xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 5dde809404f73b30bb41b79f7060c0e14cfe0426)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // True if the Value passed requires ABI mangling as it is a parameter to a
161 // function or a return value from a function which is not an intrinsic.
162 static bool isABIRegCopy(const Value *V) {
163   const bool IsRetInst = V && isa<ReturnInst>(V);
164   const bool IsCallInst = V && isa<CallInst>(V);
165   const bool IsInLineAsm =
166       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
167   const bool IsIndirectFunctionCall =
168       IsCallInst && !IsInLineAsm &&
169       !static_cast<const CallInst *>(V)->getCalledFunction();
170   // It is possible that the call instruction is an inline asm statement or an
171   // indirect function call in which case the return value of
172   // getCalledFunction() would be nullptr.
173   const bool IsInstrinsicCall =
174       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
175       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
176           Intrinsic::not_intrinsic;
177 
178   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
179 }
180 
181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
182                                       const SDValue *Parts, unsigned NumParts,
183                                       MVT PartVT, EVT ValueVT, const Value *V,
184                                       bool IsABIRegCopy);
185 
186 /// getCopyFromParts - Create a value that contains the specified legal parts
187 /// combined into the value they represent.  If the parts combine to a type
188 /// larger than ValueVT then AssertOp can be used to specify whether the extra
189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
190 /// (ISD::AssertSext).
191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
192                                 const SDValue *Parts, unsigned NumParts,
193                                 MVT PartVT, EVT ValueVT, const Value *V,
194                                 Optional<ISD::NodeType> AssertOp = None,
195                                 bool IsABIRegCopy = false) {
196   if (ValueVT.isVector())
197     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
198                                   PartVT, ValueVT, V, IsABIRegCopy);
199 
200   assert(NumParts > 0 && "No parts to assemble!");
201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
202   SDValue Val = Parts[0];
203 
204   if (NumParts > 1) {
205     // Assemble the value from multiple parts.
206     if (ValueVT.isInteger()) {
207       unsigned PartBits = PartVT.getSizeInBits();
208       unsigned ValueBits = ValueVT.getSizeInBits();
209 
210       // Assemble the power of 2 part.
211       unsigned RoundParts = NumParts & (NumParts - 1) ?
212         1 << Log2_32(NumParts) : NumParts;
213       unsigned RoundBits = PartBits * RoundParts;
214       EVT RoundVT = RoundBits == ValueBits ?
215         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
216       SDValue Lo, Hi;
217 
218       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
219 
220       if (RoundParts > 2) {
221         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
222                               PartVT, HalfVT, V);
223         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
224                               RoundParts / 2, PartVT, HalfVT, V);
225       } else {
226         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
227         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
228       }
229 
230       if (DAG.getDataLayout().isBigEndian())
231         std::swap(Lo, Hi);
232 
233       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
234 
235       if (RoundParts < NumParts) {
236         // Assemble the trailing non-power-of-2 part.
237         unsigned OddParts = NumParts - RoundParts;
238         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
239         Hi = getCopyFromParts(DAG, DL,
240                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
241 
242         // Combine the round and odd parts.
243         Lo = Val;
244         if (DAG.getDataLayout().isBigEndian())
245           std::swap(Lo, Hi);
246         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
247         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
248         Hi =
249             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
250                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
251                                         TLI.getPointerTy(DAG.getDataLayout())));
252         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
253         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
254       }
255     } else if (PartVT.isFloatingPoint()) {
256       // FP split into multiple FP parts (for ppcf128)
257       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
258              "Unexpected split");
259       SDValue Lo, Hi;
260       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
261       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
262       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
263         std::swap(Lo, Hi);
264       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
265     } else {
266       // FP split into integer parts (soft fp)
267       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
268              !PartVT.isVector() && "Unexpected split");
269       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
271     }
272   }
273 
274   // There is now one part, held in Val.  Correct it to match ValueVT.
275   // PartEVT is the type of the register class that holds the value.
276   // ValueVT is the type of the inline asm operation.
277   EVT PartEVT = Val.getValueType();
278 
279   if (PartEVT == ValueVT)
280     return Val;
281 
282   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
283       ValueVT.bitsLT(PartEVT)) {
284     // For an FP value in an integer part, we need to truncate to the right
285     // width first.
286     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
287     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
288   }
289 
290   // Handle types that have the same size.
291   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
292     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
293 
294   // Handle types with different sizes.
295   if (PartEVT.isInteger() && ValueVT.isInteger()) {
296     if (ValueVT.bitsLT(PartEVT)) {
297       // For a truncate, see if we have any information to
298       // indicate whether the truncated bits will always be
299       // zero or sign-extension.
300       if (AssertOp.hasValue())
301         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
302                           DAG.getValueType(ValueVT));
303       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304     }
305     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
306   }
307 
308   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
309     // FP_ROUND's are always exact here.
310     if (ValueVT.bitsLT(Val.getValueType()))
311       return DAG.getNode(
312           ISD::FP_ROUND, DL, ValueVT, Val,
313           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
314 
315     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
316   }
317 
318   llvm_unreachable("Unknown mismatch!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (isa<InlineAsm>(CI->getCalledValue()))
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       bool IsABIRegCopy) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
359           RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
380                                   PartVT, IntermediateVT, V);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
389                                   PartVT, IntermediateVT, V);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
396                          (IntermediateVT.isVector()
397                               ? IntermediateVT.getVectorNumElements() * NumParts
398                               : NumIntermediates));
399     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
400                                                 : ISD::BUILD_VECTOR,
401                       DL, BuiltVectorTy, Ops);
402   }
403 
404   // There is now one part, held in Val.  Correct it to match ValueVT.
405   EVT PartEVT = Val.getValueType();
406 
407   if (PartEVT == ValueVT)
408     return Val;
409 
410   if (PartEVT.isVector()) {
411     // If the element type of the source/dest vectors are the same, but the
412     // parts vector has more elements than the value vector, then we have a
413     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
414     // elements we want.
415     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
416       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
417              "Cannot narrow, it would be a lossy transformation");
418       return DAG.getNode(
419           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
420           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
421     }
422 
423     // Vector/Vector bitcast.
424     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
425       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
426 
427     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
428       "Cannot handle this kind of promotion");
429     // Promoted vector extract
430     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
431 
432   }
433 
434   // Trivial bitcast if the types are the same size and the destination
435   // vector type is legal.
436   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
437       TLI.isTypeLegal(ValueVT))
438     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440   if (ValueVT.getVectorNumElements() != 1) {
441      // Certain ABIs require that vectors are passed as integers. For vectors
442      // are the same size, this is an obvious bitcast.
443      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
444        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
446        // Bitcast Val back the original type and extract the corresponding
447        // vector we want.
448        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
449        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
450                                            ValueVT.getVectorElementType(), Elts);
451        Val = DAG.getBitcast(WiderVecType, Val);
452        return DAG.getNode(
453            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
454            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
455      }
456 
457      diagnosePossiblyInvalidConstraint(
458          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
459      return DAG.getUNDEF(ValueVT);
460   }
461 
462   // Handle cases such as i8 -> <1 x i1>
463   EVT ValueSVT = ValueVT.getVectorElementType();
464   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
465     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467 
468   return DAG.getBuildVector(ValueVT, DL, Val);
469 }
470 
471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
472                                  SDValue Val, SDValue *Parts, unsigned NumParts,
473                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
474 
475 /// getCopyToParts - Create a series of nodes that contain the specified value
476 /// split into legal parts.  If the parts contain more bits than Val, then, for
477 /// integers, ExtendKind can be used to specify how to generate the extra bits.
478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
479                            SDValue *Parts, unsigned NumParts, MVT PartVT,
480                            const Value *V,
481                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
482                            bool IsABIRegCopy = false) {
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 IsABIRegCopy);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566                                  DAG.getIntPtrConstant(RoundBits, DL));
567     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
568 
569     if (DAG.getDataLayout().isBigEndian())
570       // The odd parts were reversed by getCopyToParts - unreverse them.
571       std::reverse(Parts + RoundParts, Parts + NumParts);
572 
573     NumParts = RoundParts;
574     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
575     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
576   }
577 
578   // The number of parts is a power of 2.  Repeatedly bisect the value using
579   // EXTRACT_ELEMENT.
580   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
581                          EVT::getIntegerVT(*DAG.getContext(),
582                                            ValueVT.getSizeInBits()),
583                          Val);
584 
585   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
586     for (unsigned i = 0; i < NumParts; i += StepSize) {
587       unsigned ThisBits = StepSize * PartBits / 2;
588       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
589       SDValue &Part0 = Parts[i];
590       SDValue &Part1 = Parts[i+StepSize/2];
591 
592       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
594       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
596 
597       if (ThisBits == PartBits && ThisVT != PartVT) {
598         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
599         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
600       }
601     }
602   }
603 
604   if (DAG.getDataLayout().isBigEndian())
605     std::reverse(Parts, Parts + OrigNumParts);
606 }
607 
608 
609 /// getCopyToPartsVector - Create a series of nodes that contain the specified
610 /// value split into legal parts.
611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
612                                  SDValue Val, SDValue *Parts, unsigned NumParts,
613                                  MVT PartVT, const Value *V,
614                                  bool IsABIRegCopy) {
615   EVT ValueVT = Val.getValueType();
616   assert(ValueVT.isVector() && "Not a vector");
617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618 
619   if (NumParts == 1) {
620     EVT PartEVT = PartVT;
621     if (PartEVT == ValueVT) {
622       // Nothing to do.
623     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
624       // Bitconvert vector->vector case.
625       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
626     } else if (PartVT.isVector() &&
627                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
628                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
629       EVT ElementVT = PartVT.getVectorElementType();
630       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631       // undef elements.
632       SmallVector<SDValue, 16> Ops;
633       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
634         Ops.push_back(DAG.getNode(
635             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
636             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
637 
638       for (unsigned i = ValueVT.getVectorNumElements(),
639            e = PartVT.getVectorNumElements(); i != e; ++i)
640         Ops.push_back(DAG.getUNDEF(ElementVT));
641 
642       Val = DAG.getBuildVector(PartVT, DL, Ops);
643 
644       // FIXME: Use CONCAT for 2x -> 4x.
645 
646       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
647       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
648     } else if (PartVT.isVector() &&
649                PartEVT.getVectorElementType().bitsGE(
650                  ValueVT.getVectorElementType()) &&
651                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
652 
653       // Promoted vector extract
654       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
655     } else {
656       if (ValueVT.getVectorNumElements() == 1) {
657         Val = DAG.getNode(
658             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
659             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
660       } else {
661         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
662                "lossy conversion of vector to scalar type");
663         EVT IntermediateType =
664             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
665         Val = DAG.getBitcast(IntermediateType, Val);
666         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667       }
668     }
669 
670     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
671     Parts[0] = Val;
672     return;
673   }
674 
675   // Handle a multi-element vector.
676   EVT IntermediateVT;
677   MVT RegisterVT;
678   unsigned NumIntermediates;
679   unsigned NumRegs;
680   if (IsABIRegCopy) {
681     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
682         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
683         RegisterVT);
684   } else {
685     NumRegs =
686         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
687                                    NumIntermediates, RegisterVT);
688   }
689   unsigned NumElements = ValueVT.getVectorNumElements();
690 
691   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
692   NumParts = NumRegs; // Silence a compiler warning.
693   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
694 
695   // Convert the vector to the appropiate type if necessary.
696   unsigned DestVectorNoElts =
697       NumIntermediates *
698       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
699   EVT BuiltVectorTy = EVT::getVectorVT(
700       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
701   if (Val.getValueType() != BuiltVectorTy)
702     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
703 
704   // Split the vector into intermediate operands.
705   SmallVector<SDValue, 8> Ops(NumIntermediates);
706   for (unsigned i = 0; i != NumIntermediates; ++i) {
707     if (IntermediateVT.isVector())
708       Ops[i] =
709           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
710                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
711                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
712     else
713       Ops[i] = DAG.getNode(
714           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
715           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
716   }
717 
718   // Split the intermediate operands into legal parts.
719   if (NumParts == NumIntermediates) {
720     // If the register was not expanded, promote or copy the value,
721     // as appropriate.
722     for (unsigned i = 0; i != NumParts; ++i)
723       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
724   } else if (NumParts > 0) {
725     // If the intermediate type was expanded, split each the value into
726     // legal parts.
727     assert(NumIntermediates != 0 && "division by zero");
728     assert(NumParts % NumIntermediates == 0 &&
729            "Must expand into a divisible number of parts!");
730     unsigned Factor = NumParts / NumIntermediates;
731     for (unsigned i = 0; i != NumIntermediates; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
733   }
734 }
735 
736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
737                            EVT valuevt, bool IsABIMangledValue)
738     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
739       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
740 
741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
742                            const DataLayout &DL, unsigned Reg, Type *Ty,
743                            bool IsABIMangledValue) {
744   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
745 
746   IsABIMangled = IsABIMangledValue;
747 
748   for (EVT ValueVT : ValueVTs) {
749     unsigned NumRegs = IsABIMangledValue
750                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
751                            : TLI.getNumRegisters(Context, ValueVT);
752     MVT RegisterVT = IsABIMangledValue
753                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
754                          : TLI.getRegisterType(Context, ValueVT);
755     for (unsigned i = 0; i != NumRegs; ++i)
756       Regs.push_back(Reg + i);
757     RegVTs.push_back(RegisterVT);
758     RegCount.push_back(NumRegs);
759     Reg += NumRegs;
760   }
761 }
762 
763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
764                                       FunctionLoweringInfo &FuncInfo,
765                                       const SDLoc &dl, SDValue &Chain,
766                                       SDValue *Flag, const Value *V) const {
767   // A Value with type {} or [0 x %t] needs no registers.
768   if (ValueVTs.empty())
769     return SDValue();
770 
771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
772 
773   // Assemble the legal parts into the final values.
774   SmallVector<SDValue, 4> Values(ValueVTs.size());
775   SmallVector<SDValue, 8> Parts;
776   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
777     // Copy the legal parts from the registers.
778     EVT ValueVT = ValueVTs[Value];
779     unsigned NumRegs = RegCount[Value];
780     MVT RegisterVT = IsABIMangled
781                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
782                          : RegVTs[Value];
783 
784     Parts.resize(NumRegs);
785     for (unsigned i = 0; i != NumRegs; ++i) {
786       SDValue P;
787       if (!Flag) {
788         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
789       } else {
790         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
791         *Flag = P.getValue(2);
792       }
793 
794       Chain = P.getValue(1);
795       Parts[i] = P;
796 
797       // If the source register was virtual and if we know something about it,
798       // add an assert node.
799       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
800           !RegisterVT.isInteger() || RegisterVT.isVector())
801         continue;
802 
803       const FunctionLoweringInfo::LiveOutInfo *LOI =
804         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
805       if (!LOI)
806         continue;
807 
808       unsigned RegSize = RegisterVT.getSizeInBits();
809       unsigned NumSignBits = LOI->NumSignBits;
810       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
811 
812       if (NumZeroBits == RegSize) {
813         // The current value is a zero.
814         // Explicitly express that as it would be easier for
815         // optimizations to kick in.
816         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
817         continue;
818       }
819 
820       // FIXME: We capture more information than the dag can represent.  For
821       // now, just use the tightest assertzext/assertsext possible.
822       bool isSExt = true;
823       EVT FromVT(MVT::Other);
824       if (NumSignBits == RegSize) {
825         isSExt = true;   // ASSERT SEXT 1
826         FromVT = MVT::i1;
827       } else if (NumZeroBits >= RegSize - 1) {
828         isSExt = false;  // ASSERT ZEXT 1
829         FromVT = MVT::i1;
830       } else if (NumSignBits > RegSize - 8) {
831         isSExt = true;   // ASSERT SEXT 8
832         FromVT = MVT::i8;
833       } else if (NumZeroBits >= RegSize - 8) {
834         isSExt = false;  // ASSERT ZEXT 8
835         FromVT = MVT::i8;
836       } else if (NumSignBits > RegSize - 16) {
837         isSExt = true;   // ASSERT SEXT 16
838         FromVT = MVT::i16;
839       } else if (NumZeroBits >= RegSize - 16) {
840         isSExt = false;  // ASSERT ZEXT 16
841         FromVT = MVT::i16;
842       } else if (NumSignBits > RegSize - 32) {
843         isSExt = true;   // ASSERT SEXT 32
844         FromVT = MVT::i32;
845       } else if (NumZeroBits >= RegSize - 32) {
846         isSExt = false;  // ASSERT ZEXT 32
847         FromVT = MVT::i32;
848       } else {
849         continue;
850       }
851       // Add an assertion node.
852       assert(FromVT != MVT::Other);
853       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
854                              RegisterVT, P, DAG.getValueType(FromVT));
855     }
856 
857     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
858                                      NumRegs, RegisterVT, ValueVT, V);
859     Part += NumRegs;
860     Parts.clear();
861   }
862 
863   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
864 }
865 
866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
867                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
868                                  const Value *V,
869                                  ISD::NodeType PreferredExtendType) const {
870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
871   ISD::NodeType ExtendKind = PreferredExtendType;
872 
873   // Get the list of the values's legal parts.
874   unsigned NumRegs = Regs.size();
875   SmallVector<SDValue, 8> Parts(NumRegs);
876   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
877     unsigned NumParts = RegCount[Value];
878 
879     MVT RegisterVT = IsABIMangled
880                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
881                          : RegVTs[Value];
882 
883     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
884       ExtendKind = ISD::ZERO_EXTEND;
885 
886     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
887                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
888     Part += NumParts;
889   }
890 
891   // Copy the parts into the registers.
892   SmallVector<SDValue, 8> Chains(NumRegs);
893   for (unsigned i = 0; i != NumRegs; ++i) {
894     SDValue Part;
895     if (!Flag) {
896       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
897     } else {
898       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
899       *Flag = Part.getValue(1);
900     }
901 
902     Chains[i] = Part.getValue(0);
903   }
904 
905   if (NumRegs == 1 || Flag)
906     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
907     // flagged to it. That is the CopyToReg nodes and the user are considered
908     // a single scheduling unit. If we create a TokenFactor and return it as
909     // chain, then the TokenFactor is both a predecessor (operand) of the
910     // user as well as a successor (the TF operands are flagged to the user).
911     // c1, f1 = CopyToReg
912     // c2, f2 = CopyToReg
913     // c3     = TokenFactor c1, c2
914     // ...
915     //        = op c3, ..., f2
916     Chain = Chains[NumRegs-1];
917   else
918     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
919 }
920 
921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
922                                         unsigned MatchingIdx, const SDLoc &dl,
923                                         SelectionDAG &DAG,
924                                         std::vector<SDValue> &Ops) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926 
927   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
928   if (HasMatching)
929     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
930   else if (!Regs.empty() &&
931            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
932     // Put the register class of the virtual registers in the flag word.  That
933     // way, later passes can recompute register class constraints for inline
934     // assembly as well as normal instructions.
935     // Don't do this for tied operands that can use the regclass information
936     // from the def.
937     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
938     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
939     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
940   }
941 
942   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
943   Ops.push_back(Res);
944 
945   if (Code == InlineAsm::Kind_Clobber) {
946     // Clobbers should always have a 1:1 mapping with registers, and may
947     // reference registers that have illegal (e.g. vector) types. Hence, we
948     // shouldn't try to apply any sort of splitting logic to them.
949     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
950            "No 1:1 mapping from clobbers to regs?");
951     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
952     (void)SP;
953     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
954       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
955       assert(
956           (Regs[I] != SP ||
957            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
958           "If we clobbered the stack pointer, MFI should know about it.");
959     }
960     return;
961   }
962 
963   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
965     MVT RegisterVT = RegVTs[Value];
966     for (unsigned i = 0; i != NumRegs; ++i) {
967       assert(Reg < Regs.size() && "Mismatch in # registers expected");
968       unsigned TheReg = Regs[Reg++];
969       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
970     }
971   }
972 }
973 
974 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
975                                const TargetLibraryInfo *li) {
976   AA = aa;
977   GFI = gfi;
978   LibInfo = li;
979   DL = &DAG.getDataLayout();
980   Context = DAG.getContext();
981   LPadToCallSiteMap.clear();
982 }
983 
984 void SelectionDAGBuilder::clear() {
985   NodeMap.clear();
986   UnusedArgNodeMap.clear();
987   PendingLoads.clear();
988   PendingExports.clear();
989   CurInst = nullptr;
990   HasTailCall = false;
991   SDNodeOrder = LowestSDNodeOrder;
992   StatepointLowering.clear();
993 }
994 
995 void SelectionDAGBuilder::clearDanglingDebugInfo() {
996   DanglingDebugInfoMap.clear();
997 }
998 
999 SDValue SelectionDAGBuilder::getRoot() {
1000   if (PendingLoads.empty())
1001     return DAG.getRoot();
1002 
1003   if (PendingLoads.size() == 1) {
1004     SDValue Root = PendingLoads[0];
1005     DAG.setRoot(Root);
1006     PendingLoads.clear();
1007     return Root;
1008   }
1009 
1010   // Otherwise, we have to make a token factor node.
1011   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1012                              PendingLoads);
1013   PendingLoads.clear();
1014   DAG.setRoot(Root);
1015   return Root;
1016 }
1017 
1018 SDValue SelectionDAGBuilder::getControlRoot() {
1019   SDValue Root = DAG.getRoot();
1020 
1021   if (PendingExports.empty())
1022     return Root;
1023 
1024   // Turn all of the CopyToReg chains into one factored node.
1025   if (Root.getOpcode() != ISD::EntryToken) {
1026     unsigned i = 0, e = PendingExports.size();
1027     for (; i != e; ++i) {
1028       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1029       if (PendingExports[i].getNode()->getOperand(0) == Root)
1030         break;  // Don't add the root if we already indirectly depend on it.
1031     }
1032 
1033     if (i == e)
1034       PendingExports.push_back(Root);
1035   }
1036 
1037   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1038                      PendingExports);
1039   PendingExports.clear();
1040   DAG.setRoot(Root);
1041   return Root;
1042 }
1043 
1044 void SelectionDAGBuilder::visit(const Instruction &I) {
1045   // Set up outgoing PHI node register values before emitting the terminator.
1046   if (isa<TerminatorInst>(&I)) {
1047     HandlePHINodesInSuccessorBlocks(I.getParent());
1048   }
1049 
1050   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1051   if (!isa<DbgInfoIntrinsic>(I))
1052     ++SDNodeOrder;
1053 
1054   CurInst = &I;
1055 
1056   visit(I.getOpcode(), I);
1057 
1058   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1059       !isStatepoint(&I)) // statepoints handle their exports internally
1060     CopyToExportRegsIfNeeded(&I);
1061 
1062   CurInst = nullptr;
1063 }
1064 
1065 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1066   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1067 }
1068 
1069 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1070   // Note: this doesn't use InstVisitor, because it has to work with
1071   // ConstantExpr's in addition to instructions.
1072   switch (Opcode) {
1073   default: llvm_unreachable("Unknown instruction type encountered!");
1074     // Build the switch statement using the Instruction.def file.
1075 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1076     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1077 #include "llvm/IR/Instruction.def"
1078   }
1079 }
1080 
1081 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1082                                                 const DIExpression *Expr) {
1083   for (auto &DDIMI : DanglingDebugInfoMap)
1084     for (auto &DDI : DDIMI.second)
1085       if (DDI.getDI()) {
1086         const DbgValueInst *DI = DDI.getDI();
1087         DIVariable *DanglingVariable = DI->getVariable();
1088         DIExpression *DanglingExpr = DI->getExpression();
1089         if (DanglingVariable == Variable &&
1090             Expr->fragmentsOverlap(DanglingExpr)) {
1091           DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1092           DDI = DanglingDebugInfo();
1093         }
1094       }
1095 }
1096 
1097 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1098 // generate the debug data structures now that we've seen its definition.
1099 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1100                                                    SDValue Val) {
1101   DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V];
1102   for (auto &DDI : DDIV) {
1103     if (!DDI.getDI())
1104       continue;
1105     const DbgValueInst *DI = DDI.getDI();
1106     DebugLoc dl = DDI.getdl();
1107     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1108     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1109     DILocalVariable *Variable = DI->getVariable();
1110     DIExpression *Expr = DI->getExpression();
1111     assert(Variable->isValidLocationForIntrinsic(dl) &&
1112            "Expected inlined-at fields to agree");
1113     SDDbgValue *SDV;
1114     if (Val.getNode()) {
1115       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1116         DEBUG(dbgs() << "Resolve dangling debug info [order=" << DbgSDNodeOrder
1117               << "] for:\n  " << *DI << "\n");
1118         DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1119         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1120         // inserted after the definition of Val when emitting the instructions
1121         // after ISel. An alternative could be to teach
1122         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1123         DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder)
1124                 dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder
1125                        << " to " << ValSDNodeOrder << "\n");
1126         SDV = getDbgValue(Val, Variable, Expr, dl,
1127                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1128         DAG.AddDbgValue(SDV, Val.getNode(), false);
1129       } else
1130         DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1131               << "in EmitFuncArgumentDbgValue\n");
1132     } else
1133       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1134   }
1135   DanglingDebugInfoMap[V].clear();
1136 }
1137 
1138 /// getCopyFromRegs - If there was virtual register allocated for the value V
1139 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1140 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1141   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1142   SDValue Result;
1143 
1144   if (It != FuncInfo.ValueMap.end()) {
1145     unsigned InReg = It->second;
1146 
1147     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1148                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1149     SDValue Chain = DAG.getEntryNode();
1150     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1151                                  V);
1152     resolveDanglingDebugInfo(V, Result);
1153   }
1154 
1155   return Result;
1156 }
1157 
1158 /// getValue - Return an SDValue for the given Value.
1159 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1160   // If we already have an SDValue for this value, use it. It's important
1161   // to do this first, so that we don't create a CopyFromReg if we already
1162   // have a regular SDValue.
1163   SDValue &N = NodeMap[V];
1164   if (N.getNode()) return N;
1165 
1166   // If there's a virtual register allocated and initialized for this
1167   // value, use it.
1168   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1169     return copyFromReg;
1170 
1171   // Otherwise create a new SDValue and remember it.
1172   SDValue Val = getValueImpl(V);
1173   NodeMap[V] = Val;
1174   resolveDanglingDebugInfo(V, Val);
1175   return Val;
1176 }
1177 
1178 // Return true if SDValue exists for the given Value
1179 bool SelectionDAGBuilder::findValue(const Value *V) const {
1180   return (NodeMap.find(V) != NodeMap.end()) ||
1181     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1182 }
1183 
1184 /// getNonRegisterValue - Return an SDValue for the given Value, but
1185 /// don't look in FuncInfo.ValueMap for a virtual register.
1186 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1187   // If we already have an SDValue for this value, use it.
1188   SDValue &N = NodeMap[V];
1189   if (N.getNode()) {
1190     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1191       // Remove the debug location from the node as the node is about to be used
1192       // in a location which may differ from the original debug location.  This
1193       // is relevant to Constant and ConstantFP nodes because they can appear
1194       // as constant expressions inside PHI nodes.
1195       N->setDebugLoc(DebugLoc());
1196     }
1197     return N;
1198   }
1199 
1200   // Otherwise create a new SDValue and remember it.
1201   SDValue Val = getValueImpl(V);
1202   NodeMap[V] = Val;
1203   resolveDanglingDebugInfo(V, Val);
1204   return Val;
1205 }
1206 
1207 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1208 /// Create an SDValue for the given value.
1209 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1211 
1212   if (const Constant *C = dyn_cast<Constant>(V)) {
1213     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1214 
1215     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1216       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1217 
1218     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1219       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1220 
1221     if (isa<ConstantPointerNull>(C)) {
1222       unsigned AS = V->getType()->getPointerAddressSpace();
1223       return DAG.getConstant(0, getCurSDLoc(),
1224                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1225     }
1226 
1227     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1228       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1229 
1230     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1231       return DAG.getUNDEF(VT);
1232 
1233     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1234       visit(CE->getOpcode(), *CE);
1235       SDValue N1 = NodeMap[V];
1236       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1237       return N1;
1238     }
1239 
1240     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1241       SmallVector<SDValue, 4> Constants;
1242       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1243            OI != OE; ++OI) {
1244         SDNode *Val = getValue(*OI).getNode();
1245         // If the operand is an empty aggregate, there are no values.
1246         if (!Val) continue;
1247         // Add each leaf value from the operand to the Constants list
1248         // to form a flattened list of all the values.
1249         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1250           Constants.push_back(SDValue(Val, i));
1251       }
1252 
1253       return DAG.getMergeValues(Constants, getCurSDLoc());
1254     }
1255 
1256     if (const ConstantDataSequential *CDS =
1257           dyn_cast<ConstantDataSequential>(C)) {
1258       SmallVector<SDValue, 4> Ops;
1259       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1260         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1261         // Add each leaf value from the operand to the Constants list
1262         // to form a flattened list of all the values.
1263         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1264           Ops.push_back(SDValue(Val, i));
1265       }
1266 
1267       if (isa<ArrayType>(CDS->getType()))
1268         return DAG.getMergeValues(Ops, getCurSDLoc());
1269       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1270     }
1271 
1272     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1273       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1274              "Unknown struct or array constant!");
1275 
1276       SmallVector<EVT, 4> ValueVTs;
1277       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1278       unsigned NumElts = ValueVTs.size();
1279       if (NumElts == 0)
1280         return SDValue(); // empty struct
1281       SmallVector<SDValue, 4> Constants(NumElts);
1282       for (unsigned i = 0; i != NumElts; ++i) {
1283         EVT EltVT = ValueVTs[i];
1284         if (isa<UndefValue>(C))
1285           Constants[i] = DAG.getUNDEF(EltVT);
1286         else if (EltVT.isFloatingPoint())
1287           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1288         else
1289           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1290       }
1291 
1292       return DAG.getMergeValues(Constants, getCurSDLoc());
1293     }
1294 
1295     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1296       return DAG.getBlockAddress(BA, VT);
1297 
1298     VectorType *VecTy = cast<VectorType>(V->getType());
1299     unsigned NumElements = VecTy->getNumElements();
1300 
1301     // Now that we know the number and type of the elements, get that number of
1302     // elements into the Ops array based on what kind of constant it is.
1303     SmallVector<SDValue, 16> Ops;
1304     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1305       for (unsigned i = 0; i != NumElements; ++i)
1306         Ops.push_back(getValue(CV->getOperand(i)));
1307     } else {
1308       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1309       EVT EltVT =
1310           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1311 
1312       SDValue Op;
1313       if (EltVT.isFloatingPoint())
1314         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1315       else
1316         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1317       Ops.assign(NumElements, Op);
1318     }
1319 
1320     // Create a BUILD_VECTOR node.
1321     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1322   }
1323 
1324   // If this is a static alloca, generate it as the frameindex instead of
1325   // computation.
1326   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1327     DenseMap<const AllocaInst*, int>::iterator SI =
1328       FuncInfo.StaticAllocaMap.find(AI);
1329     if (SI != FuncInfo.StaticAllocaMap.end())
1330       return DAG.getFrameIndex(SI->second,
1331                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1332   }
1333 
1334   // If this is an instruction which fast-isel has deferred, select it now.
1335   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1336     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1337 
1338     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1339                      Inst->getType(), isABIRegCopy(V));
1340     SDValue Chain = DAG.getEntryNode();
1341     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1342   }
1343 
1344   llvm_unreachable("Can't get register for value!");
1345 }
1346 
1347 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1348   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1349   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1350   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1351   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1352   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1353   if (IsMSVCCXX || IsCoreCLR)
1354     CatchPadMBB->setIsEHFuncletEntry();
1355 
1356   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1357 }
1358 
1359 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1360   // Update machine-CFG edge.
1361   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1362   FuncInfo.MBB->addSuccessor(TargetMBB);
1363 
1364   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1365   bool IsSEH = isAsynchronousEHPersonality(Pers);
1366   if (IsSEH) {
1367     // If this is not a fall-through branch or optimizations are switched off,
1368     // emit the branch.
1369     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1370         TM.getOptLevel() == CodeGenOpt::None)
1371       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1372                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1373     return;
1374   }
1375 
1376   // Figure out the funclet membership for the catchret's successor.
1377   // This will be used by the FuncletLayout pass to determine how to order the
1378   // BB's.
1379   // A 'catchret' returns to the outer scope's color.
1380   Value *ParentPad = I.getCatchSwitchParentPad();
1381   const BasicBlock *SuccessorColor;
1382   if (isa<ConstantTokenNone>(ParentPad))
1383     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1384   else
1385     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1386   assert(SuccessorColor && "No parent funclet for catchret!");
1387   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1388   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1389 
1390   // Create the terminator node.
1391   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1392                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1393                             DAG.getBasicBlock(SuccessorColorMBB));
1394   DAG.setRoot(Ret);
1395 }
1396 
1397 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1398   // Don't emit any special code for the cleanuppad instruction. It just marks
1399   // the start of a funclet.
1400   FuncInfo.MBB->setIsEHFuncletEntry();
1401   FuncInfo.MBB->setIsCleanupFuncletEntry();
1402 }
1403 
1404 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1405 /// many places it could ultimately go. In the IR, we have a single unwind
1406 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1407 /// This function skips over imaginary basic blocks that hold catchswitch
1408 /// instructions, and finds all the "real" machine
1409 /// basic block destinations. As those destinations may not be successors of
1410 /// EHPadBB, here we also calculate the edge probability to those destinations.
1411 /// The passed-in Prob is the edge probability to EHPadBB.
1412 static void findUnwindDestinations(
1413     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1414     BranchProbability Prob,
1415     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1416         &UnwindDests) {
1417   EHPersonality Personality =
1418     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1419   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1420   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1421 
1422   while (EHPadBB) {
1423     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1424     BasicBlock *NewEHPadBB = nullptr;
1425     if (isa<LandingPadInst>(Pad)) {
1426       // Stop on landingpads. They are not funclets.
1427       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1428       break;
1429     } else if (isa<CleanupPadInst>(Pad)) {
1430       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1431       // personalities.
1432       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1433       UnwindDests.back().first->setIsEHFuncletEntry();
1434       break;
1435     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1436       // Add the catchpad handlers to the possible destinations.
1437       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1438         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1439         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1440         if (IsMSVCCXX || IsCoreCLR)
1441           UnwindDests.back().first->setIsEHFuncletEntry();
1442       }
1443       NewEHPadBB = CatchSwitch->getUnwindDest();
1444     } else {
1445       continue;
1446     }
1447 
1448     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1449     if (BPI && NewEHPadBB)
1450       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1451     EHPadBB = NewEHPadBB;
1452   }
1453 }
1454 
1455 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1456   // Update successor info.
1457   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1458   auto UnwindDest = I.getUnwindDest();
1459   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1460   BranchProbability UnwindDestProb =
1461       (BPI && UnwindDest)
1462           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1463           : BranchProbability::getZero();
1464   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1465   for (auto &UnwindDest : UnwindDests) {
1466     UnwindDest.first->setIsEHPad();
1467     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1468   }
1469   FuncInfo.MBB->normalizeSuccProbs();
1470 
1471   // Create the terminator node.
1472   SDValue Ret =
1473       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1474   DAG.setRoot(Ret);
1475 }
1476 
1477 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1478   report_fatal_error("visitCatchSwitch not yet implemented!");
1479 }
1480 
1481 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1483   auto &DL = DAG.getDataLayout();
1484   SDValue Chain = getControlRoot();
1485   SmallVector<ISD::OutputArg, 8> Outs;
1486   SmallVector<SDValue, 8> OutVals;
1487 
1488   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1489   // lower
1490   //
1491   //   %val = call <ty> @llvm.experimental.deoptimize()
1492   //   ret <ty> %val
1493   //
1494   // differently.
1495   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1496     LowerDeoptimizingReturn();
1497     return;
1498   }
1499 
1500   if (!FuncInfo.CanLowerReturn) {
1501     unsigned DemoteReg = FuncInfo.DemoteRegister;
1502     const Function *F = I.getParent()->getParent();
1503 
1504     // Emit a store of the return value through the virtual register.
1505     // Leave Outs empty so that LowerReturn won't try to load return
1506     // registers the usual way.
1507     SmallVector<EVT, 1> PtrValueVTs;
1508     ComputeValueVTs(TLI, DL,
1509                     F->getReturnType()->getPointerTo(
1510                         DAG.getDataLayout().getAllocaAddrSpace()),
1511                     PtrValueVTs);
1512 
1513     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1514                                         DemoteReg, PtrValueVTs[0]);
1515     SDValue RetOp = getValue(I.getOperand(0));
1516 
1517     SmallVector<EVT, 4> ValueVTs;
1518     SmallVector<uint64_t, 4> Offsets;
1519     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1520     unsigned NumValues = ValueVTs.size();
1521 
1522     SmallVector<SDValue, 4> Chains(NumValues);
1523     for (unsigned i = 0; i != NumValues; ++i) {
1524       // An aggregate return value cannot wrap around the address space, so
1525       // offsets to its parts don't wrap either.
1526       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1527       Chains[i] = DAG.getStore(
1528           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1529           // FIXME: better loc info would be nice.
1530           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1531     }
1532 
1533     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1534                         MVT::Other, Chains);
1535   } else if (I.getNumOperands() != 0) {
1536     SmallVector<EVT, 4> ValueVTs;
1537     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1538     unsigned NumValues = ValueVTs.size();
1539     if (NumValues) {
1540       SDValue RetOp = getValue(I.getOperand(0));
1541 
1542       const Function *F = I.getParent()->getParent();
1543 
1544       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1545       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1546                                           Attribute::SExt))
1547         ExtendKind = ISD::SIGN_EXTEND;
1548       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1549                                                Attribute::ZExt))
1550         ExtendKind = ISD::ZERO_EXTEND;
1551 
1552       LLVMContext &Context = F->getContext();
1553       bool RetInReg = F->getAttributes().hasAttribute(
1554           AttributeList::ReturnIndex, Attribute::InReg);
1555 
1556       for (unsigned j = 0; j != NumValues; ++j) {
1557         EVT VT = ValueVTs[j];
1558 
1559         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1560           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1561 
1562         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1563         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1564         SmallVector<SDValue, 4> Parts(NumParts);
1565         getCopyToParts(DAG, getCurSDLoc(),
1566                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1567                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1568 
1569         // 'inreg' on function refers to return value
1570         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1571         if (RetInReg)
1572           Flags.setInReg();
1573 
1574         // Propagate extension type if any
1575         if (ExtendKind == ISD::SIGN_EXTEND)
1576           Flags.setSExt();
1577         else if (ExtendKind == ISD::ZERO_EXTEND)
1578           Flags.setZExt();
1579 
1580         for (unsigned i = 0; i < NumParts; ++i) {
1581           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1582                                         VT, /*isfixed=*/true, 0, 0));
1583           OutVals.push_back(Parts[i]);
1584         }
1585       }
1586     }
1587   }
1588 
1589   // Push in swifterror virtual register as the last element of Outs. This makes
1590   // sure swifterror virtual register will be returned in the swifterror
1591   // physical register.
