1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // True if the Value passed requires ABI mangling as it is a parameter to a 161 // function or a return value from a function which is not an intrinsic. 162 static bool isABIRegCopy(const Value *V) { 163 const bool IsRetInst = V && isa<ReturnInst>(V); 164 const bool IsCallInst = V && isa<CallInst>(V); 165 const bool IsInLineAsm = 166 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 167 const bool IsIndirectFunctionCall = 168 IsCallInst && !IsInLineAsm && 169 !static_cast<const CallInst *>(V)->getCalledFunction(); 170 // It is possible that the call instruction is an inline asm statement or an 171 // indirect function call in which case the return value of 172 // getCalledFunction() would be nullptr. 173 const bool IsInstrinsicCall = 174 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 175 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 176 Intrinsic::not_intrinsic; 177 178 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 179 } 180 181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 182 const SDValue *Parts, unsigned NumParts, 183 MVT PartVT, EVT ValueVT, const Value *V, 184 bool IsABIRegCopy); 185 186 /// getCopyFromParts - Create a value that contains the specified legal parts 187 /// combined into the value they represent. If the parts combine to a type 188 /// larger than ValueVT then AssertOp can be used to specify whether the extra 189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 190 /// (ISD::AssertSext). 191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 192 const SDValue *Parts, unsigned NumParts, 193 MVT PartVT, EVT ValueVT, const Value *V, 194 Optional<ISD::NodeType> AssertOp = None, 195 bool IsABIRegCopy = false) { 196 if (ValueVT.isVector()) 197 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 198 PartVT, ValueVT, V, IsABIRegCopy); 199 200 assert(NumParts > 0 && "No parts to assemble!"); 201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 202 SDValue Val = Parts[0]; 203 204 if (NumParts > 1) { 205 // Assemble the value from multiple parts. 206 if (ValueVT.isInteger()) { 207 unsigned PartBits = PartVT.getSizeInBits(); 208 unsigned ValueBits = ValueVT.getSizeInBits(); 209 210 // Assemble the power of 2 part. 211 unsigned RoundParts = NumParts & (NumParts - 1) ? 212 1 << Log2_32(NumParts) : NumParts; 213 unsigned RoundBits = PartBits * RoundParts; 214 EVT RoundVT = RoundBits == ValueBits ? 215 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 216 SDValue Lo, Hi; 217 218 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 219 220 if (RoundParts > 2) { 221 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 222 PartVT, HalfVT, V); 223 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 224 RoundParts / 2, PartVT, HalfVT, V); 225 } else { 226 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 227 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 228 } 229 230 if (DAG.getDataLayout().isBigEndian()) 231 std::swap(Lo, Hi); 232 233 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 234 235 if (RoundParts < NumParts) { 236 // Assemble the trailing non-power-of-2 part. 237 unsigned OddParts = NumParts - RoundParts; 238 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 239 Hi = getCopyFromParts(DAG, DL, 240 Parts + RoundParts, OddParts, PartVT, OddVT, V); 241 242 // Combine the round and odd parts. 243 Lo = Val; 244 if (DAG.getDataLayout().isBigEndian()) 245 std::swap(Lo, Hi); 246 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 247 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 248 Hi = 249 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 250 DAG.getConstant(Lo.getValueSizeInBits(), DL, 251 TLI.getPointerTy(DAG.getDataLayout()))); 252 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 253 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 254 } 255 } else if (PartVT.isFloatingPoint()) { 256 // FP split into multiple FP parts (for ppcf128) 257 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 258 "Unexpected split"); 259 SDValue Lo, Hi; 260 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 261 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 262 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 263 std::swap(Lo, Hi); 264 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 265 } else { 266 // FP split into integer parts (soft fp) 267 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 268 !PartVT.isVector() && "Unexpected split"); 269 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 271 } 272 } 273 274 // There is now one part, held in Val. Correct it to match ValueVT. 275 // PartEVT is the type of the register class that holds the value. 276 // ValueVT is the type of the inline asm operation. 277 EVT PartEVT = Val.getValueType(); 278 279 if (PartEVT == ValueVT) 280 return Val; 281 282 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 283 ValueVT.bitsLT(PartEVT)) { 284 // For an FP value in an integer part, we need to truncate to the right 285 // width first. 286 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 288 } 289 290 // Handle types that have the same size. 291 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 292 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 293 294 // Handle types with different sizes. 295 if (PartEVT.isInteger() && ValueVT.isInteger()) { 296 if (ValueVT.bitsLT(PartEVT)) { 297 // For a truncate, see if we have any information to 298 // indicate whether the truncated bits will always be 299 // zero or sign-extension. 300 if (AssertOp.hasValue()) 301 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 302 DAG.getValueType(ValueVT)); 303 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 304 } 305 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 306 } 307 308 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 309 // FP_ROUND's are always exact here. 310 if (ValueVT.bitsLT(Val.getValueType())) 311 return DAG.getNode( 312 ISD::FP_ROUND, DL, ValueVT, Val, 313 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 314 315 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 316 } 317 318 llvm_unreachable("Unknown mismatch!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (isa<InlineAsm>(CI->getCalledValue())) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 bool IsABIRegCopy) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 359 RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 380 PartVT, IntermediateVT, V); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 389 PartVT, IntermediateVT, V); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 396 (IntermediateVT.isVector() 397 ? IntermediateVT.getVectorNumElements() * NumParts 398 : NumIntermediates)); 399 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 400 : ISD::BUILD_VECTOR, 401 DL, BuiltVectorTy, Ops); 402 } 403 404 // There is now one part, held in Val. Correct it to match ValueVT. 405 EVT PartEVT = Val.getValueType(); 406 407 if (PartEVT == ValueVT) 408 return Val; 409 410 if (PartEVT.isVector()) { 411 // If the element type of the source/dest vectors are the same, but the 412 // parts vector has more elements than the value vector, then we have a 413 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 414 // elements we want. 415 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 416 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 417 "Cannot narrow, it would be a lossy transformation"); 418 return DAG.getNode( 419 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 420 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 421 } 422 423 // Vector/Vector bitcast. 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 427 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 428 "Cannot handle this kind of promotion"); 429 // Promoted vector extract 430 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 431 432 } 433 434 // Trivial bitcast if the types are the same size and the destination 435 // vector type is legal. 436 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 437 TLI.isTypeLegal(ValueVT)) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 if (ValueVT.getVectorNumElements() != 1) { 441 // Certain ABIs require that vectors are passed as integers. For vectors 442 // are the same size, this is an obvious bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 446 // Bitcast Val back the original type and extract the corresponding 447 // vector we want. 448 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 449 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 450 ValueVT.getVectorElementType(), Elts); 451 Val = DAG.getBitcast(WiderVecType, Val); 452 return DAG.getNode( 453 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 454 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 455 } 456 457 diagnosePossiblyInvalidConstraint( 458 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 459 return DAG.getUNDEF(ValueVT); 460 } 461 462 // Handle cases such as i8 -> <1 x i1> 463 EVT ValueSVT = ValueVT.getVectorElementType(); 464 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 465 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 468 return DAG.getBuildVector(ValueVT, DL, Val); 469 } 470 471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V, bool IsABIRegCopy); 474 475 /// getCopyToParts - Create a series of nodes that contain the specified value 476 /// split into legal parts. If the parts contain more bits than Val, then, for 477 /// integers, ExtendKind can be used to specify how to generate the extra bits. 478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 479 SDValue *Parts, unsigned NumParts, MVT PartVT, 480 const Value *V, 481 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 482 bool IsABIRegCopy = false) { 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 IsABIRegCopy); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getIntPtrConstant(RoundBits, DL)); 567 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 568 569 if (DAG.getDataLayout().isBigEndian()) 570 // The odd parts were reversed by getCopyToParts - unreverse them. 571 std::reverse(Parts + RoundParts, Parts + NumParts); 572 573 NumParts = RoundParts; 574 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 575 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 576 } 577 578 // The number of parts is a power of 2. Repeatedly bisect the value using 579 // EXTRACT_ELEMENT. 580 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 581 EVT::getIntegerVT(*DAG.getContext(), 582 ValueVT.getSizeInBits()), 583 Val); 584 585 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 586 for (unsigned i = 0; i < NumParts; i += StepSize) { 587 unsigned ThisBits = StepSize * PartBits / 2; 588 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 589 SDValue &Part0 = Parts[i]; 590 SDValue &Part1 = Parts[i+StepSize/2]; 591 592 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 594 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 596 597 if (ThisBits == PartBits && ThisVT != PartVT) { 598 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 599 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 600 } 601 } 602 } 603 604 if (DAG.getDataLayout().isBigEndian()) 605 std::reverse(Parts, Parts + OrigNumParts); 606 } 607 608 609 /// getCopyToPartsVector - Create a series of nodes that contain the specified 610 /// value split into legal parts. 611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 612 SDValue Val, SDValue *Parts, unsigned NumParts, 613 MVT PartVT, const Value *V, 614 bool IsABIRegCopy) { 615 EVT ValueVT = Val.getValueType(); 616 assert(ValueVT.isVector() && "Not a vector"); 617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 618 619 if (NumParts == 1) { 620 EVT PartEVT = PartVT; 621 if (PartEVT == ValueVT) { 622 // Nothing to do. 623 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 624 // Bitconvert vector->vector case. 625 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 626 } else if (PartVT.isVector() && 627 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 628 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 634 Ops.push_back(DAG.getNode( 635 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 636 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 637 638 for (unsigned i = ValueVT.getVectorNumElements(), 639 e = PartVT.getVectorNumElements(); i != e; ++i) 640 Ops.push_back(DAG.getUNDEF(ElementVT)); 641 642 Val = DAG.getBuildVector(PartVT, DL, Ops); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 646 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 647 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 648 } else if (PartVT.isVector() && 649 PartEVT.getVectorElementType().bitsGE( 650 ValueVT.getVectorElementType()) && 651 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 652 653 // Promoted vector extract 654 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 655 } else { 656 if (ValueVT.getVectorNumElements() == 1) { 657 Val = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 659 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } else { 661 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 662 "lossy conversion of vector to scalar type"); 663 EVT IntermediateType = 664 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 665 Val = DAG.getBitcast(IntermediateType, Val); 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } 668 } 669 670 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 671 Parts[0] = Val; 672 return; 673 } 674 675 // Handle a multi-element vector. 676 EVT IntermediateVT; 677 MVT RegisterVT; 678 unsigned NumIntermediates; 679 unsigned NumRegs; 680 if (IsABIRegCopy) { 681 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 682 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 683 RegisterVT); 684 } else { 685 NumRegs = 686 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 687 NumIntermediates, RegisterVT); 688 } 689 unsigned NumElements = ValueVT.getVectorNumElements(); 690 691 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 692 NumParts = NumRegs; // Silence a compiler warning. 693 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 694 695 // Convert the vector to the appropiate type if necessary. 696 unsigned DestVectorNoElts = 697 NumIntermediates * 698 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 699 EVT BuiltVectorTy = EVT::getVectorVT( 700 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 701 if (Val.getValueType() != BuiltVectorTy) 702 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 703 704 // Split the vector into intermediate operands. 705 SmallVector<SDValue, 8> Ops(NumIntermediates); 706 for (unsigned i = 0; i != NumIntermediates; ++i) { 707 if (IntermediateVT.isVector()) 708 Ops[i] = 709 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 710 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 712 else 713 Ops[i] = DAG.getNode( 714 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 715 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 716 } 717 718 // Split the intermediate operands into legal parts. 719 if (NumParts == NumIntermediates) { 720 // If the register was not expanded, promote or copy the value, 721 // as appropriate. 722 for (unsigned i = 0; i != NumParts; ++i) 723 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 724 } else if (NumParts > 0) { 725 // If the intermediate type was expanded, split each the value into 726 // legal parts. 