xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 5ef4d5f9c1c18ea7e274172e6f43a23aa1b1da31)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // True if the Value passed requires ABI mangling as it is a parameter to a
161 // function or a return value from a function which is not an intrinsic.
162 static bool isABIRegCopy(const Value *V) {
163   const bool IsRetInst = V && isa<ReturnInst>(V);
164   const bool IsCallInst = V && isa<CallInst>(V);
165   const bool IsInLineAsm =
166       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
167   const bool IsIndirectFunctionCall =
168       IsCallInst && !IsInLineAsm &&
169       !static_cast<const CallInst *>(V)->getCalledFunction();
170   // It is possible that the call instruction is an inline asm statement or an
171   // indirect function call in which case the return value of
172   // getCalledFunction() would be nullptr.
173   const bool IsInstrinsicCall =
174       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
175       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
176           Intrinsic::not_intrinsic;
177 
178   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
179 }
180 
181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
182                                       const SDValue *Parts, unsigned NumParts,
183                                       MVT PartVT, EVT ValueVT, const Value *V,
184                                       bool IsABIRegCopy);
185 
186 /// getCopyFromParts - Create a value that contains the specified legal parts
187 /// combined into the value they represent.  If the parts combine to a type
188 /// larger than ValueVT then AssertOp can be used to specify whether the extra
189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
190 /// (ISD::AssertSext).
191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
192                                 const SDValue *Parts, unsigned NumParts,
193                                 MVT PartVT, EVT ValueVT, const Value *V,
194                                 Optional<ISD::NodeType> AssertOp = None,
195                                 bool IsABIRegCopy = false) {
196   if (ValueVT.isVector())
197     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
198                                   PartVT, ValueVT, V, IsABIRegCopy);
199 
200   assert(NumParts > 0 && "No parts to assemble!");
201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
202   SDValue Val = Parts[0];
203 
204   if (NumParts > 1) {
205     // Assemble the value from multiple parts.
206     if (ValueVT.isInteger()) {
207       unsigned PartBits = PartVT.getSizeInBits();
208       unsigned ValueBits = ValueVT.getSizeInBits();
209 
210       // Assemble the power of 2 part.
211       unsigned RoundParts = NumParts & (NumParts - 1) ?
212         1 << Log2_32(NumParts) : NumParts;
213       unsigned RoundBits = PartBits * RoundParts;
214       EVT RoundVT = RoundBits == ValueBits ?
215         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
216       SDValue Lo, Hi;
217 
218       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
219 
220       if (RoundParts > 2) {
221         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
222                               PartVT, HalfVT, V);
223         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
224                               RoundParts / 2, PartVT, HalfVT, V);
225       } else {
226         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
227         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
228       }
229 
230       if (DAG.getDataLayout().isBigEndian())
231         std::swap(Lo, Hi);
232 
233       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
234 
235       if (RoundParts < NumParts) {
236         // Assemble the trailing non-power-of-2 part.
237         unsigned OddParts = NumParts - RoundParts;
238         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
239         Hi = getCopyFromParts(DAG, DL,
240                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
241 
242         // Combine the round and odd parts.
243         Lo = Val;
244         if (DAG.getDataLayout().isBigEndian())
245           std::swap(Lo, Hi);
246         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
247         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
248         Hi =
249             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
250                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
251                                         TLI.getPointerTy(DAG.getDataLayout())));
252         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
253         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
254       }
255     } else if (PartVT.isFloatingPoint()) {
256       // FP split into multiple FP parts (for ppcf128)
257       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
258              "Unexpected split");
259       SDValue Lo, Hi;
260       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
261       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
262       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
263         std::swap(Lo, Hi);
264       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
265     } else {
266       // FP split into integer parts (soft fp)
267       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
268              !PartVT.isVector() && "Unexpected split");
269       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
271     }
272   }
273 
274   // There is now one part, held in Val.  Correct it to match ValueVT.
275   // PartEVT is the type of the register class that holds the value.
276   // ValueVT is the type of the inline asm operation.
277   EVT PartEVT = Val.getValueType();
278 
279   if (PartEVT == ValueVT)
280     return Val;
281 
282   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
283       ValueVT.bitsLT(PartEVT)) {
284     // For an FP value in an integer part, we need to truncate to the right
285     // width first.
286     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
287     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
288   }
289 
290   // Handle types that have the same size.
291   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
292     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
293 
294   // Handle types with different sizes.
295   if (PartEVT.isInteger() && ValueVT.isInteger()) {
296     if (ValueVT.bitsLT(PartEVT)) {
297       // For a truncate, see if we have any information to
298       // indicate whether the truncated bits will always be
299       // zero or sign-extension.
300       if (AssertOp.hasValue())
301         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
302                           DAG.getValueType(ValueVT));
303       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304     }
305     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
306   }
307 
308   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
309     // FP_ROUND's are always exact here.
310     if (ValueVT.bitsLT(Val.getValueType()))
311       return DAG.getNode(
312           ISD::FP_ROUND, DL, ValueVT, Val,
313           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
314 
315     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
316   }
317 
318   llvm_unreachable("Unknown mismatch!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (isa<InlineAsm>(CI->getCalledValue()))
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       bool IsABIRegCopy) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
359           RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
380                                   PartVT, IntermediateVT, V);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
389                                   PartVT, IntermediateVT, V);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
396                          (IntermediateVT.isVector()
397                               ? IntermediateVT.getVectorNumElements() * NumParts
398                               : NumIntermediates));
399     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
400                                                 : ISD::BUILD_VECTOR,
401                       DL, BuiltVectorTy, Ops);
402   }
403 
404   // There is now one part, held in Val.  Correct it to match ValueVT.
405   EVT PartEVT = Val.getValueType();
406 
407   if (PartEVT == ValueVT)
408     return Val;
409 
410   if (PartEVT.isVector()) {
411     // If the element type of the source/dest vectors are the same, but the
412     // parts vector has more elements than the value vector, then we have a
413     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
414     // elements we want.
415     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
416       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
417              "Cannot narrow, it would be a lossy transformation");
418       return DAG.getNode(
419           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
420           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
421     }
422 
423     // Vector/Vector bitcast.
424     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
425       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
426 
427     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
428       "Cannot handle this kind of promotion");
429     // Promoted vector extract
430     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
431 
432   }
433 
434   // Trivial bitcast if the types are the same size and the destination
435   // vector type is legal.
436   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
437       TLI.isTypeLegal(ValueVT))
438     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440   if (ValueVT.getVectorNumElements() != 1) {
441      // Certain ABIs require that vectors are passed as integers. For vectors
442      // are the same size, this is an obvious bitcast.
443      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
444        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
446        // Bitcast Val back the original type and extract the corresponding
447        // vector we want.
448        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
449        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
450                                            ValueVT.getVectorElementType(), Elts);
451        Val = DAG.getBitcast(WiderVecType, Val);
452        return DAG.getNode(
453            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
454            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
455      }
456 
457      diagnosePossiblyInvalidConstraint(
458          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
459      return DAG.getUNDEF(ValueVT);
460   }
461 
462   // Handle cases such as i8 -> <1 x i1>
463   EVT ValueSVT = ValueVT.getVectorElementType();
464   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
465     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467 
468   return DAG.getBuildVector(ValueVT, DL, Val);
469 }
470 
471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
472                                  SDValue Val, SDValue *Parts, unsigned NumParts,
473                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
474 
475 /// getCopyToParts - Create a series of nodes that contain the specified value
476 /// split into legal parts.  If the parts contain more bits than Val, then, for
477 /// integers, ExtendKind can be used to specify how to generate the extra bits.
478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
479                            SDValue *Parts, unsigned NumParts, MVT PartVT,
480                            const Value *V,
481                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
482                            bool IsABIRegCopy = false) {
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 IsABIRegCopy);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566                                  DAG.getIntPtrConstant(RoundBits, DL));
567     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
568 
569     if (DAG.getDataLayout().isBigEndian())
570       // The odd parts were reversed by getCopyToParts - unreverse them.
571       std::reverse(Parts + RoundParts, Parts + NumParts);
572 
573     NumParts = RoundParts;
574     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
575     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
576   }
577 
578   // The number of parts is a power of 2.  Repeatedly bisect the value using
579   // EXTRACT_ELEMENT.
580   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
581                          EVT::getIntegerVT(*DAG.getContext(),
582                                            ValueVT.getSizeInBits()),
583                          Val);
584 
585   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
586     for (unsigned i = 0; i < NumParts; i += StepSize) {
587       unsigned ThisBits = StepSize * PartBits / 2;
588       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
589       SDValue &Part0 = Parts[i];
590       SDValue &Part1 = Parts[i+StepSize/2];
591 
592       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
594       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
596 
597       if (ThisBits == PartBits && ThisVT != PartVT) {
598         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
599         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
600       }
601     }
602   }
603 
604   if (DAG.getDataLayout().isBigEndian())
605     std::reverse(Parts, Parts + OrigNumParts);
606 }
607 
608 
609 /// getCopyToPartsVector - Create a series of nodes that contain the specified
610 /// value split into legal parts.
611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
612                                  SDValue Val, SDValue *Parts, unsigned NumParts,
613                                  MVT PartVT, const Value *V,
614                                  bool IsABIRegCopy) {
615   EVT ValueVT = Val.getValueType();
616   assert(ValueVT.isVector() && "Not a vector");
617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618 
619   if (NumParts == 1) {
620     EVT PartEVT = PartVT;
621     if (PartEVT == ValueVT) {
622       // Nothing to do.
623     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
624       // Bitconvert vector->vector case.
625       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
626     } else if (PartVT.isVector() &&
627                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
628                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
629       EVT ElementVT = PartVT.getVectorElementType();
630       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631       // undef elements.
632       SmallVector<SDValue, 16> Ops;
633       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
634         Ops.push_back(DAG.getNode(
635             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
636             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
637 
638       for (unsigned i = ValueVT.getVectorNumElements(),
639            e = PartVT.getVectorNumElements(); i != e; ++i)
640         Ops.push_back(DAG.getUNDEF(ElementVT));
641 
642       Val = DAG.getBuildVector(PartVT, DL, Ops);
643 
644       // FIXME: Use CONCAT for 2x -> 4x.
645 
646       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
647       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
648     } else if (PartVT.isVector() &&
649                PartEVT.getVectorElementType().bitsGE(
650                  ValueVT.getVectorElementType()) &&
651                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
652 
653       // Promoted vector extract
654       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
655     } else {
656       if (ValueVT.getVectorNumElements() == 1) {
657         Val = DAG.getNode(
658             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
659             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
660       } else {
661         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
662                "lossy conversion of vector to scalar type");
663         EVT IntermediateType =
664             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
665         Val = DAG.getBitcast(IntermediateType, Val);
666         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667       }
668     }
669 
670     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
671     Parts[0] = Val;
672     return;
673   }
674 
675   // Handle a multi-element vector.
676   EVT IntermediateVT;
677   MVT RegisterVT;
678   unsigned NumIntermediates;
679   unsigned NumRegs;
680   if (IsABIRegCopy) {
681     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
682         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
683         RegisterVT);
684   } else {
685     NumRegs =
686         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
687                                    NumIntermediates, RegisterVT);
688   }
689   unsigned NumElements = ValueVT.getVectorNumElements();
690 
691   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
692   NumParts = NumRegs; // Silence a compiler warning.
693   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
694 
695   // Convert the vector to the appropiate type if necessary.
696   unsigned DestVectorNoElts =
697       NumIntermediates *
698       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
699   EVT BuiltVectorTy = EVT::getVectorVT(
700       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
701   if (Val.getValueType() != BuiltVectorTy)
702     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
703 
704   // Split the vector into intermediate operands.
705   SmallVector<SDValue, 8> Ops(NumIntermediates);
706   for (unsigned i = 0; i != NumIntermediates; ++i) {
707     if (IntermediateVT.isVector())
708       Ops[i] =
709           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
710                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
711                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
712     else
713       Ops[i] = DAG.getNode(
714           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
715           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
716   }
717 
718   // Split the intermediate operands into legal parts.
719   if (NumParts == NumIntermediates) {
720     // If the register was not expanded, promote or copy the value,
721     // as appropriate.
722     for (unsigned i = 0; i != NumParts; ++i)
723       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
724   } else if (NumParts > 0) {
725     // If the intermediate type was expanded, split each the value into
726     // legal parts.
727     assert(NumIntermediates != 0 && "division by zero");
728     assert(NumParts % NumIntermediates == 0 &&
729            "Must expand into a divisible number of parts!");
730     unsigned Factor = NumParts / NumIntermediates;
731     for (unsigned i = 0; i != NumIntermediates; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
733   }
734 }
735 
736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
737                            EVT valuevt, bool IsABIMangledValue)
738     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
739       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
740 
741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
742                            const DataLayout &DL, unsigned Reg, Type *Ty,
743                            bool IsABIMangledValue) {
744   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
745 
746   IsABIMangled = IsABIMangledValue;
747 
748   for (EVT ValueVT : ValueVTs) {
749     unsigned NumRegs = IsABIMangledValue
750                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
751                            : TLI.getNumRegisters(Context, ValueVT);
752     MVT RegisterVT = IsABIMangledValue
753                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
754                          : TLI.getRegisterType(Context, ValueVT);
755     for (unsigned i = 0; i != NumRegs; ++i)
756       Regs.push_back(Reg + i);
757     RegVTs.push_back(RegisterVT);
758     RegCount.push_back(NumRegs);
759     Reg += NumRegs;
760   }
761 }
762 
763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
764                                       FunctionLoweringInfo &FuncInfo,
765                                       const SDLoc &dl, SDValue &Chain,
766                                       SDValue *Flag, const Value *V) const {
767   // A Value with type {} or [0 x %t] needs no registers.
768   if (ValueVTs.empty())
769     return SDValue();
770 
771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
772 
773   // Assemble the legal parts into the final values.
774   SmallVector<SDValue, 4> Values(ValueVTs.size());
775   SmallVector<SDValue, 8> Parts;
776   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
777     // Copy the legal parts from the registers.
778     EVT ValueVT = ValueVTs[Value];
779     unsigned NumRegs = RegCount[Value];
780     MVT RegisterVT = IsABIMangled
781       ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value])
782       : RegVTs[Value];
783 
784     Parts.resize(NumRegs);
785     for (unsigned i = 0; i != NumRegs; ++i) {
786       SDValue P;
787       if (!Flag) {
788         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
789       } else {
790         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
791         *Flag = P.getValue(2);
792       }
793 
794       Chain = P.getValue(1);
795       Parts[i] = P;
796 
797       // If the source register was virtual and if we know something about it,
798       // add an assert node.
799       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
800           !RegisterVT.isInteger() || RegisterVT.isVector())
801         continue;
802 
803       const FunctionLoweringInfo::LiveOutInfo *LOI =
804         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
805       if (!LOI)
806         continue;
807 
808       unsigned RegSize = RegisterVT.getSizeInBits();
809       unsigned NumSignBits = LOI->NumSignBits;
810       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
811 
812       if (NumZeroBits == RegSize) {
813         // The current value is a zero.
814         // Explicitly express that as it would be easier for
815         // optimizations to kick in.
816         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
817         continue;
818       }
819 
820       // FIXME: We capture more information than the dag can represent.  For
821       // now, just use the tightest assertzext/assertsext possible.
822       bool isSExt = true;
823       EVT FromVT(MVT::Other);
824       if (NumSignBits == RegSize) {
825         isSExt = true;   // ASSERT SEXT 1
826         FromVT = MVT::i1;
827       } else if (NumZeroBits >= RegSize - 1) {
828         isSExt = false;  // ASSERT ZEXT 1
829         FromVT = MVT::i1;
830       } else if (NumSignBits > RegSize - 8) {
831         isSExt = true;   // ASSERT SEXT 8
832         FromVT = MVT::i8;
833       } else if (NumZeroBits >= RegSize - 8) {
834         isSExt = false;  // ASSERT ZEXT 8
835         FromVT = MVT::i8;
836       } else if (NumSignBits > RegSize - 16) {
837         isSExt = true;   // ASSERT SEXT 16
838         FromVT = MVT::i16;
839       } else if (NumZeroBits >= RegSize - 16) {
840         isSExt = false;  // ASSERT ZEXT 16
841         FromVT = MVT::i16;
842       } else if (NumSignBits > RegSize - 32) {
843         isSExt = true;   // ASSERT SEXT 32
844         FromVT = MVT::i32;
845       } else if (NumZeroBits >= RegSize - 32) {
846         isSExt = false;  // ASSERT ZEXT 32
847         FromVT = MVT::i32;
848       } else {
849         continue;
850       }
851       // Add an assertion node.
852       assert(FromVT != MVT::Other);
853       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
854                              RegisterVT, P, DAG.getValueType(FromVT));
855     }
856 
857     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
858                                      NumRegs, RegisterVT, ValueVT, V);
859     Part += NumRegs;
860     Parts.clear();
861   }
862 
863   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
864 }
865 
866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
867                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
868                                  const Value *V,
869                                  ISD::NodeType PreferredExtendType) const {
870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
871   ISD::NodeType ExtendKind = PreferredExtendType;
872 
873   // Get the list of the values's legal parts.
874   unsigned NumRegs = Regs.size();
875   SmallVector<SDValue, 8> Parts(NumRegs);
876   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
877     unsigned NumParts = RegCount[Value];
878 
879     MVT RegisterVT = IsABIMangled
880       ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value])
881       : RegVTs[Value];
882 
883     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
884       ExtendKind = ISD::ZERO_EXTEND;
885 
886     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
887                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
888     Part += NumParts;
889   }
890 
891   // Copy the parts into the registers.
892   SmallVector<SDValue, 8> Chains(NumRegs);
893   for (unsigned i = 0; i != NumRegs; ++i) {
894     SDValue Part;
895     if (!Flag) {
896       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
897     } else {
898       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
899       *Flag = Part.getValue(1);
900     }
901 
902     Chains[i] = Part.getValue(0);
903   }
904 
905   if (NumRegs == 1 || Flag)
906     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
907     // flagged to it. That is the CopyToReg nodes and the user are considered
908     // a single scheduling unit. If we create a TokenFactor and return it as
909     // chain, then the TokenFactor is both a predecessor (operand) of the
910     // user as well as a successor (the TF operands are flagged to the user).
911     // c1, f1 = CopyToReg
912     // c2, f2 = CopyToReg
913     // c3     = TokenFactor c1, c2
914     // ...
915     //        = op c3, ..., f2
916     Chain = Chains[NumRegs-1];
917   else
918     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
919 }
920 
921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
922                                         unsigned MatchingIdx, const SDLoc &dl,
923                                         SelectionDAG &DAG,
924                                         std::vector<SDValue> &Ops) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926 
927   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
928   if (HasMatching)
929     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
930   else if (!Regs.empty() &&
931            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
932     // Put the register class of the virtual registers in the flag word.  That
933     // way, later passes can recompute register class constraints for inline
934     // assembly as well as normal instructions.
935     // Don't do this for tied operands that can use the regclass information
936     // from the def.
937     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
938     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
939     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
940   }
941 
942   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
943   Ops.push_back(Res);
944 
945   if (Code == InlineAsm::Kind_Clobber) {
946     // Clobbers should always have a 1:1 mapping with registers, and may
947     // reference registers that have illegal (e.g. vector) types. Hence, we
948     // shouldn't try to apply any sort of splitting logic to them.
949     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
950            "No 1:1 mapping from clobbers to regs?");
951     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
952     (void)SP;
953     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
954       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
955       assert(
956           (Regs[I] != SP ||
957            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
958           "If we clobbered the stack pointer, MFI should know about it.");
959     }
960     return;
961   }
962 
963   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
965     MVT RegisterVT = RegVTs[Value];
966     for (unsigned i = 0; i != NumRegs; ++i) {
967       assert(Reg < Regs.size() && "Mismatch in # registers expected");
968       unsigned TheReg = Regs[Reg++];
969       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
970     }
971   }
972 }
973 
974 SmallVector<std::pair<unsigned, unsigned>, 4>
975 RegsForValue::getRegsAndSizes() const {
976   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
977   unsigned I = 0;
978   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
979     unsigned RegCount = std::get<0>(CountAndVT);
980     MVT RegisterVT = std::get<1>(CountAndVT);
981     unsigned RegisterSize = RegisterVT.getSizeInBits();
982     for (unsigned E = I + RegCount; I != E; ++I)
983       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
984   }
985   return OutVec;
986 }
987 
988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
989                                const TargetLibraryInfo *li) {
990   AA = aa;
991   GFI = gfi;
992   LibInfo = li;
993   DL = &DAG.getDataLayout();
994   Context = DAG.getContext();
995   LPadToCallSiteMap.clear();
996 }
997 
998 void SelectionDAGBuilder::clear() {
999   NodeMap.clear();
1000   UnusedArgNodeMap.clear();
1001   PendingLoads.clear();
1002   PendingExports.clear();
1003   CurInst = nullptr;
1004   HasTailCall = false;
1005   SDNodeOrder = LowestSDNodeOrder;
1006   StatepointLowering.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1010   DanglingDebugInfoMap.clear();
1011 }
1012 
1013 SDValue SelectionDAGBuilder::getRoot() {
1014   if (PendingLoads.empty())
1015     return DAG.getRoot();
1016 
1017   if (PendingLoads.size() == 1) {
1018     SDValue Root = PendingLoads[0];
1019     DAG.setRoot(Root);
1020     PendingLoads.clear();
1021     return Root;
1022   }
1023 
1024   // Otherwise, we have to make a token factor node.
1025   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1026                              PendingLoads);
1027   PendingLoads.clear();
1028   DAG.setRoot(Root);
1029   return Root;
1030 }
1031 
1032 SDValue SelectionDAGBuilder::getControlRoot() {
1033   SDValue Root = DAG.getRoot();
1034 
1035   if (PendingExports.empty())
1036     return Root;
1037 
1038   // Turn all of the CopyToReg chains into one factored node.
1039   if (Root.getOpcode() != ISD::EntryToken) {
1040     unsigned i = 0, e = PendingExports.size();
1041     for (; i != e; ++i) {
1042       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1043       if (PendingExports[i].getNode()->getOperand(0) == Root)
1044         break;  // Don't add the root if we already indirectly depend on it.
1045     }
1046 
1047     if (i == e)
1048       PendingExports.push_back(Root);
1049   }
1050 
1051   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1052                      PendingExports);
1053   PendingExports.clear();
1054   DAG.setRoot(Root);
1055   return Root;
1056 }
1057 
1058 void SelectionDAGBuilder::visit(const Instruction &I) {
1059   // Set up outgoing PHI node register values before emitting the terminator.
1060   if (isa<TerminatorInst>(&I)) {
1061     HandlePHINodesInSuccessorBlocks(I.getParent());
1062   }
1063 
1064   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1065   if (!isa<DbgInfoIntrinsic>(I))
1066     ++SDNodeOrder;
1067 
1068   CurInst = &I;
1069 
1070   visit(I.getOpcode(), I);
1071 
1072   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1073     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1074     // maps to this instruction.
1075     // TODO: We could handle all flags (nsw, etc) here.
1076     // TODO: If an IR instruction maps to >1 node, only the final node will have
1077     //       flags set.
1078     if (SDNode *Node = getNodeForIRValue(&I)) {
1079       SDNodeFlags IncomingFlags;
1080       IncomingFlags.copyFMF(*FPMO);
1081       if (!Node->getFlags().isDefined())
1082         Node->setFlags(IncomingFlags);
1083       else
1084         Node->intersectFlagsWith(IncomingFlags);
1085     }
1086   }
1087 
1088   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1089       !isStatepoint(&I)) // statepoints handle their exports internally
1090     CopyToExportRegsIfNeeded(&I);
1091 
1092   CurInst = nullptr;
1093 }
1094 
1095 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1096   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1097 }
1098 
1099 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1100   // Note: this doesn't use InstVisitor, because it has to work with
1101   // ConstantExpr's in addition to instructions.
1102   switch (Opcode) {
1103   default: llvm_unreachable("Unknown instruction type encountered!");
1104     // Build the switch statement using the Instruction.def file.
1105 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1106     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1107 #include "llvm/IR/Instruction.def"
1108   }
1109 }
1110 
1111 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1112                                                 const DIExpression *Expr) {
1113   for (auto &DDIMI : DanglingDebugInfoMap)
1114     for (auto &DDI : DDIMI.second)
1115       if (DDI.getDI()) {
1116         const DbgValueInst *DI = DDI.getDI();
1117         DIVariable *DanglingVariable = DI->getVariable();
1118         DIExpression *DanglingExpr = DI->getExpression();
1119         if (DanglingVariable == Variable &&
1120             Expr->fragmentsOverlap(DanglingExpr)) {
1121           LLVM_DEBUG(dbgs()
1122                      << "Dropping dangling debug info for " << *DI << "\n");
1123           DDI = DanglingDebugInfo();
1124         }
1125       }
1126 }
1127 
1128 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1129 // generate the debug data structures now that we've seen its definition.
1130 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1131                                                    SDValue Val) {
1132   DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V];
1133   for (auto &DDI : DDIV) {
1134     if (!DDI.getDI())
1135       continue;
1136     const DbgValueInst *DI = DDI.getDI();
1137     DebugLoc dl = DDI.getdl();
1138     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1139     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1140     DILocalVariable *Variable = DI->getVariable();
1141     DIExpression *Expr = DI->getExpression();
1142     assert(Variable->isValidLocationForIntrinsic(dl) &&
1143            "Expected inlined-at fields to agree");
1144     SDDbgValue *SDV;
1145     if (Val.getNode()) {
1146       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1147         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1148                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1149         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1150         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1151         // inserted after the definition of Val when emitting the instructions
1152         // after ISel. An alternative could be to teach
1153         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1154         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1155                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1156                    << ValSDNodeOrder << "\n");
1157         SDV = getDbgValue(Val, Variable, Expr, dl,
1158                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1159         DAG.AddDbgValue(SDV, Val.getNode(), false);
1160       } else
1161         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1162                           << "in EmitFuncArgumentDbgValue\n");
1163     } else
1164       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1165   }
1166   DanglingDebugInfoMap[V].clear();
1167 }
1168 
1169 /// getCopyFromRegs - If there was virtual register allocated for the value V
1170 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1171 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1172   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1173   SDValue Result;
1174 
1175   if (It != FuncInfo.ValueMap.end()) {
1176     unsigned InReg = It->second;
1177 
1178     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1179                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1180     SDValue Chain = DAG.getEntryNode();
1181     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1182                                  V);
1183     resolveDanglingDebugInfo(V, Result);
1184   }
1185 
1186   return Result;
1187 }
1188 
1189 /// getValue - Return an SDValue for the given Value.
1190 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1191   // If we already have an SDValue for this value, use it. It's important
1192   // to do this first, so that we don't create a CopyFromReg if we already
1193   // have a regular SDValue.
1194   SDValue &N = NodeMap[V];
1195   if (N.getNode()) return N;
1196 
1197   // If there's a virtual register allocated and initialized for this
1198   // value, use it.
1199   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1200     return copyFromReg;
1201 
1202   // Otherwise create a new SDValue and remember it.
1203   SDValue Val = getValueImpl(V);
1204   NodeMap[V] = Val;
1205   resolveDanglingDebugInfo(V, Val);
1206   return Val;
1207 }
1208 
1209 // Return true if SDValue exists for the given Value
1210 bool SelectionDAGBuilder::findValue(const Value *V) const {
1211   return (NodeMap.find(V) != NodeMap.end()) ||
1212     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1213 }
1214 
1215 /// getNonRegisterValue - Return an SDValue for the given Value, but
1216 /// don't look in FuncInfo.ValueMap for a virtual register.
1217 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1218   // If we already have an SDValue for this value, use it.
1219   SDValue &N = NodeMap[V];
1220   if (N.getNode()) {
1221     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1222       // Remove the debug location from the node as the node is about to be used
1223       // in a location which may differ from the original debug location.  This
1224       // is relevant to Constant and ConstantFP nodes because they can appear
1225       // as constant expressions inside PHI nodes.
1226       N->setDebugLoc(DebugLoc());
1227     }
1228     return N;
1229   }
1230 
1231   // Otherwise create a new SDValue and remember it.
1232   SDValue Val = getValueImpl(V);
1233   NodeMap[V] = Val;
1234   resolveDanglingDebugInfo(V, Val);
1235   return Val;
1236 }
1237 
1238 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1239 /// Create an SDValue for the given value.
1240 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1241   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1242 
1243   if (const Constant *C = dyn_cast<Constant>(V)) {
1244     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1245 
1246     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1247       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1248 
1249     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1250       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1251 
1252     if (isa<ConstantPointerNull>(C)) {
1253       unsigned AS = V->getType()->getPointerAddressSpace();
1254       return DAG.getConstant(0, getCurSDLoc(),
1255                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1256     }
1257 
1258     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1259       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1260 
1261     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1262       return DAG.getUNDEF(VT);
1263 
1264     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1265       visit(CE->getOpcode(), *CE);
1266       SDValue N1 = NodeMap[V];
1267       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1268       return N1;
1269     }
1270 
1271     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1272       SmallVector<SDValue, 4> Constants;
1273       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1274            OI != OE; ++OI) {
1275         SDNode *Val = getValue(*OI).getNode();
1276         // If the operand is an empty aggregate, there are no values.
1277         if (!Val) continue;
1278         // Add each leaf value from the operand to the Constants list
1279         // to form a flattened list of all the values.
1280         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1281           Constants.push_back(SDValue(Val, i));
1282       }
1283 
1284       return DAG.getMergeValues(Constants, getCurSDLoc());
1285     }
1286 
1287     if (const ConstantDataSequential *CDS =
1288           dyn_cast<ConstantDataSequential>(C)) {
1289       SmallVector<SDValue, 4> Ops;
1290       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1291         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1292         // Add each leaf value from the operand to the Constants list
1293         // to form a flattened list of all the values.
1294         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1295           Ops.push_back(SDValue(Val, i));
1296       }
1297 
1298       if (isa<ArrayType>(CDS->getType()))
1299         return DAG.getMergeValues(Ops, getCurSDLoc());
1300       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1301     }
1302 
1303     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1304       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1305              "Unknown struct or array constant!");
1306 
1307       SmallVector<EVT, 4> ValueVTs;
1308       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1309       unsigned NumElts = ValueVTs.size();
1310       if (NumElts == 0)
1311         return SDValue(); // empty struct
1312       SmallVector<SDValue, 4> Constants(NumElts);
1313       for (unsigned i = 0; i != NumElts; ++i) {
1314         EVT EltVT = ValueVTs[i];
1315         if (isa<UndefValue>(C))
1316           Constants[i] = DAG.getUNDEF(EltVT);
1317         else if (EltVT.isFloatingPoint())
1318           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1319         else
1320           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1321       }
1322 
1323       return DAG.getMergeValues(Constants, getCurSDLoc());
1324     }
1325 
1326     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1327       return DAG.getBlockAddress(BA, VT);
1328 
1329     VectorType *VecTy = cast<VectorType>(V->getType());
1330     unsigned NumElements = VecTy->getNumElements();
1331 
1332     // Now that we know the number and type of the elements, get that number of
1333     // elements into the Ops array based on what kind of constant it is.
1334     SmallVector<SDValue, 16> Ops;
1335     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1336       for (unsigned i = 0; i != NumElements; ++i)
1337         Ops.push_back(getValue(CV->getOperand(i)));
1338     } else {
1339       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1340       EVT EltVT =
1341           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1342 
1343       SDValue Op;
1344       if (EltVT.isFloatingPoint())
1345         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1346       else
1347         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1348       Ops.assign(NumElements, Op);
1349     }
1350 
1351     // Create a BUILD_VECTOR node.
1352     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1353   }
1354 
1355   // If this is a static alloca, generate it as the frameindex instead of
1356   // computation.
1357   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1358     DenseMap<const AllocaInst*, int>::iterator SI =
1359       FuncInfo.StaticAllocaMap.find(AI);
1360     if (SI != FuncInfo.StaticAllocaMap.end())
1361       return DAG.getFrameIndex(SI->second,
1362                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1363   }
1364 
1365   // If this is an instruction which fast-isel has deferred, select it now.
1366   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1367     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1368 
1369     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1370                      Inst->getType(), isABIRegCopy(V));
1371     SDValue Chain = DAG.getEntryNode();
1372     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1373   }
1374 
1375   llvm_unreachable("Can't get register for value!");
1376 }
1377 
1378 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1379   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1380   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1381   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1382   bool IsSEH = isAsynchronousEHPersonality(Pers);
1383   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1384   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1385   if (!IsSEH)
1386     CatchPadMBB->setIsEHScopeEntry();
1387   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1388   if (IsMSVCCXX || IsCoreCLR)
1389     CatchPadMBB->setIsEHFuncletEntry();
1390   // Wasm does not need catchpads anymore
1391   if (!IsWasmCXX)
1392     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1393                             getControlRoot()));
1394 }
1395 
1396 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1397   // Update machine-CFG edge.
1398   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1399   FuncInfo.MBB->addSuccessor(TargetMBB);
1400 
1401   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1402   bool IsSEH = isAsynchronousEHPersonality(Pers);
1403   if (IsSEH) {
1404     // If this is not a fall-through branch or optimizations are switched off,
1405     // emit the branch.
1406     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1407         TM.getOptLevel() == CodeGenOpt::None)
1408       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1409                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1410     return;
1411   }
1412 
1413   // Figure out the funclet membership for the catchret's successor.
1414   // This will be used by the FuncletLayout pass to determine how to order the
1415   // BB's.
1416   // A 'catchret' returns to the outer scope's color.
1417   Value *ParentPad = I.getCatchSwitchParentPad();
1418   const BasicBlock *SuccessorColor;
1419   if (isa<ConstantTokenNone>(ParentPad))
1420     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1421   else
1422     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1423   assert(SuccessorColor && "No parent funclet for catchret!");
1424   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1425   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1426 
1427   // Create the terminator node.
1428   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1429                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1430                             DAG.getBasicBlock(SuccessorColorMBB));
1431   DAG.setRoot(Ret);
1432 }
1433 
1434 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1435   // Don't emit any special code for the cleanuppad instruction. It just marks
1436   // the start of an EH scope/funclet.
1437   FuncInfo.MBB->setIsEHScopeEntry();
1438   FuncInfo.MBB->setIsEHFuncletEntry();
1439   FuncInfo.MBB->setIsCleanupFuncletEntry();
1440 }
1441 
1442 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1443 /// many places it could ultimately go. In the IR, we have a single unwind
1444 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1445 /// This function skips over imaginary basic blocks that hold catchswitch
1446 /// instructions, and finds all the "real" machine
1447 /// basic block destinations. As those destinations may not be successors of
1448 /// EHPadBB, here we also calculate the edge probability to those destinations.
1449 /// The passed-in Prob is the edge probability to EHPadBB.
1450 static void findUnwindDestinations(
1451     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1452     BranchProbability Prob,
1453     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1454         &UnwindDests) {
1455   EHPersonality Personality =
1456     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1457   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1458   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1459   bool IsSEH = isAsynchronousEHPersonality(Personality);
1460 
1461   while (EHPadBB) {
1462     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1463     BasicBlock *NewEHPadBB = nullptr;
1464     if (isa<LandingPadInst>(Pad)) {
1465       // Stop on landingpads. They are not funclets.
1466       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1467       break;
1468     } else if (isa<CleanupPadInst>(Pad)) {
1469       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1470       // personalities.
1471       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1472       UnwindDests.back().first->setIsEHScopeEntry();
1473       UnwindDests.back().first->setIsEHFuncletEntry();
1474       break;
1475     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1476       // Add the catchpad handlers to the possible destinations.
1477       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1478         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1479         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1480         if (IsMSVCCXX || IsCoreCLR)
1481           UnwindDests.back().first->setIsEHFuncletEntry();
1482         if (!IsSEH)
1483           UnwindDests.back().first->setIsEHScopeEntry();
1484       }
1485       NewEHPadBB = CatchSwitch->getUnwindDest();
1486     } else {
1487       continue;
1488     }
1489 
1490     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1491     if (BPI && NewEHPadBB)
1492       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1493     EHPadBB = NewEHPadBB;
1494   }
1495 }
1496 
1497 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1498   // Update successor info.
1499   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1500   auto UnwindDest = I.getUnwindDest();
1501   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1502   BranchProbability UnwindDestProb =
1503       (BPI && UnwindDest)
1504           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1505           : BranchProbability::getZero();
1506   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1507   for (auto &UnwindDest : UnwindDests) {
1508     UnwindDest.first->setIsEHPad();
1509     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1510   }
1511   FuncInfo.MBB->normalizeSuccProbs();
1512 
1513   // Create the terminator node.
1514   SDValue Ret =
1515       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1516   DAG.setRoot(Ret);
1517 }
1518 
1519 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1520   report_fatal_error("visitCatchSwitch not yet implemented!");
1521 }
1522 
1523 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1525   auto &DL = DAG.getDataLayout();
1526   SDValue Chain = getControlRoot();
1527   SmallVector<ISD::OutputArg, 8> Outs;
1528   SmallVector<SDValue, 8> OutVals;
1529 
1530   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1531   // lower
1532   //
1533   //   %val = call <ty> @llvm.experimental.deoptimize()
1534   //   ret <ty> %val
1535   //
1536   // differently.
1537   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1538     LowerDeoptimizingReturn();
1539     return;
1540   }
1541 
1542   if (!FuncInfo.CanLowerReturn) {
1543     unsigned DemoteReg = FuncInfo.DemoteRegister;
1544     const Function *F = I.getParent()->getParent();
1545 
1546     // Emit a store of the return value through the virtual register.
1547     // Leave Outs empty so that LowerReturn won't try to load return
1548     // registers the usual way.
1549     SmallVector<EVT, 1> PtrValueVTs;
1550     ComputeValueVTs(TLI, DL,
1551                     F->getReturnType()->getPointerTo(
1552                         DAG.getDataLayout().getAllocaAddrSpace()),
1553                     PtrValueVTs);
1554 
1555     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1556                                         DemoteReg, PtrValueVTs[0]);
1557     SDValue RetOp = getValue(I.getOperand(0));
1558 
1559     SmallVector<EVT, 4> ValueVTs;
1560     SmallVector<uint64_t, 4> Offsets;
1561     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1562     unsigned NumValues = ValueVTs.size();
1563 
1564     SmallVector<SDValue, 4> Chains(NumValues);
1565     for (unsigned i = 0; i != NumValues; ++i) {
1566       // An aggregate return value cannot wrap around the address space, so
1567       // offsets to its parts don't wrap either.
1568       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1569       Chains[i] = DAG.getStore(
1570           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1571           // FIXME: better loc info would be nice.