1592   const Function *F = I.getParent()->getParent();
1593   if (TLI.supportSwiftError() &&
1594       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1595     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1596     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1597     Flags.setSwiftError();
1598     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1599                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1600                                   true /*isfixed*/, 1 /*origidx*/,
1601                                   0 /*partOffs*/));
1602     // Create SDNode for the swifterror virtual register.
1603     OutVals.push_back(
1604         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1605                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1606                         EVT(TLI.getPointerTy(DL))));
1607   }
1608 
1609   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1610   CallingConv::ID CallConv =
1611     DAG.getMachineFunction().getFunction().getCallingConv();
1612   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1613       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1614 
1615   // Verify that the target's LowerReturn behaved as expected.
1616   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1617          "LowerReturn didn't return a valid chain!");
1618 
1619   // Update the DAG with the new chain value resulting from return lowering.
1620   DAG.setRoot(Chain);
1621 }
1622 
1623 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1624 /// created for it, emit nodes to copy the value into the virtual
1625 /// registers.
1626 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1627   // Skip empty types
1628   if (V->getType()->isEmptyTy())
1629     return;
1630 
1631   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1632   if (VMI != FuncInfo.ValueMap.end()) {
1633     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1634     CopyValueToVirtualRegister(V, VMI->second);
1635   }
1636 }
1637 
1638 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1639 /// the current basic block, add it to ValueMap now so that we'll get a
1640 /// CopyTo/FromReg.
1641 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1642   // No need to export constants.
1643   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1644 
1645   // Already exported?
1646   if (FuncInfo.isExportedInst(V)) return;
1647 
1648   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1649   CopyValueToVirtualRegister(V, Reg);
1650 }
1651 
1652 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1653                                                      const BasicBlock *FromBB) {
1654   // The operands of the setcc have to be in this block.  We don't know
1655   // how to export them from some other block.
1656   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1657     // Can export from current BB.
1658     if (VI->getParent() == FromBB)
1659       return true;
1660 
1661     // Is already exported, noop.
1662     return FuncInfo.isExportedInst(V);
1663   }
1664 
1665   // If this is an argument, we can export it if the BB is the entry block or
1666   // if it is already exported.
1667   if (isa<Argument>(V)) {
1668     if (FromBB == &FromBB->getParent()->getEntryBlock())
1669       return true;
1670 
1671     // Otherwise, can only export this if it is already exported.
1672     return FuncInfo.isExportedInst(V);
1673   }
1674 
1675   // Otherwise, constants can always be exported.
1676   return true;
1677 }
1678 
1679 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1680 BranchProbability
1681 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1682                                         const MachineBasicBlock *Dst) const {
1683   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1684   const BasicBlock *SrcBB = Src->getBasicBlock();
1685   const BasicBlock *DstBB = Dst->getBasicBlock();
1686   if (!BPI) {
1687     // If BPI is not available, set the default probability as 1 / N, where N is
1688     // the number of successors.
1689     auto SuccSize = std::max<uint32_t>(
1690         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1691     return BranchProbability(1, SuccSize);
1692   }
1693   return BPI->getEdgeProbability(SrcBB, DstBB);
1694 }
1695 
1696 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1697                                                MachineBasicBlock *Dst,
1698                                                BranchProbability Prob) {
1699   if (!FuncInfo.BPI)
1700     Src->addSuccessorWithoutProb(Dst);
1701   else {
1702     if (Prob.isUnknown())
1703       Prob = getEdgeProbability(Src, Dst);
1704     Src->addSuccessor(Dst, Prob);
1705   }
1706 }
1707 
1708 static bool InBlock(const Value *V, const BasicBlock *BB) {
1709   if (const Instruction *I = dyn_cast<Instruction>(V))
1710     return I->getParent() == BB;
1711   return true;
1712 }
1713 
1714 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1715 /// This function emits a branch and is used at the leaves of an OR or an
1716 /// AND operator tree.
1717 void
1718 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1719                                                   MachineBasicBlock *TBB,
1720                                                   MachineBasicBlock *FBB,
1721                                                   MachineBasicBlock *CurBB,
1722                                                   MachineBasicBlock *SwitchBB,
1723                                                   BranchProbability TProb,
1724                                                   BranchProbability FProb,
1725                                                   bool InvertCond) {
1726   const BasicBlock *BB = CurBB->getBasicBlock();
1727 
1728   // If the leaf of the tree is a comparison, merge the condition into
1729   // the caseblock.
1730   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1731     // The operands of the cmp have to be in this block.  We don't know
1732     // how to export them from some other block.  If this is the first block
1733     // of the sequence, no exporting is needed.
1734     if (CurBB == SwitchBB ||
1735         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1736          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1737       ISD::CondCode Condition;
1738       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1739         ICmpInst::Predicate Pred =
1740             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1741         Condition = getICmpCondCode(Pred);
1742       } else {
1743         const FCmpInst *FC = cast<FCmpInst>(Cond);
1744         FCmpInst::Predicate Pred =
1745             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1746         Condition = getFCmpCondCode(Pred);
1747         if (TM.Options.NoNaNsFPMath)
1748           Condition = getFCmpCodeWithoutNaN(Condition);
1749       }
1750 
1751       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1752                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1753       SwitchCases.push_back(CB);
1754       return;
1755     }
1756   }
1757 
1758   // Create a CaseBlock record representing this branch.
1759   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1760   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1761                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1762   SwitchCases.push_back(CB);
1763 }
1764 
1765 /// FindMergedConditions - If Cond is an expression like
1766 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1767                                                MachineBasicBlock *TBB,
1768                                                MachineBasicBlock *FBB,
1769                                                MachineBasicBlock *CurBB,
1770                                                MachineBasicBlock *SwitchBB,
1771                                                Instruction::BinaryOps Opc,
1772                                                BranchProbability TProb,
1773                                                BranchProbability FProb,
1774                                                bool InvertCond) {
1775   // Skip over not part of the tree and remember to invert op and operands at
1776   // next level.
1777   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1778     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1779     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1780       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1781                            !InvertCond);
1782       return;
1783     }
1784   }
1785 
1786   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1787   // Compute the effective opcode for Cond, taking into account whether it needs
1788   // to be inverted, e.g.
1789   //   and (not (or A, B)), C
1790   // gets lowered as
1791   //   and (and (not A, not B), C)
1792   unsigned BOpc = 0;
1793   if (BOp) {
1794     BOpc = BOp->getOpcode();
1795     if (InvertCond) {
1796       if (BOpc == Instruction::And)
1797         BOpc = Instruction::Or;
1798       else if (BOpc == Instruction::Or)
1799         BOpc = Instruction::And;
1800     }
1801   }
1802 
1803   // If this node is not part of the or/and tree, emit it as a branch.
1804   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1805       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1806       BOp->getParent() != CurBB->getBasicBlock() ||
1807       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1808       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1809     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1810                                  TProb, FProb, InvertCond);
1811     return;
1812   }
1813 
1814   //  Create TmpBB after CurBB.
1815   MachineFunction::iterator BBI(CurBB);
1816   MachineFunction &MF = DAG.getMachineFunction();
1817   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1818   CurBB->getParent()->insert(++BBI, TmpBB);
1819 
1820   if (Opc == Instruction::Or) {
1821     // Codegen X | Y as:
1822     // BB1:
1823     //   jmp_if_X TBB
1824     //   jmp TmpBB
1825     // TmpBB:
1826     //   jmp_if_Y TBB
1827     //   jmp FBB
1828     //
1829 
1830     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1831     // The requirement is that
1832     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1833     //     = TrueProb for original BB.
1834     // Assuming the original probabilities are A and B, one choice is to set
1835     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1836     // A/(1+B) and 2B/(1+B). This choice assumes that
1837     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1838     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1839     // TmpBB, but the math is more complicated.
1840 
1841     auto NewTrueProb = TProb / 2;
1842     auto NewFalseProb = TProb / 2 + FProb;
1843     // Emit the LHS condition.
1844     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1845                          NewTrueProb, NewFalseProb, InvertCond);
1846 
1847     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1848     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1849     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1850     // Emit the RHS condition into TmpBB.
1851     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1852                          Probs[0], Probs[1], InvertCond);
1853   } else {
1854     assert(Opc == Instruction::And && "Unknown merge op!");
1855     // Codegen X & Y as:
1856     // BB1:
1857     //   jmp_if_X TmpBB
1858     //   jmp FBB
1859     // TmpBB:
1860     //   jmp_if_Y TBB
1861     //   jmp FBB
1862     //
1863     //  This requires creation of TmpBB after CurBB.
1864 
1865     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1866     // The requirement is that
1867     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1868     //     = FalseProb for original BB.
1869     // Assuming the original probabilities are A and B, one choice is to set
1870     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1871     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1872     // TrueProb for BB1 * FalseProb for TmpBB.
1873 
1874     auto NewTrueProb = TProb + FProb / 2;
1875     auto NewFalseProb = FProb / 2;
1876     // Emit the LHS condition.
1877     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1878                          NewTrueProb, NewFalseProb, InvertCond);
1879 
1880     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1881     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1882     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1883     // Emit the RHS condition into TmpBB.
1884     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1885                          Probs[0], Probs[1], InvertCond);
1886   }
1887 }
1888 
1889 /// If the set of cases should be emitted as a series of branches, return true.
1890 /// If we should emit this as a bunch of and/or'd together conditions, return
1891 /// false.
1892 bool
1893 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1894   if (Cases.size() != 2) return true;
1895 
1896   // If this is two comparisons of the same values or'd or and'd together, they
1897   // will get folded into a single comparison, so don't emit two blocks.
1898   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1899        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1900       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1901        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1902     return false;
1903   }
1904 
1905   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1906   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1907   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1908       Cases[0].CC == Cases[1].CC &&
1909       isa<Constant>(Cases[0].CmpRHS) &&
1910       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1911     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1912       return false;
1913     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1914       return false;
1915   }
1916 
1917   return true;
1918 }
1919 
1920 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1921   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1922 
1923   // Update machine-CFG edges.
1924   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1925 
1926   if (I.isUnconditional()) {
1927     // Update machine-CFG edges.
1928     BrMBB->addSuccessor(Succ0MBB);
1929 
1930     // If this is not a fall-through branch or optimizations are switched off,
1931     // emit the branch.
1932     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1933       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1934                               MVT::Other, getControlRoot(),
1935                               DAG.getBasicBlock(Succ0MBB)));
1936 
1937     return;
1938   }
1939 
1940   // If this condition is one of the special cases we handle, do special stuff
1941   // now.
1942   const Value *CondVal = I.getCondition();
1943   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1944 
1945   // If this is a series of conditions that are or'd or and'd together, emit
1946   // this as a sequence of branches instead of setcc's with and/or operations.
1947   // As long as jumps are not expensive, this should improve performance.
1948   // For example, instead of something like:
1949   //     cmp A, B
1950   //     C = seteq
1951   //     cmp D, E
1952   //     F = setle
1953   //     or C, F
1954   //     jnz foo
1955   // Emit:
1956   //     cmp A, B
1957   //     je foo
1958   //     cmp D, E
1959   //     jle foo
1960   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1961     Instruction::BinaryOps Opcode = BOp->getOpcode();
1962     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1963         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1964         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1965       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1966                            Opcode,
1967                            getEdgeProbability(BrMBB, Succ0MBB),
1968                            getEdgeProbability(BrMBB, Succ1MBB),
1969                            /*InvertCond=*/false);
1970       // If the compares in later blocks need to use values not currently
1971       // exported from this block, export them now.  This block should always
1972       // be the first entry.
1973       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1974 
1975       // Allow some cases to be rejected.
1976       if (ShouldEmitAsBranches(SwitchCases)) {
1977         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1978           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1979           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1980         }
1981 
1982         // Emit the branch for this block.
1983         visitSwitchCase(SwitchCases[0], BrMBB);
1984         SwitchCases.erase(SwitchCases.begin());
1985         return;
1986       }
1987 
1988       // Okay, we decided not to do this, remove any inserted MBB's and clear
1989       // SwitchCases.
1990       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1991         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1992 
1993       SwitchCases.clear();
1994     }
1995   }
1996 
1997   // Create a CaseBlock record representing this branch.
1998   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1999                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2000 
2001   // Use visitSwitchCase to actually insert the fast branch sequence for this
2002   // cond branch.
2003   visitSwitchCase(CB, BrMBB);
2004 }
2005 
2006 /// visitSwitchCase - Emits the necessary code to represent a single node in
2007 /// the binary search tree resulting from lowering a switch instruction.
2008 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2009                                           MachineBasicBlock *SwitchBB) {
2010   SDValue Cond;
2011   SDValue CondLHS = getValue(CB.CmpLHS);
2012   SDLoc dl = CB.DL;
2013 
2014   // Build the setcc now.
2015   if (!CB.CmpMHS) {
2016     // Fold "(X == true)" to X and "(X == false)" to !X to
2017     // handle common cases produced by branch lowering.
2018     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2019         CB.CC == ISD::SETEQ)
2020       Cond = CondLHS;
2021     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2022              CB.CC == ISD::SETEQ) {
2023       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2024       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2025     } else
2026       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2027   } else {
2028     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2029 
2030     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2031     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2032 
2033     SDValue CmpOp = getValue(CB.CmpMHS);
2034     EVT VT = CmpOp.getValueType();
2035 
2036     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2037       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2038                           ISD::SETLE);
2039     } else {
2040       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2041                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2042       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2043                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2044     }
2045   }
2046 
2047   // Update successor info
2048   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2049   // TrueBB and FalseBB are always different unless the incoming IR is
2050   // degenerate. This only happens when running llc on weird IR.
2051   if (CB.TrueBB != CB.FalseBB)
2052     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2053   SwitchBB->normalizeSuccProbs();
2054 
2055   // If the lhs block is the next block, invert the condition so that we can
2056   // fall through to the lhs instead of the rhs block.
2057   if (CB.TrueBB == NextBlock(SwitchBB)) {
2058     std::swap(CB.TrueBB, CB.FalseBB);
2059     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2060     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2061   }
2062 
2063   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2064                                MVT::Other, getControlRoot(), Cond,
2065                                DAG.getBasicBlock(CB.TrueBB));
2066 
2067   // Insert the false branch. Do this even if it's a fall through branch,
2068   // this makes it easier to do DAG optimizations which require inverting
2069   // the branch condition.
2070   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2071                        DAG.getBasicBlock(CB.FalseBB));
2072 
2073   DAG.setRoot(BrCond);
2074 }
2075 
2076 /// visitJumpTable - Emit JumpTable node in the current MBB
2077 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2078   // Emit the code for the jump table
2079   assert(JT.Reg != -1U && "Should lower JT Header first!");
2080   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2081   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2082                                      JT.Reg, PTy);
2083   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2084   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2085                                     MVT::Other, Index.getValue(1),
2086                                     Table, Index);
2087   DAG.setRoot(BrJumpTable);
2088 }
2089 
2090 /// visitJumpTableHeader - This function emits necessary code to produce index
2091 /// in the JumpTable from switch case.
2092 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2093                                                JumpTableHeader &JTH,
2094                                                MachineBasicBlock *SwitchBB) {
2095   SDLoc dl = getCurSDLoc();
2096 
2097   // Subtract the lowest switch case value from the value being switched on and
2098   // conditional branch to default mbb if the result is greater than the
2099   // difference between smallest and largest cases.
2100   SDValue SwitchOp = getValue(JTH.SValue);
2101   EVT VT = SwitchOp.getValueType();
2102   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2103                             DAG.getConstant(JTH.First, dl, VT));
2104 
2105   // The SDNode we just created, which holds the value being switched on minus
2106   // the smallest case value, needs to be copied to a virtual register so it
2107   // can be used as an index into the jump table in a subsequent basic block.
2108   // This value may be smaller or larger than the target's pointer type, and
2109   // therefore require extension or truncating.
2110   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2111   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2112 
2113   unsigned JumpTableReg =
2114       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2115   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2116                                     JumpTableReg, SwitchOp);
2117   JT.Reg = JumpTableReg;
2118 
2119   // Emit the range check for the jump table, and branch to the default block
2120   // for the switch statement if the value being switched on exceeds the largest
2121   // case in the switch.
2122   SDValue CMP = DAG.getSetCC(
2123       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2124                                  Sub.getValueType()),
2125       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2126 
2127   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2128                                MVT::Other, CopyTo, CMP,
2129                                DAG.getBasicBlock(JT.Default));
2130 
2131   // Avoid emitting unnecessary branches to the next block.
2132   if (JT.MBB != NextBlock(SwitchBB))
2133     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2134                          DAG.getBasicBlock(JT.MBB));
2135 
2136   DAG.setRoot(BrCond);
2137 }
2138 
2139 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2140 /// variable if there exists one.
2141 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2142                                  SDValue &Chain) {
2143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2144   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2145   MachineFunction &MF = DAG.getMachineFunction();
2146   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2147   MachineSDNode *Node =
2148       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2149   if (Global) {
2150     MachinePointerInfo MPInfo(Global);
2151     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2152     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2153                  MachineMemOperand::MODereferenceable;
2154     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2155                                        DAG.getEVTAlignment(PtrTy));
2156     Node->setMemRefs(MemRefs, MemRefs + 1);
2157   }
2158   return SDValue(Node, 0);
2159 }
2160 
2161 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2162 /// tail spliced into a stack protector check success bb.
2163 ///
2164 /// For a high level explanation of how this fits into the stack protector
2165 /// generation see the comment on the declaration of class
2166 /// StackProtectorDescriptor.
2167 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2168                                                   MachineBasicBlock *ParentBB) {
2169 
2170   // First create the loads to the guard/stack slot for the comparison.
2171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2172   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2173 
2174   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2175   int FI = MFI.getStackProtectorIndex();
2176 
2177   SDValue Guard;
2178   SDLoc dl = getCurSDLoc();
2179   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2180   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2181   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2182 
2183   // Generate code to load the content of the guard slot.
2184   SDValue GuardVal = DAG.getLoad(
2185       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2186       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2187       MachineMemOperand::MOVolatile);
2188 
2189   if (TLI.useStackGuardXorFP())
2190     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2191 
2192   // Retrieve guard check function, nullptr if instrumentation is inlined.
2193   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2194     // The target provides a guard check function to validate the guard value.
2195     // Generate a call to that function with the content of the guard slot as
2196     // argument.
2197     auto *Fn = cast<Function>(GuardCheck);
2198     FunctionType *FnTy = Fn->getFunctionType();
2199     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2200 
2201     TargetLowering::ArgListTy Args;
2202     TargetLowering::ArgListEntry Entry;
2203     Entry.Node = GuardVal;
2204     Entry.Ty = FnTy->getParamType(0);
2205     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2206       Entry.IsInReg = true;
2207     Args.push_back(Entry);
2208 
2209     TargetLowering::CallLoweringInfo CLI(DAG);
2210     CLI.setDebugLoc(getCurSDLoc())
2211       .setChain(DAG.getEntryNode())
2212       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2213                  getValue(GuardCheck), std::move(Args));
2214 
2215     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2216     DAG.setRoot(Result.second);
2217     return;
2218   }
2219 
2220   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2221   // Otherwise, emit a volatile load to retrieve the stack guard value.
2222   SDValue Chain = DAG.getEntryNode();
2223   if (TLI.useLoadStackGuardNode()) {
2224     Guard = getLoadStackGuard(DAG, dl, Chain);
2225   } else {
2226     const Value *IRGuard = TLI.getSDagStackGuard(M);
2227     SDValue GuardPtr = getValue(IRGuard);
2228 
2229     Guard =
2230         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2231                     Align, MachineMemOperand::MOVolatile);
2232   }
2233 
2234   // Perform the comparison via a subtract/getsetcc.
2235   EVT VT = Guard.getValueType();
2236   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2237 
2238   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2239                                                         *DAG.getContext(),
2240                                                         Sub.getValueType()),
2241                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2242 
2243   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2244   // branch to failure MBB.
2245   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2246                                MVT::Other, GuardVal.getOperand(0),
2247                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2248   // Otherwise branch to success MBB.
2249   SDValue Br = DAG.getNode(ISD::BR, dl,
2250                            MVT::Other, BrCond,
2251                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2252 
2253   DAG.setRoot(Br);
2254 }
2255 
2256 /// Codegen the failure basic block for a stack protector check.
2257 ///
2258 /// A failure stack protector machine basic block consists simply of a call to
2259 /// __stack_chk_fail().
2260 ///
2261 /// For a high level explanation of how this fits into the stack protector
2262 /// generation see the comment on the declaration of class
2263 /// StackProtectorDescriptor.
2264 void
2265 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2266   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2267   SDValue Chain =
2268       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2269                       None, false, getCurSDLoc(), false, false).second;
2270   DAG.setRoot(Chain);
2271 }
2272 
2273 /// visitBitTestHeader - This function emits necessary code to produce value
2274 /// suitable for "bit tests"
2275 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2276                                              MachineBasicBlock *SwitchBB) {
2277   SDLoc dl = getCurSDLoc();
2278 
2279   // Subtract the minimum value
2280   SDValue SwitchOp = getValue(B.SValue);
2281   EVT VT = SwitchOp.getValueType();
2282   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2283                             DAG.getConstant(B.First, dl, VT));
2284 
2285   // Check range
2286   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2287   SDValue RangeCmp = DAG.getSetCC(
2288       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2289                                  Sub.getValueType()),
2290       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2291 
2292   // Determine the type of the test operands.
2293   bool UsePtrType = false;
2294   if (!TLI.isTypeLegal(VT))
2295     UsePtrType = true;
2296   else {
2297     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2298       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2299         // Switch table case range are encoded into series of masks.
2300         // Just use pointer type, it's guaranteed to fit.
2301         UsePtrType = true;
2302         break;
2303       }
2304   }
2305   if (UsePtrType) {
2306     VT = TLI.getPointerTy(DAG.getDataLayout());
2307     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2308   }
2309 
2310   B.RegVT = VT.getSimpleVT();
2311   B.Reg = FuncInfo.CreateReg(B.RegVT);
2312   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2313 
2314   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2315 
2316   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2317   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2318   SwitchBB->normalizeSuccProbs();
2319 
2320   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2321                                 MVT::Other, CopyTo, RangeCmp,
2322                                 DAG.getBasicBlock(B.Default));
2323 
2324   // Avoid emitting unnecessary branches to the next block.
2325   if (MBB != NextBlock(SwitchBB))
2326     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2327                           DAG.getBasicBlock(MBB));
2328 
2329   DAG.setRoot(BrRange);
2330 }
2331 
2332 /// visitBitTestCase - this function produces one "bit test"
2333 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2334                                            MachineBasicBlock* NextMBB,
2335                                            BranchProbability BranchProbToNext,
2336                                            unsigned Reg,
2337                                            BitTestCase &B,
2338                                            MachineBasicBlock *SwitchBB) {
2339   SDLoc dl = getCurSDLoc();
2340   MVT VT = BB.RegVT;
2341   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2342   SDValue Cmp;
2343   unsigned PopCount = countPopulation(B.Mask);
2344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2345   if (PopCount == 1) {
2346     // Testing for a single bit; just compare the shift count with what it
2347     // would need to be to shift a 1 bit in that position.
2348     Cmp = DAG.getSetCC(
2349         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2350         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2351         ISD::SETEQ);
2352   } else if (PopCount == BB.Range) {
2353     // There is only one zero bit in the range, test for it directly.
2354     Cmp = DAG.getSetCC(
2355         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2356         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2357         ISD::SETNE);
2358   } else {
2359     // Make desired shift
2360     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2361                                     DAG.getConstant(1, dl, VT), ShiftOp);
2362 
2363     // Emit bit tests and jumps
2364     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2365                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2366     Cmp = DAG.getSetCC(
2367         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2368         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2369   }
2370 
2371   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2372   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2373   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2374   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2375   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2376   // one as they are relative probabilities (and thus work more like weights),
2377   // and hence we need to normalize them to let the sum of them become one.
2378   SwitchBB->normalizeSuccProbs();
2379 
2380   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2381                               MVT::Other, getControlRoot(),
2382                               Cmp, DAG.getBasicBlock(B.TargetBB));
2383 
2384   // Avoid emitting unnecessary branches to the next block.
2385   if (NextMBB != NextBlock(SwitchBB))
2386     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2387                         DAG.getBasicBlock(NextMBB));
2388 
2389   DAG.setRoot(BrAnd);
2390 }
2391 
2392 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2393   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2394 
2395   // Retrieve successors. Look through artificial IR level blocks like
2396   // catchswitch for successors.
2397   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2398   const BasicBlock *EHPadBB = I.getSuccessor(1);
2399 
2400   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2401   // have to do anything here to lower funclet bundles.
2402   assert(!I.hasOperandBundlesOtherThan(
2403              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2404          "Cannot lower invokes with arbitrary operand bundles yet!");
2405 
2406   const Value *Callee(I.getCalledValue());
2407   const Function *Fn = dyn_cast<Function>(Callee);
2408   if (isa<InlineAsm>(Callee))
2409     visitInlineAsm(&I);
2410   else if (Fn && Fn->isIntrinsic()) {
2411     switch (Fn->getIntrinsicID()) {
2412     default:
2413       llvm_unreachable("Cannot invoke this intrinsic");
2414     case Intrinsic::donothing:
2415       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2416       break;
2417     case Intrinsic::experimental_patchpoint_void:
2418     case Intrinsic::experimental_patchpoint_i64:
2419       visitPatchpoint(&I, EHPadBB);
2420       break;
2421     case Intrinsic::experimental_gc_statepoint:
2422       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2423       break;
2424     }
2425   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2426     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2427     // Eventually we will support lowering the @llvm.experimental.deoptimize
2428     // intrinsic, and right now there are no plans to support other intrinsics
2429     // with deopt state.
2430     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2431   } else {
2432     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2433   }
2434 
2435   // If the value of the invoke is used outside of its defining block, make it
2436   // available as a virtual register.
2437   // We already took care of the exported value for the statepoint instruction
2438   // during call to the LowerStatepoint.
2439   if (!isStatepoint(I)) {
2440     CopyToExportRegsIfNeeded(&I);
2441   }
2442 
2443   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2444   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2445   BranchProbability EHPadBBProb =
2446       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2447           : BranchProbability::getZero();
2448   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2449 
2450   // Update successor info.
2451   addSuccessorWithProb(InvokeMBB, Return);
2452   for (auto &UnwindDest : UnwindDests) {
2453     UnwindDest.first->setIsEHPad();
2454     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2455   }
2456   InvokeMBB->normalizeSuccProbs();
2457 
2458   // Drop into normal successor.
2459   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2460                           MVT::Other, getControlRoot(),
2461                           DAG.getBasicBlock(Return)));
2462 }
2463 
2464 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2465   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2466 }
2467 
2468 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2469   assert(FuncInfo.MBB->isEHPad() &&
2470          "Call to landingpad not in landing pad!");
2471 
2472   MachineBasicBlock *MBB = FuncInfo.MBB;
2473   addLandingPadInfo(LP, *MBB);
2474 
2475   // If there aren't registers to copy the values into (e.g., during SjLj
2476   // exceptions), then don't bother to create these DAG nodes.
2477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2478   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2479   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2480       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2481     return;
2482 
2483   // If landingpad's return type is token type, we don't create DAG nodes
2484   // for its exception pointer and selector value. The extraction of exception
2485   // pointer or selector value from token type landingpads is not currently
2486   // supported.
2487   if (LP.getType()->isTokenTy())
2488     return;
2489 
2490   SmallVector<EVT, 2> ValueVTs;
2491   SDLoc dl = getCurSDLoc();
2492   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2493   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2494 
2495   // Get the two live-in registers as SDValues. The physregs have already been
2496   // copied into virtual registers.
2497   SDValue Ops[2];
2498   if (FuncInfo.ExceptionPointerVirtReg) {
2499     Ops[0] = DAG.getZExtOrTrunc(
2500         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2501                            FuncInfo.ExceptionPointerVirtReg,
2502                            TLI.getPointerTy(DAG.getDataLayout())),
2503         dl, ValueVTs[0]);
2504   } else {
2505     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2506   }
2507   Ops[1] = DAG.getZExtOrTrunc(
2508       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2509                          FuncInfo.ExceptionSelectorVirtReg,
2510                          TLI.getPointerTy(DAG.getDataLayout())),
2511       dl, ValueVTs[1]);
2512 
2513   // Merge into one.
2514   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2515                             DAG.getVTList(ValueVTs), Ops);
2516   setValue(&LP, Res);
2517 }
2518 
2519 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2520 #ifndef NDEBUG
2521   for (const CaseCluster &CC : Clusters)
2522     assert(CC.Low == CC.High && "Input clusters must be single-case");
2523 #endif
2524 
2525   llvm::sort(Clusters.begin(), Clusters.end(),
2526              [](const CaseCluster &a, const CaseCluster &b) {
2527     return a.Low->getValue().slt(b.Low->getValue());
2528   });
2529 
2530   // Merge adjacent clusters with the same destination.
2531   const unsigned N = Clusters.size();
2532   unsigned DstIndex = 0;
2533   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2534     CaseCluster &CC = Clusters[SrcIndex];
2535     const ConstantInt *CaseVal = CC.Low;
2536     MachineBasicBlock *Succ = CC.MBB;
2537 
2538     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2539         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2540       // If this case has the same successor and is a neighbour, merge it into
2541       // the previous cluster.
2542       Clusters[DstIndex - 1].High = CaseVal;
2543       Clusters[DstIndex - 1].Prob += CC.Prob;
2544     } else {
2545       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2546                    sizeof(Clusters[SrcIndex]));
2547     }
2548   }
2549   Clusters.resize(DstIndex);
2550 }
2551 
2552 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2553                                            MachineBasicBlock *Last) {
2554   // Update JTCases.
2555   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2556     if (JTCases[i].first.HeaderBB == First)
2557       JTCases[i].first.HeaderBB = Last;
2558 
2559   // Update BitTestCases.
2560   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2561     if (BitTestCases[i].Parent == First)
2562       BitTestCases[i].Parent = Last;
2563 }
2564 
2565 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2566   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2567 
2568   // Update machine-CFG edges with unique successors.
2569   SmallSet<BasicBlock*, 32> Done;
2570   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2571     BasicBlock *BB = I.getSuccessor(i);
2572     bool Inserted = Done.insert(BB).second;
2573     if (!Inserted)
2574         continue;
2575 
2576     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2577     addSuccessorWithProb(IndirectBrMBB, Succ);
2578   }
2579   IndirectBrMBB->normalizeSuccProbs();
2580 
2581   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2582                           MVT::Other, getControlRoot(),
2583                           getValue(I.getAddress())));
2584 }
2585 
2586 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2587   if (DAG.getTarget().Options.TrapUnreachable)
2588     DAG.setRoot(
2589         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2590 }
2591 
2592 void SelectionDAGBuilder::visitFSub(const User &I) {
2593   // -0.0 - X --> fneg
2594   Type *Ty = I.getType();
2595   if (isa<Constant>(I.getOperand(0)) &&
2596       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2597     SDValue Op2 = getValue(I.getOperand(1));
2598     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2599                              Op2.getValueType(), Op2));
2600     return;
2601   }
2602 
2603   visitBinary(I, ISD::FSUB);
2604 }
2605 
2606 /// Checks if the given instruction performs a vector reduction, in which case
2607 /// we have the freedom to alter the elements in the result as long as the
2608 /// reduction of them stays unchanged.
2609 static bool isVectorReductionOp(const User *I) {
2610   const Instruction *Inst = dyn_cast<Instruction>(I);
2611   if (!Inst || !Inst->getType()->isVectorTy())
2612     return false;
2613 
2614   auto OpCode = Inst->getOpcode();
2615   switch (OpCode) {
2616   case Instruction::Add:
2617   case Instruction::Mul:
2618   case Instruction::And:
2619   case Instruction::Or:
2620   case Instruction::Xor:
2621     break;
2622   case Instruction::FAdd:
2623   case Instruction::FMul:
2624     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2625       if (FPOp->getFastMathFlags().isFast())
2626         break;
2627     LLVM_FALLTHROUGH;
2628   default:
2629     return false;
2630   }
2631 
2632   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2633   unsigned ElemNumToReduce = ElemNum;
2634 
2635   // Do DFS search on the def-use chain from the given instruction. We only
2636   // allow four kinds of operations during the search until we reach the
2637   // instruction that extracts the first element from the vector:
2638   //
2639   //   1. The reduction operation of the same opcode as the given instruction.
2640   //
2641   //   2. PHI node.
2642   //
2643   //   3. ShuffleVector instruction together with a reduction operation that
2644   //      does a partial reduction.
2645   //
2646   //   4. ExtractElement that extracts the first element from the vector, and we
2647   //      stop searching the def-use chain here.
2648   //
2649   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2650   // from 1-3 to the stack to continue the DFS. The given instruction is not
2651   // a reduction operation if we meet any other instructions other than those
2652   // listed above.
2653 
2654   SmallVector<const User *, 16> UsersToVisit{Inst};
2655   SmallPtrSet<const User *, 16> Visited;
2656   bool ReduxExtracted = false;
2657 
2658   while (!UsersToVisit.empty()) {
2659     auto User = UsersToVisit.back();
2660     UsersToVisit.pop_back();
2661     if (!Visited.insert(User).second)
2662       continue;
2663 
2664     for (const auto &U : User->users()) {
2665       auto Inst = dyn_cast<Instruction>(U);
2666       if (!Inst)
2667         return false;
2668 
2669       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2670         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2671           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2672             return false;
2673         UsersToVisit.push_back(U);
2674       } else if (const ShuffleVectorInst *ShufInst =
2675                      dyn_cast<ShuffleVectorInst>(U)) {
2676         // Detect the following pattern: A ShuffleVector instruction together
2677         // with a reduction that do partial reduction on the first and second
2678         // ElemNumToReduce / 2 elements, and store the result in
2679         // ElemNumToReduce / 2 elements in another vector.
2680 
2681         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2682         if (ResultElements < ElemNum)
2683           return false;
2684 
2685         if (ElemNumToReduce == 1)
2686           return false;
2687         if (!isa<UndefValue>(U->getOperand(1)))
2688           return false;
2689         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2690           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2691             return false;
2692         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2693           if (ShufInst->getMaskValue(i) != -1)
2694             return false;
2695 
2696         // There is only one user of this ShuffleVector instruction, which
2697         // must be a reduction operation.
2698         if (!U->hasOneUse())
2699           return false;
2700 
2701         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2702         if (!U2 || U2->getOpcode() != OpCode)
2703           return false;
2704 
2705         // Check operands of the reduction operation.
2706         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2707             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2708           UsersToVisit.push_back(U2);
2709           ElemNumToReduce /= 2;
2710         } else
2711           return false;
2712       } else if (isa<ExtractElementInst>(U)) {
2713         // At this moment we should have reduced all elements in the vector.
2714         if (ElemNumToReduce != 1)
2715           return false;
2716 
2717         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2718         if (!Val || Val->getZExtValue() != 0)
2719           return false;
2720 
2721         ReduxExtracted = true;
2722       } else
2723         return false;
2724     }
2725   }
2726   return ReduxExtracted;
2727 }
2728 
2729 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2730   SDValue Op1 = getValue(I.getOperand(0));
2731   SDValue Op2 = getValue(I.getOperand(1));
2732 
2733   bool nuw = false;
2734   bool nsw = false;
2735   bool exact = false;
2736   bool vec_redux = false;
2737   FastMathFlags FMF;
2738 
2739   if (const OverflowingBinaryOperator *OFBinOp =
2740           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2741     nuw = OFBinOp->hasNoUnsignedWrap();
2742     nsw = OFBinOp->hasNoSignedWrap();
2743   }
2744   if (const PossiblyExactOperator *ExactOp =
2745           dyn_cast<const PossiblyExactOperator>(&I))
2746     exact = ExactOp->isExact();
2747   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2748     FMF = FPOp->getFastMathFlags();
2749 
2750   if (isVectorReductionOp(&I)) {
2751     vec_redux = true;
2752     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2753   }
2754 
2755   SDNodeFlags Flags;
2756   Flags.setExact(exact);
2757   Flags.setNoSignedWrap(nsw);
2758   Flags.setNoUnsignedWrap(nuw);
2759   Flags.setVectorReduction(vec_redux);
2760   Flags.setAllowReciprocal(FMF.allowReciprocal());
2761   Flags.setAllowContract(FMF.allowContract());
2762   Flags.setNoInfs(FMF.noInfs());
2763   Flags.setNoNaNs(FMF.noNaNs());
2764   Flags.setNoSignedZeros(FMF.noSignedZeros());
2765   Flags.setUnsafeAlgebra(FMF.isFast());
2766 
2767   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2768                                      Op1, Op2, Flags);
2769   setValue(&I, BinNodeValue);
2770 }
2771 
2772 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2773   SDValue Op1 = getValue(I.getOperand(0));
2774   SDValue Op2 = getValue(I.getOperand(1));
2775 
2776   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2777       Op2.getValueType(), DAG.getDataLayout());
2778 
2779   // Coerce the shift amount to the right type if we can.
2780   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2781     unsigned ShiftSize = ShiftTy.getSizeInBits();
2782     unsigned Op2Size = Op2.getValueSizeInBits();
2783     SDLoc DL = getCurSDLoc();
2784 
2785     // If the operand is smaller than the shift count type, promote it.
2786     if (ShiftSize > Op2Size)
2787       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2788 
2789     // If the operand is larger than the shift count type but the shift
2790     // count type has enough bits to represent any shift value, truncate
2791     // it now. This is a common case and it exposes the truncate to
2792     // optimization early.
2793     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2794       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2795     // Otherwise we'll need to temporarily settle for some other convenient
2796     // type.  Type legalization will make adjustments once the shiftee is split.
2797     else
2798       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2799   }
2800 
2801   bool nuw = false;
2802   bool nsw = false;
2803   bool exact = false;
2804 
2805   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2806 
2807     if (const OverflowingBinaryOperator *OFBinOp =
2808             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2809       nuw = OFBinOp->hasNoUnsignedWrap();
2810       nsw = OFBinOp->hasNoSignedWrap();
2811     }
2812     if (const PossiblyExactOperator *ExactOp =
2813             dyn_cast<const PossiblyExactOperator>(&I))
2814       exact = ExactOp->isExact();
2815   }
2816   SDNodeFlags Flags;
2817   Flags.setExact(exact);
2818   Flags.setNoSignedWrap(nsw);
2819   Flags.setNoUnsignedWrap(nuw);
2820   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2821                             Flags);
2822   setValue(&I, Res);
2823 }
2824 
2825 void SelectionDAGBuilder::visitSDiv(const User &I) {
2826   SDValue Op1 = getValue(I.getOperand(0));
2827   SDValue Op2 = getValue(I.getOperand(1));
2828 
2829   SDNodeFlags Flags;
2830   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2831                  cast<PossiblyExactOperator>(&I)->isExact());
2832   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2833                            Op2, Flags));
2834 }
2835 
2836 void SelectionDAGBuilder::visitICmp(const User &I) {
2837   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2838   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2839     predicate = IC->getPredicate();
2840   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2841     predicate = ICmpInst::Predicate(IC->getPredicate());
2842   SDValue Op1 = getValue(I.getOperand(0));
2843   SDValue Op2 = getValue(I.getOperand(1));
2844   ISD::CondCode Opcode = getICmpCondCode(predicate);
2845 
2846   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2847                                                         I.getType());
2848   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2849 }
2850 
2851 void SelectionDAGBuilder::visitFCmp(const User &I) {
2852   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2853   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2854     predicate = FC->getPredicate();
2855   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2856     predicate = FCmpInst::Predicate(FC->getPredicate());
2857   SDValue Op1 = getValue(I.getOperand(0));
2858   SDValue Op2 = getValue(I.getOperand(1));
2859   ISD::CondCode Condition = getFCmpCondCode(predicate);
2860 
2861   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2862   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2863   // further optimization, but currently FMF is only applicable to binary nodes.