727 assert(NumIntermediates != 0 && "division by zero"); 728 assert(NumParts % NumIntermediates == 0 && 729 "Must expand into a divisible number of parts!"); 730 unsigned Factor = NumParts / NumIntermediates; 731 for (unsigned i = 0; i != NumIntermediates; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 733 } 734 } 735 736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 737 EVT valuevt, bool IsABIMangledValue) 738 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 739 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 740 741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 742 const DataLayout &DL, unsigned Reg, Type *Ty, 743 bool IsABIMangledValue) { 744 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 745 746 IsABIMangled = IsABIMangledValue; 747 748 for (EVT ValueVT : ValueVTs) { 749 unsigned NumRegs = IsABIMangledValue 750 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 751 : TLI.getNumRegisters(Context, ValueVT); 752 MVT RegisterVT = IsABIMangledValue 753 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 754 : TLI.getRegisterType(Context, ValueVT); 755 for (unsigned i = 0; i != NumRegs; ++i) 756 Regs.push_back(Reg + i); 757 RegVTs.push_back(RegisterVT); 758 RegCount.push_back(NumRegs); 759 Reg += NumRegs; 760 } 761 } 762 763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 764 FunctionLoweringInfo &FuncInfo, 765 const SDLoc &dl, SDValue &Chain, 766 SDValue *Flag, const Value *V) const { 767 // A Value with type {} or [0 x %t] needs no registers. 768 if (ValueVTs.empty()) 769 return SDValue(); 770 771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 772 773 // Assemble the legal parts into the final values. 774 SmallVector<SDValue, 4> Values(ValueVTs.size()); 775 SmallVector<SDValue, 8> Parts; 776 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 777 // Copy the legal parts from the registers. 778 EVT ValueVT = ValueVTs[Value]; 779 unsigned NumRegs = RegCount[Value]; 780 MVT RegisterVT = IsABIMangled 781 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 782 : RegVTs[Value]; 783 784 Parts.resize(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue P; 787 if (!Flag) { 788 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 789 } else { 790 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 791 *Flag = P.getValue(2); 792 } 793 794 Chain = P.getValue(1); 795 Parts[i] = P; 796 797 // If the source register was virtual and if we know something about it, 798 // add an assert node. 799 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 800 !RegisterVT.isInteger() || RegisterVT.isVector()) 801 continue; 802 803 const FunctionLoweringInfo::LiveOutInfo *LOI = 804 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 805 if (!LOI) 806 continue; 807 808 unsigned RegSize = RegisterVT.getSizeInBits(); 809 unsigned NumSignBits = LOI->NumSignBits; 810 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 811 812 if (NumZeroBits == RegSize) { 813 // The current value is a zero. 814 // Explicitly express that as it would be easier for 815 // optimizations to kick in. 816 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 817 continue; 818 } 819 820 // FIXME: We capture more information than the dag can represent. For 821 // now, just use the tightest assertzext/assertsext possible. 822 bool isSExt = true; 823 EVT FromVT(MVT::Other); 824 if (NumSignBits == RegSize) { 825 isSExt = true; // ASSERT SEXT 1 826 FromVT = MVT::i1; 827 } else if (NumZeroBits >= RegSize - 1) { 828 isSExt = false; // ASSERT ZEXT 1 829 FromVT = MVT::i1; 830 } else if (NumSignBits > RegSize - 8) { 831 isSExt = true; // ASSERT SEXT 8 832 FromVT = MVT::i8; 833 } else if (NumZeroBits >= RegSize - 8) { 834 isSExt = false; // ASSERT ZEXT 8 835 FromVT = MVT::i8; 836 } else if (NumSignBits > RegSize - 16) { 837 isSExt = true; // ASSERT SEXT 16 838 FromVT = MVT::i16; 839 } else if (NumZeroBits >= RegSize - 16) { 840 isSExt = false; // ASSERT ZEXT 16 841 FromVT = MVT::i16; 842 } else if (NumSignBits > RegSize - 32) { 843 isSExt = true; // ASSERT SEXT 32 844 FromVT = MVT::i32; 845 } else if (NumZeroBits >= RegSize - 32) { 846 isSExt = false; // ASSERT ZEXT 32 847 FromVT = MVT::i32; 848 } else { 849 continue; 850 } 851 // Add an assertion node. 852 assert(FromVT != MVT::Other); 853 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 854 RegisterVT, P, DAG.getValueType(FromVT)); 855 } 856 857 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 858 NumRegs, RegisterVT, ValueVT, V); 859 Part += NumRegs; 860 Parts.clear(); 861 } 862 863 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 864 } 865 866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 867 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 868 const Value *V, 869 ISD::NodeType PreferredExtendType) const { 870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 871 ISD::NodeType ExtendKind = PreferredExtendType; 872 873 // Get the list of the values's legal parts. 874 unsigned NumRegs = Regs.size(); 875 SmallVector<SDValue, 8> Parts(NumRegs); 876 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 877 unsigned NumParts = RegCount[Value]; 878 879 MVT RegisterVT = IsABIMangled 880 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 881 : RegVTs[Value]; 882 883 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 884 ExtendKind = ISD::ZERO_EXTEND; 885 886 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 887 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 888 Part += NumParts; 889 } 890 891 // Copy the parts into the registers. 892 SmallVector<SDValue, 8> Chains(NumRegs); 893 for (unsigned i = 0; i != NumRegs; ++i) { 894 SDValue Part; 895 if (!Flag) { 896 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 897 } else { 898 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 899 *Flag = Part.getValue(1); 900 } 901 902 Chains[i] = Part.getValue(0); 903 } 904 905 if (NumRegs == 1 || Flag) 906 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 907 // flagged to it. That is the CopyToReg nodes and the user are considered 908 // a single scheduling unit. If we create a TokenFactor and return it as 909 // chain, then the TokenFactor is both a predecessor (operand) of the 910 // user as well as a successor (the TF operands are flagged to the user). 911 // c1, f1 = CopyToReg 912 // c2, f2 = CopyToReg 913 // c3 = TokenFactor c1, c2 914 // ... 915 // = op c3, ..., f2 916 Chain = Chains[NumRegs-1]; 917 else 918 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 919 } 920 921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 922 unsigned MatchingIdx, const SDLoc &dl, 923 SelectionDAG &DAG, 924 std::vector<SDValue> &Ops) const { 925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 926 927 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 928 if (HasMatching) 929 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 930 else if (!Regs.empty() && 931 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 932 // Put the register class of the virtual registers in the flag word. That 933 // way, later passes can recompute register class constraints for inline 934 // assembly as well as normal instructions. 935 // Don't do this for tied operands that can use the regclass information 936 // from the def. 937 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 938 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 939 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 940 } 941 942 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 943 Ops.push_back(Res); 944 945 if (Code == InlineAsm::Kind_Clobber) { 946 // Clobbers should always have a 1:1 mapping with registers, and may 947 // reference registers that have illegal (e.g. vector) types. Hence, we 948 // shouldn't try to apply any sort of splitting logic to them. 949 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 950 "No 1:1 mapping from clobbers to regs?"); 951 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 952 (void)SP; 953 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 954 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 955 assert( 956 (Regs[I] != SP || 957 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 958 "If we clobbered the stack pointer, MFI should know about it."); 959 } 960 return; 961 } 962 963 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 964 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 965 MVT RegisterVT = RegVTs[Value]; 966 for (unsigned i = 0; i != NumRegs; ++i) { 967 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 968 unsigned TheReg = Regs[Reg++]; 969 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 970 } 971 } 972 } 973 974 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 975 const TargetLibraryInfo *li) { 976 AA = aa; 977 GFI = gfi; 978 LibInfo = li; 979 DL = &DAG.getDataLayout(); 980 Context = DAG.getContext(); 981 LPadToCallSiteMap.clear(); 982 } 983 984 void SelectionDAGBuilder::clear() { 985 NodeMap.clear(); 986 UnusedArgNodeMap.clear(); 987 PendingLoads.clear(); 988 PendingExports.clear(); 989 CurInst = nullptr; 990 HasTailCall = false; 991 SDNodeOrder = LowestSDNodeOrder; 992 StatepointLowering.clear(); 993 } 994 995 void SelectionDAGBuilder::clearDanglingDebugInfo() { 996 DanglingDebugInfoMap.clear(); 997 } 998 999 SDValue SelectionDAGBuilder::getRoot() { 1000 if (PendingLoads.empty()) 1001 return DAG.getRoot(); 1002 1003 if (PendingLoads.size() == 1) { 1004 SDValue Root = PendingLoads[0]; 1005 DAG.setRoot(Root); 1006 PendingLoads.clear(); 1007 return Root; 1008 } 1009 1010 // Otherwise, we have to make a token factor node. 1011 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1012 PendingLoads); 1013 PendingLoads.clear(); 1014 DAG.setRoot(Root); 1015 return Root; 1016 } 1017 1018 SDValue SelectionDAGBuilder::getControlRoot() { 1019 SDValue Root = DAG.getRoot(); 1020 1021 if (PendingExports.empty()) 1022 return Root; 1023 1024 // Turn all of the CopyToReg chains into one factored node. 1025 if (Root.getOpcode() != ISD::EntryToken) { 1026 unsigned i = 0, e = PendingExports.size(); 1027 for (; i != e; ++i) { 1028 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1029 if (PendingExports[i].getNode()->getOperand(0) == Root) 1030 break; // Don't add the root if we already indirectly depend on it. 1031 } 1032 1033 if (i == e) 1034 PendingExports.push_back(Root); 1035 } 1036 1037 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1038 PendingExports); 1039 PendingExports.clear(); 1040 DAG.setRoot(Root); 1041 return Root; 1042 } 1043 1044 void SelectionDAGBuilder::visit(const Instruction &I) { 1045 // Set up outgoing PHI node register values before emitting the terminator. 1046 if (isa<TerminatorInst>(&I)) { 1047 HandlePHINodesInSuccessorBlocks(I.getParent()); 1048 } 1049 1050 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1051 if (!isa<DbgInfoIntrinsic>(I)) 1052 ++SDNodeOrder; 1053 1054 CurInst = &I; 1055 1056 visit(I.getOpcode(), I); 1057 1058 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1059 !isStatepoint(&I)) // statepoints handle their exports internally 1060 CopyToExportRegsIfNeeded(&I); 1061 1062 CurInst = nullptr; 1063 } 1064 1065 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1066 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1067 } 1068 1069 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1070 // Note: this doesn't use InstVisitor, because it has to work with 1071 // ConstantExpr's in addition to instructions. 1072 switch (Opcode) { 1073 default: llvm_unreachable("Unknown instruction type encountered!"); 1074 // Build the switch statement using the Instruction.def file. 1075 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1076 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1077 #include "llvm/IR/Instruction.def" 1078 } 1079 } 1080 1081 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1082 const DIExpression *Expr) { 1083 for (auto &DDIMI : DanglingDebugInfoMap) 1084 for (auto &DDI : DDIMI.second) 1085 if (DDI.getDI()) { 1086 const DbgValueInst *DI = DDI.getDI(); 1087 DIVariable *DanglingVariable = DI->getVariable(); 1088 DIExpression *DanglingExpr = DI->getExpression(); 1089 if (DanglingVariable == Variable && 1090 Expr->fragmentsOverlap(DanglingExpr)) { 1091 DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1092 DDI = DanglingDebugInfo(); 1093 } 1094 } 1095 } 1096 1097 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1098 // generate the debug data structures now that we've seen its definition. 1099 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1100 SDValue Val) { 1101 DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V]; 1102 for (auto &DDI : DDIV) { 1103 if (!DDI.getDI()) 1104 continue; 1105 const DbgValueInst *DI = DDI.getDI(); 1106 DebugLoc dl = DDI.getdl(); 1107 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1108 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1109 DILocalVariable *Variable = DI->getVariable(); 1110 DIExpression *Expr = DI->getExpression(); 1111 assert(Variable->isValidLocationForIntrinsic(dl) && 1112 "Expected inlined-at fields to agree"); 1113 SDDbgValue *SDV; 1114 if (Val.getNode()) { 1115 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1116 DEBUG(dbgs() << "Resolve dangling debug info [order=" << DbgSDNodeOrder 1117 << "] for:\n " << *DI << "\n"); 1118 DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1119 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1120 // inserted after the definition of Val when emitting the instructions 1121 // after ISel. An alternative could be to teach 1122 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1123 DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) 1124 dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder 1125 << " to " << ValSDNodeOrder << "\n"); 1126 SDV = getDbgValue(Val, Variable, Expr, dl, 1127 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1128 DAG.AddDbgValue(SDV, Val.getNode(), false); 1129 } else 1130 DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1131 << "in EmitFuncArgumentDbgValue\n"); 1132 } else 1133 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1134 } 1135 DanglingDebugInfoMap[V].clear(); 1136 } 1137 1138 /// getCopyFromRegs - If there was virtual register allocated for the value V 1139 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1140 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1141 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1142 SDValue Result; 1143 1144 if (It != FuncInfo.ValueMap.end()) { 1145 unsigned InReg = It->second; 1146 1147 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1148 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1149 SDValue Chain = DAG.getEntryNode(); 1150 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1151 V); 1152 resolveDanglingDebugInfo(V, Result); 1153 } 1154 1155 return Result; 1156 } 1157 1158 /// getValue - Return an SDValue for the given Value. 1159 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1160 // If we already have an SDValue for this value, use it. It's important 1161 // to do this first, so that we don't create a CopyFromReg if we already 1162 // have a regular SDValue. 1163 SDValue &N = NodeMap[V]; 1164 if (N.getNode()) return N; 1165 1166 // If there's a virtual register allocated and initialized for this 1167 // value, use it. 1168 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1169 return copyFromReg; 1170 1171 // Otherwise create a new SDValue and remember it. 1172 SDValue Val = getValueImpl(V); 1173 NodeMap[V] = Val; 1174 resolveDanglingDebugInfo(V, Val); 1175 return Val; 1176 } 1177 1178 // Return true if SDValue exists for the given Value 1179 bool SelectionDAGBuilder::findValue(const Value *V) const { 1180 return (NodeMap.find(V) != NodeMap.end()) || 1181 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1182 } 1183 1184 /// getNonRegisterValue - Return an SDValue for the given Value, but 1185 /// don't look in FuncInfo.ValueMap for a virtual register. 