1572           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1573     }
1574 
1575     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1576                         MVT::Other, Chains);
1577   } else if (I.getNumOperands() != 0) {
1578     SmallVector<EVT, 4> ValueVTs;
1579     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1580     unsigned NumValues = ValueVTs.size();
1581     if (NumValues) {
1582       SDValue RetOp = getValue(I.getOperand(0));
1583 
1584       const Function *F = I.getParent()->getParent();
1585 
1586       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1587       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1588                                           Attribute::SExt))
1589         ExtendKind = ISD::SIGN_EXTEND;
1590       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1591                                                Attribute::ZExt))
1592         ExtendKind = ISD::ZERO_EXTEND;
1593 
1594       LLVMContext &Context = F->getContext();
1595       bool RetInReg = F->getAttributes().hasAttribute(
1596           AttributeList::ReturnIndex, Attribute::InReg);
1597 
1598       for (unsigned j = 0; j != NumValues; ++j) {
1599         EVT VT = ValueVTs[j];
1600 
1601         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1602           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1603 
1604         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1605         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1606         SmallVector<SDValue, 4> Parts(NumParts);
1607         getCopyToParts(DAG, getCurSDLoc(),
1608                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1609                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1610 
1611         // 'inreg' on function refers to return value
1612         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1613         if (RetInReg)
1614           Flags.setInReg();
1615 
1616         // Propagate extension type if any
1617         if (ExtendKind == ISD::SIGN_EXTEND)
1618           Flags.setSExt();
1619         else if (ExtendKind == ISD::ZERO_EXTEND)
1620           Flags.setZExt();
1621 
1622         for (unsigned i = 0; i < NumParts; ++i) {
1623           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1624                                         VT, /*isfixed=*/true, 0, 0));
1625           OutVals.push_back(Parts[i]);
1626         }
1627       }
1628     }
1629   }
1630 
1631   // Push in swifterror virtual register as the last element of Outs. This makes
1632   // sure swifterror virtual register will be returned in the swifterror
1633   // physical register.
1634   const Function *F = I.getParent()->getParent();
1635   if (TLI.supportSwiftError() &&
1636       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1637     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1638     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1639     Flags.setSwiftError();
1640     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1641                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1642                                   true /*isfixed*/, 1 /*origidx*/,
1643                                   0 /*partOffs*/));
1644     // Create SDNode for the swifterror virtual register.
1645     OutVals.push_back(
1646         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1647                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1648                         EVT(TLI.getPointerTy(DL))));
1649   }
1650 
1651   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1652   CallingConv::ID CallConv =
1653     DAG.getMachineFunction().getFunction().getCallingConv();
1654   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1655       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1656 
1657   // Verify that the target's LowerReturn behaved as expected.
1658   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1659          "LowerReturn didn't return a valid chain!");
1660 
1661   // Update the DAG with the new chain value resulting from return lowering.
1662   DAG.setRoot(Chain);
1663 }
1664 
1665 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1666 /// created for it, emit nodes to copy the value into the virtual
1667 /// registers.
1668 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1669   // Skip empty types
1670   if (V->getType()->isEmptyTy())
1671     return;
1672 
1673   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1674   if (VMI != FuncInfo.ValueMap.end()) {
1675     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1676     CopyValueToVirtualRegister(V, VMI->second);
1677   }
1678 }
1679 
1680 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1681 /// the current basic block, add it to ValueMap now so that we'll get a
1682 /// CopyTo/FromReg.
1683 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1684   // No need to export constants.
1685   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1686 
1687   // Already exported?
1688   if (FuncInfo.isExportedInst(V)) return;
1689 
1690   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1691   CopyValueToVirtualRegister(V, Reg);
1692 }
1693 
1694 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1695                                                      const BasicBlock *FromBB) {
1696   // The operands of the setcc have to be in this block.  We don't know
1697   // how to export them from some other block.
1698   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1699     // Can export from current BB.
1700     if (VI->getParent() == FromBB)
1701       return true;
1702 
1703     // Is already exported, noop.
1704     return FuncInfo.isExportedInst(V);
1705   }
1706 
1707   // If this is an argument, we can export it if the BB is the entry block or
1708   // if it is already exported.
1709   if (isa<Argument>(V)) {
1710     if (FromBB == &FromBB->getParent()->getEntryBlock())
1711       return true;
1712 
1713     // Otherwise, can only export this if it is already exported.
1714     return FuncInfo.isExportedInst(V);
1715   }
1716 
1717   // Otherwise, constants can always be exported.
1718   return true;
1719 }
1720 
1721 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1722 BranchProbability
1723 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1724                                         const MachineBasicBlock *Dst) const {
1725   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1726   const BasicBlock *SrcBB = Src->getBasicBlock();
1727   const BasicBlock *DstBB = Dst->getBasicBlock();
1728   if (!BPI) {
1729     // If BPI is not available, set the default probability as 1 / N, where N is
1730     // the number of successors.
1731     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1732     return BranchProbability(1, SuccSize);
1733   }
1734   return BPI->getEdgeProbability(SrcBB, DstBB);
1735 }
1736 
1737 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1738                                                MachineBasicBlock *Dst,
1739                                                BranchProbability Prob) {
1740   if (!FuncInfo.BPI)
1741     Src->addSuccessorWithoutProb(Dst);
1742   else {
1743     if (Prob.isUnknown())
1744       Prob = getEdgeProbability(Src, Dst);
1745     Src->addSuccessor(Dst, Prob);
1746   }
1747 }
1748 
1749 static bool InBlock(const Value *V, const BasicBlock *BB) {
1750   if (const Instruction *I = dyn_cast<Instruction>(V))
1751     return I->getParent() == BB;
1752   return true;
1753 }
1754 
1755 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1756 /// This function emits a branch and is used at the leaves of an OR or an
1757 /// AND operator tree.
1758 void
1759 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1760                                                   MachineBasicBlock *TBB,
1761                                                   MachineBasicBlock *FBB,
1762                                                   MachineBasicBlock *CurBB,
1763                                                   MachineBasicBlock *SwitchBB,
1764                                                   BranchProbability TProb,
1765                                                   BranchProbability FProb,
1766                                                   bool InvertCond) {
1767   const BasicBlock *BB = CurBB->getBasicBlock();
1768 
1769   // If the leaf of the tree is a comparison, merge the condition into
1770   // the caseblock.
1771   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1772     // The operands of the cmp have to be in this block.  We don't know
1773     // how to export them from some other block.  If this is the first block
1774     // of the sequence, no exporting is needed.
1775     if (CurBB == SwitchBB ||
1776         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1777          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1778       ISD::CondCode Condition;
1779       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1780         ICmpInst::Predicate Pred =
1781             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1782         Condition = getICmpCondCode(Pred);
1783       } else {
1784         const FCmpInst *FC = cast<FCmpInst>(Cond);
1785         FCmpInst::Predicate Pred =
1786             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1787         Condition = getFCmpCondCode(Pred);
1788         if (TM.Options.NoNaNsFPMath)
1789           Condition = getFCmpCodeWithoutNaN(Condition);
1790       }
1791 
1792       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1793                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1794       SwitchCases.push_back(CB);
1795       return;
1796     }
1797   }
1798 
1799   // Create a CaseBlock record representing this branch.
1800   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1801   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1802                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1803   SwitchCases.push_back(CB);
1804 }
1805 
1806 /// FindMergedConditions - If Cond is an expression like
1807 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1808                                                MachineBasicBlock *TBB,
1809                                                MachineBasicBlock *FBB,
1810                                                MachineBasicBlock *CurBB,
1811                                                MachineBasicBlock *SwitchBB,
1812                                                Instruction::BinaryOps Opc,
1813                                                BranchProbability TProb,
1814                                                BranchProbability FProb,
1815                                                bool InvertCond) {
1816   // Skip over not part of the tree and remember to invert op and operands at
1817   // next level.
1818   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1819     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1820     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1821       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1822                            !InvertCond);
1823       return;
1824     }
1825   }
1826 
1827   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1828   // Compute the effective opcode for Cond, taking into account whether it needs
1829   // to be inverted, e.g.
1830   //   and (not (or A, B)), C
1831   // gets lowered as
1832   //   and (and (not A, not B), C)
1833   unsigned BOpc = 0;
1834   if (BOp) {
1835     BOpc = BOp->getOpcode();
1836     if (InvertCond) {
1837       if (BOpc == Instruction::And)
1838         BOpc = Instruction::Or;
1839       else if (BOpc == Instruction::Or)
1840         BOpc = Instruction::And;
1841     }
1842   }
1843 
1844   // If this node is not part of the or/and tree, emit it as a branch.
1845   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1846       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1847       BOp->getParent() != CurBB->getBasicBlock() ||
1848       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1849       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1850     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1851                                  TProb, FProb, InvertCond);
1852     return;
1853   }
1854 
1855   //  Create TmpBB after CurBB.
1856   MachineFunction::iterator BBI(CurBB);
1857   MachineFunction &MF = DAG.getMachineFunction();
1858   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1859   CurBB->getParent()->insert(++BBI, TmpBB);
1860 
1861   if (Opc == Instruction::Or) {
1862     // Codegen X | Y as:
1863     // BB1:
1864     //   jmp_if_X TBB
1865     //   jmp TmpBB
1866     // TmpBB:
1867     //   jmp_if_Y TBB
1868     //   jmp FBB
1869     //
1870 
1871     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1872     // The requirement is that
1873     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1874     //     = TrueProb for original BB.
1875     // Assuming the original probabilities are A and B, one choice is to set
1876     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1877     // A/(1+B) and 2B/(1+B). This choice assumes that
1878     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1879     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1880     // TmpBB, but the math is more complicated.
1881 
1882     auto NewTrueProb = TProb / 2;
1883     auto NewFalseProb = TProb / 2 + FProb;
1884     // Emit the LHS condition.
1885     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1886                          NewTrueProb, NewFalseProb, InvertCond);
1887 
1888     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1889     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1890     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1891     // Emit the RHS condition into TmpBB.
1892     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1893                          Probs[0], Probs[1], InvertCond);
1894   } else {
1895     assert(Opc == Instruction::And && "Unknown merge op!");
1896     // Codegen X & Y as:
1897     // BB1:
1898     //   jmp_if_X TmpBB
1899     //   jmp FBB
1900     // TmpBB:
1901     //   jmp_if_Y TBB
1902     //   jmp FBB
1903     //
1904     //  This requires creation of TmpBB after CurBB.
1905 
1906     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1907     // The requirement is that
1908     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1909     //     = FalseProb for original BB.
1910     // Assuming the original probabilities are A and B, one choice is to set
1911     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1912     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1913     // TrueProb for BB1 * FalseProb for TmpBB.
1914 
1915     auto NewTrueProb = TProb + FProb / 2;
1916     auto NewFalseProb = FProb / 2;
1917     // Emit the LHS condition.
1918     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1919                          NewTrueProb, NewFalseProb, InvertCond);
1920 
1921     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1922     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1923     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1924     // Emit the RHS condition into TmpBB.
1925     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1926                          Probs[0], Probs[1], InvertCond);
1927   }
1928 }
1929 
1930 /// If the set of cases should be emitted as a series of branches, return true.
1931 /// If we should emit this as a bunch of and/or'd together conditions, return
1932 /// false.
1933 bool
1934 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1935   if (Cases.size() != 2) return true;
1936 
1937   // If this is two comparisons of the same values or'd or and'd together, they
1938   // will get folded into a single comparison, so don't emit two blocks.
1939   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1940        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1941       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1942        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1943     return false;
1944   }
1945 
1946   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1947   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1948   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1949       Cases[0].CC == Cases[1].CC &&
1950       isa<Constant>(Cases[0].CmpRHS) &&
1951       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1952     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1953       return false;
1954     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1955       return false;
1956   }
1957 
1958   return true;
1959 }
1960 
1961 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1962   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1963 
1964   // Update machine-CFG edges.
1965   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1966 
1967   if (I.isUnconditional()) {
1968     // Update machine-CFG edges.
1969     BrMBB->addSuccessor(Succ0MBB);
1970 
1971     // If this is not a fall-through branch or optimizations are switched off,
1972     // emit the branch.
1973     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1974       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1975                               MVT::Other, getControlRoot(),
1976                               DAG.getBasicBlock(Succ0MBB)));
1977 
1978     return;
1979   }
1980 
1981   // If this condition is one of the special cases we handle, do special stuff
1982   // now.
1983   const Value *CondVal = I.getCondition();
1984   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1985 
1986   // If this is a series of conditions that are or'd or and'd together, emit
1987   // this as a sequence of branches instead of setcc's with and/or operations.
1988   // As long as jumps are not expensive, this should improve performance.
1989   // For example, instead of something like:
1990   //     cmp A, B
1991   //     C = seteq
1992   //     cmp D, E
1993   //     F = setle
1994   //     or C, F
1995   //     jnz foo
1996   // Emit:
1997   //     cmp A, B
1998   //     je foo
1999   //     cmp D, E
2000   //     jle foo
2001   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2002     Instruction::BinaryOps Opcode = BOp->getOpcode();
2003     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2004         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2005         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2006       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2007                            Opcode,
2008                            getEdgeProbability(BrMBB, Succ0MBB),
2009                            getEdgeProbability(BrMBB, Succ1MBB),
2010                            /*InvertCond=*/false);
2011       // If the compares in later blocks need to use values not currently
2012       // exported from this block, export them now.  This block should always
2013       // be the first entry.
2014       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2015 
2016       // Allow some cases to be rejected.
2017       if (ShouldEmitAsBranches(SwitchCases)) {
2018         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2019           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2020           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2021         }
2022 
2023         // Emit the branch for this block.
2024         visitSwitchCase(SwitchCases[0], BrMBB);
2025         SwitchCases.erase(SwitchCases.begin());
2026         return;
2027       }
2028 
2029       // Okay, we decided not to do this, remove any inserted MBB's and clear
2030       // SwitchCases.
2031       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2032         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2033 
2034       SwitchCases.clear();
2035     }
2036   }
2037 
2038   // Create a CaseBlock record representing this branch.
2039   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2040                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2041 
2042   // Use visitSwitchCase to actually insert the fast branch sequence for this
2043   // cond branch.
2044   visitSwitchCase(CB, BrMBB);
2045 }
2046 
2047 /// visitSwitchCase - Emits the necessary code to represent a single node in
2048 /// the binary search tree resulting from lowering a switch instruction.
2049 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2050                                           MachineBasicBlock *SwitchBB) {
2051   SDValue Cond;
2052   SDValue CondLHS = getValue(CB.CmpLHS);
2053   SDLoc dl = CB.DL;
2054 
2055   // Build the setcc now.
2056   if (!CB.CmpMHS) {
2057     // Fold "(X == true)" to X and "(X == false)" to !X to
2058     // handle common cases produced by branch lowering.
2059     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2060         CB.CC == ISD::SETEQ)
2061       Cond = CondLHS;
2062     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2063              CB.CC == ISD::SETEQ) {
2064       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2065       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2066     } else
2067       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2068   } else {
2069     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2070 
2071     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2072     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2073 
2074     SDValue CmpOp = getValue(CB.CmpMHS);
2075     EVT VT = CmpOp.getValueType();
2076 
2077     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2078       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2079                           ISD::SETLE);
2080     } else {
2081       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2082                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2083       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2084                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2085     }
2086   }
2087 
2088   // Update successor info
2089   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2090   // TrueBB and FalseBB are always different unless the incoming IR is
2091   // degenerate. This only happens when running llc on weird IR.
2092   if (CB.TrueBB != CB.FalseBB)
2093     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2094   SwitchBB->normalizeSuccProbs();
2095 
2096   // If the lhs block is the next block, invert the condition so that we can
2097   // fall through to the lhs instead of the rhs block.
2098   if (CB.TrueBB == NextBlock(SwitchBB)) {
2099     std::swap(CB.TrueBB, CB.FalseBB);
2100     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2101     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2102   }
2103 
2104   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2105                                MVT::Other, getControlRoot(), Cond,
2106                                DAG.getBasicBlock(CB.TrueBB));
2107 
2108   // Insert the false branch. Do this even if it's a fall through branch,
2109   // this makes it easier to do DAG optimizations which require inverting
2110   // the branch condition.
2111   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2112                        DAG.getBasicBlock(CB.FalseBB));
2113 
2114   DAG.setRoot(BrCond);
2115 }
2116 
2117 /// visitJumpTable - Emit JumpTable node in the current MBB
2118 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2119   // Emit the code for the jump table
2120   assert(JT.Reg != -1U && "Should lower JT Header first!");
2121   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2122   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2123                                      JT.Reg, PTy);
2124   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2125   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2126                                     MVT::Other, Index.getValue(1),
2127                                     Table, Index);
2128   DAG.setRoot(BrJumpTable);
2129 }
2130 
2131 /// visitJumpTableHeader - This function emits necessary code to produce index
2132 /// in the JumpTable from switch case.
2133 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2134                                                JumpTableHeader &JTH,
2135                                                MachineBasicBlock *SwitchBB) {
2136   SDLoc dl = getCurSDLoc();
2137 
2138   // Subtract the lowest switch case value from the value being switched on and
2139   // conditional branch to default mbb if the result is greater than the
2140   // difference between smallest and largest cases.
2141   SDValue SwitchOp = getValue(JTH.SValue);
2142   EVT VT = SwitchOp.getValueType();
2143   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2144                             DAG.getConstant(JTH.First, dl, VT));
2145 
2146   // The SDNode we just created, which holds the value being switched on minus
2147   // the smallest case value, needs to be copied to a virtual register so it
2148   // can be used as an index into the jump table in a subsequent basic block.
2149   // This value may be smaller or larger than the target's pointer type, and
2150   // therefore require extension or truncating.
2151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2152   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2153 
2154   unsigned JumpTableReg =
2155       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2156   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2157                                     JumpTableReg, SwitchOp);
2158   JT.Reg = JumpTableReg;
2159 
2160   // Emit the range check for the jump table, and branch to the default block
2161   // for the switch statement if the value being switched on exceeds the largest
2162   // case in the switch.
2163   SDValue CMP = DAG.getSetCC(
2164       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2165                                  Sub.getValueType()),
2166       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2167 
2168   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2169                                MVT::Other, CopyTo, CMP,
2170                                DAG.getBasicBlock(JT.Default));
2171 
2172   // Avoid emitting unnecessary branches to the next block.
2173   if (JT.MBB != NextBlock(SwitchBB))
2174     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2175                          DAG.getBasicBlock(JT.MBB));
2176 
2177   DAG.setRoot(BrCond);
2178 }
2179 
2180 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2181 /// variable if there exists one.
2182 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2183                                  SDValue &Chain) {
2184   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2185   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2186   MachineFunction &MF = DAG.getMachineFunction();
2187   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2188   MachineSDNode *Node =
2189       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2190   if (Global) {
2191     MachinePointerInfo MPInfo(Global);
2192     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2193     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2194                  MachineMemOperand::MODereferenceable;
2195     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2196                                        DAG.getEVTAlignment(PtrTy));
2197     Node->setMemRefs(MemRefs, MemRefs + 1);
2198   }
2199   return SDValue(Node, 0);
2200 }
2201 
2202 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2203 /// tail spliced into a stack protector check success bb.
2204 ///
2205 /// For a high level explanation of how this fits into the stack protector
2206 /// generation see the comment on the declaration of class
2207 /// StackProtectorDescriptor.
2208 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2209                                                   MachineBasicBlock *ParentBB) {
2210 
2211   // First create the loads to the guard/stack slot for the comparison.
2212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2213   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2214 
2215   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2216   int FI = MFI.getStackProtectorIndex();
2217 
2218   SDValue Guard;
2219   SDLoc dl = getCurSDLoc();
2220   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2221   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2222   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2223 
2224   // Generate code to load the content of the guard slot.
2225   SDValue GuardVal = DAG.getLoad(
2226       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2227       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2228       MachineMemOperand::MOVolatile);
2229 
2230   if (TLI.useStackGuardXorFP())
2231     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2232 
2233   // Retrieve guard check function, nullptr if instrumentation is inlined.
2234   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2235     // The target provides a guard check function to validate the guard value.
2236     // Generate a call to that function with the content of the guard slot as
2237     // argument.
2238     auto *Fn = cast<Function>(GuardCheck);
2239     FunctionType *FnTy = Fn->getFunctionType();
2240     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2241 
2242     TargetLowering::ArgListTy Args;
2243     TargetLowering::ArgListEntry Entry;
2244     Entry.Node = GuardVal;
2245     Entry.Ty = FnTy->getParamType(0);
2246     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2247       Entry.IsInReg = true;
2248     Args.push_back(Entry);
2249 
2250     TargetLowering::CallLoweringInfo CLI(DAG);
2251     CLI.setDebugLoc(getCurSDLoc())
2252       .setChain(DAG.getEntryNode())
2253       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2254                  getValue(GuardCheck), std::move(Args));
2255 
2256     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2257     DAG.setRoot(Result.second);
2258     return;
2259   }
2260 
2261   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2262   // Otherwise, emit a volatile load to retrieve the stack guard value.
2263   SDValue Chain = DAG.getEntryNode();
2264   if (TLI.useLoadStackGuardNode()) {
2265     Guard = getLoadStackGuard(DAG, dl, Chain);
2266   } else {
2267     const Value *IRGuard = TLI.getSDagStackGuard(M);
2268     SDValue GuardPtr = getValue(IRGuard);
2269 
2270     Guard =
2271         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2272                     Align, MachineMemOperand::MOVolatile);
2273   }
2274 
2275   // Perform the comparison via a subtract/getsetcc.
2276   EVT VT = Guard.getValueType();
2277   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2278 
2279   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2280                                                         *DAG.getContext(),
2281                                                         Sub.getValueType()),
2282                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2283 
2284   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2285   // branch to failure MBB.
2286   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2287                                MVT::Other, GuardVal.getOperand(0),
2288                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2289   // Otherwise branch to success MBB.
2290   SDValue Br = DAG.getNode(ISD::BR, dl,
2291                            MVT::Other, BrCond,
2292                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2293 
2294   DAG.setRoot(Br);
2295 }
2296 
2297 /// Codegen the failure basic block for a stack protector check.
2298 ///
2299 /// A failure stack protector machine basic block consists simply of a call to
2300 /// __stack_chk_fail().
2301 ///
2302 /// For a high level explanation of how this fits into the stack protector
2303 /// generation see the comment on the declaration of class
2304 /// StackProtectorDescriptor.
2305 void
2306 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2308   SDValue Chain =
2309       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2310                       None, false, getCurSDLoc(), false, false).second;
2311   DAG.setRoot(Chain);
2312 }
2313 
2314 /// visitBitTestHeader - This function emits necessary code to produce value
2315 /// suitable for "bit tests"
2316 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2317                                              MachineBasicBlock *SwitchBB) {
2318   SDLoc dl = getCurSDLoc();
2319 
2320   // Subtract the minimum value
2321   SDValue SwitchOp = getValue(B.SValue);
2322   EVT VT = SwitchOp.getValueType();
2323   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2324                             DAG.getConstant(B.First, dl, VT));
2325 
2326   // Check range
2327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2328   SDValue RangeCmp = DAG.getSetCC(
2329       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2330                                  Sub.getValueType()),
2331       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2332 
2333   // Determine the type of the test operands.
2334   bool UsePtrType = false;
2335   if (!TLI.isTypeLegal(VT))
2336     UsePtrType = true;
2337   else {
2338     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2339       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2340         // Switch table case range are encoded into series of masks.
2341         // Just use pointer type, it's guaranteed to fit.
2342         UsePtrType = true;
2343         break;
2344       }
2345   }
2346   if (UsePtrType) {
2347     VT = TLI.getPointerTy(DAG.getDataLayout());
2348     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2349   }
2350 
2351   B.RegVT = VT.getSimpleVT();
2352   B.Reg = FuncInfo.CreateReg(B.RegVT);
2353   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2354 
2355   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2356 
2357   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2358   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2359   SwitchBB->normalizeSuccProbs();
2360 
2361   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2362                                 MVT::Other, CopyTo, RangeCmp,
2363                                 DAG.getBasicBlock(B.Default));
2364 
2365   // Avoid emitting unnecessary branches to the next block.
2366   if (MBB != NextBlock(SwitchBB))
2367     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2368                           DAG.getBasicBlock(MBB));
2369 
2370   DAG.setRoot(BrRange);
2371 }
2372 
2373 /// visitBitTestCase - this function produces one "bit test"
2374 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2375                                            MachineBasicBlock* NextMBB,
2376                                            BranchProbability BranchProbToNext,
2377                                            unsigned Reg,
2378                                            BitTestCase &B,
2379                                            MachineBasicBlock *SwitchBB) {
2380   SDLoc dl = getCurSDLoc();
2381   MVT VT = BB.RegVT;
2382   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2383   SDValue Cmp;
2384   unsigned PopCount = countPopulation(B.Mask);
2385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2386   if (PopCount == 1) {
2387     // Testing for a single bit; just compare the shift count with what it
2388     // would need to be to shift a 1 bit in that position.
2389     Cmp = DAG.getSetCC(
2390         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2391         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2392         ISD::SETEQ);
2393   } else if (PopCount == BB.Range) {
2394     // There is only one zero bit in the range, test for it directly.
2395     Cmp = DAG.getSetCC(
2396         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2397         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2398         ISD::SETNE);
2399   } else {
2400     // Make desired shift
2401     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2402                                     DAG.getConstant(1, dl, VT), ShiftOp);
2403 
2404     // Emit bit tests and jumps
2405     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2406                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2407     Cmp = DAG.getSetCC(
2408         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2409         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2410   }
2411 
2412   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2413   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2414   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2415   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2416   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2417   // one as they are relative probabilities (and thus work more like weights),
2418   // and hence we need to normalize them to let the sum of them become one.
2419   SwitchBB->normalizeSuccProbs();
2420 
2421   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2422                               MVT::Other, getControlRoot(),
2423                               Cmp, DAG.getBasicBlock(B.TargetBB));
2424 
2425   // Avoid emitting unnecessary branches to the next block.
2426   if (NextMBB != NextBlock(SwitchBB))
2427     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2428                         DAG.getBasicBlock(NextMBB));
2429 
2430   DAG.setRoot(BrAnd);
2431 }
2432 
2433 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2434   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2435 
2436   // Retrieve successors. Look through artificial IR level blocks like
2437   // catchswitch for successors.
2438   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2439   const BasicBlock *EHPadBB = I.getSuccessor(1);
2440 
2441   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2442   // have to do anything here to lower funclet bundles.
2443   assert(!I.hasOperandBundlesOtherThan(
2444              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2445          "Cannot lower invokes with arbitrary operand bundles yet!");
2446 
2447   const Value *Callee(I.getCalledValue());
2448   const Function *Fn = dyn_cast<Function>(Callee);
2449   if (isa<InlineAsm>(Callee))
2450     visitInlineAsm(&I);
2451   else if (Fn && Fn->isIntrinsic()) {
2452     switch (Fn->getIntrinsicID()) {
2453     default:
2454       llvm_unreachable("Cannot invoke this intrinsic");
2455     case Intrinsic::donothing:
2456       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2457       break;
2458     case Intrinsic::experimental_patchpoint_void:
2459     case Intrinsic::experimental_patchpoint_i64:
2460       visitPatchpoint(&I, EHPadBB);
2461       break;
2462     case Intrinsic::experimental_gc_statepoint:
2463       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2464       break;
2465     }
2466   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2467     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2468     // Eventually we will support lowering the @llvm.experimental.deoptimize
2469     // intrinsic, and right now there are no plans to support other intrinsics
2470     // with deopt state.
2471     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2472   } else {
2473     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2474   }
2475 
2476   // If the value of the invoke is used outside of its defining block, make it
2477   // available as a virtual register.
2478   // We already took care of the exported value for the statepoint instruction
2479   // during call to the LowerStatepoint.
2480   if (!isStatepoint(I)) {
2481     CopyToExportRegsIfNeeded(&I);
2482   }
2483 
2484   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2485   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2486   BranchProbability EHPadBBProb =
2487       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2488           : BranchProbability::getZero();
2489   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2490 
2491   // Update successor info.
2492   addSuccessorWithProb(InvokeMBB, Return);
2493   for (auto &UnwindDest : UnwindDests) {
2494     UnwindDest.first->setIsEHPad();
2495     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2496   }
2497   InvokeMBB->normalizeSuccProbs();
2498 
2499   // Drop into normal successor.
2500   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2501                           MVT::Other, getControlRoot(),
2502                           DAG.getBasicBlock(Return)));
2503 }
2504 
2505 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2506   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2507 }
2508 
2509 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2510   assert(FuncInfo.MBB->isEHPad() &&
2511          "Call to landingpad not in landing pad!");
2512 
2513   MachineBasicBlock *MBB = FuncInfo.MBB;
2514   addLandingPadInfo(LP, *MBB);
2515 
2516   // If there aren't registers to copy the values into (e.g., during SjLj
2517   // exceptions), then don't bother to create these DAG nodes.
2518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2519   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2520   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2521       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2522     return;
2523 
2524   // If landingpad's return type is token type, we don't create DAG nodes
2525   // for its exception pointer and selector value. The extraction of exception
2526   // pointer or selector value from token type landingpads is not currently
2527   // supported.
2528   if (LP.getType()->isTokenTy())
2529     return;
2530 
2531   SmallVector<EVT, 2> ValueVTs;
2532   SDLoc dl = getCurSDLoc();
2533   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2534   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2535 
2536   // Get the two live-in registers as SDValues. The physregs have already been
2537   // copied into virtual registers.
2538   SDValue Ops[2];
2539   if (FuncInfo.ExceptionPointerVirtReg) {
2540     Ops[0] = DAG.getZExtOrTrunc(
2541         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2542                            FuncInfo.ExceptionPointerVirtReg,
2543                            TLI.getPointerTy(DAG.getDataLayout())),
2544         dl, ValueVTs[0]);
2545   } else {
2546     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2547   }
2548   Ops[1] = DAG.getZExtOrTrunc(
2549       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2550                          FuncInfo.ExceptionSelectorVirtReg,
2551                          TLI.getPointerTy(DAG.getDataLayout())),
2552       dl, ValueVTs[1]);
2553 
2554   // Merge into one.
2555   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2556                             DAG.getVTList(ValueVTs), Ops);
2557   setValue(&LP, Res);
2558 }
2559 
2560 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2561 #ifndef NDEBUG
2562   for (const CaseCluster &CC : Clusters)
2563     assert(CC.Low == CC.High && "Input clusters must be single-case");
2564 #endif
2565 
2566   llvm::sort(Clusters.begin(), Clusters.end(),
2567              [](const CaseCluster &a, const CaseCluster &b) {
2568     return a.Low->getValue().slt(b.Low->getValue());
2569   });
2570 
2571   // Merge adjacent clusters with the same destination.
2572   const unsigned N = Clusters.size();
2573   unsigned DstIndex = 0;
2574   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2575     CaseCluster &CC = Clusters[SrcIndex];
2576     const ConstantInt *CaseVal = CC.Low;
2577     MachineBasicBlock *Succ = CC.MBB;
2578 
2579     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2580         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2581       // If this case has the same successor and is a neighbour, merge it into
2582       // the previous cluster.
2583       Clusters[DstIndex - 1].High = CaseVal;
2584       Clusters[DstIndex - 1].Prob += CC.Prob;
2585     } else {
2586       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2587                    sizeof(Clusters[SrcIndex]));
2588     }
2589   }
2590   Clusters.resize(DstIndex);
2591 }
2592 
2593 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2594                                            MachineBasicBlock *Last) {
2595   // Update JTCases.
2596   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2597     if (JTCases[i].first.HeaderBB == First)
2598       JTCases[i].first.HeaderBB = Last;
2599 
2600   // Update BitTestCases.
2601   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2602     if (BitTestCases[i].Parent == First)
2603       BitTestCases[i].Parent = Last;
2604 }
2605 
2606 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2607   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2608 
2609   // Update machine-CFG edges with unique successors.
2610   SmallSet<BasicBlock*, 32> Done;
2611   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2612     BasicBlock *BB = I.getSuccessor(i);
2613     bool Inserted = Done.insert(BB).second;
2614     if (!Inserted)
2615         continue;
2616 
2617     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2618     addSuccessorWithProb(IndirectBrMBB, Succ);
2619   }
2620   IndirectBrMBB->normalizeSuccProbs();
2621 
2622   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2623                           MVT::Other, getControlRoot(),
2624                           getValue(I.getAddress())));
2625 }
2626 
2627 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2628   if (DAG.getTarget().Options.TrapUnreachable)
2629     DAG.setRoot(
2630         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2631 }
2632 
2633 void SelectionDAGBuilder::visitFSub(const User &I) {
2634   // -0.0 - X --> fneg
2635   Type *Ty = I.getType();
2636   if (isa<Constant>(I.getOperand(0)) &&
2637       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2638     SDValue Op2 = getValue(I.getOperand(1));
2639     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2640                              Op2.getValueType(), Op2));
2641     return;
2642   }
2643 
2644   visitBinary(I, ISD::FSUB);
2645 }
2646 
2647 /// Checks if the given instruction performs a vector reduction, in which case
2648 /// we have the freedom to alter the elements in the result as long as the
2649 /// reduction of them stays unchanged.
2650 static bool isVectorReductionOp(const User *I) {
2651   const Instruction *Inst = dyn_cast<Instruction>(I);
2652   if (!Inst || !Inst->getType()->isVectorTy())
2653     return false;
2654 
2655   auto OpCode = Inst->getOpcode();
2656   switch (OpCode) {
2657   case Instruction::Add:
2658   case Instruction::Mul:
2659   case Instruction::And:
2660   case Instruction::Or:
2661   case Instruction::Xor:
2662     break;
2663   case Instruction::FAdd:
2664   case Instruction::FMul:
2665     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2666       if (FPOp->getFastMathFlags().isFast())
2667         break;
2668     LLVM_FALLTHROUGH;
2669   default:
2670     return false;
2671   }
2672 
2673   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2674   unsigned ElemNumToReduce = ElemNum;
2675 
2676   // Do DFS search on the def-use chain from the given instruction. We only
2677   // allow four kinds of operations during the search until we reach the
2678   // instruction that extracts the first element from the vector:
2679   //
2680   //   1. The reduction operation of the same opcode as the given instruction.
2681   //
2682   //   2. PHI node.
2683   //
2684   //   3. ShuffleVector instruction together with a reduction operation that
2685   //      does a partial reduction.
2686   //
2687   //   4. ExtractElement that extracts the first element from the vector, and we
2688   //      stop searching the def-use chain here.
2689   //
2690   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2691   // from 1-3 to the stack to continue the DFS. The given instruction is not
2692   // a reduction operation if we meet any other instructions other than those
2693   // listed above.
2694 
2695   SmallVector<const User *, 16> UsersToVisit{Inst};
2696   SmallPtrSet<const User *, 16> Visited;
2697   bool ReduxExtracted = false;
2698 
2699   while (!UsersToVisit.empty()) {
2700     auto User = UsersToVisit.back();
2701     UsersToVisit.pop_back();
2702     if (!Visited.insert(User).second)
2703       continue;
2704 
2705     for (const auto &U : User->users()) {
2706       auto Inst = dyn_cast<Instruction>(U);
2707       if (!Inst)
2708         return false;
2709 
2710       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2711         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2712           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2713             return false;
2714         UsersToVisit.push_back(U);
2715       } else if (const ShuffleVectorInst *ShufInst =
2716                      dyn_cast<ShuffleVectorInst>(U)) {
2717         // Detect the following pattern: A ShuffleVector instruction together
2718         // with a reduction that do partial reduction on the first and second
2719         // ElemNumToReduce / 2 elements, and store the result in
2720         // ElemNumToReduce / 2 elements in another vector.
2721 
2722         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2723         if (ResultElements < ElemNum)
2724           return false;
2725 
2726         if (ElemNumToReduce == 1)
2727           return false;
2728         if (!isa<UndefValue>(U->getOperand(1)))
2729           return false;
2730         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2731           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2732             return false;
2733         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2734           if (ShufInst->getMaskValue(i) != -1)
2735             return false;
2736 
2737         // There is only one user of this ShuffleVector instruction, which
2738         // must be a reduction operation.
2739         if (!U->hasOneUse())
2740           return false;
2741 
2742         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2743         if (!U2 || U2->getOpcode() != OpCode)
2744           return false;
2745 
2746         // Check operands of the reduction operation.
2747         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2748             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2749           UsersToVisit.push_back(U2);
2750           ElemNumToReduce /= 2;
2751         } else
2752           return false;
2753       } else if (isa<ExtractElementInst>(U)) {
2754         // At this moment we should have reduced all elements in the vector.
2755         if (ElemNumToReduce != 1)
2756           return false;
2757 
2758         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2759         if (!Val || Val->getZExtValue() != 0)
2760           return false;
2761 
2762         ReduxExtracted = true;
2763       } else
2764         return false;
2765     }
2766   }
2767   return ReduxExtracted;
2768 }
2769 
2770 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2771   SDNodeFlags Flags;
2772   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2773     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2774     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2775   }
2776   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2777     Flags.setExact(ExactOp->isExact());
2778   }
2779   if (isVectorReductionOp(&I)) {
2780     Flags.setVectorReduction(true);
2781     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2782   }
2783 
2784   SDValue Op1 = getValue(I.getOperand(0));
2785   SDValue Op2 = getValue(I.getOperand(1));
2786   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2787                                      Op1, Op2, Flags);
2788   setValue(&I, BinNodeValue);
2789 }
2790 
2791 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2792   SDValue Op1 = getValue(I.getOperand(0));
2793   SDValue Op2 = getValue(I.getOperand(1));
2794 
2795   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2796       Op2.getValueType(), DAG.getDataLayout());
2797 
2798   // Coerce the shift amount to the right type if we can.
2799   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2800     unsigned ShiftSize = ShiftTy.getSizeInBits();
2801     unsigned Op2Size = Op2.getValueSizeInBits();
2802     SDLoc DL = getCurSDLoc();
2803 
2804     // If the operand is smaller than the shift count type, promote it.
2805     if (ShiftSize > Op2Size)
2806       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2807 
2808     // If the operand is larger than the shift count type but the shift
2809     // count type has enough bits to represent any shift value, truncate
2810     // it now. This is a common case and it exposes the truncate to
2811     // optimization early.
2812     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2813       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2814     // Otherwise we'll need to temporarily settle for some other convenient
2815     // type.  Type legalization will make adjustments once the shiftee is split.
2816     else
2817       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2818   }
2819 
2820   bool nuw = false;
2821   bool nsw = false;
2822   bool exact = false;
2823 
2824   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2825 
2826     if (const OverflowingBinaryOperator *OFBinOp =
2827             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2828       nuw = OFBinOp->hasNoUnsignedWrap();
2829       nsw = OFBinOp->hasNoSignedWrap();
2830     }
2831     if (const PossiblyExactOperator *ExactOp =
2832             dyn_cast<const PossiblyExactOperator>(&I))
2833       exact = ExactOp->isExact();
2834   }
2835   SDNodeFlags Flags;
2836   Flags.setExact(exact);
2837   Flags.setNoSignedWrap(nsw);
2838   Flags.setNoUnsignedWrap(nuw);
2839   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2840                             Flags);
2841   setValue(&I, Res);
2842 }
2843 
2844 void SelectionDAGBuilder::visitSDiv(const User &I) {
2845   SDValue Op1 = getValue(I.getOperand(0));
2846   SDValue Op2 = getValue(I.getOperand(1));
2847 
2848   SDNodeFlags Flags;
2849   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2850                  cast<PossiblyExactOperator>(&I)->isExact());
2851   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2852                            Op2, Flags));
2853 }
2854 
2855 void SelectionDAGBuilder::visitICmp(const User &I) {
2856   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2857   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2858     predicate = IC->getPredicate();
2859   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2860     predicate = ICmpInst::Predicate(IC->getPredicate());
2861   SDValue Op1 = getValue(I.getOperand(0));
2862   SDValue Op2 = getValue(I.getOperand(1));
2863   ISD::CondCode Opcode = getICmpCondCode(predicate);
2864 
2865   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2866                                                         I.getType());
2867   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2868 }
2869 
2870 void SelectionDAGBuilder::visitFCmp(const User &I) {
2871   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2872   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2873     predicate = FC->getPredicate();
2874   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2875     predicate = FCmpInst::Predicate(FC->getPredicate());
2876   SDValue Op1 = getValue(I.getOperand(0));
2877   SDValue Op2 = getValue(I.getOperand(1));
2878 
2879   ISD::CondCode Condition = getFCmpCondCode(predicate);
2880   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2881   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2882     Condition = getFCmpCodeWithoutNaN(Condition);
2883 
2884   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2885                                                         I.getType());
2886   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2887 }
2888 
2889 // Check if the condition of the select has one use or two users that are both
2890 // selects with the same condition.