2864   if (TM.Options.NoNaNsFPMath)
2865     Condition = getFCmpCodeWithoutNaN(Condition);
2866   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2867                                                         I.getType());
2868   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2869 }
2870 
2871 // Check if the condition of the select has one use or two users that are both
2872 // selects with the same condition.
2873 static bool hasOnlySelectUsers(const Value *Cond) {
2874   return llvm::all_of(Cond->users(), [](const Value *V) {
2875     return isa<SelectInst>(V);
2876   });
2877 }
2878 
2879 void SelectionDAGBuilder::visitSelect(const User &I) {
2880   SmallVector<EVT, 4> ValueVTs;
2881   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2882                   ValueVTs);
2883   unsigned NumValues = ValueVTs.size();
2884   if (NumValues == 0) return;
2885 
2886   SmallVector<SDValue, 4> Values(NumValues);
2887   SDValue Cond     = getValue(I.getOperand(0));
2888   SDValue LHSVal   = getValue(I.getOperand(1));
2889   SDValue RHSVal   = getValue(I.getOperand(2));
2890   auto BaseOps = {Cond};
2891   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2892     ISD::VSELECT : ISD::SELECT;
2893 
2894   // Min/max matching is only viable if all output VTs are the same.
2895   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2896     EVT VT = ValueVTs[0];
2897     LLVMContext &Ctx = *DAG.getContext();
2898     auto &TLI = DAG.getTargetLoweringInfo();
2899 
2900     // We care about the legality of the operation after it has been type
2901     // legalized.
2902     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2903            VT != TLI.getTypeToTransformTo(Ctx, VT))
2904       VT = TLI.getTypeToTransformTo(Ctx, VT);
2905 
2906     // If the vselect is legal, assume we want to leave this as a vector setcc +
2907     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2908     // min/max is legal on the scalar type.
2909     bool UseScalarMinMax = VT.isVector() &&
2910       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2911 
2912     Value *LHS, *RHS;
2913     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2914     ISD::NodeType Opc = ISD::DELETED_NODE;
2915     switch (SPR.Flavor) {
2916     case SPF_UMAX:    Opc = ISD::UMAX; break;
2917     case SPF_UMIN:    Opc = ISD::UMIN; break;
2918     case SPF_SMAX:    Opc = ISD::SMAX; break;
2919     case SPF_SMIN:    Opc = ISD::SMIN; break;
2920     case SPF_FMINNUM:
2921       switch (SPR.NaNBehavior) {
2922       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2923       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2924       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2925       case SPNB_RETURNS_ANY: {
2926         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2927           Opc = ISD::FMINNUM;
2928         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2929           Opc = ISD::FMINNAN;
2930         else if (UseScalarMinMax)
2931           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2932             ISD::FMINNUM : ISD::FMINNAN;
2933         break;
2934       }
2935       }
2936       break;
2937     case SPF_FMAXNUM:
2938       switch (SPR.NaNBehavior) {
2939       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2940       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2941       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2942       case SPNB_RETURNS_ANY:
2943 
2944         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2945           Opc = ISD::FMAXNUM;
2946         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2947           Opc = ISD::FMAXNAN;
2948         else if (UseScalarMinMax)
2949           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2950             ISD::FMAXNUM : ISD::FMAXNAN;
2951         break;
2952       }
2953       break;
2954     default: break;
2955     }
2956 
2957     if (Opc != ISD::DELETED_NODE &&
2958         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2959          (UseScalarMinMax &&
2960           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2961         // If the underlying comparison instruction is used by any other
2962         // instruction, the consumed instructions won't be destroyed, so it is
2963         // not profitable to convert to a min/max.
2964         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2965       OpCode = Opc;
2966       LHSVal = getValue(LHS);
2967       RHSVal = getValue(RHS);
2968       BaseOps = {};
2969     }
2970   }
2971 
2972   for (unsigned i = 0; i != NumValues; ++i) {
2973     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2974     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2975     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2976     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2977                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2978                             Ops);
2979   }
2980 
2981   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2982                            DAG.getVTList(ValueVTs), Values));
2983 }
2984 
2985 void SelectionDAGBuilder::visitTrunc(const User &I) {
2986   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2987   SDValue N = getValue(I.getOperand(0));
2988   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2989                                                         I.getType());
2990   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2991 }
2992 
2993 void SelectionDAGBuilder::visitZExt(const User &I) {
2994   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2995   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2996   SDValue N = getValue(I.getOperand(0));
2997   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2998                                                         I.getType());
2999   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3000 }
3001 
3002 void SelectionDAGBuilder::visitSExt(const User &I) {
3003   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3004   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3005   SDValue N = getValue(I.getOperand(0));
3006   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3007                                                         I.getType());
3008   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3009 }
3010 
3011 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3012   // FPTrunc is never a no-op cast, no need to check
3013   SDValue N = getValue(I.getOperand(0));
3014   SDLoc dl = getCurSDLoc();
3015   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3016   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3017   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3018                            DAG.getTargetConstant(
3019                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3020 }
3021 
3022 void SelectionDAGBuilder::visitFPExt(const User &I) {
3023   // FPExt is never a no-op cast, no need to check
3024   SDValue N = getValue(I.getOperand(0));
3025   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3026                                                         I.getType());
3027   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3028 }
3029 
3030 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3031   // FPToUI is never a no-op cast, no need to check
3032   SDValue N = getValue(I.getOperand(0));
3033   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3034                                                         I.getType());
3035   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3036 }
3037 
3038 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3039   // FPToSI is never a no-op cast, no need to check
3040   SDValue N = getValue(I.getOperand(0));
3041   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3042                                                         I.getType());
3043   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3044 }
3045 
3046 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3047   // UIToFP is never a no-op cast, no need to check
3048   SDValue N = getValue(I.getOperand(0));
3049   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3050                                                         I.getType());
3051   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3052 }
3053 
3054 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3055   // SIToFP is never a no-op cast, no need to check
3056   SDValue N = getValue(I.getOperand(0));
3057   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3058                                                         I.getType());
3059   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3060 }
3061 
3062 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3063   // What to do depends on the size of the integer and the size of the pointer.
3064   // We can either truncate, zero extend, or no-op, accordingly.
3065   SDValue N = getValue(I.getOperand(0));
3066   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3067                                                         I.getType());
3068   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3069 }
3070 
3071 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3072   // What to do depends on the size of the integer and the size of the pointer.
3073   // We can either truncate, zero extend, or no-op, accordingly.
3074   SDValue N = getValue(I.getOperand(0));
3075   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3076                                                         I.getType());
3077   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3078 }
3079 
3080 void SelectionDAGBuilder::visitBitCast(const User &I) {
3081   SDValue N = getValue(I.getOperand(0));
3082   SDLoc dl = getCurSDLoc();
3083   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3084                                                         I.getType());
3085 
3086   // BitCast assures us that source and destination are the same size so this is
3087   // either a BITCAST or a no-op.
3088   if (DestVT != N.getValueType())
3089     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3090                              DestVT, N)); // convert types.
3091   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3092   // might fold any kind of constant expression to an integer constant and that
3093   // is not what we are looking for. Only recognize a bitcast of a genuine
3094   // constant integer as an opaque constant.
3095   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3096     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3097                                  /*isOpaque*/true));
3098   else
3099     setValue(&I, N);            // noop cast.
3100 }
3101 
3102 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3103   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3104   const Value *SV = I.getOperand(0);
3105   SDValue N = getValue(SV);
3106   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3107 
3108   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3109   unsigned DestAS = I.getType()->getPointerAddressSpace();
3110 
3111   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3112     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3113 
3114   setValue(&I, N);
3115 }
3116 
3117 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3119   SDValue InVec = getValue(I.getOperand(0));
3120   SDValue InVal = getValue(I.getOperand(1));
3121   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3122                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3123   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3124                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3125                            InVec, InVal, InIdx));
3126 }
3127 
3128 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3129   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3130   SDValue InVec = getValue(I.getOperand(0));
3131   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3132                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3133   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3134                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3135                            InVec, InIdx));
3136 }
3137 
3138 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3139   SDValue Src1 = getValue(I.getOperand(0));
3140   SDValue Src2 = getValue(I.getOperand(1));
3141   SDLoc DL = getCurSDLoc();
3142 
3143   SmallVector<int, 8> Mask;
3144   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3145   unsigned MaskNumElts = Mask.size();
3146 
3147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3148   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3149   EVT SrcVT = Src1.getValueType();
3150   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3151 
3152   if (SrcNumElts == MaskNumElts) {
3153     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3154     return;
3155   }
3156 
3157   // Normalize the shuffle vector since mask and vector length don't match.
3158   if (SrcNumElts < MaskNumElts) {
3159     // Mask is longer than the source vectors. We can use concatenate vector to
3160     // make the mask and vectors lengths match.
3161 
3162     if (MaskNumElts % SrcNumElts == 0) {
3163       // Mask length is a multiple of the source vector length.
3164       // Check if the shuffle is some kind of concatenation of the input
3165       // vectors.
3166       unsigned NumConcat = MaskNumElts / SrcNumElts;
3167       bool IsConcat = true;
3168       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3169       for (unsigned i = 0; i != MaskNumElts; ++i) {
3170         int Idx = Mask[i];
3171         if (Idx < 0)
3172           continue;
3173         // Ensure the indices in each SrcVT sized piece are sequential and that
3174         // the same source is used for the whole piece.
3175         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3176             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3177              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3178           IsConcat = false;
3179           break;
3180         }
3181         // Remember which source this index came from.
3182         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3183       }
3184 
3185       // The shuffle is concatenating multiple vectors together. Just emit
3186       // a CONCAT_VECTORS operation.
3187       if (IsConcat) {
3188         SmallVector<SDValue, 8> ConcatOps;
3189         for (auto Src : ConcatSrcs) {
3190           if (Src < 0)
3191             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3192           else if (Src == 0)
3193             ConcatOps.push_back(Src1);
3194           else
3195             ConcatOps.push_back(Src2);
3196         }
3197         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3198         return;
3199       }
3200     }
3201 
3202     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3203     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3204     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3205                                     PaddedMaskNumElts);
3206 
3207     // Pad both vectors with undefs to make them the same length as the mask.
3208     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3209 
3210     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3211     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3212     MOps1[0] = Src1;
3213     MOps2[0] = Src2;
3214 
3215     Src1 = Src1.isUndef()
3216                ? DAG.getUNDEF(PaddedVT)
3217                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3218     Src2 = Src2.isUndef()
3219                ? DAG.getUNDEF(PaddedVT)
3220                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3221 
3222     // Readjust mask for new input vector length.
3223     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3224     for (unsigned i = 0; i != MaskNumElts; ++i) {
3225       int Idx = Mask[i];
3226       if (Idx >= (int)SrcNumElts)
3227         Idx -= SrcNumElts - PaddedMaskNumElts;
3228       MappedOps[i] = Idx;
3229     }
3230 
3231     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3232 
3233     // If the concatenated vector was padded, extract a subvector with the
3234     // correct number of elements.
3235     if (MaskNumElts != PaddedMaskNumElts)
3236       Result = DAG.getNode(
3237           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3238           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3239 
3240     setValue(&I, Result);
3241     return;
3242   }
3243 
3244   if (SrcNumElts > MaskNumElts) {
3245     // Analyze the access pattern of the vector to see if we can extract
3246     // two subvectors and do the shuffle.
3247     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3248     bool CanExtract = true;
3249     for (int Idx : Mask) {
3250       unsigned Input = 0;
3251       if (Idx < 0)
3252         continue;
3253 
3254       if (Idx >= (int)SrcNumElts) {
3255         Input = 1;
3256         Idx -= SrcNumElts;
3257       }
3258 
3259       // If all the indices come from the same MaskNumElts sized portion of
3260       // the sources we can use extract. Also make sure the extract wouldn't
3261       // extract past the end of the source.
3262       int NewStartIdx = alignDown(Idx, MaskNumElts);
3263       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3264           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3265         CanExtract = false;
3266       // Make sure we always update StartIdx as we use it to track if all
3267       // elements are undef.
3268       StartIdx[Input] = NewStartIdx;
3269     }
3270 
3271     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3272       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3273       return;
3274     }
3275     if (CanExtract) {
3276       // Extract appropriate subvector and generate a vector shuffle
3277       for (unsigned Input = 0; Input < 2; ++Input) {
3278         SDValue &Src = Input == 0 ? Src1 : Src2;
3279         if (StartIdx[Input] < 0)
3280           Src = DAG.getUNDEF(VT);
3281         else {
3282           Src = DAG.getNode(
3283               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3284               DAG.getConstant(StartIdx[Input], DL,
3285                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3286         }
3287       }
3288 
3289       // Calculate new mask.
3290       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3291       for (int &Idx : MappedOps) {
3292         if (Idx >= (int)SrcNumElts)
3293           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3294         else if (Idx >= 0)
3295           Idx -= StartIdx[0];
3296       }
3297 
3298       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3299       return;
3300     }
3301   }
3302 
3303   // We can't use either concat vectors or extract subvectors so fall back to
3304   // replacing the shuffle with extract and build vector.
3305   // to insert and build vector.
3306   EVT EltVT = VT.getVectorElementType();
3307   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3308   SmallVector<SDValue,8> Ops;
3309   for (int Idx : Mask) {
3310     SDValue Res;
3311 
3312     if (Idx < 0) {
3313       Res = DAG.getUNDEF(EltVT);
3314     } else {
3315       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3316       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3317 
3318       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3319                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3320     }
3321 
3322     Ops.push_back(Res);
3323   }
3324 
3325   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3326 }
3327 
3328 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3329   ArrayRef<unsigned> Indices;
3330   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3331     Indices = IV->getIndices();
3332   else
3333     Indices = cast<ConstantExpr>(&I)->getIndices();
3334 
3335   const Value *Op0 = I.getOperand(0);
3336   const Value *Op1 = I.getOperand(1);
3337   Type *AggTy = I.getType();
3338   Type *ValTy = Op1->getType();
3339   bool IntoUndef = isa<UndefValue>(Op0);
3340   bool FromUndef = isa<UndefValue>(Op1);
3341 
3342   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3343 
3344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3345   SmallVector<EVT, 4> AggValueVTs;
3346   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3347   SmallVector<EVT, 4> ValValueVTs;
3348   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3349 
3350   unsigned NumAggValues = AggValueVTs.size();
3351   unsigned NumValValues = ValValueVTs.size();
3352   SmallVector<SDValue, 4> Values(NumAggValues);
3353 
3354   // Ignore an insertvalue that produces an empty object
3355   if (!NumAggValues) {
3356     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3357     return;
3358   }
3359 
3360   SDValue Agg = getValue(Op0);
3361   unsigned i = 0;
3362   // Copy the beginning value(s) from the original aggregate.
3363   for (; i != LinearIndex; ++i)
3364     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3365                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3366   // Copy values from the inserted value(s).
3367   if (NumValValues) {
3368     SDValue Val = getValue(Op1);
3369     for (; i != LinearIndex + NumValValues; ++i)
3370       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3371                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3372   }
3373   // Copy remaining value(s) from the original aggregate.
3374   for (; i != NumAggValues; ++i)
3375     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3376                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3377 
3378   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3379                            DAG.getVTList(AggValueVTs), Values));
3380 }
3381 
3382 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3383   ArrayRef<unsigned> Indices;
3384   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3385     Indices = EV->getIndices();
3386   else
3387     Indices = cast<ConstantExpr>(&I)->getIndices();
3388 
3389   const Value *Op0 = I.getOperand(0);
3390   Type *AggTy = Op0->getType();
3391   Type *ValTy = I.getType();
3392   bool OutOfUndef = isa<UndefValue>(Op0);
3393 
3394   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3395 
3396   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3397   SmallVector<EVT, 4> ValValueVTs;
3398   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3399 
3400   unsigned NumValValues = ValValueVTs.size();
3401 
3402   // Ignore a extractvalue that produces an empty object
3403   if (!NumValValues) {
3404     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3405     return;
3406   }
3407 
3408   SmallVector<SDValue, 4> Values(NumValValues);
3409 
3410   SDValue Agg = getValue(Op0);
3411   // Copy out the selected value(s).
3412   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3413     Values[i - LinearIndex] =
3414       OutOfUndef ?
3415         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3416         SDValue(Agg.getNode(), Agg.getResNo() + i);
3417 
3418   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3419                            DAG.getVTList(ValValueVTs), Values));
3420 }
3421 
3422 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3423   Value *Op0 = I.getOperand(0);
3424   // Note that the pointer operand may be a vector of pointers. Take the scalar
3425   // element which holds a pointer.
3426   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3427   SDValue N = getValue(Op0);
3428   SDLoc dl = getCurSDLoc();
3429 
3430   // Normalize Vector GEP - all scalar operands should be converted to the
3431   // splat vector.
3432   unsigned VectorWidth = I.getType()->isVectorTy() ?
3433     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3434 
3435   if (VectorWidth && !N.getValueType().isVector()) {
3436     LLVMContext &Context = *DAG.getContext();
3437     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3438     N = DAG.getSplatBuildVector(VT, dl, N);
3439   }
3440 
3441   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3442        GTI != E; ++GTI) {
3443     const Value *Idx = GTI.getOperand();
3444     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3445       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3446       if (Field) {
3447         // N = N + Offset
3448         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3449 
3450         // In an inbounds GEP with an offset that is nonnegative even when
3451         // interpreted as signed, assume there is no unsigned overflow.
3452         SDNodeFlags Flags;
3453         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3454           Flags.setNoUnsignedWrap(true);
3455 
3456         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3457                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3458       }
3459     } else {
3460       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3461       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3462       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3463 
3464       // If this is a scalar constant or a splat vector of constants,
3465       // handle it quickly.
3466       const auto *CI = dyn_cast<ConstantInt>(Idx);
3467       if (!CI && isa<ConstantDataVector>(Idx) &&
3468           cast<ConstantDataVector>(Idx)->getSplatValue())
3469         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3470 
3471       if (CI) {
3472         if (CI->isZero())
3473           continue;
3474         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3475         LLVMContext &Context = *DAG.getContext();
3476         SDValue OffsVal = VectorWidth ?
3477           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3478           DAG.getConstant(Offs, dl, IdxTy);
3479 
3480         // In an inbouds GEP with an offset that is nonnegative even when
3481         // interpreted as signed, assume there is no unsigned overflow.
3482         SDNodeFlags Flags;
3483         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3484           Flags.setNoUnsignedWrap(true);
3485 
3486         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3487         continue;
3488       }
3489 
3490       // N = N + Idx * ElementSize;
3491       SDValue IdxN = getValue(Idx);
3492 
3493       if (!IdxN.getValueType().isVector() && VectorWidth) {
3494         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3495         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3496       }
3497 
3498       // If the index is smaller or larger than intptr_t, truncate or extend
3499       // it.
3500       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3501 
3502       // If this is a multiply by a power of two, turn it into a shl
3503       // immediately.  This is a very common case.
3504       if (ElementSize != 1) {
3505         if (ElementSize.isPowerOf2()) {
3506           unsigned Amt = ElementSize.logBase2();
3507           IdxN = DAG.getNode(ISD::SHL, dl,
3508                              N.getValueType(), IdxN,
3509                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3510         } else {
3511           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3512           IdxN = DAG.getNode(ISD::MUL, dl,
3513                              N.getValueType(), IdxN, Scale);
3514         }
3515       }
3516 
3517       N = DAG.getNode(ISD::ADD, dl,
3518                       N.getValueType(), N, IdxN);
3519     }
3520   }
3521 
3522   setValue(&I, N);
3523 }
3524 
3525 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3526   // If this is a fixed sized alloca in the entry block of the function,
3527   // allocate it statically on the stack.
3528   if (FuncInfo.StaticAllocaMap.count(&I))
3529     return;   // getValue will auto-populate this.
3530 
3531   SDLoc dl = getCurSDLoc();
3532   Type *Ty = I.getAllocatedType();
3533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3534   auto &DL = DAG.getDataLayout();
3535   uint64_t TySize = DL.getTypeAllocSize(Ty);
3536   unsigned Align =
3537       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3538 
3539   SDValue AllocSize = getValue(I.getArraySize());
3540 
3541   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3542   if (AllocSize.getValueType() != IntPtr)
3543     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3544 
3545   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3546                           AllocSize,
3547                           DAG.getConstant(TySize, dl, IntPtr));
3548 
3549   // Handle alignment.  If the requested alignment is less than or equal to
3550   // the stack alignment, ignore it.  If the size is greater than or equal to
3551   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3552   unsigned StackAlign =
3553       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3554   if (Align <= StackAlign)
3555     Align = 0;
3556 
3557   // Round the size of the allocation up to the stack alignment size
3558   // by add SA-1 to the size. This doesn't overflow because we're computing
3559   // an address inside an alloca.
3560   SDNodeFlags Flags;
3561   Flags.setNoUnsignedWrap(true);
3562   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3563                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3564 
3565   // Mask out the low bits for alignment purposes.
3566   AllocSize =
3567       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3568                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3569 
3570   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3571   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3572   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3573   setValue(&I, DSA);
3574   DAG.setRoot(DSA.getValue(1));
3575 
3576   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3577 }
3578 
3579 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3580   if (I.isAtomic())
3581     return visitAtomicLoad(I);
3582 
3583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3584   const Value *SV = I.getOperand(0);
3585   if (TLI.supportSwiftError()) {
3586     // Swifterror values can come from either a function parameter with
3587     // swifterror attribute or an alloca with swifterror attribute.
3588     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3589       if (Arg->hasSwiftErrorAttr())
3590         return visitLoadFromSwiftError(I);
3591     }
3592 
3593     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3594       if (Alloca->isSwiftError())
3595         return visitLoadFromSwiftError(I);
3596     }
3597   }
3598 
3599   SDValue Ptr = getValue(SV);
3600 
3601   Type *Ty = I.getType();
3602 
3603   bool isVolatile = I.isVolatile();
3604   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3605   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3606   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3607   unsigned Alignment = I.getAlignment();
3608 
3609   AAMDNodes AAInfo;
3610   I.getAAMetadata(AAInfo);
3611   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3612 
3613   SmallVector<EVT, 4> ValueVTs;
3614   SmallVector<uint64_t, 4> Offsets;
3615   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3616   unsigned NumValues = ValueVTs.size();
3617   if (NumValues == 0)
3618     return;
3619 
3620   SDValue Root;
3621   bool ConstantMemory = false;
3622   if (isVolatile || NumValues > MaxParallelChains)
3623     // Serialize volatile loads with other side effects.
3624     Root = getRoot();
3625   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3626                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3627     // Do not serialize (non-volatile) loads of constant memory with anything.
3628     Root = DAG.getEntryNode();
3629     ConstantMemory = true;
3630   } else {
3631     // Do not serialize non-volatile loads against each other.
3632     Root = DAG.getRoot();
3633   }
3634 
3635   SDLoc dl = getCurSDLoc();
3636 
3637   if (isVolatile)
3638     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3639 
3640   // An aggregate load cannot wrap around the address space, so offsets to its
3641   // parts don't wrap either.
3642   SDNodeFlags Flags;
3643   Flags.setNoUnsignedWrap(true);
3644 
3645   SmallVector<SDValue, 4> Values(NumValues);
3646   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3647   EVT PtrVT = Ptr.getValueType();
3648   unsigned ChainI = 0;
3649   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3650     // Serializing loads here may result in excessive register pressure, and
3651     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3652     // could recover a bit by hoisting nodes upward in the chain by recognizing
3653     // they are side-effect free or do not alias. The optimizer should really
3654     // avoid this case by converting large object/array copies to llvm.memcpy
3655     // (MaxParallelChains should always remain as failsafe).
3656     if (ChainI == MaxParallelChains) {
3657       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3658       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3659                                   makeArrayRef(Chains.data(), ChainI));
3660       Root = Chain;
3661       ChainI = 0;
3662     }
3663     SDValue A = DAG.getNode(ISD::ADD, dl,
3664                             PtrVT, Ptr,
3665                             DAG.getConstant(Offsets[i], dl, PtrVT),
3666                             Flags);
3667     auto MMOFlags = MachineMemOperand::MONone;
3668     if (isVolatile)
3669       MMOFlags |= MachineMemOperand::MOVolatile;
3670     if (isNonTemporal)
3671       MMOFlags |= MachineMemOperand::MONonTemporal;
3672     if (isInvariant)
3673       MMOFlags |= MachineMemOperand::MOInvariant;
3674     if (isDereferenceable)
3675       MMOFlags |= MachineMemOperand::MODereferenceable;
3676     MMOFlags |= TLI.getMMOFlags(I);
3677 
3678     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3679                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3680                             MMOFlags, AAInfo, Ranges);
3681 
3682     Values[i] = L;
3683     Chains[ChainI] = L.getValue(1);
3684   }
3685 
3686   if (!ConstantMemory) {
3687     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3688                                 makeArrayRef(Chains.data(), ChainI));
3689     if (isVolatile)
3690       DAG.setRoot(Chain);
3691     else
3692       PendingLoads.push_back(Chain);
3693   }
3694 
3695   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3696                            DAG.getVTList(ValueVTs), Values));
3697 }
3698 
3699 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3700   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3701          "call visitStoreToSwiftError when backend supports swifterror");
3702 
3703   SmallVector<EVT, 4> ValueVTs;
3704   SmallVector<uint64_t, 4> Offsets;
3705   const Value *SrcV = I.getOperand(0);
3706   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3707                   SrcV->getType(), ValueVTs, &Offsets);
3708   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3709          "expect a single EVT for swifterror");
3710 
3711   SDValue Src = getValue(SrcV);
3712   // Create a virtual register, then update the virtual register.
3713   unsigned VReg; bool CreatedVReg;
3714   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3715   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3716   // Chain can be getRoot or getControlRoot.
3717   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3718                                       SDValue(Src.getNode(), Src.getResNo()));
3719   DAG.setRoot(CopyNode);
3720   if (CreatedVReg)
3721     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3722 }
3723 
3724 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3725   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3726          "call visitLoadFromSwiftError when backend supports swifterror");
3727 
3728   assert(!I.isVolatile() &&
3729          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3730          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3731          "Support volatile, non temporal, invariant for load_from_swift_error");
3732 
3733   const Value *SV = I.getOperand(0);
3734   Type *Ty = I.getType();
3735   AAMDNodes AAInfo;
3736   I.getAAMetadata(AAInfo);
3737   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3738              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3739          "load_from_swift_error should not be constant memory");
3740 
3741   SmallVector<EVT, 4> ValueVTs;
3742   SmallVector<uint64_t, 4> Offsets;
3743   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3744                   ValueVTs, &Offsets);
3745   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3746          "expect a single EVT for swifterror");
3747 
3748   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3749   SDValue L = DAG.getCopyFromReg(
3750       getRoot(), getCurSDLoc(),
3751       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3752       ValueVTs[0]);
3753 
3754   setValue(&I, L);
3755 }
3756 
3757 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3758   if (I.isAtomic())
3759     return visitAtomicStore(I);
3760 
3761   const Value *SrcV = I.getOperand(0);
3762   const Value *PtrV = I.getOperand(1);
3763 
3764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3765   if (TLI.supportSwiftError()) {
3766     // Swifterror values can come from either a function parameter with
3767     // swifterror attribute or an alloca with swifterror attribute.
3768     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3769       if (Arg->hasSwiftErrorAttr())
3770         return visitStoreToSwiftError(I);
3771     }
3772 
3773     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3774       if (Alloca->isSwiftError())
3775         return visitStoreToSwiftError(I);
3776     }
3777   }
3778 
3779   SmallVector<EVT, 4> ValueVTs;
3780   SmallVector<uint64_t, 4> Offsets;
3781   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3782                   SrcV->getType(), ValueVTs, &Offsets);
3783   unsigned NumValues = ValueVTs.size();
3784   if (NumValues == 0)
3785     return;
3786 
3787   // Get the lowered operands. Note that we do this after
3788   // checking if NumResults is zero, because with zero results
3789   // the operands won't have values in the map.
3790   SDValue Src = getValue(SrcV);
3791   SDValue Ptr = getValue(PtrV);
3792 
3793   SDValue Root = getRoot();
3794   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3795   SDLoc dl = getCurSDLoc();
3796   EVT PtrVT = Ptr.getValueType();
3797   unsigned Alignment = I.getAlignment();
3798   AAMDNodes AAInfo;
3799   I.getAAMetadata(AAInfo);
3800 
3801   auto MMOFlags = MachineMemOperand::MONone;
3802   if (I.isVolatile())
3803     MMOFlags |= MachineMemOperand::MOVolatile;
3804   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3805     MMOFlags |= MachineMemOperand::MONonTemporal;
3806   MMOFlags |= TLI.getMMOFlags(I);
3807 
3808   // An aggregate load cannot wrap around the address space, so offsets to its
3809   // parts don't wrap either.
3810   SDNodeFlags Flags;
3811   Flags.setNoUnsignedWrap(true);
3812 
3813   unsigned ChainI = 0;
3814   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3815     // See visitLoad comments.
3816     if (ChainI == MaxParallelChains) {
3817       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3818                                   makeArrayRef(Chains.data(), ChainI));
3819       Root = Chain;
3820       ChainI = 0;
3821     }
3822     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3823                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3824     SDValue St = DAG.getStore(
3825         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3826         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3827     Chains[ChainI] = St;
3828   }
3829 
3830   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3831                                   makeArrayRef(Chains.data(), ChainI));
3832   DAG.setRoot(StoreNode);
3833 }
3834 
3835 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3836                                            bool IsCompressing) {
3837   SDLoc sdl = getCurSDLoc();
3838 
3839   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3840                            unsigned& Alignment) {
3841     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3842     Src0 = I.getArgOperand(0);
3843     Ptr = I.getArgOperand(1);
3844     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3845     Mask = I.getArgOperand(3);
3846   };
3847   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3848                            unsigned& Alignment) {
3849     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3850     Src0 = I.getArgOperand(0);
3851     Ptr = I.getArgOperand(1);
3852     Mask = I.getArgOperand(2);
3853     Alignment = 0;
3854   };
3855 
3856   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3857   unsigned Alignment;
3858   if (IsCompressing)
3859     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3860   else
3861     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3862 
3863   SDValue Ptr = getValue(PtrOperand);
3864   SDValue Src0 = getValue(Src0Operand);
3865   SDValue Mask = getValue(MaskOperand);
3866 
3867   EVT VT = Src0.getValueType();
3868   if (!Alignment)
3869     Alignment = DAG.getEVTAlignment(VT);
3870 
3871   AAMDNodes AAInfo;
3872   I.getAAMetadata(AAInfo);
3873 
3874   MachineMemOperand *MMO =
3875     DAG.getMachineFunction().
3876     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3877                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3878                           Alignment, AAInfo);
3879   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3880                                          MMO, false /* Truncating */,
3881                                          IsCompressing);
3882   DAG.setRoot(StoreNode);
3883   setValue(&I, StoreNode);
3884 }
3885 
3886 // Get a uniform base for the Gather/Scatter intrinsic.
3887 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3888 // We try to represent it as a base pointer + vector of indices.
3889 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3890 // The first operand of the GEP may be a single pointer or a vector of pointers
3891 // Example:
3892 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3893 //  or
3894 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3895 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3896 //
3897 // When the first GEP operand is a single pointer - it is the uniform base we
3898 // are looking for. If first operand of the GEP is a splat vector - we
3899 // extract the splat value and use it as a uniform base.
3900 // In all other cases the function returns 'false'.
3901 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3902                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3903   SelectionDAG& DAG = SDB->DAG;
3904   LLVMContext &Context = *DAG.getContext();
3905 
3906   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3907   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3908   if (!GEP)
3909     return false;
3910 
3911   const Value *GEPPtr = GEP->getPointerOperand();
3912   if (!GEPPtr->getType()->isVectorTy())
3913     Ptr = GEPPtr;
3914   else if (!(Ptr = getSplatValue(GEPPtr)))
3915     return false;
3916 
3917   unsigned FinalIndex = GEP->getNumOperands() - 1;
3918   Value *IndexVal = GEP->getOperand(FinalIndex);
3919 
3920   // Ensure all the other indices are 0.
3921   for (unsigned i = 1; i < FinalIndex; ++i) {
3922     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3923     if (!C || !C->isZero())
3924       return false;
3925   }
3926 
3927   // The operands of the GEP may be defined in another basic block.
3928   // In this case we'll not find nodes for the operands.
3929   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3930     return false;
3931 
3932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3933   const DataLayout &DL = DAG.getDataLayout();
3934   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3935                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3936   Base = SDB->getValue(Ptr);
3937   Index = SDB->getValue(IndexVal);
3938 
3939   if (!Index.getValueType().isVector()) {
3940     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3941     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3942     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3943   }
3944   return true;
3945 }
3946 
3947 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3948   SDLoc sdl = getCurSDLoc();
3949 
3950   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3951   const Value *Ptr = I.getArgOperand(1);
3952   SDValue Src0 = getValue(I.getArgOperand(0));
3953   SDValue Mask = getValue(I.getArgOperand(3));
3954   EVT VT = Src0.getValueType();
3955   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3956   if (!Alignment)
3957     Alignment = DAG.getEVTAlignment(VT);
3958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3959 
3960   AAMDNodes AAInfo;
3961   I.getAAMetadata(AAInfo);
3962 
3963   SDValue Base;
3964   SDValue Index;
3965   SDValue Scale;
3966   const Value *BasePtr = Ptr;
3967   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
3968 
3969   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3970   MachineMemOperand *MMO = DAG.getMachineFunction().
3971     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3972                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3973                          Alignment, AAInfo);
3974   if (!UniformBase) {
3975     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3976     Index = getValue(Ptr);
3977     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3978   }
3979   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
3980   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3981                                          Ops, MMO);
3982   DAG.setRoot(Scatter);
3983   setValue(&I, Scatter);
3984 }
3985 
3986 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3987   SDLoc sdl = getCurSDLoc();
3988 
3989   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3990                            unsigned& Alignment) {
3991     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3992     Ptr = I.getArgOperand(0);
3993     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3994     Mask = I.getArgOperand(2);
3995     Src0 = I.getArgOperand(3);
3996   };
3997   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3998                            unsigned& Alignment) {
3999     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4000     Ptr = I.getArgOperand(0);
4001     Alignment = 0;
4002     Mask = I.getArgOperand(1);
4003     Src0 = I.getArgOperand(2);
4004   };
4005 
4006   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4007   unsigned Alignment;
4008   if (IsExpanding)
4009     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4010   else
4011     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4012 
4013   SDValue Ptr = getValue(PtrOperand);
4014   SDValue Src0 = getValue(Src0Operand);
4015   SDValue Mask = getValue(MaskOperand);
4016 
4017   EVT VT = Src0.getValueType();
4018   if (!Alignment)
4019     Alignment = DAG.getEVTAlignment(VT);
4020 
4021   AAMDNodes AAInfo;
4022   I.getAAMetadata(AAInfo);
4023   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4024 
4025   // Do not serialize masked loads of constant memory with anything.
4026   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4027       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4028   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4029 
4030   MachineMemOperand *MMO =
4031     DAG.getMachineFunction().
4032     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4033                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4034                           Alignment, AAInfo, Ranges);
4035 
4036   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4037                                    ISD::NON_EXTLOAD, IsExpanding);
4038   if (AddToChain) {
4039     SDValue OutChain = Load.getValue(1);
4040     DAG.setRoot(OutChain);
4041   }
4042   setValue(&I, Load);
4043 }
4044 
4045 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4046   SDLoc sdl = getCurSDLoc();
4047 
4048   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4049   const Value *Ptr = I.getArgOperand(0);
4050   SDValue Src0 = getValue(I.getArgOperand(3));
4051   SDValue Mask = getValue(I.getArgOperand(2));
4052 
4053   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4054   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4055   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4056   if (!Alignment)
4057     Alignment = DAG.getEVTAlignment(VT);
4058 
4059   AAMDNodes AAInfo;
4060   I.getAAMetadata(AAInfo);
4061   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4062 
4063   SDValue Root = DAG.getRoot();
4064   SDValue Base;
4065   SDValue Index;
4066   SDValue Scale;
4067   const Value *BasePtr = Ptr;
4068   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4069   bool ConstantMemory = false;
4070   if (UniformBase &&
4071       AA && AA->pointsToConstantMemory(MemoryLocation(
4072           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4073           AAInfo))) {
4074     // Do not serialize (non-volatile) loads of constant memory with anything.