1186 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1187 // If we already have an SDValue for this value, use it. 1188 SDValue &N = NodeMap[V]; 1189 if (N.getNode()) { 1190 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1191 // Remove the debug location from the node as the node is about to be used 1192 // in a location which may differ from the original debug location. This 1193 // is relevant to Constant and ConstantFP nodes because they can appear 1194 // as constant expressions inside PHI nodes. 1195 N->setDebugLoc(DebugLoc()); 1196 } 1197 return N; 1198 } 1199 1200 // Otherwise create a new SDValue and remember it. 1201 SDValue Val = getValueImpl(V); 1202 NodeMap[V] = Val; 1203 resolveDanglingDebugInfo(V, Val); 1204 return Val; 1205 } 1206 1207 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1208 /// Create an SDValue for the given value. 1209 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1211 1212 if (const Constant *C = dyn_cast<Constant>(V)) { 1213 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1214 1215 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1216 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1217 1218 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1219 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1220 1221 if (isa<ConstantPointerNull>(C)) { 1222 unsigned AS = V->getType()->getPointerAddressSpace(); 1223 return DAG.getConstant(0, getCurSDLoc(), 1224 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1225 } 1226 1227 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1228 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1229 1230 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1231 return DAG.getUNDEF(VT); 1232 1233 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1234 visit(CE->getOpcode(), *CE); 1235 SDValue N1 = NodeMap[V]; 1236 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1237 return N1; 1238 } 1239 1240 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1241 SmallVector<SDValue, 4> Constants; 1242 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1243 OI != OE; ++OI) { 1244 SDNode *Val = getValue(*OI).getNode(); 1245 // If the operand is an empty aggregate, there are no values. 1246 if (!Val) continue; 1247 // Add each leaf value from the operand to the Constants list 1248 // to form a flattened list of all the values. 1249 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1250 Constants.push_back(SDValue(Val, i)); 1251 } 1252 1253 return DAG.getMergeValues(Constants, getCurSDLoc()); 1254 } 1255 1256 if (const ConstantDataSequential *CDS = 1257 dyn_cast<ConstantDataSequential>(C)) { 1258 SmallVector<SDValue, 4> Ops; 1259 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1260 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1261 // Add each leaf value from the operand to the Constants list 1262 // to form a flattened list of all the values. 1263 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1264 Ops.push_back(SDValue(Val, i)); 1265 } 1266 1267 if (isa<ArrayType>(CDS->getType())) 1268 return DAG.getMergeValues(Ops, getCurSDLoc()); 1269 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1270 } 1271 1272 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1273 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1274 "Unknown struct or array constant!"); 1275 1276 SmallVector<EVT, 4> ValueVTs; 1277 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1278 unsigned NumElts = ValueVTs.size(); 1279 if (NumElts == 0) 1280 return SDValue(); // empty struct 1281 SmallVector<SDValue, 4> Constants(NumElts); 1282 for (unsigned i = 0; i != NumElts; ++i) { 1283 EVT EltVT = ValueVTs[i]; 1284 if (isa<UndefValue>(C)) 1285 Constants[i] = DAG.getUNDEF(EltVT); 1286 else if (EltVT.isFloatingPoint()) 1287 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1288 else 1289 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1290 } 1291 1292 return DAG.getMergeValues(Constants, getCurSDLoc()); 1293 } 1294 1295 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1296 return DAG.getBlockAddress(BA, VT); 1297 1298 VectorType *VecTy = cast<VectorType>(V->getType()); 1299 unsigned NumElements = VecTy->getNumElements(); 1300 1301 // Now that we know the number and type of the elements, get that number of 1302 // elements into the Ops array based on what kind of constant it is. 1303 SmallVector<SDValue, 16> Ops; 1304 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1305 for (unsigned i = 0; i != NumElements; ++i) 1306 Ops.push_back(getValue(CV->getOperand(i))); 1307 } else { 1308 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1309 EVT EltVT = 1310 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1311 1312 SDValue Op; 1313 if (EltVT.isFloatingPoint()) 1314 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1315 else 1316 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1317 Ops.assign(NumElements, Op); 1318 } 1319 1320 // Create a BUILD_VECTOR node. 1321 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1322 } 1323 1324 // If this is a static alloca, generate it as the frameindex instead of 1325 // computation. 1326 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1327 DenseMap<const AllocaInst*, int>::iterator SI = 1328 FuncInfo.StaticAllocaMap.find(AI); 1329 if (SI != FuncInfo.StaticAllocaMap.end()) 1330 return DAG.getFrameIndex(SI->second, 1331 TLI.getFrameIndexTy(DAG.getDataLayout())); 1332 } 1333 1334 // If this is an instruction which fast-isel has deferred, select it now. 1335 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1336 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1337 1338 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1339 Inst->getType(), isABIRegCopy(V)); 1340 SDValue Chain = DAG.getEntryNode(); 1341 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1342 } 1343 1344 llvm_unreachable("Can't get register for value!"); 1345 } 1346 1347 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1348 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1349 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1350 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1351 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1352 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1353 if (IsMSVCCXX || IsCoreCLR) 1354 CatchPadMBB->setIsEHFuncletEntry(); 1355 1356 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1357 } 1358 1359 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1360 // Update machine-CFG edge. 1361 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1362 FuncInfo.MBB->addSuccessor(TargetMBB); 1363 1364 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1365 bool IsSEH = isAsynchronousEHPersonality(Pers); 1366 if (IsSEH) { 1367 // If this is not a fall-through branch or optimizations are switched off, 1368 // emit the branch. 1369 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1370 TM.getOptLevel() == CodeGenOpt::None) 1371 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1372 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1373 return; 1374 } 1375 1376 // Figure out the funclet membership for the catchret's successor. 1377 // This will be used by the FuncletLayout pass to determine how to order the 1378 // BB's. 1379 // A 'catchret' returns to the outer scope's color. 1380 Value *ParentPad = I.getCatchSwitchParentPad(); 1381 const BasicBlock *SuccessorColor; 1382 if (isa<ConstantTokenNone>(ParentPad)) 1383 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1384 else 1385 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1386 assert(SuccessorColor && "No parent funclet for catchret!"); 1387 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1388 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1389 1390 // Create the terminator node. 1391 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1392 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1393 DAG.getBasicBlock(SuccessorColorMBB)); 1394 DAG.setRoot(Ret); 1395 } 1396 1397 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1398 // Don't emit any special code for the cleanuppad instruction. It just marks 1399 // the start of a funclet. 1400 FuncInfo.MBB->setIsEHFuncletEntry(); 1401 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1402 } 1403 1404 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1405 /// many places it could ultimately go. In the IR, we have a single unwind 1406 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1407 /// This function skips over imaginary basic blocks that hold catchswitch 1408 /// instructions, and finds all the "real" machine 1409 /// basic block destinations. As those destinations may not be successors of 1410 /// EHPadBB, here we also calculate the edge probability to those destinations. 1411 /// The passed-in Prob is the edge probability to EHPadBB. 1412 static void findUnwindDestinations( 1413 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1414 BranchProbability Prob, 1415 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1416 &UnwindDests) { 1417 EHPersonality Personality = 1418 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1419 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1420 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1421 1422 while (EHPadBB) { 1423 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1424 BasicBlock *NewEHPadBB = nullptr; 1425 if (isa<LandingPadInst>(Pad)) { 1426 // Stop on landingpads. They are not funclets. 1427 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1428 break; 1429 } else if (isa<CleanupPadInst>(Pad)) { 1430 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1431 // personalities. 1432 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1433 UnwindDests.back().first->setIsEHFuncletEntry(); 1434 break; 1435 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1436 // Add the catchpad handlers to the possible destinations. 1437 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1438 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1439 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1440 if (IsMSVCCXX || IsCoreCLR) 1441 UnwindDests.back().first->setIsEHFuncletEntry(); 1442 } 1443 NewEHPadBB = CatchSwitch->getUnwindDest(); 1444 } else { 1445 continue; 1446 } 1447 1448 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1449 if (BPI && NewEHPadBB) 1450 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1451 EHPadBB = NewEHPadBB; 1452 } 1453 } 1454 1455 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1456 // Update successor info. 1457 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1458 auto UnwindDest = I.getUnwindDest(); 1459 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1460 BranchProbability UnwindDestProb = 1461 (BPI && UnwindDest) 1462 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1463 : BranchProbability::getZero(); 1464 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1465 for (auto &UnwindDest : UnwindDests) { 1466 UnwindDest.first->setIsEHPad(); 1467 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1468 } 1469 FuncInfo.MBB->normalizeSuccProbs(); 1470 1471 // Create the terminator node. 1472 SDValue Ret = 1473 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1474 DAG.setRoot(Ret); 1475 } 1476 1477 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1478 report_fatal_error("visitCatchSwitch not yet implemented!"); 1479 } 1480 1481 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1483 auto &DL = DAG.getDataLayout(); 1484 SDValue Chain = getControlRoot(); 1485 SmallVector<ISD::OutputArg, 8> Outs; 1486 SmallVector<SDValue, 8> OutVals; 1487 1488 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1489 // lower 1490 // 1491 // %val = call <ty> @llvm.experimental.deoptimize() 1492 // ret <ty> %val 1493 // 1494 // differently. 1495 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1496 LowerDeoptimizingReturn(); 1497 return; 1498 } 1499 1500 if (!FuncInfo.CanLowerReturn) { 1501 unsigned DemoteReg = FuncInfo.DemoteRegister; 1502 const Function *F = I.getParent()->getParent(); 1503 1504 // Emit a store of the return value through the virtual register. 1505 // Leave Outs empty so that LowerReturn won't try to load return 1506 // registers the usual way. 1507 SmallVector<EVT, 1> PtrValueVTs; 1508 ComputeValueVTs(TLI, DL, 1509 F->getReturnType()->getPointerTo( 1510 DAG.getDataLayout().getAllocaAddrSpace()), 1511 PtrValueVTs); 1512 1513 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1514 DemoteReg, PtrValueVTs[0]); 1515 SDValue RetOp = getValue(I.getOperand(0)); 1516 1517 SmallVector<EVT, 4> ValueVTs; 1518 SmallVector<uint64_t, 4> Offsets; 1519 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1520 unsigned NumValues = ValueVTs.size(); 1521 1522 SmallVector<SDValue, 4> Chains(NumValues); 1523 for (unsigned i = 0; i != NumValues; ++i) { 1524 // An aggregate return value cannot wrap around the address space, so 1525 // offsets to its parts don't wrap either. 1526 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1527 Chains[i] = DAG.getStore( 1528 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1529 // FIXME: better loc info would be nice. 1530 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1531 } 1532 1533 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1534 MVT::Other, Chains); 1535 } else if (I.getNumOperands() != 0) { 1536 SmallVector<EVT, 4> ValueVTs; 1537 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1538 unsigned NumValues = ValueVTs.size(); 1539 if (NumValues) { 1540 SDValue RetOp = getValue(I.getOperand(0)); 1541 1542 const Function *F = I.getParent()->getParent(); 1543 1544 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1545 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1546 Attribute::SExt)) 1547 ExtendKind = ISD::SIGN_EXTEND; 1548 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1549 Attribute::ZExt)) 1550 ExtendKind = ISD::ZERO_EXTEND; 1551 1552 LLVMContext &Context = F->getContext(); 1553 bool RetInReg = F->getAttributes().hasAttribute( 1554 AttributeList::ReturnIndex, Attribute::InReg); 1555 1556 for (unsigned j = 0; j != NumValues; ++j) { 1557 EVT VT = ValueVTs[j]; 1558 1559 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1560 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1561 1562 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1563 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1564 SmallVector<SDValue, 4> Parts(NumParts); 1565 getCopyToParts(DAG, getCurSDLoc(), 1566 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1567 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1568 1569 // 'inreg' on function refers to return value 1570 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1571 if (RetInReg) 1572 Flags.setInReg(); 1573 1574 // Propagate extension type if any 1575 if (ExtendKind == ISD::SIGN_EXTEND) 1576 Flags.setSExt(); 1577 else if (ExtendKind == ISD::ZERO_EXTEND) 1578 Flags.setZExt(); 1579 1580 for (unsigned i = 0; i < NumParts; ++i) { 1581 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1582 VT, /*isfixed=*/true, 0, 0)); 1583 OutVals.push_back(Parts[i]); 1584 } 1585 } 1586 } 1587 } 1588 1589 // Push in swifterror virtual register as the last element of Outs. This makes 1590 // sure swifterror virtual register will be returned in the swifterror 1591 // physical register. 