2891 static bool hasOnlySelectUsers(const Value *Cond) {
2892   return llvm::all_of(Cond->users(), [](const Value *V) {
2893     return isa<SelectInst>(V);
2894   });
2895 }
2896 
2897 void SelectionDAGBuilder::visitSelect(const User &I) {
2898   SmallVector<EVT, 4> ValueVTs;
2899   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2900                   ValueVTs);
2901   unsigned NumValues = ValueVTs.size();
2902   if (NumValues == 0) return;
2903 
2904   SmallVector<SDValue, 4> Values(NumValues);
2905   SDValue Cond     = getValue(I.getOperand(0));
2906   SDValue LHSVal   = getValue(I.getOperand(1));
2907   SDValue RHSVal   = getValue(I.getOperand(2));
2908   auto BaseOps = {Cond};
2909   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2910     ISD::VSELECT : ISD::SELECT;
2911 
2912   // Min/max matching is only viable if all output VTs are the same.
2913   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2914     EVT VT = ValueVTs[0];
2915     LLVMContext &Ctx = *DAG.getContext();
2916     auto &TLI = DAG.getTargetLoweringInfo();
2917 
2918     // We care about the legality of the operation after it has been type
2919     // legalized.
2920     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2921            VT != TLI.getTypeToTransformTo(Ctx, VT))
2922       VT = TLI.getTypeToTransformTo(Ctx, VT);
2923 
2924     // If the vselect is legal, assume we want to leave this as a vector setcc +
2925     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2926     // min/max is legal on the scalar type.
2927     bool UseScalarMinMax = VT.isVector() &&
2928       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2929 
2930     Value *LHS, *RHS;
2931     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2932     ISD::NodeType Opc = ISD::DELETED_NODE;
2933     switch (SPR.Flavor) {
2934     case SPF_UMAX:    Opc = ISD::UMAX; break;
2935     case SPF_UMIN:    Opc = ISD::UMIN; break;
2936     case SPF_SMAX:    Opc = ISD::SMAX; break;
2937     case SPF_SMIN:    Opc = ISD::SMIN; break;
2938     case SPF_FMINNUM:
2939       switch (SPR.NaNBehavior) {
2940       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2941       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2942       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2943       case SPNB_RETURNS_ANY: {
2944         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2945           Opc = ISD::FMINNUM;
2946         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2947           Opc = ISD::FMINNAN;
2948         else if (UseScalarMinMax)
2949           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2950             ISD::FMINNUM : ISD::FMINNAN;
2951         break;
2952       }
2953       }
2954       break;
2955     case SPF_FMAXNUM:
2956       switch (SPR.NaNBehavior) {
2957       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2958       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2959       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2960       case SPNB_RETURNS_ANY:
2961 
2962         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2963           Opc = ISD::FMAXNUM;
2964         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2965           Opc = ISD::FMAXNAN;
2966         else if (UseScalarMinMax)
2967           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2968             ISD::FMAXNUM : ISD::FMAXNAN;
2969         break;
2970       }
2971       break;
2972     default: break;
2973     }
2974 
2975     if (Opc != ISD::DELETED_NODE &&
2976         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2977          (UseScalarMinMax &&
2978           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2979         // If the underlying comparison instruction is used by any other
2980         // instruction, the consumed instructions won't be destroyed, so it is
2981         // not profitable to convert to a min/max.
2982         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2983       OpCode = Opc;
2984       LHSVal = getValue(LHS);
2985       RHSVal = getValue(RHS);
2986       BaseOps = {};
2987     }
2988   }
2989 
2990   for (unsigned i = 0; i != NumValues; ++i) {
2991     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2992     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2993     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2994     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2995                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2996                             Ops);
2997   }
2998 
2999   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3000                            DAG.getVTList(ValueVTs), Values));
3001 }
3002 
3003 void SelectionDAGBuilder::visitTrunc(const User &I) {
3004   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3005   SDValue N = getValue(I.getOperand(0));
3006   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3007                                                         I.getType());
3008   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3009 }
3010 
3011 void SelectionDAGBuilder::visitZExt(const User &I) {
3012   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3013   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3014   SDValue N = getValue(I.getOperand(0));
3015   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3016                                                         I.getType());
3017   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3018 }
3019 
3020 void SelectionDAGBuilder::visitSExt(const User &I) {
3021   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3022   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3023   SDValue N = getValue(I.getOperand(0));
3024   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3025                                                         I.getType());
3026   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3027 }
3028 
3029 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3030   // FPTrunc is never a no-op cast, no need to check
3031   SDValue N = getValue(I.getOperand(0));
3032   SDLoc dl = getCurSDLoc();
3033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3034   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3035   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3036                            DAG.getTargetConstant(
3037                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3038 }
3039 
3040 void SelectionDAGBuilder::visitFPExt(const User &I) {
3041   // FPExt is never a no-op cast, no need to check
3042   SDValue N = getValue(I.getOperand(0));
3043   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3044                                                         I.getType());
3045   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3046 }
3047 
3048 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3049   // FPToUI is never a no-op cast, no need to check
3050   SDValue N = getValue(I.getOperand(0));
3051   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3052                                                         I.getType());
3053   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3054 }
3055 
3056 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3057   // FPToSI is never a no-op cast, no need to check
3058   SDValue N = getValue(I.getOperand(0));
3059   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3060                                                         I.getType());
3061   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3062 }
3063 
3064 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3065   // UIToFP is never a no-op cast, no need to check
3066   SDValue N = getValue(I.getOperand(0));
3067   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3068                                                         I.getType());
3069   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3070 }
3071 
3072 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3073   // SIToFP is never a no-op cast, no need to check
3074   SDValue N = getValue(I.getOperand(0));
3075   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3076                                                         I.getType());
3077   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3078 }
3079 
3080 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3081   // What to do depends on the size of the integer and the size of the pointer.
3082   // We can either truncate, zero extend, or no-op, accordingly.
3083   SDValue N = getValue(I.getOperand(0));
3084   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3085                                                         I.getType());
3086   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3087 }
3088 
3089 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3090   // What to do depends on the size of the integer and the size of the pointer.
3091   // We can either truncate, zero extend, or no-op, accordingly.
3092   SDValue N = getValue(I.getOperand(0));
3093   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3094                                                         I.getType());
3095   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3096 }
3097 
3098 void SelectionDAGBuilder::visitBitCast(const User &I) {
3099   SDValue N = getValue(I.getOperand(0));
3100   SDLoc dl = getCurSDLoc();
3101   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3102                                                         I.getType());
3103 
3104   // BitCast assures us that source and destination are the same size so this is
3105   // either a BITCAST or a no-op.
3106   if (DestVT != N.getValueType())
3107     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3108                              DestVT, N)); // convert types.
3109   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3110   // might fold any kind of constant expression to an integer constant and that
3111   // is not what we are looking for. Only recognize a bitcast of a genuine
3112   // constant integer as an opaque constant.
3113   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3114     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3115                                  /*isOpaque*/true));
3116   else
3117     setValue(&I, N);            // noop cast.
3118 }
3119 
3120 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3122   const Value *SV = I.getOperand(0);
3123   SDValue N = getValue(SV);
3124   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3125 
3126   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3127   unsigned DestAS = I.getType()->getPointerAddressSpace();
3128 
3129   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3130     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3131 
3132   setValue(&I, N);
3133 }
3134 
3135 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3137   SDValue InVec = getValue(I.getOperand(0));
3138   SDValue InVal = getValue(I.getOperand(1));
3139   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3140                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3141   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3142                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3143                            InVec, InVal, InIdx));
3144 }
3145 
3146 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3148   SDValue InVec = getValue(I.getOperand(0));
3149   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3150                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3151   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3152                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3153                            InVec, InIdx));
3154 }
3155 
3156 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3157   SDValue Src1 = getValue(I.getOperand(0));
3158   SDValue Src2 = getValue(I.getOperand(1));
3159   SDLoc DL = getCurSDLoc();
3160 
3161   SmallVector<int, 8> Mask;
3162   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3163   unsigned MaskNumElts = Mask.size();
3164 
3165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3166   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3167   EVT SrcVT = Src1.getValueType();
3168   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3169 
3170   if (SrcNumElts == MaskNumElts) {
3171     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3172     return;
3173   }
3174 
3175   // Normalize the shuffle vector since mask and vector length don't match.
3176   if (SrcNumElts < MaskNumElts) {
3177     // Mask is longer than the source vectors. We can use concatenate vector to
3178     // make the mask and vectors lengths match.
3179 
3180     if (MaskNumElts % SrcNumElts == 0) {
3181       // Mask length is a multiple of the source vector length.
3182       // Check if the shuffle is some kind of concatenation of the input
3183       // vectors.
3184       unsigned NumConcat = MaskNumElts / SrcNumElts;
3185       bool IsConcat = true;
3186       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3187       for (unsigned i = 0; i != MaskNumElts; ++i) {
3188         int Idx = Mask[i];
3189         if (Idx < 0)
3190           continue;
3191         // Ensure the indices in each SrcVT sized piece are sequential and that
3192         // the same source is used for the whole piece.
3193         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3194             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3195              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3196           IsConcat = false;
3197           break;
3198         }
3199         // Remember which source this index came from.
3200         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3201       }
3202 
3203       // The shuffle is concatenating multiple vectors together. Just emit
3204       // a CONCAT_VECTORS operation.
3205       if (IsConcat) {
3206         SmallVector<SDValue, 8> ConcatOps;
3207         for (auto Src : ConcatSrcs) {
3208           if (Src < 0)
3209             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3210           else if (Src == 0)
3211             ConcatOps.push_back(Src1);
3212           else
3213             ConcatOps.push_back(Src2);
3214         }
3215         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3216         return;
3217       }
3218     }
3219 
3220     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3221     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3222     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3223                                     PaddedMaskNumElts);
3224 
3225     // Pad both vectors with undefs to make them the same length as the mask.
3226     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3227 
3228     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3229     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3230     MOps1[0] = Src1;
3231     MOps2[0] = Src2;
3232 
3233     Src1 = Src1.isUndef()
3234                ? DAG.getUNDEF(PaddedVT)
3235                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3236     Src2 = Src2.isUndef()
3237                ? DAG.getUNDEF(PaddedVT)
3238                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3239 
3240     // Readjust mask for new input vector length.
3241     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3242     for (unsigned i = 0; i != MaskNumElts; ++i) {
3243       int Idx = Mask[i];
3244       if (Idx >= (int)SrcNumElts)
3245         Idx -= SrcNumElts - PaddedMaskNumElts;
3246       MappedOps[i] = Idx;
3247     }
3248 
3249     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3250 
3251     // If the concatenated vector was padded, extract a subvector with the
3252     // correct number of elements.
3253     if (MaskNumElts != PaddedMaskNumElts)
3254       Result = DAG.getNode(
3255           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3256           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3257 
3258     setValue(&I, Result);
3259     return;
3260   }
3261 
3262   if (SrcNumElts > MaskNumElts) {
3263     // Analyze the access pattern of the vector to see if we can extract
3264     // two subvectors and do the shuffle.
3265     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3266     bool CanExtract = true;
3267     for (int Idx : Mask) {
3268       unsigned Input = 0;
3269       if (Idx < 0)
3270         continue;
3271 
3272       if (Idx >= (int)SrcNumElts) {
3273         Input = 1;
3274         Idx -= SrcNumElts;
3275       }
3276 
3277       // If all the indices come from the same MaskNumElts sized portion of
3278       // the sources we can use extract. Also make sure the extract wouldn't
3279       // extract past the end of the source.
3280       int NewStartIdx = alignDown(Idx, MaskNumElts);
3281       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3282           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3283         CanExtract = false;
3284       // Make sure we always update StartIdx as we use it to track if all
3285       // elements are undef.
3286       StartIdx[Input] = NewStartIdx;
3287     }
3288 
3289     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3290       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3291       return;
3292     }
3293     if (CanExtract) {
3294       // Extract appropriate subvector and generate a vector shuffle
3295       for (unsigned Input = 0; Input < 2; ++Input) {
3296         SDValue &Src = Input == 0 ? Src1 : Src2;
3297         if (StartIdx[Input] < 0)
3298           Src = DAG.getUNDEF(VT);
3299         else {
3300           Src = DAG.getNode(
3301               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3302               DAG.getConstant(StartIdx[Input], DL,
3303                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3304         }
3305       }
3306 
3307       // Calculate new mask.
3308       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3309       for (int &Idx : MappedOps) {
3310         if (Idx >= (int)SrcNumElts)
3311           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3312         else if (Idx >= 0)
3313           Idx -= StartIdx[0];
3314       }
3315 
3316       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3317       return;
3318     }
3319   }
3320 
3321   // We can't use either concat vectors or extract subvectors so fall back to
3322   // replacing the shuffle with extract and build vector.
3323   // to insert and build vector.
3324   EVT EltVT = VT.getVectorElementType();
3325   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3326   SmallVector<SDValue,8> Ops;
3327   for (int Idx : Mask) {
3328     SDValue Res;
3329 
3330     if (Idx < 0) {
3331       Res = DAG.getUNDEF(EltVT);
3332     } else {
3333       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3334       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3335 
3336       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3337                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3338     }
3339 
3340     Ops.push_back(Res);
3341   }
3342 
3343   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3344 }
3345 
3346 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3347   ArrayRef<unsigned> Indices;
3348   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3349     Indices = IV->getIndices();
3350   else
3351     Indices = cast<ConstantExpr>(&I)->getIndices();
3352 
3353   const Value *Op0 = I.getOperand(0);
3354   const Value *Op1 = I.getOperand(1);
3355   Type *AggTy = I.getType();
3356   Type *ValTy = Op1->getType();
3357   bool IntoUndef = isa<UndefValue>(Op0);
3358   bool FromUndef = isa<UndefValue>(Op1);
3359 
3360   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3361 
3362   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3363   SmallVector<EVT, 4> AggValueVTs;
3364   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3365   SmallVector<EVT, 4> ValValueVTs;
3366   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3367 
3368   unsigned NumAggValues = AggValueVTs.size();
3369   unsigned NumValValues = ValValueVTs.size();
3370   SmallVector<SDValue, 4> Values(NumAggValues);
3371 
3372   // Ignore an insertvalue that produces an empty object
3373   if (!NumAggValues) {
3374     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3375     return;
3376   }
3377 
3378   SDValue Agg = getValue(Op0);
3379   unsigned i = 0;
3380   // Copy the beginning value(s) from the original aggregate.
3381   for (; i != LinearIndex; ++i)
3382     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3383                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3384   // Copy values from the inserted value(s).
3385   if (NumValValues) {
3386     SDValue Val = getValue(Op1);
3387     for (; i != LinearIndex + NumValValues; ++i)
3388       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3389                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3390   }
3391   // Copy remaining value(s) from the original aggregate.
3392   for (; i != NumAggValues; ++i)
3393     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3394                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3395 
3396   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3397                            DAG.getVTList(AggValueVTs), Values));
3398 }
3399 
3400 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3401   ArrayRef<unsigned> Indices;
3402   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3403     Indices = EV->getIndices();
3404   else
3405     Indices = cast<ConstantExpr>(&I)->getIndices();
3406 
3407   const Value *Op0 = I.getOperand(0);
3408   Type *AggTy = Op0->getType();
3409   Type *ValTy = I.getType();
3410   bool OutOfUndef = isa<UndefValue>(Op0);
3411 
3412   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3413 
3414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415   SmallVector<EVT, 4> ValValueVTs;
3416   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3417 
3418   unsigned NumValValues = ValValueVTs.size();
3419 
3420   // Ignore a extractvalue that produces an empty object
3421   if (!NumValValues) {
3422     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3423     return;
3424   }
3425 
3426   SmallVector<SDValue, 4> Values(NumValValues);
3427 
3428   SDValue Agg = getValue(Op0);
3429   // Copy out the selected value(s).
3430   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3431     Values[i - LinearIndex] =
3432       OutOfUndef ?
3433         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3434         SDValue(Agg.getNode(), Agg.getResNo() + i);
3435 
3436   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3437                            DAG.getVTList(ValValueVTs), Values));
3438 }
3439 
3440 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3441   Value *Op0 = I.getOperand(0);
3442   // Note that the pointer operand may be a vector of pointers. Take the scalar
3443   // element which holds a pointer.
3444   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3445   SDValue N = getValue(Op0);
3446   SDLoc dl = getCurSDLoc();
3447 
3448   // Normalize Vector GEP - all scalar operands should be converted to the
3449   // splat vector.
3450   unsigned VectorWidth = I.getType()->isVectorTy() ?
3451     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3452 
3453   if (VectorWidth && !N.getValueType().isVector()) {
3454     LLVMContext &Context = *DAG.getContext();
3455     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3456     N = DAG.getSplatBuildVector(VT, dl, N);
3457   }
3458 
3459   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3460        GTI != E; ++GTI) {
3461     const Value *Idx = GTI.getOperand();
3462     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3463       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3464       if (Field) {
3465         // N = N + Offset
3466         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3467 
3468         // In an inbounds GEP with an offset that is nonnegative even when
3469         // interpreted as signed, assume there is no unsigned overflow.
3470         SDNodeFlags Flags;
3471         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3472           Flags.setNoUnsignedWrap(true);
3473 
3474         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3475                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3476       }
3477     } else {
3478       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3479       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3480       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3481 
3482       // If this is a scalar constant or a splat vector of constants,
3483       // handle it quickly.
3484       const auto *CI = dyn_cast<ConstantInt>(Idx);
3485       if (!CI && isa<ConstantDataVector>(Idx) &&
3486           cast<ConstantDataVector>(Idx)->getSplatValue())
3487         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3488 
3489       if (CI) {
3490         if (CI->isZero())
3491           continue;
3492         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3493         LLVMContext &Context = *DAG.getContext();
3494         SDValue OffsVal = VectorWidth ?
3495           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3496           DAG.getConstant(Offs, dl, IdxTy);
3497 
3498         // In an inbouds GEP with an offset that is nonnegative even when
3499         // interpreted as signed, assume there is no unsigned overflow.
3500         SDNodeFlags Flags;
3501         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3502           Flags.setNoUnsignedWrap(true);
3503 
3504         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3505         continue;
3506       }
3507 
3508       // N = N + Idx * ElementSize;
3509       SDValue IdxN = getValue(Idx);
3510 
3511       if (!IdxN.getValueType().isVector() && VectorWidth) {
3512         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3513         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3514       }
3515 
3516       // If the index is smaller or larger than intptr_t, truncate or extend
3517       // it.
3518       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3519 
3520       // If this is a multiply by a power of two, turn it into a shl
3521       // immediately.  This is a very common case.
3522       if (ElementSize != 1) {
3523         if (ElementSize.isPowerOf2()) {
3524           unsigned Amt = ElementSize.logBase2();
3525           IdxN = DAG.getNode(ISD::SHL, dl,
3526                              N.getValueType(), IdxN,
3527                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3528         } else {
3529           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3530           IdxN = DAG.getNode(ISD::MUL, dl,
3531                              N.getValueType(), IdxN, Scale);
3532         }
3533       }
3534 
3535       N = DAG.getNode(ISD::ADD, dl,
3536                       N.getValueType(), N, IdxN);
3537     }
3538   }
3539 
3540   setValue(&I, N);
3541 }
3542 
3543 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3544   // If this is a fixed sized alloca in the entry block of the function,
3545   // allocate it statically on the stack.
3546   if (FuncInfo.StaticAllocaMap.count(&I))
3547     return;   // getValue will auto-populate this.
3548 
3549   SDLoc dl = getCurSDLoc();
3550   Type *Ty = I.getAllocatedType();
3551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3552   auto &DL = DAG.getDataLayout();
3553   uint64_t TySize = DL.getTypeAllocSize(Ty);
3554   unsigned Align =
3555       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3556 
3557   SDValue AllocSize = getValue(I.getArraySize());
3558 
3559   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3560   if (AllocSize.getValueType() != IntPtr)
3561     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3562 
3563   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3564                           AllocSize,
3565                           DAG.getConstant(TySize, dl, IntPtr));
3566 
3567   // Handle alignment.  If the requested alignment is less than or equal to
3568   // the stack alignment, ignore it.  If the size is greater than or equal to
3569   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3570   unsigned StackAlign =
3571       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3572   if (Align <= StackAlign)
3573     Align = 0;
3574 
3575   // Round the size of the allocation up to the stack alignment size
3576   // by add SA-1 to the size. This doesn't overflow because we're computing
3577   // an address inside an alloca.
3578   SDNodeFlags Flags;
3579   Flags.setNoUnsignedWrap(true);
3580   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3581                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3582 
3583   // Mask out the low bits for alignment purposes.
3584   AllocSize =
3585       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3586                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3587 
3588   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3589   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3590   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3591   setValue(&I, DSA);
3592   DAG.setRoot(DSA.getValue(1));
3593 
3594   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3595 }
3596 
3597 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3598   if (I.isAtomic())
3599     return visitAtomicLoad(I);
3600 
3601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3602   const Value *SV = I.getOperand(0);
3603   if (TLI.supportSwiftError()) {
3604     // Swifterror values can come from either a function parameter with
3605     // swifterror attribute or an alloca with swifterror attribute.
3606     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3607       if (Arg->hasSwiftErrorAttr())
3608         return visitLoadFromSwiftError(I);
3609     }
3610 
3611     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3612       if (Alloca->isSwiftError())
3613         return visitLoadFromSwiftError(I);
3614     }
3615   }
3616 
3617   SDValue Ptr = getValue(SV);
3618 
3619   Type *Ty = I.getType();
3620 
3621   bool isVolatile = I.isVolatile();
3622   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3623   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3624   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3625   unsigned Alignment = I.getAlignment();
3626 
3627   AAMDNodes AAInfo;
3628   I.getAAMetadata(AAInfo);
3629   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3630 
3631   SmallVector<EVT, 4> ValueVTs;
3632   SmallVector<uint64_t, 4> Offsets;
3633   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3634   unsigned NumValues = ValueVTs.size();
3635   if (NumValues == 0)
3636     return;
3637 
3638   SDValue Root;
3639   bool ConstantMemory = false;
3640   if (isVolatile || NumValues > MaxParallelChains)
3641     // Serialize volatile loads with other side effects.
3642     Root = getRoot();
3643   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3644                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3645     // Do not serialize (non-volatile) loads of constant memory with anything.
3646     Root = DAG.getEntryNode();
3647     ConstantMemory = true;
3648   } else {
3649     // Do not serialize non-volatile loads against each other.
3650     Root = DAG.getRoot();
3651   }
3652 
3653   SDLoc dl = getCurSDLoc();
3654 
3655   if (isVolatile)
3656     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3657 
3658   // An aggregate load cannot wrap around the address space, so offsets to its
3659   // parts don't wrap either.
3660   SDNodeFlags Flags;
3661   Flags.setNoUnsignedWrap(true);
3662 
3663   SmallVector<SDValue, 4> Values(NumValues);
3664   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3665   EVT PtrVT = Ptr.getValueType();
3666   unsigned ChainI = 0;
3667   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3668     // Serializing loads here may result in excessive register pressure, and
3669     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3670     // could recover a bit by hoisting nodes upward in the chain by recognizing
3671     // they are side-effect free or do not alias. The optimizer should really
3672     // avoid this case by converting large object/array copies to llvm.memcpy
3673     // (MaxParallelChains should always remain as failsafe).
3674     if (ChainI == MaxParallelChains) {
3675       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3676       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3677                                   makeArrayRef(Chains.data(), ChainI));
3678       Root = Chain;
3679       ChainI = 0;
3680     }
3681     SDValue A = DAG.getNode(ISD::ADD, dl,
3682                             PtrVT, Ptr,
3683                             DAG.getConstant(Offsets[i], dl, PtrVT),
3684                             Flags);
3685     auto MMOFlags = MachineMemOperand::MONone;
3686     if (isVolatile)
3687       MMOFlags |= MachineMemOperand::MOVolatile;
3688     if (isNonTemporal)
3689       MMOFlags |= MachineMemOperand::MONonTemporal;
3690     if (isInvariant)
3691       MMOFlags |= MachineMemOperand::MOInvariant;
3692     if (isDereferenceable)
3693       MMOFlags |= MachineMemOperand::MODereferenceable;
3694     MMOFlags |= TLI.getMMOFlags(I);
3695 
3696     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3697                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3698                             MMOFlags, AAInfo, Ranges);
3699 
3700     Values[i] = L;
3701     Chains[ChainI] = L.getValue(1);
3702   }
3703 
3704   if (!ConstantMemory) {
3705     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3706                                 makeArrayRef(Chains.data(), ChainI));
3707     if (isVolatile)
3708       DAG.setRoot(Chain);
3709     else
3710       PendingLoads.push_back(Chain);
3711   }
3712 
3713   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3714                            DAG.getVTList(ValueVTs), Values));
3715 }
3716 
3717 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3718   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3719          "call visitStoreToSwiftError when backend supports swifterror");
3720 
3721   SmallVector<EVT, 4> ValueVTs;
3722   SmallVector<uint64_t, 4> Offsets;
3723   const Value *SrcV = I.getOperand(0);
3724   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3725                   SrcV->getType(), ValueVTs, &Offsets);
3726   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3727          "expect a single EVT for swifterror");
3728 
3729   SDValue Src = getValue(SrcV);
3730   // Create a virtual register, then update the virtual register.
3731   unsigned VReg; bool CreatedVReg;
3732   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3733   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3734   // Chain can be getRoot or getControlRoot.
3735   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3736                                       SDValue(Src.getNode(), Src.getResNo()));
3737   DAG.setRoot(CopyNode);
3738   if (CreatedVReg)
3739     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3740 }
3741 
3742 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3743   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3744          "call visitLoadFromSwiftError when backend supports swifterror");
3745 
3746   assert(!I.isVolatile() &&
3747          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3748          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3749          "Support volatile, non temporal, invariant for load_from_swift_error");
3750 
3751   const Value *SV = I.getOperand(0);
3752   Type *Ty = I.getType();
3753   AAMDNodes AAInfo;
3754   I.getAAMetadata(AAInfo);
3755   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3756              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3757          "load_from_swift_error should not be constant memory");
3758 
3759   SmallVector<EVT, 4> ValueVTs;
3760   SmallVector<uint64_t, 4> Offsets;
3761   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3762                   ValueVTs, &Offsets);
3763   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3764          "expect a single EVT for swifterror");
3765 
3766   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3767   SDValue L = DAG.getCopyFromReg(
3768       getRoot(), getCurSDLoc(),
3769       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3770       ValueVTs[0]);
3771 
3772   setValue(&I, L);
3773 }
3774 
3775 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3776   if (I.isAtomic())
3777     return visitAtomicStore(I);
3778 
3779   const Value *SrcV = I.getOperand(0);
3780   const Value *PtrV = I.getOperand(1);
3781 
3782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3783   if (TLI.supportSwiftError()) {
3784     // Swifterror values can come from either a function parameter with
3785     // swifterror attribute or an alloca with swifterror attribute.
3786     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3787       if (Arg->hasSwiftErrorAttr())
3788         return visitStoreToSwiftError(I);
3789     }
3790 
3791     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3792       if (Alloca->isSwiftError())
3793         return visitStoreToSwiftError(I);
3794     }
3795   }
3796 
3797   SmallVector<EVT, 4> ValueVTs;
3798   SmallVector<uint64_t, 4> Offsets;
3799   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3800                   SrcV->getType(), ValueVTs, &Offsets);
3801   unsigned NumValues = ValueVTs.size();
3802   if (NumValues == 0)
3803     return;
3804 
3805   // Get the lowered operands. Note that we do this after
3806   // checking if NumResults is zero, because with zero results
3807   // the operands won't have values in the map.
3808   SDValue Src = getValue(SrcV);
3809   SDValue Ptr = getValue(PtrV);
3810 
3811   SDValue Root = getRoot();
3812   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3813   SDLoc dl = getCurSDLoc();
3814   EVT PtrVT = Ptr.getValueType();
3815   unsigned Alignment = I.getAlignment();
3816   AAMDNodes AAInfo;
3817   I.getAAMetadata(AAInfo);
3818 
3819   auto MMOFlags = MachineMemOperand::MONone;
3820   if (I.isVolatile())
3821     MMOFlags |= MachineMemOperand::MOVolatile;
3822   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3823     MMOFlags |= MachineMemOperand::MONonTemporal;
3824   MMOFlags |= TLI.getMMOFlags(I);
3825 
3826   // An aggregate load cannot wrap around the address space, so offsets to its
3827   // parts don't wrap either.
3828   SDNodeFlags Flags;
3829   Flags.setNoUnsignedWrap(true);
3830 
3831   unsigned ChainI = 0;
3832   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3833     // See visitLoad comments.
3834     if (ChainI == MaxParallelChains) {
3835       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3836                                   makeArrayRef(Chains.data(), ChainI));
3837       Root = Chain;
3838       ChainI = 0;
3839     }
3840     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3841                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3842     SDValue St = DAG.getStore(
3843         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3844         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3845     Chains[ChainI] = St;
3846   }
3847 
3848   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3849                                   makeArrayRef(Chains.data(), ChainI));
3850   DAG.setRoot(StoreNode);
3851 }
3852 
3853 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3854                                            bool IsCompressing) {
3855   SDLoc sdl = getCurSDLoc();
3856 
3857   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3858                            unsigned& Alignment) {
3859     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3860     Src0 = I.getArgOperand(0);
3861     Ptr = I.getArgOperand(1);
3862     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3863     Mask = I.getArgOperand(3);
3864   };
3865   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3866                            unsigned& Alignment) {
3867     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3868     Src0 = I.getArgOperand(0);
3869     Ptr = I.getArgOperand(1);
3870     Mask = I.getArgOperand(2);
3871     Alignment = 0;
3872   };
3873 
3874   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3875   unsigned Alignment;
3876   if (IsCompressing)
3877     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3878   else
3879     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3880 
3881   SDValue Ptr = getValue(PtrOperand);
3882   SDValue Src0 = getValue(Src0Operand);
3883   SDValue Mask = getValue(MaskOperand);
3884 
3885   EVT VT = Src0.getValueType();
3886   if (!Alignment)
3887     Alignment = DAG.getEVTAlignment(VT);
3888 
3889   AAMDNodes AAInfo;
3890   I.getAAMetadata(AAInfo);
3891 
3892   MachineMemOperand *MMO =
3893     DAG.getMachineFunction().
3894     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3895                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3896                           Alignment, AAInfo);
3897   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3898                                          MMO, false /* Truncating */,
3899                                          IsCompressing);
3900   DAG.setRoot(StoreNode);
3901   setValue(&I, StoreNode);
3902 }
3903 
3904 // Get a uniform base for the Gather/Scatter intrinsic.
3905 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3906 // We try to represent it as a base pointer + vector of indices.
3907 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3908 // The first operand of the GEP may be a single pointer or a vector of pointers
3909 // Example:
3910 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3911 //  or
3912 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3913 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3914 //
3915 // When the first GEP operand is a single pointer - it is the uniform base we
3916 // are looking for. If first operand of the GEP is a splat vector - we
3917 // extract the splat value and use it as a uniform base.
3918 // In all other cases the function returns 'false'.
3919 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3920                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3921   SelectionDAG& DAG = SDB->DAG;
3922   LLVMContext &Context = *DAG.getContext();
3923 
3924   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3925   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3926   if (!GEP)
3927     return false;
3928 
3929   const Value *GEPPtr = GEP->getPointerOperand();
3930   if (!GEPPtr->getType()->isVectorTy())
3931     Ptr = GEPPtr;
3932   else if (!(Ptr = getSplatValue(GEPPtr)))
3933     return false;
3934 
3935   unsigned FinalIndex = GEP->getNumOperands() - 1;
3936   Value *IndexVal = GEP->getOperand(FinalIndex);
3937 
3938   // Ensure all the other indices are 0.
3939   for (unsigned i = 1; i < FinalIndex; ++i) {
3940     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3941     if (!C || !C->isZero())
3942       return false;
3943   }
3944 
3945   // The operands of the GEP may be defined in another basic block.
3946   // In this case we'll not find nodes for the operands.
3947   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3948     return false;
3949 
3950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3951   const DataLayout &DL = DAG.getDataLayout();
3952   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3953                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3954   Base = SDB->getValue(Ptr);
3955   Index = SDB->getValue(IndexVal);
3956 
3957   if (!Index.getValueType().isVector()) {
3958     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3959     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3960     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3961   }
3962   return true;
3963 }
3964 
3965 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3966   SDLoc sdl = getCurSDLoc();
3967 
3968   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3969   const Value *Ptr = I.getArgOperand(1);
3970   SDValue Src0 = getValue(I.getArgOperand(0));
3971   SDValue Mask = getValue(I.getArgOperand(3));
3972   EVT VT = Src0.getValueType();
3973   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3974   if (!Alignment)
3975     Alignment = DAG.getEVTAlignment(VT);
3976   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3977 
3978   AAMDNodes AAInfo;
3979   I.getAAMetadata(AAInfo);
3980 
3981   SDValue Base;
3982   SDValue Index;
3983   SDValue Scale;
3984   const Value *BasePtr = Ptr;
3985   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
3986 
3987   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3988   MachineMemOperand *MMO = DAG.getMachineFunction().
3989     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3990                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3991                          Alignment, AAInfo);
3992   if (!UniformBase) {
3993     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3994     Index = getValue(Ptr);
3995     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3996   }
3997   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
3998   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3999                                          Ops, MMO);
4000   DAG.setRoot(Scatter);
4001   setValue(&I, Scatter);
4002 }
4003 
4004 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4005   SDLoc sdl = getCurSDLoc();
4006 
4007   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4008                            unsigned& Alignment) {
4009     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4010     Ptr = I.getArgOperand(0);
4011     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4012     Mask = I.getArgOperand(2);
4013     Src0 = I.getArgOperand(3);
4014   };
4015   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4016                            unsigned& Alignment) {
4017     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4018     Ptr = I.getArgOperand(0);
4019     Alignment = 0;
4020     Mask = I.getArgOperand(1);
4021     Src0 = I.getArgOperand(2);
4022   };
4023 
4024   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4025   unsigned Alignment;
4026   if (IsExpanding)
4027     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4028   else
4029     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4030 
4031   SDValue Ptr = getValue(PtrOperand);
4032   SDValue Src0 = getValue(Src0Operand);
4033   SDValue Mask = getValue(MaskOperand);
4034 
4035   EVT VT = Src0.getValueType();
4036   if (!Alignment)
4037     Alignment = DAG.getEVTAlignment(VT);
4038 
4039   AAMDNodes AAInfo;
4040   I.getAAMetadata(AAInfo);
4041   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4042 
4043   // Do not serialize masked loads of constant memory with anything.
4044   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4045       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4046   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4047 
4048   MachineMemOperand *MMO =
4049     DAG.getMachineFunction().
4050     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4051                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4052                           Alignment, AAInfo, Ranges);
4053 
4054   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4055                                    ISD::NON_EXTLOAD, IsExpanding);
4056   if (AddToChain) {
4057     SDValue OutChain = Load.getValue(1);
4058     DAG.setRoot(OutChain);
4059   }
4060   setValue(&I, Load);
4061 }
4062 
4063 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4064   SDLoc sdl = getCurSDLoc();
4065 
4066   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4067   const Value *Ptr = I.getArgOperand(0);
4068   SDValue Src0 = getValue(I.getArgOperand(3));
4069   SDValue Mask = getValue(I.getArgOperand(2));
4070 
4071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4072   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4073   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4074   if (!Alignment)
4075     Alignment = DAG.getEVTAlignment(VT);
4076 
4077   AAMDNodes AAInfo;
4078   I.getAAMetadata(AAInfo);
4079   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4080 
4081   SDValue Root = DAG.getRoot();
4082   SDValue Base;
4083   SDValue Index;
4084   SDValue Scale;
4085   const Value *BasePtr = Ptr;
4086   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4087   bool ConstantMemory = false;
4088   if (UniformBase &&
4089       AA && AA->pointsToConstantMemory(MemoryLocation(
4090           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4091           AAInfo))) {
4092     // Do not serialize (non-volatile) loads of constant memory with anything.
4093     Root = DAG.getEntryNode();
4094     ConstantMemory = true;
4095   }
4096 
4097   MachineMemOperand *MMO =
4098     DAG.getMachineFunction().
4099     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4100                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4101                          Alignment, AAInfo, Ranges);
4102 
4103   if (!UniformBase) {
4104     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4105     Index = getValue(Ptr);
4106     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4107   }
4108   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4109   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4110                                        Ops, MMO);
4111 
4112   SDValue OutChain = Gather.getValue(1);
4113   if (!ConstantMemory)
4114     PendingLoads.push_back(OutChain);
4115   setValue(&I, Gather);
4116 }
4117 
4118 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4119   SDLoc dl = getCurSDLoc();
4120   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4121   AtomicOrdering FailureOrder = I.getFailureOrdering();
4122   SyncScope::ID SSID = I.getSyncScopeID();
4123 
4124   SDValue InChain = getRoot();
4125 
4126   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4127   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4128   SDValue L = DAG.getAtomicCmpSwap(
4129       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4130       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4131       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4132       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4133 
4134   SDValue OutChain = L.getValue(2);
4135 
4136   setValue(&I, L);
4137   DAG.setRoot(OutChain);
4138 }
4139 
4140 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4141   SDLoc dl = getCurSDLoc();
4142   ISD::NodeType NT;
4143   switch (I.getOperation()) {
4144   default: llvm_unreachable("Unknown atomicrmw operation");
4145   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4146   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4147   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4148   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4149   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4150   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4151   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4152   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4153   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4154   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4155   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4156   }
4157   AtomicOrdering Order = I.getOrdering();
4158   SyncScope::ID SSID = I.getSyncScopeID();
4159 
4160   SDValue InChain = getRoot();
4161 
4162   SDValue L =
4163     DAG.getAtomic(NT, dl,
4164                   getValue(I.getValOperand()).getSimpleValueType(),
4165                   InChain,
4166                   getValue(I.getPointerOperand()),
4167                   getValue(I.getValOperand()),
4168                   I.getPointerOperand(),
4169                   /* Alignment=*/ 0, Order, SSID);
4170 
4171   SDValue OutChain = L.getValue(1);
4172 
4173   setValue(&I, L);
4174   DAG.setRoot(OutChain);
4175 }
4176 
4177 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4178   SDLoc dl = getCurSDLoc();
4179   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4180   SDValue Ops[3];
4181   Ops[0] = getRoot();
4182   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4183                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4184   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4185                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4186   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4187 }
4188 
4189 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4190   SDLoc dl = getCurSDLoc();
4191   AtomicOrdering Order = I.getOrdering();
4192   SyncScope::ID SSID = I.getSyncScopeID();
4193 
4194   SDValue InChain = getRoot();
4195 
4196   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4197   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4198 
4199   if (!TLI.supportsUnalignedAtomics() &&
4200       I.getAlignment() < VT.getStoreSize())
4201     report_fatal_error("Cannot generate unaligned atomic load");
4202 
4203   MachineMemOperand *MMO =
4204       DAG.getMachineFunction().
4205       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4206                            MachineMemOperand::MOVolatile |
4207                            MachineMemOperand::MOLoad,
4208                            VT.getStoreSize(),
4209                            I.getAlignment() ? I.getAlignment() :
4210                                               DAG.getEVTAlignment(VT),
4211                            AAMDNodes(), nullptr, SSID, Order);
4212 
4213   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4214   SDValue L =
4215       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4216                     getValue(I.getPointerOperand()), MMO);
4217 
4218   SDValue OutChain = L.getValue(1);
4219 
4220   setValue(&I, L);
4221   DAG.setRoot(OutChain);
4222 }
4223 
4224 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4225   SDLoc dl = getCurSDLoc();
4226 
4227   AtomicOrdering Order = I.getOrdering();
4228   SyncScope::ID SSID = I.getSyncScopeID();
4229 
4230   SDValue InChain = getRoot();
4231 
4232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4233   EVT VT =
4234       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4235 
4236   if (I.getAlignment() < VT.getStoreSize())
4237     report_fatal_error("Cannot generate unaligned atomic store");
4238 
4239   SDValue OutChain =
4240     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4241                   InChain,
4242                   getValue(I.getPointerOperand()),
4243                   getValue(I.getValueOperand()),
4244                   I.getPointerOperand(), I.getAlignment(),
4245                   Order, SSID);
4246 
4247   DAG.setRoot(OutChain);
4248 }
4249 
4250 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4251 /// node.