4075     Root = DAG.getEntryNode();
4076     ConstantMemory = true;
4077   }
4078 
4079   MachineMemOperand *MMO =
4080     DAG.getMachineFunction().
4081     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4082                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4083                          Alignment, AAInfo, Ranges);
4084 
4085   if (!UniformBase) {
4086     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4087     Index = getValue(Ptr);
4088     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4089   }
4090   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4091   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4092                                        Ops, MMO);
4093 
4094   SDValue OutChain = Gather.getValue(1);
4095   if (!ConstantMemory)
4096     PendingLoads.push_back(OutChain);
4097   setValue(&I, Gather);
4098 }
4099 
4100 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4101   SDLoc dl = getCurSDLoc();
4102   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4103   AtomicOrdering FailureOrder = I.getFailureOrdering();
4104   SyncScope::ID SSID = I.getSyncScopeID();
4105 
4106   SDValue InChain = getRoot();
4107 
4108   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4109   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4110   SDValue L = DAG.getAtomicCmpSwap(
4111       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4112       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4113       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4114       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4115 
4116   SDValue OutChain = L.getValue(2);
4117 
4118   setValue(&I, L);
4119   DAG.setRoot(OutChain);
4120 }
4121 
4122 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4123   SDLoc dl = getCurSDLoc();
4124   ISD::NodeType NT;
4125   switch (I.getOperation()) {
4126   default: llvm_unreachable("Unknown atomicrmw operation");
4127   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4128   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4129   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4130   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4131   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4132   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4133   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4134   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4135   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4136   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4137   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4138   }
4139   AtomicOrdering Order = I.getOrdering();
4140   SyncScope::ID SSID = I.getSyncScopeID();
4141 
4142   SDValue InChain = getRoot();
4143 
4144   SDValue L =
4145     DAG.getAtomic(NT, dl,
4146                   getValue(I.getValOperand()).getSimpleValueType(),
4147                   InChain,
4148                   getValue(I.getPointerOperand()),
4149                   getValue(I.getValOperand()),
4150                   I.getPointerOperand(),
4151                   /* Alignment=*/ 0, Order, SSID);
4152 
4153   SDValue OutChain = L.getValue(1);
4154 
4155   setValue(&I, L);
4156   DAG.setRoot(OutChain);
4157 }
4158 
4159 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4160   SDLoc dl = getCurSDLoc();
4161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4162   SDValue Ops[3];
4163   Ops[0] = getRoot();
4164   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4165                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4166   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4167                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4168   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4169 }
4170 
4171 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4172   SDLoc dl = getCurSDLoc();
4173   AtomicOrdering Order = I.getOrdering();
4174   SyncScope::ID SSID = I.getSyncScopeID();
4175 
4176   SDValue InChain = getRoot();
4177 
4178   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4179   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4180 
4181   if (!TLI.supportsUnalignedAtomics() &&
4182       I.getAlignment() < VT.getStoreSize())
4183     report_fatal_error("Cannot generate unaligned atomic load");
4184 
4185   MachineMemOperand *MMO =
4186       DAG.getMachineFunction().
4187       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4188                            MachineMemOperand::MOVolatile |
4189                            MachineMemOperand::MOLoad,
4190                            VT.getStoreSize(),
4191                            I.getAlignment() ? I.getAlignment() :
4192                                               DAG.getEVTAlignment(VT),
4193                            AAMDNodes(), nullptr, SSID, Order);
4194 
4195   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4196   SDValue L =
4197       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4198                     getValue(I.getPointerOperand()), MMO);
4199 
4200   SDValue OutChain = L.getValue(1);
4201 
4202   setValue(&I, L);
4203   DAG.setRoot(OutChain);
4204 }
4205 
4206 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4207   SDLoc dl = getCurSDLoc();
4208 
4209   AtomicOrdering Order = I.getOrdering();
4210   SyncScope::ID SSID = I.getSyncScopeID();
4211 
4212   SDValue InChain = getRoot();
4213 
4214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4215   EVT VT =
4216       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4217 
4218   if (I.getAlignment() < VT.getStoreSize())
4219     report_fatal_error("Cannot generate unaligned atomic store");
4220 
4221   SDValue OutChain =
4222     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4223                   InChain,
4224                   getValue(I.getPointerOperand()),
4225                   getValue(I.getValueOperand()),
4226                   I.getPointerOperand(), I.getAlignment(),
4227                   Order, SSID);
4228 
4229   DAG.setRoot(OutChain);
4230 }
4231 
4232 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4233 /// node.
4234 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4235                                                unsigned Intrinsic) {
4236   // Ignore the callsite's attributes. A specific call site may be marked with
4237   // readnone, but the lowering code will expect the chain based on the
4238   // definition.
4239   const Function *F = I.getCalledFunction();
4240   bool HasChain = !F->doesNotAccessMemory();
4241   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4242 
4243   // Build the operand list.
4244   SmallVector<SDValue, 8> Ops;
4245   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4246     if (OnlyLoad) {
4247       // We don't need to serialize loads against other loads.
4248       Ops.push_back(DAG.getRoot());
4249     } else {
4250       Ops.push_back(getRoot());
4251     }
4252   }
4253 
4254   // Info is set by getTgtMemInstrinsic
4255   TargetLowering::IntrinsicInfo Info;
4256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4257   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4258                                                DAG.getMachineFunction(),
4259                                                Intrinsic);
4260 
4261   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4262   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4263       Info.opc == ISD::INTRINSIC_W_CHAIN)
4264     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4265                                         TLI.getPointerTy(DAG.getDataLayout())));
4266 
4267   // Add all operands of the call to the operand list.
4268   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4269     SDValue Op = getValue(I.getArgOperand(i));
4270     Ops.push_back(Op);
4271   }
4272 
4273   SmallVector<EVT, 4> ValueVTs;
4274   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4275 
4276   if (HasChain)
4277     ValueVTs.push_back(MVT::Other);
4278 
4279   SDVTList VTs = DAG.getVTList(ValueVTs);
4280 
4281   // Create the node.
4282   SDValue Result;
4283   if (IsTgtIntrinsic) {
4284     // This is target intrinsic that touches memory
4285     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4286       Ops, Info.memVT,
4287       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4288       Info.flags, Info.size);
4289   } else if (!HasChain) {
4290     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4291   } else if (!I.getType()->isVoidTy()) {
4292     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4293   } else {
4294     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4295   }
4296 
4297   if (HasChain) {
4298     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4299     if (OnlyLoad)
4300       PendingLoads.push_back(Chain);
4301     else
4302       DAG.setRoot(Chain);
4303   }
4304 
4305   if (!I.getType()->isVoidTy()) {
4306     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4307       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4308       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4309     } else
4310       Result = lowerRangeToAssertZExt(DAG, I, Result);
4311 
4312     setValue(&I, Result);
4313   }
4314 }
4315 
4316 /// GetSignificand - Get the significand and build it into a floating-point
4317 /// number with exponent of 1:
4318 ///
4319 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4320 ///
4321 /// where Op is the hexadecimal representation of floating point value.
4322 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4323   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4324                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4325   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4326                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4327   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4328 }
4329 
4330 /// GetExponent - Get the exponent:
4331 ///
4332 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4333 ///
4334 /// where Op is the hexadecimal representation of floating point value.
4335 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4336                            const TargetLowering &TLI, const SDLoc &dl) {
4337   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4338                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4339   SDValue t1 = DAG.getNode(
4340       ISD::SRL, dl, MVT::i32, t0,
4341       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4342   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4343                            DAG.getConstant(127, dl, MVT::i32));
4344   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4345 }
4346 
4347 /// getF32Constant - Get 32-bit floating point constant.
4348 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4349                               const SDLoc &dl) {
4350   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4351                            MVT::f32);
4352 }
4353 
4354 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4355                                        SelectionDAG &DAG) {
4356   // TODO: What fast-math-flags should be set on the floating-point nodes?
4357 
4358   //   IntegerPartOfX = ((int32_t)(t0);
4359   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4360 
4361   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4362   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4363   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4364 
4365   //   IntegerPartOfX <<= 23;
4366   IntegerPartOfX = DAG.getNode(
4367       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4368       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4369                                   DAG.getDataLayout())));
4370 
4371   SDValue TwoToFractionalPartOfX;
4372   if (LimitFloatPrecision <= 6) {
4373     // For floating-point precision of 6:
4374     //
4375     //   TwoToFractionalPartOfX =
4376     //     0.997535578f +
4377     //       (0.735607626f + 0.252464424f * x) * x;
4378     //
4379     // error 0.0144103317, which is 6 bits
4380     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4381                              getF32Constant(DAG, 0x3e814304, dl));
4382     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4383                              getF32Constant(DAG, 0x3f3c50c8, dl));
4384     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4385     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4386                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4387   } else if (LimitFloatPrecision <= 12) {
4388     // For floating-point precision of 12:
4389     //
4390     //   TwoToFractionalPartOfX =
4391     //     0.999892986f +
4392     //       (0.696457318f +
4393     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4394     //
4395     // error 0.000107046256, which is 13 to 14 bits
4396     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4397                              getF32Constant(DAG, 0x3da235e3, dl));
4398     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4399                              getF32Constant(DAG, 0x3e65b8f3, dl));
4400     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4401     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4402                              getF32Constant(DAG, 0x3f324b07, dl));
4403     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4404     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4405                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4406   } else { // LimitFloatPrecision <= 18
4407     // For floating-point precision of 18:
4408     //
4409     //   TwoToFractionalPartOfX =
4410     //     0.999999982f +
4411     //       (0.693148872f +
4412     //         (0.240227044f +
4413     //           (0.554906021e-1f +
4414     //             (0.961591928e-2f +
4415     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4416     // error 2.47208000*10^(-7), which is better than 18 bits
4417     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4418                              getF32Constant(DAG, 0x3924b03e, dl));
4419     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4420                              getF32Constant(DAG, 0x3ab24b87, dl));
4421     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4422     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4423                              getF32Constant(DAG, 0x3c1d8c17, dl));
4424     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4425     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4426                              getF32Constant(DAG, 0x3d634a1d, dl));
4427     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4428     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4429                              getF32Constant(DAG, 0x3e75fe14, dl));
4430     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4431     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4432                               getF32Constant(DAG, 0x3f317234, dl));
4433     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4434     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4435                                          getF32Constant(DAG, 0x3f800000, dl));
4436   }
4437 
4438   // Add the exponent into the result in integer domain.
4439   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4440   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4441                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4442 }
4443 
4444 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4445 /// limited-precision mode.
4446 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4447                          const TargetLowering &TLI) {
4448   if (Op.getValueType() == MVT::f32 &&
4449       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4450 
4451     // Put the exponent in the right bit position for later addition to the
4452     // final result:
4453     //
4454     //   #define LOG2OFe 1.4426950f
4455     //   t0 = Op * LOG2OFe
4456 
4457     // TODO: What fast-math-flags should be set here?
4458     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4459                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4460     return getLimitedPrecisionExp2(t0, dl, DAG);
4461   }
4462 
4463   // No special expansion.
4464   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4465 }
4466 
4467 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4468 /// limited-precision mode.
4469 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4470                          const TargetLowering &TLI) {
4471   // TODO: What fast-math-flags should be set on the floating-point nodes?
4472 
4473   if (Op.getValueType() == MVT::f32 &&
4474       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4475     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4476 
4477     // Scale the exponent by log(2) [0.69314718f].
4478     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4479     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4480                                         getF32Constant(DAG, 0x3f317218, dl));
4481 
4482     // Get the significand and build it into a floating-point number with
4483     // exponent of 1.
4484     SDValue X = GetSignificand(DAG, Op1, dl);
4485 
4486     SDValue LogOfMantissa;
4487     if (LimitFloatPrecision <= 6) {
4488       // For floating-point precision of 6:
4489       //
4490       //   LogofMantissa =
4491       //     -1.1609546f +
4492       //       (1.4034025f - 0.23903021f * x) * x;
4493       //
4494       // error 0.0034276066, which is better than 8 bits
4495       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4496                                getF32Constant(DAG, 0xbe74c456, dl));
4497       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4498                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4499       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4500       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4501                                   getF32Constant(DAG, 0x3f949a29, dl));
4502     } else if (LimitFloatPrecision <= 12) {
4503       // For floating-point precision of 12:
4504       //
4505       //   LogOfMantissa =
4506       //     -1.7417939f +
4507       //       (2.8212026f +
4508       //         (-1.4699568f +
4509       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4510       //
4511       // error 0.000061011436, which is 14 bits
4512       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4513                                getF32Constant(DAG, 0xbd67b6d6, dl));
4514       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4515                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4516       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4517       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4518                                getF32Constant(DAG, 0x3fbc278b, dl));
4519       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4520       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4521                                getF32Constant(DAG, 0x40348e95, dl));
4522       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4523       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4524                                   getF32Constant(DAG, 0x3fdef31a, dl));
4525     } else { // LimitFloatPrecision <= 18
4526       // For floating-point precision of 18:
4527       //
4528       //   LogOfMantissa =
4529       //     -2.1072184f +
4530       //       (4.2372794f +
4531       //         (-3.7029485f +
4532       //           (2.2781945f +
4533       //             (-0.87823314f +
4534       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4535       //
4536       // error 0.0000023660568, which is better than 18 bits
4537       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4538                                getF32Constant(DAG, 0xbc91e5ac, dl));
4539       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4540                                getF32Constant(DAG, 0x3e4350aa, dl));
4541       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4542       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4543                                getF32Constant(DAG, 0x3f60d3e3, dl));
4544       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4545       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4546                                getF32Constant(DAG, 0x4011cdf0, dl));
4547       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4548       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4549                                getF32Constant(DAG, 0x406cfd1c, dl));
4550       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4551       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4552                                getF32Constant(DAG, 0x408797cb, dl));
4553       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4554       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4555                                   getF32Constant(DAG, 0x4006dcab, dl));
4556     }
4557 
4558     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4559   }
4560 
4561   // No special expansion.
4562   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4563 }
4564 
4565 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4566 /// limited-precision mode.
4567 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4568                           const TargetLowering &TLI) {
4569   // TODO: What fast-math-flags should be set on the floating-point nodes?
4570 
4571   if (Op.getValueType() == MVT::f32 &&
4572       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4573     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4574 
4575     // Get the exponent.
4576     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4577 
4578     // Get the significand and build it into a floating-point number with
4579     // exponent of 1.
4580     SDValue X = GetSignificand(DAG, Op1, dl);
4581 
4582     // Different possible minimax approximations of significand in
4583     // floating-point for various degrees of accuracy over [1,2].
4584     SDValue Log2ofMantissa;
4585     if (LimitFloatPrecision <= 6) {
4586       // For floating-point precision of 6:
4587       //
4588       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4589       //
4590       // error 0.0049451742, which is more than 7 bits
4591       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4592                                getF32Constant(DAG, 0xbeb08fe0, dl));
4593       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4594                                getF32Constant(DAG, 0x40019463, dl));
4595       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4596       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4597                                    getF32Constant(DAG, 0x3fd6633d, dl));
4598     } else if (LimitFloatPrecision <= 12) {
4599       // For floating-point precision of 12:
4600       //
4601       //   Log2ofMantissa =
4602       //     -2.51285454f +
4603       //       (4.07009056f +
4604       //         (-2.12067489f +
4605       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4606       //
4607       // error 0.0000876136000, which is better than 13 bits
4608       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4609                                getF32Constant(DAG, 0xbda7262e, dl));
4610       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4611                                getF32Constant(DAG, 0x3f25280b, dl));
4612       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4613       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4614                                getF32Constant(DAG, 0x4007b923, dl));
4615       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4616       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4617                                getF32Constant(DAG, 0x40823e2f, dl));
4618       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4619       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4620                                    getF32Constant(DAG, 0x4020d29c, dl));
4621     } else { // LimitFloatPrecision <= 18
4622       // For floating-point precision of 18:
4623       //
4624       //   Log2ofMantissa =
4625       //     -3.0400495f +
4626       //       (6.1129976f +
4627       //         (-5.3420409f +
4628       //           (3.2865683f +
4629       //             (-1.2669343f +
4630       //               (0.27515199f -
4631       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4632       //
4633       // error 0.0000018516, which is better than 18 bits
4634       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4635                                getF32Constant(DAG, 0xbcd2769e, dl));
4636       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4637                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4638       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4639       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4640                                getF32Constant(DAG, 0x3fa22ae7, dl));
4641       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4642       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4643                                getF32Constant(DAG, 0x40525723, dl));
4644       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4645       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4646                                getF32Constant(DAG, 0x40aaf200, dl));
4647       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4648       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4649                                getF32Constant(DAG, 0x40c39dad, dl));
4650       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4651       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4652                                    getF32Constant(DAG, 0x4042902c, dl));
4653     }
4654 
4655     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4656   }
4657 
4658   // No special expansion.
4659   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4660 }
4661 
4662 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4663 /// limited-precision mode.
4664 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4665                            const TargetLowering &TLI) {
4666   // TODO: What fast-math-flags should be set on the floating-point nodes?
4667 
4668   if (Op.getValueType() == MVT::f32 &&
4669       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4670     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4671 
4672     // Scale the exponent by log10(2) [0.30102999f].
4673     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4674     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4675                                         getF32Constant(DAG, 0x3e9a209a, dl));
4676 
4677     // Get the significand and build it into a floating-point number with
4678     // exponent of 1.
4679     SDValue X = GetSignificand(DAG, Op1, dl);
4680 
4681     SDValue Log10ofMantissa;
4682     if (LimitFloatPrecision <= 6) {
4683       // For floating-point precision of 6:
4684       //
4685       //   Log10ofMantissa =
4686       //     -0.50419619f +
4687       //       (0.60948995f - 0.10380950f * x) * x;
4688       //
4689       // error 0.0014886165, which is 6 bits
4690       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4691                                getF32Constant(DAG, 0xbdd49a13, dl));
4692       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4693                                getF32Constant(DAG, 0x3f1c0789, dl));
4694       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4695       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4696                                     getF32Constant(DAG, 0x3f011300, dl));
4697     } else if (LimitFloatPrecision <= 12) {
4698       // For floating-point precision of 12:
4699       //
4700       //   Log10ofMantissa =
4701       //     -0.64831180f +
4702       //       (0.91751397f +
4703       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4704       //
4705       // error 0.00019228036, which is better than 12 bits
4706       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4707                                getF32Constant(DAG, 0x3d431f31, dl));
4708       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4709                                getF32Constant(DAG, 0x3ea21fb2, dl));
4710       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4711       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4712                                getF32Constant(DAG, 0x3f6ae232, dl));
4713       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4714       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4715                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4716     } else { // LimitFloatPrecision <= 18
4717       // For floating-point precision of 18:
4718       //
4719       //   Log10ofMantissa =
4720       //     -0.84299375f +
4721       //       (1.5327582f +
4722       //         (-1.0688956f +
4723       //           (0.49102474f +
4724       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4725       //
4726       // error 0.0000037995730, which is better than 18 bits
4727       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4728                                getF32Constant(DAG, 0x3c5d51ce, dl));
4729       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4730                                getF32Constant(DAG, 0x3e00685a, dl));
4731       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4732       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4733                                getF32Constant(DAG, 0x3efb6798, dl));
4734       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4735       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4736                                getF32Constant(DAG, 0x3f88d192, dl));
4737       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4738       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4739                                getF32Constant(DAG, 0x3fc4316c, dl));
4740       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4741       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4742                                     getF32Constant(DAG, 0x3f57ce70, dl));
4743     }
4744 
4745     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4746   }
4747 
4748   // No special expansion.
4749   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4750 }
4751 
4752 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4753 /// limited-precision mode.
4754 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4755                           const TargetLowering &TLI) {
4756   if (Op.getValueType() == MVT::f32 &&
4757       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4758     return getLimitedPrecisionExp2(Op, dl, DAG);
4759 
4760   // No special expansion.
4761   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4762 }
4763 
4764 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4765 /// limited-precision mode with x == 10.0f.
4766 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4767                          SelectionDAG &DAG, const TargetLowering &TLI) {
4768   bool IsExp10 = false;
4769   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4770       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4771     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4772       APFloat Ten(10.0f);
4773       IsExp10 = LHSC->isExactlyValue(Ten);
4774     }
4775   }
4776 
4777   // TODO: What fast-math-flags should be set on the FMUL node?
4778   if (IsExp10) {
4779     // Put the exponent in the right bit position for later addition to the
4780     // final result:
4781     //
4782     //   #define LOG2OF10 3.3219281f
4783     //   t0 = Op * LOG2OF10;
4784     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4785                              getF32Constant(DAG, 0x40549a78, dl));
4786     return getLimitedPrecisionExp2(t0, dl, DAG);
4787   }
4788 
4789   // No special expansion.
4790   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4791 }
4792 
4793 /// ExpandPowI - Expand a llvm.powi intrinsic.
4794 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4795                           SelectionDAG &DAG) {
4796   // If RHS is a constant, we can expand this out to a multiplication tree,
4797   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4798   // optimizing for size, we only want to do this if the expansion would produce
4799   // a small number of multiplies, otherwise we do the full expansion.
4800   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4801     // Get the exponent as a positive value.
4802     unsigned Val = RHSC->getSExtValue();
4803     if ((int)Val < 0) Val = -Val;
4804 
4805     // powi(x, 0) -> 1.0
4806     if (Val == 0)
4807       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4808 
4809     const Function &F = DAG.getMachineFunction().getFunction();
4810     if (!F.optForSize() ||
4811         // If optimizing for size, don't insert too many multiplies.
4812         // This inserts up to 5 multiplies.
4813         countPopulation(Val) + Log2_32(Val) < 7) {
4814       // We use the simple binary decomposition method to generate the multiply
4815       // sequence.  There are more optimal ways to do this (for example,
4816       // powi(x,15) generates one more multiply than it should), but this has
4817       // the benefit of being both really simple and much better than a libcall.
4818       SDValue Res;  // Logically starts equal to 1.0
4819       SDValue CurSquare = LHS;
4820       // TODO: Intrinsics should have fast-math-flags that propagate to these
4821       // nodes.
4822       while (Val) {
4823         if (Val & 1) {
4824           if (Res.getNode())
4825             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4826           else
4827             Res = CurSquare;  // 1.0*CurSquare.
4828         }
4829 
4830         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4831                                 CurSquare, CurSquare);
4832         Val >>= 1;
4833       }
4834 
4835       // If the original was negative, invert the result, producing 1/(x*x*x).
4836       if (RHSC->getSExtValue() < 0)
4837         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4838                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4839       return Res;
4840     }
4841   }
4842 
4843   // Otherwise, expand to a libcall.
4844   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4845 }
4846 
4847 // getUnderlyingArgReg - Find underlying register used for a truncated or
4848 // bitcasted argument.
4849 static unsigned getUnderlyingArgReg(const SDValue &N) {
4850   switch (N.getOpcode()) {
4851   case ISD::CopyFromReg:
4852     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4853   case ISD::BITCAST:
4854   case ISD::AssertZext:
4855   case ISD::AssertSext:
4856   case ISD::TRUNCATE:
4857     return getUnderlyingArgReg(N.getOperand(0));
4858   default:
4859     return 0;
4860   }
4861 }
4862 
4863 /// If the DbgValueInst is a dbg_value of a function argument, create the
4864 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4865 /// instruction selection, they will be inserted to the entry BB.
4866 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4867     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4868     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4869   const Argument *Arg = dyn_cast<Argument>(V);
4870   if (!Arg)
4871     return false;
4872 
4873   MachineFunction &MF = DAG.getMachineFunction();
4874   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4875 
4876   bool IsIndirect = false;
4877   Optional<MachineOperand> Op;
4878   // Some arguments' frame index is recorded during argument lowering.
4879   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4880   if (FI != std::numeric_limits<int>::max())
4881     Op = MachineOperand::CreateFI(FI);
4882 
4883   if (!Op && N.getNode()) {
4884     unsigned Reg = getUnderlyingArgReg(N);
4885     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4886       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4887       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4888       if (PR)
4889         Reg = PR;
4890     }
4891     if (Reg) {
4892       Op = MachineOperand::CreateReg(Reg, false);
4893       IsIndirect = IsDbgDeclare;
4894     }
4895   }
4896 
4897   if (!Op && N.getNode())
4898     // Check if frame index is available.
4899     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4900       if (FrameIndexSDNode *FINode =
4901           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4902         Op = MachineOperand::CreateFI(FINode->getIndex());
4903 
4904   if (!Op) {
4905     // Check if ValueMap has reg number.
4906     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4907     if (VMI != FuncInfo.ValueMap.end()) {
4908       const auto &TLI = DAG.getTargetLoweringInfo();
4909       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4910                        V->getType(), isABIRegCopy(V));
4911       unsigned NumRegs =
4912           std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0);
4913       if (NumRegs > 1) {
4914         unsigned I = 0;
4915         unsigned Offset = 0;
4916         auto RegisterVT = RFV.RegVTs.begin();
4917         for (auto RegCount : RFV.RegCount) {
4918           unsigned RegisterSize = (RegisterVT++)->getSizeInBits();
4919           for (unsigned E = I + RegCount; I != E; ++I) {
4920             // The vregs are guaranteed to be allocated in sequence.
4921             Op = MachineOperand::CreateReg(VMI->second + I, false);
4922             auto FragmentExpr = DIExpression::createFragmentExpression(
4923                 Expr, Offset, RegisterSize);
4924             if (!FragmentExpr)
4925               continue;
4926             FuncInfo.ArgDbgValues.push_back(
4927                 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4928                         Op->getReg(), Variable, *FragmentExpr));
4929             Offset += RegisterSize;
4930           }
4931         }
4932         return true;
4933       }
4934       Op = MachineOperand::CreateReg(VMI->second, false);
4935       IsIndirect = IsDbgDeclare;
4936     }
4937   }
4938 
4939   if (!Op)
4940     return false;
4941 
4942   assert(Variable->isValidLocationForIntrinsic(DL) &&
4943          "Expected inlined-at fields to agree");
4944   if (Op->isReg())
4945     FuncInfo.ArgDbgValues.push_back(
4946         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4947                 Op->getReg(), Variable, Expr));
4948   else
4949     FuncInfo.ArgDbgValues.push_back(
4950         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4951             .add(*Op)
4952             .addImm(0)
4953             .addMetadata(Variable)
4954             .addMetadata(Expr));
4955 
4956   return true;
4957 }
4958 
4959 /// Return the appropriate SDDbgValue based on N.
4960 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4961                                              DILocalVariable *Variable,
4962                                              DIExpression *Expr,
4963                                              const DebugLoc &dl,
4964                                              unsigned DbgSDNodeOrder) {
4965   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4966     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4967     // stack slot locations as such instead of as indirectly addressed
4968     // locations.
4969     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4970                                      DbgSDNodeOrder);
4971   }
4972   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4973                          DbgSDNodeOrder);
4974 }
4975 
4976 // VisualStudio defines setjmp as _setjmp
4977 #if defined(_MSC_VER) && defined(setjmp) && \
4978                          !defined(setjmp_undefined_for_msvc)
4979 #  pragma push_macro("setjmp")
4980 #  undef setjmp
4981 #  define setjmp_undefined_for_msvc
4982 #endif
4983 
4984 /// Lower the call to the specified intrinsic function. If we want to emit this
4985 /// as a call to a named external function, return the name. Otherwise, lower it
4986 /// and return null.
4987 const char *
4988 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4989   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4990   SDLoc sdl = getCurSDLoc();
4991   DebugLoc dl = getCurDebugLoc();
4992   SDValue Res;
4993 
4994   switch (Intrinsic) {
4995   default:
4996     // By default, turn this into a target intrinsic node.
4997     visitTargetIntrinsic(I, Intrinsic);
4998     return nullptr;
4999   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5000   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5001   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5002   case Intrinsic::returnaddress:
5003     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5004                              TLI.getPointerTy(DAG.getDataLayout()),
5005                              getValue(I.getArgOperand(0))));
5006     return nullptr;
5007   case Intrinsic::addressofreturnaddress:
5008     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5009                              TLI.getPointerTy(DAG.getDataLayout())));
5010     return nullptr;
5011   case Intrinsic::frameaddress:
5012     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5013                              TLI.getPointerTy(DAG.getDataLayout()),
5014                              getValue(I.getArgOperand(0))));
5015     return nullptr;
5016   case Intrinsic::read_register: {
5017     Value *Reg = I.getArgOperand(0);
5018     SDValue Chain = getRoot();
5019     SDValue RegName =
5020         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5021     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5022     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5023       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5024     setValue(&I, Res);
5025     DAG.setRoot(Res.getValue(1));
5026     return nullptr;
5027   }
5028   case Intrinsic::write_register: {
5029     Value *Reg = I.getArgOperand(0);
5030     Value *RegValue = I.getArgOperand(1);
5031     SDValue Chain = getRoot();
5032     SDValue RegName =
5033         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5034     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5035                             RegName, getValue(RegValue)));
5036     return nullptr;
5037   }
5038   case Intrinsic::setjmp:
5039     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5040   case Intrinsic::longjmp:
5041     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5042   case Intrinsic::memcpy: {
5043     const auto &MCI = cast<MemCpyInst>(I);
5044     SDValue Op1 = getValue(I.getArgOperand(0));
5045     SDValue Op2 = getValue(I.getArgOperand(1));
5046     SDValue Op3 = getValue(I.getArgOperand(2));
5047     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5048     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5049     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5050     unsigned Align = MinAlign(DstAlign, SrcAlign);
5051     bool isVol = MCI.isVolatile();
5052     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5053     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5054     // node.
5055     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5056                                false, isTC,
5057                                MachinePointerInfo(I.getArgOperand(0)),
5058                                MachinePointerInfo(I.getArgOperand(1)));
5059     updateDAGForMaybeTailCall(MC);
5060     return nullptr;
5061   }
5062   case Intrinsic::memset: {
5063     const auto &MSI = cast<MemSetInst>(I);
5064     SDValue Op1 = getValue(I.getArgOperand(0));
5065     SDValue Op2 = getValue(I.getArgOperand(1));
5066     SDValue Op3 = getValue(I.getArgOperand(2));
5067     // @llvm.memset defines 0 and 1 to both mean no alignment.
5068     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5069     bool isVol = MSI.isVolatile();
5070     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5071     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5072                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5073     updateDAGForMaybeTailCall(MS);
5074     return nullptr;
5075   }
5076   case Intrinsic::memmove: {
5077     const auto &MMI = cast<MemMoveInst>(I);
5078     SDValue Op1 = getValue(I.getArgOperand(0));
5079     SDValue Op2 = getValue(I.getArgOperand(1));
5080     SDValue Op3 = getValue(I.getArgOperand(2));
5081     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5082     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5083     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5084     unsigned Align = MinAlign(DstAlign, SrcAlign);
5085     bool isVol = MMI.isVolatile();
5086     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5087     // FIXME: Support passing different dest/src alignments to the memmove DAG
5088     // node.
5089     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5090                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5091                                 MachinePointerInfo(I.getArgOperand(1)));
5092     updateDAGForMaybeTailCall(MM);
5093     return nullptr;
5094   }
5095   case Intrinsic::memcpy_element_unordered_atomic: {
5096     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5097     SDValue Dst = getValue(MI.getRawDest());
5098     SDValue Src = getValue(MI.getRawSource());
5099     SDValue Length = getValue(MI.getLength());
5100 
5101     unsigned DstAlign = MI.getDestAlignment();
5102     unsigned SrcAlign = MI.getSourceAlignment();
5103     Type *LengthTy = MI.getLength()->getType();
5104     unsigned ElemSz = MI.getElementSizeInBytes();
5105     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5106     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5107                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5108                                      MachinePointerInfo(MI.getRawDest()),
5109                                      MachinePointerInfo(MI.getRawSource()));
5110     updateDAGForMaybeTailCall(MC);
5111     return nullptr;
5112   }
5113   case Intrinsic::memmove_element_unordered_atomic: {
5114     auto &MI = cast<AtomicMemMoveInst>(I);
5115     SDValue Dst = getValue(MI.getRawDest());
5116     SDValue Src = getValue(MI.getRawSource());
5117     SDValue Length = getValue(MI.getLength());
5118 
5119     unsigned DstAlign = MI.getDestAlignment();
5120     unsigned SrcAlign = MI.getSourceAlignment();
5121     Type *LengthTy = MI.getLength()->getType();
5122     unsigned ElemSz = MI.getElementSizeInBytes();
5123     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5124     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5125                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5126                                       MachinePointerInfo(MI.getRawDest()),
5127                                       MachinePointerInfo(MI.getRawSource()));
5128     updateDAGForMaybeTailCall(MC);
5129     return nullptr;
5130   }
5131   case Intrinsic::memset_element_unordered_atomic: {
5132     auto &MI = cast<AtomicMemSetInst>(I);
5133     SDValue Dst = getValue(MI.getRawDest());
5134     SDValue Val = getValue(MI.getValue());
5135     SDValue Length = getValue(MI.getLength());
5136 
5137     unsigned DstAlign = MI.getDestAlignment();
5138     Type *LengthTy = MI.getLength()->getType();
5139     unsigned ElemSz = MI.getElementSizeInBytes();
5140     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5141     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5142                                      LengthTy, ElemSz, isTC,
5143                                      MachinePointerInfo(MI.getRawDest()));
5144     updateDAGForMaybeTailCall(MC);
5145     return nullptr;
5146   }
5147   case Intrinsic::dbg_addr:
5148   case Intrinsic::dbg_declare: {
5149     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5150     DILocalVariable *Variable = DI.getVariable();
5151     DIExpression *Expression = DI.getExpression();
5152     dropDanglingDebugInfo(Variable, Expression);
5153     assert(Variable && "Missing variable");
5154 
5155     // Check if address has undef value.
5156     const Value *Address = DI.getVariableLocation();
5157     if (!Address || isa<UndefValue>(Address) ||
5158         (Address->use_empty() && !isa<Argument>(Address))) {
5159       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5160       return nullptr;
5161     }
5162 
5163     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5164 
5165     // Check if this variable can be described by a frame index, typically
5166     // either as a static alloca or a byval parameter.
5167     int FI = std::numeric_limits<int>::max();
5168     if (const auto *AI =
5169             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5170       if (AI->isStaticAlloca()) {
5171         auto I = FuncInfo.StaticAllocaMap.find(AI);
5172         if (I != FuncInfo.StaticAllocaMap.end())
5173           FI = I->second;
5174       }
5175     } else if (const auto *Arg = dyn_cast<Argument>(
5176                    Address->stripInBoundsConstantOffsets())) {
5177       FI = FuncInfo.getArgumentFrameIndex(Arg);
5178     }
5179 
5180     // llvm.dbg.addr is control dependent and always generates indirect
5181     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5182     // the MachineFunction variable table.
5183     if (FI != std::numeric_limits<int>::max()) {
5184       if (Intrinsic == Intrinsic::dbg_addr) {
5185          SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5186                                                      FI, dl, SDNodeOrder);
5187          DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5188       }
5189       return nullptr;
5190     }
5191 
5192     SDValue &N = NodeMap[Address];
5193     if (!N.getNode() && isa<Argument>(Address))
5194       // Check unused arguments map.
5195       N = UnusedArgNodeMap[Address];
5196     SDDbgValue *SDV;
5197     if (N.getNode()) {
5198       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5199         Address = BCI->getOperand(0);
5200       // Parameters are handled specially.
5201       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5202       if (isParameter && FINode) {
5203         // Byval parameter. We have a frame index at this point.
5204         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5205                                         FINode->getIndex(), dl, SDNodeOrder);
5206       } else if (isa<Argument>(Address)) {
5207         // Address is an argument, so try to emit its dbg value using
5208         // virtual register info from the FuncInfo.ValueMap.
5209         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5210         return nullptr;
5211       } else {
5212         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5213                               true, dl, SDNodeOrder);
5214       }
5215       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5216     } else {
5217       // If Address is an argument then try to emit its dbg value using
5218       // virtual register info from the FuncInfo.ValueMap.
5219       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5220                                     N)) {
5221         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5222       }
5223     }
5224     return nullptr;
5225   }
5226   case Intrinsic::dbg_value: {
5227     const DbgValueInst &DI = cast<DbgValueInst>(I);
5228     assert(DI.getVariable() && "Missing variable");
5229 
5230     DILocalVariable *Variable = DI.getVariable();
5231     DIExpression *Expression = DI.getExpression();
5232     dropDanglingDebugInfo(Variable, Expression);
5233     const Value *V = DI.getValue();
5234     if (!V)
5235       return nullptr;
5236 
5237     SDDbgValue *SDV;
5238     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5239       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5240       DAG.AddDbgValue(SDV, nullptr, false);
5241       return nullptr;
5242     }
5243 
5244     // Do not use getValue() in here; we don't want to generate code at
5245     // this point if it hasn't been done yet.
5246     SDValue N = NodeMap[V];
5247     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5248       N = UnusedArgNodeMap[V];
5249     if (N.getNode()) {
5250       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5251         return nullptr;
5252       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5253       DAG.AddDbgValue(SDV, N.getNode(), false);
5254       return nullptr;
5255     }
5256 
5257     // PHI nodes have already been selected, so we should know which VReg that
5258     // is assigns to already.
5259     if (isa<PHINode>(V)) {
5260       auto It = FuncInfo.ValueMap.find(V);
5261       if (It != FuncInfo.ValueMap.end()) {
5262         unsigned Reg = It->second;
5263         SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5264                                   SDNodeOrder);
5265         DAG.AddDbgValue(SDV, nullptr, false);
5266         return nullptr;
5267       }
5268     }
5269 
5270     // TODO: When we get here we will either drop the dbg.value completely, or
5271     // we try to move it forward by letting it dangle for awhile. So we should
5272     // probably add an extra DbgValue to the DAG here, with a reference to
5273     // "noreg", to indicate that we have lost the debug location for the
5274     // variable.
5275 
5276     if (!V->use_empty() ) {
5277       // Do not call getValue(V) yet, as we don't want to generate code.
5278       // Remember it for later.
5279       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5280       DanglingDebugInfoMap[V].push_back(DDI);
5281       return nullptr;
5282     }
5283 
5284     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5285     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5286     return nullptr;
5287   }
5288 
5289   case Intrinsic::eh_typeid_for: {
5290     // Find the type id for the given typeinfo.
5291     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5292     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5293     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5294     setValue(&I, Res);
5295     return nullptr;
5296   }
5297 
5298   case Intrinsic::eh_return_i32:
5299   case Intrinsic::eh_return_i64:
5300     DAG.getMachineFunction().setCallsEHReturn(true);
5301     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5302                             MVT::Other,
5303                             getControlRoot(),
5304                             getValue(I.getArgOperand(0)),
5305                             getValue(I.getArgOperand(1))));
5306     return nullptr;
5307   case Intrinsic::eh_unwind_init:
5308     DAG.getMachineFunction().setCallsUnwindInit(true);
5309     return nullptr;
5310   case Intrinsic::eh_dwarf_cfa:
5311     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5312                              TLI.getPointerTy(DAG.getDataLayout()),
5313                              getValue(I.getArgOperand(0))));
5314     return nullptr;
5315   case Intrinsic::eh_sjlj_callsite: {
5316     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5317     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5318     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5319     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5320 
5321     MMI.setCurrentCallSite(CI->getZExtValue());
5322     return nullptr;
5323   }
5324   case Intrinsic::eh_sjlj_functioncontext: {
5325     // Get and store the index of the function context.
5326     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5327     AllocaInst *FnCtx =
5328       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5329     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5330     MFI.setFunctionContextIndex(FI);
5331     return nullptr;
5332   }
5333   case Intrinsic::eh_sjlj_setjmp: {
5334     SDValue Ops[2];
5335     Ops[0] = getRoot();
5336     Ops[1] = getValue(I.getArgOperand(0));
5337     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5338                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5339     setValue(&I, Op.getValue(0));
5340     DAG.setRoot(Op.getValue(1));
5341     return nullptr;
5342   }
5343   case Intrinsic::eh_sjlj_longjmp:
5344     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5345                             getRoot(), getValue(I.getArgOperand(0))));
5346     return nullptr;
5347   case Intrinsic::eh_sjlj_setup_dispatch:
5348     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5349                             getRoot()));
5350     return nullptr;
5351   case Intrinsic::masked_gather:
5352     visitMaskedGather(I);
5353     return nullptr;
5354   case Intrinsic::masked_load:
5355     visitMaskedLoad(I);
5356     return nullptr;
5357   case Intrinsic::masked_scatter:
5358     visitMaskedScatter(I);
5359     return nullptr;
5360   case Intrinsic::masked_store:
5361     visitMaskedStore(I);
5362     return nullptr;
5363   case Intrinsic::masked_expandload:
5364     visitMaskedLoad(I, true /* IsExpanding */);
5365     return nullptr;
5366   case Intrinsic::masked_compressstore:
5367     visitMaskedStore(I, true /* IsCompressing */);
5368     return nullptr;
5369   case Intrinsic::x86_mmx_pslli_w:
5370   case Intrinsic::x86_mmx_pslli_d:
5371   case Intrinsic::x86_mmx_pslli_q:
5372   case Intrinsic::x86_mmx_psrli_w:
5373   case Intrinsic::x86_mmx_psrli_d:
5374   case Intrinsic::x86_mmx_psrli_q:
5375   case Intrinsic::x86_mmx_psrai_w:
5376   case Intrinsic::x86_mmx_psrai_d: {
5377     SDValue ShAmt = getValue(I.getArgOperand(1));
5378     if (isa<ConstantSDNode>(ShAmt)) {
5379       visitTargetIntrinsic(I, Intrinsic);
5380       return nullptr;
5381     }
5382     unsigned NewIntrinsic = 0;
5383     EVT ShAmtVT = MVT::v2i32;
5384     switch (Intrinsic) {
5385     case Intrinsic::x86_mmx_pslli_w:
5386       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5387       break;
5388     case Intrinsic::x86_mmx_pslli_d:
5389       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5390       break;
5391     case Intrinsic::x86_mmx_pslli_q:
5392       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5393       break;
5394     case Intrinsic::x86_mmx_psrli_w:
5395       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5396       break;
5397     case Intrinsic::x86_mmx_psrli_d:
5398       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5399       break;
5400     case Intrinsic::x86_mmx_psrli_q:
5401       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5402       break;
5403     case Intrinsic::x86_mmx_psrai_w:
5404       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5405       break;
5406     case Intrinsic::x86_mmx_psrai_d:
5407       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5408       break;
5409     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5410     }
5411 
5412     // The vector shift intrinsics with scalars uses 32b shift amounts but
5413     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5414     // to be zero.