1592 const Function *F = I.getParent()->getParent(); 1593 if (TLI.supportSwiftError() && 1594 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1595 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1596 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1597 Flags.setSwiftError(); 1598 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1599 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1600 true /*isfixed*/, 1 /*origidx*/, 1601 0 /*partOffs*/)); 1602 // Create SDNode for the swifterror virtual register. 1603 OutVals.push_back( 1604 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1605 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1606 EVT(TLI.getPointerTy(DL)))); 1607 } 1608 1609 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1610 CallingConv::ID CallConv = 1611 DAG.getMachineFunction().getFunction().getCallingConv(); 1612 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1613 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1614 1615 // Verify that the target's LowerReturn behaved as expected. 1616 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1617 "LowerReturn didn't return a valid chain!"); 1618 1619 // Update the DAG with the new chain value resulting from return lowering. 1620 DAG.setRoot(Chain); 1621 } 1622 1623 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1624 /// created for it, emit nodes to copy the value into the virtual 1625 /// registers. 1626 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1627 // Skip empty types 1628 if (V->getType()->isEmptyTy()) 1629 return; 1630 1631 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1632 if (VMI != FuncInfo.ValueMap.end()) { 1633 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1634 CopyValueToVirtualRegister(V, VMI->second); 1635 } 1636 } 1637 1638 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1639 /// the current basic block, add it to ValueMap now so that we'll get a 1640 /// CopyTo/FromReg. 1641 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1642 // No need to export constants. 1643 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1644 1645 // Already exported? 1646 if (FuncInfo.isExportedInst(V)) return; 1647 1648 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1649 CopyValueToVirtualRegister(V, Reg); 1650 } 1651 1652 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1653 const BasicBlock *FromBB) { 1654 // The operands of the setcc have to be in this block. We don't know 1655 // how to export them from some other block. 1656 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1657 // Can export from current BB. 1658 if (VI->getParent() == FromBB) 1659 return true; 1660 1661 // Is already exported, noop. 1662 return FuncInfo.isExportedInst(V); 1663 } 1664 1665 // If this is an argument, we can export it if the BB is the entry block or 1666 // if it is already exported. 1667 if (isa<Argument>(V)) { 1668 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1669 return true; 1670 1671 // Otherwise, can only export this if it is already exported. 1672 return FuncInfo.isExportedInst(V); 1673 } 1674 1675 // Otherwise, constants can always be exported. 1676 return true; 1677 } 1678 1679 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1680 BranchProbability 1681 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1682 const MachineBasicBlock *Dst) const { 1683 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1684 const BasicBlock *SrcBB = Src->getBasicBlock(); 1685 const BasicBlock *DstBB = Dst->getBasicBlock(); 1686 if (!BPI) { 1687 // If BPI is not available, set the default probability as 1 / N, where N is 1688 // the number of successors. 1689 auto SuccSize = std::max<uint32_t>( 1690 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1691 return BranchProbability(1, SuccSize); 1692 } 1693 return BPI->getEdgeProbability(SrcBB, DstBB); 1694 } 1695 1696 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1697 MachineBasicBlock *Dst, 1698 BranchProbability Prob) { 1699 if (!FuncInfo.BPI) 1700 Src->addSuccessorWithoutProb(Dst); 1701 else { 1702 if (Prob.isUnknown()) 1703 Prob = getEdgeProbability(Src, Dst); 1704 Src->addSuccessor(Dst, Prob); 1705 } 1706 } 1707 1708 static bool InBlock(const Value *V, const BasicBlock *BB) { 1709 if (const Instruction *I = dyn_cast<Instruction>(V)) 1710 return I->getParent() == BB; 1711 return true; 1712 } 1713 1714 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1715 /// This function emits a branch and is used at the leaves of an OR or an 1716 /// AND operator tree. 1717 void 1718 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1719 MachineBasicBlock *TBB, 1720 MachineBasicBlock *FBB, 1721 MachineBasicBlock *CurBB, 1722 MachineBasicBlock *SwitchBB, 1723 BranchProbability TProb, 1724 BranchProbability FProb, 1725 bool InvertCond) { 1726 const BasicBlock *BB = CurBB->getBasicBlock(); 1727 1728 // If the leaf of the tree is a comparison, merge the condition into 1729 // the caseblock. 1730 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1731 // The operands of the cmp have to be in this block. We don't know 1732 // how to export them from some other block. If this is the first block 1733 // of the sequence, no exporting is needed. 1734 if (CurBB == SwitchBB || 1735 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1736 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1737 ISD::CondCode Condition; 1738 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1739 ICmpInst::Predicate Pred = 1740 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1741 Condition = getICmpCondCode(Pred); 1742 } else { 1743 const FCmpInst *FC = cast<FCmpInst>(Cond); 1744 FCmpInst::Predicate Pred = 1745 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1746 Condition = getFCmpCondCode(Pred); 1747 if (TM.Options.NoNaNsFPMath) 1748 Condition = getFCmpCodeWithoutNaN(Condition); 1749 } 1750 1751 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1752 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1753 SwitchCases.push_back(CB); 1754 return; 1755 } 1756 } 1757 1758 // Create a CaseBlock record representing this branch. 1759 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1760 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1761 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1762 SwitchCases.push_back(CB); 1763 } 1764 1765 /// FindMergedConditions - If Cond is an expression like 1766 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1767 MachineBasicBlock *TBB, 1768 MachineBasicBlock *FBB, 1769 MachineBasicBlock *CurBB, 1770 MachineBasicBlock *SwitchBB, 1771 Instruction::BinaryOps Opc, 1772 BranchProbability TProb, 1773 BranchProbability FProb, 1774 bool InvertCond) { 1775 // Skip over not part of the tree and remember to invert op and operands at 1776 // next level. 1777 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1778 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1779 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1780 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1781 !InvertCond); 1782 return; 1783 } 1784 } 1785 1786 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1787 // Compute the effective opcode for Cond, taking into account whether it needs 1788 // to be inverted, e.g. 1789 // and (not (or A, B)), C 1790 // gets lowered as 1791 // and (and (not A, not B), C) 1792 unsigned BOpc = 0; 1793 if (BOp) { 1794 BOpc = BOp->getOpcode(); 1795 if (InvertCond) { 1796 if (BOpc == Instruction::And) 1797 BOpc = Instruction::Or; 1798 else if (BOpc == Instruction::Or) 1799 BOpc = Instruction::And; 1800 } 1801 } 1802 1803 // If this node is not part of the or/and tree, emit it as a branch. 1804 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1805 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1806 BOp->getParent() != CurBB->getBasicBlock() || 1807 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1808 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1809 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1810 TProb, FProb, InvertCond); 1811 return; 1812 } 1813 1814 // Create TmpBB after CurBB. 1815 MachineFunction::iterator BBI(CurBB); 1816 MachineFunction &MF = DAG.getMachineFunction(); 1817 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1818 CurBB->getParent()->insert(++BBI, TmpBB); 1819 1820 if (Opc == Instruction::Or) { 1821 // Codegen X | Y as: 1822 // BB1: 1823 // jmp_if_X TBB 1824 // jmp TmpBB 1825 // TmpBB: 1826 // jmp_if_Y TBB 1827 // jmp FBB 1828 // 1829 1830 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1831 // The requirement is that 1832 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1833 // = TrueProb for original BB. 1834 // Assuming the original probabilities are A and B, one choice is to set 1835 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1836 // A/(1+B) and 2B/(1+B). This choice assumes that 1837 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1838 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1839 // TmpBB, but the math is more complicated. 1840 1841 auto NewTrueProb = TProb / 2; 1842 auto NewFalseProb = TProb / 2 + FProb; 1843 // Emit the LHS condition. 1844 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1845 NewTrueProb, NewFalseProb, InvertCond); 1846 1847 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1848 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1849 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1850 // Emit the RHS condition into TmpBB. 1851 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1852 Probs[0], Probs[1], InvertCond); 1853 } else { 1854 assert(Opc == Instruction::And && "Unknown merge op!"); 1855 // Codegen X & Y as: 1856 // BB1: 1857 // jmp_if_X TmpBB 1858 // jmp FBB 1859 // TmpBB: 1860 // jmp_if_Y TBB 1861 // jmp FBB 1862 // 1863 // This requires creation of TmpBB after CurBB. 1864 1865 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1866 // The requirement is that 1867 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1868 // = FalseProb for original BB. 1869 // Assuming the original probabilities are A and B, one choice is to set 1870 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1871 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1872 // TrueProb for BB1 * FalseProb for TmpBB. 1873 1874 auto NewTrueProb = TProb + FProb / 2; 1875 auto NewFalseProb = FProb / 2; 1876 // Emit the LHS condition. 1877 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1878 NewTrueProb, NewFalseProb, InvertCond); 1879 1880 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1881 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1882 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1883 // Emit the RHS condition into TmpBB. 1884 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1885 Probs[0], Probs[1], InvertCond); 1886 } 1887 } 1888 1889 /// If the set of cases should be emitted as a series of branches, return true. 1890 /// If we should emit this as a bunch of and/or'd together conditions, return 1891 /// false. 1892 bool 1893 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1894 if (Cases.size() != 2) return true; 1895 1896 // If this is two comparisons of the same values or'd or and'd together, they 1897 // will get folded into a single comparison, so don't emit two blocks. 1898 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1899 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1900 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1901 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1902 return false; 1903 } 1904 1905 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1906 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1907 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1908 Cases[0].CC == Cases[1].CC && 1909 isa<Constant>(Cases[0].CmpRHS) && 1910 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1911 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1912 return false; 1913 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1914 return false; 1915 } 1916 1917 return true; 1918 } 1919 1920 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1921 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1922 1923 // Update machine-CFG edges. 1924 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1925 1926 if (I.isUnconditional()) { 1927 // Update machine-CFG edges. 1928 BrMBB->addSuccessor(Succ0MBB); 1929 1930 // If this is not a fall-through branch or optimizations are switched off, 1931 // emit the branch. 1932 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1933 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1934 MVT::Other, getControlRoot(), 1935 DAG.getBasicBlock(Succ0MBB))); 1936 1937 return; 1938 } 1939 1940 // If this condition is one of the special cases we handle, do special stuff 1941 // now. 1942 const Value *CondVal = I.getCondition(); 1943 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1944 1945 // If this is a series of conditions that are or'd or and'd together, emit 1946 // this as a sequence of branches instead of setcc's with and/or operations. 1947 // As long as jumps are not expensive, this should improve performance. 1948 // For example, instead of something like: 1949 // cmp A, B 1950 // C = seteq 1951 // cmp D, E 1952 // F = setle 1953 // or C, F 1954 // jnz foo 1955 // Emit: 1956 // cmp A, B 1957 // je foo 1958 // cmp D, E 1959 // jle foo 1960 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1961 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1962 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1963 !I.getMetadata(LLVMContext::MD_unpredictable) && 1964 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1965 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1966 Opcode, 1967 getEdgeProbability(BrMBB, Succ0MBB), 1968 getEdgeProbability(BrMBB, Succ1MBB), 1969 /*InvertCond=*/false); 1970 // If the compares in later blocks need to use values not currently 1971 // exported from this block, export them now. This block should always 1972 // be the first entry. 1973 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1974 1975 // Allow some cases to be rejected. 1976 if (ShouldEmitAsBranches(SwitchCases)) { 1977 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1978 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1979 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1980 } 1981 1982 // Emit the branch for this block. 1983 visitSwitchCase(SwitchCases[0], BrMBB); 1984 SwitchCases.erase(SwitchCases.begin()); 1985 return; 1986 } 1987 1988 // Okay, we decided not to do this, remove any inserted MBB's and clear 1989 // SwitchCases. 1990 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1991 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1992 1993 SwitchCases.clear(); 1994 } 1995 } 1996 1997 // Create a CaseBlock record representing this branch. 1998 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1999 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2000 2001 // Use visitSwitchCase to actually insert the fast branch sequence for this 2002 // cond branch. 2003 visitSwitchCase(CB, BrMBB); 2004 } 2005 2006 /// visitSwitchCase - Emits the necessary code to represent a single node in 2007 /// the binary search tree resulting from lowering a switch instruction. 