4252 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4253                                                unsigned Intrinsic) {
4254   // Ignore the callsite's attributes. A specific call site may be marked with
4255   // readnone, but the lowering code will expect the chain based on the
4256   // definition.
4257   const Function *F = I.getCalledFunction();
4258   bool HasChain = !F->doesNotAccessMemory();
4259   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4260 
4261   // Build the operand list.
4262   SmallVector<SDValue, 8> Ops;
4263   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4264     if (OnlyLoad) {
4265       // We don't need to serialize loads against other loads.
4266       Ops.push_back(DAG.getRoot());
4267     } else {
4268       Ops.push_back(getRoot());
4269     }
4270   }
4271 
4272   // Info is set by getTgtMemInstrinsic
4273   TargetLowering::IntrinsicInfo Info;
4274   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4275   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4276                                                DAG.getMachineFunction(),
4277                                                Intrinsic);
4278 
4279   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4280   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4281       Info.opc == ISD::INTRINSIC_W_CHAIN)
4282     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4283                                         TLI.getPointerTy(DAG.getDataLayout())));
4284 
4285   // Add all operands of the call to the operand list.
4286   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4287     SDValue Op = getValue(I.getArgOperand(i));
4288     Ops.push_back(Op);
4289   }
4290 
4291   SmallVector<EVT, 4> ValueVTs;
4292   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4293 
4294   if (HasChain)
4295     ValueVTs.push_back(MVT::Other);
4296 
4297   SDVTList VTs = DAG.getVTList(ValueVTs);
4298 
4299   // Create the node.
4300   SDValue Result;
4301   if (IsTgtIntrinsic) {
4302     // This is target intrinsic that touches memory
4303     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4304       Ops, Info.memVT,
4305       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4306       Info.flags, Info.size);
4307   } else if (!HasChain) {
4308     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4309   } else if (!I.getType()->isVoidTy()) {
4310     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4311   } else {
4312     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4313   }
4314 
4315   if (HasChain) {
4316     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4317     if (OnlyLoad)
4318       PendingLoads.push_back(Chain);
4319     else
4320       DAG.setRoot(Chain);
4321   }
4322 
4323   if (!I.getType()->isVoidTy()) {
4324     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4325       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4326       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4327     } else
4328       Result = lowerRangeToAssertZExt(DAG, I, Result);
4329 
4330     setValue(&I, Result);
4331   }
4332 }
4333 
4334 /// GetSignificand - Get the significand and build it into a floating-point
4335 /// number with exponent of 1:
4336 ///
4337 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4338 ///
4339 /// where Op is the hexadecimal representation of floating point value.
4340 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4341   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4342                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4343   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4344                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4345   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4346 }
4347 
4348 /// GetExponent - Get the exponent:
4349 ///
4350 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4351 ///
4352 /// where Op is the hexadecimal representation of floating point value.
4353 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4354                            const TargetLowering &TLI, const SDLoc &dl) {
4355   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4356                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4357   SDValue t1 = DAG.getNode(
4358       ISD::SRL, dl, MVT::i32, t0,
4359       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4360   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4361                            DAG.getConstant(127, dl, MVT::i32));
4362   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4363 }
4364 
4365 /// getF32Constant - Get 32-bit floating point constant.
4366 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4367                               const SDLoc &dl) {
4368   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4369                            MVT::f32);
4370 }
4371 
4372 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4373                                        SelectionDAG &DAG) {
4374   // TODO: What fast-math-flags should be set on the floating-point nodes?
4375 
4376   //   IntegerPartOfX = ((int32_t)(t0);
4377   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4378 
4379   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4380   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4381   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4382 
4383   //   IntegerPartOfX <<= 23;
4384   IntegerPartOfX = DAG.getNode(
4385       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4386       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4387                                   DAG.getDataLayout())));
4388 
4389   SDValue TwoToFractionalPartOfX;
4390   if (LimitFloatPrecision <= 6) {
4391     // For floating-point precision of 6:
4392     //
4393     //   TwoToFractionalPartOfX =
4394     //     0.997535578f +
4395     //       (0.735607626f + 0.252464424f * x) * x;
4396     //
4397     // error 0.0144103317, which is 6 bits
4398     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4399                              getF32Constant(DAG, 0x3e814304, dl));
4400     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4401                              getF32Constant(DAG, 0x3f3c50c8, dl));
4402     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4403     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4404                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4405   } else if (LimitFloatPrecision <= 12) {
4406     // For floating-point precision of 12:
4407     //
4408     //   TwoToFractionalPartOfX =
4409     //     0.999892986f +
4410     //       (0.696457318f +
4411     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4412     //
4413     // error 0.000107046256, which is 13 to 14 bits
4414     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4415                              getF32Constant(DAG, 0x3da235e3, dl));
4416     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4417                              getF32Constant(DAG, 0x3e65b8f3, dl));
4418     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4419     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4420                              getF32Constant(DAG, 0x3f324b07, dl));
4421     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4422     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4423                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4424   } else { // LimitFloatPrecision <= 18
4425     // For floating-point precision of 18:
4426     //
4427     //   TwoToFractionalPartOfX =
4428     //     0.999999982f +
4429     //       (0.693148872f +
4430     //         (0.240227044f +
4431     //           (0.554906021e-1f +
4432     //             (0.961591928e-2f +
4433     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4434     // error 2.47208000*10^(-7), which is better than 18 bits
4435     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4436                              getF32Constant(DAG, 0x3924b03e, dl));
4437     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4438                              getF32Constant(DAG, 0x3ab24b87, dl));
4439     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4440     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4441                              getF32Constant(DAG, 0x3c1d8c17, dl));
4442     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4443     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4444                              getF32Constant(DAG, 0x3d634a1d, dl));
4445     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4446     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4447                              getF32Constant(DAG, 0x3e75fe14, dl));
4448     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4449     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4450                               getF32Constant(DAG, 0x3f317234, dl));
4451     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4452     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4453                                          getF32Constant(DAG, 0x3f800000, dl));
4454   }
4455 
4456   // Add the exponent into the result in integer domain.
4457   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4458   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4459                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4460 }
4461 
4462 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4463 /// limited-precision mode.
4464 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4465                          const TargetLowering &TLI) {
4466   if (Op.getValueType() == MVT::f32 &&
4467       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4468 
4469     // Put the exponent in the right bit position for later addition to the
4470     // final result:
4471     //
4472     //   #define LOG2OFe 1.4426950f
4473     //   t0 = Op * LOG2OFe
4474 
4475     // TODO: What fast-math-flags should be set here?
4476     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4477                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4478     return getLimitedPrecisionExp2(t0, dl, DAG);
4479   }
4480 
4481   // No special expansion.
4482   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4483 }
4484 
4485 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4486 /// limited-precision mode.
4487 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4488                          const TargetLowering &TLI) {
4489   // TODO: What fast-math-flags should be set on the floating-point nodes?
4490 
4491   if (Op.getValueType() == MVT::f32 &&
4492       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4493     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4494 
4495     // Scale the exponent by log(2) [0.69314718f].
4496     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4497     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4498                                         getF32Constant(DAG, 0x3f317218, dl));
4499 
4500     // Get the significand and build it into a floating-point number with
4501     // exponent of 1.
4502     SDValue X = GetSignificand(DAG, Op1, dl);
4503 
4504     SDValue LogOfMantissa;
4505     if (LimitFloatPrecision <= 6) {
4506       // For floating-point precision of 6:
4507       //
4508       //   LogofMantissa =
4509       //     -1.1609546f +
4510       //       (1.4034025f - 0.23903021f * x) * x;
4511       //
4512       // error 0.0034276066, which is better than 8 bits
4513       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4514                                getF32Constant(DAG, 0xbe74c456, dl));
4515       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4516                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4517       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4518       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4519                                   getF32Constant(DAG, 0x3f949a29, dl));
4520     } else if (LimitFloatPrecision <= 12) {
4521       // For floating-point precision of 12:
4522       //
4523       //   LogOfMantissa =
4524       //     -1.7417939f +
4525       //       (2.8212026f +
4526       //         (-1.4699568f +
4527       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4528       //
4529       // error 0.000061011436, which is 14 bits
4530       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4531                                getF32Constant(DAG, 0xbd67b6d6, dl));
4532       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4533                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4534       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4535       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4536                                getF32Constant(DAG, 0x3fbc278b, dl));
4537       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4538       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4539                                getF32Constant(DAG, 0x40348e95, dl));
4540       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4541       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4542                                   getF32Constant(DAG, 0x3fdef31a, dl));
4543     } else { // LimitFloatPrecision <= 18
4544       // For floating-point precision of 18:
4545       //
4546       //   LogOfMantissa =
4547       //     -2.1072184f +
4548       //       (4.2372794f +
4549       //         (-3.7029485f +
4550       //           (2.2781945f +
4551       //             (-0.87823314f +
4552       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4553       //
4554       // error 0.0000023660568, which is better than 18 bits
4555       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4556                                getF32Constant(DAG, 0xbc91e5ac, dl));
4557       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4558                                getF32Constant(DAG, 0x3e4350aa, dl));
4559       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4560       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4561                                getF32Constant(DAG, 0x3f60d3e3, dl));
4562       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4563       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4564                                getF32Constant(DAG, 0x4011cdf0, dl));
4565       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4566       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4567                                getF32Constant(DAG, 0x406cfd1c, dl));
4568       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4569       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4570                                getF32Constant(DAG, 0x408797cb, dl));
4571       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4572       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4573                                   getF32Constant(DAG, 0x4006dcab, dl));
4574     }
4575 
4576     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4577   }
4578 
4579   // No special expansion.
4580   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4581 }
4582 
4583 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4584 /// limited-precision mode.
4585 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4586                           const TargetLowering &TLI) {
4587   // TODO: What fast-math-flags should be set on the floating-point nodes?
4588 
4589   if (Op.getValueType() == MVT::f32 &&
4590       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4591     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4592 
4593     // Get the exponent.
4594     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4595 
4596     // Get the significand and build it into a floating-point number with
4597     // exponent of 1.
4598     SDValue X = GetSignificand(DAG, Op1, dl);
4599 
4600     // Different possible minimax approximations of significand in
4601     // floating-point for various degrees of accuracy over [1,2].
4602     SDValue Log2ofMantissa;
4603     if (LimitFloatPrecision <= 6) {
4604       // For floating-point precision of 6:
4605       //
4606       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4607       //
4608       // error 0.0049451742, which is more than 7 bits
4609       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4610                                getF32Constant(DAG, 0xbeb08fe0, dl));
4611       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4612                                getF32Constant(DAG, 0x40019463, dl));
4613       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4614       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4615                                    getF32Constant(DAG, 0x3fd6633d, dl));
4616     } else if (LimitFloatPrecision <= 12) {
4617       // For floating-point precision of 12:
4618       //
4619       //   Log2ofMantissa =
4620       //     -2.51285454f +
4621       //       (4.07009056f +
4622       //         (-2.12067489f +
4623       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4624       //
4625       // error 0.0000876136000, which is better than 13 bits
4626       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4627                                getF32Constant(DAG, 0xbda7262e, dl));
4628       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4629                                getF32Constant(DAG, 0x3f25280b, dl));
4630       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4631       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4632                                getF32Constant(DAG, 0x4007b923, dl));
4633       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4634       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4635                                getF32Constant(DAG, 0x40823e2f, dl));
4636       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4637       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4638                                    getF32Constant(DAG, 0x4020d29c, dl));
4639     } else { // LimitFloatPrecision <= 18
4640       // For floating-point precision of 18:
4641       //
4642       //   Log2ofMantissa =
4643       //     -3.0400495f +
4644       //       (6.1129976f +
4645       //         (-5.3420409f +
4646       //           (3.2865683f +
4647       //             (-1.2669343f +
4648       //               (0.27515199f -
4649       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4650       //
4651       // error 0.0000018516, which is better than 18 bits
4652       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4653                                getF32Constant(DAG, 0xbcd2769e, dl));
4654       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4655                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4656       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4657       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4658                                getF32Constant(DAG, 0x3fa22ae7, dl));
4659       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4660       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4661                                getF32Constant(DAG, 0x40525723, dl));
4662       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4663       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4664                                getF32Constant(DAG, 0x40aaf200, dl));
4665       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4666       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4667                                getF32Constant(DAG, 0x40c39dad, dl));
4668       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4669       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4670                                    getF32Constant(DAG, 0x4042902c, dl));
4671     }
4672 
4673     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4674   }
4675 
4676   // No special expansion.
4677   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4678 }
4679 
4680 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4681 /// limited-precision mode.
4682 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4683                            const TargetLowering &TLI) {
4684   // TODO: What fast-math-flags should be set on the floating-point nodes?
4685 
4686   if (Op.getValueType() == MVT::f32 &&
4687       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4688     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4689 
4690     // Scale the exponent by log10(2) [0.30102999f].
4691     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4692     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4693                                         getF32Constant(DAG, 0x3e9a209a, dl));
4694 
4695     // Get the significand and build it into a floating-point number with
4696     // exponent of 1.
4697     SDValue X = GetSignificand(DAG, Op1, dl);
4698 
4699     SDValue Log10ofMantissa;
4700     if (LimitFloatPrecision <= 6) {
4701       // For floating-point precision of 6:
4702       //
4703       //   Log10ofMantissa =
4704       //     -0.50419619f +
4705       //       (0.60948995f - 0.10380950f * x) * x;
4706       //
4707       // error 0.0014886165, which is 6 bits
4708       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4709                                getF32Constant(DAG, 0xbdd49a13, dl));
4710       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4711                                getF32Constant(DAG, 0x3f1c0789, dl));
4712       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4713       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4714                                     getF32Constant(DAG, 0x3f011300, dl));
4715     } else if (LimitFloatPrecision <= 12) {
4716       // For floating-point precision of 12:
4717       //
4718       //   Log10ofMantissa =
4719       //     -0.64831180f +
4720       //       (0.91751397f +
4721       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4722       //
4723       // error 0.00019228036, which is better than 12 bits
4724       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4725                                getF32Constant(DAG, 0x3d431f31, dl));
4726       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4727                                getF32Constant(DAG, 0x3ea21fb2, dl));
4728       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4729       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4730                                getF32Constant(DAG, 0x3f6ae232, dl));
4731       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4732       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4733                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4734     } else { // LimitFloatPrecision <= 18
4735       // For floating-point precision of 18:
4736       //
4737       //   Log10ofMantissa =
4738       //     -0.84299375f +
4739       //       (1.5327582f +
4740       //         (-1.0688956f +
4741       //           (0.49102474f +
4742       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4743       //
4744       // error 0.0000037995730, which is better than 18 bits
4745       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4746                                getF32Constant(DAG, 0x3c5d51ce, dl));
4747       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4748                                getF32Constant(DAG, 0x3e00685a, dl));
4749       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4750       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4751                                getF32Constant(DAG, 0x3efb6798, dl));
4752       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4753       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4754                                getF32Constant(DAG, 0x3f88d192, dl));
4755       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4756       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4757                                getF32Constant(DAG, 0x3fc4316c, dl));
4758       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4759       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4760                                     getF32Constant(DAG, 0x3f57ce70, dl));
4761     }
4762 
4763     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4764   }
4765 
4766   // No special expansion.
4767   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4768 }
4769 
4770 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4771 /// limited-precision mode.
4772 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4773                           const TargetLowering &TLI) {
4774   if (Op.getValueType() == MVT::f32 &&
4775       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4776     return getLimitedPrecisionExp2(Op, dl, DAG);
4777 
4778   // No special expansion.
4779   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4780 }
4781 
4782 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4783 /// limited-precision mode with x == 10.0f.
4784 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4785                          SelectionDAG &DAG, const TargetLowering &TLI) {
4786   bool IsExp10 = false;
4787   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4788       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4789     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4790       APFloat Ten(10.0f);
4791       IsExp10 = LHSC->isExactlyValue(Ten);
4792     }
4793   }
4794 
4795   // TODO: What fast-math-flags should be set on the FMUL node?
4796   if (IsExp10) {
4797     // Put the exponent in the right bit position for later addition to the
4798     // final result:
4799     //
4800     //   #define LOG2OF10 3.3219281f
4801     //   t0 = Op * LOG2OF10;
4802     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4803                              getF32Constant(DAG, 0x40549a78, dl));
4804     return getLimitedPrecisionExp2(t0, dl, DAG);
4805   }
4806 
4807   // No special expansion.
4808   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4809 }
4810 
4811 /// ExpandPowI - Expand a llvm.powi intrinsic.
4812 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4813                           SelectionDAG &DAG) {
4814   // If RHS is a constant, we can expand this out to a multiplication tree,
4815   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4816   // optimizing for size, we only want to do this if the expansion would produce
4817   // a small number of multiplies, otherwise we do the full expansion.
4818   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4819     // Get the exponent as a positive value.
4820     unsigned Val = RHSC->getSExtValue();
4821     if ((int)Val < 0) Val = -Val;
4822 
4823     // powi(x, 0) -> 1.0
4824     if (Val == 0)
4825       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4826 
4827     const Function &F = DAG.getMachineFunction().getFunction();
4828     if (!F.optForSize() ||
4829         // If optimizing for size, don't insert too many multiplies.
4830         // This inserts up to 5 multiplies.
4831         countPopulation(Val) + Log2_32(Val) < 7) {
4832       // We use the simple binary decomposition method to generate the multiply
4833       // sequence.  There are more optimal ways to do this (for example,
4834       // powi(x,15) generates one more multiply than it should), but this has
4835       // the benefit of being both really simple and much better than a libcall.
4836       SDValue Res;  // Logically starts equal to 1.0
4837       SDValue CurSquare = LHS;
4838       // TODO: Intrinsics should have fast-math-flags that propagate to these
4839       // nodes.
4840       while (Val) {
4841         if (Val & 1) {
4842           if (Res.getNode())
4843             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4844           else
4845             Res = CurSquare;  // 1.0*CurSquare.
4846         }
4847 
4848         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4849                                 CurSquare, CurSquare);
4850         Val >>= 1;
4851       }
4852 
4853       // If the original was negative, invert the result, producing 1/(x*x*x).
4854       if (RHSC->getSExtValue() < 0)
4855         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4856                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4857       return Res;
4858     }
4859   }
4860 
4861   // Otherwise, expand to a libcall.
4862   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4863 }
4864 
4865 // getUnderlyingArgReg - Find underlying register used for a truncated or
4866 // bitcasted argument.
4867 static unsigned getUnderlyingArgReg(const SDValue &N) {
4868   switch (N.getOpcode()) {
4869   case ISD::CopyFromReg:
4870     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4871   case ISD::BITCAST:
4872   case ISD::AssertZext:
4873   case ISD::AssertSext:
4874   case ISD::TRUNCATE:
4875     return getUnderlyingArgReg(N.getOperand(0));
4876   default:
4877     return 0;
4878   }
4879 }
4880 
4881 /// If the DbgValueInst is a dbg_value of a function argument, create the
4882 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4883 /// instruction selection, they will be inserted to the entry BB.
4884 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4885     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4886     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4887   const Argument *Arg = dyn_cast<Argument>(V);
4888   if (!Arg)
4889     return false;
4890 
4891   MachineFunction &MF = DAG.getMachineFunction();
4892   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4893 
4894   bool IsIndirect = false;
4895   Optional<MachineOperand> Op;
4896   // Some arguments' frame index is recorded during argument lowering.
4897   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4898   if (FI != std::numeric_limits<int>::max())
4899     Op = MachineOperand::CreateFI(FI);
4900 
4901   if (!Op && N.getNode()) {
4902     unsigned Reg = getUnderlyingArgReg(N);
4903     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4904       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4905       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4906       if (PR)
4907         Reg = PR;
4908     }
4909     if (Reg) {
4910       Op = MachineOperand::CreateReg(Reg, false);
4911       IsIndirect = IsDbgDeclare;
4912     }
4913   }
4914 
4915   if (!Op && N.getNode())
4916     // Check if frame index is available.
4917     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4918       if (FrameIndexSDNode *FINode =
4919           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4920         Op = MachineOperand::CreateFI(FINode->getIndex());
4921 
4922   if (!Op) {
4923     // Check if ValueMap has reg number.
4924     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4925     if (VMI != FuncInfo.ValueMap.end()) {
4926       const auto &TLI = DAG.getTargetLoweringInfo();
4927       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4928                        V->getType(), isABIRegCopy(V));
4929       if (RFV.occupiesMultipleRegs()) {
4930         unsigned Offset = 0;
4931         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4932           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4933           auto FragmentExpr = DIExpression::createFragmentExpression(
4934               Expr, Offset, RegAndSize.second);
4935           if (!FragmentExpr)
4936             continue;
4937           FuncInfo.ArgDbgValues.push_back(
4938               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4939                       Op->getReg(), Variable, *FragmentExpr));
4940           Offset += RegAndSize.second;
4941         }
4942         return true;
4943       }
4944       Op = MachineOperand::CreateReg(VMI->second, false);
4945       IsIndirect = IsDbgDeclare;
4946     }
4947   }
4948 
4949   if (!Op)
4950     return false;
4951 
4952   assert(Variable->isValidLocationForIntrinsic(DL) &&
4953          "Expected inlined-at fields to agree");
4954   if (Op->isReg())
4955     FuncInfo.ArgDbgValues.push_back(
4956         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4957                 Op->getReg(), Variable, Expr));
4958   else
4959     FuncInfo.ArgDbgValues.push_back(
4960         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4961             .add(*Op)
4962             .addImm(0)
4963             .addMetadata(Variable)
4964             .addMetadata(Expr));
4965 
4966   return true;
4967 }
4968 
4969 /// Return the appropriate SDDbgValue based on N.
4970 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4971                                              DILocalVariable *Variable,
4972                                              DIExpression *Expr,
4973                                              const DebugLoc &dl,
4974                                              unsigned DbgSDNodeOrder) {
4975   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4976     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4977     // stack slot locations as such instead of as indirectly addressed
4978     // locations.
4979     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4980                                      DbgSDNodeOrder);
4981   }
4982   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4983                          DbgSDNodeOrder);
4984 }
4985 
4986 // VisualStudio defines setjmp as _setjmp
4987 #if defined(_MSC_VER) && defined(setjmp) && \
4988                          !defined(setjmp_undefined_for_msvc)
4989 #  pragma push_macro("setjmp")
4990 #  undef setjmp
4991 #  define setjmp_undefined_for_msvc
4992 #endif
4993 
4994 /// Lower the call to the specified intrinsic function. If we want to emit this
4995 /// as a call to a named external function, return the name. Otherwise, lower it
4996 /// and return null.
4997 const char *
4998 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4999   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5000   SDLoc sdl = getCurSDLoc();
5001   DebugLoc dl = getCurDebugLoc();
5002   SDValue Res;
5003 
5004   switch (Intrinsic) {
5005   default:
5006     // By default, turn this into a target intrinsic node.
5007     visitTargetIntrinsic(I, Intrinsic);
5008     return nullptr;
5009   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5010   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5011   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5012   case Intrinsic::returnaddress:
5013     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5014                              TLI.getPointerTy(DAG.getDataLayout()),
5015                              getValue(I.getArgOperand(0))));
5016     return nullptr;
5017   case Intrinsic::addressofreturnaddress:
5018     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5019                              TLI.getPointerTy(DAG.getDataLayout())));
5020     return nullptr;
5021   case Intrinsic::frameaddress:
5022     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5023                              TLI.getPointerTy(DAG.getDataLayout()),
5024                              getValue(I.getArgOperand(0))));
5025     return nullptr;
5026   case Intrinsic::read_register: {
5027     Value *Reg = I.getArgOperand(0);
5028     SDValue Chain = getRoot();
5029     SDValue RegName =
5030         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5031     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5032     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5033       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5034     setValue(&I, Res);
5035     DAG.setRoot(Res.getValue(1));
5036     return nullptr;
5037   }
5038   case Intrinsic::write_register: {
5039     Value *Reg = I.getArgOperand(0);
5040     Value *RegValue = I.getArgOperand(1);
5041     SDValue Chain = getRoot();
5042     SDValue RegName =
5043         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5044     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5045                             RegName, getValue(RegValue)));
5046     return nullptr;
5047   }
5048   case Intrinsic::setjmp:
5049     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5050   case Intrinsic::longjmp:
5051     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5052   case Intrinsic::memcpy: {
5053     const auto &MCI = cast<MemCpyInst>(I);
5054     SDValue Op1 = getValue(I.getArgOperand(0));
5055     SDValue Op2 = getValue(I.getArgOperand(1));
5056     SDValue Op3 = getValue(I.getArgOperand(2));
5057     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5058     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5059     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5060     unsigned Align = MinAlign(DstAlign, SrcAlign);
5061     bool isVol = MCI.isVolatile();
5062     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5063     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5064     // node.
5065     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5066                                false, isTC,
5067                                MachinePointerInfo(I.getArgOperand(0)),
5068                                MachinePointerInfo(I.getArgOperand(1)));
5069     updateDAGForMaybeTailCall(MC);
5070     return nullptr;
5071   }
5072   case Intrinsic::memset: {
5073     const auto &MSI = cast<MemSetInst>(I);
5074     SDValue Op1 = getValue(I.getArgOperand(0));
5075     SDValue Op2 = getValue(I.getArgOperand(1));
5076     SDValue Op3 = getValue(I.getArgOperand(2));
5077     // @llvm.memset defines 0 and 1 to both mean no alignment.
5078     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5079     bool isVol = MSI.isVolatile();
5080     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5081     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5082                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5083     updateDAGForMaybeTailCall(MS);
5084     return nullptr;
5085   }
5086   case Intrinsic::memmove: {
5087     const auto &MMI = cast<MemMoveInst>(I);
5088     SDValue Op1 = getValue(I.getArgOperand(0));
5089     SDValue Op2 = getValue(I.getArgOperand(1));
5090     SDValue Op3 = getValue(I.getArgOperand(2));
5091     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5092     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5093     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5094     unsigned Align = MinAlign(DstAlign, SrcAlign);
5095     bool isVol = MMI.isVolatile();
5096     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5097     // FIXME: Support passing different dest/src alignments to the memmove DAG
5098     // node.
5099     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5100                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5101                                 MachinePointerInfo(I.getArgOperand(1)));
5102     updateDAGForMaybeTailCall(MM);
5103     return nullptr;
5104   }
5105   case Intrinsic::memcpy_element_unordered_atomic: {
5106     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5107     SDValue Dst = getValue(MI.getRawDest());
5108     SDValue Src = getValue(MI.getRawSource());
5109     SDValue Length = getValue(MI.getLength());
5110 
5111     unsigned DstAlign = MI.getDestAlignment();
5112     unsigned SrcAlign = MI.getSourceAlignment();
5113     Type *LengthTy = MI.getLength()->getType();
5114     unsigned ElemSz = MI.getElementSizeInBytes();
5115     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5116     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5117                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5118                                      MachinePointerInfo(MI.getRawDest()),
5119                                      MachinePointerInfo(MI.getRawSource()));
5120     updateDAGForMaybeTailCall(MC);
5121     return nullptr;
5122   }
5123   case Intrinsic::memmove_element_unordered_atomic: {
5124     auto &MI = cast<AtomicMemMoveInst>(I);
5125     SDValue Dst = getValue(MI.getRawDest());
5126     SDValue Src = getValue(MI.getRawSource());
5127     SDValue Length = getValue(MI.getLength());
5128 
5129     unsigned DstAlign = MI.getDestAlignment();
5130     unsigned SrcAlign = MI.getSourceAlignment();
5131     Type *LengthTy = MI.getLength()->getType();
5132     unsigned ElemSz = MI.getElementSizeInBytes();
5133     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5134     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5135                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5136                                       MachinePointerInfo(MI.getRawDest()),
5137                                       MachinePointerInfo(MI.getRawSource()));
5138     updateDAGForMaybeTailCall(MC);
5139     return nullptr;
5140   }
5141   case Intrinsic::memset_element_unordered_atomic: {
5142     auto &MI = cast<AtomicMemSetInst>(I);
5143     SDValue Dst = getValue(MI.getRawDest());
5144     SDValue Val = getValue(MI.getValue());
5145     SDValue Length = getValue(MI.getLength());
5146 
5147     unsigned DstAlign = MI.getDestAlignment();
5148     Type *LengthTy = MI.getLength()->getType();
5149     unsigned ElemSz = MI.getElementSizeInBytes();
5150     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5151     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5152                                      LengthTy, ElemSz, isTC,
5153                                      MachinePointerInfo(MI.getRawDest()));
5154     updateDAGForMaybeTailCall(MC);
5155     return nullptr;
5156   }
5157   case Intrinsic::dbg_addr:
5158   case Intrinsic::dbg_declare: {
5159     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5160     DILocalVariable *Variable = DI.getVariable();
5161     DIExpression *Expression = DI.getExpression();
5162     dropDanglingDebugInfo(Variable, Expression);
5163     assert(Variable && "Missing variable");
5164 
5165     // Check if address has undef value.
5166     const Value *Address = DI.getVariableLocation();
5167     if (!Address || isa<UndefValue>(Address) ||
5168         (Address->use_empty() && !isa<Argument>(Address))) {
5169       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5170       return nullptr;
5171     }
5172 
5173     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5174 
5175     // Check if this variable can be described by a frame index, typically
5176     // either as a static alloca or a byval parameter.
5177     int FI = std::numeric_limits<int>::max();
5178     if (const auto *AI =
5179             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5180       if (AI->isStaticAlloca()) {
5181         auto I = FuncInfo.StaticAllocaMap.find(AI);
5182         if (I != FuncInfo.StaticAllocaMap.end())
5183           FI = I->second;
5184       }
5185     } else if (const auto *Arg = dyn_cast<Argument>(
5186                    Address->stripInBoundsConstantOffsets())) {
5187       FI = FuncInfo.getArgumentFrameIndex(Arg);
5188     }
5189 
5190     // llvm.dbg.addr is control dependent and always generates indirect
5191     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5192     // the MachineFunction variable table.
5193     if (FI != std::numeric_limits<int>::max()) {
5194       if (Intrinsic == Intrinsic::dbg_addr) {
5195          SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5196                                                      FI, dl, SDNodeOrder);
5197          DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5198       }
5199       return nullptr;
5200     }
5201 
5202     SDValue &N = NodeMap[Address];
5203     if (!N.getNode() && isa<Argument>(Address))
5204       // Check unused arguments map.
5205       N = UnusedArgNodeMap[Address];
5206     SDDbgValue *SDV;
5207     if (N.getNode()) {
5208       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5209         Address = BCI->getOperand(0);
5210       // Parameters are handled specially.
5211       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5212       if (isParameter && FINode) {
5213         // Byval parameter. We have a frame index at this point.
5214         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5215                                         FINode->getIndex(), dl, SDNodeOrder);
5216       } else if (isa<Argument>(Address)) {
5217         // Address is an argument, so try to emit its dbg value using
5218         // virtual register info from the FuncInfo.ValueMap.
5219         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5220         return nullptr;
5221       } else {
5222         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5223                               true, dl, SDNodeOrder);
5224       }
5225       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5226     } else {
5227       // If Address is an argument then try to emit its dbg value using
5228       // virtual register info from the FuncInfo.ValueMap.
5229       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5230                                     N)) {
5231         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5232       }
5233     }
5234     return nullptr;
5235   }
5236   case Intrinsic::dbg_label: {
5237     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5238     DILabel *Label = DI.getLabel();
5239     assert(Label && "Missing label");
5240 
5241     SDDbgLabel *SDV;
5242     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5243     DAG.AddDbgLabel(SDV);
5244     return nullptr;
5245   }
5246   case Intrinsic::dbg_value: {
5247     const DbgValueInst &DI = cast<DbgValueInst>(I);
5248     assert(DI.getVariable() && "Missing variable");
5249 
5250     DILocalVariable *Variable = DI.getVariable();
5251     DIExpression *Expression = DI.getExpression();
5252     dropDanglingDebugInfo(Variable, Expression);
5253     const Value *V = DI.getValue();
5254     if (!V)
5255       return nullptr;
5256 
5257     SDDbgValue *SDV;
5258     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5259       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5260       DAG.AddDbgValue(SDV, nullptr, false);
5261       return nullptr;
5262     }
5263 
5264     // Do not use getValue() in here; we don't want to generate code at
5265     // this point if it hasn't been done yet.
5266     SDValue N = NodeMap[V];
5267     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5268       N = UnusedArgNodeMap[V];
5269     if (N.getNode()) {
5270       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5271         return nullptr;
5272       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5273       DAG.AddDbgValue(SDV, N.getNode(), false);
5274       return nullptr;
5275     }
5276 
5277     // PHI nodes have already been selected, so we should know which VReg that
5278     // is assigns to already.
5279     if (isa<PHINode>(V)) {
5280       auto VMI = FuncInfo.ValueMap.find(V);
5281       if (VMI != FuncInfo.ValueMap.end()) {
5282         unsigned Reg = VMI->second;
5283         // The PHI node may be split up into several MI PHI nodes (in
5284         // FunctionLoweringInfo::set).
5285         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5286                          V->getType(), false);
5287         if (RFV.occupiesMultipleRegs()) {
5288           unsigned Offset = 0;
5289           unsigned BitsToDescribe = 0;
5290           if (auto VarSize = Variable->getSizeInBits())
5291             BitsToDescribe = *VarSize;
5292           if (auto Fragment = Expression->getFragmentInfo())
5293             BitsToDescribe = Fragment->SizeInBits;
5294           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5295             unsigned RegisterSize = RegAndSize.second;
5296             // Bail out if all bits are described already.
5297             if (Offset >= BitsToDescribe)
5298               break;
5299             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5300                 ? BitsToDescribe - Offset
5301                 : RegisterSize;
5302             auto FragmentExpr = DIExpression::createFragmentExpression(
5303                 Expression, Offset, FragmentSize);
5304             if (!FragmentExpr)
5305                 continue;
5306             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5307                                       false, dl, SDNodeOrder);
5308             DAG.AddDbgValue(SDV, nullptr, false);
5309             Offset += RegisterSize;
5310           }
5311         } else {
5312           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5313                                     SDNodeOrder);
5314           DAG.AddDbgValue(SDV, nullptr, false);
5315         }
5316         return nullptr;
5317       }
5318     }
5319 
5320     // TODO: When we get here we will either drop the dbg.value completely, or
5321     // we try to move it forward by letting it dangle for awhile. So we should
5322     // probably add an extra DbgValue to the DAG here, with a reference to
5323     // "noreg", to indicate that we have lost the debug location for the
5324     // variable.
5325 
5326     if (!V->use_empty() ) {
5327       // Do not call getValue(V) yet, as we don't want to generate code.
5328       // Remember it for later.
5329       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5330       DanglingDebugInfoMap[V].push_back(DDI);
5331       return nullptr;
5332     }
5333 
5334     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5335     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5336     return nullptr;
5337   }
5338 
5339   case Intrinsic::eh_typeid_for: {
5340     // Find the type id for the given typeinfo.
5341     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5342     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5343     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5344     setValue(&I, Res);
5345     return nullptr;
5346   }
5347 
5348   case Intrinsic::eh_return_i32:
5349   case Intrinsic::eh_return_i64:
5350     DAG.getMachineFunction().setCallsEHReturn(true);
5351     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5352                             MVT::Other,
5353                             getControlRoot(),
5354                             getValue(I.getArgOperand(0)),
5355                             getValue(I.getArgOperand(1))));
5356     return nullptr;
5357   case Intrinsic::eh_unwind_init:
5358     DAG.getMachineFunction().setCallsUnwindInit(true);
5359     return nullptr;
5360   case Intrinsic::eh_dwarf_cfa:
5361     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5362                              TLI.getPointerTy(DAG.getDataLayout()),
5363                              getValue(I.getArgOperand(0))));
5364     return nullptr;
5365   case Intrinsic::eh_sjlj_callsite: {
5366     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5367     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5368     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5369     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5370 
5371     MMI.setCurrentCallSite(CI->getZExtValue());
5372     return nullptr;
5373   }
5374   case Intrinsic::eh_sjlj_functioncontext: {
5375     // Get and store the index of the function context.