5415     // We must do this early because v2i32 is not a legal type.
5416     SDValue ShOps[2];
5417     ShOps[0] = ShAmt;
5418     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5419     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5420     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5421     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5422     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5423                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5424                        getValue(I.getArgOperand(0)), ShAmt);
5425     setValue(&I, Res);
5426     return nullptr;
5427   }
5428   case Intrinsic::powi:
5429     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5430                             getValue(I.getArgOperand(1)), DAG));
5431     return nullptr;
5432   case Intrinsic::log:
5433     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5434     return nullptr;
5435   case Intrinsic::log2:
5436     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5437     return nullptr;
5438   case Intrinsic::log10:
5439     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5440     return nullptr;
5441   case Intrinsic::exp:
5442     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5443     return nullptr;
5444   case Intrinsic::exp2:
5445     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5446     return nullptr;
5447   case Intrinsic::pow:
5448     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5449                            getValue(I.getArgOperand(1)), DAG, TLI));
5450     return nullptr;
5451   case Intrinsic::sqrt:
5452   case Intrinsic::fabs:
5453   case Intrinsic::sin:
5454   case Intrinsic::cos:
5455   case Intrinsic::floor:
5456   case Intrinsic::ceil:
5457   case Intrinsic::trunc:
5458   case Intrinsic::rint:
5459   case Intrinsic::nearbyint:
5460   case Intrinsic::round:
5461   case Intrinsic::canonicalize: {
5462     unsigned Opcode;
5463     switch (Intrinsic) {
5464     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5465     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5466     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5467     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5468     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5469     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5470     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5471     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5472     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5473     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5474     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5475     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5476     }
5477 
5478     setValue(&I, DAG.getNode(Opcode, sdl,
5479                              getValue(I.getArgOperand(0)).getValueType(),
5480                              getValue(I.getArgOperand(0))));
5481     return nullptr;
5482   }
5483   case Intrinsic::minnum: {
5484     auto VT = getValue(I.getArgOperand(0)).getValueType();
5485     unsigned Opc =
5486         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5487             ? ISD::FMINNAN
5488             : ISD::FMINNUM;
5489     setValue(&I, DAG.getNode(Opc, sdl, VT,
5490                              getValue(I.getArgOperand(0)),
5491                              getValue(I.getArgOperand(1))));
5492     return nullptr;
5493   }
5494   case Intrinsic::maxnum: {
5495     auto VT = getValue(I.getArgOperand(0)).getValueType();
5496     unsigned Opc =
5497         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5498             ? ISD::FMAXNAN
5499             : ISD::FMAXNUM;
5500     setValue(&I, DAG.getNode(Opc, sdl, VT,
5501                              getValue(I.getArgOperand(0)),
5502                              getValue(I.getArgOperand(1))));
5503     return nullptr;
5504   }
5505   case Intrinsic::copysign:
5506     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5507                              getValue(I.getArgOperand(0)).getValueType(),
5508                              getValue(I.getArgOperand(0)),
5509                              getValue(I.getArgOperand(1))));
5510     return nullptr;
5511   case Intrinsic::fma:
5512     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5513                              getValue(I.getArgOperand(0)).getValueType(),
5514                              getValue(I.getArgOperand(0)),
5515                              getValue(I.getArgOperand(1)),
5516                              getValue(I.getArgOperand(2))));
5517     return nullptr;
5518   case Intrinsic::experimental_constrained_fadd:
5519   case Intrinsic::experimental_constrained_fsub:
5520   case Intrinsic::experimental_constrained_fmul:
5521   case Intrinsic::experimental_constrained_fdiv:
5522   case Intrinsic::experimental_constrained_frem:
5523   case Intrinsic::experimental_constrained_fma:
5524   case Intrinsic::experimental_constrained_sqrt:
5525   case Intrinsic::experimental_constrained_pow:
5526   case Intrinsic::experimental_constrained_powi:
5527   case Intrinsic::experimental_constrained_sin:
5528   case Intrinsic::experimental_constrained_cos:
5529   case Intrinsic::experimental_constrained_exp:
5530   case Intrinsic::experimental_constrained_exp2:
5531   case Intrinsic::experimental_constrained_log:
5532   case Intrinsic::experimental_constrained_log10:
5533   case Intrinsic::experimental_constrained_log2:
5534   case Intrinsic::experimental_constrained_rint:
5535   case Intrinsic::experimental_constrained_nearbyint:
5536     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5537     return nullptr;
5538   case Intrinsic::fmuladd: {
5539     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5540     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5541         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5542       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5543                                getValue(I.getArgOperand(0)).getValueType(),
5544                                getValue(I.getArgOperand(0)),
5545                                getValue(I.getArgOperand(1)),
5546                                getValue(I.getArgOperand(2))));
5547     } else {
5548       // TODO: Intrinsic calls should have fast-math-flags.
5549       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5550                                 getValue(I.getArgOperand(0)).getValueType(),
5551                                 getValue(I.getArgOperand(0)),
5552                                 getValue(I.getArgOperand(1)));
5553       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5554                                 getValue(I.getArgOperand(0)).getValueType(),
5555                                 Mul,
5556                                 getValue(I.getArgOperand(2)));
5557       setValue(&I, Add);
5558     }
5559     return nullptr;
5560   }
5561   case Intrinsic::convert_to_fp16:
5562     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5563                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5564                                          getValue(I.getArgOperand(0)),
5565                                          DAG.getTargetConstant(0, sdl,
5566                                                                MVT::i32))));
5567     return nullptr;
5568   case Intrinsic::convert_from_fp16:
5569     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5570                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5571                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5572                                          getValue(I.getArgOperand(0)))));
5573     return nullptr;
5574   case Intrinsic::pcmarker: {
5575     SDValue Tmp = getValue(I.getArgOperand(0));
5576     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5577     return nullptr;
5578   }
5579   case Intrinsic::readcyclecounter: {
5580     SDValue Op = getRoot();
5581     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5582                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5583     setValue(&I, Res);
5584     DAG.setRoot(Res.getValue(1));
5585     return nullptr;
5586   }
5587   case Intrinsic::bitreverse:
5588     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5589                              getValue(I.getArgOperand(0)).getValueType(),
5590                              getValue(I.getArgOperand(0))));
5591     return nullptr;
5592   case Intrinsic::bswap:
5593     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5594                              getValue(I.getArgOperand(0)).getValueType(),
5595                              getValue(I.getArgOperand(0))));
5596     return nullptr;
5597   case Intrinsic::cttz: {
5598     SDValue Arg = getValue(I.getArgOperand(0));
5599     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5600     EVT Ty = Arg.getValueType();
5601     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5602                              sdl, Ty, Arg));
5603     return nullptr;
5604   }
5605   case Intrinsic::ctlz: {
5606     SDValue Arg = getValue(I.getArgOperand(0));
5607     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5608     EVT Ty = Arg.getValueType();
5609     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5610                              sdl, Ty, Arg));
5611     return nullptr;
5612   }
5613   case Intrinsic::ctpop: {
5614     SDValue Arg = getValue(I.getArgOperand(0));
5615     EVT Ty = Arg.getValueType();
5616     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5617     return nullptr;
5618   }
5619   case Intrinsic::stacksave: {
5620     SDValue Op = getRoot();
5621     Res = DAG.getNode(
5622         ISD::STACKSAVE, sdl,
5623         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5624     setValue(&I, Res);
5625     DAG.setRoot(Res.getValue(1));
5626     return nullptr;
5627   }
5628   case Intrinsic::stackrestore:
5629     Res = getValue(I.getArgOperand(0));
5630     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5631     return nullptr;
5632   case Intrinsic::get_dynamic_area_offset: {
5633     SDValue Op = getRoot();
5634     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5635     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5636     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5637     // target.
5638     if (PtrTy != ResTy)
5639       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5640                          " intrinsic!");
5641     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5642                       Op);
5643     DAG.setRoot(Op);
5644     setValue(&I, Res);
5645     return nullptr;
5646   }
5647   case Intrinsic::stackguard: {
5648     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5649     MachineFunction &MF = DAG.getMachineFunction();
5650     const Module &M = *MF.getFunction().getParent();
5651     SDValue Chain = getRoot();
5652     if (TLI.useLoadStackGuardNode()) {
5653       Res = getLoadStackGuard(DAG, sdl, Chain);
5654     } else {
5655       const Value *Global = TLI.getSDagStackGuard(M);
5656       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5657       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5658                         MachinePointerInfo(Global, 0), Align,
5659                         MachineMemOperand::MOVolatile);
5660     }
5661     if (TLI.useStackGuardXorFP())
5662       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5663     DAG.setRoot(Chain);
5664     setValue(&I, Res);
5665     return nullptr;
5666   }
5667   case Intrinsic::stackprotector: {
5668     // Emit code into the DAG to store the stack guard onto the stack.
5669     MachineFunction &MF = DAG.getMachineFunction();
5670     MachineFrameInfo &MFI = MF.getFrameInfo();
5671     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5672     SDValue Src, Chain = getRoot();
5673 
5674     if (TLI.useLoadStackGuardNode())
5675       Src = getLoadStackGuard(DAG, sdl, Chain);
5676     else
5677       Src = getValue(I.getArgOperand(0));   // The guard's value.
5678 
5679     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5680 
5681     int FI = FuncInfo.StaticAllocaMap[Slot];
5682     MFI.setStackProtectorIndex(FI);
5683 
5684     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5685 
5686     // Store the stack protector onto the stack.
5687     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5688                                                  DAG.getMachineFunction(), FI),
5689                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5690     setValue(&I, Res);
5691     DAG.setRoot(Res);
5692     return nullptr;
5693   }
5694   case Intrinsic::objectsize: {
5695     // If we don't know by now, we're never going to know.
5696     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5697 
5698     assert(CI && "Non-constant type in __builtin_object_size?");
5699 
5700     SDValue Arg = getValue(I.getCalledValue());
5701     EVT Ty = Arg.getValueType();
5702 
5703     if (CI->isZero())
5704       Res = DAG.getConstant(-1ULL, sdl, Ty);
5705     else
5706       Res = DAG.getConstant(0, sdl, Ty);
5707 
5708     setValue(&I, Res);
5709     return nullptr;
5710   }
5711   case Intrinsic::annotation:
5712   case Intrinsic::ptr_annotation:
5713   case Intrinsic::launder_invariant_group:
5714     // Drop the intrinsic, but forward the value
5715     setValue(&I, getValue(I.getOperand(0)));
5716     return nullptr;
5717   case Intrinsic::assume:
5718   case Intrinsic::var_annotation:
5719   case Intrinsic::sideeffect:
5720     // Discard annotate attributes, assumptions, and artificial side-effects.
5721     return nullptr;
5722 
5723   case Intrinsic::codeview_annotation: {
5724     // Emit a label associated with this metadata.
5725     MachineFunction &MF = DAG.getMachineFunction();
5726     MCSymbol *Label =
5727         MF.getMMI().getContext().createTempSymbol("annotation", true);
5728     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5729     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5730     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5731     DAG.setRoot(Res);
5732     return nullptr;
5733   }
5734 
5735   case Intrinsic::init_trampoline: {
5736     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5737 
5738     SDValue Ops[6];
5739     Ops[0] = getRoot();
5740     Ops[1] = getValue(I.getArgOperand(0));
5741     Ops[2] = getValue(I.getArgOperand(1));
5742     Ops[3] = getValue(I.getArgOperand(2));
5743     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5744     Ops[5] = DAG.getSrcValue(F);
5745 
5746     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5747 
5748     DAG.setRoot(Res);
5749     return nullptr;
5750   }
5751   case Intrinsic::adjust_trampoline:
5752     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5753                              TLI.getPointerTy(DAG.getDataLayout()),
5754                              getValue(I.getArgOperand(0))));
5755     return nullptr;
5756   case Intrinsic::gcroot: {
5757     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5758            "only valid in functions with gc specified, enforced by Verifier");
5759     assert(GFI && "implied by previous");
5760     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5761     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5762 
5763     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5764     GFI->addStackRoot(FI->getIndex(), TypeMap);
5765     return nullptr;
5766   }
5767   case Intrinsic::gcread:
5768   case Intrinsic::gcwrite:
5769     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5770   case Intrinsic::flt_rounds:
5771     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5772     return nullptr;
5773 
5774   case Intrinsic::expect:
5775     // Just replace __builtin_expect(exp, c) with EXP.
5776     setValue(&I, getValue(I.getArgOperand(0)));
5777     return nullptr;
5778 
5779   case Intrinsic::debugtrap:
5780   case Intrinsic::trap: {
5781     StringRef TrapFuncName =
5782         I.getAttributes()
5783             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5784             .getValueAsString();
5785     if (TrapFuncName.empty()) {
5786       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5787         ISD::TRAP : ISD::DEBUGTRAP;
5788       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5789       return nullptr;
5790     }
5791     TargetLowering::ArgListTy Args;
5792 
5793     TargetLowering::CallLoweringInfo CLI(DAG);
5794     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5795         CallingConv::C, I.getType(),
5796         DAG.getExternalSymbol(TrapFuncName.data(),
5797                               TLI.getPointerTy(DAG.getDataLayout())),
5798         std::move(Args));
5799 
5800     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5801     DAG.setRoot(Result.second);
5802     return nullptr;
5803   }
5804 
5805   case Intrinsic::uadd_with_overflow:
5806   case Intrinsic::sadd_with_overflow:
5807   case Intrinsic::usub_with_overflow:
5808   case Intrinsic::ssub_with_overflow:
5809   case Intrinsic::umul_with_overflow:
5810   case Intrinsic::smul_with_overflow: {
5811     ISD::NodeType Op;
5812     switch (Intrinsic) {
5813     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5814     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5815     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5816     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5817     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5818     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5819     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5820     }
5821     SDValue Op1 = getValue(I.getArgOperand(0));
5822     SDValue Op2 = getValue(I.getArgOperand(1));
5823 
5824     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5825     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5826     return nullptr;
5827   }
5828   case Intrinsic::prefetch: {
5829     SDValue Ops[5];
5830     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5831     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5832     Ops[0] = DAG.getRoot();
5833     Ops[1] = getValue(I.getArgOperand(0));
5834     Ops[2] = getValue(I.getArgOperand(1));
5835     Ops[3] = getValue(I.getArgOperand(2));
5836     Ops[4] = getValue(I.getArgOperand(3));
5837     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5838                                              DAG.getVTList(MVT::Other), Ops,
5839                                              EVT::getIntegerVT(*Context, 8),
5840                                              MachinePointerInfo(I.getArgOperand(0)),
5841                                              0, /* align */
5842                                              Flags);
5843 
5844     // Chain the prefetch in parallell with any pending loads, to stay out of
5845     // the way of later optimizations.
5846     PendingLoads.push_back(Result);
5847     Result = getRoot();
5848     DAG.setRoot(Result);
5849     return nullptr;
5850   }
5851   case Intrinsic::lifetime_start:
5852   case Intrinsic::lifetime_end: {
5853     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5854     // Stack coloring is not enabled in O0, discard region information.
5855     if (TM.getOptLevel() == CodeGenOpt::None)
5856       return nullptr;
5857 
5858     SmallVector<Value *, 4> Allocas;
5859     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5860 
5861     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5862            E = Allocas.end(); Object != E; ++Object) {
5863       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5864 
5865       // Could not find an Alloca.
5866       if (!LifetimeObject)
5867         continue;
5868 
5869       // First check that the Alloca is static, otherwise it won't have a
5870       // valid frame index.
5871       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5872       if (SI == FuncInfo.StaticAllocaMap.end())
5873         return nullptr;
5874 
5875       int FI = SI->second;
5876 
5877       SDValue Ops[2];
5878       Ops[0] = getRoot();
5879       Ops[1] =
5880           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5881       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5882 
5883       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5884       DAG.setRoot(Res);
5885     }
5886     return nullptr;
5887   }
5888   case Intrinsic::invariant_start:
5889     // Discard region information.
5890     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5891     return nullptr;
5892   case Intrinsic::invariant_end:
5893     // Discard region information.
5894     return nullptr;
5895   case Intrinsic::clear_cache:
5896     return TLI.getClearCacheBuiltinName();
5897   case Intrinsic::donothing:
5898     // ignore
5899     return nullptr;
5900   case Intrinsic::experimental_stackmap:
5901     visitStackmap(I);
5902     return nullptr;
5903   case Intrinsic::experimental_patchpoint_void:
5904   case Intrinsic::experimental_patchpoint_i64:
5905     visitPatchpoint(&I);
5906     return nullptr;
5907   case Intrinsic::experimental_gc_statepoint:
5908     LowerStatepoint(ImmutableStatepoint(&I));
5909     return nullptr;
5910   case Intrinsic::experimental_gc_result:
5911     visitGCResult(cast<GCResultInst>(I));
5912     return nullptr;
5913   case Intrinsic::experimental_gc_relocate:
5914     visitGCRelocate(cast<GCRelocateInst>(I));
5915     return nullptr;
5916   case Intrinsic::instrprof_increment:
5917     llvm_unreachable("instrprof failed to lower an increment");
5918   case Intrinsic::instrprof_value_profile:
5919     llvm_unreachable("instrprof failed to lower a value profiling call");
5920   case Intrinsic::localescape: {
5921     MachineFunction &MF = DAG.getMachineFunction();
5922     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5923 
5924     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5925     // is the same on all targets.
5926     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5927       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5928       if (isa<ConstantPointerNull>(Arg))
5929         continue; // Skip null pointers. They represent a hole in index space.
5930       AllocaInst *Slot = cast<AllocaInst>(Arg);
5931       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5932              "can only escape static allocas");
5933       int FI = FuncInfo.StaticAllocaMap[Slot];
5934       MCSymbol *FrameAllocSym =
5935           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5936               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5937       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5938               TII->get(TargetOpcode::LOCAL_ESCAPE))
5939           .addSym(FrameAllocSym)
5940           .addFrameIndex(FI);
5941     }
5942 
5943     return nullptr;
5944   }
5945 
5946   case Intrinsic::localrecover: {
5947     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5948     MachineFunction &MF = DAG.getMachineFunction();
5949     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5950 
5951     // Get the symbol that defines the frame offset.
5952     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5953     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5954     unsigned IdxVal =
5955         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
5956     MCSymbol *FrameAllocSym =
5957         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5958             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5959 
5960     // Create a MCSymbol for the label to avoid any target lowering
5961     // that would make this PC relative.
5962     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5963     SDValue OffsetVal =
5964         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5965 
5966     // Add the offset to the FP.
5967     Value *FP = I.getArgOperand(1);
5968     SDValue FPVal = getValue(FP);
5969     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5970     setValue(&I, Add);
5971 
5972     return nullptr;
5973   }
5974 
5975   case Intrinsic::eh_exceptionpointer:
5976   case Intrinsic::eh_exceptioncode: {
5977     // Get the exception pointer vreg, copy from it, and resize it to fit.
5978     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5979     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5980     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5981     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5982     SDValue N =
5983         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5984     if (Intrinsic == Intrinsic::eh_exceptioncode)
5985       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5986     setValue(&I, N);
5987     return nullptr;
5988   }
5989   case Intrinsic::xray_customevent: {
5990     // Here we want to make sure that the intrinsic behaves as if it has a
5991     // specific calling convention, and only for x86_64.
5992     // FIXME: Support other platforms later.
5993     const auto &Triple = DAG.getTarget().getTargetTriple();
5994     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
5995       return nullptr;
5996 
5997     SDLoc DL = getCurSDLoc();
5998     SmallVector<SDValue, 8> Ops;
5999 
6000     // We want to say that we always want the arguments in registers.
6001     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6002     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6003     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6004     SDValue Chain = getRoot();
6005     Ops.push_back(LogEntryVal);
6006     Ops.push_back(StrSizeVal);
6007     Ops.push_back(Chain);
6008 
6009     // We need to enforce the calling convention for the callsite, so that
6010     // argument ordering is enforced correctly, and that register allocation can
6011     // see that some registers may be assumed clobbered and have to preserve
6012     // them across calls to the intrinsic.
6013     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6014                                            DL, NodeTys, Ops);
6015     SDValue patchableNode = SDValue(MN, 0);
6016     DAG.setRoot(patchableNode);
6017     setValue(&I, patchableNode);
6018     return nullptr;
6019   }
6020   case Intrinsic::xray_typedevent: {
6021     // Here we want to make sure that the intrinsic behaves as if it has a
6022     // specific calling convention, and only for x86_64.
6023     // FIXME: Support other platforms later.
6024     const auto &Triple = DAG.getTarget().getTargetTriple();
6025     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6026       return nullptr;
6027 
6028     SDLoc DL = getCurSDLoc();
6029     SmallVector<SDValue, 8> Ops;
6030 
6031     // We want to say that we always want the arguments in registers.
6032     // It's unclear to me how manipulating the selection DAG here forces callers
6033     // to provide arguments in registers instead of on the stack.
6034     SDValue LogTypeId = getValue(I.getArgOperand(0));
6035     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6036     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6037     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6038     SDValue Chain = getRoot();
6039     Ops.push_back(LogTypeId);
6040     Ops.push_back(LogEntryVal);
6041     Ops.push_back(StrSizeVal);
6042     Ops.push_back(Chain);
6043 
6044     // We need to enforce the calling convention for the callsite, so that
6045     // argument ordering is enforced correctly, and that register allocation can
6046     // see that some registers may be assumed clobbered and have to preserve
6047     // them across calls to the intrinsic.
6048     MachineSDNode *MN = DAG.getMachineNode(
6049         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6050     SDValue patchableNode = SDValue(MN, 0);
6051     DAG.setRoot(patchableNode);
6052     setValue(&I, patchableNode);
6053     return nullptr;
6054   }
6055   case Intrinsic::experimental_deoptimize:
6056     LowerDeoptimizeCall(&I);
6057     return nullptr;
6058 
6059   case Intrinsic::experimental_vector_reduce_fadd:
6060   case Intrinsic::experimental_vector_reduce_fmul:
6061   case Intrinsic::experimental_vector_reduce_add:
6062   case Intrinsic::experimental_vector_reduce_mul:
6063   case Intrinsic::experimental_vector_reduce_and:
6064   case Intrinsic::experimental_vector_reduce_or:
6065   case Intrinsic::experimental_vector_reduce_xor:
6066   case Intrinsic::experimental_vector_reduce_smax:
6067   case Intrinsic::experimental_vector_reduce_smin:
6068   case Intrinsic::experimental_vector_reduce_umax:
6069   case Intrinsic::experimental_vector_reduce_umin:
6070   case Intrinsic::experimental_vector_reduce_fmax:
6071   case Intrinsic::experimental_vector_reduce_fmin:
6072     visitVectorReduce(I, Intrinsic);
6073     return nullptr;
6074 
6075   case Intrinsic::icall_branch_funnel: {
6076     SmallVector<SDValue, 16> Ops;
6077     Ops.push_back(DAG.getRoot());
6078     Ops.push_back(getValue(I.getArgOperand(0)));
6079 
6080     int64_t Offset;
6081     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6082         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6083     if (!Base)
6084       report_fatal_error(
6085           "llvm.icall.branch.funnel operand must be a GlobalValue");
6086     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6087 
6088     struct BranchFunnelTarget {
6089       int64_t Offset;
6090       SDValue Target;
6091     };
6092     SmallVector<BranchFunnelTarget, 8> Targets;
6093 
6094     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6095       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6096           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6097       if (ElemBase != Base)
6098         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6099                            "to the same GlobalValue");
6100 
6101       SDValue Val = getValue(I.getArgOperand(Op + 1));
6102       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6103       if (!GA)
6104         report_fatal_error(
6105             "llvm.icall.branch.funnel operand must be a GlobalValue");
6106       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6107                                      GA->getGlobal(), getCurSDLoc(),
6108                                      Val.getValueType(), GA->getOffset())});
6109     }
6110     llvm::sort(Targets.begin(), Targets.end(),
6111                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6112                  return T1.Offset < T2.Offset;
6113                });
6114 
6115     for (auto &T : Targets) {
6116       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6117       Ops.push_back(T.Target);
6118     }
6119 
6120     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6121                                  getCurSDLoc(), MVT::Other, Ops),
6122               0);
6123     DAG.setRoot(N);
6124     setValue(&I, N);
6125     HasTailCall = true;
6126     return nullptr;
6127   }
6128   }
6129 }
6130 
6131 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6132     const ConstrainedFPIntrinsic &FPI) {
6133   SDLoc sdl = getCurSDLoc();
6134   unsigned Opcode;
6135   switch (FPI.getIntrinsicID()) {
6136   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6137   case Intrinsic::experimental_constrained_fadd:
6138     Opcode = ISD::STRICT_FADD;
6139     break;
6140   case Intrinsic::experimental_constrained_fsub:
6141     Opcode = ISD::STRICT_FSUB;
6142     break;
6143   case Intrinsic::experimental_constrained_fmul:
6144     Opcode = ISD::STRICT_FMUL;
6145     break;
6146   case Intrinsic::experimental_constrained_fdiv:
6147     Opcode = ISD::STRICT_FDIV;
6148     break;
6149   case Intrinsic::experimental_constrained_frem:
6150     Opcode = ISD::STRICT_FREM;
6151     break;
6152   case Intrinsic::experimental_constrained_fma:
6153     Opcode = ISD::STRICT_FMA;
6154     break;
6155   case Intrinsic::experimental_constrained_sqrt:
6156     Opcode = ISD::STRICT_FSQRT;
6157     break;
6158   case Intrinsic::experimental_constrained_pow:
6159     Opcode = ISD::STRICT_FPOW;
6160     break;
6161   case Intrinsic::experimental_constrained_powi:
6162     Opcode = ISD::STRICT_FPOWI;
6163     break;
6164   case Intrinsic::experimental_constrained_sin:
6165     Opcode = ISD::STRICT_FSIN;
6166     break;
6167   case Intrinsic::experimental_constrained_cos:
6168     Opcode = ISD::STRICT_FCOS;
6169     break;
6170   case Intrinsic::experimental_constrained_exp:
6171     Opcode = ISD::STRICT_FEXP;
6172     break;
6173   case Intrinsic::experimental_constrained_exp2:
6174     Opcode = ISD::STRICT_FEXP2;
6175     break;
6176   case Intrinsic::experimental_constrained_log:
6177     Opcode = ISD::STRICT_FLOG;
6178     break;
6179   case Intrinsic::experimental_constrained_log10:
6180     Opcode = ISD::STRICT_FLOG10;
6181     break;
6182   case Intrinsic::experimental_constrained_log2:
6183     Opcode = ISD::STRICT_FLOG2;
6184     break;
6185   case Intrinsic::experimental_constrained_rint:
6186     Opcode = ISD::STRICT_FRINT;
6187     break;
6188   case Intrinsic::experimental_constrained_nearbyint:
6189     Opcode = ISD::STRICT_FNEARBYINT;
6190     break;
6191   }
6192   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6193   SDValue Chain = getRoot();
6194   SmallVector<EVT, 4> ValueVTs;
6195   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6196   ValueVTs.push_back(MVT::Other); // Out chain
6197 
6198   SDVTList VTs = DAG.getVTList(ValueVTs);
6199   SDValue Result;
6200   if (FPI.isUnaryOp())
6201     Result = DAG.getNode(Opcode, sdl, VTs,
6202                          { Chain, getValue(FPI.getArgOperand(0)) });
6203   else if (FPI.isTernaryOp())
6204     Result = DAG.getNode(Opcode, sdl, VTs,
6205                          { Chain, getValue(FPI.getArgOperand(0)),
6206                                   getValue(FPI.getArgOperand(1)),
6207                                   getValue(FPI.getArgOperand(2)) });
6208   else
6209     Result = DAG.getNode(Opcode, sdl, VTs,
6210                          { Chain, getValue(FPI.getArgOperand(0)),
6211                            getValue(FPI.getArgOperand(1))  });
6212 
6213   assert(Result.getNode()->getNumValues() == 2);
6214   SDValue OutChain = Result.getValue(1);
6215   DAG.setRoot(OutChain);
6216   SDValue FPResult = Result.getValue(0);
6217   setValue(&FPI, FPResult);
6218 }
6219 
6220 std::pair<SDValue, SDValue>
6221 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6222                                     const BasicBlock *EHPadBB) {
6223   MachineFunction &MF = DAG.getMachineFunction();
6224   MachineModuleInfo &MMI = MF.getMMI();
6225   MCSymbol *BeginLabel = nullptr;
6226 
6227   if (EHPadBB) {
6228     // Insert a label before the invoke call to mark the try range.  This can be
6229     // used to detect deletion of the invoke via the MachineModuleInfo.
6230     BeginLabel = MMI.getContext().createTempSymbol();
6231 
6232     // For SjLj, keep track of which landing pads go with which invokes
6233     // so as to maintain the ordering of pads in the LSDA.
6234     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6235     if (CallSiteIndex) {
6236       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6237       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6238 
6239       // Now that the call site is handled, stop tracking it.
6240       MMI.setCurrentCallSite(0);
6241     }
6242 
6243     // Both PendingLoads and PendingExports must be flushed here;
6244     // this call might not return.
6245     (void)getRoot();
6246     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6247 
6248     CLI.setChain(getRoot());
6249   }
6250   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6251   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6252 
6253   assert((CLI.IsTailCall || Result.second.getNode()) &&
6254          "Non-null chain expected with non-tail call!");
6255   assert((Result.second.getNode() || !Result.first.getNode()) &&
6256          "Null value expected with tail call!");
6257 
6258   if (!Result.second.getNode()) {
6259     // As a special case, a null chain means that a tail call has been emitted
6260     // and the DAG root is already updated.
6261     HasTailCall = true;
6262 
6263     // Since there's no actual continuation from this block, nothing can be
6264     // relying on us setting vregs for them.
6265     PendingExports.clear();
6266   } else {
6267     DAG.setRoot(Result.second);
6268   }
6269 
6270   if (EHPadBB) {
6271     // Insert a label at the end of the invoke call to mark the try range.  This
6272     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6273     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6274     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6275 
6276     // Inform MachineModuleInfo of range.
6277     if (MF.hasEHFunclets()) {
6278       assert(CLI.CS);
6279       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6280       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6281                                 BeginLabel, EndLabel);
6282     } else {
6283       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6284     }
6285   }
6286 
6287   return Result;
6288 }
6289 
6290 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6291                                       bool isTailCall,
6292                                       const BasicBlock *EHPadBB) {
6293   auto &DL = DAG.getDataLayout();
6294   FunctionType *FTy = CS.getFunctionType();
6295   Type *RetTy = CS.getType();
6296 
6297   TargetLowering::ArgListTy Args;
6298   Args.reserve(CS.arg_size());
6299 
6300   const Value *SwiftErrorVal = nullptr;
6301   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6302 
6303   // We can't tail call inside a function with a swifterror argument. Lowering
6304   // does not support this yet. It would have to move into the swifterror
6305   // register before the call.
6306   auto *Caller = CS.getInstruction()->getParent()->getParent();
6307   if (TLI.supportSwiftError() &&
6308       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6309     isTailCall = false;
6310 
6311   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6312        i != e; ++i) {
6313     TargetLowering::ArgListEntry Entry;
6314     const Value *V = *i;
6315 
6316     // Skip empty types
6317     if (V->getType()->isEmptyTy())
6318       continue;
6319 
6320     SDValue ArgNode = getValue(V);
6321     Entry.Node = ArgNode; Entry.Ty = V->getType();
6322 
6323     Entry.setAttributes(&CS, i - CS.arg_begin());
6324 
6325     // Use swifterror virtual register as input to the call.
6326     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6327       SwiftErrorVal = V;
6328       // We find the virtual register for the actual swifterror argument.
6329       // Instead of using the Value, we use the virtual register instead.
6330       Entry.Node = DAG.getRegister(FuncInfo
6331                                        .getOrCreateSwiftErrorVRegUseAt(
6332                                            CS.getInstruction(), FuncInfo.MBB, V)
6333                                        .first,
6334                                    EVT(TLI.getPointerTy(DL)));
6335     }
6336 
6337     Args.push_back(Entry);
6338 
6339     // If we have an explicit sret argument that is an Instruction, (i.e., it
6340     // might point to function-local memory), we can't meaningfully tail-call.
6341     if (Entry.IsSRet && isa<Instruction>(V))
6342       isTailCall = false;
6343   }
6344 
6345   // Check if target-independent constraints permit a tail call here.
6346   // Target-dependent constraints are checked within TLI->LowerCallTo.
6347   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6348     isTailCall = false;
6349 
6350   // Disable tail calls if there is an swifterror argument. Targets have not
6351   // been updated to support tail calls.
6352   if (TLI.supportSwiftError() && SwiftErrorVal)
6353     isTailCall = false;
6354 
6355   TargetLowering::CallLoweringInfo CLI(DAG);
6356   CLI.setDebugLoc(getCurSDLoc())
6357       .setChain(getRoot())
6358       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6359       .setTailCall(isTailCall)
6360       .setConvergent(CS.isConvergent());
6361   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6362 
6363   if (Result.first.getNode()) {
6364     const Instruction *Inst = CS.getInstruction();
6365     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6366     setValue(Inst, Result.first);
6367   }
6368 
6369   // The last element of CLI.InVals has the SDValue for swifterror return.
6370   // Here we copy it to a virtual register and update SwiftErrorMap for
6371   // book-keeping.
6372   if (SwiftErrorVal && TLI.supportSwiftError()) {
6373     // Get the last element of InVals.
6374     SDValue Src = CLI.InVals.back();
6375     unsigned VReg; bool CreatedVReg;
6376     std::tie(VReg, CreatedVReg) =
6377         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6378     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6379     // We update the virtual register for the actual swifterror argument.
6380     if (CreatedVReg)
6381       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6382     DAG.setRoot(CopyNode);
6383   }
6384 }
6385 
6386 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6387                              SelectionDAGBuilder &Builder) {
6388   // Check to see if this load can be trivially constant folded, e.g. if the
6389   // input is from a string literal.
6390   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6391     // Cast pointer to the type we really want to load.
6392     Type *LoadTy =
6393         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6394     if (LoadVT.isVector())
6395       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6396 
6397     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6398                                          PointerType::getUnqual(LoadTy));
6399 
6400     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6401             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6402       return Builder.getValue(LoadCst);
6403   }
6404 
6405   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6406   // still constant memory, the input chain can be the entry node.
6407   SDValue Root;
6408   bool ConstantMemory = false;
6409 
6410   // Do not serialize (non-volatile) loads of constant memory with anything.
6411   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6412     Root = Builder.DAG.getEntryNode();
6413     ConstantMemory = true;
6414   } else {
6415     // Do not serialize non-volatile loads against each other.
6416     Root = Builder.DAG.getRoot();
6417   }
6418 
6419   SDValue Ptr = Builder.getValue(PtrVal);
6420   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6421                                         Ptr, MachinePointerInfo(PtrVal),
6422                                         /* Alignment = */ 1);
6423 
6424   if (!ConstantMemory)
6425     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6426   return LoadVal;
6427 }
6428 
6429 /// Record the value for an instruction that produces an integer result,
6430 /// converting the type where necessary.
6431 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6432                                                   SDValue Value,
6433                                                   bool IsSigned) {
6434   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6435                                                     I.getType(), true);
6436   if (IsSigned)
6437     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6438   else
6439     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6440   setValue(&I, Value);
6441 }
6442 
6443 /// See if we can lower a memcmp call into an optimized form. If so, return
6444 /// true and lower it. Otherwise return false, and it will be lowered like a
6445 /// normal call.
6446 /// The caller already checked that \p I calls the appropriate LibFunc with a
6447 /// correct prototype.
6448 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6449   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6450   const Value *Size = I.getArgOperand(2);
6451   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6452   if (CSize && CSize->getZExtValue() == 0) {
6453     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6454                                                           I.getType(), true);
6455     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6456     return true;
6457   }
6458 
6459   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6460   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6461       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6462       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6463   if (Res.first.getNode()) {
6464     processIntegerCallValue(I, Res.first, true);
6465     PendingLoads.push_back(Res.second);
6466     return true;
6467   }
6468 
6469   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6470   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6471   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6472     return false;
6473 
6474   // If the target has a fast compare for the given size, it will return a
6475   // preferred load type for that size. Require that the load VT is legal and
6476   // that the target supports unaligned loads of that type. Otherwise, return
6477   // INVALID.
6478   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6479     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6480     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6481     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6482       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6483       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6484       // TODO: Check alignment of src and dest ptrs.
6485       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6486       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6487       if (!TLI.isTypeLegal(LVT) ||
6488           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6489           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6490         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6491     }
6492 
6493     return LVT;
6494   };
6495 
6496   // This turns into unaligned loads. We only do this if the target natively
6497   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6498   // we'll only produce a small number of byte loads.
6499   MVT LoadVT;
6500   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6501   switch (NumBitsToCompare) {
6502   default:
6503     return false;
6504   case 16:
6505     LoadVT = MVT::i16;
6506     break;
6507   case 32:
6508     LoadVT = MVT::i32;
6509     break;
6510   case 64:
6511   case 128:
6512   case 256:
6513     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6514     break;
6515   }
6516 
6517   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6518     return false;
6519 
6520   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6521   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6522 
6523   // Bitcast to a wide integer type if the loads are vectors.
6524   if (LoadVT.isVector()) {
6525     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6526     LoadL = DAG.getBitcast(CmpVT, LoadL);
6527     LoadR = DAG.getBitcast(CmpVT, LoadR);
6528   }
6529 
6530   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6531   processIntegerCallValue(I, Cmp, false);
6532   return true;
6533 }
6534 
6535 /// See if we can lower a memchr call into an optimized form. If so, return
6536 /// true and lower it. Otherwise return false, and it will be lowered like a
6537 /// normal call.
6538 /// The caller already checked that \p I calls the appropriate LibFunc with a
6539 /// correct prototype.