2008 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2009 MachineBasicBlock *SwitchBB) { 2010 SDValue Cond; 2011 SDValue CondLHS = getValue(CB.CmpLHS); 2012 SDLoc dl = CB.DL; 2013 2014 // Build the setcc now. 2015 if (!CB.CmpMHS) { 2016 // Fold "(X == true)" to X and "(X == false)" to !X to 2017 // handle common cases produced by branch lowering. 2018 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2019 CB.CC == ISD::SETEQ) 2020 Cond = CondLHS; 2021 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2022 CB.CC == ISD::SETEQ) { 2023 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2024 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2025 } else 2026 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2027 } else { 2028 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2029 2030 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2031 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2032 2033 SDValue CmpOp = getValue(CB.CmpMHS); 2034 EVT VT = CmpOp.getValueType(); 2035 2036 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2037 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2038 ISD::SETLE); 2039 } else { 2040 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2041 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2042 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2043 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2044 } 2045 } 2046 2047 // Update successor info 2048 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2049 // TrueBB and FalseBB are always different unless the incoming IR is 2050 // degenerate. This only happens when running llc on weird IR. 2051 if (CB.TrueBB != CB.FalseBB) 2052 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2053 SwitchBB->normalizeSuccProbs(); 2054 2055 // If the lhs block is the next block, invert the condition so that we can 2056 // fall through to the lhs instead of the rhs block. 2057 if (CB.TrueBB == NextBlock(SwitchBB)) { 2058 std::swap(CB.TrueBB, CB.FalseBB); 2059 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2060 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2061 } 2062 2063 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2064 MVT::Other, getControlRoot(), Cond, 2065 DAG.getBasicBlock(CB.TrueBB)); 2066 2067 // Insert the false branch. Do this even if it's a fall through branch, 2068 // this makes it easier to do DAG optimizations which require inverting 2069 // the branch condition. 2070 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2071 DAG.getBasicBlock(CB.FalseBB)); 2072 2073 DAG.setRoot(BrCond); 2074 } 2075 2076 /// visitJumpTable - Emit JumpTable node in the current MBB 2077 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2078 // Emit the code for the jump table 2079 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2080 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2081 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2082 JT.Reg, PTy); 2083 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2084 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2085 MVT::Other, Index.getValue(1), 2086 Table, Index); 2087 DAG.setRoot(BrJumpTable); 2088 } 2089 2090 /// visitJumpTableHeader - This function emits necessary code to produce index 2091 /// in the JumpTable from switch case. 2092 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2093 JumpTableHeader &JTH, 2094 MachineBasicBlock *SwitchBB) { 2095 SDLoc dl = getCurSDLoc(); 2096 2097 // Subtract the lowest switch case value from the value being switched on and 2098 // conditional branch to default mbb if the result is greater than the 2099 // difference between smallest and largest cases. 2100 SDValue SwitchOp = getValue(JTH.SValue); 2101 EVT VT = SwitchOp.getValueType(); 2102 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2103 DAG.getConstant(JTH.First, dl, VT)); 2104 2105 // The SDNode we just created, which holds the value being switched on minus 2106 // the smallest case value, needs to be copied to a virtual register so it 2107 // can be used as an index into the jump table in a subsequent basic block. 2108 // This value may be smaller or larger than the target's pointer type, and 2109 // therefore require extension or truncating. 2110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2111 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2112 2113 unsigned JumpTableReg = 2114 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2115 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2116 JumpTableReg, SwitchOp); 2117 JT.Reg = JumpTableReg; 2118 2119 // Emit the range check for the jump table, and branch to the default block 2120 // for the switch statement if the value being switched on exceeds the largest 2121 // case in the switch. 2122 SDValue CMP = DAG.getSetCC( 2123 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2124 Sub.getValueType()), 2125 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2126 2127 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2128 MVT::Other, CopyTo, CMP, 2129 DAG.getBasicBlock(JT.Default)); 2130 2131 // Avoid emitting unnecessary branches to the next block. 2132 if (JT.MBB != NextBlock(SwitchBB)) 2133 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2134 DAG.getBasicBlock(JT.MBB)); 2135 2136 DAG.setRoot(BrCond); 2137 } 2138 2139 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2140 /// variable if there exists one. 2141 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2142 SDValue &Chain) { 2143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2144 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2145 MachineFunction &MF = DAG.getMachineFunction(); 2146 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2147 MachineSDNode *Node = 2148 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2149 if (Global) { 2150 MachinePointerInfo MPInfo(Global); 2151 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2152 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2153 MachineMemOperand::MODereferenceable; 2154 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2155 DAG.getEVTAlignment(PtrTy)); 2156 Node->setMemRefs(MemRefs, MemRefs + 1); 2157 } 2158 return SDValue(Node, 0); 2159 } 2160 2161 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2162 /// tail spliced into a stack protector check success bb. 2163 /// 2164 /// For a high level explanation of how this fits into the stack protector 2165 /// generation see the comment on the declaration of class 2166 /// StackProtectorDescriptor. 2167 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2168 MachineBasicBlock *ParentBB) { 2169 2170 // First create the loads to the guard/stack slot for the comparison. 2171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2172 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2173 2174 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2175 int FI = MFI.getStackProtectorIndex(); 2176 2177 SDValue Guard; 2178 SDLoc dl = getCurSDLoc(); 2179 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2180 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2181 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2182 2183 // Generate code to load the content of the guard slot. 2184 SDValue GuardVal = DAG.getLoad( 2185 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2186 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2187 MachineMemOperand::MOVolatile); 2188 2189 if (TLI.useStackGuardXorFP()) 2190 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2191 2192 // Retrieve guard check function, nullptr if instrumentation is inlined. 2193 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2194 // The target provides a guard check function to validate the guard value. 2195 // Generate a call to that function with the content of the guard slot as 2196 // argument. 2197 auto *Fn = cast<Function>(GuardCheck); 2198 FunctionType *FnTy = Fn->getFunctionType(); 2199 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2200 2201 TargetLowering::ArgListTy Args; 2202 TargetLowering::ArgListEntry Entry; 2203 Entry.Node = GuardVal; 2204 Entry.Ty = FnTy->getParamType(0); 2205 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2206 Entry.IsInReg = true; 2207 Args.push_back(Entry); 2208 2209 TargetLowering::CallLoweringInfo CLI(DAG); 2210 CLI.setDebugLoc(getCurSDLoc()) 2211 .setChain(DAG.getEntryNode()) 2212 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2213 getValue(GuardCheck), std::move(Args)); 2214 2215 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2216 DAG.setRoot(Result.second); 2217 return; 2218 } 2219 2220 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2221 // Otherwise, emit a volatile load to retrieve the stack guard value. 2222 SDValue Chain = DAG.getEntryNode(); 2223 if (TLI.useLoadStackGuardNode()) { 2224 Guard = getLoadStackGuard(DAG, dl, Chain); 2225 } else { 2226 const Value *IRGuard = TLI.getSDagStackGuard(M); 2227 SDValue GuardPtr = getValue(IRGuard); 2228 2229 Guard = 2230 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2231 Align, MachineMemOperand::MOVolatile); 2232 } 2233 2234 // Perform the comparison via a subtract/getsetcc. 2235 EVT VT = Guard.getValueType(); 2236 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2237 2238 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2239 *DAG.getContext(), 2240 Sub.getValueType()), 2241 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2242 2243 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2244 // branch to failure MBB. 2245 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2246 MVT::Other, GuardVal.getOperand(0), 2247 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2248 // Otherwise branch to success MBB. 2249 SDValue Br = DAG.getNode(ISD::BR, dl, 2250 MVT::Other, BrCond, 2251 DAG.getBasicBlock(SPD.getSuccessMBB())); 2252 2253 DAG.setRoot(Br); 2254 } 2255 2256 /// Codegen the failure basic block for a stack protector check. 2257 /// 2258 /// A failure stack protector machine basic block consists simply of a call to 2259 /// __stack_chk_fail(). 2260 /// 2261 /// For a high level explanation of how this fits into the stack protector 2262 /// generation see the comment on the declaration of class 2263 /// StackProtectorDescriptor. 2264 void 2265 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2267 SDValue Chain = 2268 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2269 None, false, getCurSDLoc(), false, false).second; 2270 DAG.setRoot(Chain); 2271 } 2272 2273 /// visitBitTestHeader - This function emits necessary code to produce value 2274 /// suitable for "bit tests" 2275 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2276 MachineBasicBlock *SwitchBB) { 2277 SDLoc dl = getCurSDLoc(); 2278 2279 // Subtract the minimum value 2280 SDValue SwitchOp = getValue(B.SValue); 2281 EVT VT = SwitchOp.getValueType(); 2282 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2283 DAG.getConstant(B.First, dl, VT)); 2284 2285 // Check range 2286 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2287 SDValue RangeCmp = DAG.getSetCC( 2288 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2289 Sub.getValueType()), 2290 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2291 2292 // Determine the type of the test operands. 2293 bool UsePtrType = false; 2294 if (!TLI.isTypeLegal(VT)) 2295 UsePtrType = true; 2296 else { 2297 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2298 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2299 // Switch table case range are encoded into series of masks. 2300 // Just use pointer type, it's guaranteed to fit. 2301 UsePtrType = true; 2302 break; 2303 } 2304 } 2305 if (UsePtrType) { 2306 VT = TLI.getPointerTy(DAG.getDataLayout()); 2307 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2308 } 2309 2310 B.RegVT = VT.getSimpleVT(); 2311 B.Reg = FuncInfo.CreateReg(B.RegVT); 2312 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2313 2314 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2315 2316 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2317 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2318 SwitchBB->normalizeSuccProbs(); 2319 2320 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2321 MVT::Other, CopyTo, RangeCmp, 2322 DAG.getBasicBlock(B.Default)); 2323 2324 // Avoid emitting unnecessary branches to the next block. 2325 if (MBB != NextBlock(SwitchBB)) 2326 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2327 DAG.getBasicBlock(MBB)); 2328 2329 DAG.setRoot(BrRange); 2330 } 2331 2332 /// visitBitTestCase - this function produces one "bit test" 2333 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2334 MachineBasicBlock* NextMBB, 2335 BranchProbability BranchProbToNext, 2336 unsigned Reg, 2337 BitTestCase &B, 2338 MachineBasicBlock *SwitchBB) { 2339 SDLoc dl = getCurSDLoc(); 2340 MVT VT = BB.RegVT; 2341 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2342 SDValue Cmp; 2343 unsigned PopCount = countPopulation(B.Mask); 2344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2345 if (PopCount == 1) { 2346 // Testing for a single bit; just compare the shift count with what it 2347 // would need to be to shift a 1 bit in that position. 2348 Cmp = DAG.getSetCC( 2349 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2350 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2351 ISD::SETEQ); 2352 } else if (PopCount == BB.Range) { 2353 // There is only one zero bit in the range, test for it directly. 2354 Cmp = DAG.getSetCC( 2355 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2356 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2357 ISD::SETNE); 2358 } else { 2359 // Make desired shift 2360 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2361 DAG.getConstant(1, dl, VT), ShiftOp); 2362 2363 // Emit bit tests and jumps 2364 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2365 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2366 Cmp = DAG.getSetCC( 2367 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2368 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2369 } 2370 2371 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2372 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2373 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2374 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2375 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2376 // one as they are relative probabilities (and thus work more like weights), 2377 // and hence we need to normalize them to let the sum of them become one. 2378 SwitchBB->normalizeSuccProbs(); 2379 2380 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2381 MVT::Other, getControlRoot(), 2382 Cmp, DAG.getBasicBlock(B.TargetBB)); 2383 2384 // Avoid emitting unnecessary branches to the next block. 2385 if (NextMBB != NextBlock(SwitchBB)) 2386 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2387 DAG.getBasicBlock(NextMBB)); 2388 2389 DAG.setRoot(BrAnd); 2390 } 2391 2392 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2393 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2394 2395 // Retrieve successors. Look through artificial IR level blocks like 2396 // catchswitch for successors. 2397 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2398 const BasicBlock *EHPadBB = I.getSuccessor(1); 2399 2400 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2401 // have to do anything here to lower funclet bundles. 