs.size();
2742   if (NumValues == 0) return;
2743 
2744   SmallVector<SDValue, 4> Values(NumValues);
2745   SDValue Cond     = getValue(I.getOperand(0));
2746   SDValue LHSVal   = getValue(I.getOperand(1));
2747   SDValue RHSVal   = getValue(I.getOperand(2));
2748   auto BaseOps = {Cond};
2749   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2750     ISD::VSELECT : ISD::SELECT;
2751 
2752   // Min/max matching is only viable if all output VTs are the same.
2753   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2754     EVT VT = ValueVTs[0];
2755     LLVMContext &Ctx = *DAG.getContext();
2756     auto &TLI = DAG.getTargetLoweringInfo();
2757 
2758     // We care about the legality of the operation after it has been type
2759     // legalized.
2760     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2761            VT != TLI.getTypeToTransformTo(Ctx, VT))
2762       VT = TLI.getTypeToTransformTo(Ctx, VT);
2763 
2764     // If the vselect is legal, assume we want to leave this as a vector setcc +
2765     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2766     // min/max is legal on the scalar type.
2767     bool UseScalarMinMax = VT.isVector() &&
2768       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2769 
2770     Value *LHS, *RHS;
2771     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2772     ISD::NodeType Opc = ISD::DELETED_NODE;
2773     switch (SPR.Flavor) {
2774     case SPF_UMAX:    Opc = ISD::UMAX; break;
2775     case SPF_UMIN:    Opc = ISD::UMIN; break;
2776     case SPF_SMAX:    Opc = ISD::SMAX; break;
2777     case SPF_SMIN:    Opc = ISD::SMIN; break;
2778     case SPF_FMINNUM:
2779       switch (SPR.NaNBehavior) {
2780       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2781       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2782       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2783       case SPNB_RETURNS_ANY: {
2784         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2785           Opc = ISD::FMINNUM;
2786         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2787           Opc = ISD::FMINNAN;
2788         else if (UseScalarMinMax)
2789           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2790             ISD::FMINNUM : ISD::FMINNAN;
2791         break;
2792       }
2793       }
2794       break;
2795     case SPF_FMAXNUM:
2796       switch (SPR.NaNBehavior) {
2797       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2798       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2799       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2800       case SPNB_RETURNS_ANY:
2801 
2802         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2803           Opc = ISD::FMAXNUM;
2804         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2805           Opc = ISD::FMAXNAN;
2806         else if (UseScalarMinMax)
2807           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2808             ISD::FMAXNUM : ISD::FMAXNAN;
2809         break;
2810       }
2811       break;
2812     default: break;
2813     }
2814 
2815     if (Opc != ISD::DELETED_NODE &&
2816         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2817          (UseScalarMinMax &&
2818           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2819         // If the underlying comparison instruction is used by any other
2820         // instruction, the consumed instructions won't be destroyed, so it is
2821         // not profitable to convert to a min/max.
2822         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2823       OpCode = Opc;
2824       LHSVal = getValue(LHS);
2825       RHSVal = getValue(RHS);
2826       BaseOps = {};
2827     }
2828   }
2829 
2830   for (unsigned i = 0; i != NumValues; ++i) {
2831     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2832     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2833     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2834     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2835                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2836                             Ops);
2837   }
2838 
2839   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2840                            DAG.getVTList(ValueVTs), Values));
2841 }
2842 
2843 void SelectionDAGBuilder::visitTrunc(const User &I) {
2844   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2845   SDValue N = getValue(I.getOperand(0));
2846   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2847                                                         I.getType());
2848   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2849 }
2850 
2851 void SelectionDAGBuilder::visitZExt(const User &I) {
2852   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2853   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2854   SDValue N = getValue(I.getOperand(0));
2855   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2856                                                         I.getType());
2857   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2858 }
2859 
2860 void SelectionDAGBuilder::visitSExt(const User &I) {
2861   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2862   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2863   SDValue N = getValue(I.getOperand(0));
2864   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2865                                                         I.getType());
2866   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2867 }
2868 
2869 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2870   // FPTrunc is never a no-op cast, no need to check
2871   SDValue N = getValue(I.getOperand(0));
2872   SDLoc dl = getCurSDLoc();
2873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2874   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2875   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2876                            DAG.getTargetConstant(
2877                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2878 }
2879 
2880 void SelectionDAGBuilder::visitFPExt(const User &I) {
2881   // FPExt is never a no-op cast, no need to check
2882   SDValue N = getValue(I.getOperand(0));
2883   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2884                                                         I.getType());
2885   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2886 }
2887 
2888 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2889   // FPToUI is never a no-op cast, no need to check
2890   SDValue N = getValue(I.getOperand(0));
2891   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2892                                                         I.getType());
2893   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2894 }
2895 
2896 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2897   // FPToSI is never a no-op cast, no need to check
2898   SDValue N = getValue(I.getOperand(0));
2899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2900                                                         I.getType());
2901   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2902 }
2903 
2904 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2905   // UIToFP is never a no-op cast, no need to check
2906   SDValue N = getValue(I.getOperand(0));
2907   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2908                                                         I.getType());
2909   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2910 }
2911 
2912 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2913   // SIToFP is never a no-op cast, no need to check
2914   SDValue N = getValue(I.getOperand(0));
2915   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2916                                                         I.getType());
2917   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2918 }
2919 
2920 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2921   // What to do depends on the size of the integer and the size of the pointer.
2922   // We can either truncate, zero extend, or no-op, accordingly.
2923   SDValue N = getValue(I.getOperand(0));
2924   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2925                                                         I.getType());
2926   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2927 }
2928 
2929 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2930   // What to do depends on the size of the integer and the size of the pointer.
2931   // We can either truncate, zero extend, or no-op, accordingly.
2932   SDValue N = getValue(I.getOperand(0));
2933   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2934                                                         I.getType());
2935   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2936 }
2937 
2938 void SelectionDAGBuilder::visitBitCast(const User &I) {
2939   SDValue N = getValue(I.getOperand(0));
2940   SDLoc dl = getCurSDLoc();
2941   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2942                                                         I.getType());
2943 
2944   // BitCast assures us that source and destination are the same size so this is
2945   // either a BITCAST or a no-op.
2946   if (DestVT != N.getValueType())
2947     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2948                              DestVT, N)); // convert types.
2949   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2950   // might fold any kind of constant expression to an integer constant and that
2951   // is not what we are looking for. Only regcognize a bitcast of a genuine
2952   // constant integer as an opaque constant.
2953   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2954     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2955                                  /*isOpaque*/true));
2956   else
2957     setValue(&I, N);            // noop cast.
2958 }
2959 
2960 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2961   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2962   const Value *SV = I.getOperand(0);
2963   SDValue N = getValue(SV);
2964   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2965 
2966   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2967   unsigned DestAS = I.getType()->getPointerAddressSpace();
2968 
2969   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2970     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2971 
2972   setValue(&I, N);
2973 }
2974 
2975 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2976   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2977   SDValue InVec = getValue(I.getOperand(0));
2978   SDValue InVal = getValue(I.getOperand(1));
2979   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2980                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2981   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2982                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2983                            InVec, InVal, InIdx));
2984 }
2985 
2986 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2987   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2988   SDValue InVec = getValue(I.getOperand(0));
2989   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2990                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2991   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2992                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2993                            InVec, InIdx));
2994 }
2995 
2996 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2997   SDValue Src1 = getValue(I.getOperand(0));
2998   SDValue Src2 = getValue(I.getOperand(1));
2999   SDLoc DL = getCurSDLoc();
3000 
3001   SmallVector<int, 8> Mask;
3002   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3003   unsigned MaskNumElts = Mask.size();
3004 
3005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3006   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3007   EVT SrcVT = Src1.getValueType();
3008   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3009 
3010   if (SrcNumElts == MaskNumElts) {
3011     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3012     return;
3013   }
3014 
3015   // Normalize the shuffle vector since mask and vector length don't match.
3016   if (SrcNumElts < MaskNumElts) {
3017     // Mask is longer than the source vectors. We can use concatenate vector to
3018     // make the mask and vectors lengths match.
3019 
3020     if (MaskNumElts % SrcNumElts == 0) {
3021       // Mask length is a multiple of the source vector length.
3022       // Check if the shuffle is some kind of concatenation of the input
3023       // vectors.
3024       unsigned NumConcat = MaskNumElts / SrcNumElts;
3025       bool IsConcat = true;
3026       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3027       for (unsigned i = 0; i != MaskNumElts; ++i) {
3028         int Idx = Mask[i];
3029         if (Idx < 0)
3030           continue;
3031         // Ensure the indices in each SrcVT sized piece are sequential and that
3032         // the same source is used for the whole piece.
3033         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3034             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3035              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3036           IsConcat = false;
3037           break;
3038         }
3039         // Remember which source this index came from.
3040         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3041       }
3042 
3043       // The shuffle is concatenating multiple vectors together. Just emit
3044       // a CONCAT_VECTORS operation.
3045       if (IsConcat) {
3046         SmallVector<SDValue, 8> ConcatOps;
3047         for (auto Src : ConcatSrcs) {
3048           if (Src < 0)
3049             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3050           else if (Src == 0)
3051             ConcatOps.push_back(Src1);
3052           else
3053             ConcatOps.push_back(Src2);
3054         }
3055         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3056         return;
3057       }
3058     }
3059 
3060     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3061     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3062     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3063                                     PaddedMaskNumElts);
3064 
3065     // Pad both vectors with undefs to make them the same length as the mask.
3066     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3067 
3068     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3069     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3070     MOps1[0] = Src1;
3071     MOps2[0] = Src2;
3072 
3073     Src1 = Src1.isUndef()
3074                ? DAG.getUNDEF(PaddedVT)
3075                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3076     Src2 = Src2.isUndef()
3077                ? DAG.getUNDEF(PaddedVT)
3078                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3079 
3080     // Readjust mask for new input vector length.
3081     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3082     for (unsigned i = 0; i != MaskNumElts; ++i) {
3083       int Idx = Mask[i];
3084       if (Idx >= (int)SrcNumElts)
3085         Idx -= SrcNumElts - PaddedMaskNumElts;
3086       MappedOps[i] = Idx;
3087     }
3088 
3089     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3090 
3091     // If the concatenated vector was padded, extract a subvector with the
3092     // correct number of elements.
3093     if (MaskNumElts != PaddedMaskNumElts)
3094       Result = DAG.getNode(
3095           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3096           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3097 
3098     setValue(&I, Result);
3099     return;
3100   }
3101 
3102   if (SrcNumElts > MaskNumElts) {
3103     // Analyze the access pattern of the vector to see if we can extract
3104     // two subvectors and do the shuffle. The analysis is done by calculating
3105     // the range of elements the mask access on both vectors.
3106     int MinRange[2] = { static_cast<int>(SrcNumElts),
3107                         static_cast<int>(SrcNumElts)};
3108     int MaxRange[2] = {-1, -1};
3109 
3110     for (unsigned i = 0; i != MaskNumElts; ++i) {
3111       int Idx = Mask[i];
3112       unsigned Input = 0;
3113       if (Idx < 0)
3114         continue;
3115 
3116       if (Idx >= (int)SrcNumElts) {
3117         Input = 1;
3118         Idx -= SrcNumElts;
3119       }
3120       if (Idx > MaxRange[Input])
3121         MaxRange[Input] = Idx;
3122       if (Idx < MinRange[Input])
3123         MinRange[Input] = Idx;
3124     }
3125 
3126     // Check if the access is smaller than the vector size and can we find
3127     // a reasonable extract index.
3128     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3129                                    // Extract.
3130     int StartIdx[2];  // StartIdx to extract from
3131     for (unsigned Input = 0; Input < 2; ++Input) {
3132       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3133         RangeUse[Input] = 0; // Unused
3134         StartIdx[Input] = 0;
3135         continue;
3136       }
3137 
3138       // Find a good start index that is a multiple of the mask length. Then
3139       // see if the rest of the elements are in range.
3140       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3141       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3142           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3143         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3144     }
3145 
3146     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3147       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3148       return;
3149     }
3150     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3151       // Extract appropriate subvector and generate a vector shuffle
3152       for (unsigned Input = 0; Input < 2; ++Input) {
3153         SDValue &Src = Input == 0 ? Src1 : Src2;
3154         if (RangeUse[Input] == 0)
3155           Src = DAG.getUNDEF(VT);
3156         else {
3157           Src = DAG.getNode(
3158               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3159               DAG.getConstant(StartIdx[Input], DL,
3160                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3161         }
3162       }
3163 
3164       // Calculate new mask.
3165       SmallVector<int, 8> MappedOps;
3166       for (unsigned i = 0; i != MaskNumElts; ++i) {
3167         int Idx = Mask[i];
3168         if (Idx >= 0) {
3169           if (Idx < (int)SrcNumElts)
3170             Idx -= StartIdx[0];
3171           else
3172             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3173         }
3174         MappedOps.push_back(Idx);
3175       }
3176 
3177       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3178       return;
3179     }
3180   }
3181 
3182   // We can't use either concat vectors or extract subvectors so fall back to
3183   // replacing the shuffle with extract and build vector.
3184   // to insert and build vector.
3185   EVT EltVT = VT.getVectorElementType();
3186   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3187   SmallVector<SDValue,8> Ops;
3188   for (unsigned i = 0; i != MaskNumElts; ++i) {
3189     int Idx = Mask[i];
3190     SDValue Res;
3191 
3192     if (Idx < 0) {
3193       Res = DAG.getUNDEF(EltVT);
3194     } else {
3195       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3196       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3197 
3198       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3199                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3200     }
3201 
3202     Ops.push_back(Res);
3203   }
3204 
3205   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
3206 }
3207 
3208 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3209   const Value *Op0 = I.getOperand(0);
3210   const Value *Op1 = I.getOperand(1);
3211   Type *AggTy = I.getType();
3212   Type *ValTy = Op1->getType();
3213   bool IntoUndef = isa<UndefValue>(Op0);
3214   bool FromUndef = isa<UndefValue>(Op1);
3215 
3216   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3217 
3218   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3219   SmallVector<EVT, 4> AggValueVTs;
3220   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3221   SmallVector<EVT, 4> ValValueVTs;
3222   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3223 
3224   unsigned NumAggValues = AggValueVTs.size();
3225   unsigned NumValValues = ValValueVTs.size();
3226   SmallVector<SDValue, 4> Values(NumAggValues);
3227 
3228   // Ignore an insertvalue that produces an empty object
3229   if (!NumAggValues) {
3230     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3231     return;
3232   }
3233 
3234   SDValue Agg = getValue(Op0);
3235   unsigned i = 0;
3236   // Copy the beginning value(s) from the original aggregate.
3237   for (; i != LinearIndex; ++i)
3238     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3239                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3240   // Copy values from the inserted value(s).
3241   if (NumValValues) {
3242     SDValue Val = getValue(Op1);
3243     for (; i != LinearIndex + NumValValues; ++i)
3244       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3245                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3246   }
3247   // Copy remaining value(s) from the original aggregate.
3248   for (; i != NumAggValues; ++i)
3249     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3250                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3251 
3252   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3253                            DAG.getVTList(AggValueVTs), Values));
3254 }
3255 
3256 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3257   const Value *Op0 = I.getOperand(0);
3258   Type *AggTy = Op0->getType();
3259   Type *ValTy = I.getType();
3260   bool OutOfUndef = isa<UndefValue>(Op0);
3261 
3262   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3263 
3264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3265   SmallVector<EVT, 4> ValValueVTs;
3266   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3267 
3268   unsigned NumValValues = ValValueVTs.size();
3269 
3270   // Ignore a extractvalue that produces an empty object
3271   if (!NumValValues) {
3272     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3273     return;
3274   }
3275 
3276   SmallVector<SDValue, 4> Values(NumValValues);
3277 
3278   SDValue Agg = getValue(Op0);
3279   // Copy out the selected value(s).
3280   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3281     Values[i - LinearIndex] =
3282       OutOfUndef ?
3283         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3284         SDValue(Agg.getNode(), Agg.getResNo() + i);
3285 
3286   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3287                            DAG.getVTList(ValValueVTs), Values));
3288 }
3289 
3290 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3291   Value *Op0 = I.getOperand(0);
3292   // Note that the pointer operand may be a vector of pointers. Take the scalar
3293   // element which holds a pointer.
3294   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3295   SDValue N = getValue(Op0);
3296   SDLoc dl = getCurSDLoc();
3297 
3298   // Normalize Vector GEP - all scalar operands should be converted to the
3299   // splat vector.
3300   unsigned VectorWidth = I.getType()->isVectorTy() ?
3301     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3302 
3303   if (VectorWidth && !N.getValueType().isVector()) {
3304     LLVMContext &Context = *DAG.getContext();
3305     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3306     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3307     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3308   }
3309   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3310        GTI != E; ++GTI) {
3311     const Value *Idx = GTI.getOperand();
3312     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3313       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3314       if (Field) {
3315         // N = N + Offset
3316         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3317 
3318         // In an inbouds GEP with an offset that is nonnegative even when
3319         // interpreted as signed, assume there is no unsigned overflow.
3320         SDNodeFlags Flags;
3321         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3322           Flags.setNoUnsignedWrap(true);
3323 
3324         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3325                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3326       }
3327     } else {
3328       MVT PtrTy =
3329           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3330       unsigned PtrSize = PtrTy.getSizeInBits();
3331       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3332 
3333       // If this is a scalar constant or a splat vector of constants,
3334       // handle it quickly.
3335       const auto *CI = dyn_cast<ConstantInt>(Idx);
3336       if (!CI && isa<ConstantDataVector>(Idx) &&
3337           cast<ConstantDataVector>(Idx)->getSplatValue())
3338         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3339 
3340       if (CI) {
3341         if (CI->isZero())
3342           continue;
3343         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3344         LLVMContext &Context = *DAG.getContext();
3345         SDValue OffsVal = VectorWidth ?
3346           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3347           DAG.getConstant(Offs, dl, PtrTy);
3348 
3349         // In an inbouds GEP with an offset that is nonnegative even when
3350         // interpreted as signed, assume there is no unsigned overflow.
3351         SDNodeFlags Flags;
3352         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3353           Flags.setNoUnsignedWrap(true);
3354 
3355         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3356         continue;
3357       }
3358 
3359       // N = N + Idx * ElementSize;
3360       SDValue IdxN = getValue(Idx);
3361 
3362       if (!IdxN.getValueType().isVector() && VectorWidth) {
3363         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3364         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3365         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3366       }
3367       // If the index is smaller or larger than intptr_t, truncate or extend
3368       // it.
3369       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3370 
3371       // If this is a multiply by a power of two, turn it into a shl
3372       // immediately.  This is a very common case.
3373       if (ElementSize != 1) {
3374         if (ElementSize.isPowerOf2()) {
3375           unsigned Amt = ElementSize.logBase2();
3376           IdxN = DAG.getNode(ISD::SHL, dl,
3377                              N.getValueType(), IdxN,
3378                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3379         } else {
3380           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3381           IdxN = DAG.getNode(ISD::MUL, dl,
3382                              N.getValueType(), IdxN, Scale);
3383         }
3384       }
3385 
3386       N = DAG.getNode(ISD::ADD, dl,
3387                       N.getValueType(), N, IdxN);
3388     }
3389   }
3390 
3391   setValue(&I, N);
3392 }
3393 
3394 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3395   // If this is a fixed sized alloca in the entry block of the function,
3396   // allocate it statically on the stack.
3397   if (FuncInfo.StaticAllocaMap.count(&I))
3398     return;   // getValue will auto-populate this.
3399 
3400   SDLoc dl = getCurSDLoc();
3401   Type *Ty = I.getAllocatedType();
3402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3403   auto &DL = DAG.getDataLayout();
3404   uint64_t TySize = DL.getTypeAllocSize(Ty);
3405   unsigned Align =
3406       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3407 
3408   SDValue AllocSize = getValue(I.getArraySize());
3409 
3410   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3411   if (AllocSize.getValueType() != IntPtr)
3412     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3413 
3414   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3415                           AllocSize,
3416                           DAG.getConstant(TySize, dl, IntPtr));
3417 
3418   // Handle alignment.  If the requested alignment is less than or equal to
3419   // the stack alignment, ignore it.  If the size is greater than or equal to
3420   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3421   unsigned StackAlign =
3422       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3423   if (Align <= StackAlign)
3424     Align = 0;
3425 
3426   // Round the size of the allocation up to the stack alignment size
3427   // by add SA-1 to the size. This doesn't overflow because we're computing
3428   // an address inside an alloca.
3429   SDNodeFlags Flags;
3430   Flags.setNoUnsignedWrap(true);
3431   AllocSize = DAG.getNode(ISD::ADD, dl,
3432                           AllocSize.getValueType(), AllocSize,
3433                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3434 
3435   // Mask out the low bits for alignment purposes.
3436   AllocSize = DAG.getNode(ISD::AND, dl,
3437                           AllocSize.getValueType(), AllocSize,
3438                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3439                                                 dl));
3440 
3441   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3442   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3443   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3444   setValue(&I, DSA);
3445   DAG.setRoot(DSA.getValue(1));
3446 
3447   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3448 }
3449 
3450 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3451   if (I.isAtomic())
3452     return visitAtomicLoad(I);
3453 
3454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3455   const Value *SV = I.getOperand(0);
3456   if (TLI.supportSwiftError()) {
3457     // Swifterror values can come from either a function parameter with
3458     // swifterror attribute or an alloca with swifterror attribute.
3459     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3460       if (Arg->hasSwiftErrorAttr())
3461         return visitLoadFromSwiftError(I);
3462     }
3463 
3464     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3465       if (Alloca->isSwiftError())
3466         return visitLoadFromSwiftError(I);
3467     }
3468   }
3469 
3470   SDValue Ptr = getValue(SV);
3471 
3472   Type *Ty = I.getType();
3473 
3474   bool isVolatile = I.isVolatile();
3475   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3476 
3477   // The IR notion of invariant_load only guarantees that all *non-faulting*
3478   // invariant loads result in the same value.  The MI notion of invariant load
3479   // guarantees that the load can be legally moved to any location within its
3480   // containing function.  The MI notion of invariant_load is stronger than the
3481   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3482   // with a guarantee that the location being loaded from is dereferenceable
3483   // throughout the function's lifetime.
3484 
3485   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3486                      isDereferenceablePointer(SV, DAG.getDataLayout());
3487   unsigned Alignment = I.getAlignment();
3488 
3489   AAMDNodes AAInfo;
3490   I.getAAMetadata(AAInfo);
3491   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3492 
3493   SmallVector<EVT, 4> ValueVTs;
3494   SmallVector<uint64_t, 4> Offsets;
3495   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3496   unsigned NumValues = ValueVTs.size();
3497   if (NumValues == 0)
3498     return;
3499 
3500   SDValue Root;
3501   bool ConstantMemory = false;
3502   if (isVolatile || NumValues > MaxParallelChains)
3503     // Serialize volatile loads with other side effects.
3504     Root = getRoot();
3505   else if (AA->pointsToConstantMemory(MemoryLocation(
3506                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3507     // Do not serialize (non-volatile) loads of constant memory with anything.
3508     Root = DAG.getEntryNode();
3509     ConstantMemory = true;
3510   } else {
3511     // Do not serialize non-volatile loads against each other.
3512     Root = DAG.getRoot();
3513   }
3514 
3515   SDLoc dl = getCurSDLoc();
3516 
3517   if (isVolatile)
3518     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3519 
3520   // An aggregate load cannot wrap around the address space, so offsets to its
3521   // parts don't wrap either.
3522   SDNodeFlags Flags;
3523   Flags.setNoUnsignedWrap(true);
3524 
3525   SmallVector<SDValue, 4> Values(NumValues);
3526   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3527   EVT PtrVT = Ptr.getValueType();
3528   unsigned ChainI = 0;
3529   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3530     // Serializing loads here may result in excessive register pressure, and
3531     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3532     // could recover a bit by hoisting nodes upward in the chain by recognizing
3533     // they are side-effect free or do not alias. The optimizer should really
3534     // avoid this case by converting large object/array copies to llvm.memcpy
3535     // (MaxParallelChains should always remain as failsafe).
3536     if (ChainI == MaxParallelChains) {
3537       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3538       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3539                                   makeArrayRef(Chains.data(), ChainI));
3540       Root = Chain;
3541       ChainI = 0;
3542     }
3543     SDValue A = DAG.getNode(ISD::ADD, dl,
3544                             PtrVT, Ptr,
3545                             DAG.getConstant(Offsets[i], dl, PtrVT),
3546                             &Flags);
3547     auto MMOFlags = MachineMemOperand::MONone;
3548     if (isVolatile)
3549       MMOFlags |= MachineMemOperand::MOVolatile;
3550     if (isNonTemporal)
3551       MMOFlags |= MachineMemOperand::MONonTemporal;
3552     if (isInvariant)
3553       MMOFlags |= MachineMemOperand::MOInvariant;
3554 
3555     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3556                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3557                             MMOFlags, AAInfo, Ranges);
3558 
3559     Values[i] = L;
3560     Chains[ChainI] = L.getValue(1);
3561   }
3562 
3563   if (!ConstantMemory) {
3564     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3565                                 makeArrayRef(Chains.data(), ChainI));
3566     if (isVolatile)
3567       DAG.setRoot(Chain);
3568     else
3569       PendingLoads.push_back(Chain);
3570   }
3571 
3572   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3573                            DAG.getVTList(ValueVTs), Values));
3574 }
3575 
3576 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3578   assert(TLI.supportSwiftError() &&
3579          "call visitStoreToSwiftError when backend supports swifterror");
3580 
3581   SmallVector<EVT, 4> ValueVTs;
3582   SmallVector<uint64_t, 4> Offsets;
3583   const Value *SrcV = I.getOperand(0);
3584   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3585                   SrcV->getType(), ValueVTs, &Offsets);
3586   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3587          "expect a single EVT for swifterror");
3588 
3589   SDValue Src = getValue(SrcV);
3590   // Create a virtual register, then update the virtual register.