6540 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6541   const Value *Src = I.getArgOperand(0);
6542   const Value *Char = I.getArgOperand(1);
6543   const Value *Length = I.getArgOperand(2);
6544 
6545   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6546   std::pair<SDValue, SDValue> Res =
6547     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6548                                 getValue(Src), getValue(Char), getValue(Length),
6549                                 MachinePointerInfo(Src));
6550   if (Res.first.getNode()) {
6551     setValue(&I, Res.first);
6552     PendingLoads.push_back(Res.second);
6553     return true;
6554   }
6555 
6556   return false;
6557 }
6558 
6559 /// See if we can lower a mempcpy call into an optimized form. If so, return
6560 /// true and lower it. Otherwise return false, and it will be lowered like a
6561 /// normal call.
6562 /// The caller already checked that \p I calls the appropriate LibFunc with a
6563 /// correct prototype.
6564 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6565   SDValue Dst = getValue(I.getArgOperand(0));
6566   SDValue Src = getValue(I.getArgOperand(1));
6567   SDValue Size = getValue(I.getArgOperand(2));
6568 
6569   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6570   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6571   unsigned Align = std::min(DstAlign, SrcAlign);
6572   if (Align == 0) // Alignment of one or both could not be inferred.
6573     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6574 
6575   bool isVol = false;
6576   SDLoc sdl = getCurSDLoc();
6577 
6578   // In the mempcpy context we need to pass in a false value for isTailCall
6579   // because the return pointer needs to be adjusted by the size of
6580   // the copied memory.
6581   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6582                              false, /*isTailCall=*/false,
6583                              MachinePointerInfo(I.getArgOperand(0)),
6584                              MachinePointerInfo(I.getArgOperand(1)));
6585   assert(MC.getNode() != nullptr &&
6586          "** memcpy should not be lowered as TailCall in mempcpy context **");
6587   DAG.setRoot(MC);
6588 
6589   // Check if Size needs to be truncated or extended.
6590   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6591 
6592   // Adjust return pointer to point just past the last dst byte.
6593   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6594                                     Dst, Size);
6595   setValue(&I, DstPlusSize);
6596   return true;
6597 }
6598 
6599 /// See if we can lower a strcpy call into an optimized form.  If so, return
6600 /// true and lower it, otherwise return false and it will be lowered like a
6601 /// normal call.
6602 /// The caller already checked that \p I calls the appropriate LibFunc with a
6603 /// correct prototype.
6604 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6605   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6606 
6607   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6608   std::pair<SDValue, SDValue> Res =
6609     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6610                                 getValue(Arg0), getValue(Arg1),
6611                                 MachinePointerInfo(Arg0),
6612                                 MachinePointerInfo(Arg1), isStpcpy);
6613   if (Res.first.getNode()) {
6614     setValue(&I, Res.first);
6615     DAG.setRoot(Res.second);
6616     return true;
6617   }
6618 
6619   return false;
6620 }
6621 
6622 /// See if we can lower a strcmp call into an optimized form.  If so, return
6623 /// true and lower it, otherwise return false and it will be lowered like a
6624 /// normal call.
6625 /// The caller already checked that \p I calls the appropriate LibFunc with a
6626 /// correct prototype.
6627 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6628   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6629 
6630   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6631   std::pair<SDValue, SDValue> Res =
6632     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6633                                 getValue(Arg0), getValue(Arg1),
6634                                 MachinePointerInfo(Arg0),
6635                                 MachinePointerInfo(Arg1));
6636   if (Res.first.getNode()) {
6637     processIntegerCallValue(I, Res.first, true);
6638     PendingLoads.push_back(Res.second);
6639     return true;
6640   }
6641 
6642   return false;
6643 }
6644 
6645 /// See if we can lower a strlen call into an optimized form.  If so, return
6646 /// true and lower it, otherwise return false and it will be lowered like a
6647 /// normal call.
6648 /// The caller already checked that \p I calls the appropriate LibFunc with a
6649 /// correct prototype.
6650 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6651   const Value *Arg0 = I.getArgOperand(0);
6652 
6653   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6654   std::pair<SDValue, SDValue> Res =
6655     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6656                                 getValue(Arg0), MachinePointerInfo(Arg0));
6657   if (Res.first.getNode()) {
6658     processIntegerCallValue(I, Res.first, false);
6659     PendingLoads.push_back(Res.second);
6660     return true;
6661   }
6662 
6663   return false;
6664 }
6665 
6666 /// See if we can lower a strnlen call into an optimized form.  If so, return
6667 /// true and lower it, otherwise return false and it will be lowered like a
6668 /// normal call.
6669 /// The caller already checked that \p I calls the appropriate LibFunc with a
6670 /// correct prototype.
6671 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6672   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6673 
6674   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6675   std::pair<SDValue, SDValue> Res =
6676     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6677                                  getValue(Arg0), getValue(Arg1),
6678                                  MachinePointerInfo(Arg0));
6679   if (Res.first.getNode()) {
6680     processIntegerCallValue(I, Res.first, false);
6681     PendingLoads.push_back(Res.second);
6682     return true;
6683   }
6684 
6685   return false;
6686 }
6687 
6688 /// See if we can lower a unary floating-point operation into an SDNode with
6689 /// the specified Opcode.  If so, return true and lower it, otherwise return
6690 /// false and it will be lowered like a normal call.
6691 /// The caller already checked that \p I calls the appropriate LibFunc with a
6692 /// correct prototype.
6693 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6694                                               unsigned Opcode) {
6695   // We already checked this call's prototype; verify it doesn't modify errno.
6696   if (!I.onlyReadsMemory())
6697     return false;
6698 
6699   SDValue Tmp = getValue(I.getArgOperand(0));
6700   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6701   return true;
6702 }
6703 
6704 /// See if we can lower a binary floating-point operation into an SDNode with
6705 /// the specified Opcode. If so, return true and lower it. Otherwise return
6706 /// false, and it will be lowered like a normal call.
6707 /// The caller already checked that \p I calls the appropriate LibFunc with a
6708 /// correct prototype.
6709 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6710                                                unsigned Opcode) {
6711   // We already checked this call's prototype; verify it doesn't modify errno.
6712   if (!I.onlyReadsMemory())
6713     return false;
6714 
6715   SDValue Tmp0 = getValue(I.getArgOperand(0));
6716   SDValue Tmp1 = getValue(I.getArgOperand(1));
6717   EVT VT = Tmp0.getValueType();
6718   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6719   return true;
6720 }
6721 
6722 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6723   // Handle inline assembly differently.
6724   if (isa<InlineAsm>(I.getCalledValue())) {
6725     visitInlineAsm(&I);
6726     return;
6727   }
6728 
6729   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6730   computeUsesVAFloatArgument(I, MMI);
6731 
6732   const char *RenameFn = nullptr;
6733   if (Function *F = I.getCalledFunction()) {
6734     if (F->isDeclaration()) {
6735       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6736         if (unsigned IID = II->getIntrinsicID(F)) {
6737           RenameFn = visitIntrinsicCall(I, IID);
6738           if (!RenameFn)
6739             return;
6740         }
6741       }
6742       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6743         RenameFn = visitIntrinsicCall(I, IID);
6744         if (!RenameFn)
6745           return;
6746       }
6747     }
6748 
6749     // Check for well-known libc/libm calls.  If the function is internal, it
6750     // can't be a library call.  Don't do the check if marked as nobuiltin for
6751     // some reason or the call site requires strict floating point semantics.
6752     LibFunc Func;
6753     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6754         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6755         LibInfo->hasOptimizedCodeGen(Func)) {
6756       switch (Func) {
6757       default: break;
6758       case LibFunc_copysign:
6759       case LibFunc_copysignf:
6760       case LibFunc_copysignl:
6761         // We already checked this call's prototype; verify it doesn't modify
6762         // errno.
6763         if (I.onlyReadsMemory()) {
6764           SDValue LHS = getValue(I.getArgOperand(0));
6765           SDValue RHS = getValue(I.getArgOperand(1));
6766           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6767                                    LHS.getValueType(), LHS, RHS));
6768           return;
6769         }
6770         break;
6771       case LibFunc_fabs:
6772       case LibFunc_fabsf:
6773       case LibFunc_fabsl:
6774         if (visitUnaryFloatCall(I, ISD::FABS))
6775           return;
6776         break;
6777       case LibFunc_fmin:
6778       case LibFunc_fminf:
6779       case LibFunc_fminl:
6780         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6781           return;
6782         break;
6783       case LibFunc_fmax:
6784       case LibFunc_fmaxf:
6785       case LibFunc_fmaxl:
6786         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6787           return;
6788         break;
6789       case LibFunc_sin:
6790       case LibFunc_sinf:
6791       case LibFunc_sinl:
6792         if (visitUnaryFloatCall(I, ISD::FSIN))
6793           return;
6794         break;
6795       case LibFunc_cos:
6796       case LibFunc_cosf:
6797       case LibFunc_cosl:
6798         if (visitUnaryFloatCall(I, ISD::FCOS))
6799           return;
6800         break;
6801       case LibFunc_sqrt:
6802       case LibFunc_sqrtf:
6803       case LibFunc_sqrtl:
6804       case LibFunc_sqrt_finite:
6805       case LibFunc_sqrtf_finite:
6806       case LibFunc_sqrtl_finite:
6807         if (visitUnaryFloatCall(I, ISD::FSQRT))
6808           return;
6809         break;
6810       case LibFunc_floor:
6811       case LibFunc_floorf:
6812       case LibFunc_floorl:
6813         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6814           return;
6815         break;
6816       case LibFunc_nearbyint:
6817       case LibFunc_nearbyintf:
6818       case LibFunc_nearbyintl:
6819         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6820           return;
6821         break;
6822       case LibFunc_ceil:
6823       case LibFunc_ceilf:
6824       case LibFunc_ceill:
6825         if (visitUnaryFloatCall(I, ISD::FCEIL))
6826           return;
6827         break;
6828       case LibFunc_rint:
6829       case LibFunc_rintf:
6830       case LibFunc_rintl:
6831         if (visitUnaryFloatCall(I, ISD::FRINT))
6832           return;
6833         break;
6834       case LibFunc_round:
6835       case LibFunc_roundf:
6836       case LibFunc_roundl:
6837         if (visitUnaryFloatCall(I, ISD::FROUND))
6838           return;
6839         break;
6840       case LibFunc_trunc:
6841       case LibFunc_truncf:
6842       case LibFunc_truncl:
6843         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6844           return;
6845         break;
6846       case LibFunc_log2:
6847       case LibFunc_log2f:
6848       case LibFunc_log2l:
6849         if (visitUnaryFloatCall(I, ISD::FLOG2))
6850           return;
6851         break;
6852       case LibFunc_exp2:
6853       case LibFunc_exp2f:
6854       case LibFunc_exp2l:
6855         if (visitUnaryFloatCall(I, ISD::FEXP2))
6856           return;
6857         break;
6858       case LibFunc_memcmp:
6859         if (visitMemCmpCall(I))
6860           return;
6861         break;
6862       case LibFunc_mempcpy:
6863         if (visitMemPCpyCall(I))
6864           return;
6865         break;
6866       case LibFunc_memchr:
6867         if (visitMemChrCall(I))
6868           return;
6869         break;
6870       case LibFunc_strcpy:
6871         if (visitStrCpyCall(I, false))
6872           return;
6873         break;
6874       case LibFunc_stpcpy:
6875         if (visitStrCpyCall(I, true))
6876           return;
6877         break;
6878       case LibFunc_strcmp:
6879         if (visitStrCmpCall(I))
6880           return;
6881         break;
6882       case LibFunc_strlen:
6883         if (visitStrLenCall(I))
6884           return;
6885         break;
6886       case LibFunc_strnlen:
6887         if (visitStrNLenCall(I))
6888           return;
6889         break;
6890       }
6891     }
6892   }
6893 
6894   SDValue Callee;
6895   if (!RenameFn)
6896     Callee = getValue(I.getCalledValue());
6897   else
6898     Callee = DAG.getExternalSymbol(
6899         RenameFn,
6900         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6901 
6902   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6903   // have to do anything here to lower funclet bundles.
6904   assert(!I.hasOperandBundlesOtherThan(
6905              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6906          "Cannot lower calls with arbitrary operand bundles!");
6907 
6908   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6909     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6910   else
6911     // Check if we can potentially perform a tail call. More detailed checking
6912     // is be done within LowerCallTo, after more information about the call is
6913     // known.
6914     LowerCallTo(&I, Callee, I.isTailCall());
6915 }
6916 
6917 namespace {
6918 
6919 /// AsmOperandInfo - This contains information for each constraint that we are
6920 /// lowering.
6921 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6922 public:
6923   /// CallOperand - If this is the result output operand or a clobber
6924   /// this is null, otherwise it is the incoming operand to the CallInst.
6925   /// This gets modified as the asm is processed.
6926   SDValue CallOperand;
6927 
6928   /// AssignedRegs - If this is a register or register class operand, this
6929   /// contains the set of register corresponding to the operand.
6930   RegsForValue AssignedRegs;
6931 
6932   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6933     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6934   }
6935 
6936   /// Whether or not this operand accesses memory
6937   bool hasMemory(const TargetLowering &TLI) const {
6938     // Indirect operand accesses access memory.
6939     if (isIndirect)
6940       return true;
6941 
6942     for (const auto &Code : Codes)
6943       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6944         return true;
6945 
6946     return false;
6947   }
6948 
6949   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6950   /// corresponds to.  If there is no Value* for this operand, it returns
6951   /// MVT::Other.
6952   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6953                            const DataLayout &DL) const {
6954     if (!CallOperandVal) return MVT::Other;
6955 
6956     if (isa<BasicBlock>(CallOperandVal))
6957       return TLI.getPointerTy(DL);
6958 
6959     llvm::Type *OpTy = CallOperandVal->getType();
6960 
6961     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6962     // If this is an indirect operand, the operand is a pointer to the
6963     // accessed type.
6964     if (isIndirect) {
6965       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6966       if (!PtrTy)
6967         report_fatal_error("Indirect operand for inline asm not a pointer!");
6968       OpTy = PtrTy->getElementType();
6969     }
6970 
6971     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6972     if (StructType *STy = dyn_cast<StructType>(OpTy))
6973       if (STy->getNumElements() == 1)
6974         OpTy = STy->getElementType(0);
6975 
6976     // If OpTy is not a single value, it may be a struct/union that we
6977     // can tile with integers.
6978     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6979       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6980       switch (BitSize) {
6981       default: break;
6982       case 1:
6983       case 8:
6984       case 16:
6985       case 32:
6986       case 64:
6987       case 128:
6988         OpTy = IntegerType::get(Context, BitSize);
6989         break;
6990       }
6991     }
6992 
6993     return TLI.getValueType(DL, OpTy, true);
6994   }
6995 };
6996 
6997 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
6998 
6999 } // end anonymous namespace
7000 
7001 /// Make sure that the output operand \p OpInfo and its corresponding input
7002 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7003 /// out).
7004 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7005                                SDISelAsmOperandInfo &MatchingOpInfo,
7006                                SelectionDAG &DAG) {
7007   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7008     return;
7009 
7010   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7011   const auto &TLI = DAG.getTargetLoweringInfo();
7012 
7013   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7014       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7015                                        OpInfo.ConstraintVT);
7016   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7017       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7018                                        MatchingOpInfo.ConstraintVT);
7019   if ((OpInfo.ConstraintVT.isInteger() !=
7020        MatchingOpInfo.ConstraintVT.isInteger()) ||
7021       (MatchRC.second != InputRC.second)) {
7022     // FIXME: error out in a more elegant fashion
7023     report_fatal_error("Unsupported asm: input constraint"
7024                        " with a matching output constraint of"
7025                        " incompatible type!");
7026   }
7027   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7028 }
7029 
7030 /// Get a direct memory input to behave well as an indirect operand.
7031 /// This may introduce stores, hence the need for a \p Chain.
7032 /// \return The (possibly updated) chain.
7033 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7034                                         SDISelAsmOperandInfo &OpInfo,
7035                                         SelectionDAG &DAG) {
7036   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7037 
7038   // If we don't have an indirect input, put it in the constpool if we can,
7039   // otherwise spill it to a stack slot.
7040   // TODO: This isn't quite right. We need to handle these according to
7041   // the addressing mode that the constraint wants. Also, this may take
7042   // an additional register for the computation and we don't want that
7043   // either.
7044 
7045   // If the operand is a float, integer, or vector constant, spill to a
7046   // constant pool entry to get its address.
7047   const Value *OpVal = OpInfo.CallOperandVal;
7048   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7049       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7050     OpInfo.CallOperand = DAG.getConstantPool(
7051         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7052     return Chain;
7053   }
7054 
7055   // Otherwise, create a stack slot and emit a store to it before the asm.
7056   Type *Ty = OpVal->getType();
7057   auto &DL = DAG.getDataLayout();
7058   uint64_t TySize = DL.getTypeAllocSize(Ty);
7059   unsigned Align = DL.getPrefTypeAlignment(Ty);
7060   MachineFunction &MF = DAG.getMachineFunction();
7061   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7062   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7063   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7064                        MachinePointerInfo::getFixedStack(MF, SSFI));
7065   OpInfo.CallOperand = StackSlot;
7066 
7067   return Chain;
7068 }
7069 
7070 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7071 /// specified operand.  We prefer to assign virtual registers, to allow the
7072 /// register allocator to handle the assignment process.  However, if the asm
7073 /// uses features that we can't model on machineinstrs, we have SDISel do the
7074 /// allocation.  This produces generally horrible, but correct, code.
7075 ///
7076 ///   OpInfo describes the operand.
7077 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7078                                  const SDLoc &DL,
7079                                  SDISelAsmOperandInfo &OpInfo) {
7080   LLVMContext &Context = *DAG.getContext();
7081 
7082   MachineFunction &MF = DAG.getMachineFunction();
7083   SmallVector<unsigned, 4> Regs;
7084   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7085 
7086   // If this is a constraint for a single physreg, or a constraint for a
7087   // register class, find it.
7088   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7089       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
7090                                        OpInfo.ConstraintVT);
7091 
7092   unsigned NumRegs = 1;
7093   if (OpInfo.ConstraintVT != MVT::Other) {
7094     // If this is a FP input in an integer register (or visa versa) insert a bit
7095     // cast of the input value.  More generally, handle any case where the input
7096     // value disagrees with the register class we plan to stick this in.
7097     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
7098         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7099       // Try to convert to the first EVT that the reg class contains.  If the
7100       // types are identical size, use a bitcast to convert (e.g. two differing
7101       // vector types).
7102       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7103       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
7104         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7105                                          RegVT, OpInfo.CallOperand);
7106         OpInfo.ConstraintVT = RegVT;
7107       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7108         // If the input is a FP value and we want it in FP registers, do a
7109         // bitcast to the corresponding integer type.  This turns an f64 value
7110         // into i64, which can be passed with two i32 values on a 32-bit
7111         // machine.
7112         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7113         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7114                                          RegVT, OpInfo.CallOperand);
7115         OpInfo.ConstraintVT = RegVT;
7116       }
7117     }
7118 
7119     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7120   }
7121 
7122   MVT RegVT;
7123   EVT ValueVT = OpInfo.ConstraintVT;
7124 
7125   // If this is a constraint for a specific physical register, like {r17},
7126   // assign it now.
7127   if (unsigned AssignedReg = PhysReg.first) {
7128     const TargetRegisterClass *RC = PhysReg.second;
7129     if (OpInfo.ConstraintVT == MVT::Other)
7130       ValueVT = *TRI.legalclasstypes_begin(*RC);
7131 
7132     // Get the actual register value type.  This is important, because the user
7133     // may have asked for (e.g.) the AX register in i32 type.  We need to
7134     // remember that AX is actually i16 to get the right extension.
7135     RegVT = *TRI.legalclasstypes_begin(*RC);
7136 
7137     // This is a explicit reference to a physical register.
7138     Regs.push_back(AssignedReg);
7139 
7140     // If this is an expanded reference, add the rest of the regs to Regs.
7141     if (NumRegs != 1) {
7142       TargetRegisterClass::iterator I = RC->begin();
7143       for (; *I != AssignedReg; ++I)
7144         assert(I != RC->end() && "Didn't find reg!");
7145 
7146       // Already added the first reg.
7147       --NumRegs; ++I;
7148       for (; NumRegs; --NumRegs, ++I) {
7149         assert(I != RC->end() && "Ran out of registers to allocate!");
7150         Regs.push_back(*I);
7151       }
7152     }
7153 
7154     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7155     return;
7156   }
7157 
7158   // Otherwise, if this was a reference to an LLVM register class, create vregs
7159   // for this reference.
7160   if (const TargetRegisterClass *RC = PhysReg.second) {
7161     RegVT = *TRI.legalclasstypes_begin(*RC);
7162     if (OpInfo.ConstraintVT == MVT::Other)
7163       ValueVT = RegVT;
7164 
7165     // Create the appropriate number of virtual registers.
7166     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7167     for (; NumRegs; --NumRegs)
7168       Regs.push_back(RegInfo.createVirtualRegister(RC));
7169 
7170     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7171     return;
7172   }
7173 
7174   // Otherwise, we couldn't allocate enough registers for this.
7175 }
7176 
7177 static unsigned
7178 findMatchingInlineAsmOperand(unsigned OperandNo,
7179                              const std::vector<SDValue> &AsmNodeOperands) {
7180   // Scan until we find the definition we already emitted of this operand.
7181   unsigned CurOp = InlineAsm::Op_FirstOperand;
7182   for (; OperandNo; --OperandNo) {
7183     // Advance to the next operand.
7184     unsigned OpFlag =
7185         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7186     assert((InlineAsm::isRegDefKind(OpFlag) ||
7187             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7188             InlineAsm::isMemKind(OpFlag)) &&
7189            "Skipped past definitions?");
7190     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7191   }
7192   return CurOp;
7193 }
7194 
7195 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7196 /// \return true if it has succeeded, false otherwise
7197 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7198                               MVT RegVT, SelectionDAG &DAG) {
7199   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7200   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7201   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7202     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7203       Regs.push_back(RegInfo.createVirtualRegister(RC));
7204     else
7205       return false;
7206   }
7207   return true;
7208 }
7209 
7210 namespace {
7211 
7212 class ExtraFlags {
7213   unsigned Flags = 0;
7214 
7215 public:
7216   explicit ExtraFlags(ImmutableCallSite CS) {
7217     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7218     if (IA->hasSideEffects())
7219       Flags |= InlineAsm::Extra_HasSideEffects;
7220     if (IA->isAlignStack())
7221       Flags |= InlineAsm::Extra_IsAlignStack;
7222     if (CS.isConvergent())
7223       Flags |= InlineAsm::Extra_IsConvergent;
7224     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7225   }
7226 
7227   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7228     // Ideally, we would only check against memory constraints.  However, the
7229     // meaning of an Other constraint can be target-specific and we can't easily
7230     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7231     // for Other constraints as well.
7232     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7233         OpInfo.ConstraintType == TargetLowering::C_Other) {
7234       if (OpInfo.Type == InlineAsm::isInput)
7235         Flags |= InlineAsm::Extra_MayLoad;
7236       else if (OpInfo.Type == InlineAsm::isOutput)
7237         Flags |= InlineAsm::Extra_MayStore;
7238       else if (OpInfo.Type == InlineAsm::isClobber)
7239         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7240     }
7241   }
7242 
7243   unsigned get() const { return Flags; }
7244 };
7245 
7246 } // end anonymous namespace
7247 
7248 /// visitInlineAsm - Handle a call to an InlineAsm object.
7249 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7250   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7251 
7252   /// ConstraintOperands - Information about all of the constraints.
7253   SDISelAsmOperandInfoVector ConstraintOperands;
7254 
7255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7256   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7257       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7258 
7259   bool hasMemory = false;
7260 
7261   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7262   ExtraFlags ExtraInfo(CS);
7263 
7264   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7265   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7266   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7267     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7268     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7269 
7270     MVT OpVT = MVT::Other;
7271 
7272     // Compute the value type for each operand.
7273     if (OpInfo.Type == InlineAsm::isInput ||
7274         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7275       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7276 
7277       // Process the call argument. BasicBlocks are labels, currently appearing
7278       // only in asm's.
7279       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7280         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7281       } else {
7282         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7283       }
7284 
7285       OpVT =
7286           OpInfo
7287               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7288               .getSimpleVT();
7289     }
7290 
7291     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7292       // The return value of the call is this value.  As such, there is no
7293       // corresponding argument.
7294       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7295       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7296         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7297                                       STy->getElementType(ResNo));
7298       } else {
7299         assert(ResNo == 0 && "Asm only has one result!");
7300         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7301       }
7302       ++ResNo;
7303     }
7304 
7305     OpInfo.ConstraintVT = OpVT;
7306 
7307     if (!hasMemory)
7308       hasMemory = OpInfo.hasMemory(TLI);
7309 
7310     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7311     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7312     auto TargetConstraint = TargetConstraints[i];
7313 
7314     // Compute the constraint code and ConstraintType to use.
7315     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7316 
7317     ExtraInfo.update(TargetConstraint);
7318   }
7319 
7320   SDValue Chain, Flag;
7321 
7322   // We won't need to flush pending loads if this asm doesn't touch
7323   // memory and is nonvolatile.
7324   if (hasMemory || IA->hasSideEffects())
7325     Chain = getRoot();
7326   else
7327     Chain = DAG.getRoot();
7328 
7329   // Second pass over the constraints: compute which constraint option to use
7330   // and assign registers to constraints that want a specific physreg.
7331   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7332     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7333 
7334     // If this is an output operand with a matching input operand, look up the
7335     // matching input. If their types mismatch, e.g. one is an integer, the
7336     // other is floating point, or their sizes are different, flag it as an
7337     // error.
7338     if (OpInfo.hasMatchingInput()) {
7339       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7340       patchMatchingInput(OpInfo, Input, DAG);
7341     }
7342 
7343     // Compute the constraint code and ConstraintType to use.
7344     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7345 
7346     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7347         OpInfo.Type == InlineAsm::isClobber)
7348       continue;
7349 
7350     // If this is a memory input, and if the operand is not indirect, do what we
7351     // need to provide an address for the memory input.
7352     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7353         !OpInfo.isIndirect) {
7354       assert((OpInfo.isMultipleAlternative ||
7355               (OpInfo.Type == InlineAsm::isInput)) &&
7356              "Can only indirectify direct input operands!");
7357 
7358       // Memory operands really want the address of the value.
7359       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7360 
7361       // There is no longer a Value* corresponding to this operand.
7362       OpInfo.CallOperandVal = nullptr;
7363 
7364       // It is now an indirect operand.
7365       OpInfo.isIndirect = true;
7366     }
7367 
7368     // If this constraint is for a specific register, allocate it before
7369     // anything else.
7370     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7371       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7372   }
7373 
7374   // Third pass - Loop over all of the operands, assigning virtual or physregs
7375   // to register class operands.
7376   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7377     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7378 
7379     // C_Register operands have already been allocated, Other/Memory don't need
7380     // to be.
7381     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7382       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7383   }
7384 
7385   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7386   std::vector<SDValue> AsmNodeOperands;
7387   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7388   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7389       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7390 
7391   // If we have a !srcloc metadata node associated with it, we want to attach
7392   // this to the ultimately generated inline asm machineinstr.  To do this, we
7393   // pass in the third operand as this (potentially null) inline asm MDNode.
7394   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7395   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7396 
7397   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7398   // bits as operand 3.
7399   AsmNodeOperands.push_back(DAG.getTargetConstant(
7400       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7401 
7402   // Loop over all of the inputs, copying the operand values into the
7403   // appropriate registers and processing the output regs.
7404   RegsForValue RetValRegs;
7405 
7406   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7407   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7408 
7409   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7410     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7411 
7412     switch (OpInfo.Type) {
7413     case InlineAsm::isOutput:
7414       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7415           OpInfo.ConstraintType != TargetLowering::C_Register) {
7416         // Memory output, or 'other' output (e.g. 'X' constraint).
7417         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7418 
7419         unsigned ConstraintID =
7420             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7421         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7422                "Failed to convert memory constraint code to constraint id.");
7423 
7424         // Add information to the INLINEASM node to know about this output.
7425         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7426         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7427         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7428                                                         MVT::i32));
7429         AsmNodeOperands.push_back(OpInfo.CallOperand);
7430         break;
7431       }
7432 
7433       // Otherwise, this is a register or register class output.
7434 
7435       // Copy the output from the appropriate register.  Find a register that
7436       // we can use.
7437       if (OpInfo.AssignedRegs.Regs.empty()) {
7438         emitInlineAsmError(
7439             CS, "couldn't allocate output register for constraint '" +
7440                     Twine(OpInfo.ConstraintCode) + "'");
7441         return;
7442       }
7443 
7444       // If this is an indirect operand, store through the pointer after the
7445       // asm.
7446       if (OpInfo.isIndirect) {
7447         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7448                                                       OpInfo.CallOperandVal));
7449       } else {
7450         // This is the result value of the call.
7451         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7452         // Concatenate this output onto the outputs list.
7453         RetValRegs.append(OpInfo.AssignedRegs);
7454       }
7455 
7456       // Add information to the INLINEASM node to know that this register is
7457       // set.
7458       OpInfo.AssignedRegs
7459           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7460                                     ? InlineAsm::Kind_RegDefEarlyClobber
7461                                     : InlineAsm::Kind_RegDef,
7462                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7463       break;
7464 
7465     case InlineAsm::isInput: {
7466       SDValue InOperandVal = OpInfo.CallOperand;
7467 
7468       if (OpInfo.isMatchingInputConstraint()) {
7469         // If this is required to match an output register we have already set,
7470         // just use its register.
7471         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7472                                                   AsmNodeOperands);
7473         unsigned OpFlag =
7474           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7475         if (InlineAsm::isRegDefKind(OpFlag) ||
7476             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7477           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7478           if (OpInfo.isIndirect) {
7479             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7480             emitInlineAsmError(CS, "inline asm not supported yet:"
7481                                    " don't know how to handle tied "
7482                                    "indirect register inputs");
7483             return;
7484           }
7485 
7486           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7487           SmallVector<unsigned, 4> Regs;
7488 
7489           if (!createVirtualRegs(Regs,
7490                                  InlineAsm::getNumOperandRegisters(OpFlag),
7491                                  RegVT, DAG)) {
7492             emitInlineAsmError(CS, "inline asm error: This value type register "
7493                                    "class is not natively supported!");
7494             return;
7495           }
7496 
7497           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7498 
7499           SDLoc dl = getCurSDLoc();
7500           // Use the produced MatchedRegs object to
7501           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7502                                     CS.getInstruction());
7503           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7504                                            true, OpInfo.getMatchedOperand(), dl,
7505                                            DAG, AsmNodeOperands);
7506           break;
7507         }
7508 
7509         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7510         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7511                "Unexpected number of operands");
7512         // Add information to the INLINEASM node to know about this input.
7513         // See InlineAsm.h isUseOperandTiedToDef.
7514         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7515         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7516                                                     OpInfo.getMatchedOperand());
7517         AsmNodeOperands.push_back(DAG.getTargetConstant(
7518             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7519         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7520         break;
7521       }
7522 
7523       // Treat indirect 'X' constraint as memory.
7524       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7525           OpInfo.isIndirect)
7526         OpInfo.ConstraintType = TargetLowering::C_Memory;
7527 
7528       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7529         std::vector<SDValue> Ops;
7530         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7531                                           Ops, DAG);
7532         if (Ops.empty()) {
7533           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7534                                      Twine(OpInfo.ConstraintCode) + "'");
7535           return;
7536         }
7537 
7538         // Add information to the INLINEASM node to know about this input.
7539         unsigned ResOpType =
7540           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7541         AsmNodeOperands.push_back(DAG.getTargetConstant(
7542             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7543         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7544         break;
7545       }
7546 
7547       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7548         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7549         assert(InOperandVal.getValueType() ==
7550                    TLI.getPointerTy(DAG.getDataLayout()) &&
7551                "Memory operands expect pointer values");
7552 
7553         unsigned ConstraintID =
7554             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7555         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7556                "Failed to convert memory constraint code to constraint id.");
7557 
7558         // Add information to the INLINEASM node to know about this input.
7559         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7560         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7561         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7562                                                         getCurSDLoc(),
7563                                                         MVT::i32));
7564         AsmNodeOperands.push_back(InOperandVal);
7565         break;
7566       }
7567 
7568       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7569               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7570              "Unknown constraint type!");
7571 
7572       // TODO: Support this.
7573       if (OpInfo.isIndirect) {
7574         emitInlineAsmError(
7575             CS, "Don't know how to handle indirect register inputs yet "
7576                 "for constraint '" +
7577                     Twine(OpInfo.ConstraintCode) + "'");
7578         return;
7579       }
7580 
7581       // Copy the input into the appropriate registers.
7582       if (OpInfo.AssignedRegs.Regs.empty()) {
7583         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7584                                    Twine(OpInfo.ConstraintCode) + "'");
7585         return;
7586       }
7587 
7588       SDLoc dl = getCurSDLoc();
7589 
7590       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7591                                         Chain, &Flag, CS.getInstruction());
7592 
7593       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7594                                                dl, DAG, AsmNodeOperands);
7595       break;
7596     }
7597     case InlineAsm::isClobber:
7598       // Add the clobbered value to the operand list, so that the register
7599       // allocator is aware that the physreg got clobbered.
7600       if (!OpInfo.AssignedRegs.Regs.empty())
7601         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7602                                                  false, 0, getCurSDLoc(), DAG,
7603                                                  AsmNodeOperands);
7604       break;
7605     }
7606   }
7607 
7608   // Finish up input operands.  Set the input chain and add the flag last.
7609   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7610   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7611 
7612   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7613                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7614   Flag = Chain.getValue(1);
7615 
7616   // If this asm returns a register value, copy the result from that register
7617   // and set it as the value of the call.
7618   if (!RetValRegs.Regs.empty()) {
7619     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7620                                              Chain, &Flag, CS.getInstruction());
7621 
7622     // FIXME: Why don't we do this for inline asms with MRVs?
7623     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7624       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7625 
7626       // If any of the results of the inline asm is a vector, it may have the
7627       // wrong width/num elts.  This can happen for register classes that can
7628       // contain multiple different value types.  The preg or vreg allocated may
7629       // not have the same VT as was expected.  Convert it to the right type
7630       // with bit_convert.
7631       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7632         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7633                           ResultType, Val);
7634 
7635       } else if (ResultType != Val.getValueType() &&
7636                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7637         // If a result value was tied to an input value, the computed result may
7638         // have a wider width than the expected result.  Extract the relevant
7639         // portion.
7640         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7641       }
7642 
7643       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7644     }
7645 
7646     setValue(CS.getInstruction(), Val);
7647     // Don't need to use this as a chain in this case.
7648     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7649       return;
7650   }
7651 
7652   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7653 
7654   // Process indirect outputs, first output all of the flagged copies out of
7655   // physregs.
7656   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7657     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7658     const Value *Ptr = IndirectStoresToEmit[i].second;
7659     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7660                                              Chain, &Flag, IA);
7661     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7662   }
7663 
7664   // Emit the non-flagged stores from the physregs.
7665   SmallVector<SDValue, 8> OutChains;
7666   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7667     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7668                                getValue(StoresToEmit[i].second),
7669                                MachinePointerInfo(StoresToEmit[i].second));
7670     OutChains.push_back(Val);
7671   }
7672 
7673   if (!OutChains.empty())
7674     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7675 
7676   DAG.setRoot(Chain);
7677 }
7678 
7679 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7680                                              const Twine &Message) {
7681   LLVMContext &Ctx = *DAG.getContext();
7682   Ctx.emitError(CS.getInstruction(), Message);
7683 
7684   // Make sure we leave the DAG in a valid state
7685   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7686   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7687   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7688 }
7689 
7690 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7691   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7692                           MVT::Other, getRoot(),
7693                           getValue(I.getArgOperand(0)),
7694                           DAG.getSrcValue(I.getArgOperand(0))));
7695 }
7696 
7697 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7699   const DataLayout &DL = DAG.getDataLayout();
7700   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7701                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7702                            DAG.getSrcValue(I.getOperand(0)),
7703                            DL.getABITypeAlignment(I.getType()));
7704   setValue(&I, V);
7705   DAG.setRoot(V.getValue(1));
7706 }
7707 
7708 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7709   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7710                           MVT::Other, getRoot(),
7711                           getValue(I.getArgOperand(0)),
7712                           DAG.getSrcValue(I.getArgOperand(0))));
7713 }
7714 
7715 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7716   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7717                           MVT::Other, getRoot(),
7718                           getValue(I.getArgOperand(0)),
7719                           getValue(I.getArgOperand(1)),
7720                           DAG.getSrcValue(I.getArgOperand(0)),
7721                           DAG.getSrcValue(I.getArgOperand(1))));
7722 }
7723 
7724 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7725                                                     const Instruction &I,
7726                                                     SDValue Op) {
7727   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7728   if (!Range)
7729     return Op;
7730 
7731   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7732   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7733     return Op;
7734 
7735   APInt Lo = CR.getUnsignedMin();
7736   if (!Lo.isMinValue())
7737     return Op;
7738 
7739   APInt Hi = CR.getUnsignedMax();
7740   unsigned Bits = Hi.getActiveBits();
7741 
7742   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7743 
7744   SDLoc SL = getCurSDLoc();
7745 
7746   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7747                              DAG.getValueType(SmallVT));
7748   unsigned NumVals = Op.getNode()->getNumValues();
7749   if (NumVals == 1)
7750     return ZExt;
7751 
7752   SmallVector<SDValue, 4> Ops;
7753 
7754   Ops.push_back(ZExt);
7755   for (unsigned I = 1; I != NumVals; ++I)
7756     Ops.push_back(Op.getValue(I));
7757 
7758   return DAG.getMergeValues(Ops, SL);
7759 }
7760 
7761 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7762 /// the call being lowered.
7763 ///
7764 /// This is a helper for lowering intrinsics that follow a target calling
7765 /// convention or require stack pointer adjustment. Only a subset of the
7766 /// intrinsic's operands need to participate in the calling convention.
7767 void SelectionDAGBuilder::populateCallLoweringInfo(
7768     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7769     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7770     bool IsPatchPoint) {
7771   TargetLowering::ArgListTy Args;
7772   Args.reserve(NumArgs);
7773 
7774   // Populate the argument list.
7775   // Attributes for args start at offset 1, after the return attribute.
7776   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7777        ArgI != ArgE; ++ArgI) {
7778     const Value *V = CS->getOperand(ArgI);
7779 
7780     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7781 
7782     TargetLowering::ArgListEntry Entry;
7783     Entry.Node = getValue(V);
7784     Entry.Ty = V->getType();
7785     Entry.setAttributes(&CS, ArgI);
7786     Args.push_back(Entry);
7787   }
7788 
7789   CLI.setDebugLoc(getCurSDLoc())
7790       .setChain(getRoot())
7791       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7792       .setDiscardResult(CS->use_empty())
7793       .setIsPatchPoint(IsPatchPoint);
7794 }
7795 
7796 /// Add a stack map intrinsic call's live variable operands to a stackmap
7797 /// or patchpoint target node's operand list.