2402 assert(!I.hasOperandBundlesOtherThan( 2403 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2404 "Cannot lower invokes with arbitrary operand bundles yet!"); 2405 2406 const Value *Callee(I.getCalledValue()); 2407 const Function *Fn = dyn_cast<Function>(Callee); 2408 if (isa<InlineAsm>(Callee)) 2409 visitInlineAsm(&I); 2410 else if (Fn && Fn->isIntrinsic()) { 2411 switch (Fn->getIntrinsicID()) { 2412 default: 2413 llvm_unreachable("Cannot invoke this intrinsic"); 2414 case Intrinsic::donothing: 2415 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2416 break; 2417 case Intrinsic::experimental_patchpoint_void: 2418 case Intrinsic::experimental_patchpoint_i64: 2419 visitPatchpoint(&I, EHPadBB); 2420 break; 2421 case Intrinsic::experimental_gc_statepoint: 2422 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2423 break; 2424 } 2425 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2426 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2427 // Eventually we will support lowering the @llvm.experimental.deoptimize 2428 // intrinsic, and right now there are no plans to support other intrinsics 2429 // with deopt state. 2430 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2431 } else { 2432 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2433 } 2434 2435 // If the value of the invoke is used outside of its defining block, make it 2436 // available as a virtual register. 2437 // We already took care of the exported value for the statepoint instruction 2438 // during call to the LowerStatepoint. 2439 if (!isStatepoint(I)) { 2440 CopyToExportRegsIfNeeded(&I); 2441 } 2442 2443 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2444 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2445 BranchProbability EHPadBBProb = 2446 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2447 : BranchProbability::getZero(); 2448 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2449 2450 // Update successor info. 2451 addSuccessorWithProb(InvokeMBB, Return); 2452 for (auto &UnwindDest : UnwindDests) { 2453 UnwindDest.first->setIsEHPad(); 2454 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2455 } 2456 InvokeMBB->normalizeSuccProbs(); 2457 2458 // Drop into normal successor. 2459 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2460 MVT::Other, getControlRoot(), 2461 DAG.getBasicBlock(Return))); 2462 } 2463 2464 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2465 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2466 } 2467 2468 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2469 assert(FuncInfo.MBB->isEHPad() && 2470 "Call to landingpad not in landing pad!"); 2471 2472 MachineBasicBlock *MBB = FuncInfo.MBB; 2473 addLandingPadInfo(LP, *MBB); 2474 2475 // If there aren't registers to copy the values into (e.g., during SjLj 2476 // exceptions), then don't bother to create these DAG nodes. 2477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2478 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2479 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2480 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2481 return; 2482 2483 // If landingpad's return type is token type, we don't create DAG nodes 2484 // for its exception pointer and selector value. The extraction of exception 2485 // pointer or selector value from token type landingpads is not currently 2486 // supported. 2487 if (LP.getType()->isTokenTy()) 2488 return; 2489 2490 SmallVector<EVT, 2> ValueVTs; 2491 SDLoc dl = getCurSDLoc(); 2492 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2493 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2494 2495 // Get the two live-in registers as SDValues. The physregs have already been 2496 // copied into virtual registers. 2497 SDValue Ops[2]; 2498 if (FuncInfo.ExceptionPointerVirtReg) { 2499 Ops[0] = DAG.getZExtOrTrunc( 2500 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2501 FuncInfo.ExceptionPointerVirtReg, 2502 TLI.getPointerTy(DAG.getDataLayout())), 2503 dl, ValueVTs[0]); 2504 } else { 2505 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2506 } 2507 Ops[1] = DAG.getZExtOrTrunc( 2508 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2509 FuncInfo.ExceptionSelectorVirtReg, 2510 TLI.getPointerTy(DAG.getDataLayout())), 2511 dl, ValueVTs[1]); 2512 2513 // Merge into one. 2514 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2515 DAG.getVTList(ValueVTs), Ops); 2516 setValue(&LP, Res); 2517 } 2518 2519 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2520 #ifndef NDEBUG 2521 for (const CaseCluster &CC : Clusters) 2522 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2523 #endif 2524 2525 llvm::sort(Clusters.begin(), Clusters.end(), 2526 [](const CaseCluster &a, const CaseCluster &b) { 2527 return a.Low->getValue().slt(b.Low->getValue()); 2528 }); 2529 2530 // Merge adjacent clusters with the same destination. 2531 const unsigned N = Clusters.size(); 2532 unsigned DstIndex = 0; 2533 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2534 CaseCluster &CC = Clusters[SrcIndex]; 2535 const ConstantInt *CaseVal = CC.Low; 2536 MachineBasicBlock *Succ = CC.MBB; 2537 2538 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2539 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2540 // If this case has the same successor and is a neighbour, merge it into 2541 // the previous cluster. 2542 Clusters[DstIndex - 1].High = CaseVal; 2543 Clusters[DstIndex - 1].Prob += CC.Prob; 2544 } else { 2545 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2546 sizeof(Clusters[SrcIndex])); 2547 } 2548 } 2549 Clusters.resize(DstIndex); 2550 } 2551 2552 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2553 MachineBasicBlock *Last) { 2554 // Update JTCases. 2555 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2556 if (JTCases[i].first.HeaderBB == First) 2557 JTCases[i].first.HeaderBB = Last; 2558 2559 // Update BitTestCases. 2560 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2561 if (BitTestCases[i].Parent == First) 2562 BitTestCases[i].Parent = Last; 2563 } 2564 2565 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2566 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2567 2568 // Update machine-CFG edges with unique successors. 2569 SmallSet<BasicBlock*, 32> Done; 2570 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2571 BasicBlock *BB = I.getSuccessor(i); 2572 bool Inserted = Done.insert(BB).second; 2573 if (!Inserted) 2574 continue; 2575 2576 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2577 addSuccessorWithProb(IndirectBrMBB, Succ); 2578 } 2579 IndirectBrMBB->normalizeSuccProbs(); 2580 2581 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2582 MVT::Other, getControlRoot(), 2583 getValue(I.getAddress()))); 2584 } 2585 2586 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2587 if (DAG.getTarget().Options.TrapUnreachable) 2588 DAG.setRoot( 2589 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2590 } 2591 2592 void SelectionDAGBuilder::visitFSub(const User &I) { 2593 // -0.0 - X --> fneg 2594 Type *Ty = I.getType(); 2595 if (isa<Constant>(I.getOperand(0)) && 2596 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2597 SDValue Op2 = getValue(I.getOperand(1)); 2598 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2599 Op2.getValueType(), Op2)); 2600 return; 2601 } 2602 2603 visitBinary(I, ISD::FSUB); 2604 } 2605 2606 /// Checks if the given instruction performs a vector reduction, in which case 2607 /// we have the freedom to alter the elements in the result as long as the 2608 /// reduction of them stays unchanged. 2609 static bool isVectorReductionOp(const User *I) { 2610 const Instruction *Inst = dyn_cast<Instruction>(I); 2611 if (!Inst || !Inst->getType()->isVectorTy()) 2612 return false; 2613 2614 auto OpCode = Inst->getOpcode(); 2615 switch (OpCode) { 2616 case Instruction::Add: 2617 case Instruction::Mul: 2618 case Instruction::And: 2619 case Instruction::Or: 2620 case Instruction::Xor: 2621 break; 2622 case Instruction::FAdd: 2623 case Instruction::FMul: 2624 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2625 if (FPOp->getFastMathFlags().isFast()) 2626 break; 2627 LLVM_FALLTHROUGH; 2628 default: 2629 return false; 2630 } 2631 2632 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2633 unsigned ElemNumToReduce = ElemNum; 2634 2635 // Do DFS search on the def-use chain from the given instruction. We only 2636 // allow four kinds of operations during the search until we reach the 2637 // instruction that extracts the first element from the vector: 2638 // 2639 // 1. The reduction operation of the same opcode as the given instruction. 2640 // 2641 // 2. PHI node. 2642 // 2643 // 3. ShuffleVector instruction together with a reduction operation that 2644 // does a partial reduction. 2645 // 2646 // 4. ExtractElement that extracts the first element from the vector, and we 2647 // stop searching the def-use chain here. 2648 // 2649 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2650 // from 1-3 to the stack to continue the DFS. The given instruction is not 2651 // a reduction operation if we meet any other instructions other than those 2652 // listed above. 2653 2654 SmallVector<const User *, 16> UsersToVisit{Inst}; 2655 SmallPtrSet<const User *, 16> Visited; 2656 bool ReduxExtracted = false; 2657 2658 while (!UsersToVisit.empty()) { 2659 auto User = UsersToVisit.back(); 2660 UsersToVisit.pop_back(); 2661 if (!Visited.insert(User).second) 2662 continue; 2663 2664 for (const auto &U : User->users()) { 2665 auto Inst = dyn_cast<Instruction>(U); 2666 if (!Inst) 2667 return false; 2668 2669 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2670 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2671 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2672 return false; 2673 UsersToVisit.push_back(U); 2674 } else if (const ShuffleVectorInst *ShufInst = 2675 dyn_cast<ShuffleVectorInst>(U)) { 2676 // Detect the following pattern: A ShuffleVector instruction together 2677 // with a reduction that do partial reduction on the first and second 2678 // ElemNumToReduce / 2 elements, and store the result in 2679 // ElemNumToReduce / 2 elements in another vector. 2680 2681 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2682 if (ResultElements < ElemNum) 2683 return false; 2684 2685 if (ElemNumToReduce == 1) 2686 return false; 2687 if (!isa<UndefValue>(U->getOperand(1))) 2688 return false; 2689 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2690 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2691 return false; 2692 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2693 if (ShufInst->getMaskValue(i) != -1) 2694 return false; 2695 2696 // There is only one user of this ShuffleVector instruction, which 2697 // must be a reduction operation. 2698 if (!U->hasOneUse()) 2699 return false; 2700 2701 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2702 if (!U2 || U2->getOpcode() != OpCode) 2703 return false; 2704 2705 // Check operands of the reduction operation. 2706 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2707 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2708 UsersToVisit.push_back(U2); 2709 ElemNumToReduce /= 2; 2710 } else 2711 return false; 2712 } else if (isa<ExtractElementInst>(U)) { 2713 // At this moment we should have reduced all elements in the vector. 2714 if (ElemNumToReduce != 1) 2715 return false; 2716 2717 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2718 if (!Val || Val->getZExtValue() != 0) 2719 return false; 2720 2721 ReduxExtracted = true; 2722 } else 2723 return false; 2724 } 2725 } 2726 return ReduxExtracted; 2727 } 2728 2729 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2730 SDValue Op1 = getValue(I.getOperand(0)); 2731 SDValue Op2 = getValue(I.getOperand(1)); 2732 2733 bool nuw = false; 2734 bool nsw = false; 2735 bool exact = false; 2736 bool vec_redux = false; 2737 FastMathFlags FMF; 2738 2739 if (const OverflowingBinaryOperator *OFBinOp = 2740 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2741 nuw = OFBinOp->hasNoUnsignedWrap(); 2742 nsw = OFBinOp->hasNoSignedWrap(); 2743 } 2744 if (const PossiblyExactOperator *ExactOp = 2745 dyn_cast<const PossiblyExactOperator>(&I)) 2746 exact = ExactOp->isExact(); 2747 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2748 FMF = FPOp->getFastMathFlags(); 2749 2750 if (isVectorReductionOp(&I)) { 2751 vec_redux = true; 2752 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2753 } 2754 2755 SDNodeFlags Flags; 2756 Flags.setExact(exact); 2757 Flags.setNoSignedWrap(nsw); 2758 Flags.setNoUnsignedWrap(nuw); 2759 Flags.setVectorReduction(vec_redux); 2760 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2761 Flags.setAllowContract(FMF.allowContract()); 2762 Flags.setNoInfs(FMF.noInfs()); 2763 Flags.setNoNaNs(FMF.noNaNs()); 2764 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2765 Flags.setUnsafeAlgebra(FMF.isFast()); 2766 2767 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2768 Op1, Op2, Flags); 2769 setValue(&I, BinNodeValue); 2770 } 2771 2772 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2773 SDValue Op1 = getValue(I.getOperand(0)); 2774 SDValue Op2 = getValue(I.getOperand(1)); 2775 2776 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2777 Op2.getValueType(), DAG.getDataLayout()); 2778 2779 // Coerce the shift amount to the right type if we can. 2780 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2781 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2782 unsigned Op2Size = Op2.getValueSizeInBits(); 2783 SDLoc DL = getCurSDLoc(); 2784 2785 // If the operand is smaller than the shift count type, promote it. 2786 if (ShiftSize > Op2Size) 2787 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2788 2789 // If the operand is larger than the shift count type but the shift 2790 // count type has enough bits to represent any shift value, truncate 2791 // it now. This is a common case and it exposes the truncate to 2792 // optimization early. 2793 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2794 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2795 // Otherwise we'll need to temporarily settle for some other convenient 2796 // type. Type legalization will make adjustments once the shiftee is split. 2797 else 2798 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2799 } 2800 2801 bool nuw = false; 2802 bool nsw = false; 2803 bool exact = false; 2804 2805 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2806 2807 if (const OverflowingBinaryOperator *OFBinOp = 2808 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2809 nuw = OFBinOp->hasNoUnsignedWrap(); 2810 nsw = OFBinOp->hasNoSignedWrap(); 2811 } 2812 if (const PossiblyExactOperator *ExactOp = 2813 dyn_cast<const PossiblyExactOperator>(&I)) 2814 exact = ExactOp->isExact(); 2815 } 2816 SDNodeFlags Flags; 2817 Flags.setExact(exact); 2818 Flags.setNoSignedWrap(nsw); 2819 Flags.setNoUnsignedWrap(nuw); 2820 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2821 Flags); 2822 setValue(&I, Res); 2823 } 2824 2825 void SelectionDAGBuilder::visitSDiv(const User &I) { 2826 SDValue Op1 = getValue(I.getOperand(0)); 2827 SDValue Op2 = getValue(I.getOperand(1)); 2828 2829 SDNodeFlags Flags; 2830 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2831 cast<PossiblyExactOperator>(&I)->isExact()); 2832 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2833 Op2, Flags)); 2834 } 2835 2836 void SelectionDAGBuilder::visitICmp(const User &I) { 2837 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2838 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2839 predicate = IC->getPredicate(); 2840 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2841 predicate = ICmpInst::Predicate(IC->getPredicate()); 2842 SDValue Op1 = getValue(I.getOperand(0)); 2843 SDValue Op2 = getValue(I.getOperand(1)); 2844 ISD::CondCode Opcode = getICmpCondCode(predicate); 2845 2846 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2847 I.getType()); 2848 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2849 } 2850 2851 void SelectionDAGBuilder::visitFCmp(const User &I) { 2852 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2853 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2854 predicate = FC->getPredicate(); 2855 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2856 predicate = FCmpInst::Predicate(FC->getPredicate()); 2857 SDValue Op1 = getValue(I.getOperand(0)); 2858 SDValue Op2 = getValue(I.getOperand(1)); 2859 ISD::CondCode Condition = getFCmpCondCode(predicate); 2860 2861 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2862 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2863 // further optimization, but currently FMF is only applicable to binary nodes. 