3591   auto &DL = DAG.getDataLayout();
3592   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3593   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3594   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3595   // Chain can be getRoot or getControlRoot.
3596   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3597                                       SDValue(Src.getNode(), Src.getResNo()));
3598   DAG.setRoot(CopyNode);
3599   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3600 }
3601 
3602 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3603   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3604          "call visitLoadFromSwiftError when backend supports swifterror");
3605 
3606   assert(!I.isVolatile() &&
3607          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3608          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3609          "Support volatile, non temporal, invariant for load_from_swift_error");
3610 
3611   const Value *SV = I.getOperand(0);
3612   Type *Ty = I.getType();
3613   AAMDNodes AAInfo;
3614   I.getAAMetadata(AAInfo);
3615   assert(!AA->pointsToConstantMemory(MemoryLocation(
3616              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3617          "load_from_swift_error should not be constant memory");
3618 
3619   SmallVector<EVT, 4> ValueVTs;
3620   SmallVector<uint64_t, 4> Offsets;
3621   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3622                   ValueVTs, &Offsets);
3623   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3624          "expect a single EVT for swifterror");
3625 
3626   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3627   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3628                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3629                                  ValueVTs[0]);
3630 
3631   setValue(&I, L);
3632 }
3633 
3634 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3635   if (I.isAtomic())
3636     return visitAtomicStore(I);
3637 
3638   const Value *SrcV = I.getOperand(0);
3639   const Value *PtrV = I.getOperand(1);
3640 
3641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3642   if (TLI.supportSwiftError()) {
3643     // Swifterror values can come from either a function parameter with
3644     // swifterror attribute or an alloca with swifterror attribute.
3645     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3646       if (Arg->hasSwiftErrorAttr())
3647         return visitStoreToSwiftError(I);
3648     }
3649 
3650     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3651       if (Alloca->isSwiftError())
3652         return visitStoreToSwiftError(I);
3653     }
3654   }
3655 
3656   SmallVector<EVT, 4> ValueVTs;
3657   SmallVector<uint64_t, 4> Offsets;
3658   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3659                   SrcV->getType(), ValueVTs, &Offsets);
3660   unsigned NumValues = ValueVTs.size();
3661   if (NumValues == 0)
3662     return;
3663 
3664   // Get the lowered operands. Note that we do this after
3665   // checking if NumResults is zero, because with zero results
3666   // the operands won't have values in the map.
3667   SDValue Src = getValue(SrcV);
3668   SDValue Ptr = getValue(PtrV);
3669 
3670   SDValue Root = getRoot();
3671   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3672   SDLoc dl = getCurSDLoc();
3673   EVT PtrVT = Ptr.getValueType();
3674   unsigned Alignment = I.getAlignment();
3675   AAMDNodes AAInfo;
3676   I.getAAMetadata(AAInfo);
3677 
3678   auto MMOFlags = MachineMemOperand::MONone;
3679   if (I.isVolatile())
3680     MMOFlags |= MachineMemOperand::MOVolatile;
3681   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3682     MMOFlags |= MachineMemOperand::MONonTemporal;
3683 
3684   // An aggregate load cannot wrap around the address space, so offsets to its
3685   // parts don't wrap either.
3686   SDNodeFlags Flags;
3687   Flags.setNoUnsignedWrap(true);
3688 
3689   unsigned ChainI = 0;
3690   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3691     // See visitLoad comments.
3692     if (ChainI == MaxParallelChains) {
3693       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3694                                   makeArrayRef(Chains.data(), ChainI));
3695       Root = Chain;
3696       ChainI = 0;
3697     }
3698     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3699                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3700     SDValue St = DAG.getStore(
3701         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3702         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3703     Chains[ChainI] = St;
3704   }
3705 
3706   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3707                                   makeArrayRef(Chains.data(), ChainI));
3708   DAG.setRoot(StoreNode);
3709 }
3710 
3711 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3712   SDLoc sdl = getCurSDLoc();
3713 
3714   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3715   Value  *PtrOperand = I.getArgOperand(1);
3716   SDValue Ptr = getValue(PtrOperand);
3717   SDValue Src0 = getValue(I.getArgOperand(0));
3718   SDValue Mask = getValue(I.getArgOperand(3));
3719   EVT VT = Src0.getValueType();
3720   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3721   if (!Alignment)
3722     Alignment = DAG.getEVTAlignment(VT);
3723 
3724   AAMDNodes AAInfo;
3725   I.getAAMetadata(AAInfo);
3726 
3727   MachineMemOperand *MMO =
3728     DAG.getMachineFunction().
3729     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3730                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3731                           Alignment, AAInfo);
3732   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3733                                          MMO, false);
3734   DAG.setRoot(StoreNode);
3735   setValue(&I, StoreNode);
3736 }
3737 
3738 // Get a uniform base for the Gather/Scatter intrinsic.
3739 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3740 // We try to represent it as a base pointer + vector of indices.
3741 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3742 // The first operand of the GEP may be a single pointer or a vector of pointers
3743 // Example:
3744 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3745 //  or
3746 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3747 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3748 //
3749 // When the first GEP operand is a single pointer - it is the uniform base we
3750 // are looking for. If first operand of the GEP is a splat vector - we
3751 // extract the spalt value and use it as a uniform base.
3752 // In all other cases the function returns 'false'.
3753 //
3754 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3755                            SelectionDAGBuilder* SDB) {
3756 
3757   SelectionDAG& DAG = SDB->DAG;
3758   LLVMContext &Context = *DAG.getContext();
3759 
3760   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3761   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3762   if (!GEP || GEP->getNumOperands() > 2)
3763     return false;
3764 
3765   const Value *GEPPtr = GEP->getPointerOperand();
3766   if (!GEPPtr->getType()->isVectorTy())
3767     Ptr = GEPPtr;
3768   else if (!(Ptr = getSplatValue(GEPPtr)))
3769     return false;
3770 
3771   Value *IndexVal = GEP->getOperand(1);
3772 
3773   // The operands of the GEP may be defined in another basic block.
3774   // In this case we'll not find nodes for the operands.
3775   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3776     return false;
3777 
3778   Base = SDB->getValue(Ptr);
3779   Index = SDB->getValue(IndexVal);
3780 
3781   // Suppress sign extension.
3782   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3783     if (SDB->findValue(Sext->getOperand(0))) {
3784       IndexVal = Sext->getOperand(0);
3785       Index = SDB->getValue(IndexVal);
3786     }
3787   }
3788   if (!Index.getValueType().isVector()) {
3789     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3790     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3791     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3792     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3793   }
3794   return true;
3795 }
3796 
3797 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3798   SDLoc sdl = getCurSDLoc();
3799 
3800   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3801   const Value *Ptr = I.getArgOperand(1);
3802   SDValue Src0 = getValue(I.getArgOperand(0));
3803   SDValue Mask = getValue(I.getArgOperand(3));
3804   EVT VT = Src0.getValueType();
3805   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3806   if (!Alignment)
3807     Alignment = DAG.getEVTAlignment(VT);
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809 
3810   AAMDNodes AAInfo;
3811   I.getAAMetadata(AAInfo);
3812 
3813   SDValue Base;
3814   SDValue Index;
3815   const Value *BasePtr = Ptr;
3816   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3817 
3818   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3819   MachineMemOperand *MMO = DAG.getMachineFunction().
3820     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3821                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3822                          Alignment, AAInfo);
3823   if (!UniformBase) {
3824     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3825     Index = getValue(Ptr);
3826   }
3827   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3828   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3829                                          Ops, MMO);
3830   DAG.setRoot(Scatter);
3831   setValue(&I, Scatter);
3832 }
3833 
3834 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3835   SDLoc sdl = getCurSDLoc();
3836 
3837   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3838   Value  *PtrOperand = I.getArgOperand(0);
3839   SDValue Ptr = getValue(PtrOperand);
3840   SDValue Src0 = getValue(I.getArgOperand(3));
3841   SDValue Mask = getValue(I.getArgOperand(2));
3842 
3843   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3844   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3845   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3846   if (!Alignment)
3847     Alignment = DAG.getEVTAlignment(VT);
3848 
3849   AAMDNodes AAInfo;
3850   I.getAAMetadata(AAInfo);
3851   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3852 
3853   // Do not serialize masked loads of constant memory with anything.
3854   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3855       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3856   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3857 
3858   MachineMemOperand *MMO =
3859     DAG.getMachineFunction().
3860     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3861                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3862                           Alignment, AAInfo, Ranges);
3863 
3864   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3865                                    ISD::NON_EXTLOAD);
3866   if (AddToChain) {
3867     SDValue OutChain = Load.getValue(1);
3868     DAG.setRoot(OutChain);
3869   }
3870   setValue(&I, Load);
3871 }
3872 
3873 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3874   SDLoc sdl = getCurSDLoc();
3875 
3876   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3877   const Value *Ptr = I.getArgOperand(0);
3878   SDValue Src0 = getValue(I.getArgOperand(3));
3879   SDValue Mask = getValue(I.getArgOperand(2));
3880 
3881   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3882   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3883   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3884   if (!Alignment)
3885     Alignment = DAG.getEVTAlignment(VT);
3886 
3887   AAMDNodes AAInfo;
3888   I.getAAMetadata(AAInfo);
3889   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3890 
3891   SDValue Root = DAG.getRoot();
3892   SDValue Base;
3893   SDValue Index;
3894   const Value *BasePtr = Ptr;
3895   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3896   bool ConstantMemory = false;
3897   if (UniformBase &&
3898       AA->pointsToConstantMemory(MemoryLocation(
3899           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3900           AAInfo))) {
3901     // Do not serialize (non-volatile) loads of constant memory with anything.
3902     Root = DAG.getEntryNode();
3903     ConstantMemory = true;
3904   }
3905 
3906   MachineMemOperand *MMO =
3907     DAG.getMachineFunction().
3908     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3909                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3910                          Alignment, AAInfo, Ranges);
3911 
3912   if (!UniformBase) {
3913     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3914     Index = getValue(Ptr);
3915   }
3916   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3917   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3918                                        Ops, MMO);
3919 
3920   SDValue OutChain = Gather.getValue(1);
3921   if (!ConstantMemory)
3922     PendingLoads.push_back(OutChain);
3923   setValue(&I, Gather);
3924 }
3925 
3926 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3927   SDLoc dl = getCurSDLoc();
3928   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3929   AtomicOrdering FailureOrder = I.getFailureOrdering();
3930   SynchronizationScope Scope = I.getSynchScope();
3931 
3932   SDValue InChain = getRoot();
3933 
3934   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3935   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3936   SDValue L = DAG.getAtomicCmpSwap(
3937       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3938       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3939       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3940       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3941 
3942   SDValue OutChain = L.getValue(2);
3943 
3944   setValue(&I, L);
3945   DAG.setRoot(OutChain);
3946 }
3947 
3948 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3949   SDLoc dl = getCurSDLoc();
3950   ISD::NodeType NT;
3951   switch (I.getOperation()) {
3952   default: llvm_unreachable("Unknown atomicrmw operation");
3953   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3954   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3955   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3956   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3957   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3958   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3959   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3960   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3961   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3962   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3963   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3964   }
3965   AtomicOrdering Order = I.getOrdering();
3966   SynchronizationScope Scope = I.getSynchScope();
3967 
3968   SDValue InChain = getRoot();
3969 
3970   SDValue L =
3971     DAG.getAtomic(NT, dl,
3972                   getValue(I.getValOperand()).getSimpleValueType(),
3973                   InChain,
3974                   getValue(I.getPointerOperand()),
3975                   getValue(I.getValOperand()),
3976                   I.getPointerOperand(),
3977                   /* Alignment=*/ 0, Order, Scope);
3978 
3979   SDValue OutChain = L.getValue(1);
3980 
3981   setValue(&I, L);
3982   DAG.setRoot(OutChain);
3983 }
3984 
3985 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3986   SDLoc dl = getCurSDLoc();
3987   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3988   SDValue Ops[3];
3989   Ops[0] = getRoot();
3990   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3991                            TLI.getPointerTy(DAG.getDataLayout()));
3992   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3993                            TLI.getPointerTy(DAG.getDataLayout()));
3994   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3995 }
3996 
3997 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3998   SDLoc dl = getCurSDLoc();
3999   AtomicOrdering Order = I.getOrdering();
4000   SynchronizationScope Scope = I.getSynchScope();
4001 
4002   SDValue InChain = getRoot();
4003 
4004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4005   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4006 
4007   if (I.getAlignment() < VT.getSizeInBits() / 8)
4008     report_fatal_error("Cannot generate unaligned atomic load");
4009 
4010   MachineMemOperand *MMO =
4011       DAG.getMachineFunction().
4012       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4013                            MachineMemOperand::MOVolatile |
4014                            MachineMemOperand::MOLoad,
4015                            VT.getStoreSize(),
4016                            I.getAlignment() ? I.getAlignment() :
4017                                               DAG.getEVTAlignment(VT));
4018 
4019   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4020   SDValue L =
4021       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4022                     getValue(I.getPointerOperand()), MMO,
4023                     Order, Scope);
4024 
4025   SDValue OutChain = L.getValue(1);
4026 
4027   setValue(&I, L);
4028   DAG.setRoot(OutChain);
4029 }
4030 
4031 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4032   SDLoc dl = getCurSDLoc();
4033 
4034   AtomicOrdering Order = I.getOrdering();
4035   SynchronizationScope Scope = I.getSynchScope();
4036 
4037   SDValue InChain = getRoot();
4038 
4039   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4040   EVT VT =
4041       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4042 
4043   if (I.getAlignment() < VT.getSizeInBits() / 8)
4044     report_fatal_error("Cannot generate unaligned atomic store");
4045 
4046   SDValue OutChain =
4047     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4048                   InChain,
4049                   getValue(I.getPointerOperand()),
4050                   getValue(I.getValueOperand()),
4051                   I.getPointerOperand(), I.getAlignment(),
4052                   Order, Scope);
4053 
4054   DAG.setRoot(OutChain);
4055 }
4056 
4057 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4058 /// node.
4059 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4060                                                unsigned Intrinsic) {
4061   bool HasChain = !I.doesNotAccessMemory();
4062   bool OnlyLoad = HasChain && I.onlyReadsMemory();
4063 
4064   // Build the operand list.
4065   SmallVector<SDValue, 8> Ops;
4066   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4067     if (OnlyLoad) {
4068       // We don't need to serialize loads against other loads.
4069       Ops.push_back(DAG.getRoot());
4070     } else {
4071       Ops.push_back(getRoot());
4072     }
4073   }
4074 
4075   // Info is set by getTgtMemInstrinsic
4076   TargetLowering::IntrinsicInfo Info;
4077   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4078   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4079 
4080   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4081   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4082       Info.opc == ISD::INTRINSIC_W_CHAIN)
4083     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4084                                         TLI.getPointerTy(DAG.getDataLayout())));
4085 
4086   // Add all operands of the call to the operand list.
4087   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4088     SDValue Op = getValue(I.getArgOperand(i));
4089     Ops.push_back(Op);
4090   }
4091 
4092   SmallVector<EVT, 4> ValueVTs;
4093   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4094 
4095   if (HasChain)
4096     ValueVTs.push_back(MVT::Other);
4097 
4098   SDVTList VTs = DAG.getVTList(ValueVTs);
4099 
4100   // Create the node.
4101   SDValue Result;
4102   if (IsTgtIntrinsic) {
4103     // This is target intrinsic that touches memory
4104     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4105                                      VTs, Ops, Info.memVT,
4106                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4107                                      Info.align, Info.vol,
4108                                      Info.readMem, Info.writeMem, Info.size);
4109   } else if (!HasChain) {
4110     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4111   } else if (!I.getType()->isVoidTy()) {
4112     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4113   } else {
4114     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4115   }
4116 
4117   if (HasChain) {
4118     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4119     if (OnlyLoad)
4120       PendingLoads.push_back(Chain);
4121     else
4122       DAG.setRoot(Chain);
4123   }
4124 
4125   if (!I.getType()->isVoidTy()) {
4126     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4127       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4128       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4129     } else
4130       Result = lowerRangeToAssertZExt(DAG, I, Result);
4131 
4132     setValue(&I, Result);
4133   }
4134 }
4135 
4136 /// GetSignificand - Get the significand and build it into a floating-point
4137 /// number with exponent of 1:
4138 ///
4139 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4140 ///
4141 /// where Op is the hexadecimal representation of floating point value.
4142 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4143   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4144                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4145   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4146                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4147   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4148 }
4149 
4150 /// GetExponent - Get the exponent:
4151 ///
4152 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4153 ///
4154 /// where Op is the hexadecimal representation of floating point value.
4155 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4156                            const TargetLowering &TLI, const SDLoc &dl) {
4157   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4158                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4159   SDValue t1 = DAG.getNode(
4160       ISD::SRL, dl, MVT::i32, t0,
4161       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4162   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4163                            DAG.getConstant(127, dl, MVT::i32));
4164   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4165 }
4166 
4167 /// getF32Constant - Get 32-bit floating point constant.
4168 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4169                               const SDLoc &dl) {
4170   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4171                            MVT::f32);
4172 }
4173 
4174 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4175                                        SelectionDAG &DAG) {
4176   // TODO: What fast-math-flags should be set on the floating-point nodes?
4177 
4178   //   IntegerPartOfX = ((int32_t)(t0);
4179   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4180 
4181   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4182   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4183   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4184 
4185   //   IntegerPartOfX <<= 23;
4186   IntegerPartOfX = DAG.getNode(
4187       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4188       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4189                                   DAG.getDataLayout())));
4190 
4191   SDValue TwoToFractionalPartOfX;
4192   if (LimitFloatPrecision <= 6) {
4193     // For floating-point precision of 6:
4194     //
4195     //   TwoToFractionalPartOfX =
4196     //     0.997535578f +
4197     //       (0.735607626f + 0.252464424f * x) * x;
4198     //
4199     // error 0.0144103317, which is 6 bits
4200     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4201                              getF32Constant(DAG, 0x3e814304, dl));
4202     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4203                              getF32Constant(DAG, 0x3f3c50c8, dl));
4204     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4205     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4206                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4207   } else if (LimitFloatPrecision <= 12) {
4208     // For floating-point precision of 12:
4209     //
4210     //   TwoToFractionalPartOfX =
4211     //     0.999892986f +
4212     //       (0.696457318f +
4213     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4214     //
4215     // error 0.000107046256, which is 13 to 14 bits
4216     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4217                              getF32Constant(DAG, 0x3da235e3, dl));
4218     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4219                              getF32Constant(DAG, 0x3e65b8f3, dl));
4220     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4221     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4222                              getF32Constant(DAG, 0x3f324b07, dl));
4223     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4224     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4225                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4226   } else { // LimitFloatPrecision <= 18
4227     // For floating-point precision of 18:
4228     //
4229     //   TwoToFractionalPartOfX =
4230     //     0.999999982f +
4231     //       (0.693148872f +
4232     //         (0.240227044f +
4233     //           (0.554906021e-1f +
4234     //             (0.961591928e-2f +
4235     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4236     // error 2.47208000*10^(-7), which is better than 18 bits
4237     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4238                              getF32Constant(DAG, 0x3924b03e, dl));
4239     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4240                              getF32Constant(DAG, 0x3ab24b87, dl));
4241     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4242     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4243                              getF32Constant(DAG, 0x3c1d8c17, dl));
4244     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4245     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4246                              getF32Constant(DAG, 0x3d634a1d, dl));
4247     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4248     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4249                              getF32Constant(DAG, 0x3e75fe14, dl));
4250     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4251     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4252                               getF32Constant(DAG, 0x3f317234, dl));
4253     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4254     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4255                                          getF32Constant(DAG, 0x3f800000, dl));
4256   }
4257 
4258   // Add the exponent into the result in integer domain.
4259   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4260   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4261                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4262 }
4263 
4264 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4265 /// limited-precision mode.
4266 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4267                          const TargetLowering &TLI) {
4268   if (Op.getValueType() == MVT::f32 &&
4269       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4270 
4271     // Put the exponent in the right bit position for later addition to the
4272     // final result:
4273     //
4274     //   #define LOG2OFe 1.4426950f
4275     //   t0 = Op * LOG2OFe
4276 
4277     // TODO: What fast-math-flags should be set here?
4278     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4279                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4280     return getLimitedPrecisionExp2(t0, dl, DAG);
4281   }
4282 
4283   // No special expansion.
4284   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4285 }
4286 
4287 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4288 /// limited-precision mode.
4289 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4290                          const TargetLowering &TLI) {
4291 
4292   // TODO: What fast-math-flags should be set on the floating-point nodes?
4293 
4294   if (Op.getValueType() == MVT::f32 &&
4295       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4296     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4297 
4298     // Scale the exponent by log(2) [0.69314718f].
4299     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4300     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4301                                         getF32Constant(DAG, 0x3f317218, dl));
4302 
4303     // Get the significand and build it into a floating-point number with
4304     // exponent of 1.
4305     SDValue X = GetSignificand(DAG, Op1, dl);
4306 
4307     SDValue LogOfMantissa;
4308     if (LimitFloatPrecision <= 6) {
4309       // For floating-point precision of 6:
4310       //
4311       //   LogofMantissa =
4312       //     -1.1609546f +
4313       //       (1.4034025f - 0.23903021f * x) * x;
4314       //
4315       // error 0.0034276066, which is better than 8 bits
4316       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4317                                getF32Constant(DAG, 0xbe74c456, dl));
4318       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4319                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4320       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4321       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4322                                   getF32Constant(DAG, 0x3f949a29, dl));
4323     } else if (LimitFloatPrecision <= 12) {
4324       // For floating-point precision of 12:
4325       //
4326       //   LogOfMantissa =
4327       //     -1.7417939f +
4328       //       (2.8212026f +
4329       //         (-1.4699568f +
4330       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4331       //
4332       // error 0.000061011436, which is 14 bits
4333       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4334                                getF32Constant(DAG, 0xbd67b6d6, dl));
4335       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4336                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4337       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4338       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4339                                getF32Constant(DAG, 0x3fbc278b, dl));
4340       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4341       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4342                                getF32Constant(DAG, 0x40348e95, dl));
4343       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4344       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4345                                   getF32Constant(DAG, 0x3fdef31a, dl));
4346     } else { // LimitFloatPrecision <= 18
4347       // For floating-point precision of 18:
4348       //
4349       //   LogOfMantissa =
4350       //     -2.1072184f +
4351       //       (4.2372794f +
4352       //         (-3.7029485f +
4353       //           (2.2781945f +
4354       //             (-0.87823314f +
4355       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4356       //
4357       // error 0.0000023660568, which is better than 18 bits
4358       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4359                                getF32Constant(DAG, 0xbc91e5ac, dl));
4360       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4361                                getF32Constant(DAG, 0x3e4350aa, dl));
4362       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4363       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4364                                getF32Constant(DAG, 0x3f60d3e3, dl));
4365       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4366       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4367                                getF32Constant(DAG, 0x4011cdf0, dl));
4368       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4369       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4370                                getF32Constant(DAG, 0x406cfd1c, dl));
4371       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4372       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4373                                getF32Constant(DAG, 0x408797cb, dl));
4374       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4375       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4376                                   getF32Constant(DAG, 0x4006dcab, dl));
4377     }
4378 
4379     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4380   }
4381 
4382   // No special expansion.
4383   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4384 }
4385 
4386 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4387 /// limited-precision mode.
4388 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4389                           const TargetLowering &TLI) {
4390 
4391   // TODO: What fast-math-flags should be set on the floating-point nodes?
4392 
4393   if (Op.getValueType() == MVT::f32 &&
4394       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4395     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4396 
4397     // Get the exponent.
4398     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4399 
4400     // Get the significand and build it into a floating-point number with
4401     // exponent of 1.
4402     SDValue X = GetSignificand(DAG, Op1, dl);
4403 
4404     // Different possible minimax approximations of significand in
4405     // floating-point for various degrees of accuracy over [1,2].
4406     SDValue Log2ofMantissa;
4407     if (LimitFloatPrecision <= 6) {
4408       // For floating-point precision of 6:
4409       //
4410       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4411       //
4412       // error 0.0049451742, which is more than 7 bits
4413       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4414                                getF32Constant(DAG, 0xbeb08fe0, dl));
4415       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4416                                getF32Constant(DAG, 0x40019463, dl));
4417       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4418       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4419                                    getF32Constant(DAG, 0x3fd6633d, dl));
4420     } else if (LimitFloatPrecision <= 12) {
4421       // For floating-point precision of 12:
4422       //
4423       //   Log2ofMantissa =
4424       //     -2.51285454f +
4425       //       (4.07009056f +
4426       //         (-2.12067489f +
4427       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4428       //
4429       // error 0.0000876136000, which is better than 13 bits
4430       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4431                                getF32Constant(DAG, 0xbda7262e, dl));
4432       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4433                                getF32Constant(DAG, 0x3f25280b, dl));
4434       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4435       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4436                                getF32Constant(DAG, 0x4007b923, dl));
4437       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4438       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4439                                getF32Constant(DAG, 0x40823e2f, dl));
4440       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4441       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4442                                    getF32Constant(DAG, 0x4020d29c, dl));
4443     } else { // LimitFloatPrecision <= 18
4444       // For floating-point precision of 18:
4445       //
4446       //   Log2ofMantissa =
4447       //     -3.0400495f +
4448       //       (6.1129976f +
4449       //         (-5.3420409f +
4450       //           (3.2865683f +
4451       //             (-1.2669343f +
4452       //               (0.27515199f -
4453       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4454       //
4455       // error 0.0000018516, which is better than 18 bits
4456       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4457                                getF32Constant(DAG, 0xbcd2769e, dl));
4458       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4459                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4460       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4461       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4462                                getF32Constant(DAG, 0x3fa22ae7, dl));
4463       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4464       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4465                                getF32Constant(DAG, 0x40525723, dl));
4466       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4467       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4468                                getF32Constant(DAG, 0x40aaf200, dl));
4469       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4470       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4471                                getF32Constant(DAG, 0x40c39dad, dl));
4472       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4473       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4474                                    getF32Constant(DAG, 0x4042902c, dl));
4475     }
4476 
4477     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4478   }
4479 
4480   // No special expansion.