7798 ///
7799 /// Constants are converted to TargetConstants purely as an optimization to
7800 /// avoid constant materialization and register allocation.
7801 ///
7802 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7803 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7804 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7805 /// address materialization and register allocation, but may also be required
7806 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7807 /// alloca in the entry block, then the runtime may assume that the alloca's
7808 /// StackMap location can be read immediately after compilation and that the
7809 /// location is valid at any point during execution (this is similar to the
7810 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7811 /// only available in a register, then the runtime would need to trap when
7812 /// execution reaches the StackMap in order to read the alloca's location.
7813 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7814                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7815                                 SelectionDAGBuilder &Builder) {
7816   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7817     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7818     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7819       Ops.push_back(
7820         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7821       Ops.push_back(
7822         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7823     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7824       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7825       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7826           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7827     } else
7828       Ops.push_back(OpVal);
7829   }
7830 }
7831 
7832 /// Lower llvm.experimental.stackmap directly to its target opcode.
7833 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7834   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7835   //                                  [live variables...])
7836 
7837   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7838 
7839   SDValue Chain, InFlag, Callee, NullPtr;
7840   SmallVector<SDValue, 32> Ops;
7841 
7842   SDLoc DL = getCurSDLoc();
7843   Callee = getValue(CI.getCalledValue());
7844   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7845 
7846   // The stackmap intrinsic only records the live variables (the arguemnts
7847   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7848   // intrinsic, this won't be lowered to a function call. This means we don't
7849   // have to worry about calling conventions and target specific lowering code.
7850   // Instead we perform the call lowering right here.
7851   //
7852   // chain, flag = CALLSEQ_START(chain, 0, 0)
7853   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7854   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7855   //
7856   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7857   InFlag = Chain.getValue(1);
7858 
7859   // Add the <id> and <numBytes> constants.
7860   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7861   Ops.push_back(DAG.getTargetConstant(
7862                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7863   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7864   Ops.push_back(DAG.getTargetConstant(
7865                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7866                   MVT::i32));
7867 
7868   // Push live variables for the stack map.
7869   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7870 
7871   // We are not pushing any register mask info here on the operands list,
7872   // because the stackmap doesn't clobber anything.
7873 
7874   // Push the chain and the glue flag.
7875   Ops.push_back(Chain);
7876   Ops.push_back(InFlag);
7877 
7878   // Create the STACKMAP node.
7879   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7880   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7881   Chain = SDValue(SM, 0);
7882   InFlag = Chain.getValue(1);
7883 
7884   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7885 
7886   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7887 
7888   // Set the root to the target-lowered call chain.
7889   DAG.setRoot(Chain);
7890 
7891   // Inform the Frame Information that we have a stackmap in this function.
7892   FuncInfo.MF->getFrameInfo().setHasStackMap();
7893 }
7894 
7895 /// Lower llvm.experimental.patchpoint directly to its target opcode.
7896 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7897                                           const BasicBlock *EHPadBB) {
7898   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7899   //                                                 i32 <numBytes>,
7900   //                                                 i8* <target>,
7901   //                                                 i32 <numArgs>,
7902   //                                                 [Args...],
7903   //                                                 [live variables...])
7904 
7905   CallingConv::ID CC = CS.getCallingConv();
7906   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7907   bool HasDef = !CS->getType()->isVoidTy();
7908   SDLoc dl = getCurSDLoc();
7909   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7910 
7911   // Handle immediate and symbolic callees.
7912   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7913     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7914                                    /*isTarget=*/true);
7915   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7916     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7917                                          SDLoc(SymbolicCallee),
7918                                          SymbolicCallee->getValueType(0));
7919 
7920   // Get the real number of arguments participating in the call <numArgs>
7921   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7922   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7923 
7924   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7925   // Intrinsics include all meta-operands up to but not including CC.
7926   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7927   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7928          "Not enough arguments provided to the patchpoint intrinsic");
7929 
7930   // For AnyRegCC the arguments are lowered later on manually.
7931   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7932   Type *ReturnTy =
7933     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7934 
7935   TargetLowering::CallLoweringInfo CLI(DAG);
7936   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7937                            true);
7938   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7939 
7940   SDNode *CallEnd = Result.second.getNode();
7941   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7942     CallEnd = CallEnd->getOperand(0).getNode();
7943 
7944   /// Get a call instruction from the call sequence chain.
7945   /// Tail calls are not allowed.
7946   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7947          "Expected a callseq node.");
7948   SDNode *Call = CallEnd->getOperand(0).getNode();
7949   bool HasGlue = Call->getGluedNode();
7950 
7951   // Replace the target specific call node with the patchable intrinsic.
7952   SmallVector<SDValue, 8> Ops;
7953 
7954   // Add the <id> and <numBytes> constants.
7955   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7956   Ops.push_back(DAG.getTargetConstant(
7957                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7958   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7959   Ops.push_back(DAG.getTargetConstant(
7960                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7961                   MVT::i32));
7962 
7963   // Add the callee.
7964   Ops.push_back(Callee);
7965 
7966   // Adjust <numArgs> to account for any arguments that have been passed on the
7967   // stack instead.
7968   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7969   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7970   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7971   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7972 
7973   // Add the calling convention
7974   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7975 
7976   // Add the arguments we omitted previously. The register allocator should
7977   // place these in any free register.
7978   if (IsAnyRegCC)
7979     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7980       Ops.push_back(getValue(CS.getArgument(i)));
7981 
7982   // Push the arguments from the call instruction up to the register mask.
7983   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7984   Ops.append(Call->op_begin() + 2, e);
7985 
7986   // Push live variables for the stack map.
7987   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7988 
7989   // Push the register mask info.
7990   if (HasGlue)
7991     Ops.push_back(*(Call->op_end()-2));
7992   else
7993     Ops.push_back(*(Call->op_end()-1));
7994 
7995   // Push the chain (this is originally the first operand of the call, but
7996   // becomes now the last or second to last operand).
7997   Ops.push_back(*(Call->op_begin()));
7998 
7999   // Push the glue flag (last operand).
8000   if (HasGlue)
8001     Ops.push_back(*(Call->op_end()-1));
8002 
8003   SDVTList NodeTys;
8004   if (IsAnyRegCC && HasDef) {
8005     // Create the return types based on the intrinsic definition
8006     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8007     SmallVector<EVT, 3> ValueVTs;
8008     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8009     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8010 
8011     // There is always a chain and a glue type at the end
8012     ValueVTs.push_back(MVT::Other);
8013     ValueVTs.push_back(MVT::Glue);
8014     NodeTys = DAG.getVTList(ValueVTs);
8015   } else
8016     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8017 
8018   // Replace the target specific call node with a PATCHPOINT node.
8019   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8020                                          dl, NodeTys, Ops);
8021 
8022   // Update the NodeMap.
8023   if (HasDef) {
8024     if (IsAnyRegCC)
8025       setValue(CS.getInstruction(), SDValue(MN, 0));
8026     else
8027       setValue(CS.getInstruction(), Result.first);
8028   }
8029 
8030   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8031   // call sequence. Furthermore the location of the chain and glue can change
8032   // when the AnyReg calling convention is used and the intrinsic returns a
8033   // value.
8034   if (IsAnyRegCC && HasDef) {
8035     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8036     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8037     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8038   } else
8039     DAG.ReplaceAllUsesWith(Call, MN);
8040   DAG.DeleteNode(Call);
8041 
8042   // Inform the Frame Information that we have a patchpoint in this function.
8043   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8044 }
8045 
8046 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8047                                             unsigned Intrinsic) {
8048   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8049   SDValue Op1 = getValue(I.getArgOperand(0));
8050   SDValue Op2;
8051   if (I.getNumArgOperands() > 1)
8052     Op2 = getValue(I.getArgOperand(1));
8053   SDLoc dl = getCurSDLoc();
8054   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8055   SDValue Res;
8056   FastMathFlags FMF;
8057   if (isa<FPMathOperator>(I))
8058     FMF = I.getFastMathFlags();
8059   SDNodeFlags SDFlags;
8060   SDFlags.setNoNaNs(FMF.noNaNs());
8061 
8062   switch (Intrinsic) {
8063   case Intrinsic::experimental_vector_reduce_fadd:
8064     if (FMF.isFast())
8065       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8066     else
8067       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8068     break;
8069   case Intrinsic::experimental_vector_reduce_fmul:
8070     if (FMF.isFast())
8071       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8072     else
8073       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8074     break;
8075   case Intrinsic::experimental_vector_reduce_add:
8076     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8077     break;
8078   case Intrinsic::experimental_vector_reduce_mul:
8079     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8080     break;
8081   case Intrinsic::experimental_vector_reduce_and:
8082     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8083     break;
8084   case Intrinsic::experimental_vector_reduce_or:
8085     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8086     break;
8087   case Intrinsic::experimental_vector_reduce_xor:
8088     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8089     break;
8090   case Intrinsic::experimental_vector_reduce_smax:
8091     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8092     break;
8093   case Intrinsic::experimental_vector_reduce_smin:
8094     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8095     break;
8096   case Intrinsic::experimental_vector_reduce_umax:
8097     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8098     break;
8099   case Intrinsic::experimental_vector_reduce_umin:
8100     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8101     break;
8102   case Intrinsic::experimental_vector_reduce_fmax:
8103     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
8104     break;
8105   case Intrinsic::experimental_vector_reduce_fmin:
8106     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8107     break;
8108   default:
8109     llvm_unreachable("Unhandled vector reduce intrinsic");
8110   }
8111   setValue(&I, Res);
8112 }
8113 
8114 /// Returns an AttributeList representing the attributes applied to the return
8115 /// value of the given call.
8116 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8117   SmallVector<Attribute::AttrKind, 2> Attrs;
8118   if (CLI.RetSExt)
8119     Attrs.push_back(Attribute::SExt);
8120   if (CLI.RetZExt)
8121     Attrs.push_back(Attribute::ZExt);
8122   if (CLI.IsInReg)
8123     Attrs.push_back(Attribute::InReg);
8124 
8125   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8126                             Attrs);
8127 }
8128 
8129 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8130 /// implementation, which just calls LowerCall.
8131 /// FIXME: When all targets are
8132 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8133 std::pair<SDValue, SDValue>
8134 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8135   // Handle the incoming return values from the call.
8136   CLI.Ins.clear();
8137   Type *OrigRetTy = CLI.RetTy;
8138   SmallVector<EVT, 4> RetTys;
8139   SmallVector<uint64_t, 4> Offsets;
8140   auto &DL = CLI.DAG.getDataLayout();
8141   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8142 
8143   if (CLI.IsPostTypeLegalization) {
8144     // If we are lowering a libcall after legalization, split the return type.
8145     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8146     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8147     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8148       EVT RetVT = OldRetTys[i];
8149       uint64_t Offset = OldOffsets[i];
8150       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8151       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8152       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8153       RetTys.append(NumRegs, RegisterVT);
8154       for (unsigned j = 0; j != NumRegs; ++j)
8155         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8156     }
8157   }
8158 
8159   SmallVector<ISD::OutputArg, 4> Outs;
8160   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8161 
8162   bool CanLowerReturn =
8163       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8164                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8165 
8166   SDValue DemoteStackSlot;
8167   int DemoteStackIdx = -100;
8168   if (!CanLowerReturn) {
8169     // FIXME: equivalent assert?
8170     // assert(!CS.hasInAllocaArgument() &&
8171     //        "sret demotion is incompatible with inalloca");
8172     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8173     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8174     MachineFunction &MF = CLI.DAG.getMachineFunction();
8175     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8176     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8177 
8178     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8179     ArgListEntry Entry;
8180     Entry.Node = DemoteStackSlot;
8181     Entry.Ty = StackSlotPtrType;
8182     Entry.IsSExt = false;
8183     Entry.IsZExt = false;
8184     Entry.IsInReg = false;
8185     Entry.IsSRet = true;
8186     Entry.IsNest = false;
8187     Entry.IsByVal = false;
8188     Entry.IsReturned = false;
8189     Entry.IsSwiftSelf = false;
8190     Entry.IsSwiftError = false;
8191     Entry.Alignment = Align;
8192     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8193     CLI.NumFixedArgs += 1;
8194     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8195 
8196     // sret demotion isn't compatible with tail-calls, since the sret argument
8197     // points into the callers stack frame.
8198     CLI.IsTailCall = false;
8199   } else {
8200     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8201       EVT VT = RetTys[I];
8202       MVT RegisterVT =
8203           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8204       unsigned NumRegs =
8205           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8206       for (unsigned i = 0; i != NumRegs; ++i) {
8207         ISD::InputArg MyFlags;
8208         MyFlags.VT = RegisterVT;
8209         MyFlags.ArgVT = VT;
8210         MyFlags.Used = CLI.IsReturnValueUsed;
8211         if (CLI.RetSExt)
8212           MyFlags.Flags.setSExt();
8213         if (CLI.RetZExt)
8214           MyFlags.Flags.setZExt();
8215         if (CLI.IsInReg)
8216           MyFlags.Flags.setInReg();
8217         CLI.Ins.push_back(MyFlags);
8218       }
8219     }
8220   }
8221 
8222   // We push in swifterror return as the last element of CLI.Ins.
8223   ArgListTy &Args = CLI.getArgs();
8224   if (supportSwiftError()) {
8225     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8226       if (Args[i].IsSwiftError) {
8227         ISD::InputArg MyFlags;
8228         MyFlags.VT = getPointerTy(DL);
8229         MyFlags.ArgVT = EVT(getPointerTy(DL));
8230         MyFlags.Flags.setSwiftError();
8231         CLI.Ins.push_back(MyFlags);
8232       }
8233     }
8234   }
8235 
8236   // Handle all of the outgoing arguments.
8237   CLI.Outs.clear();
8238   CLI.OutVals.clear();
8239   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8240     SmallVector<EVT, 4> ValueVTs;
8241     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8242     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8243     Type *FinalType = Args[i].Ty;
8244     if (Args[i].IsByVal)
8245       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8246     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8247         FinalType, CLI.CallConv, CLI.IsVarArg);
8248     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8249          ++Value) {
8250       EVT VT = ValueVTs[Value];
8251       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8252       SDValue Op = SDValue(Args[i].Node.getNode(),
8253                            Args[i].Node.getResNo() + Value);
8254       ISD::ArgFlagsTy Flags;
8255 
8256       // Certain targets (such as MIPS), may have a different ABI alignment
8257       // for a type depending on the context. Give the target a chance to
8258       // specify the alignment it wants.
8259       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8260 
8261       if (Args[i].IsZExt)
8262         Flags.setZExt();
8263       if (Args[i].IsSExt)
8264         Flags.setSExt();
8265       if (Args[i].IsInReg) {
8266         // If we are using vectorcall calling convention, a structure that is
8267         // passed InReg - is surely an HVA
8268         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8269             isa<StructType>(FinalType)) {
8270           // The first value of a structure is marked
8271           if (0 == Value)
8272             Flags.setHvaStart();
8273           Flags.setHva();
8274         }
8275         // Set InReg Flag
8276         Flags.setInReg();
8277       }
8278       if (Args[i].IsSRet)
8279         Flags.setSRet();
8280       if (Args[i].IsSwiftSelf)
8281         Flags.setSwiftSelf();
8282       if (Args[i].IsSwiftError)
8283         Flags.setSwiftError();
8284       if (Args[i].IsByVal)
8285         Flags.setByVal();
8286       if (Args[i].IsInAlloca) {
8287         Flags.setInAlloca();
8288         // Set the byval flag for CCAssignFn callbacks that don't know about
8289         // inalloca.  This way we can know how many bytes we should've allocated
8290         // and how many bytes a callee cleanup function will pop.  If we port
8291         // inalloca to more targets, we'll have to add custom inalloca handling
8292         // in the various CC lowering callbacks.
8293         Flags.setByVal();
8294       }
8295       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8296         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8297         Type *ElementTy = Ty->getElementType();
8298         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8299         // For ByVal, alignment should come from FE.  BE will guess if this
8300         // info is not there but there are cases it cannot get right.
8301         unsigned FrameAlign;
8302         if (Args[i].Alignment)
8303           FrameAlign = Args[i].Alignment;
8304         else
8305           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8306         Flags.setByValAlign(FrameAlign);
8307       }
8308       if (Args[i].IsNest)
8309         Flags.setNest();
8310       if (NeedsRegBlock)
8311         Flags.setInConsecutiveRegs();
8312       Flags.setOrigAlign(OriginalAlignment);
8313 
8314       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8315       unsigned NumParts =
8316           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8317       SmallVector<SDValue, 4> Parts(NumParts);
8318       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8319 
8320       if (Args[i].IsSExt)
8321         ExtendKind = ISD::SIGN_EXTEND;
8322       else if (Args[i].IsZExt)
8323         ExtendKind = ISD::ZERO_EXTEND;
8324 
8325       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8326       // for now.
8327       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8328           CanLowerReturn) {
8329         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8330                "unexpected use of 'returned'");
8331         // Before passing 'returned' to the target lowering code, ensure that
8332         // either the register MVT and the actual EVT are the same size or that
8333         // the return value and argument are extended in the same way; in these
8334         // cases it's safe to pass the argument register value unchanged as the
8335         // return register value (although it's at the target's option whether
8336         // to do so)
8337         // TODO: allow code generation to take advantage of partially preserved
8338         // registers rather than clobbering the entire register when the
8339         // parameter extension method is not compatible with the return
8340         // extension method
8341         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8342             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8343              CLI.RetZExt == Args[i].IsZExt))
8344           Flags.setReturned();
8345       }
8346 
8347       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8348                      CLI.CS.getInstruction(), ExtendKind, true);
8349 
8350       for (unsigned j = 0; j != NumParts; ++j) {
8351         // if it isn't first piece, alignment must be 1
8352         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8353                                i < CLI.NumFixedArgs,
8354                                i, j*Parts[j].getValueType().getStoreSize());
8355         if (NumParts > 1 && j == 0)
8356           MyFlags.Flags.setSplit();
8357         else if (j != 0) {
8358           MyFlags.Flags.setOrigAlign(1);
8359           if (j == NumParts - 1)
8360             MyFlags.Flags.setSplitEnd();
8361         }
8362 
8363         CLI.Outs.push_back(MyFlags);
8364         CLI.OutVals.push_back(Parts[j]);
8365       }
8366 
8367       if (NeedsRegBlock && Value == NumValues - 1)
8368         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8369     }
8370   }
8371 
8372   SmallVector<SDValue, 4> InVals;
8373   CLI.Chain = LowerCall(CLI, InVals);
8374 
8375   // Update CLI.InVals to use outside of this function.
8376   CLI.InVals = InVals;
8377 
8378   // Verify that the target's LowerCall behaved as expected.
8379   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8380          "LowerCall didn't return a valid chain!");
8381   assert((!CLI.IsTailCall || InVals.empty()) &&
8382          "LowerCall emitted a return value for a tail call!");
8383   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8384          "LowerCall didn't emit the correct number of values!");
8385 
8386   // For a tail call, the return value is merely live-out and there aren't
8387   // any nodes in the DAG representing it. Return a special value to
8388   // indicate that a tail call has been emitted and no more Instructions
8389   // should be processed in the current block.
8390   if (CLI.IsTailCall) {
8391     CLI.DAG.setRoot(CLI.Chain);
8392     return std::make_pair(SDValue(), SDValue());
8393   }
8394 
8395 #ifndef NDEBUG
8396   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8397     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8398     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8399            "LowerCall emitted a value with the wrong type!");
8400   }
8401 #endif
8402 
8403   SmallVector<SDValue, 4> ReturnValues;
8404   if (!CanLowerReturn) {
8405     // The instruction result is the result of loading from the
8406     // hidden sret parameter.
8407     SmallVector<EVT, 1> PVTs;
8408     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8409 
8410     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8411     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8412     EVT PtrVT = PVTs[0];
8413 
8414     unsigned NumValues = RetTys.size();
8415     ReturnValues.resize(NumValues);
8416     SmallVector<SDValue, 4> Chains(NumValues);
8417 
8418     // An aggregate return value cannot wrap around the address space, so
8419     // offsets to its parts don't wrap either.
8420     SDNodeFlags Flags;
8421     Flags.setNoUnsignedWrap(true);
8422 
8423     for (unsigned i = 0; i < NumValues; ++i) {
8424       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8425                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8426                                                         PtrVT), Flags);
8427       SDValue L = CLI.DAG.getLoad(
8428           RetTys[i], CLI.DL, CLI.Chain, Add,
8429           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8430                                             DemoteStackIdx, Offsets[i]),
8431           /* Alignment = */ 1);
8432       ReturnValues[i] = L;
8433       Chains[i] = L.getValue(1);
8434     }
8435 
8436     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8437   } else {
8438     // Collect the legal value parts into potentially illegal values
8439     // that correspond to the original function's return values.
8440     Optional<ISD::NodeType> AssertOp;
8441     if (CLI.RetSExt)
8442       AssertOp = ISD::AssertSext;
8443     else if (CLI.RetZExt)
8444       AssertOp = ISD::AssertZext;
8445     unsigned CurReg = 0;
8446     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8447       EVT VT = RetTys[I];
8448       MVT RegisterVT =
8449           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8450       unsigned NumRegs =
8451           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8452 
8453       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8454                                               NumRegs, RegisterVT, VT, nullptr,
8455                                               AssertOp, true));
8456       CurReg += NumRegs;
8457     }
8458 
8459     // For a function returning void, there is no return value. We can't create
8460     // such a node, so we just return a null return value in that case. In
8461     // that case, nothing will actually look at the value.
8462     if (ReturnValues.empty())
8463       return std::make_pair(SDValue(), CLI.Chain);
8464   }
8465 
8466   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8467                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8468   return std::make_pair(Res, CLI.Chain);
8469 }
8470 
8471 void TargetLowering::LowerOperationWrapper(SDNode *N,
8472                                            SmallVectorImpl<SDValue> &Results,
8473                                            SelectionDAG &DAG) const {
8474   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8475     Results.push_back(Res);
8476 }
8477 
8478 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8479   llvm_unreachable("LowerOperation not implemented for this target!");
8480 }
8481 
8482 void
8483 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8484   SDValue Op = getNonRegisterValue(V);
8485   assert((Op.getOpcode() != ISD::CopyFromReg ||
8486           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8487          "Copy from a reg to the same reg!");
8488   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8489 
8490   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8491   // If this is an InlineAsm we have to match the registers required, not the
8492   // notional registers required by the type.
8493 
8494   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8495                    V->getType(), isABIRegCopy(V));
8496   SDValue Chain = DAG.getEntryNode();
8497 
8498   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8499                               FuncInfo.PreferredExtendType.end())
8500                                  ? ISD::ANY_EXTEND
8501                                  : FuncInfo.PreferredExtendType[V];
8502   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8503   PendingExports.push_back(Chain);
8504 }
8505 
8506 #include "llvm/CodeGen/SelectionDAGISel.h"
8507 
8508 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8509 /// entry block, return true.  This includes arguments used by switches, since
8510 /// the switch may expand into multiple basic blocks.
8511 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8512   // With FastISel active, we may be splitting blocks, so force creation
8513   // of virtual registers for all non-dead arguments.
8514   if (FastISel)
8515     return A->use_empty();
8516 
8517   const BasicBlock &Entry = A->getParent()->front();
8518   for (const User *U : A->users())
8519     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8520       return false;  // Use not in entry block.
8521 
8522   return true;
8523 }
8524 
8525 using ArgCopyElisionMapTy =
8526     DenseMap<const Argument *,
8527              std::pair<const AllocaInst *, const StoreInst *>>;
8528 
8529 /// Scan the entry block of the function in FuncInfo for arguments that look
8530 /// like copies into a local alloca. Record any copied arguments in
8531 /// ArgCopyElisionCandidates.
8532 static void
8533 findArgumentCopyElisionCandidates(const DataLayout &DL,
8534                                   FunctionLoweringInfo *FuncInfo,
8535                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8536   // Record the state of every static alloca used in the entry block. Argument
8537   // allocas are all used in the entry block, so we need approximately as many
8538   // entries as we have arguments.
8539   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8540   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8541   unsigned NumArgs = FuncInfo->Fn->arg_size();
8542   StaticAllocas.reserve(NumArgs * 2);
8543 
8544   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8545     if (!V)
8546       return nullptr;
8547     V = V->stripPointerCasts();
8548     const auto *AI = dyn_cast<AllocaInst>(V);
8549     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8550       return nullptr;
8551     auto Iter = StaticAllocas.insert({AI, Unknown});
8552     return &Iter.first->second;
8553   };
8554 
8555   // Look for stores of arguments to static allocas. Look through bitcasts and
8556   // GEPs to handle type coercions, as long as the alloca is fully initialized
8557   // by the store. Any non-store use of an alloca escapes it and any subsequent
8558   // unanalyzed store might write it.
8559   // FIXME: Handle structs initialized with multiple stores.
8560   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8561     // Look for stores, and handle non-store uses conservatively.
8562     const auto *SI = dyn_cast<StoreInst>(&I);
8563     if (!SI) {
8564       // We will look through cast uses, so ignore them completely.
8565       if (I.isCast())
8566         continue;
8567       // Ignore debug info intrinsics, they don't escape or store to allocas.
8568       if (isa<DbgInfoIntrinsic>(I))
8569         continue;
8570       // This is an unknown instruction. Assume it escapes or writes to all
8571       // static alloca operands.
8572       for (const Use &U : I.operands()) {
8573         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8574           *Info = StaticAllocaInfo::Clobbered;
8575       }
8576       continue;
8577     }
8578 
8579     // If the stored value is a static alloca, mark it as escaped.
8580     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8581       *Info = StaticAllocaInfo::Clobbered;
8582 
8583     // Check if the destination is a static alloca.
8584     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8585     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8586     if (!Info)
8587       continue;
8588     const AllocaInst *AI = cast<AllocaInst>(Dst);
8589 
8590     // Skip allocas that have been initialized or clobbered.
8591     if (*Info != StaticAllocaInfo::Unknown)
8592       continue;
8593 
8594     // Check if the stored value is an argument, and that this store fully
8595     // initializes the alloca. Don't elide copies from the same argument twice.
8596     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8597     const auto *Arg = dyn_cast<Argument>(Val);
8598     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8599         Arg->getType()->isEmptyTy() ||
8600         DL.getTypeStoreSize(Arg->getType()) !=
8601             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8602         ArgCopyElisionCandidates.count(Arg)) {
8603       *Info = StaticAllocaInfo::Clobbered;
8604       continue;
8605     }
8606 
8607     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8608 
8609     // Mark this alloca and store for argument copy elision.
8610     *Info = StaticAllocaInfo::Elidable;
8611     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8612 
8613     // Stop scanning if we've seen all arguments. This will happen early in -O0
8614     // builds, which is useful, because -O0 builds have large entry blocks and
8615     // many allocas.
8616     if (ArgCopyElisionCandidates.size() == NumArgs)
8617       break;
8618   }
8619 }
8620 
8621 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8622 /// ArgVal is a load from a suitable fixed stack object.
8623 static void tryToElideArgumentCopy(
8624     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8625     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8626     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8627     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8628     SDValue ArgVal, bool &ArgHasUses) {
8629   // Check if this is a load from a fixed stack object.
8630   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8631   if (!LNode)
8632     return;
8633   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8634   if (!FINode)
8635     return;
8636 
8637   // Check that the fixed stack object is the right size and alignment.
8638   // Look at the alignment that the user wrote on the alloca instead of looking
8639   // at the stack object.
8640   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8641   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8642   const AllocaInst *AI = ArgCopyIter->second.first;
8643   int FixedIndex = FINode->getIndex();
8644   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8645   int OldIndex = AllocaIndex;
8646   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8647   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8648     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8649                     "object size\n");
8650     return;
8651   }
8652   unsigned RequiredAlignment = AI->getAlignment();
8653   if (!RequiredAlignment) {
8654     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8655         AI->getAllocatedType());
8656   }
8657   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8658     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8659                     "greater than stack argument alignment ("
8660                  << RequiredAlignment << " vs "
8661                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8662     return;
8663   }
8664 
8665   // Perform the elision. Delete the old stack object and replace its only use
8666   // in the variable info map. Mark the stack object as mutable.
8667   DEBUG({
8668     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8669            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8670            << '\n';
8671   });
8672   MFI.RemoveStackObject(OldIndex);
8673   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8674   AllocaIndex = FixedIndex;
8675   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8676   Chains.push_back(ArgVal.getValue(1));
8677 
8678   // Avoid emitting code for the store implementing the copy.
8679   const StoreInst *SI = ArgCopyIter->second.second;
8680   ElidedArgCopyInstrs.insert(SI);
8681 
8682   // Check for uses of the argument again so that we can avoid exporting ArgVal
8683   // if it is't used by anything other than the store.
8684   for (const Value *U : Arg.users()) {
8685     if (U != SI) {
8686       ArgHasUses = true;
8687       break;
8688     }
8689   }
8690 }
8691 
8692 void SelectionDAGISel::LowerArguments(const Function &F) {
8693   SelectionDAG &DAG = SDB->DAG;
8694   SDLoc dl = SDB->getCurSDLoc();
8695   const DataLayout &DL = DAG.getDataLayout();
8696   SmallVector<ISD::InputArg, 16> Ins;
8697 
8698   if (!FuncInfo->CanLowerReturn) {
8699     // Put in an sret pointer parameter before all the other parameters.
8700     SmallVector<EVT, 1> ValueVTs;
8701     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8702                     F.getReturnType()->getPointerTo(
8703                         DAG.getDataLayout().getAllocaAddrSpace()),
8704                     ValueVTs);
8705 
8706     // NOTE: Assuming that a pointer will never break down to more than one VT
8707     // or one register.
8708     ISD::ArgFlagsTy Flags;
8709     Flags.setSRet();
8710     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8711     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8712                          ISD::InputArg::NoArgIndex, 0);
8713     Ins.push_back(RetArg);
8714   }
8715 
8716   // Look for stores of arguments to static allocas. Mark such arguments with a
8717   // flag to ask the target to give us the memory location of that argument if
8718   // available.
8719   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8720   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8721 
8722   // Set up the incoming argument description vector.
8723   for (const Argument &Arg : F.args()) {
8724     unsigned ArgNo = Arg.getArgNo();
8725     SmallVector<EVT, 4> ValueVTs;
8726     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8727     bool isArgValueUsed = !Arg.use_empty();
8728     unsigned PartBase = 0;
8729     Type *FinalType = Arg.getType();
8730     if (Arg.hasAttribute(Attribute::ByVal))
8731       FinalType = cast<PointerType>(FinalType)->getElementType();
8732     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8733         FinalType, F.getCallingConv(), F.isVarArg());
8734     for (unsigned Value = 0, NumValues = ValueVTs.size();
8735          Value != NumValues; ++Value) {
8736       EVT VT = ValueVTs[Value];
8737       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8738       ISD::ArgFlagsTy Flags;
8739 
8740       // Certain targets (such as MIPS), may have a different ABI alignment
8741       // for a type depending on the context. Give the target a chance to
8742       // specify the alignment it wants.
8743       unsigned OriginalAlignment =
8744           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8745 
8746       if (Arg.hasAttribute(Attribute::ZExt))
8747         Flags.setZExt();
8748       if (Arg.hasAttribute(Attribute::SExt))
8749         Flags.setSExt();
8750       if (Arg.hasAttribute(Attribute::InReg)) {
8751         // If we are using vectorcall calling convention, a structure that is
8752         // passed InReg - is surely an HVA
8753         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8754             isa<StructType>(Arg.getType())) {
8755           // The first value of a structure is marked
8756           if (0 == Value)
8757             Flags.setHvaStart();
8758           Flags.setHva();
8759         }
8760         // Set InReg Flag
8761         Flags.setInReg();
8762       }
8763       if (Arg.hasAttribute(Attribute::StructRet))
8764         Flags.setSRet();
8765       if (Arg.hasAttribute(Attribute::SwiftSelf))
8766         Flags.setSwiftSelf();
8767       if (Arg.hasAttribute(Attribute::SwiftError))
8768         Flags.setSwiftError();
8769       if (Arg.hasAttribute(Attribute::ByVal))
8770         Flags.setByVal();
8771       if (Arg.hasAttribute(Attribute::InAlloca)) {
8772         Flags.setInAlloca();
8773         // Set the byval flag for CCAssignFn callbacks that don't know about
8774         // inalloca.  This way we can know how many bytes we should've allocated
8775         // and how many bytes a callee cleanup function will pop.  If we port
8776         // inalloca to more targets, we'll have to add custom inalloca handling
8777         // in the various CC lowering callbacks.
8778         Flags.setByVal();
8779       }
8780       if (F.getCallingConv() == CallingConv::X86_INTR) {
8781         // IA Interrupt passes frame (1st parameter) by value in the stack.
8782         if (ArgNo == 0)
8783           Flags.setByVal();
8784       }
8785       if (Flags.isByVal() || Flags.isInAlloca()) {
8786         PointerType *Ty = cast<PointerType>(Arg.getType());
8787         Type *ElementTy = Ty->getElementType();
8788         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8789         // For ByVal, alignment should be passed from FE.  BE will guess if
8790         // this info is not there but there are cases it cannot get right.
8791         unsigned FrameAlign;
8792         if (Arg.getParamAlignment())
8793           FrameAlign = Arg.getParamAlignment();
8794         else
8795           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8796         Flags.setByValAlign(FrameAlign);
8797       }
8798       if (Arg.hasAttribute(Attribute::Nest))
8799         Flags.setNest();
8800       if (NeedsRegBlock)
8801         Flags.setInConsecutiveRegs();
8802       Flags.setOrigAlign(OriginalAlignment);
8803       if (ArgCopyElisionCandidates.count(&Arg))
8804         Flags.setCopyElisionCandidate();
8805 
8806       MVT RegisterVT =
8807           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8808       unsigned NumRegs =
8809           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8810       for (unsigned i = 0; i != NumRegs; ++i) {
8811         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8812                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8813         if (NumRegs > 1 && i == 0)
8814           MyFlags.Flags.setSplit();
8815         // if it isn't first piece, alignment must be 1
8816         else if (i > 0) {
8817           MyFlags.Flags.setOrigAlign(1);
8818           if (i == NumRegs - 1)
8819             MyFlags.Flags.setSplitEnd();
8820         }
8821         Ins.push_back(MyFlags);
8822       }
8823       if (NeedsRegBlock && Value == NumValues - 1)
8824         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8825       PartBase += VT.getStoreSize();
8826     }
8827   }
8828 
8829   // Call the target to set up the argument values.
8830   SmallVector<SDValue, 8> InVals;
8831   SDValue NewRoot = TLI->LowerFormalArguments(
8832       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8833 
8834   // Verify that the target's LowerFormalArguments behaved as expected.
8835   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8836          "LowerFormalArguments didn't return a valid chain!");
8837   assert(InVals.size() == Ins.size() &&
8838          "LowerFormalArguments didn't emit the correct number of values!");
8839   DEBUG({
8840       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8841         assert(InVals[i].getNode() &&
8842                "LowerFormalArguments emitted a null value!");
8843         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8844                "LowerFormalArguments emitted a value with the wrong type!");
8845       }
8846     });
8847 
8848   // Update the DAG with the new chain value resulting from argument lowering.
8849   DAG.setRoot(NewRoot);
8850 
8851   // Set up the argument values.
8852   unsigned i = 0;
8853   if (!FuncInfo->CanLowerReturn) {
8854     // Create a virtual register for the sret pointer, and put in a copy
8855     // from the sret argument into it.
8856     SmallVector<EVT, 1> ValueVTs;
8857     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8858                     F.getReturnType()->getPointerTo(
8859                         DAG.getDataLayout().getAllocaAddrSpace()),
8860                     ValueVTs);
8861     MVT VT = ValueVTs[0].getSimpleVT();
8862     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8863     Optional<ISD::NodeType> AssertOp = None;
8864     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8865                                         RegVT, VT, nullptr, AssertOp);
8866 
8867     MachineFunction& MF = SDB->DAG.getMachineFunction();
8868     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8869     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8870     FuncInfo->DemoteRegister = SRetReg;
8871     NewRoot =
8872         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8873     DAG.setRoot(NewRoot);
8874 
8875     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8876     ++i;
8877   }
8878 
8879   SmallVector<SDValue, 4> Chains;
8880   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8881   for (const Argument &Arg : F.args()) {
8882     SmallVector<SDValue, 4> ArgValues;
8883     SmallVector<EVT, 4> ValueVTs;
8884     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8885     unsigned NumValues = ValueVTs.size();
8886     if (NumValues == 0)
8887       continue;
8888 
8889     bool ArgHasUses = !Arg.use_empty();
8890 
8891     // Elide the copying store if the target loaded this argument from a
8892     // suitable fixed stack object.
8893     if (Ins[i].Flags.isCopyElisionCandidate()) {
8894       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8895                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8896                              InVals[i], ArgHasUses);
8897     }
8898 
8899     // If this argument is unused then remember its value. It is used to generate
8900     // debugging information.
8901     bool isSwiftErrorArg =
8902         TLI->supportSwiftError() &&
8903         Arg.hasAttribute(Attribute::SwiftError);
8904     if (!ArgHasUses && !isSwiftErrorArg) {
8905       SDB->setUnusedArgValue(&Arg, InVals[i]);
8906 
8907       // Also remember any frame index for use in FastISel.
8908       if (FrameIndexSDNode *FI =
8909           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8910         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8911     }
8912 
8913     for (unsigned Val = 0; Val != NumValues; ++Val) {
8914       EVT VT = ValueVTs[Val];
8915       MVT PartVT =
8916           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8917       unsigned NumParts =
8918           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8919 
8920       // Even an apparant 'unused' swifterror argument needs to be returned. So
8921       // we do generate a copy for it that can be used on return from the
8922       // function.
8923       if (ArgHasUses || isSwiftErrorArg) {
8924         Optional<ISD::NodeType> AssertOp;
8925         if (Arg.hasAttribute(Attribute::SExt))
8926           AssertOp = ISD::AssertSext;
8927         else if (Arg.hasAttribute(Attribute::ZExt))
8928           AssertOp = ISD::AssertZext;
8929 
8930         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8931                                              PartVT, VT, nullptr, AssertOp,
8932                                              true));
8933       }
8934 
8935       i += NumParts;
8936     }
8937 
8938     // We don't need to do anything else for unused arguments.
8939     if (ArgValues.empty())
8940       continue;
8941 
8942     // Note down frame index.
8943     if (FrameIndexSDNode *FI =
8944         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8945       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8946 
8947     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8948                                      SDB->getCurSDLoc());
8949 
8950     SDB->setValue(&Arg, Res);
8951     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8952       // We want to associate the argument with the frame index, among
8953       // involved operands, that correspond to the lowest address. The
8954       // getCopyFromParts function, called earlier, is swapping the order of
8955       // the operands to BUILD_PAIR depending on endianness. The result of
8956       // that swapping is that the least significant bits of the argument will
8957       // be in the first operand of the BUILD_PAIR node, and the most
8958       // significant bits will be in the second operand.