2864 if (TM.Options.NoNaNsFPMath) 2865 Condition = getFCmpCodeWithoutNaN(Condition); 2866 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2867 I.getType()); 2868 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2869 } 2870 2871 // Check if the condition of the select has one use or two users that are both 2872 // selects with the same condition. 2873 static bool hasOnlySelectUsers(const Value *Cond) { 2874 return llvm::all_of(Cond->users(), [](const Value *V) { 2875 return isa<SelectInst>(V); 2876 }); 2877 } 2878 2879 void SelectionDAGBuilder::visitSelect(const User &I) { 2880 SmallVector<EVT, 4> ValueVTs; 2881 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2882 ValueVTs); 2883 unsigned NumValues = ValueVTs.size(); 2884 if (NumValues == 0) return; 2885 2886 SmallVector<SDValue, 4> Values(NumValues); 2887 SDValue Cond = getValue(I.getOperand(0)); 2888 SDValue LHSVal = getValue(I.getOperand(1)); 2889 SDValue RHSVal = getValue(I.getOperand(2)); 2890 auto BaseOps = {Cond}; 2891 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2892 ISD::VSELECT : ISD::SELECT; 2893 2894 // Min/max matching is only viable if all output VTs are the same. 2895 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2896 EVT VT = ValueVTs[0]; 2897 LLVMContext &Ctx = *DAG.getContext(); 2898 auto &TLI = DAG.getTargetLoweringInfo(); 2899 2900 // We care about the legality of the operation after it has been type 2901 // legalized. 2902 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2903 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2904 VT = TLI.getTypeToTransformTo(Ctx, VT); 2905 2906 // If the vselect is legal, assume we want to leave this as a vector setcc + 2907 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2908 // min/max is legal on the scalar type. 2909 bool UseScalarMinMax = VT.isVector() && 2910 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2911 2912 Value *LHS, *RHS; 2913 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2914 ISD::NodeType Opc = ISD::DELETED_NODE; 2915 switch (SPR.Flavor) { 2916 case SPF_UMAX: Opc = ISD::UMAX; break; 2917 case SPF_UMIN: Opc = ISD::UMIN; break; 2918 case SPF_SMAX: Opc = ISD::SMAX; break; 2919 case SPF_SMIN: Opc = ISD::SMIN; break; 2920 case SPF_FMINNUM: 2921 switch (SPR.NaNBehavior) { 2922 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2923 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2924 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2925 case SPNB_RETURNS_ANY: { 2926 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2927 Opc = ISD::FMINNUM; 2928 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2929 Opc = ISD::FMINNAN; 2930 else if (UseScalarMinMax) 2931 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2932 ISD::FMINNUM : ISD::FMINNAN; 2933 break; 2934 } 2935 } 2936 break; 2937 case SPF_FMAXNUM: 2938 switch (SPR.NaNBehavior) { 2939 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2940 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2941 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2942 case SPNB_RETURNS_ANY: 2943 2944 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2945 Opc = ISD::FMAXNUM; 2946 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2947 Opc = ISD::FMAXNAN; 2948 else if (UseScalarMinMax) 2949 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2950 ISD::FMAXNUM : ISD::FMAXNAN; 2951 break; 2952 } 2953 break; 2954 default: break; 2955 } 2956 2957 if (Opc != ISD::DELETED_NODE && 2958 (TLI.isOperationLegalOrCustom(Opc, VT) || 2959 (UseScalarMinMax && 2960 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2961 // If the underlying comparison instruction is used by any other 2962 // instruction, the consumed instructions won't be destroyed, so it is 2963 // not profitable to convert to a min/max. 2964 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2965 OpCode = Opc; 2966 LHSVal = getValue(LHS); 2967 RHSVal = getValue(RHS); 2968 BaseOps = {}; 2969 } 2970 } 2971 2972 for (unsigned i = 0; i != NumValues; ++i) { 2973 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2974 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2975 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2976 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2977 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2978 Ops); 2979 } 2980 2981 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2982 DAG.getVTList(ValueVTs), Values)); 2983 } 2984 2985 void SelectionDAGBuilder::visitTrunc(const User &I) { 2986 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2987 SDValue N = getValue(I.getOperand(0)); 2988 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2989 I.getType()); 2990 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2991 } 2992 2993 void SelectionDAGBuilder::visitZExt(const User &I) { 2994 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2995 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2996 SDValue N = getValue(I.getOperand(0)); 2997 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2998 I.getType()); 2999 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3000 } 3001 3002 void SelectionDAGBuilder::visitSExt(const User &I) { 3003 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3004 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3005 SDValue N = getValue(I.getOperand(0)); 3006 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3007 I.getType()); 3008 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3009 } 3010 3011 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3012 // FPTrunc is never a no-op cast, no need to check 3013 SDValue N = getValue(I.getOperand(0)); 3014 SDLoc dl = getCurSDLoc(); 3015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3016 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3017 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3018 DAG.getTargetConstant( 3019 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3020 } 3021 3022 void SelectionDAGBuilder::visitFPExt(const User &I) { 3023 // FPExt is never a no-op cast, no need to check 3024 SDValue N = getValue(I.getOperand(0)); 3025 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3026 I.getType()); 3027 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3028 } 3029 3030 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3031 // FPToUI is never a no-op cast, no need to check 3032 SDValue N = getValue(I.getOperand(0)); 3033 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3034 I.getType()); 3035 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3036 } 3037 3038 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3039 // FPToSI is never a no-op cast, no need to check 3040 SDValue N = getValue(I.getOperand(0)); 3041 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3042 I.getType()); 3043 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3044 } 3045 3046 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3047 // UIToFP is never a no-op cast, no need to check 3048 SDValue N = getValue(I.getOperand(0)); 3049 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3050 I.getType()); 3051 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3052 } 3053 3054 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3055 // SIToFP is never a no-op cast, no need to check 3056 SDValue N = getValue(I.getOperand(0)); 3057 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3058 I.getType()); 3059 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3060 } 3061 3062 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3063 // What to do depends on the size of the integer and the size of the pointer. 3064 // We can either truncate, zero extend, or no-op, accordingly. 3065 SDValue N = getValue(I.getOperand(0)); 3066 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3067 I.getType()); 3068 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3069 } 3070 3071 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3072 // What to do depends on the size of the integer and the size of the pointer. 3073 // We can either truncate, zero extend, or no-op, accordingly. 3074 SDValue N = getValue(I.getOperand(0)); 3075 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3076 I.getType()); 3077 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3078 } 3079 3080 void SelectionDAGBuilder::visitBitCast(const User &I) { 3081 SDValue N = getValue(I.getOperand(0)); 3082 SDLoc dl = getCurSDLoc(); 3083 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3084 I.getType()); 3085 3086 // BitCast assures us that source and destination are the same size so this is 3087 // either a BITCAST or a no-op. 3088 if (DestVT != N.getValueType()) 3089 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3090 DestVT, N)); // convert types. 3091 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3092 // might fold any kind of constant expression to an integer constant and that 3093 // is not what we are looking for. Only recognize a bitcast of a genuine 3094 // constant integer as an opaque constant. 3095 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3096 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3097 /*isOpaque*/true)); 3098 else 3099 setValue(&I, N); // noop cast. 3100 } 3101 3102 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3104 const Value *SV = I.getOperand(0); 3105 SDValue N = getValue(SV); 3106 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3107 3108 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3109 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3110 3111 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3112 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3113 3114 setValue(&I, N); 3115 } 3116 3117 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3119 SDValue InVec = getValue(I.getOperand(0)); 3120 SDValue InVal = getValue(I.getOperand(1)); 3121 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3122 TLI.getVectorIdxTy(DAG.getDataLayout())); 3123 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3124 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3125 InVec, InVal, InIdx)); 3126 } 3127 3128 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3129 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3130 SDValue InVec = getValue(I.getOperand(0)); 3131 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3132 TLI.getVectorIdxTy(DAG.getDataLayout())); 3133 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3134 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3135 InVec, InIdx)); 3136 } 3137 3138 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3139 SDValue Src1 = getValue(I.getOperand(0)); 3140 SDValue Src2 = getValue(I.getOperand(1)); 3141 SDLoc DL = getCurSDLoc(); 3142 3143 SmallVector<int, 8> Mask; 3144 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3145 unsigned MaskNumElts = Mask.size(); 3146 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3149 EVT SrcVT = Src1.getValueType(); 3150 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3151 3152 if (SrcNumElts == MaskNumElts) { 3153 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3154 return; 3155 } 3156 3157 // Normalize the shuffle vector since mask and vector length don't match. 3158 if (SrcNumElts < MaskNumElts) { 3159 // Mask is longer than the source vectors. We can use concatenate vector to 3160 // make the mask and vectors lengths match. 3161 3162 if (MaskNumElts % SrcNumElts == 0) { 3163 // Mask length is a multiple of the source vector length. 3164 // Check if the shuffle is some kind of concatenation of the input 3165 // vectors. 3166 unsigned NumConcat = MaskNumElts / SrcNumElts; 3167 bool IsConcat = true; 3168 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3169 for (unsigned i = 0; i != MaskNumElts; ++i) { 3170 int Idx = Mask[i]; 3171 if (Idx < 0) 3172 continue; 3173 // Ensure the indices in each SrcVT sized piece are sequential and that 3174 // the same source is used for the whole piece. 3175 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3176 (ConcatSrcs[i / SrcNumElts] >= 0 && 3177 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3178 IsConcat = false; 3179 break; 3180 } 3181 // Remember which source this index came from. 3182 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3183 } 3184 3185 // The shuffle is concatenating multiple vectors together. Just emit 3186 // a CONCAT_VECTORS operation. 3187 if (IsConcat) { 3188 SmallVector<SDValue, 8> ConcatOps; 3189 for (auto Src : ConcatSrcs) { 3190 if (Src < 0) 3191 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3192 else if (Src == 0) 3193 ConcatOps.push_back(Src1); 3194 else 3195 ConcatOps.push_back(Src2); 3196 } 3197 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3198 return; 3199 } 3200 } 3201 3202 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3203 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3204 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3205 PaddedMaskNumElts); 3206 3207 // Pad both vectors with undefs to make them the same length as the mask. 3208 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3209 3210 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3211 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3212 MOps1[0] = Src1; 3213 MOps2[0] = Src2; 3214 3215 Src1 = Src1.isUndef() 3216 ? DAG.getUNDEF(PaddedVT) 3217 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3218 Src2 = Src2.isUndef() 3219 ? DAG.getUNDEF(PaddedVT) 3220 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3221 3222 // Readjust mask for new input vector length. 3223 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3224 for (unsigned i = 0; i != MaskNumElts; ++i) { 3225 int Idx = Mask[i]; 3226 if (Idx >= (int)SrcNumElts) 3227 Idx -= SrcNumElts - PaddedMaskNumElts; 3228 MappedOps[i] = Idx; 3229 } 3230 3231 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3232 3233 // If the concatenated vector was padded, extract a subvector with the 3234 // correct number of elements. 3235 if (MaskNumElts != PaddedMaskNumElts) 3236 Result = DAG.getNode( 3237 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3238 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3239 3240 setValue(&I, Result); 3241 return; 3242 } 3243 3244 if (SrcNumElts > MaskNumElts) { 3245 // Analyze the access pattern of the vector to see if we can extract 3246 // two subvectors and do the shuffle. 3247 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3248 bool CanExtract = true; 3249 for (int Idx : Mask) { 3250 unsigned Input = 0; 3251 if (Idx < 0) 3252 continue; 3253 3254 if (Idx >= (int)SrcNumElts) { 3255 Input = 1; 3256 Idx -= SrcNumElts; 3257 } 3258 3259 // If all the indices come from the same MaskNumElts sized portion of 3260 // the sources we can use extract. Also make sure the extract wouldn't 3261 // extract past the end of the source. 