5376     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5377     AllocaInst *FnCtx =
5378       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5379     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5380     MFI.setFunctionContextIndex(FI);
5381     return nullptr;
5382   }
5383   case Intrinsic::eh_sjlj_setjmp: {
5384     SDValue Ops[2];
5385     Ops[0] = getRoot();
5386     Ops[1] = getValue(I.getArgOperand(0));
5387     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5388                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5389     setValue(&I, Op.getValue(0));
5390     DAG.setRoot(Op.getValue(1));
5391     return nullptr;
5392   }
5393   case Intrinsic::eh_sjlj_longjmp:
5394     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5395                             getRoot(), getValue(I.getArgOperand(0))));
5396     return nullptr;
5397   case Intrinsic::eh_sjlj_setup_dispatch:
5398     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5399                             getRoot()));
5400     return nullptr;
5401   case Intrinsic::masked_gather:
5402     visitMaskedGather(I);
5403     return nullptr;
5404   case Intrinsic::masked_load:
5405     visitMaskedLoad(I);
5406     return nullptr;
5407   case Intrinsic::masked_scatter:
5408     visitMaskedScatter(I);
5409     return nullptr;
5410   case Intrinsic::masked_store:
5411     visitMaskedStore(I);
5412     return nullptr;
5413   case Intrinsic::masked_expandload:
5414     visitMaskedLoad(I, true /* IsExpanding */);
5415     return nullptr;
5416   case Intrinsic::masked_compressstore:
5417     visitMaskedStore(I, true /* IsCompressing */);
5418     return nullptr;
5419   case Intrinsic::x86_mmx_pslli_w:
5420   case Intrinsic::x86_mmx_pslli_d:
5421   case Intrinsic::x86_mmx_pslli_q:
5422   case Intrinsic::x86_mmx_psrli_w:
5423   case Intrinsic::x86_mmx_psrli_d:
5424   case Intrinsic::x86_mmx_psrli_q:
5425   case Intrinsic::x86_mmx_psrai_w:
5426   case Intrinsic::x86_mmx_psrai_d: {
5427     SDValue ShAmt = getValue(I.getArgOperand(1));
5428     if (isa<ConstantSDNode>(ShAmt)) {
5429       visitTargetIntrinsic(I, Intrinsic);
5430       return nullptr;
5431     }
5432     unsigned NewIntrinsic = 0;
5433     EVT ShAmtVT = MVT::v2i32;
5434     switch (Intrinsic) {
5435     case Intrinsic::x86_mmx_pslli_w:
5436       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5437       break;
5438     case Intrinsic::x86_mmx_pslli_d:
5439       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5440       break;
5441     case Intrinsic::x86_mmx_pslli_q:
5442       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5443       break;
5444     case Intrinsic::x86_mmx_psrli_w:
5445       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5446       break;
5447     case Intrinsic::x86_mmx_psrli_d:
5448       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5449       break;
5450     case Intrinsic::x86_mmx_psrli_q:
5451       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5452       break;
5453     case Intrinsic::x86_mmx_psrai_w:
5454       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5455       break;
5456     case Intrinsic::x86_mmx_psrai_d:
5457       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5458       break;
5459     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5460     }
5461 
5462     // The vector shift intrinsics with scalars uses 32b shift amounts but
5463     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5464     // to be zero.
5465     // We must do this early because v2i32 is not a legal type.
5466     SDValue ShOps[2];
5467     ShOps[0] = ShAmt;
5468     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5469     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5470     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5471     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5472     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5473                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5474                        getValue(I.getArgOperand(0)), ShAmt);
5475     setValue(&I, Res);
5476     return nullptr;
5477   }
5478   case Intrinsic::powi:
5479     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5480                             getValue(I.getArgOperand(1)), DAG));
5481     return nullptr;
5482   case Intrinsic::log:
5483     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5484     return nullptr;
5485   case Intrinsic::log2:
5486     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5487     return nullptr;
5488   case Intrinsic::log10:
5489     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5490     return nullptr;
5491   case Intrinsic::exp:
5492     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5493     return nullptr;
5494   case Intrinsic::exp2:
5495     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5496     return nullptr;
5497   case Intrinsic::pow:
5498     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5499                            getValue(I.getArgOperand(1)), DAG, TLI));
5500     return nullptr;
5501   case Intrinsic::sqrt:
5502   case Intrinsic::fabs:
5503   case Intrinsic::sin:
5504   case Intrinsic::cos:
5505   case Intrinsic::floor:
5506   case Intrinsic::ceil:
5507   case Intrinsic::trunc:
5508   case Intrinsic::rint:
5509   case Intrinsic::nearbyint:
5510   case Intrinsic::round:
5511   case Intrinsic::canonicalize: {
5512     unsigned Opcode;
5513     switch (Intrinsic) {
5514     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5515     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5516     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5517     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5518     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5519     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5520     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5521     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5522     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5523     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5524     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5525     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5526     }
5527 
5528     setValue(&I, DAG.getNode(Opcode, sdl,
5529                              getValue(I.getArgOperand(0)).getValueType(),
5530                              getValue(I.getArgOperand(0))));
5531     return nullptr;
5532   }
5533   case Intrinsic::minnum: {
5534     auto VT = getValue(I.getArgOperand(0)).getValueType();
5535     unsigned Opc =
5536         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5537             ? ISD::FMINNAN
5538             : ISD::FMINNUM;
5539     setValue(&I, DAG.getNode(Opc, sdl, VT,
5540                              getValue(I.getArgOperand(0)),
5541                              getValue(I.getArgOperand(1))));
5542     return nullptr;
5543   }
5544   case Intrinsic::maxnum: {
5545     auto VT = getValue(I.getArgOperand(0)).getValueType();
5546     unsigned Opc =
5547         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5548             ? ISD::FMAXNAN
5549             : ISD::FMAXNUM;
5550     setValue(&I, DAG.getNode(Opc, sdl, VT,
5551                              getValue(I.getArgOperand(0)),
5552                              getValue(I.getArgOperand(1))));
5553     return nullptr;
5554   }
5555   case Intrinsic::copysign:
5556     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5557                              getValue(I.getArgOperand(0)).getValueType(),
5558                              getValue(I.getArgOperand(0)),
5559                              getValue(I.getArgOperand(1))));
5560     return nullptr;
5561   case Intrinsic::fma:
5562     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5563                              getValue(I.getArgOperand(0)).getValueType(),
5564                              getValue(I.getArgOperand(0)),
5565                              getValue(I.getArgOperand(1)),
5566                              getValue(I.getArgOperand(2))));
5567     return nullptr;
5568   case Intrinsic::experimental_constrained_fadd:
5569   case Intrinsic::experimental_constrained_fsub:
5570   case Intrinsic::experimental_constrained_fmul:
5571   case Intrinsic::experimental_constrained_fdiv:
5572   case Intrinsic::experimental_constrained_frem:
5573   case Intrinsic::experimental_constrained_fma:
5574   case Intrinsic::experimental_constrained_sqrt:
5575   case Intrinsic::experimental_constrained_pow:
5576   case Intrinsic::experimental_constrained_powi:
5577   case Intrinsic::experimental_constrained_sin:
5578   case Intrinsic::experimental_constrained_cos:
5579   case Intrinsic::experimental_constrained_exp:
5580   case Intrinsic::experimental_constrained_exp2:
5581   case Intrinsic::experimental_constrained_log:
5582   case Intrinsic::experimental_constrained_log10:
5583   case Intrinsic::experimental_constrained_log2:
5584   case Intrinsic::experimental_constrained_rint:
5585   case Intrinsic::experimental_constrained_nearbyint:
5586     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5587     return nullptr;
5588   case Intrinsic::fmuladd: {
5589     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5590     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5591         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5592       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5593                                getValue(I.getArgOperand(0)).getValueType(),
5594                                getValue(I.getArgOperand(0)),
5595                                getValue(I.getArgOperand(1)),
5596                                getValue(I.getArgOperand(2))));
5597     } else {
5598       // TODO: Intrinsic calls should have fast-math-flags.
5599       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5600                                 getValue(I.getArgOperand(0)).getValueType(),
5601                                 getValue(I.getArgOperand(0)),
5602                                 getValue(I.getArgOperand(1)));
5603       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5604                                 getValue(I.getArgOperand(0)).getValueType(),
5605                                 Mul,
5606                                 getValue(I.getArgOperand(2)));
5607       setValue(&I, Add);
5608     }
5609     return nullptr;
5610   }
5611   case Intrinsic::convert_to_fp16:
5612     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5613                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5614                                          getValue(I.getArgOperand(0)),
5615                                          DAG.getTargetConstant(0, sdl,
5616                                                                MVT::i32))));
5617     return nullptr;
5618   case Intrinsic::convert_from_fp16:
5619     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5620                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5621                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5622                                          getValue(I.getArgOperand(0)))));
5623     return nullptr;
5624   case Intrinsic::pcmarker: {
5625     SDValue Tmp = getValue(I.getArgOperand(0));
5626     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5627     return nullptr;
5628   }
5629   case Intrinsic::readcyclecounter: {
5630     SDValue Op = getRoot();
5631     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5632                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5633     setValue(&I, Res);
5634     DAG.setRoot(Res.getValue(1));
5635     return nullptr;
5636   }
5637   case Intrinsic::bitreverse:
5638     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5639                              getValue(I.getArgOperand(0)).getValueType(),
5640                              getValue(I.getArgOperand(0))));
5641     return nullptr;
5642   case Intrinsic::bswap:
5643     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5644                              getValue(I.getArgOperand(0)).getValueType(),
5645                              getValue(I.getArgOperand(0))));
5646     return nullptr;
5647   case Intrinsic::cttz: {
5648     SDValue Arg = getValue(I.getArgOperand(0));
5649     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5650     EVT Ty = Arg.getValueType();
5651     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5652                              sdl, Ty, Arg));
5653     return nullptr;
5654   }
5655   case Intrinsic::ctlz: {
5656     SDValue Arg = getValue(I.getArgOperand(0));
5657     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5658     EVT Ty = Arg.getValueType();
5659     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5660                              sdl, Ty, Arg));
5661     return nullptr;
5662   }
5663   case Intrinsic::ctpop: {
5664     SDValue Arg = getValue(I.getArgOperand(0));
5665     EVT Ty = Arg.getValueType();
5666     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5667     return nullptr;
5668   }
5669   case Intrinsic::stacksave: {
5670     SDValue Op = getRoot();
5671     Res = DAG.getNode(
5672         ISD::STACKSAVE, sdl,
5673         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5674     setValue(&I, Res);
5675     DAG.setRoot(Res.getValue(1));
5676     return nullptr;
5677   }
5678   case Intrinsic::stackrestore:
5679     Res = getValue(I.getArgOperand(0));
5680     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5681     return nullptr;
5682   case Intrinsic::get_dynamic_area_offset: {
5683     SDValue Op = getRoot();
5684     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5685     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5686     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5687     // target.
5688     if (PtrTy != ResTy)
5689       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5690                          " intrinsic!");
5691     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5692                       Op);
5693     DAG.setRoot(Op);
5694     setValue(&I, Res);
5695     return nullptr;
5696   }
5697   case Intrinsic::stackguard: {
5698     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5699     MachineFunction &MF = DAG.getMachineFunction();
5700     const Module &M = *MF.getFunction().getParent();
5701     SDValue Chain = getRoot();
5702     if (TLI.useLoadStackGuardNode()) {
5703       Res = getLoadStackGuard(DAG, sdl, Chain);
5704     } else {
5705       const Value *Global = TLI.getSDagStackGuard(M);
5706       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5707       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5708                         MachinePointerInfo(Global, 0), Align,
5709                         MachineMemOperand::MOVolatile);
5710     }
5711     if (TLI.useStackGuardXorFP())
5712       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5713     DAG.setRoot(Chain);
5714     setValue(&I, Res);
5715     return nullptr;
5716   }
5717   case Intrinsic::stackprotector: {
5718     // Emit code into the DAG to store the stack guard onto the stack.
5719     MachineFunction &MF = DAG.getMachineFunction();
5720     MachineFrameInfo &MFI = MF.getFrameInfo();
5721     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5722     SDValue Src, Chain = getRoot();
5723 
5724     if (TLI.useLoadStackGuardNode())
5725       Src = getLoadStackGuard(DAG, sdl, Chain);
5726     else
5727       Src = getValue(I.getArgOperand(0));   // The guard's value.
5728 
5729     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5730 
5731     int FI = FuncInfo.StaticAllocaMap[Slot];
5732     MFI.setStackProtectorIndex(FI);
5733 
5734     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5735 
5736     // Store the stack protector onto the stack.
5737     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5738                                                  DAG.getMachineFunction(), FI),
5739                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5740     setValue(&I, Res);
5741     DAG.setRoot(Res);
5742     return nullptr;
5743   }
5744   case Intrinsic::objectsize: {
5745     // If we don't know by now, we're never going to know.
5746     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5747 
5748     assert(CI && "Non-constant type in __builtin_object_size?");
5749 
5750     SDValue Arg = getValue(I.getCalledValue());
5751     EVT Ty = Arg.getValueType();
5752 
5753     if (CI->isZero())
5754       Res = DAG.getConstant(-1ULL, sdl, Ty);
5755     else
5756       Res = DAG.getConstant(0, sdl, Ty);
5757 
5758     setValue(&I, Res);
5759     return nullptr;
5760   }
5761   case Intrinsic::annotation:
5762   case Intrinsic::ptr_annotation:
5763   case Intrinsic::launder_invariant_group:
5764     // Drop the intrinsic, but forward the value
5765     setValue(&I, getValue(I.getOperand(0)));
5766     return nullptr;
5767   case Intrinsic::assume:
5768   case Intrinsic::var_annotation:
5769   case Intrinsic::sideeffect:
5770     // Discard annotate attributes, assumptions, and artificial side-effects.
5771     return nullptr;
5772 
5773   case Intrinsic::codeview_annotation: {
5774     // Emit a label associated with this metadata.
5775     MachineFunction &MF = DAG.getMachineFunction();
5776     MCSymbol *Label =
5777         MF.getMMI().getContext().createTempSymbol("annotation", true);
5778     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5779     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5780     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5781     DAG.setRoot(Res);
5782     return nullptr;
5783   }
5784 
5785   case Intrinsic::init_trampoline: {
5786     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5787 
5788     SDValue Ops[6];
5789     Ops[0] = getRoot();
5790     Ops[1] = getValue(I.getArgOperand(0));
5791     Ops[2] = getValue(I.getArgOperand(1));
5792     Ops[3] = getValue(I.getArgOperand(2));
5793     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5794     Ops[5] = DAG.getSrcValue(F);
5795 
5796     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5797 
5798     DAG.setRoot(Res);
5799     return nullptr;
5800   }
5801   case Intrinsic::adjust_trampoline:
5802     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5803                              TLI.getPointerTy(DAG.getDataLayout()),
5804                              getValue(I.getArgOperand(0))));
5805     return nullptr;
5806   case Intrinsic::gcroot: {
5807     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5808            "only valid in functions with gc specified, enforced by Verifier");
5809     assert(GFI && "implied by previous");
5810     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5811     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5812 
5813     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5814     GFI->addStackRoot(FI->getIndex(), TypeMap);
5815     return nullptr;
5816   }
5817   case Intrinsic::gcread:
5818   case Intrinsic::gcwrite:
5819     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5820   case Intrinsic::flt_rounds:
5821     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5822     return nullptr;
5823 
5824   case Intrinsic::expect:
5825     // Just replace __builtin_expect(exp, c) with EXP.
5826     setValue(&I, getValue(I.getArgOperand(0)));
5827     return nullptr;
5828 
5829   case Intrinsic::debugtrap:
5830   case Intrinsic::trap: {
5831     StringRef TrapFuncName =
5832         I.getAttributes()
5833             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5834             .getValueAsString();
5835     if (TrapFuncName.empty()) {
5836       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5837         ISD::TRAP : ISD::DEBUGTRAP;
5838       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5839       return nullptr;
5840     }
5841     TargetLowering::ArgListTy Args;
5842 
5843     TargetLowering::CallLoweringInfo CLI(DAG);
5844     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5845         CallingConv::C, I.getType(),
5846         DAG.getExternalSymbol(TrapFuncName.data(),
5847                               TLI.getPointerTy(DAG.getDataLayout())),
5848         std::move(Args));
5849 
5850     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5851     DAG.setRoot(Result.second);
5852     return nullptr;
5853   }
5854 
5855   case Intrinsic::uadd_with_overflow:
5856   case Intrinsic::sadd_with_overflow:
5857   case Intrinsic::usub_with_overflow:
5858   case Intrinsic::ssub_with_overflow:
5859   case Intrinsic::umul_with_overflow:
5860   case Intrinsic::smul_with_overflow: {
5861     ISD::NodeType Op;
5862     switch (Intrinsic) {
5863     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5864     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5865     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5866     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5867     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5868     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5869     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5870     }
5871     SDValue Op1 = getValue(I.getArgOperand(0));
5872     SDValue Op2 = getValue(I.getArgOperand(1));
5873 
5874     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5875     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5876     return nullptr;
5877   }
5878   case Intrinsic::prefetch: {
5879     SDValue Ops[5];
5880     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5881     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5882     Ops[0] = DAG.getRoot();
5883     Ops[1] = getValue(I.getArgOperand(0));
5884     Ops[2] = getValue(I.getArgOperand(1));
5885     Ops[3] = getValue(I.getArgOperand(2));
5886     Ops[4] = getValue(I.getArgOperand(3));
5887     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5888                                              DAG.getVTList(MVT::Other), Ops,
5889                                              EVT::getIntegerVT(*Context, 8),
5890                                              MachinePointerInfo(I.getArgOperand(0)),
5891                                              0, /* align */
5892                                              Flags);
5893 
5894     // Chain the prefetch in parallell with any pending loads, to stay out of
5895     // the way of later optimizations.
5896     PendingLoads.push_back(Result);
5897     Result = getRoot();
5898     DAG.setRoot(Result);
5899     return nullptr;
5900   }
5901   case Intrinsic::lifetime_start:
5902   case Intrinsic::lifetime_end: {
5903     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5904     // Stack coloring is not enabled in O0, discard region information.
5905     if (TM.getOptLevel() == CodeGenOpt::None)
5906       return nullptr;
5907 
5908     SmallVector<Value *, 4> Allocas;
5909     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5910 
5911     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5912            E = Allocas.end(); Object != E; ++Object) {
5913       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5914 
5915       // Could not find an Alloca.
5916       if (!LifetimeObject)
5917         continue;
5918 
5919       // First check that the Alloca is static, otherwise it won't have a
5920       // valid frame index.
5921       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5922       if (SI == FuncInfo.StaticAllocaMap.end())
5923         return nullptr;
5924 
5925       int FI = SI->second;
5926 
5927       SDValue Ops[2];
5928       Ops[0] = getRoot();
5929       Ops[1] =
5930           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5931       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5932 
5933       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5934       DAG.setRoot(Res);
5935     }
5936     return nullptr;
5937   }
5938   case Intrinsic::invariant_start:
5939     // Discard region information.
5940     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5941     return nullptr;
5942   case Intrinsic::invariant_end:
5943     // Discard region information.
5944     return nullptr;
5945   case Intrinsic::clear_cache:
5946     return TLI.getClearCacheBuiltinName();
5947   case Intrinsic::donothing:
5948     // ignore
5949     return nullptr;
5950   case Intrinsic::experimental_stackmap:
5951     visitStackmap(I);
5952     return nullptr;
5953   case Intrinsic::experimental_patchpoint_void:
5954   case Intrinsic::experimental_patchpoint_i64:
5955     visitPatchpoint(&I);
5956     return nullptr;
5957   case Intrinsic::experimental_gc_statepoint:
5958     LowerStatepoint(ImmutableStatepoint(&I));
5959     return nullptr;
5960   case Intrinsic::experimental_gc_result:
5961     visitGCResult(cast<GCResultInst>(I));
5962     return nullptr;
5963   case Intrinsic::experimental_gc_relocate:
5964     visitGCRelocate(cast<GCRelocateInst>(I));
5965     return nullptr;
5966   case Intrinsic::instrprof_increment:
5967     llvm_unreachable("instrprof failed to lower an increment");
5968   case Intrinsic::instrprof_value_profile:
5969     llvm_unreachable("instrprof failed to lower a value profiling call");
5970   case Intrinsic::localescape: {
5971     MachineFunction &MF = DAG.getMachineFunction();
5972     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5973 
5974     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5975     // is the same on all targets.
5976     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5977       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5978       if (isa<ConstantPointerNull>(Arg))
5979         continue; // Skip null pointers. They represent a hole in index space.
5980       AllocaInst *Slot = cast<AllocaInst>(Arg);
5981       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5982              "can only escape static allocas");
5983       int FI = FuncInfo.StaticAllocaMap[Slot];
5984       MCSymbol *FrameAllocSym =
5985           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5986               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5987       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5988               TII->get(TargetOpcode::LOCAL_ESCAPE))
5989           .addSym(FrameAllocSym)
5990           .addFrameIndex(FI);
5991     }
5992 
5993     return nullptr;
5994   }
5995 
5996   case Intrinsic::localrecover: {
5997     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5998     MachineFunction &MF = DAG.getMachineFunction();
5999     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6000 
6001     // Get the symbol that defines the frame offset.
6002     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6003     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6004     unsigned IdxVal =
6005         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6006     MCSymbol *FrameAllocSym =
6007         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6008             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6009 
6010     // Create a MCSymbol for the label to avoid any target lowering
6011     // that would make this PC relative.
6012     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6013     SDValue OffsetVal =
6014         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6015 
6016     // Add the offset to the FP.
6017     Value *FP = I.getArgOperand(1);
6018     SDValue FPVal = getValue(FP);
6019     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6020     setValue(&I, Add);
6021 
6022     return nullptr;
6023   }
6024 
6025   case Intrinsic::eh_exceptionpointer:
6026   case Intrinsic::eh_exceptioncode: {
6027     // Get the exception pointer vreg, copy from it, and resize it to fit.
6028     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6029     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6030     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6031     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6032     SDValue N =
6033         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6034     if (Intrinsic == Intrinsic::eh_exceptioncode)
6035       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6036     setValue(&I, N);
6037     return nullptr;
6038   }
6039   case Intrinsic::xray_customevent: {
6040     // Here we want to make sure that the intrinsic behaves as if it has a
6041     // specific calling convention, and only for x86_64.
6042     // FIXME: Support other platforms later.
6043     const auto &Triple = DAG.getTarget().getTargetTriple();
6044     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6045       return nullptr;
6046 
6047     SDLoc DL = getCurSDLoc();
6048     SmallVector<SDValue, 8> Ops;
6049 
6050     // We want to say that we always want the arguments in registers.
6051     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6052     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6053     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6054     SDValue Chain = getRoot();
6055     Ops.push_back(LogEntryVal);
6056     Ops.push_back(StrSizeVal);
6057     Ops.push_back(Chain);
6058 
6059     // We need to enforce the calling convention for the callsite, so that
6060     // argument ordering is enforced correctly, and that register allocation can
6061     // see that some registers may be assumed clobbered and have to preserve
6062     // them across calls to the intrinsic.
6063     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6064                                            DL, NodeTys, Ops);
6065     SDValue patchableNode = SDValue(MN, 0);
6066     DAG.setRoot(patchableNode);
6067     setValue(&I, patchableNode);
6068     return nullptr;
6069   }
6070   case Intrinsic::xray_typedevent: {
6071     // Here we want to make sure that the intrinsic behaves as if it has a
6072     // specific calling convention, and only for x86_64.
6073     // FIXME: Support other platforms later.
6074     const auto &Triple = DAG.getTarget().getTargetTriple();
6075     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6076       return nullptr;
6077 
6078     SDLoc DL = getCurSDLoc();
6079     SmallVector<SDValue, 8> Ops;
6080 
6081     // We want to say that we always want the arguments in registers.
6082     // It's unclear to me how manipulating the selection DAG here forces callers
6083     // to provide arguments in registers instead of on the stack.
6084     SDValue LogTypeId = getValue(I.getArgOperand(0));
6085     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6086     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6087     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6088     SDValue Chain = getRoot();
6089     Ops.push_back(LogTypeId);
6090     Ops.push_back(LogEntryVal);
6091     Ops.push_back(StrSizeVal);
6092     Ops.push_back(Chain);
6093 
6094     // We need to enforce the calling convention for the callsite, so that
6095     // argument ordering is enforced correctly, and that register allocation can
6096     // see that some registers may be assumed clobbered and have to preserve
6097     // them across calls to the intrinsic.
6098     MachineSDNode *MN = DAG.getMachineNode(
6099         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6100     SDValue patchableNode = SDValue(MN, 0);
6101     DAG.setRoot(patchableNode);
6102     setValue(&I, patchableNode);
6103     return nullptr;
6104   }
6105   case Intrinsic::experimental_deoptimize:
6106     LowerDeoptimizeCall(&I);
6107     return nullptr;
6108 
6109   case Intrinsic::experimental_vector_reduce_fadd:
6110   case Intrinsic::experimental_vector_reduce_fmul:
6111   case Intrinsic::experimental_vector_reduce_add:
6112   case Intrinsic::experimental_vector_reduce_mul:
6113   case Intrinsic::experimental_vector_reduce_and:
6114   case Intrinsic::experimental_vector_reduce_or:
6115   case Intrinsic::experimental_vector_reduce_xor:
6116   case Intrinsic::experimental_vector_reduce_smax:
6117   case Intrinsic::experimental_vector_reduce_smin:
6118   case Intrinsic::experimental_vector_reduce_umax:
6119   case Intrinsic::experimental_vector_reduce_umin:
6120   case Intrinsic::experimental_vector_reduce_fmax:
6121   case Intrinsic::experimental_vector_reduce_fmin:
6122     visitVectorReduce(I, Intrinsic);
6123     return nullptr;
6124 
6125   case Intrinsic::icall_branch_funnel: {
6126     SmallVector<SDValue, 16> Ops;
6127     Ops.push_back(DAG.getRoot());
6128     Ops.push_back(getValue(I.getArgOperand(0)));
6129 
6130     int64_t Offset;
6131     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6132         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6133     if (!Base)
6134       report_fatal_error(
6135           "llvm.icall.branch.funnel operand must be a GlobalValue");
6136     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6137 
6138     struct BranchFunnelTarget {
6139       int64_t Offset;
6140       SDValue Target;
6141     };
6142     SmallVector<BranchFunnelTarget, 8> Targets;
6143 
6144     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6145       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6146           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6147       if (ElemBase != Base)
6148         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6149                            "to the same GlobalValue");
6150 
6151       SDValue Val = getValue(I.getArgOperand(Op + 1));
6152       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6153       if (!GA)
6154         report_fatal_error(
6155             "llvm.icall.branch.funnel operand must be a GlobalValue");
6156       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6157                                      GA->getGlobal(), getCurSDLoc(),
6158                                      Val.getValueType(), GA->getOffset())});
6159     }
6160     llvm::sort(Targets.begin(), Targets.end(),
6161                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6162                  return T1.Offset < T2.Offset;
6163                });
6164 
6165     for (auto &T : Targets) {
6166       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6167       Ops.push_back(T.Target);
6168     }
6169 
6170     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6171                                  getCurSDLoc(), MVT::Other, Ops),
6172               0);
6173     DAG.setRoot(N);
6174     setValue(&I, N);
6175     HasTailCall = true;
6176     return nullptr;
6177   }
6178 
6179   case Intrinsic::wasm_landingpad_index: {
6180     // TODO store landing pad index in a map, which will be used when generating
6181     // LSDA information
6182     return nullptr;
6183   }
6184   }
6185 }
6186 
6187 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6188     const ConstrainedFPIntrinsic &FPI) {
6189   SDLoc sdl = getCurSDLoc();
6190   unsigned Opcode;
6191   switch (FPI.getIntrinsicID()) {
6192   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6193   case Intrinsic::experimental_constrained_fadd:
6194     Opcode = ISD::STRICT_FADD;
6195     break;
6196   case Intrinsic::experimental_constrained_fsub:
6197     Opcode = ISD::STRICT_FSUB;
6198     break;
6199   case Intrinsic::experimental_constrained_fmul:
6200     Opcode = ISD::STRICT_FMUL;
6201     break;
6202   case Intrinsic::experimental_constrained_fdiv:
6203     Opcode = ISD::STRICT_FDIV;
6204     break;
6205   case Intrinsic::experimental_constrained_frem:
6206     Opcode = ISD::STRICT_FREM;
6207     break;
6208   case Intrinsic::experimental_constrained_fma:
6209     Opcode = ISD::STRICT_FMA;
6210     break;
6211   case Intrinsic::experimental_constrained_sqrt:
6212     Opcode = ISD::STRICT_FSQRT;
6213     break;
6214   case Intrinsic::experimental_constrained_pow:
6215     Opcode = ISD::STRICT_FPOW;
6216     break;
6217   case Intrinsic::experimental_constrained_powi:
6218     Opcode = ISD::STRICT_FPOWI;
6219     break;
6220   case Intrinsic::experimental_constrained_sin:
6221     Opcode = ISD::STRICT_FSIN;
6222     break;
6223   case Intrinsic::experimental_constrained_cos:
6224     Opcode = ISD::STRICT_FCOS;
6225     break;
6226   case Intrinsic::experimental_constrained_exp:
6227     Opcode = ISD::STRICT_FEXP;
6228     break;
6229   case Intrinsic::experimental_constrained_exp2:
6230     Opcode = ISD::STRICT_FEXP2;
6231     break;
6232   case Intrinsic::experimental_constrained_log:
6233     Opcode = ISD::STRICT_FLOG;
6234     break;
6235   case Intrinsic::experimental_constrained_log10:
6236     Opcode = ISD::STRICT_FLOG10;
6237     break;
6238   case Intrinsic::experimental_constrained_log2:
6239     Opcode = ISD::STRICT_FLOG2;
6240     break;
6241   case Intrinsic::experimental_constrained_rint:
6242     Opcode = ISD::STRICT_FRINT;
6243     break;
6244   case Intrinsic::experimental_constrained_nearbyint:
6245     Opcode = ISD::STRICT_FNEARBYINT;
6246     break;
6247   }
6248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6249   SDValue Chain = getRoot();
6250   SmallVector<EVT, 4> ValueVTs;
6251   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6252   ValueVTs.push_back(MVT::Other); // Out chain
6253 
6254   SDVTList VTs = DAG.getVTList(ValueVTs);
6255   SDValue Result;
6256   if (FPI.isUnaryOp())
6257     Result = DAG.getNode(Opcode, sdl, VTs,
6258                          { Chain, getValue(FPI.getArgOperand(0)) });
6259   else if (FPI.isTernaryOp())
6260     Result = DAG.getNode(Opcode, sdl, VTs,
6261                          { Chain, getValue(FPI.getArgOperand(0)),
6262                                   getValue(FPI.getArgOperand(1)),
6263                                   getValue(FPI.getArgOperand(2)) });
6264   else
6265     Result = DAG.getNode(Opcode, sdl, VTs,
6266                          { Chain, getValue(FPI.getArgOperand(0)),
6267                            getValue(FPI.getArgOperand(1))  });
6268 
6269   assert(Result.getNode()->getNumValues() == 2);
6270   SDValue OutChain = Result.getValue(1);
6271   DAG.setRoot(OutChain);
6272   SDValue FPResult = Result.getValue(0);
6273   setValue(&FPI, FPResult);
6274 }
6275 
6276 std::pair<SDValue, SDValue>
6277 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6278                                     const BasicBlock *EHPadBB) {
6279   MachineFunction &MF = DAG.getMachineFunction();
6280   MachineModuleInfo &MMI = MF.getMMI();
6281   MCSymbol *BeginLabel = nullptr;
6282 
6283   if (EHPadBB) {
6284     // Insert a label before the invoke call to mark the try range.  This can be
6285     // used to detect deletion of the invoke via the MachineModuleInfo.
6286     BeginLabel = MMI.getContext().createTempSymbol();
6287 
6288     // For SjLj, keep track of which landing pads go with which invokes
6289     // so as to maintain the ordering of pads in the LSDA.
6290     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6291     if (CallSiteIndex) {
6292       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6293       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6294 
6295       // Now that the call site is handled, stop tracking it.
6296       MMI.setCurrentCallSite(0);
6297     }
6298 
6299     // Both PendingLoads and PendingExports must be flushed here;
6300     // this call might not return.
6301     (void)getRoot();
6302     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6303 
6304     CLI.setChain(getRoot());
6305   }
6306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6307   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6308 
6309   assert((CLI.IsTailCall || Result.second.getNode()) &&
6310          "Non-null chain expected with non-tail call!");
6311   assert((Result.second.getNode() || !Result.first.getNode()) &&
6312          "Null value expected with tail call!");
6313 
6314   if (!Result.second.getNode()) {
6315     // As a special case, a null chain means that a tail call has been emitted
6316     // and the DAG root is already updated.
6317     HasTailCall = true;
6318 
6319     // Since there's no actual continuation from this block, nothing can be
6320     // relying on us setting vregs for them.
6321     PendingExports.clear();
6322   } else {
6323     DAG.setRoot(Result.second);
6324   }
6325 
6326   if (EHPadBB) {
6327     // Insert a label at the end of the invoke call to mark the try range.  This
6328     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6329     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6330     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6331 
6332     // Inform MachineModuleInfo of range.
6333     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6334     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6335     // actually use outlined funclets and their LSDA info style.
6336     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6337       assert(CLI.CS);
6338       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6339       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6340                                 BeginLabel, EndLabel);
6341     } else {
6342       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6343     }
6344   }
6345 
6346   return Result;
6347 }
6348 
6349 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6350                                       bool isTailCall,
6351                                       const BasicBlock *EHPadBB) {
6352   auto &DL = DAG.getDataLayout();
6353   FunctionType *FTy = CS.getFunctionType();
6354   Type *RetTy = CS.getType();
6355 
6356   TargetLowering::ArgListTy Args;
6357   Args.reserve(CS.arg_size());
6358 
6359   const Value *SwiftErrorVal = nullptr;
6360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6361 
6362   // We can't tail call inside a function with a swifterror argument. Lowering
6363   // does not support this yet. It would have to move into the swifterror
6364   // register before the call.
6365   auto *Caller = CS.getInstruction()->getParent()->getParent();
6366   if (TLI.supportSwiftError() &&
6367       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6368     isTailCall = false;
6369 
6370   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6371        i != e; ++i) {
6372     TargetLowering::ArgListEntry Entry;
6373     const Value *V = *i;
6374 
6375     // Skip empty types
6376     if (V->getType()->isEmptyTy())
6377       continue;
6378 
6379     SDValue ArgNode = getValue(V);
6380     Entry.Node = ArgNode; Entry.Ty = V->getType();
6381 
6382     Entry.setAttributes(&CS, i - CS.arg_begin());
6383 
6384     // Use swifterror virtual register as input to the call.
6385     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6386       SwiftErrorVal = V;
6387       // We find the virtual register for the actual swifterror argument.
6388       // Instead of using the Value, we use the virtual register instead.
6389       Entry.Node = DAG.getRegister(FuncInfo
6390                                        .getOrCreateSwiftErrorVRegUseAt(
6391                                            CS.getInstruction(), FuncInfo.MBB, V)
6392                                        .first,
6393                                    EVT(TLI.getPointerTy(DL)));
6394     }
6395 
6396     Args.push_back(Entry);
6397 
6398     // If we have an explicit sret argument that is an Instruction, (i.e., it
6399     // might point to function-local memory), we can't meaningfully tail-call.
6400     if (Entry.IsSRet && isa<Instruction>(V))
6401       isTailCall = false;
6402   }
6403 
6404   // Check if target-independent constraints permit a tail call here.
6405   // Target-dependent constraints are checked within TLI->LowerCallTo.
6406   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6407     isTailCall = false;
6408 
6409   // Disable tail calls if there is an swifterror argument. Targets have not
6410   // been updated to support tail calls.
6411   if (TLI.supportSwiftError() && SwiftErrorVal)
6412     isTailCall = false;
6413 
6414   TargetLowering::CallLoweringInfo CLI(DAG);
6415   CLI.setDebugLoc(getCurSDLoc())
6416       .setChain(getRoot())
6417       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6418       .setTailCall(isTailCall)
6419       .setConvergent(CS.isConvergent());
6420   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6421 
6422   if (Result.first.getNode()) {
6423     const Instruction *Inst = CS.getInstruction();
6424     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6425     setValue(Inst, Result.first);
6426   }
6427 
6428   // The last element of CLI.InVals has the SDValue for swifterror return.
6429   // Here we copy it to a virtual register and update SwiftErrorMap for
6430   // book-keeping.
6431   if (SwiftErrorVal && TLI.supportSwiftError()) {
6432     // Get the last element of InVals.
6433     SDValue Src = CLI.InVals.back();
6434     unsigned VReg; bool CreatedVReg;
6435     std::tie(VReg, CreatedVReg) =
6436         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6437     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6438     // We update the virtual register for the actual swifterror argument.
6439     if (CreatedVReg)
6440       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6441     DAG.setRoot(CopyNode);
6442   }
6443 }
6444 
6445 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6446                              SelectionDAGBuilder &Builder) {
6447   // Check to see if this load can be trivially constant folded, e.g. if the
6448   // input is from a string literal.
6449   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6450     // Cast pointer to the type we really want to load.
6451     Type *LoadTy =
6452         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6453     if (LoadVT.isVector())
6454       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6455 
6456     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6457                                          PointerType::getUnqual(LoadTy));
6458 
6459     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6460             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6461       return Builder.getValue(LoadCst);
6462   }
6463 
6464   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6465   // still constant memory, the input chain can be the entry node.
6466   SDValue Root;
6467   bool ConstantMemory = false;
6468 
6469   // Do not serialize (non-volatile) loads of constant memory with anything.
6470   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6471     Root = Builder.DAG.getEntryNode();
6472     ConstantMemory = true;
6473   } else {
6474     // Do not serialize non-volatile loads against each other.
6475     Root = Builder.DAG.getRoot();
6476   }
6477 
6478   SDValue Ptr = Builder.getValue(PtrVal);
6479   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6480                                         Ptr, MachinePointerInfo(PtrVal),
6481                                         /* Alignment = */ 1);
6482 
6483   if (!ConstantMemory)
6484     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6485   return LoadVal;
6486 }
6487 
6488 /// Record the value for an instruction that produces an integer result,
6489 /// converting the type where necessary.
6490 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6491                                                   SDValue Value,
6492                                                   bool IsSigned) {
6493   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6494                                                     I.getType(), true);
6495   if (IsSigned)
6496     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6497   else
6498     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6499   setValue(&I, Value);
6500 }
6501 
6502 /// See if we can lower a memcmp call into an optimized form. If so, return
6503 /// true and lower it. Otherwise return false, and it will be lowered like a
6504 /// normal call.
6505 /// The caller already checked that \p I calls the appropriate LibFunc with a
6506 /// correct prototype.
6507 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6508   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6509   const Value *Size = I.getArgOperand(2);
6510   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6511   if (CSize && CSize->getZExtValue() == 0) {
6512     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6513                                                           I.getType(), true);
6514     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6515     return true;
6516   }
6517 
6518   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6519   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6520       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6521       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6522   if (Res.first.getNode()) {
6523     processIntegerCallValue(I, Res.first, true);
6524     PendingLoads.push_back(Res.second);
6525     return true;
6526   }
6527 
6528   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6529   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6530   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6531     return false;
6532 
6533   // If the target has a fast compare for the given size, it will return a
6534   // preferred load type for that size. Require that the load VT is legal and
6535   // that the target supports unaligned loads of that type. Otherwise, return
6536   // INVALID.
6537   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6538     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6539     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6540     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6541       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6542       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6543       // TODO: Check alignment of src and dest ptrs.
6544       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6545       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6546       if (!TLI.isTypeLegal(LVT) ||
6547           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6548           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6549         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6550     }
6551 
6552     return LVT;
6553   };
6554 
6555   // This turns into unaligned loads. We only do this if the target natively
6556   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6557   // we'll only produce a small number of byte loads.
6558   MVT LoadVT;
6559   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6560   switch (NumBitsToCompare) {
6561   default:
6562     return false;
6563   case 16:
6564     LoadVT = MVT::i16;
6565     break;
6566   case 32:
6567     LoadVT = MVT::i32;
6568     break;
6569   case 64:
6570   case 128:
6571   case 256:
6572     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6573     break;
6574   }
6575 
6576   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6577     return false;
6578 
6579   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6580   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6581 
6582   // Bitcast to a wide integer type if the loads are vectors.