8959       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8960       if (LoadSDNode *LNode =
8961           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
8962         if (FrameIndexSDNode *FI =
8963             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8964           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8965     }
8966 
8967     // Update the SwiftErrorVRegDefMap.
8968     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8969       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8970       if (TargetRegisterInfo::isVirtualRegister(Reg))
8971         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8972                                            FuncInfo->SwiftErrorArg, Reg);
8973     }
8974 
8975     // If this argument is live outside of the entry block, insert a copy from
8976     // wherever we got it to the vreg that other BB's will reference it as.
8977     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8978       // If we can, though, try to skip creating an unnecessary vreg.
8979       // FIXME: This isn't very clean... it would be nice to make this more
8980       // general.  It's also subtly incompatible with the hacks FastISel
8981       // uses with vregs.
8982       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8983       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8984         FuncInfo->ValueMap[&Arg] = Reg;
8985         continue;
8986       }
8987     }
8988     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8989       FuncInfo->InitializeRegForValue(&Arg);
8990       SDB->CopyToExportRegsIfNeeded(&Arg);
8991     }
8992   }
8993 
8994   if (!Chains.empty()) {
8995     Chains.push_back(NewRoot);
8996     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8997   }
8998 
8999   DAG.setRoot(NewRoot);
9000 
9001   assert(i == InVals.size() && "Argument register count mismatch!");
9002 
9003   // If any argument copy elisions occurred and we have debug info, update the
9004   // stale frame indices used in the dbg.declare variable info table.
9005   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9006   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9007     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9008       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9009       if (I != ArgCopyElisionFrameIndexMap.end())
9010         VI.Slot = I->second;
9011     }
9012   }
9013 
9014   // Finally, if the target has anything special to do, allow it to do so.
9015   EmitFunctionEntryCode();
9016 }
9017 
9018 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9019 /// ensure constants are generated when needed.  Remember the virtual registers
9020 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9021 /// directly add them, because expansion might result in multiple MBB's for one
9022 /// BB.  As such, the start of the BB might correspond to a different MBB than
9023 /// the end.
9024 void
9025 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9026   const TerminatorInst *TI = LLVMBB->getTerminator();
9027 
9028   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9029 
9030   // Check PHI nodes in successors that expect a value to be available from this
9031   // block.
9032   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9033     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9034     if (!isa<PHINode>(SuccBB->begin())) continue;
9035     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9036 
9037     // If this terminator has multiple identical successors (common for
9038     // switches), only handle each succ once.
9039     if (!SuccsHandled.insert(SuccMBB).second)
9040       continue;
9041 
9042     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9043 
9044     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9045     // nodes and Machine PHI nodes, but the incoming operands have not been
9046     // emitted yet.
9047     for (const PHINode &PN : SuccBB->phis()) {
9048       // Ignore dead phi's.
9049       if (PN.use_empty())
9050         continue;
9051 
9052       // Skip empty types
9053       if (PN.getType()->isEmptyTy())
9054         continue;
9055 
9056       unsigned Reg;
9057       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9058 
9059       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9060         unsigned &RegOut = ConstantsOut[C];
9061         if (RegOut == 0) {
9062           RegOut = FuncInfo.CreateRegs(C->getType());
9063           CopyValueToVirtualRegister(C, RegOut);
9064         }
9065         Reg = RegOut;
9066       } else {
9067         DenseMap<const Value *, unsigned>::iterator I =
9068           FuncInfo.ValueMap.find(PHIOp);
9069         if (I != FuncInfo.ValueMap.end())
9070           Reg = I->second;
9071         else {
9072           assert(isa<AllocaInst>(PHIOp) &&
9073                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9074                  "Didn't codegen value into a register!??");
9075           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9076           CopyValueToVirtualRegister(PHIOp, Reg);
9077         }
9078       }
9079 
9080       // Remember that this register needs to added to the machine PHI node as
9081       // the input for this MBB.
9082       SmallVector<EVT, 4> ValueVTs;
9083       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9084       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9085       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9086         EVT VT = ValueVTs[vti];
9087         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9088         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9089           FuncInfo.PHINodesToUpdate.push_back(
9090               std::make_pair(&*MBBI++, Reg + i));
9091         Reg += NumRegisters;
9092       }
9093     }
9094   }
9095 
9096   ConstantsOut.clear();
9097 }
9098 
9099 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9100 /// is 0.
9101 MachineBasicBlock *
9102 SelectionDAGBuilder::StackProtectorDescriptor::
9103 AddSuccessorMBB(const BasicBlock *BB,
9104                 MachineBasicBlock *ParentMBB,
9105                 bool IsLikely,
9106                 MachineBasicBlock *SuccMBB) {
9107   // If SuccBB has not been created yet, create it.
9108   if (!SuccMBB) {
9109     MachineFunction *MF = ParentMBB->getParent();
9110     MachineFunction::iterator BBI(ParentMBB);
9111     SuccMBB = MF->CreateMachineBasicBlock(BB);
9112     MF->insert(++BBI, SuccMBB);
9113   }
9114   // Add it as a successor of ParentMBB.
9115   ParentMBB->addSuccessor(
9116       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9117   return SuccMBB;
9118 }
9119 
9120 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9121   MachineFunction::iterator I(MBB);
9122   if (++I == FuncInfo.MF->end())
9123     return nullptr;
9124   return &*I;
9125 }
9126 
9127 /// During lowering new call nodes can be created (such as memset, etc.).
9128 /// Those will become new roots of the current DAG, but complications arise
9129 /// when they are tail calls. In such cases, the call lowering will update
9130 /// the root, but the builder still needs to know that a tail call has been
9131 /// lowered in order to avoid generating an additional return.
9132 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9133   // If the node is null, we do have a tail call.
9134   if (MaybeTC.getNode() != nullptr)
9135     DAG.setRoot(MaybeTC);
9136   else
9137     HasTailCall = true;
9138 }
9139 
9140 uint64_t
9141 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9142                                        unsigned First, unsigned Last) const {
9143   assert(Last >= First);
9144   const APInt &LowCase = Clusters[First].Low->getValue();
9145   const APInt &HighCase = Clusters[Last].High->getValue();
9146   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9147 
9148   // FIXME: A range of consecutive cases has 100% density, but only requires one
9149   // comparison to lower. We should discriminate against such consecutive ranges
9150   // in jump tables.
9151 
9152   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9153 }
9154 
9155 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9156     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9157     unsigned Last) const {
9158   assert(Last >= First);
9159   assert(TotalCases[Last] >= TotalCases[First]);
9160   uint64_t NumCases =
9161       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9162   return NumCases;
9163 }
9164 
9165 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9166                                          unsigned First, unsigned Last,
9167                                          const SwitchInst *SI,
9168                                          MachineBasicBlock *DefaultMBB,
9169                                          CaseCluster &JTCluster) {
9170   assert(First <= Last);
9171 
9172   auto Prob = BranchProbability::getZero();
9173   unsigned NumCmps = 0;
9174   std::vector<MachineBasicBlock*> Table;
9175   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9176 
9177   // Initialize probabilities in JTProbs.
9178   for (unsigned I = First; I <= Last; ++I)
9179     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9180 
9181   for (unsigned I = First; I <= Last; ++I) {
9182     assert(Clusters[I].Kind == CC_Range);
9183     Prob += Clusters[I].Prob;
9184     const APInt &Low = Clusters[I].Low->getValue();
9185     const APInt &High = Clusters[I].High->getValue();
9186     NumCmps += (Low == High) ? 1 : 2;
9187     if (I != First) {
9188       // Fill the gap between this and the previous cluster.
9189       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9190       assert(PreviousHigh.slt(Low));
9191       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9192       for (uint64_t J = 0; J < Gap; J++)
9193         Table.push_back(DefaultMBB);
9194     }
9195     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9196     for (uint64_t J = 0; J < ClusterSize; ++J)
9197       Table.push_back(Clusters[I].MBB);
9198     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9199   }
9200 
9201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9202   unsigned NumDests = JTProbs.size();
9203   if (TLI.isSuitableForBitTests(
9204           NumDests, NumCmps, Clusters[First].Low->getValue(),
9205           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9206     // Clusters[First..Last] should be lowered as bit tests instead.
9207     return false;
9208   }
9209 
9210   // Create the MBB that will load from and jump through the table.
9211   // Note: We create it here, but it's not inserted into the function yet.
9212   MachineFunction *CurMF = FuncInfo.MF;
9213   MachineBasicBlock *JumpTableMBB =
9214       CurMF->CreateMachineBasicBlock(SI->getParent());
9215 
9216   // Add successors. Note: use table order for determinism.
9217   SmallPtrSet<MachineBasicBlock *, 8> Done;
9218   for (MachineBasicBlock *Succ : Table) {
9219     if (Done.count(Succ))
9220       continue;
9221     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9222     Done.insert(Succ);
9223   }
9224   JumpTableMBB->normalizeSuccProbs();
9225 
9226   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9227                      ->createJumpTableIndex(Table);
9228 
9229   // Set up the jump table info.
9230   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9231   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9232                       Clusters[Last].High->getValue(), SI->getCondition(),
9233                       nullptr, false);
9234   JTCases.emplace_back(std::move(JTH), std::move(JT));
9235 
9236   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9237                                      JTCases.size() - 1, Prob);
9238   return true;
9239 }
9240 
9241 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9242                                          const SwitchInst *SI,
9243                                          MachineBasicBlock *DefaultMBB) {
9244 #ifndef NDEBUG
9245   // Clusters must be non-empty, sorted, and only contain Range clusters.
9246   assert(!Clusters.empty());
9247   for (CaseCluster &C : Clusters)
9248     assert(C.Kind == CC_Range);
9249   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9250     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9251 #endif
9252 
9253   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9254   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9255     return;
9256 
9257   const int64_t N = Clusters.size();
9258   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9259   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9260 
9261   if (N < 2 || N < MinJumpTableEntries)
9262     return;
9263 
9264   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9265   SmallVector<unsigned, 8> TotalCases(N);
9266   for (unsigned i = 0; i < N; ++i) {
9267     const APInt &Hi = Clusters[i].High->getValue();
9268     const APInt &Lo = Clusters[i].Low->getValue();
9269     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9270     if (i != 0)
9271       TotalCases[i] += TotalCases[i - 1];
9272   }
9273 
9274   // Cheap case: the whole range may be suitable for jump table.
9275   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9276   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9277   assert(NumCases < UINT64_MAX / 100);
9278   assert(Range >= NumCases);
9279   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9280     CaseCluster JTCluster;
9281     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9282       Clusters[0] = JTCluster;
9283       Clusters.resize(1);
9284       return;
9285     }
9286   }
9287 
9288   // The algorithm below is not suitable for -O0.
9289   if (TM.getOptLevel() == CodeGenOpt::None)
9290     return;
9291 
9292   // Split Clusters into minimum number of dense partitions. The algorithm uses
9293   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9294   // for the Case Statement'" (1994), but builds the MinPartitions array in
9295   // reverse order to make it easier to reconstruct the partitions in ascending
9296   // order. In the choice between two optimal partitionings, it picks the one
9297   // which yields more jump tables.
9298 
9299   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9300   SmallVector<unsigned, 8> MinPartitions(N);
9301   // LastElement[i] is the last element of the partition starting at i.
9302   SmallVector<unsigned, 8> LastElement(N);
9303   // PartitionsScore[i] is used to break ties when choosing between two
9304   // partitionings resulting in the same number of partitions.
9305   SmallVector<unsigned, 8> PartitionsScore(N);
9306   // For PartitionsScore, a small number of comparisons is considered as good as
9307   // a jump table and a single comparison is considered better than a jump
9308   // table.
9309   enum PartitionScores : unsigned {
9310     NoTable = 0,
9311     Table = 1,
9312     FewCases = 1,
9313     SingleCase = 2
9314   };
9315 
9316   // Base case: There is only one way to partition Clusters[N-1].
9317   MinPartitions[N - 1] = 1;
9318   LastElement[N - 1] = N - 1;
9319   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9320 
9321   // Note: loop indexes are signed to avoid underflow.
9322   for (int64_t i = N - 2; i >= 0; i--) {
9323     // Find optimal partitioning of Clusters[i..N-1].
9324     // Baseline: Put Clusters[i] into a partition on its own.
9325     MinPartitions[i] = MinPartitions[i + 1] + 1;
9326     LastElement[i] = i;
9327     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9328 
9329     // Search for a solution that results in fewer partitions.
9330     for (int64_t j = N - 1; j > i; j--) {
9331       // Try building a partition from Clusters[i..j].
9332       uint64_t Range = getJumpTableRange(Clusters, i, j);
9333       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9334       assert(NumCases < UINT64_MAX / 100);
9335       assert(Range >= NumCases);
9336       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9337         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9338         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9339         int64_t NumEntries = j - i + 1;
9340 
9341         if (NumEntries == 1)
9342           Score += PartitionScores::SingleCase;
9343         else if (NumEntries <= SmallNumberOfEntries)
9344           Score += PartitionScores::FewCases;
9345         else if (NumEntries >= MinJumpTableEntries)
9346           Score += PartitionScores::Table;
9347 
9348         // If this leads to fewer partitions, or to the same number of
9349         // partitions with better score, it is a better partitioning.
9350         if (NumPartitions < MinPartitions[i] ||
9351             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9352           MinPartitions[i] = NumPartitions;
9353           LastElement[i] = j;
9354           PartitionsScore[i] = Score;
9355         }
9356       }
9357     }
9358   }
9359 
9360   // Iterate over the partitions, replacing some with jump tables in-place.
9361   unsigned DstIndex = 0;
9362   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9363     Last = LastElement[First];
9364     assert(Last >= First);
9365     assert(DstIndex <= First);
9366     unsigned NumClusters = Last - First + 1;
9367 
9368     CaseCluster JTCluster;
9369     if (NumClusters >= MinJumpTableEntries &&
9370         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9371       Clusters[DstIndex++] = JTCluster;
9372     } else {
9373       for (unsigned I = First; I <= Last; ++I)
9374         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9375     }
9376   }
9377   Clusters.resize(DstIndex);
9378 }
9379 
9380 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9381                                         unsigned First, unsigned Last,
9382                                         const SwitchInst *SI,
9383                                         CaseCluster &BTCluster) {
9384   assert(First <= Last);
9385   if (First == Last)
9386     return false;
9387 
9388   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9389   unsigned NumCmps = 0;
9390   for (int64_t I = First; I <= Last; ++I) {
9391     assert(Clusters[I].Kind == CC_Range);
9392     Dests.set(Clusters[I].MBB->getNumber());
9393     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9394   }
9395   unsigned NumDests = Dests.count();
9396 
9397   APInt Low = Clusters[First].Low->getValue();
9398   APInt High = Clusters[Last].High->getValue();
9399   assert(Low.slt(High));
9400 
9401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9402   const DataLayout &DL = DAG.getDataLayout();
9403   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9404     return false;
9405 
9406   APInt LowBound;
9407   APInt CmpRange;
9408 
9409   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9410   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9411          "Case range must fit in bit mask!");
9412 
9413   // Check if the clusters cover a contiguous range such that no value in the
9414   // range will jump to the default statement.
9415   bool ContiguousRange = true;
9416   for (int64_t I = First + 1; I <= Last; ++I) {
9417     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9418       ContiguousRange = false;
9419       break;
9420     }
9421   }
9422 
9423   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9424     // Optimize the case where all the case values fit in a word without having
9425     // to subtract minValue. In this case, we can optimize away the subtraction.
9426     LowBound = APInt::getNullValue(Low.getBitWidth());
9427     CmpRange = High;
9428     ContiguousRange = false;
9429   } else {
9430     LowBound = Low;
9431     CmpRange = High - Low;
9432   }
9433 
9434   CaseBitsVector CBV;
9435   auto TotalProb = BranchProbability::getZero();
9436   for (unsigned i = First; i <= Last; ++i) {
9437     // Find the CaseBits for this destination.
9438     unsigned j;
9439     for (j = 0; j < CBV.size(); ++j)
9440       if (CBV[j].BB == Clusters[i].MBB)
9441         break;
9442     if (j == CBV.size())
9443       CBV.push_back(
9444           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9445     CaseBits *CB = &CBV[j];
9446 
9447     // Update Mask, Bits and ExtraProb.
9448     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9449     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9450     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9451     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9452     CB->Bits += Hi - Lo + 1;
9453     CB->ExtraProb += Clusters[i].Prob;
9454     TotalProb += Clusters[i].Prob;
9455   }
9456 
9457   BitTestInfo BTI;
9458   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9459     // Sort by probability first, number of bits second, bit mask third.
9460     if (a.ExtraProb != b.ExtraProb)
9461       return a.ExtraProb > b.ExtraProb;
9462     if (a.Bits != b.Bits)
9463       return a.Bits > b.Bits;
9464     return a.Mask < b.Mask;
9465   });
9466 
9467   for (auto &CB : CBV) {
9468     MachineBasicBlock *BitTestBB =
9469         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9470     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9471   }
9472   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9473                             SI->getCondition(), -1U, MVT::Other, false,
9474                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9475                             TotalProb);
9476 
9477   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9478                                     BitTestCases.size() - 1, TotalProb);
9479   return true;
9480 }
9481 
9482 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9483                                               const SwitchInst *SI) {
9484 // Partition Clusters into as few subsets as possible, where each subset has a
9485 // range that fits in a machine word and has <= 3 unique destinations.
9486 
9487 #ifndef NDEBUG
9488   // Clusters must be sorted and contain Range or JumpTable clusters.
9489   assert(!Clusters.empty());
9490   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9491   for (const CaseCluster &C : Clusters)
9492     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9493   for (unsigned i = 1; i < Clusters.size(); ++i)
9494     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9495 #endif
9496 
9497   // The algorithm below is not suitable for -O0.
9498   if (TM.getOptLevel() == CodeGenOpt::None)
9499     return;
9500 
9501   // If target does not have legal shift left, do not emit bit tests at all.
9502   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9503   const DataLayout &DL = DAG.getDataLayout();
9504 
9505   EVT PTy = TLI.getPointerTy(DL);
9506   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9507     return;
9508 
9509   int BitWidth = PTy.getSizeInBits();
9510   const int64_t N = Clusters.size();
9511 
9512   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9513   SmallVector<unsigned, 8> MinPartitions(N);
9514   // LastElement[i] is the last element of the partition starting at i.
9515   SmallVector<unsigned, 8> LastElement(N);
9516 
9517   // FIXME: This might not be the best algorithm for finding bit test clusters.
9518 
9519   // Base case: There is only one way to partition Clusters[N-1].
9520   MinPartitions[N - 1] = 1;
9521   LastElement[N - 1] = N - 1;
9522 
9523   // Note: loop indexes are signed to avoid underflow.
9524   for (int64_t i = N - 2; i >= 0; --i) {
9525     // Find optimal partitioning of Clusters[i..N-1].
9526     // Baseline: Put Clusters[i] into a partition on its own.
9527     MinPartitions[i] = MinPartitions[i + 1] + 1;
9528     LastElement[i] = i;
9529 
9530     // Search for a solution that results in fewer partitions.
9531     // Note: the search is limited by BitWidth, reducing time complexity.
9532     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9533       // Try building a partition from Clusters[i..j].
9534 
9535       // Check the range.
9536       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9537                                Clusters[j].High->getValue(), DL))
9538         continue;
9539 
9540       // Check nbr of destinations and cluster types.
9541       // FIXME: This works, but doesn't seem very efficient.
9542       bool RangesOnly = true;
9543       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9544       for (int64_t k = i; k <= j; k++) {
9545         if (Clusters[k].Kind != CC_Range) {
9546           RangesOnly = false;
9547           break;
9548         }
9549         Dests.set(Clusters[k].MBB->getNumber());
9550       }
9551       if (!RangesOnly || Dests.count() > 3)
9552         break;
9553 
9554       // Check if it's a better partition.
9555       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9556       if (NumPartitions < MinPartitions[i]) {
9557         // Found a better partition.
9558         MinPartitions[i] = NumPartitions;
9559         LastElement[i] = j;
9560       }
9561     }
9562   }
9563 
9564   // Iterate over the partitions, replacing with bit-test clusters in-place.
9565   unsigned DstIndex = 0;
9566   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9567     Last = LastElement[First];
9568     assert(First <= Last);
9569     assert(DstIndex <= First);
9570 
9571     CaseCluster BitTestCluster;
9572     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9573       Clusters[DstIndex++] = BitTestCluster;
9574     } else {
9575       size_t NumClusters = Last - First + 1;
9576       std::memmove(&Clusters[DstIndex], &Clusters[First],
9577                    sizeof(Clusters[0]) * NumClusters);
9578       DstIndex += NumClusters;
9579     }
9580   }
9581   Clusters.resize(DstIndex);
9582 }
9583 
9584 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9585                                         MachineBasicBlock *SwitchMBB,
9586                                         MachineBasicBlock *DefaultMBB) {
9587   MachineFunction *CurMF = FuncInfo.MF;
9588   MachineBasicBlock *NextMBB = nullptr;
9589   MachineFunction::iterator BBI(W.MBB);
9590   if (++BBI != FuncInfo.MF->end())
9591     NextMBB = &*BBI;
9592 
9593   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9594 
9595   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9596 
9597   if (Size == 2 && W.MBB == SwitchMBB) {
9598     // If any two of the cases has the same destination, and if one value
9599     // is the same as the other, but has one bit unset that the other has set,
9600     // use bit manipulation to do two compares at once.  For example:
9601     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9602     // TODO: This could be extended to merge any 2 cases in switches with 3
9603     // cases.
9604     // TODO: Handle cases where W.CaseBB != SwitchBB.
9605     CaseCluster &Small = *W.FirstCluster;
9606     CaseCluster &Big = *W.LastCluster;
9607 
9608     if (Small.Low == Small.High && Big.Low == Big.High &&
9609         Small.MBB == Big.MBB) {
9610       const APInt &SmallValue = Small.Low->getValue();
9611       const APInt &BigValue = Big.Low->getValue();
9612 
9613       // Check that there is only one bit different.
9614       APInt CommonBit = BigValue ^ SmallValue;
9615       if (CommonBit.isPowerOf2()) {
9616         SDValue CondLHS = getValue(Cond);
9617         EVT VT = CondLHS.getValueType();
9618         SDLoc DL = getCurSDLoc();
9619 
9620         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9621                                  DAG.getConstant(CommonBit, DL, VT));
9622         SDValue Cond = DAG.getSetCC(
9623             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9624             ISD::SETEQ);
9625 
9626         // Update successor info.
9627         // Both Small and Big will jump to Small.BB, so we sum up the
9628         // probabilities.
9629         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9630         if (BPI)
9631           addSuccessorWithProb(
9632               SwitchMBB, DefaultMBB,
9633               // The default destination is the first successor in IR.
9634               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9635         else
9636           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9637 
9638         // Insert the true branch.
9639         SDValue BrCond =
9640             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9641                         DAG.getBasicBlock(Small.MBB));
9642         // Insert the false branch.
9643         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9644                              DAG.getBasicBlock(DefaultMBB));
9645 
9646         DAG.setRoot(BrCond);
9647         return;
9648       }
9649     }
9650   }
9651 
9652   if (TM.getOptLevel() != CodeGenOpt::None) {
9653     // Here, we order cases by probability so the most likely case will be
9654     // checked first. However, two clusters can have the same probability in
9655     // which case their relative ordering is non-deterministic. So we use Low
9656     // as a tie-breaker as clusters are guaranteed to never overlap.
9657     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9658                [](const CaseCluster &a, const CaseCluster &b) {
9659       return a.Prob != b.Prob ?
9660              a.Prob > b.Prob :
9661              a.Low->getValue().slt(b.Low->getValue());
9662     });
9663 
9664     // Rearrange the case blocks so that the last one falls through if possible
9665     // without changing the order of probabilities.
9666     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9667       --I;
9668       if (I->Prob > W.LastCluster->Prob)
9669         break;
9670       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9671         std::swap(*I, *W.LastCluster);
9672         break;
9673       }
9674     }
9675   }
9676 
9677   // Compute total probability.
9678   BranchProbability DefaultProb = W.DefaultProb;
9679   BranchProbability UnhandledProbs = DefaultProb;
9680   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9681     UnhandledProbs += I->Prob;
9682 
9683   MachineBasicBlock *CurMBB = W.MBB;
9684   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9685     MachineBasicBlock *Fallthrough;
9686     if (I == W.LastCluster) {
9687       // For the last cluster, fall through to the default destination.
9688       Fallthrough = DefaultMBB;
9689     } else {
9690       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9691       CurMF->insert(BBI, Fallthrough);
9692       // Put Cond in a virtual register to make it available from the new blocks.
9693       ExportFromCurrentBlock(Cond);
9694     }
9695     UnhandledProbs -= I->Prob;
9696 
9697     switch (I->Kind) {
9698       case CC_JumpTable: {
9699         // FIXME: Optimize away range check based on pivot comparisons.
9700         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9701         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9702 
9703         // The jump block hasn't been inserted yet; insert it here.
9704         MachineBasicBlock *JumpMBB = JT->MBB;
9705         CurMF->insert(BBI, JumpMBB);
9706 
9707         auto JumpProb = I->Prob;
9708         auto FallthroughProb = UnhandledProbs;
9709 
9710         // If the default statement is a target of the jump table, we evenly
9711         // distribute the default probability to successors of CurMBB. Also
9712         // update the probability on the edge from JumpMBB to Fallthrough.
9713         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9714                                               SE = JumpMBB->succ_end();
9715              SI != SE; ++SI) {
9716           if (*SI == DefaultMBB) {
9717             JumpProb += DefaultProb / 2;
9718             FallthroughProb -= DefaultProb / 2;
9719             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9720             JumpMBB->normalizeSuccProbs();
9721             break;
9722           }
9723         }
9724 
9725         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9726         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9727         CurMBB->normalizeSuccProbs();
9728 
9729         // The jump table header will be inserted in our current block, do the
9730         // range check, and fall through to our fallthrough block.
9731         JTH->HeaderBB = CurMBB;
9732         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9733 
9734         // If we're in the right place, emit the jump table header right now.
9735         if (CurMBB == SwitchMBB) {
9736           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9737           JTH->Emitted = true;
9738         }
9739         break;
9740       }
9741       case CC_BitTests: {
9742         // FIXME: Optimize away range check based on pivot comparisons.
9743         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9744 
9745         // The bit test blocks haven't been inserted yet; insert them here.
9746         for (BitTestCase &BTC : BTB->Cases)
9747           CurMF->insert(BBI, BTC.ThisBB);
9748 
9749         // Fill in fields of the BitTestBlock.
9750         BTB->Parent = CurMBB;
9751         BTB->Default = Fallthrough;
9752 
9753         BTB->DefaultProb = UnhandledProbs;
9754         // If the cases in bit test don't form a contiguous range, we evenly
9755         // distribute the probability on the edge to Fallthrough to two
9756         // successors of CurMBB.
9757         if (!BTB->ContiguousRange) {
9758           BTB->Prob += DefaultProb / 2;
9759           BTB->DefaultProb -= DefaultProb / 2;
9760         }
9761 
9762         // If we're in the right place, emit the bit test header right now.
9763         if (CurMBB == SwitchMBB) {
9764           visitBitTestHeader(*BTB, SwitchMBB);
9765           BTB->Emitted = true;
9766         }
9767         break;
9768       }
9769       case CC_Range: {
9770         const Value *RHS, *LHS, *MHS;
9771         ISD::CondCode CC;
9772         if (I->Low == I->High) {
9773           // Check Cond == I->Low.
9774           CC = ISD::SETEQ;
9775           LHS = Cond;
9776           RHS=I->Low;
9777           MHS = nullptr;
9778         } else {
9779           // Check I->Low <= Cond <= I->High.
9780           CC = ISD::SETLE;
9781           LHS = I->Low;
9782           MHS = Cond;
9783           RHS = I->High;
9784         }
9785 
9786         // The false probability is the sum of all unhandled cases.
9787         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9788                      getCurSDLoc(), I->Prob, UnhandledProbs);
9789 
9790         if (CurMBB == SwitchMBB)
9791           visitSwitchCase(CB, SwitchMBB);
9792         else
9793           SwitchCases.push_back(CB);
9794 
9795         break;
9796       }
9797     }
9798     CurMBB = Fallthrough;
9799   }
9800 }
9801 
9802 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9803                                               CaseClusterIt First,
9804                                               CaseClusterIt Last) {
9805   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9806     if (X.Prob != CC.Prob)
9807       return X.Prob > CC.Prob;
9808 
9809     // Ties are broken by comparing the case value.
9810     return X.Low->getValue().slt(CC.Low->getValue());
9811   });
9812 }
9813 
9814 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9815                                         const SwitchWorkListItem &W,
9816                                         Value *Cond,
9817                                         MachineBasicBlock *SwitchMBB) {
9818   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9819          "Clusters not sorted?");
9820 
9821   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9822 
9823   // Balance the tree based on branch probabilities to create a near-optimal (in
9824   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9825   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9826   CaseClusterIt LastLeft = W.FirstCluster;
9827   CaseClusterIt FirstRight = W.LastCluster;
9828   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9829   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9830 
9831   // Move LastLeft and FirstRight towards each other from opposite directions to
9832   // find a partitioning of the clusters which balances the probability on both
9833   // sides. If LeftProb and RightProb are equal, alternate which side is
9834   // taken to ensure 0-probability nodes are distributed evenly.
9835   unsigned I = 0;
9836   while (LastLeft + 1 < FirstRight) {
9837     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9838       LeftProb += (++LastLeft)->Prob;
9839     else
9840       RightProb += (--FirstRight)->Prob;
9841     I++;
9842   }
9843 
9844   while (true) {
9845     // Our binary search tree differs from a typical BST in that ours can have up
9846     // to three values in each leaf. The pivot selection above doesn't take that
9847     // into account, which means the tree might require more nodes and be less
9848     // efficient. We compensate for this here.
9849 
9850     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9851     unsigned NumRight = W.LastCluster - FirstRight + 1;
9852 
9853     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9854       // If one side has less than 3 clusters, and the other has more than 3,
9855       // consider taking a cluster from the other side.
9856 
9857       if (NumLeft < NumRight) {
9858         // Consider moving the first cluster on the right to the left side.
9859         CaseCluster &CC = *FirstRight;
9860         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9861         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9862         if (LeftSideRank <= RightSideRank) {
9863           // Moving the cluster to the left does not demote it.
9864           ++LastLeft;
9865           ++FirstRight;
9866           continue;
9867         }
9868       } else {
9869         assert(NumRight < NumLeft);
9870         // Consider moving the last element on the left to the right side.
9871         CaseCluster &CC = *LastLeft;
9872         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9873         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9874         if (RightSideRank <= LeftSideRank) {
9875           // Moving the cluster to the right does not demot it.
9876           --LastLeft;
9877           --FirstRight;
9878           continue;
9879         }
9880       }
9881     }
9882     break;
9883   }
9884 
9885   assert(LastLeft + 1 == FirstRight);
9886   assert(LastLeft >= W.FirstCluster);
9887   assert(FirstRight <= W.LastCluster);
9888 
9889   // Use the first element on the right as pivot since we will make less-than
9890   // comparisons against it.
9891   CaseClusterIt PivotCluster = FirstRight;
9892   assert(PivotCluster > W.FirstCluster);
9893   assert(PivotCluster <= W.LastCluster);
9894 
9895   CaseClusterIt FirstLeft = W.FirstCluster;
9896   CaseClusterIt LastRight = W.LastCluster;
9897 
9898   const ConstantInt *Pivot = PivotCluster->Low;
9899 
9900   // New blocks will be inserted immediately after the current one.
9901   MachineFunction::iterator BBI(W.MBB);
9902   ++BBI;
9903 
9904   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9905   // we can branch to its destination directly if it's squeezed exactly in
9906   // between the known lower bound and Pivot - 1.
9907   MachineBasicBlock *LeftMBB;
9908   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9909       FirstLeft->Low == W.GE &&
9910       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9911     LeftMBB = FirstLeft->MBB;
9912   } else {
9913     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9914     FuncInfo.MF->insert(BBI, LeftMBB);
9915     WorkList.push_back(
9916         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9917     // Put Cond in a virtual register to make it available from the new blocks.
9918     ExportFromCurrentBlock(Cond);
9919   }
9920 
9921   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9922   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9923   // directly if RHS.High equals the current upper bound.
9924   MachineBasicBlock *RightMBB;
9925   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9926       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9927     RightMBB = FirstRight->MBB;
9928   } else {
9929     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9930     FuncInfo.MF->insert(BBI, RightMBB);
9931     WorkList.push_back(
9932         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9933     // Put Cond in a virtual register to make it available from the new blocks.
9934     ExportFromCurrentBlock(Cond);
9935   }
9936 
9937   // Create the CaseBlock record that will be used to lower the branch.
9938   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9939                getCurSDLoc(), LeftProb, RightProb);
9940 
9941   if (W.MBB == SwitchMBB)
9942     visitSwitchCase(CB, SwitchMBB);
9943   else
9944     SwitchCases.push_back(CB);
9945 }
9946 
9947 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
9948 // from the swith statement.
9949 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
9950                                             BranchProbability PeeledCaseProb) {
9951   if (PeeledCaseProb == BranchProbability::getOne())
9952     return BranchProbability::getZero();
9953   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
9954 
9955   uint32_t Numerator = CaseProb.getNumerator();
9956   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
9957   return BranchProbability(Numerator, std::max(Numerator, Denominator));
9958 }
9959 
9960 // Try to peel the top probability case if it exceeds the threshold.
9961 // Return current MachineBasicBlock for the switch statement if the peeling
9962 // does not occur.
9963 // If the peeling is performed, return the newly created MachineBasicBlock
9964 // for the peeled switch statement. Also update Clusters to remove the peeled
9965 // case. PeeledCaseProb is the BranchProbability for the peeled case.
9966 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
9967     const SwitchInst &SI, CaseClusterVector &Clusters,
9968     BranchProbability &PeeledCaseProb) {
9969   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9970   // Don't perform if there is only one cluster or optimizing for size.
9971   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
9972       TM.getOptLevel() == CodeGenOpt::None ||
9973       SwitchMBB->getParent()->getFunction().optForMinSize())
9974     return SwitchMBB;
9975 
9976   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
9977   unsigned PeeledCaseIndex = 0;
9978   bool SwitchPeeled = false;
9979   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
9980     CaseCluster &CC = Clusters[Index];
9981     if (CC.Prob < TopCaseProb)
9982       continue;
9983     TopCaseProb = CC.Prob;
9984     PeeledCaseIndex = Index;
9985     SwitchPeeled = true;
9986   }
9987   if (!SwitchPeeled)
9988     return SwitchMBB;
9989 
9990   DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb
9991                << "\n");
9992 
9993   // Record the MBB for the peeled switch statement.
9994   MachineFunction::iterator BBI(SwitchMBB);
9995   ++BBI;
9996   MachineBasicBlock *PeeledSwitchMBB =
9997       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
9998   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
9999 
10000   ExportFromCurrentBlock(SI.getCondition());
10001   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10002   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10003                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10004   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10005 
10006   Clusters.erase(PeeledCaseIt);
10007   for (CaseCluster &CC : Clusters) {
10008     DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: "
10009                  << CC.Prob << "\n");
10010     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10011     DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10012   }
10013   PeeledCaseProb = TopCaseProb;
10014   return PeeledSwitchMBB;
10015 }
10016 
10017 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10018   // Extract cases from the switch.
10019   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10020   CaseClusterVector Clusters;
10021   Clusters.reserve(SI.getNumCases());
10022   for (auto I : SI.cases()) {
10023     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10024     const ConstantInt *CaseVal = I.getCaseValue();
10025     BranchProbability Prob =
10026         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10027             : BranchProbability(1, SI.getNumCases() + 1);
10028     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10029   }
10030 
10031   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10032 
10033   // Cluster adjacent cases with the same destination. We do this at all
10034   // optimization levels because it's cheap to do and will make codegen faster
10035   // if there are many clusters.
10036   sortAndRangeify(Clusters);
10037 
10038   if (TM.getOptLevel() != CodeGenOpt::None) {
10039     // Replace an unreachable default with the most popular destination.
10040     // FIXME: Exploit unreachable default more aggressively.
10041     bool UnreachableDefault =
10042         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10043     if (UnreachableDefault && !Clusters.empty()) {
10044       DenseMap<const BasicBlock *, unsigned> Popularity;
10045       unsigned MaxPop = 0;
10046       const BasicBlock *MaxBB = nullptr;
10047       for (auto I : SI.cases()) {
10048         const BasicBlock *BB = I.getCaseSuccessor();
10049         if (++Popularity[BB] > MaxPop) {
10050           MaxPop = Popularity[BB];
10051           MaxBB = BB;
10052         }
10053       }
10054       // Set new default.
10055       assert(MaxPop > 0 && MaxBB);
10056       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10057 
10058       // Remove cases that were pointing to the destination that is now the
10059       // default.
10060       CaseClusterVector New;
10061       New.reserve(Clusters.size());
10062       for (CaseCluster &CC : Clusters) {
10063         if (CC.MBB != DefaultMBB)
10064           New.push_back(CC);
10065       }
10066       Clusters = std::move(New);
10067     }
10068   }
10069 
10070   // The branch probablity of the peeled case.
10071   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10072   MachineBasicBlock *PeeledSwitchMBB =
10073       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10074 
10075   // If there is only the default destination, jump there directly.
10076   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10077   if (Clusters.empty()) {
10078     assert(PeeledSwitchMBB == SwitchMBB);
10079     SwitchMBB->addSuccessor(DefaultMBB);
10080     if (DefaultMBB != NextBlock(SwitchMBB)) {
10081       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10082                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10083     }
10084     return;
10085   }
10086 
10087   findJumpTables(Clusters, &SI, DefaultMBB);
10088   findBitTestClusters(Clusters, &SI);
10089 
10090   DEBUG({
10091     dbgs() << "Case clusters: ";
10092     for (const CaseCluster &C : Clusters) {
10093       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
10094       if (C.Kind == CC_BitTests) dbgs() << "BT:";
10095 
10096       C.Low->getValue().print(dbgs(), true);
10097       if (C.Low != C.High) {
10098         dbgs() << '-';
10099         C.High->getValue().print(dbgs(), true);
10100       }
10101       dbgs() << ' ';
10102     }
10103     dbgs() << '\n';
10104   });
10105 
10106   assert(!Clusters.empty());
10107   SwitchWorkList WorkList;
10108   CaseClusterIt First = Clusters.begin();
10109   CaseClusterIt Last = Clusters.end() - 1;
10110   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10111   // Scale the branchprobability for DefaultMBB if the peel occurs and
10112   // DefaultMBB is not replaced.
10113   if (PeeledCaseProb != BranchProbability::getZero() &&
10114       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10115     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10116   WorkList.push_back(
10117       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10118 
10119   while (!WorkList.empty()) {
10120     SwitchWorkListItem W = WorkList.back();
10121     WorkList.pop_back();
10122     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10123 
10124     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10125         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10126       // For optimized builds, lower large range as a balanced binary tree.
10127       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10128       continue;
10129     }
10130 
10131     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10132   }
10133 }
10134