4481   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4482 }
4483 
4484 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4485 /// limited-precision mode.
4486 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4487                            const TargetLowering &TLI) {
4488 
4489   // TODO: What fast-math-flags should be set on the floating-point nodes?
4490 
4491   if (Op.getValueType() == MVT::f32 &&
4492       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4493     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4494 
4495     // Scale the exponent by log10(2) [0.30102999f].
4496     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4497     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4498                                         getF32Constant(DAG, 0x3e9a209a, dl));
4499 
4500     // Get the significand and build it into a floating-point number with
4501     // exponent of 1.
4502     SDValue X = GetSignificand(DAG, Op1, dl);
4503 
4504     SDValue Log10ofMantissa;
4505     if (LimitFloatPrecision <= 6) {
4506       // For floating-point precision of 6:
4507       //
4508       //   Log10ofMantissa =
4509       //     -0.50419619f +
4510       //       (0.60948995f - 0.10380950f * x) * x;
4511       //
4512       // error 0.0014886165, which is 6 bits
4513       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4514                                getF32Constant(DAG, 0xbdd49a13, dl));
4515       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4516                                getF32Constant(DAG, 0x3f1c0789, dl));
4517       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4518       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4519                                     getF32Constant(DAG, 0x3f011300, dl));
4520     } else if (LimitFloatPrecision <= 12) {
4521       // For floating-point precision of 12:
4522       //
4523       //   Log10ofMantissa =
4524       //     -0.64831180f +
4525       //       (0.91751397f +
4526       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4527       //
4528       // error 0.00019228036, which is better than 12 bits
4529       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4530                                getF32Constant(DAG, 0x3d431f31, dl));
4531       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4532                                getF32Constant(DAG, 0x3ea21fb2, dl));
4533       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4534       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4535                                getF32Constant(DAG, 0x3f6ae232, dl));
4536       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4537       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4538                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4539     } else { // LimitFloatPrecision <= 18
4540       // For floating-point precision of 18:
4541       //
4542       //   Log10ofMantissa =
4543       //     -0.84299375f +
4544       //       (1.5327582f +
4545       //         (-1.0688956f +
4546       //           (0.49102474f +
4547       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4548       //
4549       // error 0.0000037995730, which is better than 18 bits
4550       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4551                                getF32Constant(DAG, 0x3c5d51ce, dl));
4552       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4553                                getF32Constant(DAG, 0x3e00685a, dl));
4554       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4555       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4556                                getF32Constant(DAG, 0x3efb6798, dl));
4557       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4558       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4559                                getF32Constant(DAG, 0x3f88d192, dl));
4560       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4561       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4562                                getF32Constant(DAG, 0x3fc4316c, dl));
4563       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4564       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4565                                     getF32Constant(DAG, 0x3f57ce70, dl));
4566     }
4567 
4568     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4569   }
4570 
4571   // No special expansion.
4572   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4573 }
4574 
4575 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4576 /// limited-precision mode.
4577 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4578                           const TargetLowering &TLI) {
4579   if (Op.getValueType() == MVT::f32 &&
4580       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4581     return getLimitedPrecisionExp2(Op, dl, DAG);
4582 
4583   // No special expansion.
4584   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4585 }
4586 
4587 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4588 /// limited-precision mode with x == 10.0f.
4589 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4590                          SelectionDAG &DAG, const TargetLowering &TLI) {
4591   bool IsExp10 = false;
4592   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4593       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4594     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4595       APFloat Ten(10.0f);
4596       IsExp10 = LHSC->isExactlyValue(Ten);
4597     }
4598   }
4599 
4600   // TODO: What fast-math-flags should be set on the FMUL node?
4601   if (IsExp10) {
4602     // Put the exponent in the right bit position for later addition to the
4603     // final result:
4604     //
4605     //   #define LOG2OF10 3.3219281f
4606     //   t0 = Op * LOG2OF10;
4607     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4608                              getF32Constant(DAG, 0x40549a78, dl));
4609     return getLimitedPrecisionExp2(t0, dl, DAG);
4610   }
4611 
4612   // No special expansion.
4613   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4614 }
4615 
4616 
4617 /// ExpandPowI - Expand a llvm.powi intrinsic.
4618 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4619                           SelectionDAG &DAG) {
4620   // If RHS is a constant, we can expand this out to a multiplication tree,
4621   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4622   // optimizing for size, we only want to do this if the expansion would produce
4623   // a small number of multiplies, otherwise we do the full expansion.
4624   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4625     // Get the exponent as a positive value.
4626     unsigned Val = RHSC->getSExtValue();
4627     if ((int)Val < 0) Val = -Val;
4628 
4629     // powi(x, 0) -> 1.0
4630     if (Val == 0)
4631       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4632 
4633     const Function *F = DAG.getMachineFunction().getFunction();
4634     if (!F->optForSize() ||
4635         // If optimizing for size, don't insert too many multiplies.
4636         // This inserts up to 5 multiplies.
4637         countPopulation(Val) + Log2_32(Val) < 7) {
4638       // We use the simple binary decomposition method to generate the multiply
4639       // sequence.  There are more optimal ways to do this (for example,
4640       // powi(x,15) generates one more multiply than it should), but this has
4641       // the benefit of being both really simple and much better than a libcall.
4642       SDValue Res;  // Logically starts equal to 1.0
4643       SDValue CurSquare = LHS;
4644       // TODO: Intrinsics should have fast-math-flags that propagate to these
4645       // nodes.
4646       while (Val) {
4647         if (Val & 1) {
4648           if (Res.getNode())
4649             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4650           else
4651             Res = CurSquare;  // 1.0*CurSquare.
4652         }
4653 
4654         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4655                                 CurSquare, CurSquare);
4656         Val >>= 1;
4657       }
4658 
4659       // If the original was negative, invert the result, producing 1/(x*x*x).
4660       if (RHSC->getSExtValue() < 0)
4661         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4662                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4663       return Res;
4664     }
4665   }
4666 
4667   // Otherwise, expand to a libcall.
4668   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4669 }
4670 
4671 // getUnderlyingArgReg - Find underlying register used for a truncated or
4672 // bitcasted argument.
4673 static unsigned getUnderlyingArgReg(const SDValue &N) {
4674   switch (N.getOpcode()) {
4675   case ISD::CopyFromReg:
4676     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4677   case ISD::BITCAST:
4678   case ISD::AssertZext:
4679   case ISD::AssertSext:
4680   case ISD::TRUNCATE:
4681     return getUnderlyingArgReg(N.getOperand(0));
4682   default:
4683     return 0;
4684   }
4685 }
4686 
4687 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4688 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4689 /// At the end of instruction selection, they will be inserted to the entry BB.
4690 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4691     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4692     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4693   const Argument *Arg = dyn_cast<Argument>(V);
4694   if (!Arg)
4695     return false;
4696 
4697   MachineFunction &MF = DAG.getMachineFunction();
4698   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4699 
4700   // Ignore inlined function arguments here.
4701   //
4702   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4703   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4704     return false;
4705 
4706   Optional<MachineOperand> Op;
4707   // Some arguments' frame index is recorded during argument lowering.
4708   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4709     Op = MachineOperand::CreateFI(FI);
4710 
4711   if (!Op && N.getNode()) {
4712     unsigned Reg = getUnderlyingArgReg(N);
4713     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4714       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4715       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4716       if (PR)
4717         Reg = PR;
4718     }
4719     if (Reg)
4720       Op = MachineOperand::CreateReg(Reg, false);
4721   }
4722 
4723   if (!Op) {
4724     // Check if ValueMap has reg number.
4725     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4726     if (VMI != FuncInfo.ValueMap.end())
4727       Op = MachineOperand::CreateReg(VMI->second, false);
4728   }
4729 
4730   if (!Op && N.getNode())
4731     // Check if frame index is available.
4732     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4733       if (FrameIndexSDNode *FINode =
4734           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4735         Op = MachineOperand::CreateFI(FINode->getIndex());
4736 
4737   if (!Op)
4738     return false;
4739 
4740   assert(Variable->isValidLocationForIntrinsic(DL) &&
4741          "Expected inlined-at fields to agree");
4742   if (Op->isReg())
4743     FuncInfo.ArgDbgValues.push_back(
4744         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4745                 Op->getReg(), Offset, Variable, Expr));
4746   else
4747     FuncInfo.ArgDbgValues.push_back(
4748         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4749             .addOperand(*Op)
4750             .addImm(Offset)
4751             .addMetadata(Variable)
4752             .addMetadata(Expr));
4753 
4754   return true;
4755 }
4756 
4757 /// Return the appropriate SDDbgValue based on N.
4758 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4759                                              DILocalVariable *Variable,
4760                                              DIExpression *Expr, int64_t Offset,
4761                                              DebugLoc dl,
4762                                              unsigned DbgSDNodeOrder) {
4763   SDDbgValue *SDV;
4764   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4765   if (FISDN && Expr->startsWithDeref()) {
4766     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4767     // stack slot locations as such instead of as indirectly addressed
4768     // locations.
4769     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4770                                         Expr->elements_end());
4771     DIExpression *DerefedDIExpr =
4772         DIExpression::get(*DAG.getContext(), TrailingElements);
4773     int FI = FISDN->getIndex();
4774     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4775                                     DbgSDNodeOrder);
4776   } else {
4777     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4778                           Offset, dl, DbgSDNodeOrder);
4779   }
4780   return SDV;
4781 }
4782 
4783 // VisualStudio defines setjmp as _setjmp
4784 #if defined(_MSC_VER) && defined(setjmp) && \
4785                          !defined(setjmp_undefined_for_msvc)
4786 #  pragma push_macro("setjmp")
4787 #  undef setjmp
4788 #  define setjmp_undefined_for_msvc
4789 #endif
4790 
4791 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4792 /// we want to emit this as a call to a named external function, return the name
4793 /// otherwise lower it and return null.
4794 const char *
4795 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4797   SDLoc sdl = getCurSDLoc();
4798   DebugLoc dl = getCurDebugLoc();
4799   SDValue Res;
4800 
4801   switch (Intrinsic) {
4802   default:
4803     // By default, turn this into a target intrinsic node.
4804     visitTargetIntrinsic(I, Intrinsic);
4805     return nullptr;
4806   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4807   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4808   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4809   case Intrinsic::returnaddress:
4810     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4811                              TLI.getPointerTy(DAG.getDataLayout()),
4812                              getValue(I.getArgOperand(0))));
4813     return nullptr;
4814   case Intrinsic::frameaddress:
4815     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4816                              TLI.getPointerTy(DAG.getDataLayout()),
4817                              getValue(I.getArgOperand(0))));
4818     return nullptr;
4819   case Intrinsic::read_register: {
4820     Value *Reg = I.getArgOperand(0);
4821     SDValue Chain = getRoot();
4822     SDValue RegName =
4823         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4824     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4825     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4826       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4827     setValue(&I, Res);
4828     DAG.setRoot(Res.getValue(1));
4829     return nullptr;
4830   }
4831   case Intrinsic::write_register: {
4832     Value *Reg = I.getArgOperand(0);
4833     Value *RegValue = I.getArgOperand(1);
4834     SDValue Chain = getRoot();
4835     SDValue RegName =
4836         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4837     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4838                             RegName, getValue(RegValue)));
4839     return nullptr;
4840   }
4841   case Intrinsic::setjmp:
4842     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4843   case Intrinsic::longjmp:
4844     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4845   case Intrinsic::memcpy: {
4846     SDValue Op1 = getValue(I.getArgOperand(0));
4847     SDValue Op2 = getValue(I.getArgOperand(1));
4848     SDValue Op3 = getValue(I.getArgOperand(2));
4849     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4850     if (!Align)
4851       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4852     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4853     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4854     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4855                                false, isTC,
4856                                MachinePointerInfo(I.getArgOperand(0)),
4857                                MachinePointerInfo(I.getArgOperand(1)));
4858     updateDAGForMaybeTailCall(MC);
4859     return nullptr;
4860   }
4861   case Intrinsic::memset: {
4862     SDValue Op1 = getValue(I.getArgOperand(0));
4863     SDValue Op2 = getValue(I.getArgOperand(1));
4864     SDValue Op3 = getValue(I.getArgOperand(2));
4865     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4866     if (!Align)
4867       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4868     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4869     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4870     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4871                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4872     updateDAGForMaybeTailCall(MS);
4873     return nullptr;
4874   }
4875   case Intrinsic::memmove: {
4876     SDValue Op1 = getValue(I.getArgOperand(0));
4877     SDValue Op2 = getValue(I.getArgOperand(1));
4878     SDValue Op3 = getValue(I.getArgOperand(2));
4879     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4880     if (!Align)
4881       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4882     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4883     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4884     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4885                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4886                                 MachinePointerInfo(I.getArgOperand(1)));
4887     updateDAGForMaybeTailCall(MM);
4888     return nullptr;
4889   }
4890   case Intrinsic::dbg_declare: {
4891     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4892     DILocalVariable *Variable = DI.getVariable();
4893     DIExpression *Expression = DI.getExpression();
4894     const Value *Address = DI.getAddress();
4895     assert(Variable && "Missing variable");
4896     if (!Address) {
4897       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4898       return nullptr;
4899     }
4900 
4901     // Check if address has undef value.
4902     if (isa<UndefValue>(Address) ||
4903         (Address->use_empty() && !isa<Argument>(Address))) {
4904       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4905       return nullptr;
4906     }
4907 
4908     SDValue &N = NodeMap[Address];
4909     if (!N.getNode() && isa<Argument>(Address))
4910       // Check unused arguments map.
4911       N = UnusedArgNodeMap[Address];
4912     SDDbgValue *SDV;
4913     if (N.getNode()) {
4914       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4915         Address = BCI->getOperand(0);
4916       // Parameters are handled specially.
4917       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4918       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4919       if (isParameter && FINode) {
4920         // Byval parameter. We have a frame index at this point.
4921         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4922                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4923       } else if (isa<Argument>(Address)) {
4924         // Address is an argument, so try to emit its dbg value using
4925         // virtual register info from the FuncInfo.ValueMap.
4926         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4927                                  N);
4928         return nullptr;
4929       } else {
4930         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4931                               true, 0, dl, SDNodeOrder);
4932       }
4933       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4934     } else {
4935       // If Address is an argument then try to emit its dbg value using
4936       // virtual register info from the FuncInfo.ValueMap.
4937       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4938                                     N)) {
4939         // If variable is pinned by a alloca in dominating bb then
4940         // use StaticAllocaMap.
4941         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4942           if (AI->getParent() != DI.getParent()) {
4943             DenseMap<const AllocaInst*, int>::iterator SI =
4944               FuncInfo.StaticAllocaMap.find(AI);
4945             if (SI != FuncInfo.StaticAllocaMap.end()) {
4946               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4947                                               0, dl, SDNodeOrder);
4948               DAG.AddDbgValue(SDV, nullptr, false);
4949               return nullptr;
4950             }
4951           }
4952         }
4953         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4954       }
4955     }
4956     return nullptr;
4957   }
4958   case Intrinsic::dbg_value: {
4959     const DbgValueInst &DI = cast<DbgValueInst>(I);
4960     assert(DI.getVariable() && "Missing variable");
4961 
4962     DILocalVariable *Variable = DI.getVariable();
4963     DIExpression *Expression = DI.getExpression();
4964     uint64_t Offset = DI.getOffset();
4965     const Value *V = DI.getValue();
4966     if (!V)
4967       return nullptr;
4968 
4969     SDDbgValue *SDV;
4970     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4971       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4972                                     SDNodeOrder);
4973       DAG.AddDbgValue(SDV, nullptr, false);
4974     } else {
4975       // Do not use getValue() in here; we don't want to generate code at
4976       // this point if it hasn't been done yet.
4977       SDValue N = NodeMap[V];
4978       if (!N.getNode() && isa<Argument>(V))
4979         // Check unused arguments map.
4980         N = UnusedArgNodeMap[V];
4981       if (N.getNode()) {
4982         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4983                                       false, N)) {
4984           SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
4985           DAG.AddDbgValue(SDV, N.getNode(), false);
4986         }
4987       } else if (!V->use_empty() ) {
4988         // Do not call getValue(V) yet, as we don't want to generate code.
4989         // Remember it for later.
4990         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4991         DanglingDebugInfoMap[V] = DDI;
4992       } else {
4993         // We may expand this to cover more cases.  One case where we have no
4994         // data available is an unreferenced parameter.
4995         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4996       }
4997     }
4998 
4999     // Build a debug info table entry.
5000     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
5001       V = BCI->getOperand(0);
5002     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
5003     // Don't handle byval struct arguments or VLAs, for example.
5004     if (!AI) {
5005       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5006       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5007       return nullptr;
5008     }
5009     DenseMap<const AllocaInst*, int>::iterator SI =
5010       FuncInfo.StaticAllocaMap.find(AI);
5011     if (SI == FuncInfo.StaticAllocaMap.end())
5012       return nullptr; // VLAs.
5013     return nullptr;
5014   }
5015 
5016   case Intrinsic::eh_typeid_for: {
5017     // Find the type id for the given typeinfo.
5018     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5019     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
5020     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5021     setValue(&I, Res);
5022     return nullptr;
5023   }
5024 
5025   case Intrinsic::eh_return_i32:
5026   case Intrinsic::eh_return_i64:
5027     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
5028     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5029                             MVT::Other,
5030                             getControlRoot(),
5031                             getValue(I.getArgOperand(0)),
5032                             getValue(I.getArgOperand(1))));
5033     return nullptr;
5034   case Intrinsic::eh_unwind_init:
5035     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
5036     return nullptr;
5037   case Intrinsic::eh_dwarf_cfa: {
5038     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5039                              TLI.getPointerTy(DAG.getDataLayout()),
5040                              getValue(I.getArgOperand(0))));
5041     return nullptr;
5042   }
5043   case Intrinsic::eh_sjlj_callsite: {
5044     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5045     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5046     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5047     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5048 
5049     MMI.setCurrentCallSite(CI->getZExtValue());
5050     return nullptr;
5051   }
5052   case Intrinsic::eh_sjlj_functioncontext: {
5053     // Get and store the index of the function context.
5054     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5055     AllocaInst *FnCtx =
5056       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5057     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5058     MFI.setFunctionContextIndex(FI);
5059     return nullptr;
5060   }
5061   case Intrinsic::eh_sjlj_setjmp: {
5062     SDValue Ops[2];
5063     Ops[0] = getRoot();
5064     Ops[1] = getValue(I.getArgOperand(0));
5065     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5066                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5067     setValue(&I, Op.getValue(0));
5068     DAG.setRoot(Op.getValue(1));
5069     return nullptr;
5070   }
5071   case Intrinsic::eh_sjlj_longjmp: {
5072     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5073                             getRoot(), getValue(I.getArgOperand(0))));
5074     return nullptr;
5075   }
5076   case Intrinsic::eh_sjlj_setup_dispatch: {
5077     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5078                             getRoot()));
5079     return nullptr;
5080   }
5081 
5082   case Intrinsic::masked_gather:
5083     visitMaskedGather(I);
5084     return nullptr;
5085   case Intrinsic::masked_load:
5086     visitMaskedLoad(I);
5087     return nullptr;
5088   case Intrinsic::masked_scatter:
5089     visitMaskedScatter(I);
5090     return nullptr;
5091   case Intrinsic::masked_store:
5092     visitMaskedStore(I);
5093     return nullptr;
5094   case Intrinsic::x86_mmx_pslli_w:
5095   case Intrinsic::x86_mmx_pslli_d:
5096   case Intrinsic::x86_mmx_pslli_q:
5097   case Intrinsic::x86_mmx_psrli_w:
5098   case Intrinsic::x86_mmx_psrli_d:
5099   case Intrinsic::x86_mmx_psrli_q:
5100   case Intrinsic::x86_mmx_psrai_w:
5101   case Intrinsic::x86_mmx_psrai_d: {
5102     SDValue ShAmt = getValue(I.getArgOperand(1));
5103     if (isa<ConstantSDNode>(ShAmt)) {
5104       visitTargetIntrinsic(I, Intrinsic);
5105       return nullptr;
5106     }
5107     unsigned NewIntrinsic = 0;
5108     EVT ShAmtVT = MVT::v2i32;
5109     switch (Intrinsic) {
5110     case Intrinsic::x86_mmx_pslli_w:
5111       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5112       break;
5113     case Intrinsic::x86_mmx_pslli_d:
5114       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5115       break;
5116     case Intrinsic::x86_mmx_pslli_q:
5117       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5118       break;
5119     case Intrinsic::x86_mmx_psrli_w:
5120       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5121       break;
5122     case Intrinsic::x86_mmx_psrli_d:
5123       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5124       break;
5125     case Intrinsic::x86_mmx_psrli_q:
5126       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5127       break;
5128     case Intrinsic::x86_mmx_psrai_w:
5129       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5130       break;
5131     case Intrinsic::x86_mmx_psrai_d:
5132       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5133       break;
5134     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5135     }
5136 
5137     // The vector shift intrinsics with scalars uses 32b shift amounts but
5138     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5139     // to be zero.
5140     // We must do this early because v2i32 is not a legal type.
5141     SDValue ShOps[2];
5142     ShOps[0] = ShAmt;
5143     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5144     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5145     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5146     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5147     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5148                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5149                        getValue(I.getArgOperand(0)), ShAmt);
5150     setValue(&I, Res);
5151     return nullptr;
5152   }
5153   case Intrinsic::convertff:
5154   case Intrinsic::convertfsi:
5155   case Intrinsic::convertfui:
5156   case Intrinsic::convertsif:
5157   case Intrinsic::convertuif:
5158   case Intrinsic::convertss:
5159   case Intrinsic::convertsu:
5160   case Intrinsic::convertus:
5161   case Intrinsic::convertuu: {
5162     ISD::CvtCode Code = ISD::CVT_INVALID;
5163     switch (Intrinsic) {
5164     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5165     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5166     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5167     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5168     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5169     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5170     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5171     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5172     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5173     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5174     }
5175     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5176     const Value *Op1 = I.getArgOperand(0);
5177     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5178                                DAG.getValueType(DestVT),
5179                                DAG.getValueType(getValue(Op1).getValueType()),
5180                                getValue(I.getArgOperand(1)),
5181                                getValue(I.getArgOperand(2)),
5182                                Code);
5183     setValue(&I, Res);
5184     return nullptr;
5185   }
5186   case Intrinsic::powi:
5187     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5188                             getValue(I.getArgOperand(1)), DAG));
5189     return nullptr;
5190   case Intrinsic::log:
5191     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5192     return nullptr;
5193   case Intrinsic::log2:
5194     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5195     return nullptr;
5196   case Intrinsic::log10:
5197     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5198     return nullptr;
5199   case Intrinsic::exp:
5200     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5201     return nullptr;
5202   case Intrinsic::exp2:
5203     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5204     return nullptr;
5205   case Intrinsic::pow:
5206     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5207                            getValue(I.getArgOperand(1)), DAG, TLI));
5208     return nullptr;
5209   case Intrinsic::sqrt:
5210   case Intrinsic::fabs:
5211   case Intrinsic::sin:
5212   case Intrinsic::cos:
5213   case Intrinsic::floor:
5214   case Intrinsic::ceil:
5215   case Intrinsic::trunc:
5216   case Intrinsic::rint:
5217   case Intrinsic::nearbyint:
5218   case Intrinsic::round:
5219   case Intrinsic::canonicalize: {
5220     unsigned Opcode;
5221     switch (Intrinsic) {
5222     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5223     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5224     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5225     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5226     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5227     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5228     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5229     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5230     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5231     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5232     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5233     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5234     }
5235 
5236     setValue(&I, DAG.getNode(Opcode, sdl,
5237                              getValue(I.getArgOperand(0)).getValueType(),
5238                              getValue(I.getArgOperand(0))));
5239     return nullptr;
5240   }
5241   case Intrinsic::minnum: {
5242     auto VT = getValue(I.getArgOperand(0)).getValueType();
5243     unsigned Opc =
5244         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5245             ? ISD::FMINNAN
5246             : ISD::FMINNUM;
5247     setValue(&I, DAG.getNode(Opc, sdl, VT,
5248                              getValue(I.getArgOperand(0)),
5249                              getValue(I.getArgOperand(1))));
5250     return nullptr;
5251   }
5252   case Intrinsic::maxnum: {
5253     auto VT = getValue(I.getArgOperand(0)).getValueType();
5254     unsigned Opc =
5255         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5256             ? ISD::FMAXNAN
5257             : ISD::FMAXNUM;
5258     setValue(&I, DAG.getNode(Opc, sdl, VT,
5259                              getValue(I.getArgOperand(0)),
5260                              getValue(I.getArgOperand(1))));
5261     return nullptr;
5262   }
5263   case Intrinsic::copysign:
5264     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5265                              getValue(I.getArgOperand(0)).getValueType(),
5266                              getValue(I.getArgOperand(0)),
5267                              getValue(I.getArgOperand(1))));
5268     return nullptr;
5269   case Intrinsic::fma:
5270     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5271                              getValue(I.getArgOperand(0)).getValueType(),
5272                              getValue(I.getArgOperand(0)),
5273                              getValue(I.getArgOperand(1)),
5274                              getValue(I.getArgOperand(2))));
5275     return nullptr;
5276   case Intrinsic::fmuladd: {
5277     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5278     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5279         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5280       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5281                                getValue(I.getArgOperand(0)).getValueType(),
5282                                getValue(I.getArgOperand(0)),
5283                                getValue(I.getArgOperand(1)),
5284                                getValue(I.getArgOperand(2))));
5285     } else {
5286       // TODO: Intrinsic calls should have fast-math-flags.