6583   if (LoadVT.isVector()) {
6584     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6585     LoadL = DAG.getBitcast(CmpVT, LoadL);
6586     LoadR = DAG.getBitcast(CmpVT, LoadR);
6587   }
6588 
6589   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6590   processIntegerCallValue(I, Cmp, false);
6591   return true;
6592 }
6593 
6594 /// See if we can lower a memchr call into an optimized form. If so, return
6595 /// true and lower it. Otherwise return false, and it will be lowered like a
6596 /// normal call.
6597 /// The caller already checked that \p I calls the appropriate LibFunc with a
6598 /// correct prototype.
6599 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6600   const Value *Src = I.getArgOperand(0);
6601   const Value *Char = I.getArgOperand(1);
6602   const Value *Length = I.getArgOperand(2);
6603 
6604   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6605   std::pair<SDValue, SDValue> Res =
6606     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6607                                 getValue(Src), getValue(Char), getValue(Length),
6608                                 MachinePointerInfo(Src));
6609   if (Res.first.getNode()) {
6610     setValue(&I, Res.first);
6611     PendingLoads.push_back(Res.second);
6612     return true;
6613   }
6614 
6615   return false;
6616 }
6617 
6618 /// See if we can lower a mempcpy call into an optimized form. If so, return
6619 /// true and lower it. Otherwise return false, and it will be lowered like a
6620 /// normal call.
6621 /// The caller already checked that \p I calls the appropriate LibFunc with a
6622 /// correct prototype.
6623 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6624   SDValue Dst = getValue(I.getArgOperand(0));
6625   SDValue Src = getValue(I.getArgOperand(1));
6626   SDValue Size = getValue(I.getArgOperand(2));
6627 
6628   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6629   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6630   unsigned Align = std::min(DstAlign, SrcAlign);
6631   if (Align == 0) // Alignment of one or both could not be inferred.
6632     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6633 
6634   bool isVol = false;
6635   SDLoc sdl = getCurSDLoc();
6636 
6637   // In the mempcpy context we need to pass in a false value for isTailCall
6638   // because the return pointer needs to be adjusted by the size of
6639   // the copied memory.
6640   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6641                              false, /*isTailCall=*/false,
6642                              MachinePointerInfo(I.getArgOperand(0)),
6643                              MachinePointerInfo(I.getArgOperand(1)));
6644   assert(MC.getNode() != nullptr &&
6645          "** memcpy should not be lowered as TailCall in mempcpy context **");
6646   DAG.setRoot(MC);
6647 
6648   // Check if Size needs to be truncated or extended.
6649   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6650 
6651   // Adjust return pointer to point just past the last dst byte.
6652   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6653                                     Dst, Size);
6654   setValue(&I, DstPlusSize);
6655   return true;
6656 }
6657 
6658 /// See if we can lower a strcpy call into an optimized form.  If so, return
6659 /// true and lower it, otherwise return false and it will be lowered like a
6660 /// normal call.
6661 /// The caller already checked that \p I calls the appropriate LibFunc with a
6662 /// correct prototype.
6663 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6664   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6665 
6666   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6667   std::pair<SDValue, SDValue> Res =
6668     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6669                                 getValue(Arg0), getValue(Arg1),
6670                                 MachinePointerInfo(Arg0),
6671                                 MachinePointerInfo(Arg1), isStpcpy);
6672   if (Res.first.getNode()) {
6673     setValue(&I, Res.first);
6674     DAG.setRoot(Res.second);
6675     return true;
6676   }
6677 
6678   return false;
6679 }
6680 
6681 /// See if we can lower a strcmp call into an optimized form.  If so, return
6682 /// true and lower it, otherwise return false and it will be lowered like a
6683 /// normal call.
6684 /// The caller already checked that \p I calls the appropriate LibFunc with a
6685 /// correct prototype.
6686 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6687   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6688 
6689   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6690   std::pair<SDValue, SDValue> Res =
6691     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6692                                 getValue(Arg0), getValue(Arg1),
6693                                 MachinePointerInfo(Arg0),
6694                                 MachinePointerInfo(Arg1));
6695   if (Res.first.getNode()) {
6696     processIntegerCallValue(I, Res.first, true);
6697     PendingLoads.push_back(Res.second);
6698     return true;
6699   }
6700 
6701   return false;
6702 }
6703 
6704 /// See if we can lower a strlen call into an optimized form.  If so, return
6705 /// true and lower it, otherwise return false and it will be lowered like a
6706 /// normal call.
6707 /// The caller already checked that \p I calls the appropriate LibFunc with a
6708 /// correct prototype.
6709 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6710   const Value *Arg0 = I.getArgOperand(0);
6711 
6712   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6713   std::pair<SDValue, SDValue> Res =
6714     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6715                                 getValue(Arg0), MachinePointerInfo(Arg0));
6716   if (Res.first.getNode()) {
6717     processIntegerCallValue(I, Res.first, false);
6718     PendingLoads.push_back(Res.second);
6719     return true;
6720   }
6721 
6722   return false;
6723 }
6724 
6725 /// See if we can lower a strnlen call into an optimized form.  If so, return
6726 /// true and lower it, otherwise return false and it will be lowered like a
6727 /// normal call.
6728 /// The caller already checked that \p I calls the appropriate LibFunc with a
6729 /// correct prototype.
6730 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6731   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6732 
6733   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6734   std::pair<SDValue, SDValue> Res =
6735     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6736                                  getValue(Arg0), getValue(Arg1),
6737                                  MachinePointerInfo(Arg0));
6738   if (Res.first.getNode()) {
6739     processIntegerCallValue(I, Res.first, false);
6740     PendingLoads.push_back(Res.second);
6741     return true;
6742   }
6743 
6744   return false;
6745 }
6746 
6747 /// See if we can lower a unary floating-point operation into an SDNode with
6748 /// the specified Opcode.  If so, return true and lower it, otherwise return
6749 /// false and it will be lowered like a normal call.
6750 /// The caller already checked that \p I calls the appropriate LibFunc with a
6751 /// correct prototype.
6752 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6753                                               unsigned Opcode) {
6754   // We already checked this call's prototype; verify it doesn't modify errno.
6755   if (!I.onlyReadsMemory())
6756     return false;
6757 
6758   SDValue Tmp = getValue(I.getArgOperand(0));
6759   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6760   return true;
6761 }
6762 
6763 /// See if we can lower a binary floating-point operation into an SDNode with
6764 /// the specified Opcode. If so, return true and lower it. Otherwise return
6765 /// false, and it will be lowered like a normal call.
6766 /// The caller already checked that \p I calls the appropriate LibFunc with a
6767 /// correct prototype.
6768 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6769                                                unsigned Opcode) {
6770   // We already checked this call's prototype; verify it doesn't modify errno.
6771   if (!I.onlyReadsMemory())
6772     return false;
6773 
6774   SDValue Tmp0 = getValue(I.getArgOperand(0));
6775   SDValue Tmp1 = getValue(I.getArgOperand(1));
6776   EVT VT = Tmp0.getValueType();
6777   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6778   return true;
6779 }
6780 
6781 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6782   // Handle inline assembly differently.
6783   if (isa<InlineAsm>(I.getCalledValue())) {
6784     visitInlineAsm(&I);
6785     return;
6786   }
6787 
6788   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6789   computeUsesVAFloatArgument(I, MMI);
6790 
6791   const char *RenameFn = nullptr;
6792   if (Function *F = I.getCalledFunction()) {
6793     if (F->isDeclaration()) {
6794       // Is this an LLVM intrinsic or a target-specific intrinsic?
6795       unsigned IID = F->getIntrinsicID();
6796       if (!IID)
6797         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6798           IID = II->getIntrinsicID(F);
6799 
6800       if (IID) {
6801         RenameFn = visitIntrinsicCall(I, IID);
6802         if (!RenameFn)
6803           return;
6804       }
6805     }
6806 
6807     // Check for well-known libc/libm calls.  If the function is internal, it
6808     // can't be a library call.  Don't do the check if marked as nobuiltin for
6809     // some reason or the call site requires strict floating point semantics.
6810     LibFunc Func;
6811     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6812         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6813         LibInfo->hasOptimizedCodeGen(Func)) {
6814       switch (Func) {
6815       default: break;
6816       case LibFunc_copysign:
6817       case LibFunc_copysignf:
6818       case LibFunc_copysignl:
6819         // We already checked this call's prototype; verify it doesn't modify
6820         // errno.
6821         if (I.onlyReadsMemory()) {
6822           SDValue LHS = getValue(I.getArgOperand(0));
6823           SDValue RHS = getValue(I.getArgOperand(1));
6824           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6825                                    LHS.getValueType(), LHS, RHS));
6826           return;
6827         }
6828         break;
6829       case LibFunc_fabs:
6830       case LibFunc_fabsf:
6831       case LibFunc_fabsl:
6832         if (visitUnaryFloatCall(I, ISD::FABS))
6833           return;
6834         break;
6835       case LibFunc_fmin:
6836       case LibFunc_fminf:
6837       case LibFunc_fminl:
6838         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6839           return;
6840         break;
6841       case LibFunc_fmax:
6842       case LibFunc_fmaxf:
6843       case LibFunc_fmaxl:
6844         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6845           return;
6846         break;
6847       case LibFunc_sin:
6848       case LibFunc_sinf:
6849       case LibFunc_sinl:
6850         if (visitUnaryFloatCall(I, ISD::FSIN))
6851           return;
6852         break;
6853       case LibFunc_cos:
6854       case LibFunc_cosf:
6855       case LibFunc_cosl:
6856         if (visitUnaryFloatCall(I, ISD::FCOS))
6857           return;
6858         break;
6859       case LibFunc_sqrt:
6860       case LibFunc_sqrtf:
6861       case LibFunc_sqrtl:
6862       case LibFunc_sqrt_finite:
6863       case LibFunc_sqrtf_finite:
6864       case LibFunc_sqrtl_finite:
6865         if (visitUnaryFloatCall(I, ISD::FSQRT))
6866           return;
6867         break;
6868       case LibFunc_floor:
6869       case LibFunc_floorf:
6870       case LibFunc_floorl:
6871         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6872           return;
6873         break;
6874       case LibFunc_nearbyint:
6875       case LibFunc_nearbyintf:
6876       case LibFunc_nearbyintl:
6877         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6878           return;
6879         break;
6880       case LibFunc_ceil:
6881       case LibFunc_ceilf:
6882       case LibFunc_ceill:
6883         if (visitUnaryFloatCall(I, ISD::FCEIL))
6884           return;
6885         break;
6886       case LibFunc_rint:
6887       case LibFunc_rintf:
6888       case LibFunc_rintl:
6889         if (visitUnaryFloatCall(I, ISD::FRINT))
6890           return;
6891         break;
6892       case LibFunc_round:
6893       case LibFunc_roundf:
6894       case LibFunc_roundl:
6895         if (visitUnaryFloatCall(I, ISD::FROUND))
6896           return;
6897         break;
6898       case LibFunc_trunc:
6899       case LibFunc_truncf:
6900       case LibFunc_truncl:
6901         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6902           return;
6903         break;
6904       case LibFunc_log2:
6905       case LibFunc_log2f:
6906       case LibFunc_log2l:
6907         if (visitUnaryFloatCall(I, ISD::FLOG2))
6908           return;
6909         break;
6910       case LibFunc_exp2:
6911       case LibFunc_exp2f:
6912       case LibFunc_exp2l:
6913         if (visitUnaryFloatCall(I, ISD::FEXP2))
6914           return;
6915         break;
6916       case LibFunc_memcmp:
6917         if (visitMemCmpCall(I))
6918           return;
6919         break;
6920       case LibFunc_mempcpy:
6921         if (visitMemPCpyCall(I))
6922           return;
6923         break;
6924       case LibFunc_memchr:
6925         if (visitMemChrCall(I))
6926           return;
6927         break;
6928       case LibFunc_strcpy:
6929         if (visitStrCpyCall(I, false))
6930           return;
6931         break;
6932       case LibFunc_stpcpy:
6933         if (visitStrCpyCall(I, true))
6934           return;
6935         break;
6936       case LibFunc_strcmp:
6937         if (visitStrCmpCall(I))
6938           return;
6939         break;
6940       case LibFunc_strlen:
6941         if (visitStrLenCall(I))
6942           return;
6943         break;
6944       case LibFunc_strnlen:
6945         if (visitStrNLenCall(I))
6946           return;
6947         break;
6948       }
6949     }
6950   }
6951 
6952   SDValue Callee;
6953   if (!RenameFn)
6954     Callee = getValue(I.getCalledValue());
6955   else
6956     Callee = DAG.getExternalSymbol(
6957         RenameFn,
6958         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6959 
6960   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6961   // have to do anything here to lower funclet bundles.
6962   assert(!I.hasOperandBundlesOtherThan(
6963              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6964          "Cannot lower calls with arbitrary operand bundles!");
6965 
6966   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6967     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6968   else
6969     // Check if we can potentially perform a tail call. More detailed checking
6970     // is be done within LowerCallTo, after more information about the call is
6971     // known.
6972     LowerCallTo(&I, Callee, I.isTailCall());
6973 }
6974 
6975 namespace {
6976 
6977 /// AsmOperandInfo - This contains information for each constraint that we are
6978 /// lowering.
6979 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6980 public:
6981   /// CallOperand - If this is the result output operand or a clobber
6982   /// this is null, otherwise it is the incoming operand to the CallInst.
6983   /// This gets modified as the asm is processed.
6984   SDValue CallOperand;
6985 
6986   /// AssignedRegs - If this is a register or register class operand, this
6987   /// contains the set of register corresponding to the operand.
6988   RegsForValue AssignedRegs;
6989 
6990   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6991     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6992   }
6993 
6994   /// Whether or not this operand accesses memory
6995   bool hasMemory(const TargetLowering &TLI) const {
6996     // Indirect operand accesses access memory.
6997     if (isIndirect)
6998       return true;
6999 
7000     for (const auto &Code : Codes)
7001       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7002         return true;
7003 
7004     return false;
7005   }
7006 
7007   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7008   /// corresponds to.  If there is no Value* for this operand, it returns
7009   /// MVT::Other.
7010   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7011                            const DataLayout &DL) const {
7012     if (!CallOperandVal) return MVT::Other;
7013 
7014     if (isa<BasicBlock>(CallOperandVal))
7015       return TLI.getPointerTy(DL);
7016 
7017     llvm::Type *OpTy = CallOperandVal->getType();
7018 
7019     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7020     // If this is an indirect operand, the operand is a pointer to the
7021     // accessed type.
7022     if (isIndirect) {
7023       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7024       if (!PtrTy)
7025         report_fatal_error("Indirect operand for inline asm not a pointer!");
7026       OpTy = PtrTy->getElementType();
7027     }
7028 
7029     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7030     if (StructType *STy = dyn_cast<StructType>(OpTy))
7031       if (STy->getNumElements() == 1)
7032         OpTy = STy->getElementType(0);
7033 
7034     // If OpTy is not a single value, it may be a struct/union that we
7035     // can tile with integers.
7036     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7037       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7038       switch (BitSize) {
7039       default: break;
7040       case 1:
7041       case 8:
7042       case 16:
7043       case 32:
7044       case 64:
7045       case 128:
7046         OpTy = IntegerType::get(Context, BitSize);
7047         break;
7048       }
7049     }
7050 
7051     return TLI.getValueType(DL, OpTy, true);
7052   }
7053 };
7054 
7055 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7056 
7057 } // end anonymous namespace
7058 
7059 /// Make sure that the output operand \p OpInfo and its corresponding input
7060 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7061 /// out).
7062 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7063                                SDISelAsmOperandInfo &MatchingOpInfo,
7064                                SelectionDAG &DAG) {
7065   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7066     return;
7067 
7068   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7069   const auto &TLI = DAG.getTargetLoweringInfo();
7070 
7071   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7072       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7073                                        OpInfo.ConstraintVT);
7074   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7075       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7076                                        MatchingOpInfo.ConstraintVT);
7077   if ((OpInfo.ConstraintVT.isInteger() !=
7078        MatchingOpInfo.ConstraintVT.isInteger()) ||
7079       (MatchRC.second != InputRC.second)) {
7080     // FIXME: error out in a more elegant fashion
7081     report_fatal_error("Unsupported asm: input constraint"
7082                        " with a matching output constraint of"
7083                        " incompatible type!");
7084   }
7085   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7086 }
7087 
7088 /// Get a direct memory input to behave well as an indirect operand.
7089 /// This may introduce stores, hence the need for a \p Chain.
7090 /// \return The (possibly updated) chain.
7091 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7092                                         SDISelAsmOperandInfo &OpInfo,
7093                                         SelectionDAG &DAG) {
7094   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7095 
7096   // If we don't have an indirect input, put it in the constpool if we can,
7097   // otherwise spill it to a stack slot.
7098   // TODO: This isn't quite right. We need to handle these according to
7099   // the addressing mode that the constraint wants. Also, this may take
7100   // an additional register for the computation and we don't want that
7101   // either.
7102 
7103   // If the operand is a float, integer, or vector constant, spill to a
7104   // constant pool entry to get its address.
7105   const Value *OpVal = OpInfo.CallOperandVal;
7106   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7107       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7108     OpInfo.CallOperand = DAG.getConstantPool(
7109         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7110     return Chain;
7111   }
7112 
7113   // Otherwise, create a stack slot and emit a store to it before the asm.
7114   Type *Ty = OpVal->getType();
7115   auto &DL = DAG.getDataLayout();
7116   uint64_t TySize = DL.getTypeAllocSize(Ty);
7117   unsigned Align = DL.getPrefTypeAlignment(Ty);
7118   MachineFunction &MF = DAG.getMachineFunction();
7119   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7120   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7121   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7122                        MachinePointerInfo::getFixedStack(MF, SSFI));
7123   OpInfo.CallOperand = StackSlot;
7124 
7125   return Chain;
7126 }
7127 
7128 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7129 /// specified operand.  We prefer to assign virtual registers, to allow the
7130 /// register allocator to handle the assignment process.  However, if the asm
7131 /// uses features that we can't model on machineinstrs, we have SDISel do the
7132 /// allocation.  This produces generally horrible, but correct, code.
7133 ///
7134 ///   OpInfo describes the operand.
7135 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7136                                  const SDLoc &DL,
7137                                  SDISelAsmOperandInfo &OpInfo) {
7138   LLVMContext &Context = *DAG.getContext();
7139 
7140   MachineFunction &MF = DAG.getMachineFunction();
7141   SmallVector<unsigned, 4> Regs;
7142   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7143 
7144   // If this is a constraint for a single physreg, or a constraint for a
7145   // register class, find it.
7146   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7147       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
7148                                        OpInfo.ConstraintVT);
7149 
7150   unsigned NumRegs = 1;
7151   if (OpInfo.ConstraintVT != MVT::Other) {
7152     // If this is a FP input in an integer register (or visa versa) insert a bit
7153     // cast of the input value.  More generally, handle any case where the input
7154     // value disagrees with the register class we plan to stick this in.
7155     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
7156         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7157       // Try to convert to the first EVT that the reg class contains.  If the
7158       // types are identical size, use a bitcast to convert (e.g. two differing
7159       // vector types).
7160       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7161       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
7162         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7163                                          RegVT, OpInfo.CallOperand);
7164         OpInfo.ConstraintVT = RegVT;
7165       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7166         // If the input is a FP value and we want it in FP registers, do a
7167         // bitcast to the corresponding integer type.  This turns an f64 value
7168         // into i64, which can be passed with two i32 values on a 32-bit
7169         // machine.
7170         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7171         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7172                                          RegVT, OpInfo.CallOperand);
7173         OpInfo.ConstraintVT = RegVT;
7174       }
7175     }
7176 
7177     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7178   }
7179 
7180   MVT RegVT;
7181   EVT ValueVT = OpInfo.ConstraintVT;
7182 
7183   // If this is a constraint for a specific physical register, like {r17},
7184   // assign it now.
7185   if (unsigned AssignedReg = PhysReg.first) {
7186     const TargetRegisterClass *RC = PhysReg.second;
7187     if (OpInfo.ConstraintVT == MVT::Other)
7188       ValueVT = *TRI.legalclasstypes_begin(*RC);
7189 
7190     // Get the actual register value type.  This is important, because the user
7191     // may have asked for (e.g.) the AX register in i32 type.  We need to
7192     // remember that AX is actually i16 to get the right extension.
7193     RegVT = *TRI.legalclasstypes_begin(*RC);
7194 
7195     // This is a explicit reference to a physical register.
7196     Regs.push_back(AssignedReg);
7197 
7198     // If this is an expanded reference, add the rest of the regs to Regs.
7199     if (NumRegs != 1) {
7200       TargetRegisterClass::iterator I = RC->begin();
7201       for (; *I != AssignedReg; ++I)
7202         assert(I != RC->end() && "Didn't find reg!");
7203 
7204       // Already added the first reg.
7205       --NumRegs; ++I;
7206       for (; NumRegs; --NumRegs, ++I) {
7207         assert(I != RC->end() && "Ran out of registers to allocate!");
7208         Regs.push_back(*I);
7209       }
7210     }
7211 
7212     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7213     return;
7214   }
7215 
7216   // Otherwise, if this was a reference to an LLVM register class, create vregs
7217   // for this reference.
7218   if (const TargetRegisterClass *RC = PhysReg.second) {
7219     RegVT = *TRI.legalclasstypes_begin(*RC);
7220     if (OpInfo.ConstraintVT == MVT::Other)
7221       ValueVT = RegVT;
7222 
7223     // Create the appropriate number of virtual registers.
7224     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7225     for (; NumRegs; --NumRegs)
7226       Regs.push_back(RegInfo.createVirtualRegister(RC));
7227 
7228     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7229     return;
7230   }
7231 
7232   // Otherwise, we couldn't allocate enough registers for this.
7233 }
7234 
7235 static unsigned
7236 findMatchingInlineAsmOperand(unsigned OperandNo,
7237                              const std::vector<SDValue> &AsmNodeOperands) {
7238   // Scan until we find the definition we already emitted of this operand.
7239   unsigned CurOp = InlineAsm::Op_FirstOperand;
7240   for (; OperandNo; --OperandNo) {
7241     // Advance to the next operand.
7242     unsigned OpFlag =
7243         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7244     assert((InlineAsm::isRegDefKind(OpFlag) ||
7245             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7246             InlineAsm::isMemKind(OpFlag)) &&
7247            "Skipped past definitions?");
7248     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7249   }
7250   return CurOp;
7251 }
7252 
7253 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7254 /// \return true if it has succeeded, false otherwise
7255 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7256                               MVT RegVT, SelectionDAG &DAG) {
7257   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7258   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7259   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7260     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7261       Regs.push_back(RegInfo.createVirtualRegister(RC));
7262     else
7263       return false;
7264   }
7265   return true;
7266 }
7267 
7268 namespace {
7269 
7270 class ExtraFlags {
7271   unsigned Flags = 0;
7272 
7273 public:
7274   explicit ExtraFlags(ImmutableCallSite CS) {
7275     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7276     if (IA->hasSideEffects())
7277       Flags |= InlineAsm::Extra_HasSideEffects;
7278     if (IA->isAlignStack())
7279       Flags |= InlineAsm::Extra_IsAlignStack;
7280     if (CS.isConvergent())
7281       Flags |= InlineAsm::Extra_IsConvergent;
7282     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7283   }
7284 
7285   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7286     // Ideally, we would only check against memory constraints.  However, the
7287     // meaning of an Other constraint can be target-specific and we can't easily
7288     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7289     // for Other constraints as well.
7290     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7291         OpInfo.ConstraintType == TargetLowering::C_Other) {
7292       if (OpInfo.Type == InlineAsm::isInput)
7293         Flags |= InlineAsm::Extra_MayLoad;
7294       else if (OpInfo.Type == InlineAsm::isOutput)
7295         Flags |= InlineAsm::Extra_MayStore;
7296       else if (OpInfo.Type == InlineAsm::isClobber)
7297         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7298     }
7299   }
7300 
7301   unsigned get() const { return Flags; }
7302 };
7303 
7304 } // end anonymous namespace
7305 
7306 /// visitInlineAsm - Handle a call to an InlineAsm object.
7307 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7308   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7309 
7310   /// ConstraintOperands - Information about all of the constraints.
7311   SDISelAsmOperandInfoVector ConstraintOperands;
7312 
7313   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7314   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7315       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7316 
7317   bool hasMemory = false;
7318 
7319   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7320   ExtraFlags ExtraInfo(CS);
7321 
7322   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7323   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7324   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7325     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7326     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7327 
7328     MVT OpVT = MVT::Other;
7329 
7330     // Compute the value type for each operand.
7331     if (OpInfo.Type == InlineAsm::isInput ||
7332         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7333       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7334 
7335       // Process the call argument. BasicBlocks are labels, currently appearing
7336       // only in asm's.
7337       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7338         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7339       } else {
7340         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7341       }
7342 
7343       OpVT =
7344           OpInfo
7345               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7346               .getSimpleVT();
7347     }
7348 
7349     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7350       // The return value of the call is this value.  As such, there is no
7351       // corresponding argument.
7352       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7353       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7354         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7355                                       STy->getElementType(ResNo));
7356       } else {
7357         assert(ResNo == 0 && "Asm only has one result!");
7358         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7359       }
7360       ++ResNo;
7361     }
7362 
7363     OpInfo.ConstraintVT = OpVT;
7364 
7365     if (!hasMemory)
7366       hasMemory = OpInfo.hasMemory(TLI);
7367 
7368     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7369     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7370     auto TargetConstraint = TargetConstraints[i];
7371 
7372     // Compute the constraint code and ConstraintType to use.
7373     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7374 
7375     ExtraInfo.update(TargetConstraint);
7376   }
7377 
7378   SDValue Chain, Flag;
7379 
7380   // We won't need to flush pending loads if this asm doesn't touch
7381   // memory and is nonvolatile.
7382   if (hasMemory || IA->hasSideEffects())
7383     Chain = getRoot();
7384   else
7385     Chain = DAG.getRoot();
7386 
7387   // Second pass over the constraints: compute which constraint option to use
7388   // and assign registers to constraints that want a specific physreg.
7389   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7390     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7391 
7392     // If this is an output operand with a matching input operand, look up the
7393     // matching input. If their types mismatch, e.g. one is an integer, the
7394     // other is floating point, or their sizes are different, flag it as an
7395     // error.
7396     if (OpInfo.hasMatchingInput()) {
7397       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7398       patchMatchingInput(OpInfo, Input, DAG);
7399     }
7400 
7401     // Compute the constraint code and ConstraintType to use.
7402     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7403 
7404     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7405         OpInfo.Type == InlineAsm::isClobber)
7406       continue;
7407 
7408     // If this is a memory input, and if the operand is not indirect, do what we
7409     // need to provide an address for the memory input.
7410     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7411         !OpInfo.isIndirect) {
7412       assert((OpInfo.isMultipleAlternative ||
7413               (OpInfo.Type == InlineAsm::isInput)) &&
7414              "Can only indirectify direct input operands!");
7415 
7416       // Memory operands really want the address of the value.
7417       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7418 
7419       // There is no longer a Value* corresponding to this operand.
7420       OpInfo.CallOperandVal = nullptr;
7421 
7422       // It is now an indirect operand.
7423       OpInfo.isIndirect = true;
7424     }
7425 
7426     // If this constraint is for a specific register, allocate it before
7427     // anything else.
7428     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7429       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7430   }
7431 
7432   // Third pass - Loop over all of the operands, assigning virtual or physregs
7433   // to register class operands.
7434   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7435     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7436 
7437     // C_Register operands have already been allocated, Other/Memory don't need
7438     // to be.
7439     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7440       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7441   }
7442 
7443   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7444   std::vector<SDValue> AsmNodeOperands;
7445   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7446   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7447       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7448 
7449   // If we have a !srcloc metadata node associated with it, we want to attach
7450   // this to the ultimately generated inline asm machineinstr.  To do this, we
7451   // pass in the third operand as this (potentially null) inline asm MDNode.
7452   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7453   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7454 
7455   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7456   // bits as operand 3.
7457   AsmNodeOperands.push_back(DAG.getTargetConstant(
7458       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7459 
7460   // Loop over all of the inputs, copying the operand values into the
7461   // appropriate registers and processing the output regs.
7462   RegsForValue RetValRegs;
7463 
7464   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7465   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7466 
7467   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7468     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7469 
7470     switch (OpInfo.Type) {
7471     case InlineAsm::isOutput:
7472       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7473           OpInfo.ConstraintType != TargetLowering::C_Register) {
7474         // Memory output, or 'other' output (e.g. 'X' constraint).
7475         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7476 
7477         unsigned ConstraintID =
7478             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7479         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7480                "Failed to convert memory constraint code to constraint id.");
7481 
7482         // Add information to the INLINEASM node to know about this output.
7483         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7484         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7485         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7486                                                         MVT::i32));
7487         AsmNodeOperands.push_back(OpInfo.CallOperand);
7488         break;
7489       }
7490 
7491       // Otherwise, this is a register or register class output.
7492 
7493       // Copy the output from the appropriate register.  Find a register that
7494       // we can use.
7495       if (OpInfo.AssignedRegs.Regs.empty()) {
7496         emitInlineAsmError(
7497             CS, "couldn't allocate output register for constraint '" +
7498                     Twine(OpInfo.ConstraintCode) + "'");
7499         return;
7500       }
7501 
7502       // If this is an indirect operand, store through the pointer after the
7503       // asm.
7504       if (OpInfo.isIndirect) {
7505         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7506                                                       OpInfo.CallOperandVal));
7507       } else {
7508         // This is the result value of the call.
7509         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7510         // Concatenate this output onto the outputs list.
7511         RetValRegs.append(OpInfo.AssignedRegs);
7512       }
7513 
7514       // Add information to the INLINEASM node to know that this register is
7515       // set.
7516       OpInfo.AssignedRegs
7517           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7518                                     ? InlineAsm::Kind_RegDefEarlyClobber
7519                                     : InlineAsm::Kind_RegDef,
7520                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7521       break;
7522 
7523     case InlineAsm::isInput: {
7524       SDValue InOperandVal = OpInfo.CallOperand;
7525 
7526       if (OpInfo.isMatchingInputConstraint()) {
7527         // If this is required to match an output register we have already set,
7528         // just use its register.
7529         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7530                                                   AsmNodeOperands);
7531         unsigned OpFlag =
7532           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7533         if (InlineAsm::isRegDefKind(OpFlag) ||
7534             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7535           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7536           if (OpInfo.isIndirect) {
7537             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7538             emitInlineAsmError(CS, "inline asm not supported yet:"
7539                                    " don't know how to handle tied "
7540                                    "indirect register inputs");
7541             return;
7542           }
7543 
7544           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7545           SmallVector<unsigned, 4> Regs;
7546 
7547           if (!createVirtualRegs(Regs,
7548                                  InlineAsm::getNumOperandRegisters(OpFlag),
7549                                  RegVT, DAG)) {
7550             emitInlineAsmError(CS, "inline asm error: This value type register "
7551                                    "class is not natively supported!");
7552             return;
7553           }
7554 
7555           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7556 
7557           SDLoc dl = getCurSDLoc();
7558           // Use the produced MatchedRegs object to
7559           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7560                                     CS.getInstruction());
7561           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7562                                            true, OpInfo.getMatchedOperand(), dl,
7563                                            DAG, AsmNodeOperands);
7564           break;
7565         }
7566 
7567         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7568         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7569                "Unexpected number of operands");
7570         // Add information to the INLINEASM node to know about this input.
7571         // See InlineAsm.h isUseOperandTiedToDef.
7572         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7573         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7574                                                     OpInfo.getMatchedOperand());
7575         AsmNodeOperands.push_back(DAG.getTargetConstant(
7576             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7577         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7578         break;
7579       }
7580 
7581       // Treat indirect 'X' constraint as memory.
7582       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7583           OpInfo.isIndirect)
7584         OpInfo.ConstraintType = TargetLowering::C_Memory;
7585 
7586       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7587         std::vector<SDValue> Ops;
7588         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7589                                           Ops, DAG);
7590         if (Ops.empty()) {
7591           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7592                                      Twine(OpInfo.ConstraintCode) + "'");
7593           return;
7594         }
7595 
7596         // Add information to the INLINEASM node to know about this input.
7597         unsigned ResOpType =
7598           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7599         AsmNodeOperands.push_back(DAG.getTargetConstant(
7600             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7601         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7602         break;
7603       }
7604 
7605       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7606         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7607         assert(InOperandVal.getValueType() ==
7608                    TLI.getPointerTy(DAG.getDataLayout()) &&
7609                "Memory operands expect pointer values");
7610 
7611         unsigned ConstraintID =
7612             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7613         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7614                "Failed to convert memory constraint code to constraint id.");
7615 
7616         // Add information to the INLINEASM node to know about this input.
7617         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7618         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7619         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7620                                                         getCurSDLoc(),
7621                                                         MVT::i32));
7622         AsmNodeOperands.push_back(InOperandVal);
7623         break;
7624       }
7625 
7626       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7627               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7628              "Unknown constraint type!");
7629 
7630       // TODO: Support this.
7631       if (OpInfo.isIndirect) {
7632         emitInlineAsmError(
7633             CS, "Don't know how to handle indirect register inputs yet "
7634                 "for constraint '" +
7635                     Twine(OpInfo.ConstraintCode) + "'");
7636         return;
7637       }
7638 
7639       // Copy the input into the appropriate registers.
7640       if (OpInfo.AssignedRegs.Regs.empty()) {
7641         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7642                                    Twine(OpInfo.ConstraintCode) + "'");
7643         return;
7644       }
7645 
7646       SDLoc dl = getCurSDLoc();
7647 
7648       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7649                                         Chain, &Flag, CS.getInstruction());
7650 
7651       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7652                                                dl, DAG, AsmNodeOperands);
7653       break;
7654     }
7655     case InlineAsm::isClobber:
7656       // Add the clobbered value to the operand list, so that the register
7657       // allocator is aware that the physreg got clobbered.
7658       if (!OpInfo.AssignedRegs.Regs.empty())
7659         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7660                                                  false, 0, getCurSDLoc(), DAG,
7661                                                  AsmNodeOperands);
7662       break;
7663     }
7664   }
7665 
7666   // Finish up input operands.  Set the input chain and add the flag last.
7667   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7668   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7669 
7670   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7671                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7672   Flag = Chain.getValue(1);
7673 
7674   // If this asm returns a register value, copy the result from that register
7675   // and set it as the value of the call.
7676   if (!RetValRegs.Regs.empty()) {
7677     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7678                                              Chain, &Flag, CS.getInstruction());
7679 
7680     // FIXME: Why don't we do this for inline asms with MRVs?
7681     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7682       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7683 
7684       // If any of the results of the inline asm is a vector, it may have the
7685       // wrong width/num elts.  This can happen for register classes that can
7686       // contain multiple different value types.  The preg or vreg allocated may
7687       // not have the same VT as was expected.  Convert it to the right type
7688       // with bit_convert.
7689       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7690         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7691                           ResultType, Val);
7692 
7693       } else if (ResultType != Val.getValueType() &&
7694                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7695         // If a result value was tied to an input value, the computed result may
7696         // have a wider width than the expected result.  Extract the relevant
7697         // portion.
7698         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7699       }
7700 
7701       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7702     }
7703 
7704     setValue(CS.getInstruction(), Val);
7705     // Don't need to use this as a chain in this case.
7706     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7707       return;
7708   }
7709 
7710   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7711 
7712   // Process indirect outputs, first output all of the flagged copies out of
7713   // physregs.
7714   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7715     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7716     const Value *Ptr = IndirectStoresToEmit[i].second;
7717     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7718                                              Chain, &Flag, IA);
7719     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7720   }
7721 
7722   // Emit the non-flagged stores from the physregs.
7723   SmallVector<SDValue, 8> OutChains;
7724   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7725     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7726                                getValue(StoresToEmit[i].second),
7727                                MachinePointerInfo(StoresToEmit[i].second));
7728     OutChains.push_back(Val);
7729   }
7730 
7731   if (!OutChains.empty())
7732     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7733 
7734   DAG.setRoot(Chain);
7735 }
7736 
7737 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7738                                              const Twine &Message) {
7739   LLVMContext &Ctx = *DAG.getContext();
7740   Ctx.emitError(CS.getInstruction(), Message);
7741 
7742   // Make sure we leave the DAG in a valid state
7743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7744   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7745   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7746 }
7747 
7748 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7749   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7750                           MVT::Other, getRoot(),
7751                           getValue(I.getArgOperand(0)),
7752                           DAG.getSrcValue(I.getArgOperand(0))));
7753 }
7754 
7755 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7756   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7757   const DataLayout &DL = DAG.getDataLayout();
7758   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7759                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7760                            DAG.getSrcValue(I.getOperand(0)),
7761                            DL.getABITypeAlignment(I.getType()));
7762   setValue(&I, V);
7763   DAG.setRoot(V.getValue(1));
7764 }
7765 
7766 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7767   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7768                           MVT::Other, getRoot(),
7769                           getValue(I.getArgOperand(0)),
7770                           DAG.getSrcValue(I.getArgOperand(0))));
7771 }
7772 
7773 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7774   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7775                           MVT::Other, getRoot(),
7776                           getValue(I.getArgOperand(0)),
7777                           getValue(I.getArgOperand(1)),
7778                           DAG.getSrcValue(I.getArgOperand(0)),
7779                           DAG.getSrcValue(I.getArgOperand(1))));
7780 }
7781 
7782 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7783                                                     const Instruction &I,
7784                                                     SDValue Op) {
7785   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7786   if (!Range)
7787     return Op;
7788 
7789   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7790   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7791     return Op;
7792 
7793   APInt Lo = CR.getUnsignedMin();
7794   if (!Lo.isMinValue())
7795     return Op;
7796 
7797   APInt Hi = CR.getUnsignedMax();
7798   unsigned Bits = Hi.getActiveBits();
7799 
7800   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7801 
7802   SDLoc SL = getCurSDLoc();
7803 
7804   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7805                              DAG.getValueType(SmallVT));
7806   unsigned NumVals = Op.getNode()->getNumValues();
7807   if (NumVals == 1)
7808     return ZExt;
7809 
7810   SmallVector<SDValue, 4> Ops;
7811 
7812   Ops.push_back(ZExt);
7813   for (unsigned I = 1; I != NumVals; ++I)
7814     Ops.push_back(Op.getValue(I));
7815 
7816   return DAG.getMergeValues(Ops, SL);
7817 }
7818 
7819 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7820 /// the call being lowered.
7821 ///
7822 /// This is a helper for lowering intrinsics that follow a target calling
7823 /// convention or require stack pointer adjustment. Only a subset of the
7824 /// intrinsic's operands need to participate in the calling convention.
7825 void SelectionDAGBuilder::populateCallLoweringInfo(
7826     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7827     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7828     bool IsPatchPoint) {
7829   TargetLowering::ArgListTy Args;
7830   Args.reserve(NumArgs);
7831 
7832   // Populate the argument list.
7833   // Attributes for args start at offset 1, after the return attribute.
7834   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7835        ArgI != ArgE; ++ArgI) {
7836     const Value *V = CS->getOperand(ArgI);
7837 
7838     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7839 
7840     TargetLowering::ArgListEntry Entry;
7841     Entry.Node = getValue(V);
7842     Entry.Ty = V->getType();
7843     Entry.setAttributes(&CS, ArgI);
7844     Args.push_back(Entry);
7845   }
7846 
7847   CLI.setDebugLoc(getCurSDLoc())
7848       .setChain(getRoot())
7849       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7850       .setDiscardResult(CS->use_empty())
7851       .setIsPatchPoint(IsPatchPoint);
7852 }
7853 
7854 /// Add a stack map intrinsic call's live variable operands to a stackmap
7855 /// or patchpoint target node's operand list.
7856 ///
7857 /// Constants are converted to TargetConstants purely as an optimization to
7858 /// avoid constant materialization and register allocation.
7859 ///
7860 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7861 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7862 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7863 /// address materialization and register allocation, but may also be required
7864 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7865 /// alloca in the entry block, then the runtime may assume that the alloca's
7866 /// StackMap location can be read immediately after compilation and that the
7867 /// location is valid at any point during execution (this is similar to the
7868 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7869 /// only available in a register, then the runtime would need to trap when
7870 /// execution reaches the StackMap in order to read the alloca's location.
7871 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7872                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7873                                 SelectionDAGBuilder &Builder) {
7874   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7875     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7876     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7877       Ops.push_back(
7878         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7879       Ops.push_back(
7880         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7881     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7882       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7883       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7884           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7885     } else
7886       Ops.push_back(OpVal);
7887   }
7888 }
7889 
7890 /// Lower llvm.experimental.stackmap directly to its target opcode.
7891 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7892   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7893   //                                  [live variables...])
7894 
7895   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7896 
7897   SDValue Chain, InFlag, Callee, NullPtr;
7898   SmallVector<SDValue, 32> Ops;
7899 
7900   SDLoc DL = getCurSDLoc();
7901   Callee = getValue(CI.getCalledValue());
7902   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7903 
7904   // The stackmap intrinsic only records the live variables (the arguemnts
7905   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7906   // intrinsic, this won't be lowered to a function call. This means we don't
7907   // have to worry about calling conventions and target specific lowering code.
7908   // Instead we perform the call lowering right here.
7909   //
7910   // chain, flag = CALLSEQ_START(chain, 0, 0)
7911   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7912   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7913   //
7914   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7915   InFlag = Chain.getValue(1);
7916 
7917   // Add the <id> and <numBytes> constants.
7918   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7919   Ops.push_back(DAG.getTargetConstant(
7920                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7921   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7922   Ops.push_back(DAG.getTargetConstant(
7923                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7924                   MVT::i32));
7925 
7926   // Push live variables for the stack map.
7927   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7928 
7929   // We are not pushing any register mask info here on the operands list,
7930   // because the stackmap doesn't clobber anything.
7931 
7932   // Push the chain and the glue flag.
7933   Ops.push_back(Chain);
7934   Ops.push_back(InFlag);
7935 
7936   // Create the STACKMAP node.
7937   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7938   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7939   Chain = SDValue(SM, 0);
7940   InFlag = Chain.getValue(1);
7941 
7942   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7943 
7944   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7945 
7946   // Set the root to the target-lowered call chain.
7947   DAG.setRoot(Chain);
7948 
7949   // Inform the Frame Information that we have a stackmap in this function.
7950   FuncInfo.MF->getFrameInfo().setHasStackMap();
7951 }
7952 
7953 /// Lower llvm.experimental.patchpoint directly to its target opcode.
7954 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7955                                           const BasicBlock *EHPadBB) {
7956   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7957   //                                                 i32 <numBytes>,
7958   //                                                 i8* <target>,
7959   //                                                 i32 <numArgs>,
7960   //                                                 [Args...],
7961   //                                                 [live variables...])
7962 
7963   CallingConv::ID CC = CS.getCallingConv();
7964   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7965   bool HasDef = !CS->getType()->isVoidTy();
7966   SDLoc dl = getCurSDLoc();
7967   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7968 
7969   // Handle immediate and symbolic callees.
7970   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7971     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7972                                    /*isTarget=*/true);
7973   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7974     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7975                                          SDLoc(SymbolicCallee),
7976                                          SymbolicCallee->getValueType(0));
7977 
7978   // Get the real number of arguments participating in the call <numArgs>
7979   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7980   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7981 
7982   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7983   // Intrinsics include all meta-operands up to but not including CC.
7984   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7985   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7986          "Not enough arguments provided to the patchpoint intrinsic");
7987 
7988   // For AnyRegCC the arguments are lowered later on manually.
7989   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7990   Type *ReturnTy =
7991     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7992 
7993   TargetLowering::CallLoweringInfo CLI(DAG);
7994   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7995                            true);
7996   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7997 
7998   SDNode *CallEnd = Result.second.getNode();
7999   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8000     CallEnd = CallEnd->getOperand(0).getNode();
8001 
8002   /// Get a call instruction from the call sequence chain.
8003   /// Tail calls are not allowed.
8004   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8005          "Expected a callseq node.");
8006   SDNode *Call = CallEnd->getOperand(0).getNode();
8007   bool HasGlue = Call->getGluedNode();
8008 
8009   // Replace the target specific call node with the patchable intrinsic.
8010   SmallVector<SDValue, 8> Ops;
8011 
8012   // Add the <id> and <numBytes> constants.
8013   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8014   Ops.push_back(DAG.getTargetConstant(
8015                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8016   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8017   Ops.push_back(DAG.getTargetConstant(
8018                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8019                   MVT::i32));
8020 
8021   // Add the callee.
8022   Ops.push_back(Callee);
8023 
8024   // Adjust <numArgs> to account for any arguments that have been passed on the
8025   // stack instead.
8026   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8027   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8028   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8029   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8030 
8031   // Add the calling convention
8032   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8033 
8034   // Add the arguments we omitted previously. The register allocator should
8035   // place these in any free register.
8036   if (IsAnyRegCC)
8037     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8038       Ops.push_back(getValue(CS.getArgument(i)));
8039 
8040   // Push the arguments from the call instruction up to the register mask.
8041   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8042   Ops.append(Call->op_begin() + 2, e);
8043 
8044   // Push live variables for the stack map.
8045   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8046 
8047   // Push the register mask info.
8048   if (HasGlue)
8049     Ops.push_back(*(Call->op_end()-2));
8050   else
8051     Ops.push_back(*(Call->op_end()-1));
8052 
8053   // Push the chain (this is originally the first operand of the call, but
8054   // becomes now the last or second to last operand).
8055   Ops.push_back(*(Call->op_begin()));
8056 
8057   // Push the glue flag (last operand).
8058   if (HasGlue)
8059     Ops.push_back(*(Call->op_end()-1));
8060 
8061   SDVTList NodeTys;
8062   if (IsAnyRegCC && HasDef) {
8063     // Create the return types based on the intrinsic definition
8064     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8065     SmallVector<EVT, 3> ValueVTs;
8066     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8067     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8068 
8069     // There is always a chain and a glue type at the end
8070     ValueVTs.push_back(MVT::Other);
8071     ValueVTs.push_back(MVT::Glue);
8072     NodeTys = DAG.getVTList(ValueVTs);
8073   } else
8074     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8075 
8076   // Replace the target specific call node with a PATCHPOINT node.
8077   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8078                                          dl, NodeTys, Ops);
8079 
8080   // Update the NodeMap.
8081   if (HasDef) {
8082     if (IsAnyRegCC)
8083       setValue(CS.getInstruction(), SDValue(MN, 0));
8084     else
8085       setValue(CS.getInstruction(), Result.first);
8086   }
8087 
8088   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8089   // call sequence. Furthermore the location of the chain and glue can change
8090   // when the AnyReg calling convention is used and the intrinsic returns a
8091   // value.
8092   if (IsAnyRegCC && HasDef) {
8093     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8094     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8095     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8096   } else
8097     DAG.ReplaceAllUsesWith(Call, MN);
8098   DAG.DeleteNode(Call);
8099 
8100   // Inform the Frame Information that we have a patchpoint in this function.
8101   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8102 }
8103 
8104 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8105                                             unsigned Intrinsic) {
8106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8107   SDValue Op1 = getValue(I.getArgOperand(0));
8108   SDValue Op2;
8109   if (I.getNumArgOperands() > 1)
8110     Op2 = getValue(I.getArgOperand(1));
8111   SDLoc dl = getCurSDLoc();
8112   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8113   SDValue Res;
8114   FastMathFlags FMF;
8115   if (isa<FPMathOperator>(I))
8116     FMF = I.getFastMathFlags();
8117 
8118   switch (Intrinsic) {
8119   case Intrinsic::experimental_vector_reduce_fadd:
8120     if (FMF.isFast())
8121       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8122     else
8123       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8124     break;
8125   case Intrinsic::experimental_vector_reduce_fmul:
8126     if (FMF.isFast())
8127       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8128     else
8129       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8130     break;
8131   case Intrinsic::experimental_vector_reduce_add:
8132     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8133     break;
8134   case Intrinsic::experimental_vector_reduce_mul:
8135     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8136     break;
8137   case Intrinsic::experimental_vector_reduce_and:
8138     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8139     break;
8140   case Intrinsic::experimental_vector_reduce_or:
8141     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8142     break;
8143   case Intrinsic::experimental_vector_reduce_xor:
8144     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8145     break;
8146   case Intrinsic::experimental_vector_reduce_smax:
8147     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8148     break;
8149   case Intrinsic::experimental_vector_reduce_smin:
8150     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8151     break;
8152   case Intrinsic::experimental_vector_reduce_umax:
8153     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8154     break;
8155   case Intrinsic::experimental_vector_reduce_umin:
8156     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8157     break;
8158   case Intrinsic::experimental_vector_reduce_fmax:
8159     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8160     break;
8161   case Intrinsic::experimental_vector_reduce_fmin:
8162     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8163     break;
8164   default:
8165     llvm_unreachable("Unhandled vector reduce intrinsic");
8166   }
8167   setValue(&I, Res);
8168 }
8169 
8170 /// Returns an AttributeList representing the attributes applied to the return
8171 /// value of the given call.
8172 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8173   SmallVector<Attribute::AttrKind, 2> Attrs;
8174   if (CLI.RetSExt)
8175     Attrs.push_back(Attribute::SExt);
8176   if (CLI.RetZExt)
8177     Attrs.push_back(Attribute::ZExt);
8178   if (CLI.IsInReg)
8179     Attrs.push_back(Attribute::InReg);
8180 
8181   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8182                             Attrs);
8183 }
8184 
8185 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8186 /// implementation, which just calls LowerCall.
8187 /// FIXME: When all targets are
8188 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8189 std::pair<SDValue, SDValue>
8190 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8191   // Handle the incoming return values from the call.
8192   CLI.Ins.clear();
8193   Type *OrigRetTy = CLI.RetTy;
8194   SmallVector<EVT, 4> RetTys;
8195   SmallVector<uint64_t, 4> Offsets;
8196   auto &DL = CLI.DAG.getDataLayout();
8197   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8198 
8199   if (CLI.IsPostTypeLegalization) {
8200     // If we are lowering a libcall after legalization, split the return type.
8201     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8202     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8203     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8204       EVT RetVT = OldRetTys[i];
8205       uint64_t Offset = OldOffsets[i];
8206       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8207       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8208       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8209       RetTys.append(NumRegs, RegisterVT);
8210       for (unsigned j = 0; j != NumRegs; ++j)
8211         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8212     }
8213   }
8214 
8215   SmallVector<ISD::OutputArg, 4> Outs;
8216   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8217 
8218   bool CanLowerReturn =
8219       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8220                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8221 
8222   SDValue DemoteStackSlot;
8223   int DemoteStackIdx = -100;
8224   if (!CanLowerReturn) {
8225     // FIXME: equivalent assert?
8226     // assert(!CS.hasInAllocaArgument() &&
8227     //        "sret demotion is incompatible with inalloca");
8228     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8229     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8230     MachineFunction &MF = CLI.DAG.getMachineFunction();
8231     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8232     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8233 
8234     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8235     ArgListEntry Entry;
8236     Entry.Node = DemoteStackSlot;
8237     Entry.Ty = StackSlotPtrType;
8238     Entry.IsSExt = false;
8239     Entry.IsZExt = false;
8240     Entry.IsInReg = false;
8241     Entry.IsSRet = true;
8242     Entry.IsNest = false;
8243     Entry.IsByVal = false;
8244     Entry.IsReturned = false;
8245     Entry.IsSwiftSelf = false;
8246     Entry.IsSwiftError = false;
8247     Entry.Alignment = Align;
8248     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8249     CLI.NumFixedArgs += 1;
8250     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8251 
8252     // sret demotion isn't compatible with tail-calls, since the sret argument
8253     // points into the callers stack frame.
8254     CLI.IsTailCall = false;
8255   } else {
8256     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8257       EVT VT = RetTys[I];
8258       MVT RegisterVT =
8259           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8260       unsigned NumRegs =
8261           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8262       for (unsigned i = 0; i != NumRegs; ++i) {
8263         ISD::InputArg MyFlags;
8264         MyFlags.VT = RegisterVT;
8265         MyFlags.ArgVT = VT;
8266         MyFlags.Used = CLI.IsReturnValueUsed;
8267         if (CLI.RetSExt)
8268           MyFlags.Flags.setSExt();
8269         if (CLI.RetZExt)
8270           MyFlags.Flags.setZExt();
8271         if (CLI.IsInReg)
8272           MyFlags.Flags.setInReg();
8273         CLI.Ins.push_back(MyFlags);
8274       }
8275     }
8276   }
8277 
8278   // We push in swifterror return as the last element of CLI.Ins.
8279   ArgListTy &Args = CLI.getArgs();
8280   if (supportSwiftError()) {
8281     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8282       if (Args[i].IsSwiftError) {
8283         ISD::InputArg MyFlags;
8284         MyFlags.VT = getPointerTy(DL);
8285         MyFlags.ArgVT = EVT(getPointerTy(DL));
8286         MyFlags.Flags.setSwiftError();
8287         CLI.Ins.push_back(MyFlags);
8288       }
8289     }
8290   }
8291 
8292   // Handle all of the outgoing arguments.
8293   CLI.Outs.clear();
8294   CLI.OutVals.clear();
8295   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8296     SmallVector<EVT, 4> ValueVTs;
8297     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8298     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8299     Type *FinalType = Args[i].Ty;
8300     if (Args[i].IsByVal)
8301       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8302     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8303         FinalType, CLI.CallConv, CLI.IsVarArg);
8304     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8305          ++Value) {
8306       EVT VT = ValueVTs[Value];
8307       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8308       SDValue Op = SDValue(Args[i].Node.getNode(),
8309                            Args[i].Node.getResNo() + Value);
8310       ISD::ArgFlagsTy Flags;
8311 
8312       // Certain targets (such as MIPS), may have a different ABI alignment
8313       // for a type depending on the context. Give the target a chance to
8314       // specify the alignment it wants.
8315       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8316 
8317       if (Args[i].IsZExt)
8318         Flags.setZExt();
8319       if (Args[i].IsSExt)
8320         Flags.setSExt();
8321       if (Args[i].IsInReg) {
8322         // If we are using vectorcall calling convention, a structure that is
8323         // passed InReg - is surely an HVA
8324         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8325             isa<StructType>(FinalType)) {
8326           // The first value of a structure is marked
8327           if (0 == Value)
8328             Flags.setHvaStart();
8329           Flags.setHva();
8330         }
8331         // Set InReg Flag
8332         Flags.setInReg();
8333       }
8334       if (Args[i].IsSRet)
8335         Flags.setSRet();
8336       if (Args[i].IsSwiftSelf)
8337         Flags.setSwiftSelf();
8338       if (Args[i].IsSwiftError)
8339         Flags.setSwiftError();
8340       if (Args[i].IsByVal)
8341         Flags.setByVal();
8342       if (Args[i].IsInAlloca) {
8343         Flags.setInAlloca();
8344         // Set the byval flag for CCAssignFn callbacks that don't know about
8345         // inalloca.  This way we can know how many bytes we should've allocated
8346         // and how many bytes a callee cleanup function will pop.  If we port
8347         // inalloca to more targets, we'll have to add custom inalloca handling
8348         // in the various CC lowering callbacks.
8349         Flags.setByVal();
8350       }
8351       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8352         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8353         Type *ElementTy = Ty->getElementType();
8354         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8355         // For ByVal, alignment should come from FE.  BE will guess if this
8356         // info is not there but there are cases it cannot get right.
8357         unsigned FrameAlign;
8358         if (Args[i].Alignment)
8359           FrameAlign = Args[i].Alignment;
8360         else
8361           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8362         Flags.setByValAlign(FrameAlign);
8363       }
8364       if (Args[i].IsNest)
8365         Flags.setNest();
8366       if (NeedsRegBlock)
8367         Flags.setInConsecutiveRegs();
8368       Flags.setOrigAlign(OriginalAlignment);
8369 
8370       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8371       unsigned NumParts =
8372           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8373       SmallVector<SDValue, 4> Parts(NumParts);
8374       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8375 
8376       if (Args[i].IsSExt)
8377         ExtendKind = ISD::SIGN_EXTEND;
8378       else if (Args[i].IsZExt)
8379         ExtendKind = ISD::ZERO_EXTEND;
8380 
8381       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8382       // for now.
8383       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8384           CanLowerReturn) {
8385         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8386                "unexpected use of 'returned'");
8387         // Before passing 'returned' to the target lowering code, ensure that
8388         // either the register MVT and the actual EVT are the same size or that
8389         // the return value and argument are extended in the same way; in these
8390         // cases it's safe to pass the argument register value unchanged as the
8391         // return register value (although it's at the target's option whether
8392         // to do so)
8393         // TODO: allow code generation to take advantage of partially preserved
8394         // registers rather than clobbering the entire register when the
8395         // parameter extension method is not compatible with the return
8396         // extension method
8397         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8398             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8399              CLI.RetZExt == Args[i].IsZExt))
8400           Flags.setReturned();
8401       }
8402 
8403       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8404                      CLI.CS.getInstruction(), ExtendKind, true);
8405 
8406       for (unsigned j = 0; j != NumParts; ++j) {
8407         // if it isn't first piece, alignment must be 1
8408         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8409                                i < CLI.NumFixedArgs,
8410                                i, j*Parts[j].getValueType().getStoreSize());
8411         if (NumParts > 1 && j == 0)
8412           MyFlags.Flags.setSplit();
8413         else if (j != 0) {
8414           MyFlags.Flags.setOrigAlign(1);
8415           if (j == NumParts - 1)
8416             MyFlags.Flags.setSplitEnd();
8417         }
8418 
8419         CLI.Outs.push_back(MyFlags);
8420         CLI.OutVals.push_back(Parts[j]);
8421       }
8422 
8423       if (NeedsRegBlock && Value == NumValues - 1)
8424         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8425     }
8426   }
8427 
8428   SmallVector<SDValue, 4> InVals;
8429   CLI.Chain = LowerCall(CLI, InVals);
8430 
8431   // Update CLI.InVals to use outside of this function.
8432   CLI.InVals = InVals;
8433 
8434   // Verify that the target's LowerCall behaved as expected.
8435   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8436          "LowerCall didn't return a valid chain!");
8437   assert((!CLI.IsTailCall || InVals.empty()) &&
8438          "LowerCall emitted a return value for a tail call!");
8439   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8440          "LowerCall didn't emit the correct number of values!");
8441 
8442   // For a tail call, the return value is merely live-out and there aren't
8443   // any nodes in the DAG representing it. Return a special value to
8444   // indicate that a tail call has been emitted and no more Instructions
8445   // should be processed in the current block.
8446   if (CLI.IsTailCall) {
8447     CLI.DAG.setRoot(CLI.Chain);
8448     return std::make_pair(SDValue(), SDValue());
8449   }
8450 
8451 #ifndef NDEBUG
8452   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8453     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8454     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8455            "LowerCall emitted a value with the wrong type!");
8456   }
8457 #endif
8458 
8459   SmallVector<SDValue, 4> ReturnValues;
8460   if (!CanLowerReturn) {
8461     // The instruction result is the result of loading from the
8462     // hidden sret parameter.
8463     SmallVector<EVT, 1> PVTs;
8464     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8465 
8466     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8467     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8468     EVT PtrVT = PVTs[0];
8469 
8470     unsigned NumValues = RetTys.size();
8471     ReturnValues.resize(NumValues);
8472     SmallVector<SDValue, 4> Chains(NumValues);
8473 
8474     // An aggregate return value cannot wrap around the address space, so
8475     // offsets to its parts don't wrap either.
8476     SDNodeFlags Flags;
8477     Flags.setNoUnsignedWrap(true);
8478 
8479     for (unsigned i = 0; i < NumValues; ++i) {
8480       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8481                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8482                                                         PtrVT), Flags);
8483       SDValue L = CLI.DAG.getLoad(
8484           RetTys[i], CLI.DL, CLI.Chain, Add,
8485           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8486                                             DemoteStackIdx, Offsets[i]),
8487           /* Alignment = */ 1);
8488       ReturnValues[i] = L;
8489       Chains[i] = L.getValue(1);
8490     }
8491 
8492     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8493   } else {
8494     // Collect the legal value parts into potentially illegal values
8495     // that correspond to the original function's return values.
8496     Optional<ISD::NodeType> AssertOp;
8497     if (CLI.RetSExt)
8498       AssertOp = ISD::AssertSext;
8499     else if (CLI.RetZExt)
8500       AssertOp = ISD::AssertZext;
8501     unsigned CurReg = 0;
8502     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8503       EVT VT = RetTys[I];
8504       MVT RegisterVT =
8505           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8506       unsigned NumRegs =
8507           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8508 
8509       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8510                                               NumRegs, RegisterVT, VT, nullptr,
8511                                               AssertOp, true));
8512       CurReg += NumRegs;
8513     }
8514 
8515     // For a function returning void, there is no return value. We can't create
8516     // such a node, so we just return a null return value in that case. In
8517     // that case, nothing will actually look at the value.
8518     if (ReturnValues.empty())
8519       return std::make_pair(SDValue(), CLI.Chain);
8520   }
8521 
8522   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8523                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8524   return std::make_pair(Res, CLI.Chain);
8525 }
8526 
8527 void TargetLowering::LowerOperationWrapper(SDNode *N,
8528                                            SmallVectorImpl<SDValue> &Results,
8529                                            SelectionDAG &DAG) const {
8530   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8531     Results.push_back(Res);
8532 }
8533 
8534 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8535   llvm_unreachable("LowerOperation not implemented for this target!");
8536 }
8537 
8538 void
8539 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8540   SDValue Op = getNonRegisterValue(V);
8541   assert((Op.getOpcode() != ISD::CopyFromReg ||
8542           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8543          "Copy from a reg to the same reg!");
8544   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8545 
8546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8547   // If this is an InlineAsm we have to match the registers required, not the
8548   // notional registers required by the type.
8549 
8550   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8551                    V->getType(), isABIRegCopy(V));
8552   SDValue Chain = DAG.getEntryNode();
8553 
8554   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8555                               FuncInfo.PreferredExtendType.end())
8556                                  ? ISD::ANY_EXTEND
8557                                  : FuncInfo.PreferredExtendType[V];
8558   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8559   PendingExports.push_back(Chain);
8560 }
8561 
8562 #include "llvm/CodeGen/SelectionDAGISel.h"
8563 
8564 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8565 /// entry block, return true.  This includes arguments used by switches, since
8566 /// the switch may expand into multiple basic blocks.
8567 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8568   // With FastISel active, we may be splitting blocks, so force creation
8569   // of virtual registers for all non-dead arguments.
8570   if (FastISel)
8571     return A->use_empty();
8572 
8573   const BasicBlock &Entry = A->getParent()->front();
8574   for (const User *U : A->users())
8575     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8576       return false;  // Use not in entry block.
8577 
8578   return true;
8579 }
8580 
8581 using ArgCopyElisionMapTy =
8582     DenseMap<const Argument *,
8583              std::pair<const AllocaInst *, const StoreInst *>>;
8584 
8585 /// Scan the entry block of the function in FuncInfo for arguments that look
8586 /// like copies into a local alloca. Record any copied arguments in
8587 /// ArgCopyElisionCandidates.
8588 static void
8589 findArgumentCopyElisionCandidates(const DataLayout &DL,
8590                                   FunctionLoweringInfo *FuncInfo,
8591                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8592   // Record the state of every static alloca used in the entry block. Argument
8593   // allocas are all used in the entry block, so we need approximately as many
8594   // entries as we have arguments.
8595   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8596   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8597   unsigned NumArgs = FuncInfo->Fn->arg_size();
8598   StaticAllocas.reserve(NumArgs * 2);
8599 
8600   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8601     if (!V)
8602       return nullptr;
8603     V = V->stripPointerCasts();
8604     const auto *AI = dyn_cast<AllocaInst>(V);
8605     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8606       return nullptr;
8607     auto Iter = StaticAllocas.insert({AI, Unknown});
8608     return &Iter.first->second;
8609   };
8610 
8611   // Look for stores of arguments to static allocas. Look through bitcasts and
8612   // GEPs to handle type coercions, as long as the alloca is fully initialized
8613   // by the store. Any non-store use of an alloca escapes it and any subsequent
8614   // unanalyzed store might write it.
8615   // FIXME: Handle structs initialized with multiple stores.
8616   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8617     // Look for stores, and handle non-store uses conservatively.
8618     const auto *SI = dyn_cast<StoreInst>(&I);
8619     if (!SI) {
8620       // We will look through cast uses, so ignore them completely.
8621       if (I.isCast())
8622         continue;
8623       // Ignore debug info intrinsics, they don't escape or store to allocas.
8624       if (isa<DbgInfoIntrinsic>(I))
8625         continue;
8626       // This is an unknown instruction. Assume it escapes or writes to all
8627       // static alloca operands.
8628       for (const Use &U : I.operands()) {
8629         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8630           *Info = StaticAllocaInfo::Clobbered;
8631       }
8632       continue;
8633     }
8634 
8635     // If the stored value is a static alloca, mark it as escaped.
8636     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8637       *Info = StaticAllocaInfo::Clobbered;
8638 
8639     // Check if the destination is a static alloca.
8640     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8641     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8642     if (!Info)
8643       continue;
8644     const AllocaInst *AI = cast<AllocaInst>(Dst);
8645 
8646     // Skip allocas that have been initialized or clobbered.
8647     if (*Info != StaticAllocaInfo::Unknown)
8648       continue;
8649 
8650     // Check if the stored value is an argument, and that this store fully
8651     // initializes the alloca. Don't elide copies from the same argument twice.
8652     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8653     const auto *Arg = dyn_cast<Argument>(Val);
8654     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8655         Arg->getType()->isEmptyTy() ||
8656         DL.getTypeStoreSize(Arg->getType()) !=
8657             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8658         ArgCopyElisionCandidates.count(Arg)) {
8659       *Info = StaticAllocaInfo::Clobbered;
8660       continue;
8661     }
8662 
8663     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8664                       << '\n');
8665 
8666     // Mark this alloca and store for argument copy elision.
8667     *Info = StaticAllocaInfo::Elidable;
8668     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8669 
8670     // Stop scanning if we've seen all arguments. This will happen early in -O0
8671     // builds, which is useful, because -O0 builds have large entry blocks and
8672     // many allocas.
8673     if (ArgCopyElisionCandidates.size() == NumArgs)
8674       break;
8675   }
8676 }
8677 
8678 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8679 /// ArgVal is a load from a suitable fixed stack object.
8680 static void tryToElideArgumentCopy(
8681     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8682     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8683     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8684     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8685     SDValue ArgVal, bool &ArgHasUses) {
8686   // Check if this is a load from a fixed stack object.
8687   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8688   if (!LNode)
8689     return;
8690   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8691   if (!FINode)
8692     return;
8693 
8694   // Check that the fixed stack object is the right size and alignment.
8695   // Look at the alignment that the user wrote on the alloca instead of looking
8696   // at the stack object.
8697   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8698   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8699   const AllocaInst *AI = ArgCopyIter->second.first;
8700   int FixedIndex = FINode->getIndex();
8701   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8702   int OldIndex = AllocaIndex;
8703   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8704   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8705     LLVM_DEBUG(
8706         dbgs() << "  argument copy elision failed due to bad fixed stack "
8707                   "object size\n");
8708     return;
8709   }
8710   unsigned RequiredAlignment = AI->getAlignment();
8711   if (!RequiredAlignment) {
8712     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8713         AI->getAllocatedType());
8714   }
8715   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8716     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8717                          "greater than stack argument alignment ("
8718                       << RequiredAlignment << " vs "
8719                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8720     return;
8721   }
8722 
8723   // Perform the elision. Delete the old stack object and replace its only use
8724   // in the variable info map. Mark the stack object as mutable.
8725   LLVM_DEBUG({
8726     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8727            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8728            << '\n';
8729   });
8730   MFI.RemoveStackObject(OldIndex);
8731   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8732   AllocaIndex = FixedIndex;
8733   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8734   Chains.push_back(ArgVal.getValue(1));
8735 
8736   // Avoid emitting code for the store implementing the copy.
8737   const StoreInst *SI = ArgCopyIter->second.second;
8738   ElidedArgCopyInstrs.insert(SI);
8739 
8740   // Check for uses of the argument again so that we can avoid exporting ArgVal
8741   // if it is't used by anything other than the store.
8742   for (const Value *U : Arg.users()) {
8743     if (U != SI) {
8744       ArgHasUses = true;
8745       break;
8746     }
8747   }
8748 }
8749 
8750 void SelectionDAGISel::LowerArguments(const Function &F) {
8751   SelectionDAG &DAG = SDB->DAG;
8752   SDLoc dl = SDB->getCurSDLoc();
8753   const DataLayout &DL = DAG.getDataLayout();
8754   SmallVector<ISD::InputArg, 16> Ins;
8755 
8756   if (!FuncInfo->CanLowerReturn) {
8757     // Put in an sret pointer parameter before all the other parameters.
8758     SmallVector<EVT, 1> ValueVTs;
8759     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8760                     F.getReturnType()->getPointerTo(
8761                         DAG.getDataLayout().getAllocaAddrSpace()),
8762                     ValueVTs);
8763 
8764     // NOTE: Assuming that a pointer will never break down to more than one VT
8765     // or one register.
8766     ISD::ArgFlagsTy Flags;
8767     Flags.setSRet();
8768     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8769     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8770                          ISD::InputArg::NoArgIndex, 0);
8771     Ins.push_back(RetArg);
8772   }
8773 
8774   // Look for stores of arguments to static allocas. Mark such arguments with a
8775   // flag to ask the target to give us the memory location of that argument if
8776   // available.
8777   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8778   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8779 
8780   // Set up the incoming argument description vector.
8781   for (const Argument &Arg : F.args()) {
8782     unsigned ArgNo = Arg.getArgNo();
8783     SmallVector<EVT, 4> ValueVTs;
8784     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8785     bool isArgValueUsed = !Arg.use_empty();
8786     unsigned PartBase = 0;
8787     Type *FinalType = Arg.getType();
8788     if (Arg.hasAttribute(Attribute::ByVal))
8789       FinalType = cast<PointerType>(FinalType)->getElementType();
8790     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8791         FinalType, F.getCallingConv(), F.isVarArg());
8792     for (unsigned Value = 0, NumValues = ValueVTs.size();
8793          Value != NumValues; ++Value) {
8794       EVT VT = ValueVTs[Value];
8795       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8796       ISD::ArgFlagsTy Flags;
8797 
8798       // Certain targets (such as MIPS), may have a different ABI alignment
8799       // for a type depending on the context. Give the target a chance to
8800       // specify the alignment it wants.
8801       unsigned OriginalAlignment =
8802           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8803 
8804       if (Arg.hasAttribute(Attribute::ZExt))
8805         Flags.setZExt();
8806       if (Arg.hasAttribute(Attribute::SExt))
8807         Flags.setSExt();
8808       if (Arg.hasAttribute(Attribute::InReg)) {
8809         // If we are using vectorcall calling convention, a structure that is
8810         // passed InReg - is surely an HVA
8811         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8812             isa<StructType>(Arg.getType())) {
8813           // The first value of a structure is marked
8814           if (0 == Value)
8815             Flags.setHvaStart();
8816           Flags.setHva();
8817         }
8818         // Set InReg Flag
8819         Flags.setInReg();
8820       }
8821       if (Arg.hasAttribute(Attribute::StructRet))
8822         Flags.setSRet();
8823       if (Arg.hasAttribute(Attribute::SwiftSelf))
8824         Flags.setSwiftSelf();
8825       if (Arg.hasAttribute(Attribute::SwiftError))
8826         Flags.setSwiftError();
8827       if (Arg.hasAttribute(Attribute::ByVal))
8828         Flags.setByVal();
8829       if (Arg.hasAttribute(Attribute::InAlloca)) {
8830         Flags.setInAlloca();
8831         // Set the byval flag for CCAssignFn callbacks that don't know about
8832         // inalloca.  This way we can know how many bytes we should've allocated
8833         // and how many bytes a callee cleanup function will pop.  If we port
8834         // inalloca to more targets, we'll have to add custom inalloca handling
8835         // in the various CC lowering callbacks.
8836         Flags.setByVal();
8837       }
8838       if (F.getCallingConv() == CallingConv::X86_INTR) {
8839         // IA Interrupt passes frame (1st parameter) by value in the stack.
8840         if (ArgNo == 0)
8841           Flags.setByVal();
8842       }
8843       if (Flags.isByVal() || Flags.isInAlloca()) {
8844         PointerType *Ty = cast<PointerType>(Arg.getType());
8845         Type *ElementTy = Ty->getElementType();
8846         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8847         // For ByVal, alignment should be passed from FE.  BE will guess if
8848         // this info is not there but there are cases it cannot get right.
8849         unsigned FrameAlign;
8850         if (Arg.getParamAlignment())
8851           FrameAlign = Arg.getParamAlignment();
8852         else
8853           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8854         Flags.setByValAlign(FrameAlign);
8855       }
8856       if (Arg.hasAttribute(Attribute::Nest))
8857         Flags.setNest();
8858       if (NeedsRegBlock)
8859         Flags.setInConsecutiveRegs();
8860       Flags.setOrigAlign(OriginalAlignment);
8861       if (ArgCopyElisionCandidates.count(&Arg))
8862         Flags.setCopyElisionCandidate();
8863 
8864       MVT RegisterVT =
8865           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8866       unsigned NumRegs =
8867           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8868       for (unsigned i = 0; i != NumRegs; ++i) {
8869         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8870                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8871         if (NumRegs > 1 && i == 0)
8872           MyFlags.Flags.setSplit();
8873         // if it isn't first piece, alignment must be 1
8874         else if (i > 0) {
8875           MyFlags.Flags.setOrigAlign(1);
8876           if (i == NumRegs - 1)
8877             MyFlags.Flags.setSplitEnd();
8878         }
8879         Ins.push_back(MyFlags);
8880       }
8881       if (NeedsRegBlock && Value == NumValues - 1)
8882         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8883       PartBase += VT.getStoreSize();
8884     }
8885   }
8886 
8887   // Call the target to set up the argument values.
8888   SmallVector<SDValue, 8> InVals;
8889   SDValue NewRoot = TLI->LowerFormalArguments(
8890       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8891 
8892   // Verify that the target's LowerFormalArguments behaved as expected.
8893   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8894          "LowerFormalArguments didn't return a valid chain!");
8895   assert(InVals.size() == Ins.size() &&
8896          "LowerFormalArguments didn't emit the correct number of values!");
8897   LLVM_DEBUG({
8898     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8899       assert(InVals[i].getNode() &&
8900              "LowerFormalArguments emitted a null value!");
8901       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8902              "LowerFormalArguments emitted a value with the wrong type!");
8903     }
8904   });
8905 
8906   // Update the DAG with the new chain value resulting from argument lowering.
8907   DAG.setRoot(NewRoot);
8908 
8909   // Set up the argument values.
8910   unsigned i = 0;
8911   if (!FuncInfo->CanLowerReturn) {
8912     // Create a virtual register for the sret pointer, and put in a copy
8913     // from the sret argument into it.
8914     SmallVector<EVT, 1> ValueVTs;
8915     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8916                     F.getReturnType()->getPointerTo(
8917                         DAG.getDataLayout().getAllocaAddrSpace()),
8918                     ValueVTs);
8919     MVT VT = ValueVTs[0].getSimpleVT();
8920     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8921     Optional<ISD::NodeType> AssertOp = None;
8922     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8923                                         RegVT, VT, nullptr, AssertOp);
8924 
8925     MachineFunction& MF = SDB->DAG.getMachineFunction();
8926     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8927     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8928     FuncInfo->DemoteRegister = SRetReg;
8929     NewRoot =
8930         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8931     DAG.setRoot(NewRoot);
8932 
8933     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8934     ++i;
8935   }
8936 
8937   SmallVector<SDValue, 4> Chains;
8938   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8939   for (const Argument &Arg : F.args()) {
8940     SmallVector<SDValue, 4> ArgValues;
8941     SmallVector<EVT, 4> ValueVTs;
8942     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8943     unsigned NumValues = ValueVTs.size();
8944     if (NumValues == 0)
8945       continue;
8946 
8947     bool ArgHasUses = !Arg.use_empty();
8948 
8949     // Elide the copying store if the target loaded this argument from a
8950     // suitable fixed stack object.
8951     if (Ins[i].Flags.isCopyElisionCandidate()) {
8952       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8953                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8954                              InVals[i], ArgHasUses);
8955     }
8956 
8957     // If this argument is unused then remember its value. It is used to generate
8958     // debugging information.
8959     bool isSwiftErrorArg =
8960         TLI->supportSwiftError() &&
8961         Arg.hasAttribute(Attribute::SwiftError);
8962     if (!ArgHasUses && !isSwiftErrorArg) {
8963       SDB->setUnusedArgValue(&Arg, InVals[i]);
8964 
8965       // Also remember any frame index for use in FastISel.
8966       if (FrameIndexSDNode *FI =
8967           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8968         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8969     }
8970 
8971     for (unsigned Val = 0; Val != NumValues; ++Val) {
8972       EVT VT = ValueVTs[Val];
8973       MVT PartVT =
8974           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8975       unsigned NumParts =
8976           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8977 
8978       // Even an apparant 'unused' swifterror argument needs to be returned. So
8979       // we do generate a copy for it that can be used on return from the
8980       // function.
8981       if (ArgHasUses || isSwiftErrorArg) {
8982         Optional<ISD::NodeType> AssertOp;
8983         if (Arg.hasAttribute(Attribute::SExt))
8984           AssertOp = ISD::AssertSext;
8985         else if (Arg.hasAttribute(Attribute::ZExt))
8986           AssertOp = ISD::AssertZext;
8987 
8988         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8989                                              PartVT, VT, nullptr, AssertOp,
8990                                              true));
8991       }
8992 
8993       i += NumParts;
8994     }
8995 
8996     // We don't need to do anything else for unused arguments.
8997     if (ArgValues.empty())
8998       continue;
8999 
9000     // Note down frame index.
9001     if (FrameIndexSDNode *FI =
9002         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9003       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9004 
9005     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9006                                      SDB->getCurSDLoc());
9007 
9008     SDB->setValue(&Arg, Res);
9009     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9010       // We want to associate the argument with the frame index, among
9011       // involved operands, that correspond to the lowest address. The
9012       // getCopyFromParts function, called earlier, is swapping the order of
9013       // the operands to BUILD_PAIR depending on endianness. The result of
9014       // that swapping is that the least significant bits of the argument will
9015       // be in the first operand of the BUILD_PAIR node, and the most
9016       // significant bits will be in the second operand.