5287       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5288                                 getValue(I.getArgOperand(0)).getValueType(),
5289                                 getValue(I.getArgOperand(0)),
5290                                 getValue(I.getArgOperand(1)));
5291       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5292                                 getValue(I.getArgOperand(0)).getValueType(),
5293                                 Mul,
5294                                 getValue(I.getArgOperand(2)));
5295       setValue(&I, Add);
5296     }
5297     return nullptr;
5298   }
5299   case Intrinsic::convert_to_fp16:
5300     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5301                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5302                                          getValue(I.getArgOperand(0)),
5303                                          DAG.getTargetConstant(0, sdl,
5304                                                                MVT::i32))));
5305     return nullptr;
5306   case Intrinsic::convert_from_fp16:
5307     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5308                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5309                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5310                                          getValue(I.getArgOperand(0)))));
5311     return nullptr;
5312   case Intrinsic::pcmarker: {
5313     SDValue Tmp = getValue(I.getArgOperand(0));
5314     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5315     return nullptr;
5316   }
5317   case Intrinsic::readcyclecounter: {
5318     SDValue Op = getRoot();
5319     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5320                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5321     setValue(&I, Res);
5322     DAG.setRoot(Res.getValue(1));
5323     return nullptr;
5324   }
5325   case Intrinsic::bitreverse:
5326     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5327                              getValue(I.getArgOperand(0)).getValueType(),
5328                              getValue(I.getArgOperand(0))));
5329     return nullptr;
5330   case Intrinsic::bswap:
5331     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5332                              getValue(I.getArgOperand(0)).getValueType(),
5333                              getValue(I.getArgOperand(0))));
5334     return nullptr;
5335   case Intrinsic::cttz: {
5336     SDValue Arg = getValue(I.getArgOperand(0));
5337     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5338     EVT Ty = Arg.getValueType();
5339     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5340                              sdl, Ty, Arg));
5341     return nullptr;
5342   }
5343   case Intrinsic::ctlz: {
5344     SDValue Arg = getValue(I.getArgOperand(0));
5345     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5346     EVT Ty = Arg.getValueType();
5347     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5348                              sdl, Ty, Arg));
5349     return nullptr;
5350   }
5351   case Intrinsic::ctpop: {
5352     SDValue Arg = getValue(I.getArgOperand(0));
5353     EVT Ty = Arg.getValueType();
5354     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5355     return nullptr;
5356   }
5357   case Intrinsic::stacksave: {
5358     SDValue Op = getRoot();
5359     Res = DAG.getNode(
5360         ISD::STACKSAVE, sdl,
5361         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5362     setValue(&I, Res);
5363     DAG.setRoot(Res.getValue(1));
5364     return nullptr;
5365   }
5366   case Intrinsic::stackrestore: {
5367     Res = getValue(I.getArgOperand(0));
5368     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5369     return nullptr;
5370   }
5371   case Intrinsic::get_dynamic_area_offset: {
5372     SDValue Op = getRoot();
5373     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5374     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5375     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5376     // target.
5377     if (PtrTy != ResTy)
5378       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5379                          " intrinsic!");
5380     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5381                       Op);
5382     DAG.setRoot(Op);
5383     setValue(&I, Res);
5384     return nullptr;
5385   }
5386   case Intrinsic::stackguard: {
5387     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5388     MachineFunction &MF = DAG.getMachineFunction();
5389     const Module &M = *MF.getFunction()->getParent();
5390     SDValue Chain = getRoot();
5391     if (TLI.useLoadStackGuardNode()) {
5392       Res = getLoadStackGuard(DAG, sdl, Chain);
5393     } else {
5394       const Value *Global = TLI.getSDagStackGuard(M);
5395       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5396       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5397                         MachinePointerInfo(Global, 0), Align,
5398                         MachineMemOperand::MOVolatile);
5399     }
5400     DAG.setRoot(Chain);
5401     setValue(&I, Res);
5402     return nullptr;
5403   }
5404   case Intrinsic::stackprotector: {
5405     // Emit code into the DAG to store the stack guard onto the stack.
5406     MachineFunction &MF = DAG.getMachineFunction();
5407     MachineFrameInfo &MFI = MF.getFrameInfo();
5408     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5409     SDValue Src, Chain = getRoot();
5410 
5411     if (TLI.useLoadStackGuardNode())
5412       Src = getLoadStackGuard(DAG, sdl, Chain);
5413     else
5414       Src = getValue(I.getArgOperand(0));   // The guard's value.
5415 
5416     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5417 
5418     int FI = FuncInfo.StaticAllocaMap[Slot];
5419     MFI.setStackProtectorIndex(FI);
5420 
5421     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5422 
5423     // Store the stack protector onto the stack.
5424     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5425                                                  DAG.getMachineFunction(), FI),
5426                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5427     setValue(&I, Res);
5428     DAG.setRoot(Res);
5429     return nullptr;
5430   }
5431   case Intrinsic::objectsize: {
5432     // If we don't know by now, we're never going to know.
5433     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5434 
5435     assert(CI && "Non-constant type in __builtin_object_size?");
5436 
5437     SDValue Arg = getValue(I.getCalledValue());
5438     EVT Ty = Arg.getValueType();
5439 
5440     if (CI->isZero())
5441       Res = DAG.getConstant(-1ULL, sdl, Ty);
5442     else
5443       Res = DAG.getConstant(0, sdl, Ty);
5444 
5445     setValue(&I, Res);
5446     return nullptr;
5447   }
5448   case Intrinsic::annotation:
5449   case Intrinsic::ptr_annotation:
5450     // Drop the intrinsic, but forward the value
5451     setValue(&I, getValue(I.getOperand(0)));
5452     return nullptr;
5453   case Intrinsic::assume:
5454   case Intrinsic::var_annotation:
5455     // Discard annotate attributes and assumptions
5456     return nullptr;
5457 
5458   case Intrinsic::init_trampoline: {
5459     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5460 
5461     SDValue Ops[6];
5462     Ops[0] = getRoot();
5463     Ops[1] = getValue(I.getArgOperand(0));
5464     Ops[2] = getValue(I.getArgOperand(1));
5465     Ops[3] = getValue(I.getArgOperand(2));
5466     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5467     Ops[5] = DAG.getSrcValue(F);
5468 
5469     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5470 
5471     DAG.setRoot(Res);
5472     return nullptr;
5473   }
5474   case Intrinsic::adjust_trampoline: {
5475     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5476                              TLI.getPointerTy(DAG.getDataLayout()),
5477                              getValue(I.getArgOperand(0))));
5478     return nullptr;
5479   }
5480   case Intrinsic::gcroot: {
5481     MachineFunction &MF = DAG.getMachineFunction();
5482     const Function *F = MF.getFunction();
5483     (void)F;
5484     assert(F->hasGC() &&
5485            "only valid in functions with gc specified, enforced by Verifier");
5486     assert(GFI && "implied by previous");
5487     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5488     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5489 
5490     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5491     GFI->addStackRoot(FI->getIndex(), TypeMap);
5492     return nullptr;
5493   }
5494   case Intrinsic::gcread:
5495   case Intrinsic::gcwrite:
5496     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5497   case Intrinsic::flt_rounds:
5498     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5499     return nullptr;
5500 
5501   case Intrinsic::expect: {
5502     // Just replace __builtin_expect(exp, c) with EXP.
5503     setValue(&I, getValue(I.getArgOperand(0)));
5504     return nullptr;
5505   }
5506 
5507   case Intrinsic::debugtrap:
5508   case Intrinsic::trap: {
5509     StringRef TrapFuncName =
5510         I.getAttributes()
5511             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5512             .getValueAsString();
5513     if (TrapFuncName.empty()) {
5514       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5515         ISD::TRAP : ISD::DEBUGTRAP;
5516       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5517       return nullptr;
5518     }
5519     TargetLowering::ArgListTy Args;
5520 
5521     TargetLowering::CallLoweringInfo CLI(DAG);
5522     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5523         CallingConv::C, I.getType(),
5524         DAG.getExternalSymbol(TrapFuncName.data(),
5525                               TLI.getPointerTy(DAG.getDataLayout())),
5526         std::move(Args));
5527 
5528     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5529     DAG.setRoot(Result.second);
5530     return nullptr;
5531   }
5532 
5533   case Intrinsic::uadd_with_overflow:
5534   case Intrinsic::sadd_with_overflow:
5535   case Intrinsic::usub_with_overflow:
5536   case Intrinsic::ssub_with_overflow:
5537   case Intrinsic::umul_with_overflow:
5538   case Intrinsic::smul_with_overflow: {
5539     ISD::NodeType Op;
5540     switch (Intrinsic) {
5541     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5542     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5543     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5544     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5545     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5546     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5547     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5548     }
5549     SDValue Op1 = getValue(I.getArgOperand(0));
5550     SDValue Op2 = getValue(I.getArgOperand(1));
5551 
5552     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5553     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5554     return nullptr;
5555   }
5556   case Intrinsic::prefetch: {
5557     SDValue Ops[5];
5558     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5559     Ops[0] = getRoot();
5560     Ops[1] = getValue(I.getArgOperand(0));
5561     Ops[2] = getValue(I.getArgOperand(1));
5562     Ops[3] = getValue(I.getArgOperand(2));
5563     Ops[4] = getValue(I.getArgOperand(3));
5564     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5565                                         DAG.getVTList(MVT::Other), Ops,
5566                                         EVT::getIntegerVT(*Context, 8),
5567                                         MachinePointerInfo(I.getArgOperand(0)),
5568                                         0, /* align */
5569                                         false, /* volatile */
5570                                         rw==0, /* read */
5571                                         rw==1)); /* write */
5572     return nullptr;
5573   }
5574   case Intrinsic::lifetime_start:
5575   case Intrinsic::lifetime_end: {
5576     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5577     // Stack coloring is not enabled in O0, discard region information.
5578     if (TM.getOptLevel() == CodeGenOpt::None)
5579       return nullptr;
5580 
5581     SmallVector<Value *, 4> Allocas;
5582     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5583 
5584     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5585            E = Allocas.end(); Object != E; ++Object) {
5586       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5587 
5588       // Could not find an Alloca.
5589       if (!LifetimeObject)
5590         continue;
5591 
5592       // First check that the Alloca is static, otherwise it won't have a
5593       // valid frame index.
5594       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5595       if (SI == FuncInfo.StaticAllocaMap.end())
5596         return nullptr;
5597 
5598       int FI = SI->second;
5599 
5600       SDValue Ops[2];
5601       Ops[0] = getRoot();
5602       Ops[1] =
5603           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5604       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5605 
5606       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5607       DAG.setRoot(Res);
5608     }
5609     return nullptr;
5610   }
5611   case Intrinsic::invariant_start:
5612     // Discard region information.
5613     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5614     return nullptr;
5615   case Intrinsic::invariant_end:
5616     // Discard region information.
5617     return nullptr;
5618   case Intrinsic::clear_cache:
5619     return TLI.getClearCacheBuiltinName();
5620   case Intrinsic::donothing:
5621     // ignore
5622     return nullptr;
5623   case Intrinsic::experimental_stackmap: {
5624     visitStackmap(I);
5625     return nullptr;
5626   }
5627   case Intrinsic::experimental_patchpoint_void:
5628   case Intrinsic::experimental_patchpoint_i64: {
5629     visitPatchpoint(&I);
5630     return nullptr;
5631   }
5632   case Intrinsic::experimental_gc_statepoint: {
5633     LowerStatepoint(ImmutableStatepoint(&I));
5634     return nullptr;
5635   }
5636   case Intrinsic::experimental_gc_result: {
5637     visitGCResult(cast<GCResultInst>(I));
5638     return nullptr;
5639   }
5640   case Intrinsic::experimental_gc_relocate: {
5641     visitGCRelocate(cast<GCRelocateInst>(I));
5642     return nullptr;
5643   }
5644   case Intrinsic::instrprof_increment:
5645     llvm_unreachable("instrprof failed to lower an increment");
5646   case Intrinsic::instrprof_value_profile:
5647     llvm_unreachable("instrprof failed to lower a value profiling call");
5648   case Intrinsic::localescape: {
5649     MachineFunction &MF = DAG.getMachineFunction();
5650     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5651 
5652     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5653     // is the same on all targets.
5654     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5655       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5656       if (isa<ConstantPointerNull>(Arg))
5657         continue; // Skip null pointers. They represent a hole in index space.
5658       AllocaInst *Slot = cast<AllocaInst>(Arg);
5659       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5660              "can only escape static allocas");
5661       int FI = FuncInfo.StaticAllocaMap[Slot];
5662       MCSymbol *FrameAllocSym =
5663           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5664               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5665       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5666               TII->get(TargetOpcode::LOCAL_ESCAPE))
5667           .addSym(FrameAllocSym)
5668           .addFrameIndex(FI);
5669     }
5670 
5671     return nullptr;
5672   }
5673 
5674   case Intrinsic::localrecover: {
5675     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5676     MachineFunction &MF = DAG.getMachineFunction();
5677     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5678 
5679     // Get the symbol that defines the frame offset.
5680     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5681     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5682     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5683     MCSymbol *FrameAllocSym =
5684         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5685             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5686 
5687     // Create a MCSymbol for the label to avoid any target lowering
5688     // that would make this PC relative.
5689     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5690     SDValue OffsetVal =
5691         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5692 
5693     // Add the offset to the FP.
5694     Value *FP = I.getArgOperand(1);
5695     SDValue FPVal = getValue(FP);
5696     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5697     setValue(&I, Add);
5698 
5699     return nullptr;
5700   }
5701 
5702   case Intrinsic::eh_exceptionpointer:
5703   case Intrinsic::eh_exceptioncode: {
5704     // Get the exception pointer vreg, copy from it, and resize it to fit.
5705     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5706     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5707     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5708     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5709     SDValue N =
5710         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5711     if (Intrinsic == Intrinsic::eh_exceptioncode)
5712       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5713     setValue(&I, N);
5714     return nullptr;
5715   }
5716 
5717   case Intrinsic::experimental_deoptimize:
5718     LowerDeoptimizeCall(&I);
5719     return nullptr;
5720   }
5721 }
5722 
5723 std::pair<SDValue, SDValue>
5724 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5725                                     const BasicBlock *EHPadBB) {
5726   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5727   MCSymbol *BeginLabel = nullptr;
5728 
5729   if (EHPadBB) {
5730     // Insert a label before the invoke call to mark the try range.  This can be
5731     // used to detect deletion of the invoke via the MachineModuleInfo.
5732     BeginLabel = MMI.getContext().createTempSymbol();
5733 
5734     // For SjLj, keep track of which landing pads go with which invokes
5735     // so as to maintain the ordering of pads in the LSDA.
5736     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5737     if (CallSiteIndex) {
5738       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5739       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5740 
5741       // Now that the call site is handled, stop tracking it.
5742       MMI.setCurrentCallSite(0);
5743     }
5744 
5745     // Both PendingLoads and PendingExports must be flushed here;
5746     // this call might not return.
5747     (void)getRoot();
5748     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5749 
5750     CLI.setChain(getRoot());
5751   }
5752   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5753   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5754 
5755   assert((CLI.IsTailCall || Result.second.getNode()) &&
5756          "Non-null chain expected with non-tail call!");
5757   assert((Result.second.getNode() || !Result.first.getNode()) &&
5758          "Null value expected with tail call!");
5759 
5760   if (!Result.second.getNode()) {
5761     // As a special case, a null chain means that a tail call has been emitted
5762     // and the DAG root is already updated.
5763     HasTailCall = true;
5764 
5765     // Since there's no actual continuation from this block, nothing can be
5766     // relying on us setting vregs for them.
5767     PendingExports.clear();
5768   } else {
5769     DAG.setRoot(Result.second);
5770   }
5771 
5772   if (EHPadBB) {
5773     // Insert a label at the end of the invoke call to mark the try range.  This
5774     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5775     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5776     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5777 
5778     // Inform MachineModuleInfo of range.
5779     if (MMI.hasEHFunclets()) {
5780       assert(CLI.CS);
5781       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5782       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5783                                 BeginLabel, EndLabel);
5784     } else {
5785       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5786     }
5787   }
5788 
5789   return Result;
5790 }
5791 
5792 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5793                                       bool isTailCall,
5794                                       const BasicBlock *EHPadBB) {
5795   auto &DL = DAG.getDataLayout();
5796   FunctionType *FTy = CS.getFunctionType();
5797   Type *RetTy = CS.getType();
5798 
5799   TargetLowering::ArgListTy Args;
5800   TargetLowering::ArgListEntry Entry;
5801   Args.reserve(CS.arg_size());
5802 
5803   const Value *SwiftErrorVal = nullptr;
5804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5805   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5806        i != e; ++i) {
5807     const Value *V = *i;
5808 
5809     // Skip empty types
5810     if (V->getType()->isEmptyTy())
5811       continue;
5812 
5813     SDValue ArgNode = getValue(V);
5814     Entry.Node = ArgNode; Entry.Ty = V->getType();
5815 
5816     // Skip the first return-type Attribute to get to params.
5817     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5818 
5819     // Use swifterror virtual register as input to the call.
5820     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5821       SwiftErrorVal = V;
5822       // We find the virtual register for the actual swifterror argument.
5823       // Instead of using the Value, we use the virtual register instead.
5824       Entry.Node = DAG.getRegister(
5825           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5826           EVT(TLI.getPointerTy(DL)));
5827     }
5828 
5829     Args.push_back(Entry);
5830 
5831     // If we have an explicit sret argument that is an Instruction, (i.e., it
5832     // might point to function-local memory), we can't meaningfully tail-call.
5833     if (Entry.isSRet && isa<Instruction>(V))
5834       isTailCall = false;
5835   }
5836 
5837   // Check if target-independent constraints permit a tail call here.
5838   // Target-dependent constraints are checked within TLI->LowerCallTo.
5839   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5840     isTailCall = false;
5841 
5842   TargetLowering::CallLoweringInfo CLI(DAG);
5843   CLI.setDebugLoc(getCurSDLoc())
5844       .setChain(getRoot())
5845       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5846       .setTailCall(isTailCall)
5847       .setConvergent(CS.isConvergent());
5848   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5849 
5850   if (Result.first.getNode()) {
5851     const Instruction *Inst = CS.getInstruction();
5852     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5853     setValue(Inst, Result.first);
5854   }
5855 
5856   // The last element of CLI.InVals has the SDValue for swifterror return.
5857   // Here we copy it to a virtual register and update SwiftErrorMap for
5858   // book-keeping.
5859   if (SwiftErrorVal && TLI.supportSwiftError()) {
5860     // Get the last element of InVals.
5861     SDValue Src = CLI.InVals.back();
5862     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5863     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5864     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5865     // We update the virtual register for the actual swifterror argument.
5866     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5867     DAG.setRoot(CopyNode);
5868   }
5869 }
5870 
5871 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5872 /// value is equal or not-equal to zero.
5873 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5874   for (const User *U : V->users()) {
5875     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5876       if (IC->isEquality())
5877         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5878           if (C->isNullValue())
5879             continue;
5880     // Unknown instruction.
5881     return false;
5882   }
5883   return true;
5884 }
5885 
5886 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5887                              Type *LoadTy,
5888                              SelectionDAGBuilder &Builder) {
5889 
5890   // Check to see if this load can be trivially constant folded, e.g. if the
5891   // input is from a string literal.
5892   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5893     // Cast pointer to the type we really want to load.
5894     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5895                                          PointerType::getUnqual(LoadTy));
5896 
5897     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5898             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5899       return Builder.getValue(LoadCst);
5900   }
5901 
5902   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5903   // still constant memory, the input chain can be the entry node.
5904   SDValue Root;
5905   bool ConstantMemory = false;
5906 
5907   // Do not serialize (non-volatile) loads of constant memory with anything.
5908   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5909     Root = Builder.DAG.getEntryNode();
5910     ConstantMemory = true;
5911   } else {
5912     // Do not serialize non-volatile loads against each other.
5913     Root = Builder.DAG.getRoot();
5914   }
5915 
5916   SDValue Ptr = Builder.getValue(PtrVal);
5917   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5918                                         Ptr, MachinePointerInfo(PtrVal),
5919                                         /* Alignment = */ 1);
5920 
5921   if (!ConstantMemory)
5922     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5923   return LoadVal;
5924 }
5925 
5926 /// processIntegerCallValue - Record the value for an instruction that
5927 /// produces an integer result, converting the type where necessary.
5928 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5929                                                   SDValue Value,
5930                                                   bool IsSigned) {
5931   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5932                                                     I.getType(), true);
5933   if (IsSigned)
5934     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5935   else
5936     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5937   setValue(&I, Value);
5938 }
5939 
5940 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5941 /// If so, return true and lower it, otherwise return false and it will be
5942 /// lowered like a normal call.
5943 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5944   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5945   if (I.getNumArgOperands() != 3)
5946     return false;
5947 
5948   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5949   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5950       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5951       !I.getType()->isIntegerTy())
5952     return false;
5953 
5954   const Value *Size = I.getArgOperand(2);
5955   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5956   if (CSize && CSize->getZExtValue() == 0) {
5957     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5958                                                           I.getType(), true);
5959     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5960     return true;
5961   }
5962 
5963   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5964   std::pair<SDValue, SDValue> Res =
5965     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5966                                 getValue(LHS), getValue(RHS), getValue(Size),
5967                                 MachinePointerInfo(LHS),
5968                                 MachinePointerInfo(RHS));
5969   if (Res.first.getNode()) {
5970     processIntegerCallValue(I, Res.first, true);
5971     PendingLoads.push_back(Res.second);
5972     return true;
5973   }
5974 
5975   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5976   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5977   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5978     bool ActuallyDoIt = true;
5979     MVT LoadVT;
5980     Type *LoadTy;
5981     switch (CSize->getZExtValue()) {
5982     default:
5983       LoadVT = MVT::Other;
5984       LoadTy = nullptr;
5985       ActuallyDoIt = false;
5986       break;
5987     case 2:
5988       LoadVT = MVT::i16;
5989       LoadTy = Type::getInt16Ty(CSize->getContext());
5990       break;
5991     case 4:
5992       LoadVT = MVT::i32;
5993       LoadTy = Type::getInt32Ty(CSize->getContext());
5994       break;
5995     case 8:
5996       LoadVT = MVT::i64;
5997       LoadTy = Type::getInt64Ty(CSize->getContext());
5998       break;
5999         /*
6000     case 16:
6001       LoadVT = MVT::v4i32;
6002       LoadTy = Type::getInt32Ty(CSize->getContext());
6003       LoadTy = VectorType::get(LoadTy, 4);
6004       break;
6005          */
6006     }
6007 
6008     // This turns into unaligned loads.  We only do this if the target natively
6009     // supports the MVT we'll be loading or if it is small enough (<= 4) that
6010     // we'll only produce a small number of byte loads.
6011 
6012     // Require that we can find a legal MVT, and only do this if the target
6013     // supports unaligned loads of that type.  Expanding into byte loads would
6014     // bloat the code.
6015     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6016     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
6017       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6018       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6019       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6020       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6021       // TODO: Check alignment of src and dest ptrs.
6022       if (!TLI.isTypeLegal(LoadVT) ||
6023           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
6024           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
6025         ActuallyDoIt = false;
6026     }
6027 
6028     if (ActuallyDoIt) {
6029       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
6030       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
6031 
6032       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6033                                  ISD::SETNE);
6034       processIntegerCallValue(I, Res, false);
6035       return true;
6036     }
6037   }
6038 
6039 
6040   return false;
6041 }
6042 
6043 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6044 /// form.  If so, return true and lower it, otherwise return false and it
6045 /// will be lowered like a normal call.
6046 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6047   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6048   if (I.getNumArgOperands() != 3)
6049     return false;
6050 
6051   const Value *Src = I.getArgOperand(0);
6052   const Value *Char = I.getArgOperand(1);
6053   const Value *Length = I.getArgOperand(2);
6054   if (!Src->getType()->isPointerTy() ||
6055       !Char->getType()->isIntegerTy() ||
6056       !Length->getType()->isIntegerTy() ||
6057       !I.getType()->isPointerTy())
6058     return false;
6059 
6060   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6061   std::pair<SDValue, SDValue> Res =
6062     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6063                                 getValue(Src), getValue(Char), getValue(Length),
6064                                 MachinePointerInfo(Src));
6065   if (Res.first.getNode()) {
6066     setValue(&I, Res.first);
6067     PendingLoads.push_back(Res.second);
6068     return true;
6069   }
6070 
6071   return false;
6072 }
6073 
6074 ///
6075 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to
6076 /// to adjust the dst pointer by the size of the copied memory.
6077 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6078 
6079   // Verify argument count: void *mempcpy(void *, const void *, size_t)
6080   if (I.getNumArgOperands() != 3)
6081     return false;
6082 
6083   SDValue Dst = getValue(I.getArgOperand(0));
6084   SDValue Src = getValue(I.getArgOperand(1));
6085   SDValue Size = getValue(I.getArgOperand(2));
6086 
6087   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6088   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6089   unsigned Align = std::min(DstAlign, SrcAlign);
6090   if (Align == 0) // Alignment of one or both could not be inferred.
6091     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6092 
6093   bool isVol = false;
6094   SDLoc sdl = getCurSDLoc();
6095 
6096   // In the mempcpy context we need to pass in a false value for isTailCall
6097   // because the return pointer needs to be adjusted by the size of
6098   // the copied memory.
6099   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6100                              false, /*isTailCall=*/false,
6101                              MachinePointerInfo(I.getArgOperand(0)),
6102                              MachinePointerInfo(I.getArgOperand(1)));
6103   assert(MC.getNode() != nullptr &&
6104          "** memcpy should not be lowered as TailCall in mempcpy context **");
6105   DAG.setRoot(MC);
6106 
6107   // Check if Size needs to be truncated or extended.
6108   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6109 
6110   // Adjust return pointer to point just past the last dst byte.
6111   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6112                                     Dst, Size);
6113   setValue(&I, DstPlusSize);
6114   return true;
6115 }
6116 
6117 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6118 /// optimized form.  If so, return true and lower it, otherwise return false
6119 /// and it will be lowered like a normal call.
6120 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6121   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6122   if (I.getNumArgOperands() != 2)
6123     return false;
6124 
6125   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6126   if (!Arg0->getType()->isPointerTy() ||
6127       !Arg1->getType()->isPointerTy() ||
6128       !I.getType()->isPointerTy())
6129     return false;
6130 
6131   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6132   std::pair<SDValue, SDValue> Res =
6133     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6134                                 getValue(Arg0), getValue(Arg1),
6135                                 MachinePointerInfo(Arg0),
6136                                 MachinePointerInfo(Arg1), isStpcpy);
6137   if (Res.first.getNode()) {
6138     setValue(&I, Res.first);
6139     DAG.setRoot(Res.second);
6140     return true;
6141   }
6142 
6143   return false;
6144 }
6145 
6146 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6147 /// If so, return true and lower it, otherwise return false and it will be
6148 /// lowered like a normal call.
6149 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6150   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6151   if (I.getNumArgOperands() != 2)
6152     return false;
6153 
6154   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6155   if (!Arg0->getType()->isPointerTy() ||
6156       !Arg1->getType()->isPointerTy() ||
6157       !I.getType()->isIntegerTy())
6158     return false;
6159 
6160   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6161   std::pair<SDValue, SDValue> Res =
6162     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6163                                 getValue(Arg0), getValue(Arg1),
6164                                 MachinePointerInfo(Arg0),
6165                                 MachinePointerInfo(Arg1));
6166   if (Res.first.getNode()) {
6167     processIntegerCallValue(I, Res.first, true);
6168     PendingLoads.push_back(Res.second);
6169     return true;
6170   }
6171 
6172   return false;
6173 }
6174 
6175 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6176 /// form.  If so, return true and lower it, otherwise return false and it
6177 /// will be lowered like a normal call.
6178 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6179   // Verify that the prototype makes sense.  size_t strlen(char *)
6180   if (I.getNumArgOperands() != 1)
6181     return false;
6182 
6183   const Value *Arg0 = I.getArgOperand(0);
6184   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6185     return false;
6186 
6187   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6188   std::pair<SDValue, SDValue> Res =
6189     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6190                                 getValue(Arg0), MachinePointerInfo(Arg0));
6191   if (Res.first.getNode()) {
6192     processIntegerCallValue(I, Res.first, false);
6193     PendingLoads.push_back(Res.second);
6194     return true;
6195   }
6196 
6197   return false;
6198 }
6199 
6200 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6201 /// form.  If so, return true and lower it, otherwise return false and it
6202 /// will be lowered like a normal call.
6203 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6204   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6205   if (I.getNumArgOperands() != 2)
6206     return false;
6207 
6208   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6209   if (!Arg0->getType()->isPointerTy() ||
6210       !Arg1->getType()->isIntegerTy() ||
6211       !I.getType()->isIntegerTy())
6212     return false;
6213 
6214   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6215   std::pair<SDValue, SDValue> Res =
6216     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6217                                  getValue(Arg0), getValue(Arg1),
6218                                  MachinePointerInfo(Arg0));
6219   if (Res.first.getNode()) {
6220     processIntegerCallValue(I, Res.first, false);
6221     PendingLoads.push_back(Res.second);
6222     return true;
6223   }
6224 
6225   return false;
6226 }
6227 
6228 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6229 /// operation (as expected), translate it to an SDNode with the specified opcode
6230 /// and return true.
6231 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6232                                               unsigned Opcode) {
6233   // Sanity check that it really is a unary floating-point call.
6234   if (I.getNumArgOperands() != 1 ||
6235       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6236       I.getType() != I.getArgOperand(0)->getType() ||
6237       !I.onlyReadsMemory())
6238     return false;
6239 
6240   SDValue Tmp = getValue(I.getArgOperand(0));
6241   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6242   return true;
6243 }
6244 
6245 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6246 /// operation (as expected), translate it to an SDNode with the specified opcode
6247 /// and return true.
6248 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6249                                                unsigned Opcode) {
6250   // Sanity check that it really is a binary floating-point call.
6251   if (I.getNumArgOperands() != 2 ||
6252       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6253       I.getType() != I.getArgOperand(0)->getType() ||
6254       I.getType() != I.getArgOperand(1)->getType() ||
6255       !I.onlyReadsMemory())
6256     return false;
6257 
6258   SDValue Tmp0 = getValue(I.getArgOperand(0));
6259   SDValue Tmp1 = getValue(I.getArgOperand(1));
6260   EVT VT = Tmp0.getValueType();
6261   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6262   return true;
6263 }
6264 
6265 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6266   // Handle inline assembly differently.
6267   if (isa<InlineAsm>(I.getCalledValue())) {
6268     visitInlineAsm(&I);
6269     return;
6270   }
6271 
6272   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6273   ComputeUsesVAFloatArgument(I, &MMI);
6274 
6275   const char *RenameFn = nullptr;
6276   if (Function *F = I.getCalledFunction()) {
6277     if (F->isDeclaration()) {
6278       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6279         if (unsigned IID = II->getIntrinsicID(F)) {
6280           RenameFn = visitIntrinsicCall(I, IID);
6281           if (!RenameFn)
6282             return;
6283         }
6284       }
6285       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6286         RenameFn = visitIntrinsicCall(I, IID);
6287         if (!RenameFn)
6288           return;
6289       }
6290     }
6291 
6292     // Check for well-known libc/libm calls.  If the function is internal, it
6293     // can't be a library call.  Don't do the check if marked as nobuiltin for
6294     // some reason.
6295     LibFunc::Func Func;
6296     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6297         LibInfo->getLibFunc(F->getName(), Func) &&
6298         LibInfo->hasOptimizedCodeGen(Func)) {
6299       switch (Func) {
6300       default: break;
6301       case LibFunc::copysign:
6302       case LibFunc::copysignf:
6303       case LibFunc::copysignl:
6304         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6305             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6306             I.getType() == I.getArgOperand(0)->getType() &&
6307             I.getType() == I.getArgOperand(1)->getType() &&
6308             I.onlyReadsMemory()) {
6309           SDValue LHS = getValue(I.getArgOperand(0));
6310           SDValue RHS = getValue(I.getArgOperand(1));
6311           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6312                                    LHS.getValueType(), LHS, RHS));
6313           return;
6314         }
6315         break;
6316       case LibFunc::fabs:
6317       case LibFunc::fabsf:
6318       case LibFunc::fabsl:
6319         if (visitUnaryFloatCall(I, ISD::FABS))
6320           return;
6321         break;
6322       case LibFunc::fmin:
6323       case LibFunc::fminf:
6324       case LibFunc::fminl:
6325         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6326           return;
6327         break;
6328       case LibFunc::fmax:
6329       case LibFunc::fmaxf:
6330       case LibFunc::fmaxl:
6331         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6332           return;
6333         break;
6334       case LibFunc::sin:
6335       case LibFunc::sinf:
6336       case LibFunc::sinl:
6337         if (visitUnaryFloatCall(I, ISD::FSIN))
6338           return;
6339         break;
6340       case LibFunc::cos:
6341       case LibFunc::cosf:
6342       case LibFunc::cosl:
6343         if (visitUnaryFloatCall(I, ISD::FCOS))
6344           return;
6345         break;
6346       case LibFunc::sqrt:
6347       case LibFunc::sqrtf:
6348       case LibFunc::sqrtl:
6349       case LibFunc::sqrt_finite:
6350       case LibFunc::sqrtf_finite:
6351       case LibFunc::sqrtl_finite:
6352         if (visitUnaryFloatCall(I, ISD::FSQRT))
6353           return;
6354         break;
6355       case LibFunc::floor:
6356       case LibFunc::floorf:
6357       case LibFunc::floorl:
6358         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6359           return;
6360         break;
6361       case LibFunc::nearbyint:
6362       case LibFunc::nearbyintf:
6363       case LibFunc::nearbyintl:
6364         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6365           return;
6366         break;
6367       case LibFunc::ceil:
6368       case LibFunc::ceilf:
6369       case LibFunc::ceill:
6370         if (visitUnaryFloatCall(I, ISD::FCEIL))
6371           return;
6372         break;
6373       case LibFunc::rint:
6374       case LibFunc::rintf:
6375       case LibFunc::rintl:
6376         if (visitUnaryFloatCall(I, ISD::FRINT))
6377           return;
6378         break;
6379       case LibFunc::round:
6380       case LibFunc::roundf:
6381       case LibFunc::roundl:
6382         if (visitUnaryFloatCall(I, ISD::FROUND))
6383           return;
6384         break;
6385       case LibFunc::trunc:
6386       case LibFunc::truncf:
6387       case LibFunc::truncl:
6388         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6389           return;
6390         break;
6391       case LibFunc::log2:
6392       case LibFunc::log2f:
6393       case LibFunc::log2l:
6394         if (visitUnaryFloatCall(I, ISD::FLOG2))
6395           return;
6396         break;
6397       case LibFunc::exp2:
6398       case LibFunc::exp2f:
6399       case LibFunc::exp2l:
6400         if (visitUnaryFloatCall(I, ISD::FEXP2))
6401           return;
6402         break;
6403       case LibFunc::memcmp:
6404         if (visitMemCmpCall(I))
6405           return;
6406         break;
6407       case LibFunc::mempcpy:
6408         if (visitMemPCpyCall(I))
6409           return;
6410         break;
6411       case LibFunc::memchr:
6412         if (visitMemChrCall(I))
6413           return;
6414         break;
6415       case LibFunc::strcpy:
6416         if (visitStrCpyCall(I, false))
6417           return;
6418         break;
6419       case LibFunc::stpcpy:
6420         if (visitStrCpyCall(I, true))
6421           return;
6422         break;
6423       case LibFunc::strcmp:
6424         if (visitStrCmpCall(I))
6425           return;
6426         break;
6427       case LibFunc::strlen:
6428         if (visitStrLenCall(I))
6429           return;
6430         break;
6431       case LibFunc::strnlen:
6432         if (visitStrNLenCall(I))
6433           return;
6434         break;
6435       }
6436     }
6437   }
6438 
6439   SDValue Callee;
6440   if (!RenameFn)
6441     Callee = getValue(I.getCalledValue());
6442   else
6443     Callee = DAG.getExternalSymbol(
6444         RenameFn,
6445         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6446 
6447   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6448   // have to do anything here to lower funclet bundles.
6449   assert(!I.hasOperandBundlesOtherThan(
6450              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6451          "Cannot lower calls with arbitrary operand bundles!");
6452 
6453   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6454     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6455   else
6456     // Check if we can potentially perform a tail call. More detailed checking
6457     // is be done within LowerCallTo, after more information about the call is
6458     // known.
6459     LowerCallTo(&I, Callee, I.isTailCall());
6460 }
6461 
6462 namespace {
6463 
6464 /// AsmOperandInfo - This contains information for each constraint that we are
6465 /// lowering.
6466 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6467 public:
6468   /// CallOperand - If this is the result output operand or a clobber
6469   /// this is null, otherwise it is the incoming operand to the CallInst.
6470   /// This gets modified as the asm is processed.
6471   SDValue CallOperand;
6472 
6473   /// AssignedRegs - If this is a register or register class operand, this
6474   /// contains the set of register corresponding to the operand.
6475   RegsForValue AssignedRegs;
6476 
6477   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6478     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6479   }
6480 
6481   /// Whether or not this operand accesses memory
6482   bool hasMemory(const TargetLowering &TLI) const {
6483     // Indirect operand accesses access memory.
6484     if (isIndirect)
6485       return true;
6486 
6487     for (const auto &Code : Codes)
6488       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6489         return true;
6490 
6491     return false;
6492   }
6493 
6494   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6495   /// corresponds to.  If there is no Value* for this operand, it returns
6496   /// MVT::Other.
6497   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6498                            const DataLayout &DL) const {
6499     if (!CallOperandVal) return MVT::Other;
6500 
6501     if (isa<BasicBlock>(CallOperandVal))
6502       return TLI.getPointerTy(DL);
6503 
6504     llvm::Type *OpTy = CallOperandVal->getType();
6505 
6506     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6507     // If this is an indirect operand, the operand is a pointer to the
6508     // accessed type.
6509     if (isIndirect) {
6510       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6511       if (!PtrTy)
6512         report_fatal_error("Indirect operand for inline asm not a pointer!");
6513       OpTy = PtrTy->getElementType();
6514     }
6515 
6516     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6517     if (StructType *STy = dyn_cast<StructType>(OpTy))
6518       if (STy->getNumElements() == 1)
6519         OpTy = STy->getElementType(0);
6520 
6521     // If OpTy is not a single value, it may be a struct/union that we
6522     // can tile with integers.
6523     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6524       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6525       switch (BitSize) {
6526       default: break;
6527       case 1:
6528       case 8:
6529       case 16:
6530       case 32:
6531       case 64:
6532       case 128:
6533         OpTy = IntegerType::get(Context, BitSize);
6534         break;
6535       }
6536     }
6537 
6538     return TLI.getValueType(DL, OpTy, true);
6539   }
6540 };
6541 
6542 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6543 
6544 } // end anonymous namespace
6545 
6546 /// Make sure that the output operand \p OpInfo and its corresponding input
6547 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6548 /// out).
6549 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6550                                SDISelAsmOperandInfo &MatchingOpInfo,
6551                                SelectionDAG &DAG) {
6552   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6553     return;
6554 
6555   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6556   const auto &TLI = DAG.getTargetLoweringInfo();
6557 
6558   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6559       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6560                                        OpInfo.ConstraintVT);
6561   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6562       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6563                                        MatchingOpInfo.ConstraintVT);
6564   if ((OpInfo.ConstraintVT.isInteger() !=
6565        MatchingOpInfo.ConstraintVT.isInteger()) ||
6566       (MatchRC.second != InputRC.second)) {
6567     // FIXME: error out in a more elegant fashion
6568     report_fatal_error("Unsupported asm: input constraint"
6569                        " with a matching output constraint of"
6570                        " incompatible type!");
6571   }
6572   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6573 }
6574 
6575 /// Get a direct memory input to behave well as an indirect operand.
6576 /// This may introduce stores, hence the need for a \p Chain.
6577 /// \return The (possibly updated) chain.
6578 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6579                                         SDISelAsmOperandInfo &OpInfo,
6580                                         SelectionDAG &DAG) {
6581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6582 
6583   // If we don't have an indirect input, put it in the constpool if we can,
6584   // otherwise spill it to a stack slot.
6585   // TODO: This isn't quite right. We need to handle these according to
6586   // the addressing mode that the constraint wants. Also, this may take
6587   // an additional register for the computation and we don't want that
6588   // either.
6589 
6590   // If the operand is a float, integer, or vector constant, spill to a
6591   // constant pool entry to get its address.
6592   const Value *OpVal = OpInfo.CallOperandVal;
6593   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6594       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6595     OpInfo.CallOperand = DAG.getConstantPool(
6596         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6597     return Chain;
6598   }
6599 
6600   // Otherwise, create a stack slot and emit a store to it before the asm.
6601   Type *Ty = OpVal->getType();
6602   auto &DL = DAG.getDataLayout();
6603   uint64_t TySize = DL.getTypeAllocSize(Ty);
6604   unsigned Align = DL.getPrefTypeAlignment(Ty);
6605   MachineFunction &MF = DAG.getMachineFunction();
6606   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6607   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
6608   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6609                        MachinePointerInfo::getFixedStack(MF, SSFI));
6610   OpInfo.CallOperand = StackSlot;
6611 
6612   return Chain;
6613 }
6614 
6615 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6616 /// specified operand.  We prefer to assign virtual registers, to allow the
6617 /// register allocator to handle the assignment process.  However, if the asm
6618 /// uses features that we can't model on machineinstrs, we have SDISel do the
6619 /// allocation.  This produces generally horrible, but correct, code.
6620 ///
6621 ///   OpInfo describes the operand.
6622 ///
6623 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6624                                  const SDLoc &DL,
6625                                  SDISelAsmOperandInfo &OpInfo) {
6626   LLVMContext &Context = *DAG.getContext();
6627 
6628   MachineFunction &MF = DAG.getMachineFunction();
6629   SmallVector<unsigned, 4> Regs;
6630 
6631   // If this is a constraint for a single physreg, or a constraint for a
6632   // register class, find it.
6633   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6634       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6635                                        OpInfo.ConstraintCode,
6636                                        OpInfo.ConstraintVT);
6637 
6638   unsigned NumRegs = 1;
6639   if (OpInfo.ConstraintVT != MVT::Other) {
6640     // If this is a FP input in an integer register (or visa versa) insert a bit
6641     // cast of the input value.  More generally, handle any case where the input
6642     // value disagrees with the register class we plan to stick this in.
6643     if (OpInfo.Type == InlineAsm::isInput &&
6644         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6645       // Try to convert to the first EVT that the reg class contains.  If the
6646       // types are identical size, use a bitcast to convert (e.g. two differing
6647       // vector types).
6648       MVT RegVT = *PhysReg.second->vt_begin();
6649       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6650         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6651                                          RegVT, OpInfo.CallOperand);
6652         OpInfo.ConstraintVT = RegVT;
6653       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6654         // If the input is a FP value and we want it in FP registers, do a
6655         // bitcast to the corresponding integer type.  This turns an f64 value
6656         // into i64, which can be passed with two i32 values on a 32-bit
6657         // machine.
6658         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6659         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6660                                          RegVT, OpInfo.CallOperand);
6661         OpInfo.ConstraintVT = RegVT;
6662       }
6663     }
6664 
6665     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6666   }
6667 
6668   MVT RegVT;
6669   EVT ValueVT = OpInfo.ConstraintVT;
6670 
6671   // If this is a constraint for a specific physical register, like {r17},
6672   // assign it now.
6673   if (unsigned AssignedReg = PhysReg.first) {
6674     const TargetRegisterClass *RC = PhysReg.second;
6675     if (OpInfo.ConstraintVT == MVT::Other)
6676       ValueVT = *RC->vt_begin();
6677 
6678     // Get the actual register value type.  This is important, because the user
6679     // may have asked for (e.g.) the AX register in i32 type.  We need to
6680     // remember that AX is actually i16 to get the right extension.
6681     RegVT = *RC->vt_begin();
6682 
6683     // This is a explicit reference to a physical register.
6684     Regs.push_back(AssignedReg);
6685 
6686     // If this is an expanded reference, add the rest of the regs to Regs.
6687     if (NumRegs != 1) {
6688       TargetRegisterClass::iterator I = RC->begin();
6689       for (; *I != AssignedReg; ++I)
6690         assert(I != RC->end() && "Didn't find reg!");
6691 
6692       // Already added the first reg.
6693       --NumRegs; ++I;
6694       for (; NumRegs; --NumRegs, ++I) {
6695         assert(I != RC->end() && "Ran out of registers to allocate!");
6696         Regs.push_back(*I);
6697       }
6698     }
6699 
6700     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6701     return;
6702   }
6703 
6704   // Otherwise, if this was a reference to an LLVM register class, create vregs
6705   // for this reference.
6706   if (const TargetRegisterClass *RC = PhysReg.second) {
6707     RegVT = *RC->vt_begin();
6708     if (OpInfo.ConstraintVT == MVT::Other)
6709       ValueVT = RegVT;
6710 
6711     // Create the appropriate number of virtual registers.
6712     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6713     for (; NumRegs; --NumRegs)
6714       Regs.push_back(RegInfo.createVirtualRegister(RC));
6715 
6716     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6717     return;
6718   }
6719 
6720   // Otherwise, we couldn't allocate enough registers for this.
6721 }
6722 
6723 static unsigned
6724 findMatchingInlineAsmOperand(unsigned OperandNo,
6725                              const std::vector<SDValue> &AsmNodeOperands) {
6726   // Scan until we find the definition we already emitted of this operand.
6727   unsigned CurOp = InlineAsm::Op_FirstOperand;
6728   for (; OperandNo; --OperandNo) {
6729     // Advance to the next operand.
6730     unsigned OpFlag =
6731         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6732     assert((InlineAsm::isRegDefKind(OpFlag) ||
6733             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6734             InlineAsm::isMemKind(OpFlag)) &&
6735            "Skipped past definitions?");
6736     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6737   }
6738   return CurOp;
6739 }
6740 
6741 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6742 /// \return true if it has succeeded, false otherwise
6743 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6744                               MVT RegVT, SelectionDAG &DAG) {
6745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6746   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6747   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6748     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6749       Regs.push_back(RegInfo.createVirtualRegister(RC));
6750     else
6751       return false;
6752   }
6753   return true;
6754 }
6755 
6756 class ExtraFlags {
6757   unsigned Flags = 0;
6758 
6759 public:
6760   explicit ExtraFlags(ImmutableCallSite CS) {
6761     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6762     if (IA->hasSideEffects())
6763       Flags |= InlineAsm::Extra_HasSideEffects;
6764     if (IA->isAlignStack())
6765       Flags |= InlineAsm::Extra_IsAlignStack;
6766     if (CS.isConvergent())
6767       Flags |= InlineAsm::Extra_IsConvergent;
6768     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6769   }
6770 
6771   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6772     // Ideally, we would only check against memory constraints.  However, the
6773     // meaning of an Other constraint can be target-specific and we can't easily
6774     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6775     // for Other constraints as well.
6776     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6777         OpInfo.ConstraintType == TargetLowering::C_Other) {
6778       if (OpInfo.Type == InlineAsm::isInput)
6779         Flags |= InlineAsm::Extra_MayLoad;
6780       else if (OpInfo.Type == InlineAsm::isOutput)
6781         Flags |= InlineAsm::Extra_MayStore;
6782       else if (OpInfo.Type == InlineAsm::isClobber)
6783         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6784     }
6785   }
6786 
6787   unsigned get() const { return Flags; }
6788 };
6789 
6790 /// visitInlineAsm - Handle a call to an InlineAsm object.
6791 ///
6792 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6793   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6794 
6795   /// ConstraintOperands - Information about all of the constraints.
6796   SDISelAsmOperandInfoVector ConstraintOperands;
6797 
6798   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6799   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6800       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6801 
6802   bool hasMemory = false;
6803 
6804   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6805   ExtraFlags ExtraInfo(CS);
6806 
6807   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6808   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6809   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6810     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6811     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6812 
6813     MVT OpVT = MVT::Other;
6814 
6815     // Compute the value type for each operand.
6816     if (OpInfo.Type == InlineAsm::isInput ||
6817         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6818       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6819 
6820       // Process the call argument. BasicBlocks are labels, currently appearing
6821       // only in asm's.
6822       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6823         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6824       } else {
6825         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6826       }
6827 
6828       OpVT =
6829           OpInfo
6830               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6831               .getSimpleVT();
6832     }
6833 
6834     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6835       // The return value of the call is this value.  As such, there is no
6836       // corresponding argument.
6837       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6838       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6839         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6840                                       STy->getElementType(ResNo));
6841       } else {
6842         assert(ResNo == 0 && "Asm only has one result!");
6843         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6844       }
6845       ++ResNo;
6846     }
6847 
6848     OpInfo.ConstraintVT = OpVT;
6849 
6850     if (!hasMemory)
6851       hasMemory = OpInfo.hasMemory(TLI);
6852 
6853     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6854     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6855     auto TargetConstraint = TargetConstraints[i];
6856 
6857     // Compute the constraint code and ConstraintType to use.
6858     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6859 
6860     ExtraInfo.update(TargetConstraint);
6861   }
6862 
6863   SDValue Chain, Flag;
6864 
6865   // We won't need to flush pending loads if this asm doesn't touch
6866   // memory and is nonvolatile.
6867   if (hasMemory || IA->hasSideEffects())
6868     Chain = getRoot();
6869   else
6870     Chain = DAG.getRoot();
6871 
6872   // Second pass over the constraints: compute which constraint option to use
6873   // and assign registers to constraints that want a specific physreg.