9017       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9018       if (LoadSDNode *LNode =
9019           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9020         if (FrameIndexSDNode *FI =
9021             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9022           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9023     }
9024 
9025     // Update the SwiftErrorVRegDefMap.
9026     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9027       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9028       if (TargetRegisterInfo::isVirtualRegister(Reg))
9029         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9030                                            FuncInfo->SwiftErrorArg, Reg);
9031     }
9032 
9033     // If this argument is live outside of the entry block, insert a copy from
9034     // wherever we got it to the vreg that other BB's will reference it as.
9035     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9036       // If we can, though, try to skip creating an unnecessary vreg.
9037       // FIXME: This isn't very clean... it would be nice to make this more
9038       // general.  It's also subtly incompatible with the hacks FastISel
9039       // uses with vregs.
9040       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9041       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9042         FuncInfo->ValueMap[&Arg] = Reg;
9043         continue;
9044       }
9045     }
9046     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9047       FuncInfo->InitializeRegForValue(&Arg);
9048       SDB->CopyToExportRegsIfNeeded(&Arg);
9049     }
9050   }
9051 
9052   if (!Chains.empty()) {
9053     Chains.push_back(NewRoot);
9054     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9055   }
9056 
9057   DAG.setRoot(NewRoot);
9058 
9059   assert(i == InVals.size() && "Argument register count mismatch!");
9060 
9061   // If any argument copy elisions occurred and we have debug info, update the
9062   // stale frame indices used in the dbg.declare variable info table.
9063   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9064   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9065     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9066       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9067       if (I != ArgCopyElisionFrameIndexMap.end())
9068         VI.Slot = I->second;
9069     }
9070   }
9071 
9072   // Finally, if the target has anything special to do, allow it to do so.
9073   EmitFunctionEntryCode();
9074 }
9075 
9076 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9077 /// ensure constants are generated when needed.  Remember the virtual registers
9078 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9079 /// directly add them, because expansion might result in multiple MBB's for one
9080 /// BB.  As such, the start of the BB might correspond to a different MBB than
9081 /// the end.
9082 void
9083 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9084   const TerminatorInst *TI = LLVMBB->getTerminator();
9085 
9086   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9087 
9088   // Check PHI nodes in successors that expect a value to be available from this
9089   // block.
9090   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9091     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9092     if (!isa<PHINode>(SuccBB->begin())) continue;
9093     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9094 
9095     // If this terminator has multiple identical successors (common for
9096     // switches), only handle each succ once.
9097     if (!SuccsHandled.insert(SuccMBB).second)
9098       continue;
9099 
9100     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9101 
9102     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9103     // nodes and Machine PHI nodes, but the incoming operands have not been
9104     // emitted yet.
9105     for (const PHINode &PN : SuccBB->phis()) {
9106       // Ignore dead phi's.
9107       if (PN.use_empty())
9108         continue;
9109 
9110       // Skip empty types
9111       if (PN.getType()->isEmptyTy())
9112         continue;
9113 
9114       unsigned Reg;
9115       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9116 
9117       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9118         unsigned &RegOut = ConstantsOut[C];
9119         if (RegOut == 0) {
9120           RegOut = FuncInfo.CreateRegs(C->getType());
9121           CopyValueToVirtualRegister(C, RegOut);
9122         }
9123         Reg = RegOut;
9124       } else {
9125         DenseMap<const Value *, unsigned>::iterator I =
9126           FuncInfo.ValueMap.find(PHIOp);
9127         if (I != FuncInfo.ValueMap.end())
9128           Reg = I->second;
9129         else {
9130           assert(isa<AllocaInst>(PHIOp) &&
9131                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9132                  "Didn't codegen value into a register!??");
9133           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9134           CopyValueToVirtualRegister(PHIOp, Reg);
9135         }
9136       }
9137 
9138       // Remember that this register needs to added to the machine PHI node as
9139       // the input for this MBB.
9140       SmallVector<EVT, 4> ValueVTs;
9141       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9142       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9143       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9144         EVT VT = ValueVTs[vti];
9145         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9146         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9147           FuncInfo.PHINodesToUpdate.push_back(
9148               std::make_pair(&*MBBI++, Reg + i));
9149         Reg += NumRegisters;
9150       }
9151     }
9152   }
9153 
9154   ConstantsOut.clear();
9155 }
9156 
9157 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9158 /// is 0.
9159 MachineBasicBlock *
9160 SelectionDAGBuilder::StackProtectorDescriptor::
9161 AddSuccessorMBB(const BasicBlock *BB,
9162                 MachineBasicBlock *ParentMBB,
9163                 bool IsLikely,
9164                 MachineBasicBlock *SuccMBB) {
9165   // If SuccBB has not been created yet, create it.
9166   if (!SuccMBB) {
9167     MachineFunction *MF = ParentMBB->getParent();
9168     MachineFunction::iterator BBI(ParentMBB);
9169     SuccMBB = MF->CreateMachineBasicBlock(BB);
9170     MF->insert(++BBI, SuccMBB);
9171   }
9172   // Add it as a successor of ParentMBB.
9173   ParentMBB->addSuccessor(
9174       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9175   return SuccMBB;
9176 }
9177 
9178 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9179   MachineFunction::iterator I(MBB);
9180   if (++I == FuncInfo.MF->end())
9181     return nullptr;
9182   return &*I;
9183 }
9184 
9185 /// During lowering new call nodes can be created (such as memset, etc.).
9186 /// Those will become new roots of the current DAG, but complications arise
9187 /// when they are tail calls. In such cases, the call lowering will update
9188 /// the root, but the builder still needs to know that a tail call has been
9189 /// lowered in order to avoid generating an additional return.
9190 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9191   // If the node is null, we do have a tail call.
9192   if (MaybeTC.getNode() != nullptr)
9193     DAG.setRoot(MaybeTC);
9194   else
9195     HasTailCall = true;
9196 }
9197 
9198 uint64_t
9199 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9200                                        unsigned First, unsigned Last) const {
9201   assert(Last >= First);
9202   const APInt &LowCase = Clusters[First].Low->getValue();
9203   const APInt &HighCase = Clusters[Last].High->getValue();
9204   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9205 
9206   // FIXME: A range of consecutive cases has 100% density, but only requires one
9207   // comparison to lower. We should discriminate against such consecutive ranges
9208   // in jump tables.
9209 
9210   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9211 }
9212 
9213 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9214     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9215     unsigned Last) const {
9216   assert(Last >= First);
9217   assert(TotalCases[Last] >= TotalCases[First]);
9218   uint64_t NumCases =
9219       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9220   return NumCases;
9221 }
9222 
9223 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9224                                          unsigned First, unsigned Last,
9225                                          const SwitchInst *SI,
9226                                          MachineBasicBlock *DefaultMBB,
9227                                          CaseCluster &JTCluster) {
9228   assert(First <= Last);
9229 
9230   auto Prob = BranchProbability::getZero();
9231   unsigned NumCmps = 0;
9232   std::vector<MachineBasicBlock*> Table;
9233   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9234 
9235   // Initialize probabilities in JTProbs.
9236   for (unsigned I = First; I <= Last; ++I)
9237     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9238 
9239   for (unsigned I = First; I <= Last; ++I) {
9240     assert(Clusters[I].Kind == CC_Range);
9241     Prob += Clusters[I].Prob;
9242     const APInt &Low = Clusters[I].Low->getValue();
9243     const APInt &High = Clusters[I].High->getValue();
9244     NumCmps += (Low == High) ? 1 : 2;
9245     if (I != First) {
9246       // Fill the gap between this and the previous cluster.
9247       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9248       assert(PreviousHigh.slt(Low));
9249       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9250       for (uint64_t J = 0; J < Gap; J++)
9251         Table.push_back(DefaultMBB);
9252     }
9253     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9254     for (uint64_t J = 0; J < ClusterSize; ++J)
9255       Table.push_back(Clusters[I].MBB);
9256     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9257   }
9258 
9259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9260   unsigned NumDests = JTProbs.size();
9261   if (TLI.isSuitableForBitTests(
9262           NumDests, NumCmps, Clusters[First].Low->getValue(),
9263           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9264     // Clusters[First..Last] should be lowered as bit tests instead.
9265     return false;
9266   }
9267 
9268   // Create the MBB that will load from and jump through the table.
9269   // Note: We create it here, but it's not inserted into the function yet.
9270   MachineFunction *CurMF = FuncInfo.MF;
9271   MachineBasicBlock *JumpTableMBB =
9272       CurMF->CreateMachineBasicBlock(SI->getParent());
9273 
9274   // Add successors. Note: use table order for determinism.
9275   SmallPtrSet<MachineBasicBlock *, 8> Done;
9276   for (MachineBasicBlock *Succ : Table) {
9277     if (Done.count(Succ))
9278       continue;
9279     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9280     Done.insert(Succ);
9281   }
9282   JumpTableMBB->normalizeSuccProbs();
9283 
9284   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9285                      ->createJumpTableIndex(Table);
9286 
9287   // Set up the jump table info.
9288   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9289   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9290                       Clusters[Last].High->getValue(), SI->getCondition(),
9291                       nullptr, false);
9292   JTCases.emplace_back(std::move(JTH), std::move(JT));
9293 
9294   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9295                                      JTCases.size() - 1, Prob);
9296   return true;
9297 }
9298 
9299 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9300                                          const SwitchInst *SI,
9301                                          MachineBasicBlock *DefaultMBB) {
9302 #ifndef NDEBUG
9303   // Clusters must be non-empty, sorted, and only contain Range clusters.
9304   assert(!Clusters.empty());
9305   for (CaseCluster &C : Clusters)
9306     assert(C.Kind == CC_Range);
9307   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9308     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9309 #endif
9310 
9311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9312   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9313     return;
9314 
9315   const int64_t N = Clusters.size();
9316   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9317   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9318 
9319   if (N < 2 || N < MinJumpTableEntries)
9320     return;
9321 
9322   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9323   SmallVector<unsigned, 8> TotalCases(N);
9324   for (unsigned i = 0; i < N; ++i) {
9325     const APInt &Hi = Clusters[i].High->getValue();
9326     const APInt &Lo = Clusters[i].Low->getValue();
9327     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9328     if (i != 0)
9329       TotalCases[i] += TotalCases[i - 1];
9330   }
9331 
9332   // Cheap case: the whole range may be suitable for jump table.
9333   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9334   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9335   assert(NumCases < UINT64_MAX / 100);
9336   assert(Range >= NumCases);
9337   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9338     CaseCluster JTCluster;
9339     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9340       Clusters[0] = JTCluster;
9341       Clusters.resize(1);
9342       return;
9343     }
9344   }
9345 
9346   // The algorithm below is not suitable for -O0.
9347   if (TM.getOptLevel() == CodeGenOpt::None)
9348     return;
9349 
9350   // Split Clusters into minimum number of dense partitions. The algorithm uses
9351   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9352   // for the Case Statement'" (1994), but builds the MinPartitions array in
9353   // reverse order to make it easier to reconstruct the partitions in ascending
9354   // order. In the choice between two optimal partitionings, it picks the one
9355   // which yields more jump tables.
9356 
9357   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9358   SmallVector<unsigned, 8> MinPartitions(N);
9359   // LastElement[i] is the last element of the partition starting at i.
9360   SmallVector<unsigned, 8> LastElement(N);
9361   // PartitionsScore[i] is used to break ties when choosing between two
9362   // partitionings resulting in the same number of partitions.
9363   SmallVector<unsigned, 8> PartitionsScore(N);
9364   // For PartitionsScore, a small number of comparisons is considered as good as
9365   // a jump table and a single comparison is considered better than a jump
9366   // table.
9367   enum PartitionScores : unsigned {
9368     NoTable = 0,
9369     Table = 1,
9370     FewCases = 1,
9371     SingleCase = 2
9372   };
9373 
9374   // Base case: There is only one way to partition Clusters[N-1].
9375   MinPartitions[N - 1] = 1;
9376   LastElement[N - 1] = N - 1;
9377   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9378 
9379   // Note: loop indexes are signed to avoid underflow.
9380   for (int64_t i = N - 2; i >= 0; i--) {
9381     // Find optimal partitioning of Clusters[i..N-1].
9382     // Baseline: Put Clusters[i] into a partition on its own.
9383     MinPartitions[i] = MinPartitions[i + 1] + 1;
9384     LastElement[i] = i;
9385     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9386 
9387     // Search for a solution that results in fewer partitions.
9388     for (int64_t j = N - 1; j > i; j--) {
9389       // Try building a partition from Clusters[i..j].
9390       uint64_t Range = getJumpTableRange(Clusters, i, j);
9391       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9392       assert(NumCases < UINT64_MAX / 100);
9393       assert(Range >= NumCases);
9394       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9395         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9396         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9397         int64_t NumEntries = j - i + 1;
9398 
9399         if (NumEntries == 1)
9400           Score += PartitionScores::SingleCase;
9401         else if (NumEntries <= SmallNumberOfEntries)
9402           Score += PartitionScores::FewCases;
9403         else if (NumEntries >= MinJumpTableEntries)
9404           Score += PartitionScores::Table;
9405 
9406         // If this leads to fewer partitions, or to the same number of
9407         // partitions with better score, it is a better partitioning.
9408         if (NumPartitions < MinPartitions[i] ||
9409             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9410           MinPartitions[i] = NumPartitions;
9411           LastElement[i] = j;
9412           PartitionsScore[i] = Score;
9413         }
9414       }
9415     }
9416   }
9417 
9418   // Iterate over the partitions, replacing some with jump tables in-place.
9419   unsigned DstIndex = 0;
9420   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9421     Last = LastElement[First];
9422     assert(Last >= First);
9423     assert(DstIndex <= First);
9424     unsigned NumClusters = Last - First + 1;
9425 
9426     CaseCluster JTCluster;
9427     if (NumClusters >= MinJumpTableEntries &&
9428         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9429       Clusters[DstIndex++] = JTCluster;
9430     } else {
9431       for (unsigned I = First; I <= Last; ++I)
9432         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9433     }
9434   }
9435   Clusters.resize(DstIndex);
9436 }
9437 
9438 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9439                                         unsigned First, unsigned Last,
9440                                         const SwitchInst *SI,
9441                                         CaseCluster &BTCluster) {
9442   assert(First <= Last);
9443   if (First == Last)
9444     return false;
9445 
9446   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9447   unsigned NumCmps = 0;
9448   for (int64_t I = First; I <= Last; ++I) {
9449     assert(Clusters[I].Kind == CC_Range);
9450     Dests.set(Clusters[I].MBB->getNumber());
9451     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9452   }
9453   unsigned NumDests = Dests.count();
9454 
9455   APInt Low = Clusters[First].Low->getValue();
9456   APInt High = Clusters[Last].High->getValue();
9457   assert(Low.slt(High));
9458 
9459   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9460   const DataLayout &DL = DAG.getDataLayout();
9461   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9462     return false;
9463 
9464   APInt LowBound;
9465   APInt CmpRange;
9466 
9467   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9468   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9469          "Case range must fit in bit mask!");
9470 
9471   // Check if the clusters cover a contiguous range such that no value in the
9472   // range will jump to the default statement.
9473   bool ContiguousRange = true;
9474   for (int64_t I = First + 1; I <= Last; ++I) {
9475     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9476       ContiguousRange = false;
9477       break;
9478     }
9479   }
9480 
9481   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9482     // Optimize the case where all the case values fit in a word without having
9483     // to subtract minValue. In this case, we can optimize away the subtraction.
9484     LowBound = APInt::getNullValue(Low.getBitWidth());
9485     CmpRange = High;
9486     ContiguousRange = false;
9487   } else {
9488     LowBound = Low;
9489     CmpRange = High - Low;
9490   }
9491 
9492   CaseBitsVector CBV;
9493   auto TotalProb = BranchProbability::getZero();
9494   for (unsigned i = First; i <= Last; ++i) {
9495     // Find the CaseBits for this destination.
9496     unsigned j;
9497     for (j = 0; j < CBV.size(); ++j)
9498       if (CBV[j].BB == Clusters[i].MBB)
9499         break;
9500     if (j == CBV.size())
9501       CBV.push_back(
9502           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9503     CaseBits *CB = &CBV[j];
9504 
9505     // Update Mask, Bits and ExtraProb.
9506     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9507     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9508     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9509     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9510     CB->Bits += Hi - Lo + 1;
9511     CB->ExtraProb += Clusters[i].Prob;
9512     TotalProb += Clusters[i].Prob;
9513   }
9514 
9515   BitTestInfo BTI;
9516   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9517     // Sort by probability first, number of bits second, bit mask third.
9518     if (a.ExtraProb != b.ExtraProb)
9519       return a.ExtraProb > b.ExtraProb;
9520     if (a.Bits != b.Bits)
9521       return a.Bits > b.Bits;
9522     return a.Mask < b.Mask;
9523   });
9524 
9525   for (auto &CB : CBV) {
9526     MachineBasicBlock *BitTestBB =
9527         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9528     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9529   }
9530   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9531                             SI->getCondition(), -1U, MVT::Other, false,
9532                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9533                             TotalProb);
9534 
9535   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9536                                     BitTestCases.size() - 1, TotalProb);
9537   return true;
9538 }
9539 
9540 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9541                                               const SwitchInst *SI) {
9542 // Partition Clusters into as few subsets as possible, where each subset has a
9543 // range that fits in a machine word and has <= 3 unique destinations.
9544 
9545 #ifndef NDEBUG
9546   // Clusters must be sorted and contain Range or JumpTable clusters.
9547   assert(!Clusters.empty());
9548   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9549   for (const CaseCluster &C : Clusters)
9550     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9551   for (unsigned i = 1; i < Clusters.size(); ++i)
9552     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9553 #endif
9554 
9555   // The algorithm below is not suitable for -O0.
9556   if (TM.getOptLevel() == CodeGenOpt::None)
9557     return;
9558 
9559   // If target does not have legal shift left, do not emit bit tests at all.
9560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9561   const DataLayout &DL = DAG.getDataLayout();
9562 
9563   EVT PTy = TLI.getPointerTy(DL);
9564   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9565     return;
9566 
9567   int BitWidth = PTy.getSizeInBits();
9568   const int64_t N = Clusters.size();
9569 
9570   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9571   SmallVector<unsigned, 8> MinPartitions(N);
9572   // LastElement[i] is the last element of the partition starting at i.
9573   SmallVector<unsigned, 8> LastElement(N);
9574 
9575   // FIXME: This might not be the best algorithm for finding bit test clusters.
9576 
9577   // Base case: There is only one way to partition Clusters[N-1].
9578   MinPartitions[N - 1] = 1;
9579   LastElement[N - 1] = N - 1;
9580 
9581   // Note: loop indexes are signed to avoid underflow.
9582   for (int64_t i = N - 2; i >= 0; --i) {
9583     // Find optimal partitioning of Clusters[i..N-1].
9584     // Baseline: Put Clusters[i] into a partition on its own.
9585     MinPartitions[i] = MinPartitions[i + 1] + 1;
9586     LastElement[i] = i;
9587 
9588     // Search for a solution that results in fewer partitions.
9589     // Note: the search is limited by BitWidth, reducing time complexity.
9590     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9591       // Try building a partition from Clusters[i..j].
9592 
9593       // Check the range.
9594       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9595                                Clusters[j].High->getValue(), DL))
9596         continue;
9597 
9598       // Check nbr of destinations and cluster types.
9599       // FIXME: This works, but doesn't seem very efficient.
9600       bool RangesOnly = true;
9601       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9602       for (int64_t k = i; k <= j; k++) {
9603         if (Clusters[k].Kind != CC_Range) {
9604           RangesOnly = false;
9605           break;
9606         }
9607         Dests.set(Clusters[k].MBB->getNumber());
9608       }
9609       if (!RangesOnly || Dests.count() > 3)
9610         break;
9611 
9612       // Check if it's a better partition.
9613       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9614       if (NumPartitions < MinPartitions[i]) {
9615         // Found a better partition.
9616         MinPartitions[i] = NumPartitions;
9617         LastElement[i] = j;
9618       }
9619     }
9620   }
9621 
9622   // Iterate over the partitions, replacing with bit-test clusters in-place.
9623   unsigned DstIndex = 0;
9624   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9625     Last = LastElement[First];
9626     assert(First <= Last);
9627     assert(DstIndex <= First);
9628 
9629     CaseCluster BitTestCluster;
9630     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9631       Clusters[DstIndex++] = BitTestCluster;
9632     } else {
9633       size_t NumClusters = Last - First + 1;
9634       std::memmove(&Clusters[DstIndex], &Clusters[First],
9635                    sizeof(Clusters[0]) * NumClusters);
9636       DstIndex += NumClusters;
9637     }
9638   }
9639   Clusters.resize(DstIndex);
9640 }
9641 
9642 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9643                                         MachineBasicBlock *SwitchMBB,
9644                                         MachineBasicBlock *DefaultMBB) {
9645   MachineFunction *CurMF = FuncInfo.MF;
9646   MachineBasicBlock *NextMBB = nullptr;
9647   MachineFunction::iterator BBI(W.MBB);
9648   if (++BBI != FuncInfo.MF->end())
9649     NextMBB = &*BBI;
9650 
9651   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9652 
9653   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9654 
9655   if (Size == 2 && W.MBB == SwitchMBB) {
9656     // If any two of the cases has the same destination, and if one value
9657     // is the same as the other, but has one bit unset that the other has set,
9658     // use bit manipulation to do two compares at once.  For example:
9659     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9660     // TODO: This could be extended to merge any 2 cases in switches with 3
9661     // cases.
9662     // TODO: Handle cases where W.CaseBB != SwitchBB.
9663     CaseCluster &Small = *W.FirstCluster;
9664     CaseCluster &Big = *W.LastCluster;
9665 
9666     if (Small.Low == Small.High && Big.Low == Big.High &&
9667         Small.MBB == Big.MBB) {
9668       const APInt &SmallValue = Small.Low->getValue();
9669       const APInt &BigValue = Big.Low->getValue();
9670 
9671       // Check that there is only one bit different.
9672       APInt CommonBit = BigValue ^ SmallValue;
9673       if (CommonBit.isPowerOf2()) {
9674         SDValue CondLHS = getValue(Cond);
9675         EVT VT = CondLHS.getValueType();
9676         SDLoc DL = getCurSDLoc();
9677 
9678         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9679                                  DAG.getConstant(CommonBit, DL, VT));
9680         SDValue Cond = DAG.getSetCC(
9681             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9682             ISD::SETEQ);
9683 
9684         // Update successor info.
9685         // Both Small and Big will jump to Small.BB, so we sum up the
9686         // probabilities.
9687         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9688         if (BPI)
9689           addSuccessorWithProb(
9690               SwitchMBB, DefaultMBB,
9691               // The default destination is the first successor in IR.
9692               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9693         else
9694           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9695 
9696         // Insert the true branch.
9697         SDValue BrCond =
9698             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9699                         DAG.getBasicBlock(Small.MBB));
9700         // Insert the false branch.
9701         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9702                              DAG.getBasicBlock(DefaultMBB));
9703 
9704         DAG.setRoot(BrCond);
9705         return;
9706       }
9707     }
9708   }
9709 
9710   if (TM.getOptLevel() != CodeGenOpt::None) {
9711     // Here, we order cases by probability so the most likely case will be
9712     // checked first. However, two clusters can have the same probability in
9713     // which case their relative ordering is non-deterministic. So we use Low
9714     // as a tie-breaker as clusters are guaranteed to never overlap.
9715     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9716                [](const CaseCluster &a, const CaseCluster &b) {
9717       return a.Prob != b.Prob ?
9718              a.Prob > b.Prob :
9719              a.Low->getValue().slt(b.Low->getValue());
9720     });
9721 
9722     // Rearrange the case blocks so that the last one falls through if possible
9723     // without changing the order of probabilities.
9724     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9725       --I;
9726       if (I->Prob > W.LastCluster->Prob)
9727         break;
9728       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9729         std::swap(*I, *W.LastCluster);
9730         break;
9731       }
9732     }
9733   }
9734 
9735   // Compute total probability.
9736   BranchProbability DefaultProb = W.DefaultProb;
9737   BranchProbability UnhandledProbs = DefaultProb;
9738   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9739     UnhandledProbs += I->Prob;
9740 
9741   MachineBasicBlock *CurMBB = W.MBB;
9742   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9743     MachineBasicBlock *Fallthrough;
9744     if (I == W.LastCluster) {
9745       // For the last cluster, fall through to the default destination.
9746       Fallthrough = DefaultMBB;
9747     } else {
9748       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9749       CurMF->insert(BBI, Fallthrough);
9750       // Put Cond in a virtual register to make it available from the new blocks.
9751       ExportFromCurrentBlock(Cond);
9752     }
9753     UnhandledProbs -= I->Prob;
9754 
9755     switch (I->Kind) {
9756       case CC_JumpTable: {
9757         // FIXME: Optimize away range check based on pivot comparisons.
9758         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9759         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9760 
9761         // The jump block hasn't been inserted yet; insert it here.
9762         MachineBasicBlock *JumpMBB = JT->MBB;
9763         CurMF->insert(BBI, JumpMBB);
9764 
9765         auto JumpProb = I->Prob;
9766         auto FallthroughProb = UnhandledProbs;
9767 
9768         // If the default statement is a target of the jump table, we evenly
9769         // distribute the default probability to successors of CurMBB. Also
9770         // update the probability on the edge from JumpMBB to Fallthrough.
9771         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9772                                               SE = JumpMBB->succ_end();
9773              SI != SE; ++SI) {
9774           if (*SI == DefaultMBB) {
9775             JumpProb += DefaultProb / 2;
9776             FallthroughProb -= DefaultProb / 2;
9777             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9778             JumpMBB->normalizeSuccProbs();
9779             break;
9780           }
9781         }
9782 
9783         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9784         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9785         CurMBB->normalizeSuccProbs();
9786 
9787         // The jump table header will be inserted in our current block, do the
9788         // range check, and fall through to our fallthrough block.
9789         JTH->HeaderBB = CurMBB;
9790         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9791 
9792         // If we're in the right place, emit the jump table header right now.
9793         if (CurMBB == SwitchMBB) {
9794           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9795           JTH->Emitted = true;
9796         }
9797         break;
9798       }
9799       case CC_BitTests: {
9800         // FIXME: Optimize away range check based on pivot comparisons.
9801         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9802 
9803         // The bit test blocks haven't been inserted yet; insert them here.
9804         for (BitTestCase &BTC : BTB->Cases)
9805           CurMF->insert(BBI, BTC.ThisBB);
9806 
9807         // Fill in fields of the BitTestBlock.
9808         BTB->Parent = CurMBB;
9809         BTB->Default = Fallthrough;
9810 
9811         BTB->DefaultProb = UnhandledProbs;
9812         // If the cases in bit test don't form a contiguous range, we evenly
9813         // distribute the probability on the edge to Fallthrough to two
9814         // successors of CurMBB.
9815         if (!BTB->ContiguousRange) {
9816           BTB->Prob += DefaultProb / 2;
9817           BTB->DefaultProb -= DefaultProb / 2;
9818         }
9819 
9820         // If we're in the right place, emit the bit test header right now.
9821         if (CurMBB == SwitchMBB) {
9822           visitBitTestHeader(*BTB, SwitchMBB);
9823           BTB->Emitted = true;
9824         }
9825         break;
9826       }
9827       case CC_Range: {
9828         const Value *RHS, *LHS, *MHS;
9829         ISD::CondCode CC;
9830         if (I->Low == I->High) {
9831           // Check Cond == I->Low.
9832           CC = ISD::SETEQ;
9833           LHS = Cond;
9834           RHS=I->Low;
9835           MHS = nullptr;
9836         } else {
9837           // Check I->Low <= Cond <= I->High.
9838           CC = ISD::SETLE;
9839           LHS = I->Low;
9840           MHS = Cond;
9841           RHS = I->High;
9842         }
9843 
9844         // The false probability is the sum of all unhandled cases.
9845         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9846                      getCurSDLoc(), I->Prob, UnhandledProbs);
9847 
9848         if (CurMBB == SwitchMBB)
9849           visitSwitchCase(CB, SwitchMBB);
9850         else
9851           SwitchCases.push_back(CB);
9852 
9853         break;
9854       }
9855     }
9856     CurMBB = Fallthrough;
9857   }
9858 }
9859 
9860 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9861                                               CaseClusterIt First,
9862                                               CaseClusterIt Last) {
9863   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9864     if (X.Prob != CC.Prob)
9865       return X.Prob > CC.Prob;
9866 
9867     // Ties are broken by comparing the case value.
9868     return X.Low->getValue().slt(CC.Low->getValue());
9869   });
9870 }
9871 
9872 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9873                                         const SwitchWorkListItem &W,
9874                                         Value *Cond,
9875                                         MachineBasicBlock *SwitchMBB) {
9876   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9877          "Clusters not sorted?");
9878 
9879   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9880 
9881   // Balance the tree based on branch probabilities to create a near-optimal (in
9882   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9883   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9884   CaseClusterIt LastLeft = W.FirstCluster;
9885   CaseClusterIt FirstRight = W.LastCluster;
9886   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9887   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9888 
9889   // Move LastLeft and FirstRight towards each other from opposite directions to
9890   // find a partitioning of the clusters which balances the probability on both
9891   // sides. If LeftProb and RightProb are equal, alternate which side is
9892   // taken to ensure 0-probability nodes are distributed evenly.
9893   unsigned I = 0;
9894   while (LastLeft + 1 < FirstRight) {
9895     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9896       LeftProb += (++LastLeft)->Prob;
9897     else
9898       RightProb += (--FirstRight)->Prob;
9899     I++;
9900   }
9901 
9902   while (true) {
9903     // Our binary search tree differs from a typical BST in that ours can have up
9904     // to three values in each leaf. The pivot selection above doesn't take that
9905     // into account, which means the tree might require more nodes and be less
9906     // efficient. We compensate for this here.
9907 
9908     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9909     unsigned NumRight = W.LastCluster - FirstRight + 1;
9910 
9911     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9912       // If one side has less than 3 clusters, and the other has more than 3,
9913       // consider taking a cluster from the other side.
9914 
9915       if (NumLeft < NumRight) {
9916         // Consider moving the first cluster on the right to the left side.
9917         CaseCluster &CC = *FirstRight;
9918         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9919         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9920         if (LeftSideRank <= RightSideRank) {
9921           // Moving the cluster to the left does not demote it.
9922           ++LastLeft;
9923           ++FirstRight;
9924           continue;
9925         }
9926       } else {
9927         assert(NumRight < NumLeft);
9928         // Consider moving the last element on the left to the right side.
9929         CaseCluster &CC = *LastLeft;
9930         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9931         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9932         if (RightSideRank <= LeftSideRank) {
9933           // Moving the cluster to the right does not demot it.
9934           --LastLeft;
9935           --FirstRight;
9936           continue;
9937         }
9938       }
9939     }
9940     break;
9941   }
9942 
9943   assert(LastLeft + 1 == FirstRight);
9944   assert(LastLeft >= W.FirstCluster);
9945   assert(FirstRight <= W.LastCluster);
9946 
9947   // Use the first element on the right as pivot since we will make less-than
9948   // comparisons against it.
9949   CaseClusterIt PivotCluster = FirstRight;
9950   assert(PivotCluster > W.FirstCluster);
9951   assert(PivotCluster <= W.LastCluster);
9952 
9953   CaseClusterIt FirstLeft = W.FirstCluster;
9954   CaseClusterIt LastRight = W.LastCluster;
9955 
9956   const ConstantInt *Pivot = PivotCluster->Low;
9957 
9958   // New blocks will be inserted immediately after the current one.
9959   MachineFunction::iterator BBI(W.MBB);
9960   ++BBI;
9961 
9962   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9963   // we can branch to its destination directly if it's squeezed exactly in
9964   // between the known lower bound and Pivot - 1.
9965   MachineBasicBlock *LeftMBB;
9966   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9967       FirstLeft->Low == W.GE &&
9968       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9969     LeftMBB = FirstLeft->MBB;
9970   } else {
9971     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9972     FuncInfo.MF->insert(BBI, LeftMBB);
9973     WorkList.push_back(
9974         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9975     // Put Cond in a virtual register to make it available from the new blocks.
9976     ExportFromCurrentBlock(Cond);
9977   }
9978 
9979   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9980   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9981   // directly if RHS.High equals the current upper bound.
9982   MachineBasicBlock *RightMBB;
9983   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9984       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9985     RightMBB = FirstRight->MBB;
9986   } else {
9987     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9988     FuncInfo.MF->insert(BBI, RightMBB);
9989     WorkList.push_back(
9990         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9991     // Put Cond in a virtual register to make it available from the new blocks.
9992     ExportFromCurrentBlock(Cond);
9993   }
9994 
9995   // Create the CaseBlock record that will be used to lower the branch.
9996   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9997                getCurSDLoc(), LeftProb, RightProb);
9998 
9999   if (W.MBB == SwitchMBB)
10000     visitSwitchCase(CB, SwitchMBB);
10001   else
10002     SwitchCases.push_back(CB);
10003 }
10004 
10005 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10006 // from the swith statement.
10007 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10008                                             BranchProbability PeeledCaseProb) {
10009   if (PeeledCaseProb == BranchProbability::getOne())
10010     return BranchProbability::getZero();
10011   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10012 
10013   uint32_t Numerator = CaseProb.getNumerator();
10014   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10015   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10016 }
10017 
10018 // Try to peel the top probability case if it exceeds the threshold.
10019 // Return current MachineBasicBlock for the switch statement if the peeling
10020 // does not occur.
10021 // If the peeling is performed, return the newly created MachineBasicBlock
10022 // for the peeled switch statement. Also update Clusters to remove the peeled
10023 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10024 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10025     const SwitchInst &SI, CaseClusterVector &Clusters,
10026     BranchProbability &PeeledCaseProb) {
10027   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10028   // Don't perform if there is only one cluster or optimizing for size.
10029   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10030       TM.getOptLevel() == CodeGenOpt::None ||
10031       SwitchMBB->getParent()->getFunction().optForMinSize())
10032     return SwitchMBB;
10033 
10034   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10035   unsigned PeeledCaseIndex = 0;
10036   bool SwitchPeeled = false;
10037   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10038     CaseCluster &CC = Clusters[Index];
10039     if (CC.Prob < TopCaseProb)
10040       continue;
10041     TopCaseProb = CC.Prob;
10042     PeeledCaseIndex = Index;
10043     SwitchPeeled = true;
10044   }
10045   if (!SwitchPeeled)
10046     return SwitchMBB;
10047 
10048   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10049                     << TopCaseProb << "\n");
10050 
10051   // Record the MBB for the peeled switch statement.
10052   MachineFunction::iterator BBI(SwitchMBB);
10053   ++BBI;
10054   MachineBasicBlock *PeeledSwitchMBB =
10055       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10056   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10057 
10058   ExportFromCurrentBlock(SI.getCondition());
10059   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10060   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10061                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10062   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10063 
10064   Clusters.erase(PeeledCaseIt);
10065   for (CaseCluster &CC : Clusters) {
10066     LLVM_DEBUG(
10067         dbgs() << "Scale the probablity for one cluster, before scaling: "
10068                << CC.Prob << "\n");
10069     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10070     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10071   }
10072   PeeledCaseProb = TopCaseProb;
10073   return PeeledSwitchMBB;
10074 }
10075 
10076 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10077   // Extract cases from the switch.
10078   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10079   CaseClusterVector Clusters;
10080   Clusters.reserve(SI.getNumCases());
10081   for (auto I : SI.cases()) {
10082     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10083     const ConstantInt *CaseVal = I.getCaseValue();
10084     BranchProbability Prob =
10085         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10086             : BranchProbability(1, SI.getNumCases() + 1);
10087     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10088   }
10089 
10090   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10091 
10092   // Cluster adjacent cases with the same destination. We do this at all
10093   // optimization levels because it's cheap to do and will make codegen faster
10094   // if there are many clusters.
10095   sortAndRangeify(Clusters);
10096 
10097   if (TM.getOptLevel() != CodeGenOpt::None) {
10098     // Replace an unreachable default with the most popular destination.
10099     // FIXME: Exploit unreachable default more aggressively.
10100     bool UnreachableDefault =
10101         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10102     if (UnreachableDefault && !Clusters.empty()) {
10103       DenseMap<const BasicBlock *, unsigned> Popularity;
10104       unsigned MaxPop = 0;
10105       const BasicBlock *MaxBB = nullptr;
10106       for (auto I : SI.cases()) {
10107         const BasicBlock *BB = I.getCaseSuccessor();
10108         if (++Popularity[BB] > MaxPop) {
10109           MaxPop = Popularity[BB];
10110           MaxBB = BB;
10111         }
10112       }
10113       // Set new default.
10114       assert(MaxPop > 0 && MaxBB);
10115       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10116 
10117       // Remove cases that were pointing to the destination that is now the
10118       // default.
10119       CaseClusterVector New;
10120       New.reserve(Clusters.size());
10121       for (CaseCluster &CC : Clusters) {
10122         if (CC.MBB != DefaultMBB)
10123           New.push_back(CC);
10124       }
10125       Clusters = std::move(New);
10126     }
10127   }
10128 
10129   // The branch probablity of the peeled case.
10130   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10131   MachineBasicBlock *PeeledSwitchMBB =
10132       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10133 
10134   // If there is only the default destination, jump there directly.
10135   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10136   if (Clusters.empty()) {
10137     assert(PeeledSwitchMBB == SwitchMBB);
10138     SwitchMBB->addSuccessor(DefaultMBB);
10139     if (DefaultMBB != NextBlock(SwitchMBB)) {
10140       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10141                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10142     }
10143     return;
10144   }
10145 
10146   findJumpTables(Clusters, &SI, DefaultMBB);
10147   findBitTestClusters(Clusters, &SI);
10148 
10149   LLVM_DEBUG({
10150     dbgs() << "Case clusters: ";
10151     for (const CaseCluster &C : Clusters) {
10152       if (C.Kind == CC_JumpTable)
10153         dbgs() << "JT:";
10154       if (C.Kind == CC_BitTests)
10155         dbgs() << "BT:";
10156 
10157       C.Low->getValue().print(dbgs(), true);
10158       if (C.Low != C.High) {
10159         dbgs() << '-';
10160         C.High->getValue().print(dbgs(), true);
10161       }
10162       dbgs() << ' ';
10163     }
10164     dbgs() << '\n';
10165   });
10166 
10167   assert(!Clusters.empty());
10168   SwitchWorkList WorkList;
10169   CaseClusterIt First = Clusters.begin();
10170   CaseClusterIt Last = Clusters.end() - 1;
10171   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10172   // Scale the branchprobability for DefaultMBB if the peel occurs and
10173   // DefaultMBB is not replaced.
10174   if (PeeledCaseProb != BranchProbability::getZero() &&
10175       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10176     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10177   WorkList.push_back(
10178       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10179 
10180   while (!WorkList.empty()) {
10181     SwitchWorkListItem W = WorkList.back();
10182     WorkList.pop_back();
10183     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10184 
10185     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10186         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10187       // For optimized builds, lower large range as a balanced binary tree.
10188       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10189       continue;
10190     }
10191 
10192     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10193   }
10194 }
10195