6874   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6875     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6876 
6877     // If this is an output operand with a matching input operand, look up the
6878     // matching input. If their types mismatch, e.g. one is an integer, the
6879     // other is floating point, or their sizes are different, flag it as an
6880     // error.
6881     if (OpInfo.hasMatchingInput()) {
6882       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6883       patchMatchingInput(OpInfo, Input, DAG);
6884     }
6885 
6886     // Compute the constraint code and ConstraintType to use.
6887     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6888 
6889     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6890         OpInfo.Type == InlineAsm::isClobber)
6891       continue;
6892 
6893     // If this is a memory input, and if the operand is not indirect, do what we
6894     // need to to provide an address for the memory input.
6895     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6896         !OpInfo.isIndirect) {
6897       assert((OpInfo.isMultipleAlternative ||
6898               (OpInfo.Type == InlineAsm::isInput)) &&
6899              "Can only indirectify direct input operands!");
6900 
6901       // Memory operands really want the address of the value.
6902       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6903 
6904       // There is no longer a Value* corresponding to this operand.
6905       OpInfo.CallOperandVal = nullptr;
6906 
6907       // It is now an indirect operand.
6908       OpInfo.isIndirect = true;
6909     }
6910 
6911     // If this constraint is for a specific register, allocate it before
6912     // anything else.
6913     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6914       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6915   }
6916 
6917   // Third pass - Loop over all of the operands, assigning virtual or physregs
6918   // to register class operands.
6919   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6920     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6921 
6922     // C_Register operands have already been allocated, Other/Memory don't need
6923     // to be.
6924     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6925       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6926   }
6927 
6928   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6929   std::vector<SDValue> AsmNodeOperands;
6930   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6931   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6932       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6933 
6934   // If we have a !srcloc metadata node associated with it, we want to attach
6935   // this to the ultimately generated inline asm machineinstr.  To do this, we
6936   // pass in the third operand as this (potentially null) inline asm MDNode.
6937   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6938   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6939 
6940   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6941   // bits as operand 3.
6942   AsmNodeOperands.push_back(DAG.getTargetConstant(
6943       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6944 
6945   // Loop over all of the inputs, copying the operand values into the
6946   // appropriate registers and processing the output regs.
6947   RegsForValue RetValRegs;
6948 
6949   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6950   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6951 
6952   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6953     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6954 
6955     switch (OpInfo.Type) {
6956     case InlineAsm::isOutput: {
6957       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6958           OpInfo.ConstraintType != TargetLowering::C_Register) {
6959         // Memory output, or 'other' output (e.g. 'X' constraint).
6960         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6961 
6962         unsigned ConstraintID =
6963             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6964         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6965                "Failed to convert memory constraint code to constraint id.");
6966 
6967         // Add information to the INLINEASM node to know about this output.
6968         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6969         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6970         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6971                                                         MVT::i32));
6972         AsmNodeOperands.push_back(OpInfo.CallOperand);
6973         break;
6974       }
6975 
6976       // Otherwise, this is a register or register class output.
6977 
6978       // Copy the output from the appropriate register.  Find a register that
6979       // we can use.
6980       if (OpInfo.AssignedRegs.Regs.empty()) {
6981         emitInlineAsmError(
6982             CS, "couldn't allocate output register for constraint '" +
6983                     Twine(OpInfo.ConstraintCode) + "'");
6984         return;
6985       }
6986 
6987       // If this is an indirect operand, store through the pointer after the
6988       // asm.
6989       if (OpInfo.isIndirect) {
6990         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6991                                                       OpInfo.CallOperandVal));
6992       } else {
6993         // This is the result value of the call.
6994         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6995         // Concatenate this output onto the outputs list.
6996         RetValRegs.append(OpInfo.AssignedRegs);
6997       }
6998 
6999       // Add information to the INLINEASM node to know that this register is
7000       // set.
7001       OpInfo.AssignedRegs
7002           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7003                                     ? InlineAsm::Kind_RegDefEarlyClobber
7004                                     : InlineAsm::Kind_RegDef,
7005                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7006       break;
7007     }
7008     case InlineAsm::isInput: {
7009       SDValue InOperandVal = OpInfo.CallOperand;
7010 
7011       if (OpInfo.isMatchingInputConstraint()) {
7012         // If this is required to match an output register we have already set,
7013         // just use its register.
7014         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7015                                                   AsmNodeOperands);
7016         unsigned OpFlag =
7017           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7018         if (InlineAsm::isRegDefKind(OpFlag) ||
7019             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7020           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7021           if (OpInfo.isIndirect) {
7022             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7023             emitInlineAsmError(CS, "inline asm not supported yet:"
7024                                    " don't know how to handle tied "
7025                                    "indirect register inputs");
7026             return;
7027           }
7028 
7029           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7030           SmallVector<unsigned, 4> Regs;
7031 
7032           if (!createVirtualRegs(Regs,
7033                                  InlineAsm::getNumOperandRegisters(OpFlag),
7034                                  RegVT, DAG)) {
7035             emitInlineAsmError(CS, "inline asm error: This value type register "
7036                                    "class is not natively supported!");
7037             return;
7038           }
7039 
7040           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7041 
7042           SDLoc dl = getCurSDLoc();
7043           // Use the produced MatchedRegs object to
7044           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7045                                     Chain, &Flag, CS.getInstruction());
7046           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7047                                            true, OpInfo.getMatchedOperand(), dl,
7048                                            DAG, AsmNodeOperands);
7049           break;
7050         }
7051 
7052         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7053         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7054                "Unexpected number of operands");
7055         // Add information to the INLINEASM node to know about this input.
7056         // See InlineAsm.h isUseOperandTiedToDef.
7057         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7058         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7059                                                     OpInfo.getMatchedOperand());
7060         AsmNodeOperands.push_back(DAG.getTargetConstant(
7061             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7062         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7063         break;
7064       }
7065 
7066       // Treat indirect 'X' constraint as memory.
7067       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7068           OpInfo.isIndirect)
7069         OpInfo.ConstraintType = TargetLowering::C_Memory;
7070 
7071       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7072         std::vector<SDValue> Ops;
7073         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7074                                           Ops, DAG);
7075         if (Ops.empty()) {
7076           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7077                                      Twine(OpInfo.ConstraintCode) + "'");
7078           return;
7079         }
7080 
7081         // Add information to the INLINEASM node to know about this input.
7082         unsigned ResOpType =
7083           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7084         AsmNodeOperands.push_back(DAG.getTargetConstant(
7085             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7086         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7087         break;
7088       }
7089 
7090       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7091         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7092         assert(InOperandVal.getValueType() ==
7093                    TLI.getPointerTy(DAG.getDataLayout()) &&
7094                "Memory operands expect pointer values");
7095 
7096         unsigned ConstraintID =
7097             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7098         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7099                "Failed to convert memory constraint code to constraint id.");
7100 
7101         // Add information to the INLINEASM node to know about this input.
7102         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7103         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7104         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7105                                                         getCurSDLoc(),
7106                                                         MVT::i32));
7107         AsmNodeOperands.push_back(InOperandVal);
7108         break;
7109       }
7110 
7111       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7112               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7113              "Unknown constraint type!");
7114 
7115       // TODO: Support this.
7116       if (OpInfo.isIndirect) {
7117         emitInlineAsmError(
7118             CS, "Don't know how to handle indirect register inputs yet "
7119                 "for constraint '" +
7120                     Twine(OpInfo.ConstraintCode) + "'");
7121         return;
7122       }
7123 
7124       // Copy the input into the appropriate registers.
7125       if (OpInfo.AssignedRegs.Regs.empty()) {
7126         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7127                                    Twine(OpInfo.ConstraintCode) + "'");
7128         return;
7129       }
7130 
7131       SDLoc dl = getCurSDLoc();
7132 
7133       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7134                                         Chain, &Flag, CS.getInstruction());
7135 
7136       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7137                                                dl, DAG, AsmNodeOperands);
7138       break;
7139     }
7140     case InlineAsm::isClobber: {
7141       // Add the clobbered value to the operand list, so that the register
7142       // allocator is aware that the physreg got clobbered.
7143       if (!OpInfo.AssignedRegs.Regs.empty())
7144         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7145                                                  false, 0, getCurSDLoc(), DAG,
7146                                                  AsmNodeOperands);
7147       break;
7148     }
7149     }
7150   }
7151 
7152   // Finish up input operands.  Set the input chain and add the flag last.
7153   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7154   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7155 
7156   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7157                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7158   Flag = Chain.getValue(1);
7159 
7160   // If this asm returns a register value, copy the result from that register
7161   // and set it as the value of the call.
7162   if (!RetValRegs.Regs.empty()) {
7163     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7164                                              Chain, &Flag, CS.getInstruction());
7165 
7166     // FIXME: Why don't we do this for inline asms with MRVs?
7167     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7168       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7169 
7170       // If any of the results of the inline asm is a vector, it may have the
7171       // wrong width/num elts.  This can happen for register classes that can
7172       // contain multiple different value types.  The preg or vreg allocated may
7173       // not have the same VT as was expected.  Convert it to the right type
7174       // with bit_convert.
7175       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7176         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7177                           ResultType, Val);
7178 
7179       } else if (ResultType != Val.getValueType() &&
7180                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7181         // If a result value was tied to an input value, the computed result may
7182         // have a wider width than the expected result.  Extract the relevant
7183         // portion.
7184         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7185       }
7186 
7187       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7188     }
7189 
7190     setValue(CS.getInstruction(), Val);
7191     // Don't need to use this as a chain in this case.
7192     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7193       return;
7194   }
7195 
7196   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7197 
7198   // Process indirect outputs, first output all of the flagged copies out of
7199   // physregs.
7200   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7201     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7202     const Value *Ptr = IndirectStoresToEmit[i].second;
7203     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7204                                              Chain, &Flag, IA);
7205     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7206   }
7207 
7208   // Emit the non-flagged stores from the physregs.
7209   SmallVector<SDValue, 8> OutChains;
7210   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7211     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7212                                getValue(StoresToEmit[i].second),
7213                                MachinePointerInfo(StoresToEmit[i].second));
7214     OutChains.push_back(Val);
7215   }
7216 
7217   if (!OutChains.empty())
7218     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7219 
7220   DAG.setRoot(Chain);
7221 }
7222 
7223 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7224                                              const Twine &Message) {
7225   LLVMContext &Ctx = *DAG.getContext();
7226   Ctx.emitError(CS.getInstruction(), Message);
7227 
7228   // Make sure we leave the DAG in a valid state
7229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7230   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7231   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7232 }
7233 
7234 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7235   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7236                           MVT::Other, getRoot(),
7237                           getValue(I.getArgOperand(0)),
7238                           DAG.getSrcValue(I.getArgOperand(0))));
7239 }
7240 
7241 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7243   const DataLayout &DL = DAG.getDataLayout();
7244   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7245                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7246                            DAG.getSrcValue(I.getOperand(0)),
7247                            DL.getABITypeAlignment(I.getType()));
7248   setValue(&I, V);
7249   DAG.setRoot(V.getValue(1));
7250 }
7251 
7252 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7253   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7254                           MVT::Other, getRoot(),
7255                           getValue(I.getArgOperand(0)),
7256                           DAG.getSrcValue(I.getArgOperand(0))));
7257 }
7258 
7259 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7260   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7261                           MVT::Other, getRoot(),
7262                           getValue(I.getArgOperand(0)),
7263                           getValue(I.getArgOperand(1)),
7264                           DAG.getSrcValue(I.getArgOperand(0)),
7265                           DAG.getSrcValue(I.getArgOperand(1))));
7266 }
7267 
7268 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7269                                                     const Instruction &I,
7270                                                     SDValue Op) {
7271   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7272   if (!Range)
7273     return Op;
7274 
7275   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7276   if (!Lo->isNullValue())
7277     return Op;
7278 
7279   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7280   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7281 
7282   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7283 
7284   SDLoc SL = getCurSDLoc();
7285 
7286   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7287                              Op, DAG.getValueType(SmallVT));
7288   unsigned NumVals = Op.getNode()->getNumValues();
7289   if (NumVals == 1)
7290     return ZExt;
7291 
7292   SmallVector<SDValue, 4> Ops;
7293 
7294   Ops.push_back(ZExt);
7295   for (unsigned I = 1; I != NumVals; ++I)
7296     Ops.push_back(Op.getValue(I));
7297 
7298   return DAG.getMergeValues(Ops, SL);
7299 }
7300 
7301 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7302 /// the call being lowered.
7303 ///
7304 /// This is a helper for lowering intrinsics that follow a target calling
7305 /// convention or require stack pointer adjustment. Only a subset of the
7306 /// intrinsic's operands need to participate in the calling convention.
7307 void SelectionDAGBuilder::populateCallLoweringInfo(
7308     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7309     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7310     bool IsPatchPoint) {
7311   TargetLowering::ArgListTy Args;
7312   Args.reserve(NumArgs);
7313 
7314   // Populate the argument list.
7315   // Attributes for args start at offset 1, after the return attribute.
7316   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7317        ArgI != ArgE; ++ArgI) {
7318     const Value *V = CS->getOperand(ArgI);
7319 
7320     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7321 
7322     TargetLowering::ArgListEntry Entry;
7323     Entry.Node = getValue(V);
7324     Entry.Ty = V->getType();
7325     Entry.setAttributes(&CS, AttrI);
7326     Args.push_back(Entry);
7327   }
7328 
7329   CLI.setDebugLoc(getCurSDLoc())
7330       .setChain(getRoot())
7331       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7332       .setDiscardResult(CS->use_empty())
7333       .setIsPatchPoint(IsPatchPoint);
7334 }
7335 
7336 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7337 /// or patchpoint target node's operand list.
7338 ///
7339 /// Constants are converted to TargetConstants purely as an optimization to
7340 /// avoid constant materialization and register allocation.
7341 ///
7342 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7343 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7344 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7345 /// address materialization and register allocation, but may also be required
7346 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7347 /// alloca in the entry block, then the runtime may assume that the alloca's
7348 /// StackMap location can be read immediately after compilation and that the
7349 /// location is valid at any point during execution (this is similar to the
7350 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7351 /// only available in a register, then the runtime would need to trap when
7352 /// execution reaches the StackMap in order to read the alloca's location.
7353 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7354                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7355                                 SelectionDAGBuilder &Builder) {
7356   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7357     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7358     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7359       Ops.push_back(
7360         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7361       Ops.push_back(
7362         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7363     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7364       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7365       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7366           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7367     } else
7368       Ops.push_back(OpVal);
7369   }
7370 }
7371 
7372 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7373 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7374   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7375   //                                  [live variables...])
7376 
7377   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7378 
7379   SDValue Chain, InFlag, Callee, NullPtr;
7380   SmallVector<SDValue, 32> Ops;
7381 
7382   SDLoc DL = getCurSDLoc();
7383   Callee = getValue(CI.getCalledValue());
7384   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7385 
7386   // The stackmap intrinsic only records the live variables (the arguemnts
7387   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7388   // intrinsic, this won't be lowered to a function call. This means we don't
7389   // have to worry about calling conventions and target specific lowering code.
7390   // Instead we perform the call lowering right here.
7391   //
7392   // chain, flag = CALLSEQ_START(chain, 0)
7393   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7394   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7395   //
7396   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7397   InFlag = Chain.getValue(1);
7398 
7399   // Add the <id> and <numBytes> constants.
7400   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7401   Ops.push_back(DAG.getTargetConstant(
7402                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7403   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7404   Ops.push_back(DAG.getTargetConstant(
7405                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7406                   MVT::i32));
7407 
7408   // Push live variables for the stack map.
7409   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7410 
7411   // We are not pushing any register mask info here on the operands list,
7412   // because the stackmap doesn't clobber anything.
7413 
7414   // Push the chain and the glue flag.
7415   Ops.push_back(Chain);
7416   Ops.push_back(InFlag);
7417 
7418   // Create the STACKMAP node.
7419   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7420   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7421   Chain = SDValue(SM, 0);
7422   InFlag = Chain.getValue(1);
7423 
7424   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7425 
7426   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7427 
7428   // Set the root to the target-lowered call chain.
7429   DAG.setRoot(Chain);
7430 
7431   // Inform the Frame Information that we have a stackmap in this function.
7432   FuncInfo.MF->getFrameInfo().setHasStackMap();
7433 }
7434 
7435 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7436 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7437                                           const BasicBlock *EHPadBB) {
7438   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7439   //                                                 i32 <numBytes>,
7440   //                                                 i8* <target>,
7441   //                                                 i32 <numArgs>,
7442   //                                                 [Args...],
7443   //                                                 [live variables...])
7444 
7445   CallingConv::ID CC = CS.getCallingConv();
7446   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7447   bool HasDef = !CS->getType()->isVoidTy();
7448   SDLoc dl = getCurSDLoc();
7449   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7450 
7451   // Handle immediate and symbolic callees.
7452   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7453     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7454                                    /*isTarget=*/true);
7455   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7456     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7457                                          SDLoc(SymbolicCallee),
7458                                          SymbolicCallee->getValueType(0));
7459 
7460   // Get the real number of arguments participating in the call <numArgs>
7461   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7462   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7463 
7464   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7465   // Intrinsics include all meta-operands up to but not including CC.
7466   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7467   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7468          "Not enough arguments provided to the patchpoint intrinsic");
7469 
7470   // For AnyRegCC the arguments are lowered later on manually.
7471   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7472   Type *ReturnTy =
7473     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7474 
7475   TargetLowering::CallLoweringInfo CLI(DAG);
7476   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7477                            true);
7478   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7479 
7480   SDNode *CallEnd = Result.second.getNode();
7481   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7482     CallEnd = CallEnd->getOperand(0).getNode();
7483 
7484   /// Get a call instruction from the call sequence chain.
7485   /// Tail calls are not allowed.
7486   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7487          "Expected a callseq node.");
7488   SDNode *Call = CallEnd->getOperand(0).getNode();
7489   bool HasGlue = Call->getGluedNode();
7490 
7491   // Replace the target specific call node with the patchable intrinsic.
7492   SmallVector<SDValue, 8> Ops;
7493 
7494   // Add the <id> and <numBytes> constants.
7495   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7496   Ops.push_back(DAG.getTargetConstant(
7497                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7498   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7499   Ops.push_back(DAG.getTargetConstant(
7500                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7501                   MVT::i32));
7502 
7503   // Add the callee.
7504   Ops.push_back(Callee);
7505 
7506   // Adjust <numArgs> to account for any arguments that have been passed on the
7507   // stack instead.
7508   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7509   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7510   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7511   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7512 
7513   // Add the calling convention
7514   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7515 
7516   // Add the arguments we omitted previously. The register allocator should
7517   // place these in any free register.
7518   if (IsAnyRegCC)
7519     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7520       Ops.push_back(getValue(CS.getArgument(i)));
7521 
7522   // Push the arguments from the call instruction up to the register mask.
7523   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7524   Ops.append(Call->op_begin() + 2, e);
7525 
7526   // Push live variables for the stack map.
7527   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7528 
7529   // Push the register mask info.
7530   if (HasGlue)
7531     Ops.push_back(*(Call->op_end()-2));
7532   else
7533     Ops.push_back(*(Call->op_end()-1));
7534 
7535   // Push the chain (this is originally the first operand of the call, but
7536   // becomes now the last or second to last operand).
7537   Ops.push_back(*(Call->op_begin()));
7538 
7539   // Push the glue flag (last operand).
7540   if (HasGlue)
7541     Ops.push_back(*(Call->op_end()-1));
7542 
7543   SDVTList NodeTys;
7544   if (IsAnyRegCC && HasDef) {
7545     // Create the return types based on the intrinsic definition
7546     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7547     SmallVector<EVT, 3> ValueVTs;
7548     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7549     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7550 
7551     // There is always a chain and a glue type at the end
7552     ValueVTs.push_back(MVT::Other);
7553     ValueVTs.push_back(MVT::Glue);
7554     NodeTys = DAG.getVTList(ValueVTs);
7555   } else
7556     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7557 
7558   // Replace the target specific call node with a PATCHPOINT node.
7559   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7560                                          dl, NodeTys, Ops);
7561 
7562   // Update the NodeMap.
7563   if (HasDef) {
7564     if (IsAnyRegCC)
7565       setValue(CS.getInstruction(), SDValue(MN, 0));
7566     else
7567       setValue(CS.getInstruction(), Result.first);
7568   }
7569 
7570   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7571   // call sequence. Furthermore the location of the chain and glue can change
7572   // when the AnyReg calling convention is used and the intrinsic returns a
7573   // value.
7574   if (IsAnyRegCC && HasDef) {
7575     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7576     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7577     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7578   } else
7579     DAG.ReplaceAllUsesWith(Call, MN);
7580   DAG.DeleteNode(Call);
7581 
7582   // Inform the Frame Information that we have a patchpoint in this function.
7583   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7584 }
7585 
7586 /// Returns an AttributeSet representing the attributes applied to the return
7587 /// value of the given call.
7588 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7589   SmallVector<Attribute::AttrKind, 2> Attrs;
7590   if (CLI.RetSExt)
7591     Attrs.push_back(Attribute::SExt);
7592   if (CLI.RetZExt)
7593     Attrs.push_back(Attribute::ZExt);
7594   if (CLI.IsInReg)
7595     Attrs.push_back(Attribute::InReg);
7596 
7597   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7598                            Attrs);
7599 }
7600 
7601 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7602 /// implementation, which just calls LowerCall.
7603 /// FIXME: When all targets are
7604 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7605 std::pair<SDValue, SDValue>
7606 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7607   // Handle the incoming return values from the call.
7608   CLI.Ins.clear();
7609   Type *OrigRetTy = CLI.RetTy;
7610   SmallVector<EVT, 4> RetTys;
7611   SmallVector<uint64_t, 4> Offsets;
7612   auto &DL = CLI.DAG.getDataLayout();
7613   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7614 
7615   SmallVector<ISD::OutputArg, 4> Outs;
7616   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7617 
7618   bool CanLowerReturn =
7619       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7620                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7621 
7622   SDValue DemoteStackSlot;
7623   int DemoteStackIdx = -100;
7624   if (!CanLowerReturn) {
7625     // FIXME: equivalent assert?
7626     // assert(!CS.hasInAllocaArgument() &&
7627     //        "sret demotion is incompatible with inalloca");
7628     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7629     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7630     MachineFunction &MF = CLI.DAG.getMachineFunction();
7631     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7632     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7633 
7634     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7635     ArgListEntry Entry;
7636     Entry.Node = DemoteStackSlot;
7637     Entry.Ty = StackSlotPtrType;
7638     Entry.isSExt = false;
7639     Entry.isZExt = false;
7640     Entry.isInReg = false;
7641     Entry.isSRet = true;
7642     Entry.isNest = false;
7643     Entry.isByVal = false;
7644     Entry.isReturned = false;
7645     Entry.isSwiftSelf = false;
7646     Entry.isSwiftError = false;
7647     Entry.Alignment = Align;
7648     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7649     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7650 
7651     // sret demotion isn't compatible with tail-calls, since the sret argument
7652     // points into the callers stack frame.
7653     CLI.IsTailCall = false;
7654   } else {
7655     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7656       EVT VT = RetTys[I];
7657       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7658       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7659       for (unsigned i = 0; i != NumRegs; ++i) {
7660         ISD::InputArg MyFlags;
7661         MyFlags.VT = RegisterVT;
7662         MyFlags.ArgVT = VT;
7663         MyFlags.Used = CLI.IsReturnValueUsed;
7664         if (CLI.RetSExt)
7665           MyFlags.Flags.setSExt();
7666         if (CLI.RetZExt)
7667           MyFlags.Flags.setZExt();
7668         if (CLI.IsInReg)
7669           MyFlags.Flags.setInReg();
7670         CLI.Ins.push_back(MyFlags);
7671       }
7672     }
7673   }
7674 
7675   // We push in swifterror return as the last element of CLI.Ins.
7676   ArgListTy &Args = CLI.getArgs();
7677   if (supportSwiftError()) {
7678     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7679       if (Args[i].isSwiftError) {
7680         ISD::InputArg MyFlags;
7681         MyFlags.VT = getPointerTy(DL);
7682         MyFlags.ArgVT = EVT(getPointerTy(DL));
7683         MyFlags.Flags.setSwiftError();
7684         CLI.Ins.push_back(MyFlags);
7685       }
7686     }
7687   }
7688 
7689   // Handle all of the outgoing arguments.
7690   CLI.Outs.clear();
7691   CLI.OutVals.clear();
7692   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7693     SmallVector<EVT, 4> ValueVTs;
7694     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7695     Type *FinalType = Args[i].Ty;
7696     if (Args[i].isByVal)
7697       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7698     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7699         FinalType, CLI.CallConv, CLI.IsVarArg);
7700     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7701          ++Value) {
7702       EVT VT = ValueVTs[Value];
7703       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7704       SDValue Op = SDValue(Args[i].Node.getNode(),
7705                            Args[i].Node.getResNo() + Value);
7706       ISD::ArgFlagsTy Flags;
7707       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7708 
7709       if (Args[i].isZExt)
7710         Flags.setZExt();
7711       if (Args[i].isSExt)
7712         Flags.setSExt();
7713       if (Args[i].isInReg)
7714         Flags.setInReg();
7715       if (Args[i].isSRet)
7716         Flags.setSRet();
7717       if (Args[i].isSwiftSelf)
7718         Flags.setSwiftSelf();
7719       if (Args[i].isSwiftError)
7720         Flags.setSwiftError();
7721       if (Args[i].isByVal)
7722         Flags.setByVal();
7723       if (Args[i].isInAlloca) {
7724         Flags.setInAlloca();
7725         // Set the byval flag for CCAssignFn callbacks that don't know about
7726         // inalloca.  This way we can know how many bytes we should've allocated
7727         // and how many bytes a callee cleanup function will pop.  If we port
7728         // inalloca to more targets, we'll have to add custom inalloca handling
7729         // in the various CC lowering callbacks.
7730         Flags.setByVal();
7731       }
7732       if (Args[i].isByVal || Args[i].isInAlloca) {
7733         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7734         Type *ElementTy = Ty->getElementType();
7735         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7736         // For ByVal, alignment should come from FE.  BE will guess if this
7737         // info is not there but there are cases it cannot get right.
7738         unsigned FrameAlign;
7739         if (Args[i].Alignment)
7740           FrameAlign = Args[i].Alignment;
7741         else
7742           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7743         Flags.setByValAlign(FrameAlign);
7744       }
7745       if (Args[i].isNest)
7746         Flags.setNest();
7747       if (NeedsRegBlock)
7748         Flags.setInConsecutiveRegs();
7749       Flags.setOrigAlign(OriginalAlignment);
7750 
7751       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7752       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7753       SmallVector<SDValue, 4> Parts(NumParts);
7754       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7755 
7756       if (Args[i].isSExt)
7757         ExtendKind = ISD::SIGN_EXTEND;
7758       else if (Args[i].isZExt)
7759         ExtendKind = ISD::ZERO_EXTEND;
7760 
7761       // Conservatively only handle 'returned' on non-vectors for now
7762       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7763         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7764                "unexpected use of 'returned'");
7765         // Before passing 'returned' to the target lowering code, ensure that
7766         // either the register MVT and the actual EVT are the same size or that
7767         // the return value and argument are extended in the same way; in these
7768         // cases it's safe to pass the argument register value unchanged as the
7769         // return register value (although it's at the target's option whether
7770         // to do so)
7771         // TODO: allow code generation to take advantage of partially preserved
7772         // registers rather than clobbering the entire register when the
7773         // parameter extension method is not compatible with the return
7774         // extension method
7775         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7776             (ExtendKind != ISD::ANY_EXTEND &&
7777              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7778         Flags.setReturned();
7779       }
7780 
7781       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7782                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7783 
7784       for (unsigned j = 0; j != NumParts; ++j) {
7785         // if it isn't first piece, alignment must be 1
7786         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7787                                i < CLI.NumFixedArgs,
7788                                i, j*Parts[j].getValueType().getStoreSize());
7789         if (NumParts > 1 && j == 0)
7790           MyFlags.Flags.setSplit();
7791         else if (j != 0) {
7792           MyFlags.Flags.setOrigAlign(1);
7793           if (j == NumParts - 1)
7794             MyFlags.Flags.setSplitEnd();
7795         }
7796 
7797         CLI.Outs.push_back(MyFlags);
7798         CLI.OutVals.push_back(Parts[j]);
7799       }
7800 
7801       if (NeedsRegBlock && Value == NumValues - 1)
7802         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7803     }
7804   }
7805 
7806   SmallVector<SDValue, 4> InVals;
7807   CLI.Chain = LowerCall(CLI, InVals);
7808 
7809   // Update CLI.InVals to use outside of this function.
7810   CLI.InVals = InVals;
7811 
7812   // Verify that the target's LowerCall behaved as expected.
7813   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7814          "LowerCall didn't return a valid chain!");
7815   assert((!CLI.IsTailCall || InVals.empty()) &&
7816          "LowerCall emitted a return value for a tail call!");
7817   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7818          "LowerCall didn't emit the correct number of values!");
7819 
7820   // For a tail call, the return value is merely live-out and there aren't
7821   // any nodes in the DAG representing it. Return a special value to
7822   // indicate that a tail call has been emitted and no more Instructions
7823   // should be processed in the current block.
7824   if (CLI.IsTailCall) {
7825     CLI.DAG.setRoot(CLI.Chain);
7826     return std::make_pair(SDValue(), SDValue());
7827   }
7828 
7829 #ifndef NDEBUG
7830   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7831     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7832     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7833            "LowerCall emitted a value with the wrong type!");
7834   }
7835 #endif
7836 
7837   SmallVector<SDValue, 4> ReturnValues;
7838   if (!CanLowerReturn) {
7839     // The instruction result is the result of loading from the
7840     // hidden sret parameter.
7841     SmallVector<EVT, 1> PVTs;
7842     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7843 
7844     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7845     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7846     EVT PtrVT = PVTs[0];
7847 
7848     unsigned NumValues = RetTys.size();
7849     ReturnValues.resize(NumValues);
7850     SmallVector<SDValue, 4> Chains(NumValues);
7851 
7852     // An aggregate return value cannot wrap around the address space, so
7853     // offsets to its parts don't wrap either.
7854     SDNodeFlags Flags;
7855     Flags.setNoUnsignedWrap(true);
7856 
7857     for (unsigned i = 0; i < NumValues; ++i) {
7858       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7859                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7860                                                         PtrVT), &Flags);
7861       SDValue L = CLI.DAG.getLoad(
7862           RetTys[i], CLI.DL, CLI.Chain, Add,
7863           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7864                                             DemoteStackIdx, Offsets[i]),
7865           /* Alignment = */ 1);
7866       ReturnValues[i] = L;
7867       Chains[i] = L.getValue(1);
7868     }
7869 
7870     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7871   } else {
7872     // Collect the legal value parts into potentially illegal values
7873     // that correspond to the original function's return values.
7874     Optional<ISD::NodeType> AssertOp;
7875     if (CLI.RetSExt)
7876       AssertOp = ISD::AssertSext;
7877     else if (CLI.RetZExt)
7878       AssertOp = ISD::AssertZext;
7879     unsigned CurReg = 0;
7880     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7881       EVT VT = RetTys[I];
7882       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7883       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7884 
7885       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7886                                               NumRegs, RegisterVT, VT, nullptr,
7887                                               AssertOp));
7888       CurReg += NumRegs;
7889     }
7890 
7891     // For a function returning void, there is no return value. We can't create
7892     // such a node, so we just return a null return value in that case. In
7893     // that case, nothing will actually look at the value.
7894     if (ReturnValues.empty())
7895       return std::make_pair(SDValue(), CLI.Chain);
7896   }
7897 
7898   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7899                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7900   return std::make_pair(Res, CLI.Chain);
7901 }
7902 
7903 void TargetLowering::LowerOperationWrapper(SDNode *N,
7904                                            SmallVectorImpl<SDValue> &Results,
7905                                            SelectionDAG &DAG) const {
7906   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7907     Results.push_back(Res);
7908 }
7909 
7910 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7911   llvm_unreachable("LowerOperation not implemented for this target!");
7912 }
7913 
7914 void
7915 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7916   SDValue Op = getNonRegisterValue(V);
7917   assert((Op.getOpcode() != ISD::CopyFromReg ||
7918           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7919          "Copy from a reg to the same reg!");
7920   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7921 
7922   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7923   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7924                    V->getType());
7925   SDValue Chain = DAG.getEntryNode();
7926 
7927   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7928                               FuncInfo.PreferredExtendType.end())
7929                                  ? ISD::ANY_EXTEND
7930                                  : FuncInfo.PreferredExtendType[V];
7931   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7932   PendingExports.push_back(Chain);
7933 }
7934 
7935 #include "llvm/CodeGen/SelectionDAGISel.h"
7936 
7937 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7938 /// entry block, return true.  This includes arguments used by switches, since
7939 /// the switch may expand into multiple basic blocks.
7940 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7941   // With FastISel active, we may be splitting blocks, so force creation
7942   // of virtual registers for all non-dead arguments.
7943   if (FastISel)
7944     return A->use_empty();
7945 
7946   const BasicBlock &Entry = A->getParent()->front();
7947   for (const User *U : A->users())
7948     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7949       return false;  // Use not in entry block.
7950 
7951   return true;
7952 }
7953 
7954 void SelectionDAGISel::LowerArguments(const Function &F) {
7955   SelectionDAG &DAG = SDB->DAG;
7956   SDLoc dl = SDB->getCurSDLoc();
7957   const DataLayout &DL = DAG.getDataLayout();
7958   SmallVector<ISD::InputArg, 16> Ins;
7959 
7960   if (!FuncInfo->CanLowerReturn) {
7961     // Put in an sret pointer parameter before all the other parameters.
7962     SmallVector<EVT, 1> ValueVTs;
7963     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7964                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7965 
7966     // NOTE: Assuming that a pointer will never break down to more than one VT
7967     // or one register.
7968     ISD::ArgFlagsTy Flags;
7969     Flags.setSRet();
7970     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7971     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7972                          ISD::InputArg::NoArgIndex, 0);
7973     Ins.push_back(RetArg);
7974   }
7975 
7976   // Set up the incoming argument description vector.
7977   unsigned Idx = 1;
7978   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7979        I != E; ++I, ++Idx) {
7980     SmallVector<EVT, 4> ValueVTs;
7981     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7982     bool isArgValueUsed = !I->use_empty();
7983     unsigned PartBase = 0;
7984     Type *FinalType = I->getType();
7985     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7986       FinalType = cast<PointerType>(FinalType)->getElementType();
7987     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7988         FinalType, F.getCallingConv(), F.isVarArg());
7989     for (unsigned Value = 0, NumValues = ValueVTs.size();
7990          Value != NumValues; ++Value) {
7991       EVT VT = ValueVTs[Value];
7992       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7993       ISD::ArgFlagsTy Flags;
7994       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7995 
7996       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7997         Flags.setZExt();
7998       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7999         Flags.setSExt();
8000       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
8001         Flags.setInReg();
8002       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
8003         Flags.setSRet();
8004       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
8005         Flags.setSwiftSelf();
8006       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
8007         Flags.setSwiftError();
8008       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8009         Flags.setByVal();
8010       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
8011         Flags.setInAlloca();
8012         // Set the byval flag for CCAssignFn callbacks that don't know about
8013         // inalloca.  This way we can know how many bytes we should've allocated
8014         // and how many bytes a callee cleanup function will pop.  If we port
8015         // inalloca to more targets, we'll have to add custom inalloca handling
8016         // in the various CC lowering callbacks.
8017         Flags.setByVal();
8018       }
8019       if (F.getCallingConv() == CallingConv::X86_INTR) {
8020         // IA Interrupt passes frame (1st parameter) by value in the stack.
8021         if (Idx == 1)
8022           Flags.setByVal();
8023       }
8024       if (Flags.isByVal() || Flags.isInAlloca()) {
8025         PointerType *Ty = cast<PointerType>(I->getType());
8026         Type *ElementTy = Ty->getElementType();
8027         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8028         // For ByVal, alignment should be passed from FE.  BE will guess if
8029         // this info is not there but there are cases it cannot get right.
8030         unsigned FrameAlign;
8031         if (F.getParamAlignment(Idx))
8032           FrameAlign = F.getParamAlignment(Idx);
8033         else
8034           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8035         Flags.setByValAlign(FrameAlign);
8036       }
8037       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
8038         Flags.setNest();
8039       if (NeedsRegBlock)
8040         Flags.setInConsecutiveRegs();
8041       Flags.setOrigAlign(OriginalAlignment);
8042 
8043       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8044       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8045       for (unsigned i = 0; i != NumRegs; ++i) {
8046         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8047                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
8048         if (NumRegs > 1 && i == 0)
8049           MyFlags.Flags.setSplit();
8050         // if it isn't first piece, alignment must be 1
8051         else if (i > 0) {
8052           MyFlags.Flags.setOrigAlign(1);
8053           if (i == NumRegs - 1)
8054             MyFlags.Flags.setSplitEnd();
8055         }
8056         Ins.push_back(MyFlags);
8057       }
8058       if (NeedsRegBlock && Value == NumValues - 1)
8059         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8060       PartBase += VT.getStoreSize();
8061     }
8062   }
8063 
8064   // Call the target to set up the argument values.
8065   SmallVector<SDValue, 8> InVals;
8066   SDValue NewRoot = TLI->LowerFormalArguments(
8067       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8068 
8069   // Verify that the target's LowerFormalArguments behaved as expected.
8070   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8071          "LowerFormalArguments didn't return a valid chain!");
8072   assert(InVals.size() == Ins.size() &&
8073          "LowerFormalArguments didn't emit the correct number of values!");
8074   DEBUG({
8075       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8076         assert(InVals[i].getNode() &&
8077                "LowerFormalArguments emitted a null value!");
8078         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8079                "LowerFormalArguments emitted a value with the wrong type!");
8080       }
8081     });
8082 
8083   // Update the DAG with the new chain value resulting from argument lowering.
8084   DAG.setRoot(NewRoot);
8085 
8086   // Set up the argument values.
8087   unsigned i = 0;
8088   Idx = 1;
8089   if (!FuncInfo->CanLowerReturn) {
8090     // Create a virtual register for the sret pointer, and put in a copy
8091     // from the sret argument into it.
8092     SmallVector<EVT, 1> ValueVTs;
8093     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8094                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8095     MVT VT = ValueVTs[0].getSimpleVT();
8096     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8097     Optional<ISD::NodeType> AssertOp = None;
8098     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8099                                         RegVT, VT, nullptr, AssertOp);
8100 
8101     MachineFunction& MF = SDB->DAG.getMachineFunction();
8102     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8103     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8104     FuncInfo->DemoteRegister = SRetReg;
8105     NewRoot =
8106         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8107     DAG.setRoot(NewRoot);
8108 
8109     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8110     // Idx indexes LLVM arguments.  Don't touch it.
8111     ++i;
8112   }
8113 
8114   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
8115       ++I, ++Idx) {
8116     SmallVector<SDValue, 4> ArgValues;
8117     SmallVector<EVT, 4> ValueVTs;
8118     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8119     unsigned NumValues = ValueVTs.size();
8120 
8121     // If this argument is unused then remember its value. It is used to generate
8122     // debugging information.
8123     if (I->use_empty() && NumValues) {
8124       SDB->setUnusedArgValue(&*I, InVals[i]);
8125 
8126       // Also remember any frame index for use in FastISel.
8127       if (FrameIndexSDNode *FI =
8128           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8129         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8130     }
8131 
8132     for (unsigned Val = 0; Val != NumValues; ++Val) {
8133       EVT VT = ValueVTs[Val];
8134       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8135       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8136 
8137       if (!I->use_empty()) {
8138         Optional<ISD::NodeType> AssertOp;
8139         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8140           AssertOp = ISD::AssertSext;
8141         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8142           AssertOp = ISD::AssertZext;
8143 
8144         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8145                                              NumParts, PartVT, VT,
8146                                              nullptr, AssertOp));
8147       }
8148 
8149       i += NumParts;
8150     }
8151 
8152     // We don't need to do anything else for unused arguments.
8153     if (ArgValues.empty())
8154       continue;
8155 
8156     // Note down frame index.
8157     if (FrameIndexSDNode *FI =
8158         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8159       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8160 
8161     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8162                                      SDB->getCurSDLoc());
8163 
8164     SDB->setValue(&*I, Res);
8165     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8166       if (LoadSDNode *LNode =
8167           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8168         if (FrameIndexSDNode *FI =
8169             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8170         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8171     }
8172 
8173     // Update SwiftErrorMap.
8174     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
8175         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
8176       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8177       if (TargetRegisterInfo::isVirtualRegister(Reg))
8178         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8179     }
8180 
8181     // If this argument is live outside of the entry block, insert a copy from
8182     // wherever we got it to the vreg that other BB's will reference it as.
8183     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8184       // If we can, though, try to skip creating an unnecessary vreg.
8185       // FIXME: This isn't very clean... it would be nice to make this more
8186       // general.  It's also subtly incompatible with the hacks FastISel
8187       // uses with vregs.
8188       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8189       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8190         FuncInfo->ValueMap[&*I] = Reg;
8191         continue;
8192       }
8193     }
8194     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8195       FuncInfo->InitializeRegForValue(&*I);
8196       SDB->CopyToExportRegsIfNeeded(&*I);
8197     }
8198   }
8199 
8200   assert(i == InVals.size() && "Argument register count mismatch!");
8201 
8202   // Finally, if the target has anything special to do, allow it to do so.
8203   EmitFunctionEntryCode();
8204 }
8205 
8206 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8207 /// ensure constants are generated when needed.  Remember the virtual registers
8208 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8209 /// directly add them, because expansion might result in multiple MBB's for one
8210 /// BB.  As such, the start of the BB might correspond to a different MBB than
8211 /// the end.
8212 ///
8213 void
8214 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8215   const TerminatorInst *TI = LLVMBB->getTerminator();
8216 
8217   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8218 
8219   // Check PHI nodes in successors that expect a value to be available from this
8220   // block.
8221   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8222     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8223     if (!isa<PHINode>(SuccBB->begin())) continue;
8224     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8225 
8226     // If this terminator has multiple identical successors (common for
8227     // switches), only handle each succ once.
8228     if (!SuccsHandled.insert(SuccMBB).second)
8229       continue;
8230 
8231     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8232 
8233     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8234     // nodes and Machine PHI nodes, but the incoming operands have not been
8235     // emitted yet.
8236     for (BasicBlock::const_iterator I = SuccBB->begin();
8237          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8238       // Ignore dead phi's.
8239       if (PN->use_empty()) continue;
8240 
8241       // Skip empty types
8242       if (PN->getType()->isEmptyTy())
8243         continue;
8244 
8245       unsigned Reg;
8246       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8247 
8248       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8249         unsigned &RegOut = ConstantsOut[C];
8250         if (RegOut == 0) {
8251           RegOut = FuncInfo.CreateRegs(C->getType());
8252           CopyValueToVirtualRegister(C, RegOut);
8253         }
8254         Reg = RegOut;
8255       } else {
8256         DenseMap<const Value *, unsigned>::iterator I =
8257           FuncInfo.ValueMap.find(PHIOp);
8258         if (I != FuncInfo.ValueMap.end())
8259           Reg = I->second;
8260         else {
8261           assert(isa<AllocaInst>(PHIOp) &&
8262                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8263                  "Didn't codegen value into a register!??");
8264           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8265           CopyValueToVirtualRegister(PHIOp, Reg);
8266         }
8267       }
8268 
8269       // Remember that this register needs to added to the machine PHI node as
8270       // the input for this MBB.
8271       SmallVector<EVT, 4> ValueVTs;
8272       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8273       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8274       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8275         EVT VT = ValueVTs[vti];
8276         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8277         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8278           FuncInfo.PHINodesToUpdate.push_back(
8279               std::make_pair(&*MBBI++, Reg + i));
8280         Reg += NumRegisters;
8281       }
8282     }
8283   }
8284 
8285   ConstantsOut.clear();
8286 }
8287 
8288 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8289 /// is 0.
8290 MachineBasicBlock *
8291 SelectionDAGBuilder::StackProtectorDescriptor::
8292 AddSuccessorMBB(const BasicBlock *BB,
8293                 MachineBasicBlock *ParentMBB,
8294                 bool IsLikely,
8295                 MachineBasicBlock *SuccMBB) {
8296   // If SuccBB has not been created yet, create it.
8297   if (!SuccMBB) {
8298     MachineFunction *MF = ParentMBB->getParent();
8299     MachineFunction::iterator BBI(ParentMBB);
8300     SuccMBB = MF->CreateMachineBasicBlock(BB);
8301     MF->insert(++BBI, SuccMBB);
8302   }
8303   // Add it as a successor of ParentMBB.
8304   ParentMBB->addSuccessor(
8305       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8306   return SuccMBB;
8307 }
8308 
8309 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8310   MachineFunction::iterator I(MBB);
8311   if (++I == FuncInfo.MF->end())
8312     return nullptr;
8313   return &*I;
8314 }
8315 
8316 /// During lowering new call nodes can be created (such as memset, etc.).
8317 /// Those will become new roots of the current DAG, but complications arise
8318 /// when they are tail calls. In such cases, the call lowering will update
8319 /// the root, but the builder still needs to know that a tail call has been
8320 /// lowered in order to avoid generating an additional return.
8321 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8322   // If the node is null, we do have a tail call.
8323   if (MaybeTC.getNode() != nullptr)
8324     DAG.setRoot(MaybeTC);
8325   else
8326     HasTailCall = true;
8327 }
8328 
8329 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8330                                   unsigned *TotalCases, unsigned First,
8331                                   unsigned Last,
8332                                   unsigned Density) {
8333   assert(Last >= First);
8334   assert(TotalCases[Last] >= TotalCases[First]);
8335 
8336   APInt LowCase = Clusters[First].Low->getValue();
8337   APInt HighCase = Clusters[Last].High->getValue();
8338   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8339 
8340   // FIXME: A range of consecutive cases has 100% density, but only requires one
8341   // comparison to lower. We should discriminate against such consecutive ranges
8342   // in jump tables.
8343 
8344   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8345   uint64_t Range = Diff + 1;
8346 
8347   uint64_t NumCases =
8348       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8349 
8350   assert(NumCases < UINT64_MAX / 100);
8351   assert(Range >= NumCases);
8352 
8353   return NumCases * 100 >= Range * Density;
8354 }
8355 
8356 static inline bool areJTsAllowed(const TargetLowering &TLI,
8357                                  const SwitchInst *SI) {
8358   const Function *Fn = SI->getParent()->getParent();
8359   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8360     return false;
8361 
8362   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8363          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8364 }
8365 
8366 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8367                                          unsigned First, unsigned Last,
8368                                          const SwitchInst *SI,
8369                                          MachineBasicBlock *DefaultMBB,
8370                                          CaseCluster &JTCluster) {
8371   assert(First <= Last);
8372 
8373   auto Prob = BranchProbability::getZero();
8374   unsigned NumCmps = 0;
8375   std::vector<MachineBasicBlock*> Table;
8376   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8377 
8378   // Initialize probabilities in JTProbs.
8379   for (unsigned I = First; I <= Last; ++I)
8380     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8381 
8382   for (unsigned I = First; I <= Last; ++I) {
8383     assert(Clusters[I].Kind == CC_Range);
8384     Prob += Clusters[I].Prob;
8385     APInt Low = Clusters[I].Low->getValue();
8386     APInt High = Clusters[I].High->getValue();
8387     NumCmps += (Low == High) ? 1 : 2;
8388     if (I != First) {
8389       // Fill the gap between this and the previous cluster.
8390       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8391       assert(PreviousHigh.slt(Low));
8392       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8393       for (uint64_t J = 0; J < Gap; J++)
8394         Table.push_back(DefaultMBB);
8395     }
8396     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8397     for (uint64_t J = 0; J < ClusterSize; ++J)
8398       Table.push_back(Clusters[I].MBB);
8399     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8400   }
8401 
8402   unsigned NumDests = JTProbs.size();
8403   if (isSuitableForBitTests(NumDests, NumCmps,
8404                             Clusters[First].Low->getValue(),
8405                             Clusters[Last].High->getValue())) {
8406     // Clusters[First..Last] should be lowered as bit tests instead.
8407     return false;
8408   }
8409 
8410   // Create the MBB that will load from and jump through the table.
8411   // Note: We create it here, but it's not inserted into the function yet.
8412   MachineFunction *CurMF = FuncInfo.MF;
8413   MachineBasicBlock *JumpTableMBB =
8414       CurMF->CreateMachineBasicBlock(SI->getParent());
8415 
8416   // Add successors. Note: use table order for determinism.
8417   SmallPtrSet<MachineBasicBlock *, 8> Done;
8418   for (MachineBasicBlock *Succ : Table) {
8419     if (Done.count(Succ))
8420       continue;
8421     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8422     Done.insert(Succ);
8423   }
8424   JumpTableMBB->normalizeSuccProbs();
8425 
8426   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8427   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8428                      ->createJumpTableIndex(Table);
8429 
8430   // Set up the jump table info.
8431   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8432   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8433                       Clusters[Last].High->getValue(), SI->getCondition(),
8434                       nullptr, false);
8435   JTCases.emplace_back(std::move(JTH), std::move(JT));
8436 
8437   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8438                                      JTCases.size() - 1, Prob);
8439   return true;
8440 }
8441 
8442 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8443                                          const SwitchInst *SI,
8444                                          MachineBasicBlock *DefaultMBB) {
8445 #ifndef NDEBUG
8446   // Clusters must be non-empty, sorted, and only contain Range clusters.
8447   assert(!Clusters.empty());
8448   for (CaseCluster &C : Clusters)
8449     assert(C.Kind == CC_Range);
8450   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8451     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8452 #endif
8453 
8454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8455   if (!areJTsAllowed(TLI, SI))
8456     return;
8457 
8458   const int64_t N = Clusters.size();
8459   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8460 
8461   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8462   SmallVector<unsigned, 8> TotalCases(N);
8463 
8464   for (unsigned i = 0; i < N; ++i) {
8465     APInt Hi = Clusters[i].High->getValue();
8466     APInt Lo = Clusters[i].Low->getValue();
8467     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8468     if (i != 0)
8469       TotalCases[i] += TotalCases[i - 1];
8470   }
8471 
8472   unsigned MinDensity = JumpTableDensity;
8473   if (DefaultMBB->getParent()->getFunction()->optForSize())
8474     MinDensity = OptsizeJumpTableDensity;
8475   if (N >= MinJumpTableSize
8476       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8477     // Cheap case: the whole range might be suitable for jump table.
8478     CaseCluster JTCluster;
8479     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8480       Clusters[0] = JTCluster;
8481       Clusters.resize(1);
8482       return;
8483     }
8484   }
8485 
8486   // The algorithm below is not suitable for -O0.
8487   if (TM.getOptLevel() == CodeGenOpt::None)
8488     return;
8489 
8490   // Split Clusters into minimum number of dense partitions. The algorithm uses
8491   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8492   // for the Case Statement'" (1994), but builds the MinPartitions array in
8493   // reverse order to make it easier to reconstruct the partitions in ascending
8494   // order. In the choice between two optimal partitionings, it picks the one
8495   // which yields more jump tables.
8496 
8497   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8498   SmallVector<unsigned, 8> MinPartitions(N);
8499   // LastElement[i] is the last element of the partition starting at i.
8500   SmallVector<unsigned, 8> LastElement(N);
8501   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8502   SmallVector<unsigned, 8> NumTables(N);
8503 
8504   // Base case: There is only one way to partition Clusters[N-1].
8505   MinPartitions[N - 1] = 1;
8506   LastElement[N - 1] = N - 1;
8507   assert(MinJumpTableSize > 1);
8508   NumTables[N - 1] = 0;
8509 
8510   // Note: loop indexes are signed to avoid underflow.
8511   for (int64_t i = N - 2; i >= 0; i--) {
8512     // Find optimal partitioning of Clusters[i..N-1].
8513     // Baseline: Put Clusters[i] into a partition on its own.
8514     MinPartitions[i] = MinPartitions[i + 1] + 1;
8515     LastElement[i] = i;
8516     NumTables[i] = NumTables[i + 1];
8517 
8518     // Search for a solution that results in fewer partitions.
8519     for (int64_t j = N - 1; j > i; j--) {
8520       // Try building a partition from Clusters[i..j].
8521       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8522         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8523         bool IsTable = j - i + 1 >= MinJumpTableSize;
8524         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8525 
8526         // If this j leads to fewer partitions, or same number of partitions
8527         // with more lookup tables, it is a better partitioning.
8528         if (NumPartitions < MinPartitions[i] ||
8529             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8530           MinPartitions[i] = NumPartitions;
8531           LastElement[i] = j;
8532           NumTables[i] = Tables;
8533         }
8534       }
8535     }
8536   }
8537 
8538   // Iterate over the partitions, replacing some with jump tables in-place.
8539   unsigned DstIndex = 0;
8540   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8541     Last = LastElement[First];
8542     assert(Last >= First);
8543     assert(DstIndex <= First);
8544     unsigned NumClusters = Last - First + 1;
8545 
8546     CaseCluster JTCluster;
8547     if (NumClusters >= MinJumpTableSize &&
8548         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8549       Clusters[DstIndex++] = JTCluster;
8550     } else {
8551       for (unsigned I = First; I <= Last; ++I)
8552         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8553     }
8554   }
8555   Clusters.resize(DstIndex);
8556 }
8557 
8558 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8559   // FIXME: Using the pointer type doesn't seem ideal.
8560   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8561   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8562   return Range <= BW;
8563 }
8564 
8565 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8566                                                 unsigned NumCmps,
8567                                                 const APInt &Low,
8568                                                 const APInt &High) {
8569   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8570   // range of cases both require only one branch to lower. Just looking at the
8571   // number of clusters and destinations should be enough to decide whether to
8572   // build bit tests.
8573 
8574   // To lower a range with bit tests, the range must fit the bitwidth of a
8575   // machine word.
8576   if (!rangeFitsInWord(Low, High))
8577     return false;
8578 
8579   // Decide whether it's profitable to lower this range with bit tests. Each
8580   // destination requires a bit test and branch, and there is an overall range
8581   // check branch. For a small number of clusters, separate comparisons might be
8582   // cheaper, and for many destinations, splitting the range might be better.
8583   return (NumDests == 1 && NumCmps >= 3) ||
8584          (NumDests == 2 && NumCmps >= 5) ||
8585          (NumDests == 3 && NumCmps >= 6);
8586 }
8587 
8588 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8589                                         unsigned First, unsigned Last,
8590                                         const SwitchInst *SI,
8591                                         CaseCluster &BTCluster) {
8592   assert(First <= Last);
8593   if (First == Last)
8594     return false;
8595 
8596   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8597   unsigned NumCmps = 0;
8598   for (int64_t I = First; I <= Last; ++I) {
8599     assert(Clusters[I].Kind == CC_Range);
8600     Dests.set(Clusters[I].MBB->getNumber());
8601     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8602   }
8603   unsigned NumDests = Dests.count();
8604 
8605   APInt Low = Clusters[First].Low->getValue();
8606   APInt High = Clusters[Last].High->getValue();
8607   assert(Low.slt(High));
8608 
8609   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8610     return false;
8611 
8612   APInt LowBound;
8613   APInt CmpRange;
8614 
8615   const int BitWidth = DAG.getTargetLoweringInfo()
8616                            .getPointerTy(DAG.getDataLayout())
8617                            .getSizeInBits();
8618   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8619 
8620   // Check if the clusters cover a contiguous range such that no value in the
8621   // range will jump to the default statement.
8622   bool ContiguousRange = true;
8623   for (int64_t I = First + 1; I <= Last; ++I) {
8624     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8625       ContiguousRange = false;
8626       break;
8627     }
8628   }
8629 
8630   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8631     // Optimize the case where all the case values fit in a word without having
8632     // to subtract minValue. In this case, we can optimize away the subtraction.
8633     LowBound = APInt::getNullValue(Low.getBitWidth());
8634     CmpRange = High;
8635     ContiguousRange = false;
8636   } else {
8637     LowBound = Low;
8638     CmpRange = High - Low;
8639   }
8640 
8641   CaseBitsVector CBV;
8642   auto TotalProb = BranchProbability::getZero();
8643   for (unsigned i = First; i <= Last; ++i) {
8644     // Find the CaseBits for this destination.
8645     unsigned j;
8646     for (j = 0; j < CBV.size(); ++j)
8647       if (CBV[j].BB == Clusters[i].MBB)
8648         break;
8649     if (j == CBV.size())
8650       CBV.push_back(
8651           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8652     CaseBits *CB = &CBV[j];
8653 
8654     // Update Mask, Bits and ExtraProb.
8655     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8656     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8657     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8658     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8659     CB->Bits += Hi - Lo + 1;
8660     CB->ExtraProb += Clusters[i].Prob;
8661     TotalProb += Clusters[i].Prob;
8662   }
8663 
8664   BitTestInfo BTI;
8665   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8666     // Sort by probability first, number of bits second.
8667     if (a.ExtraProb != b.ExtraProb)
8668       return a.ExtraProb > b.ExtraProb;
8669     return a.Bits > b.Bits;
8670   });
8671 
8672   for (auto &CB : CBV) {
8673     MachineBasicBlock *BitTestBB =
8674         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8675     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8676   }
8677   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8678                             SI->getCondition(), -1U, MVT::Other, false,
8679                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8680                             TotalProb);
8681 
8682   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8683                                     BitTestCases.size() - 1, TotalProb);
8684   return true;
8685 }
8686 
8687 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8688                                               const SwitchInst *SI) {
8689 // Partition Clusters into as few subsets as possible, where each subset has a
8690 // range that fits in a machine word and has <= 3 unique destinations.
8691 
8692 #ifndef NDEBUG
8693   // Clusters must be sorted and contain Range or JumpTable clusters.
8694   assert(!Clusters.empty());
8695   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8696   for (const CaseCluster &C : Clusters)
8697     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8698   for (unsigned i = 1; i < Clusters.size(); ++i)
8699     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8700 #endif
8701 
8702   // The algorithm below is not suitable for -O0.
8703   if (TM.getOptLevel() == CodeGenOpt::None)
8704     return;
8705 
8706   // If target does not have legal shift left, do not emit bit tests at all.
8707   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8708   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8709   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8710     return;
8711 
8712   int BitWidth = PTy.getSizeInBits();
8713   const int64_t N = Clusters.size();
8714 
8715   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8716   SmallVector<unsigned, 8> MinPartitions(N);
8717   // LastElement[i] is the last element of the partition starting at i.
8718   SmallVector<unsigned, 8> LastElement(N);
8719 
8720   // FIXME: This might not be the best algorithm for finding bit test clusters.
8721 
8722   // Base case: There is only one way to partition Clusters[N-1].
8723   MinPartitions[N - 1] = 1;
8724   LastElement[N - 1] = N - 1;
8725 
8726   // Note: loop indexes are signed to avoid underflow.
8727   for (int64_t i = N - 2; i >= 0; --i) {
8728     // Find optimal partitioning of Clusters[i..N-1].
8729     // Baseline: Put Clusters[i] into a partition on its own.
8730     MinPartitions[i] = MinPartitions[i + 1] + 1;
8731     LastElement[i] = i;
8732 
8733     // Search for a solution that results in fewer partitions.
8734     // Note: the search is limited by BitWidth, reducing time complexity.
8735     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8736       // Try building a partition from Clusters[i..j].
8737 
8738       // Check the range.
8739       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8740                            Clusters[j].High->getValue()))
8741         continue;
8742 
8743       // Check nbr of destinations and cluster types.
8744       // FIXME: This works, but doesn't seem very efficient.
8745       bool RangesOnly = true;
8746       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8747       for (int64_t k = i; k <= j; k++) {
8748         if (Clusters[k].Kind != CC_Range) {
8749           RangesOnly = false;
8750           break;
8751         }
8752         Dests.set(Clusters[k].MBB->getNumber());
8753       }
8754       if (!RangesOnly || Dests.count() > 3)
8755         break;
8756 
8757       // Check if it's a better partition.
8758       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8759       if (NumPartitions < MinPartitions[i]) {
8760         // Found a better partition.
8761         MinPartitions[i] = NumPartitions;
8762         LastElement[i] = j;
8763       }
8764     }
8765   }
8766 
8767   // Iterate over the partitions, replacing with bit-test clusters in-place.
8768   unsigned DstIndex = 0;
8769   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8770     Last = LastElement[First];
8771     assert(First <= Last);
8772     assert(DstIndex <= First);
8773 
8774     CaseCluster BitTestCluster;
8775     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8776       Clusters[DstIndex++] = BitTestCluster;
8777     } else {
8778       size_t NumClusters = Last - First + 1;
8779       std::memmove(&Clusters[DstIndex], &Clusters[First],
8780                    sizeof(Clusters[0]) * NumClusters);
8781       DstIndex += NumClusters;
8782     }
8783   }
8784   Clusters.resize(DstIndex);
8785 }
8786 
8787 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8788                                         MachineBasicBlock *SwitchMBB,
8789                                         MachineBasicBlock *DefaultMBB) {
8790   MachineFunction *CurMF = FuncInfo.MF;
8791   MachineBasicBlock *NextMBB = nullptr;
8792   MachineFunction::iterator BBI(W.MBB);
8793   if (++BBI != FuncInfo.MF->end())
8794     NextMBB = &*BBI;
8795 
8796   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8797 
8798   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8799 
8800   if (Size == 2 && W.MBB == SwitchMBB) {
8801     // If any two of the cases has the same destination, and if one value
8802     // is the same as the other, but has one bit unset that the other has set,
8803     // use bit manipulation to do two compares at once.  For example:
8804     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8805     // TODO: This could be extended to merge any 2 cases in switches with 3
8806     // cases.
8807     // TODO: Handle cases where W.CaseBB != SwitchBB.
8808     CaseCluster &Small = *W.FirstCluster;
8809     CaseCluster &Big = *W.LastCluster;
8810 
8811     if (Small.Low == Small.High && Big.Low == Big.High &&
8812         Small.MBB == Big.MBB) {
8813       const APInt &SmallValue = Small.Low->getValue();
8814       const APInt &BigValue = Big.Low->getValue();
8815 
8816       // Check that there is only one bit different.
8817       APInt CommonBit = BigValue ^ SmallValue;
8818       if (CommonBit.isPowerOf2()) {
8819         SDValue CondLHS = getValue(Cond);
8820         EVT VT = CondLHS.getValueType();
8821         SDLoc DL = getCurSDLoc();
8822 
8823         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8824                                  DAG.getConstant(CommonBit, DL, VT));
8825         SDValue Cond = DAG.getSetCC(
8826             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8827             ISD::SETEQ);
8828 
8829         // Update successor info.
8830         // Both Small and Big will jump to Small.BB, so we sum up the
8831         // probabilities.
8832         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8833         if (BPI)
8834           addSuccessorWithProb(
8835               SwitchMBB, DefaultMBB,
8836               // The default destination is the first successor in IR.
8837               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8838         else
8839           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8840 
8841         // Insert the true branch.
8842         SDValue BrCond =
8843             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8844                         DAG.getBasicBlock(Small.MBB));
8845         // Insert the false branch.
8846         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8847                              DAG.getBasicBlock(DefaultMBB));
8848 
8849         DAG.setRoot(BrCond);
8850         return;
8851       }
8852     }
8853   }
8854 
8855   if (TM.getOptLevel() != CodeGenOpt::None) {
8856     // Order cases by probability so the most likely case will be checked first.
8857     std::sort(W.FirstCluster, W.LastCluster + 1,
8858               [](const CaseCluster &a, const CaseCluster &b) {
8859       return a.Prob > b.Prob;
8860     });
8861 
8862     // Rearrange the case blocks so that the last one falls through if possible
8863     // without without changing the order of probabilities.
8864     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8865       --I;
8866       if (I->Prob > W.LastCluster->Prob)
8867         break;
8868       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8869         std::swap(*I, *W.LastCluster);
8870         break;
8871       }
8872     }
8873   }
8874 
8875   // Compute total probability.
8876   BranchProbability DefaultProb = W.DefaultProb;
8877   BranchProbability UnhandledProbs = DefaultProb;
8878   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8879     UnhandledProbs += I->Prob;
8880 
8881   MachineBasicBlock *CurMBB = W.MBB;
8882   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8883     MachineBasicBlock *Fallthrough;
8884     if (I == W.LastCluster) {
8885       // For the last cluster, fall through to the default destination.
8886       Fallthrough = DefaultMBB;
8887     } else {
8888       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8889       CurMF->insert(BBI, Fallthrough);
8890       // Put Cond in a virtual register to make it available from the new blocks.
8891       ExportFromCurrentBlock(Cond);
8892     }
8893     UnhandledProbs -= I->Prob;
8894 
8895     switch (I->Kind) {
8896       case CC_JumpTable: {
8897         // FIXME: Optimize away range check based on pivot comparisons.
8898         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8899         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8900 
8901         // The jump block hasn't been inserted yet; insert it here.
8902         MachineBasicBlock *JumpMBB = JT->MBB;
8903         CurMF->insert(BBI, JumpMBB);
8904 
8905         auto JumpProb = I->Prob;
8906         auto FallthroughProb = UnhandledProbs;
8907 
8908         // If the default statement is a target of the jump table, we evenly
8909         // distribute the default probability to successors of CurMBB. Also
8910         // update the probability on the edge from JumpMBB to Fallthrough.
8911         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8912                                               SE = JumpMBB->succ_end();
8913              SI != SE; ++SI) {
8914           if (*SI == DefaultMBB) {
8915             JumpProb += DefaultProb / 2;
8916             FallthroughProb -= DefaultProb / 2;
8917             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8918             JumpMBB->normalizeSuccProbs();
8919             break;
8920           }
8921         }
8922 
8923         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8924         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8925         CurMBB->normalizeSuccProbs();
8926 
8927         // The jump table header will be inserted in our current block, do the
8928         // range check, and fall through to our fallthrough block.
8929         JTH->HeaderBB = CurMBB;
8930         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8931 
8932         // If we're in the right place, emit the jump table header right now.
8933         if (CurMBB == SwitchMBB) {
8934           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8935           JTH->Emitted = true;
8936         }
8937         break;
8938       }
8939       case CC_BitTests: {
8940         // FIXME: Optimize away range check based on pivot comparisons.
8941         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8942 
8943         // The bit test blocks haven't been inserted yet; insert them here.
8944         for (BitTestCase &BTC : BTB->Cases)
8945           CurMF->insert(BBI, BTC.ThisBB);
8946 
8947         // Fill in fields of the BitTestBlock.
8948         BTB->Parent = CurMBB;
8949         BTB->Default = Fallthrough;
8950 
8951         BTB->DefaultProb = UnhandledProbs;
8952         // If the cases in bit test don't form a contiguous range, we evenly
8953         // distribute the probability on the edge to Fallthrough to two
8954         // successors of CurMBB.
8955         if (!BTB->ContiguousRange) {
8956           BTB->Prob += DefaultProb / 2;
8957           BTB->DefaultProb -= DefaultProb / 2;
8958         }
8959 
8960         // If we're in the right place, emit the bit test header right now.
8961         if (CurMBB == SwitchMBB) {
8962           visitBitTestHeader(*BTB, SwitchMBB);
8963           BTB->Emitted = true;
8964         }
8965         break;
8966       }
8967       case CC_Range: {
8968         const Value *RHS, *LHS, *MHS;
8969         ISD::CondCode CC;
8970         if (I->Low == I->High) {
8971           // Check Cond == I->Low.
8972           CC = ISD::SETEQ;
8973           LHS = Cond;
8974           RHS=I->Low;
8975           MHS = nullptr;
8976         } else {
8977           // Check I->Low <= Cond <= I->High.
8978           CC = ISD::SETLE;
8979           LHS = I->Low;
8980           MHS = Cond;
8981           RHS = I->High;
8982         }
8983 
8984         // The false probability is the sum of all unhandled cases.
8985         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8986                      UnhandledProbs);
8987 
8988         if (CurMBB == SwitchMBB)
8989           visitSwitchCase(CB, SwitchMBB);
8990         else
8991           SwitchCases.push_back(CB);
8992 
8993         break;
8994       }
8995     }
8996     CurMBB = Fallthrough;
8997   }
8998 }
8999 
9000 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9001                                               CaseClusterIt First,
9002                                               CaseClusterIt Last) {
9003   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9004     if (X.Prob != CC.Prob)
9005       return X.Prob > CC.Prob;
9006 
9007     // Ties are broken by comparing the case value.
9008     return X.Low->getValue().slt(CC.Low->getValue());
9009   });
9010 }
9011 
9012 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9013                                         const SwitchWorkListItem &W,
9014                                         Value *Cond,
9015                                         MachineBasicBlock *SwitchMBB) {
9016   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9017          "Clusters not sorted?");
9018 
9019   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9020 
9021   // Balance the tree based on branch probabilities to create a near-optimal (in
9022   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9023   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9024   CaseClusterIt LastLeft = W.FirstCluster;
9025   CaseClusterIt FirstRight = W.LastCluster;
9026   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9027   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9028 
9029   // Move LastLeft and FirstRight towards each other from opposite directions to
9030   // find a partitioning of the clusters which balances the probability on both
9031   // sides. If LeftProb and RightProb are equal, alternate which side is
9032   // taken to ensure 0-probability nodes are distributed evenly.
9033   unsigned I = 0;
9034   while (LastLeft + 1 < FirstRight) {
9035     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9036       LeftProb += (++LastLeft)->Prob;
9037     else
9038       RightProb += (--FirstRight)->Prob;
9039     I++;
9040   }
9041 
9042   for (;;) {
9043     // Our binary search tree differs from a typical BST in that ours can have up
9044     // to three values in each leaf. The pivot selection above doesn't take that
9045     // into account, which means the tree might require more nodes and be less
9046     // efficient. We compensate for this here.
9047 
9048     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9049     unsigned NumRight = W.LastCluster - FirstRight + 1;
9050 
9051     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9052       // If one side has less than 3 clusters, and the other has more than 3,
9053       // consider taking a cluster from the other side.
9054 
9055       if (NumLeft < NumRight) {
9056         // Consider moving the first cluster on the right to the left side.
9057         CaseCluster &CC = *FirstRight;
9058         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9059         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9060         if (LeftSideRank <= RightSideRank) {
9061           // Moving the cluster to the left does not demote it.
9062           ++LastLeft;
9063           ++FirstRight;
9064           continue;
9065         }
9066       } else {
9067         assert(NumRight < NumLeft);
9068         // Consider moving the last element on the left to the right side.
9069         CaseCluster &CC = *LastLeft;
9070         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9071         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9072         if (RightSideRank <= LeftSideRank) {
9073           // Moving the cluster to the right does not demot it.
9074           --LastLeft;
9075           --FirstRight;
9076           continue;
9077         }
9078       }
9079     }
9080     break;
9081   }
9082 
9083   assert(LastLeft + 1 == FirstRight);
9084   assert(LastLeft >= W.FirstCluster);
9085   assert(FirstRight <= W.LastCluster);
9086 
9087   // Use the first element on the right as pivot since we will make less-than
9088   // comparisons against it.
9089   CaseClusterIt PivotCluster = FirstRight;
9090   assert(PivotCluster > W.FirstCluster);
9091   assert(PivotCluster <= W.LastCluster);
9092 
9093   CaseClusterIt FirstLeft = W.FirstCluster;
9094   CaseClusterIt LastRight = W.LastCluster;
9095 
9096   const ConstantInt *Pivot = PivotCluster->Low;
9097 
9098   // New blocks will be inserted immediately after the current one.
9099   MachineFunction::iterator BBI(W.MBB);
9100   ++BBI;
9101 
9102   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9103   // we can branch to its destination directly if it's squeezed exactly in
9104   // between the known lower bound and Pivot - 1.
9105   MachineBasicBlock *LeftMBB;
9106   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9107       FirstLeft->Low == W.GE &&
9108       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9109     LeftMBB = FirstLeft->MBB;
9110   } else {
9111     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9112     FuncInfo.MF->insert(BBI, LeftMBB);
9113     WorkList.push_back(
9114         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9115     // Put Cond in a virtual register to make it available from the new blocks.
9116     ExportFromCurrentBlock(Cond);
9117   }
9118 
9119   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9120   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9121   // directly if RHS.High equals the current upper bound.
9122   MachineBasicBlock *RightMBB;
9123   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9124       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9125     RightMBB = FirstRight->MBB;
9126   } else {
9127     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9128     FuncInfo.MF->insert(BBI, RightMBB);
9129     WorkList.push_back(
9130         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9131     // Put Cond in a virtual register to make it available from the new blocks.
9132     ExportFromCurrentBlock(Cond);
9133   }
9134 
9135   // Create the CaseBlock record that will be used to lower the branch.
9136   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9137                LeftProb, RightProb);
9138 
9139   if (W.MBB == SwitchMBB)
9140     visitSwitchCase(CB, SwitchMBB);
9141   else
9142     SwitchCases.push_back(CB);
9143 }
9144 
9145 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9146   // Extract cases from the switch.
9147   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9148   CaseClusterVector Clusters;
9149   Clusters.reserve(SI.getNumCases());
9150   for (auto I : SI.cases()) {
9151     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9152     const ConstantInt *CaseVal = I.getCaseValue();
9153     BranchProbability Prob =
9154         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9155             : BranchProbability(1, SI.getNumCases() + 1);
9156     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9157   }
9158 
9159   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9160 
9161   // Cluster adjacent cases with the same destination. We do this at all
9162   // optimization levels because it's cheap to do and will make codegen faster
9163   // if there are many clusters.
9164   sortAndRangeify(Clusters);
9165 
9166   if (TM.getOptLevel() != CodeGenOpt::None) {
9167     // Replace an unreachable default with the most popular destination.
9168     // FIXME: Exploit unreachable default more aggressively.
9169     bool UnreachableDefault =
9170         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9171     if (UnreachableDefault && !Clusters.empty()) {
9172       DenseMap<const BasicBlock *, unsigned> Popularity;
9173       unsigned MaxPop = 0;
9174       const BasicBlock *MaxBB = nullptr;
9175       for (auto I : SI.cases()) {
9176         const BasicBlock *BB = I.getCaseSuccessor();
9177         if (++Popularity[BB] > MaxPop) {
9178           MaxPop = Popularity[BB];
9179           MaxBB = BB;
9180         }
9181       }
9182       // Set new default.
9183       assert(MaxPop > 0 && MaxBB);
9184       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9185 
9186       // Remove cases that were pointing to the destination that is now the
9187       // default.
9188       CaseClusterVector New;
9189       New.reserve(Clusters.size());
9190       for (CaseCluster &CC : Clusters) {
9191         if (CC.MBB != DefaultMBB)
9192           New.push_back(CC);
9193       }
9194       Clusters = std::move(New);
9195     }
9196   }
9197 
9198   // If there is only the default destination, jump there directly.
9199   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9200   if (Clusters.empty()) {
9201     SwitchMBB->addSuccessor(DefaultMBB);
9202     if (DefaultMBB != NextBlock(SwitchMBB)) {
9203       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9204                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9205     }
9206     return;
9207   }
9208 
9209   findJumpTables(Clusters, &SI, DefaultMBB);
9210   findBitTestClusters(Clusters, &SI);
9211 
9212   DEBUG({
9213     dbgs() << "Case clusters: ";
9214     for (const CaseCluster &C : Clusters) {
9215       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9216       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9217 
9218       C.Low->getValue().print(dbgs(), true);
9219       if (C.Low != C.High) {
9220         dbgs() << '-';
9221         C.High->getValue().print(dbgs(), true);
9222       }
9223       dbgs() << ' ';
9224     }
9225     dbgs() << '\n';
9226   });
9227 
9228   assert(!Clusters.empty());
9229   SwitchWorkList WorkList;
9230   CaseClusterIt First = Clusters.begin();
9231   CaseClusterIt Last = Clusters.end() - 1;
9232   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9233   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9234 
9235   while (!WorkList.empty()) {
9236     SwitchWorkListItem W = WorkList.back();
9237     WorkList.pop_back();
9238     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9239 
9240     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9241       // For optimized builds, lower large range as a balanced binary tree.
9242       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9243       continue;
9244     }
9245 
9246     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9247   }
9248 }
9249