3262 int NewStartIdx = alignDown(Idx, MaskNumElts); 3263 if (NewStartIdx + MaskNumElts > SrcNumElts || 3264 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3265 CanExtract = false; 3266 // Make sure we always update StartIdx as we use it to track if all 3267 // elements are undef. 3268 StartIdx[Input] = NewStartIdx; 3269 } 3270 3271 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3272 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3273 return; 3274 } 3275 if (CanExtract) { 3276 // Extract appropriate subvector and generate a vector shuffle 3277 for (unsigned Input = 0; Input < 2; ++Input) { 3278 SDValue &Src = Input == 0 ? Src1 : Src2; 3279 if (StartIdx[Input] < 0) 3280 Src = DAG.getUNDEF(VT); 3281 else { 3282 Src = DAG.getNode( 3283 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3284 DAG.getConstant(StartIdx[Input], DL, 3285 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3286 } 3287 } 3288 3289 // Calculate new mask. 3290 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3291 for (int &Idx : MappedOps) { 3292 if (Idx >= (int)SrcNumElts) 3293 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3294 else if (Idx >= 0) 3295 Idx -= StartIdx[0]; 3296 } 3297 3298 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3299 return; 3300 } 3301 } 3302 3303 // We can't use either concat vectors or extract subvectors so fall back to 3304 // replacing the shuffle with extract and build vector. 3305 // to insert and build vector. 3306 EVT EltVT = VT.getVectorElementType(); 3307 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3308 SmallVector<SDValue,8> Ops; 3309 for (int Idx : Mask) { 3310 SDValue Res; 3311 3312 if (Idx < 0) { 3313 Res = DAG.getUNDEF(EltVT); 3314 } else { 3315 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3316 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3317 3318 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3319 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3320 } 3321 3322 Ops.push_back(Res); 3323 } 3324 3325 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3326 } 3327 3328 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3329 ArrayRef<unsigned> Indices; 3330 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3331 Indices = IV->getIndices(); 3332 else 3333 Indices = cast<ConstantExpr>(&I)->getIndices(); 3334 3335 const Value *Op0 = I.getOperand(0); 3336 const Value *Op1 = I.getOperand(1); 3337 Type *AggTy = I.getType(); 3338 Type *ValTy = Op1->getType(); 3339 bool IntoUndef = isa<UndefValue>(Op0); 3340 bool FromUndef = isa<UndefValue>(Op1); 3341 3342 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3343 3344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3345 SmallVector<EVT, 4> AggValueVTs; 3346 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3347 SmallVector<EVT, 4> ValValueVTs; 3348 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3349 3350 unsigned NumAggValues = AggValueVTs.size(); 3351 unsigned NumValValues = ValValueVTs.size(); 3352 SmallVector<SDValue, 4> Values(NumAggValues); 3353 3354 // Ignore an insertvalue that produces an empty object 3355 if (!NumAggValues) { 3356 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3357 return; 3358 } 3359 3360 SDValue Agg = getValue(Op0); 3361 unsigned i = 0; 3362 // Copy the beginning value(s) from the original aggregate. 3363 for (; i != LinearIndex; ++i) 3364 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3365 SDValue(Agg.getNode(), Agg.getResNo() + i); 3366 // Copy values from the inserted value(s). 3367 if (NumValValues) { 3368 SDValue Val = getValue(Op1); 3369 for (; i != LinearIndex + NumValValues; ++i) 3370 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3371 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3372 } 3373 // Copy remaining value(s) from the original aggregate. 3374 for (; i != NumAggValues; ++i) 3375 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3376 SDValue(Agg.getNode(), Agg.getResNo() + i); 3377 3378 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3379 DAG.getVTList(AggValueVTs), Values)); 3380 } 3381 3382 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3383 ArrayRef<unsigned> Indices; 3384 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3385 Indices = EV->getIndices(); 3386 else 3387 Indices = cast<ConstantExpr>(&I)->getIndices(); 3388 3389 const Value *Op0 = I.getOperand(0); 3390 Type *AggTy = Op0->getType(); 3391 Type *ValTy = I.getType(); 3392 bool OutOfUndef = isa<UndefValue>(Op0); 3393 3394 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3395 3396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3397 SmallVector<EVT, 4> ValValueVTs; 3398 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3399 3400 unsigned NumValValues = ValValueVTs.size(); 3401 3402 // Ignore a extractvalue that produces an empty object 3403 if (!NumValValues) { 3404 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3405 return; 3406 } 3407 3408 SmallVector<SDValue, 4> Values(NumValValues); 3409 3410 SDValue Agg = getValue(Op0); 3411 // Copy out the selected value(s). 3412 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3413 Values[i - LinearIndex] = 3414 OutOfUndef ? 3415 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3416 SDValue(Agg.getNode(), Agg.getResNo() + i); 3417 3418 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3419 DAG.getVTList(ValValueVTs), Values)); 3420 } 3421 3422 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3423 Value *Op0 = I.getOperand(0); 3424 // Note that the pointer operand may be a vector of pointers. Take the scalar 3425 // element which holds a pointer. 3426 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3427 SDValue N = getValue(Op0); 3428 SDLoc dl = getCurSDLoc(); 3429 3430 // Normalize Vector GEP - all scalar operands should be converted to the 3431 // splat vector. 3432 unsigned VectorWidth = I.getType()->isVectorTy() ? 3433 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3434 3435 if (VectorWidth && !N.getValueType().isVector()) { 3436 LLVMContext &Context = *DAG.getContext(); 3437 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3438 N = DAG.getSplatBuildVector(VT, dl, N); 3439 } 3440 3441 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3442 GTI != E; ++GTI) { 3443 const Value *Idx = GTI.getOperand(); 3444 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3445 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3446 if (Field) { 3447 // N = N + Offset 3448 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3449 3450 // In an inbounds GEP with an offset that is nonnegative even when 3451 // interpreted as signed, assume there is no unsigned overflow. 3452 SDNodeFlags Flags; 3453 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3454 Flags.setNoUnsignedWrap(true); 3455 3456 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3457 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3458 } 3459 } else { 3460 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3461 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3462 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3463 3464 // If this is a scalar constant or a splat vector of constants, 3465 // handle it quickly. 3466 const auto *CI = dyn_cast<ConstantInt>(Idx); 3467 if (!CI && isa<ConstantDataVector>(Idx) && 3468 cast<ConstantDataVector>(Idx)->getSplatValue()) 3469 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3470 3471 if (CI) { 3472 if (CI->isZero()) 3473 continue; 3474 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3475 LLVMContext &Context = *DAG.getContext(); 3476 SDValue OffsVal = VectorWidth ? 3477 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3478 DAG.getConstant(Offs, dl, IdxTy); 3479 3480 // In an inbouds GEP with an offset that is nonnegative even when 3481 // interpreted as signed, assume there is no unsigned overflow. 3482 SDNodeFlags Flags; 3483 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3484 Flags.setNoUnsignedWrap(true); 3485 3486 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3487 continue; 3488 } 3489 3490 // N = N + Idx * ElementSize; 3491 SDValue IdxN = getValue(Idx); 3492 3493 if (!IdxN.getValueType().isVector() && VectorWidth) { 3494 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3495 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3496 } 3497 3498 // If the index is smaller or larger than intptr_t, truncate or extend 3499 // it. 3500 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3501 3502 // If this is a multiply by a power of two, turn it into a shl 3503 // immediately. This is a very common case. 3504 if (ElementSize != 1) { 3505 if (ElementSize.isPowerOf2()) { 3506 unsigned Amt = ElementSize.logBase2(); 3507 IdxN = DAG.getNode(ISD::SHL, dl, 3508 N.getValueType(), IdxN, 3509 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3510 } else { 3511 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3512 IdxN = DAG.getNode(ISD::MUL, dl, 3513 N.getValueType(), IdxN, Scale); 3514 } 3515 } 3516 3517 N = DAG.getNode(ISD::ADD, dl, 3518 N.getValueType(), N, IdxN); 3519 } 3520 } 3521 3522 setValue(&I, N); 3523 } 3524 3525 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3526 // If this is a fixed sized alloca in the entry block of the function, 3527 // allocate it statically on the stack. 3528 if (FuncInfo.StaticAllocaMap.count(&I)) 3529 return; // getValue will auto-populate this. 3530 3531 SDLoc dl = getCurSDLoc(); 3532 Type *Ty = I.getAllocatedType(); 3533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3534 auto &DL = DAG.getDataLayout(); 3535 uint64_t TySize = DL.getTypeAllocSize(Ty); 3536 unsigned Align = 3537 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3538 3539 SDValue AllocSize = getValue(I.getArraySize()); 3540 3541 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3542 if (AllocSize.getValueType() != IntPtr) 3543 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3544 3545 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3546 AllocSize, 3547 DAG.getConstant(TySize, dl, IntPtr)); 3548 3549 // Handle alignment. If the requested alignment is less than or equal to 3550 // the stack alignment, ignore it. If the size is greater than or equal to 3551 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3552 unsigned StackAlign = 3553 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3554 if (Align <= StackAlign) 3555 Align = 0; 3556 3557 // Round the size of the allocation up to the stack alignment size 3558 // by add SA-1 to the size. This doesn't overflow because we're computing 3559 // an address inside an alloca. 3560 SDNodeFlags Flags; 3561 Flags.setNoUnsignedWrap(true); 3562 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3563 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3564 3565 // Mask out the low bits for alignment purposes. 3566 AllocSize = 3567 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3568 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3569 3570 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3571 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3572 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3573 setValue(&I, DSA); 3574 DAG.setRoot(DSA.getValue(1)); 3575 3576 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3577 } 3578 3579 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3580 if (I.isAtomic()) 3581 return visitAtomicLoad(I); 3582 3583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3584 const Value *SV = I.getOperand(0); 3585 if (TLI.supportSwiftError()) { 3586 // Swifterror values can come from either a function parameter with 3587 // swifterror attribute or an alloca with swifterror attribute. 3588 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3589 if (Arg->hasSwiftErrorAttr()) 3590 return visitLoadFromSwiftError(I); 3591 } 3592 3593 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3594 if (Alloca->isSwiftError()) 3595 return visitLoadFromSwiftError(I); 3596 } 3597 } 3598 3599 SDValue Ptr = getValue(SV); 3600 3601 Type *Ty = I.getType(); 3602 3603 bool isVolatile = I.isVolatile(); 3604 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3605 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3606 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3607 unsigned Alignment = I.getAlignment(); 3608 3609 AAMDNodes AAInfo; 3610 I.getAAMetadata(AAInfo); 3611 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3612 3613 SmallVector<EVT, 4> ValueVTs; 3614 SmallVector<uint64_t, 4> Offsets; 3615 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3616 unsigned NumValues = ValueVTs.size(); 3617 if (NumValues == 0) 3618 return; 3619 3620 SDValue Root; 3621 bool ConstantMemory = false; 3622 if (isVolatile || NumValues > MaxParallelChains) 3623 // Serialize volatile loads with other side effects. 3624 Root = getRoot(); 3625 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3626 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3627 // Do not serialize (non-volatile) loads of constant memory with anything. 3628 Root = DAG.getEntryNode(); 3629 ConstantMemory = true; 3630 } else { 3631 // Do not serialize non-volatile loads against each other. 3632 Root = DAG.getRoot(); 3633 } 3634 3635 SDLoc dl = getCurSDLoc(); 3636 3637 if (isVolatile) 3638 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3639 3640 // An aggregate load cannot wrap around the address space, so offsets to its 3641 // parts don't wrap either. 3642 SDNodeFlags Flags; 3643 Flags.setNoUnsignedWrap(true); 3644 3645 SmallVector<SDValue, 4> Values(NumValues); 3646 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3647 EVT PtrVT = Ptr.getValueType(); 3648 unsigned ChainI = 0; 3649 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3650 // Serializing loads here may result in excessive register pressure, and 3651 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3652 // could recover a bit by hoisting nodes upward in the chain by recognizing 3653 // they are side-effect free or do not alias. The optimizer should really 3654 // avoid this case by converting large object/array copies to llvm.memcpy 3655 // (MaxParallelChains should always remain as failsafe). 3656 if (ChainI == MaxParallelChains) { 3657 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3658 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3659 makeArrayRef(Chains.data(), ChainI)); 3660 Root = Chain; 3661 ChainI = 0; 3662 } 3663 SDValue A = DAG.getNode(ISD::ADD, dl, 3664 PtrVT, Ptr, 3665 DAG.getConstant(Offsets[i], dl, PtrVT), 3666 Flags); 3667 auto MMOFlags = MachineMemOperand::MONone; 3668 if (isVolatile) 3669 MMOFlags |= MachineMemOperand::MOVolatile; 3670 if (isNonTemporal) 3671 MMOFlags |= MachineMemOperand::MONonTemporal; 3672 if (isInvariant) 3673 MMOFlags |= MachineMemOperand::MOInvariant; 3674 if (isDereferenceable) 3675 MMOFlags |= MachineMemOperand::MODereferenceable; 3676 MMOFlags |= TLI.getMMOFlags(I); 3677 3678 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3679 MachinePointerInfo(SV, Offsets[i]), Alignment, 3680 MMOFlags, AAInfo, Ranges); 3681 3682 Values[i] = L; 3683 Chains[ChainI] = L.getValue(1); 3684 } 3685 3686 if (!ConstantMemory) { 3687 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3688 makeArrayRef(Chains.data(), ChainI)); 3689 if (isVolatile) 3690 DAG.setRoot(Chain); 3691 else 3692 PendingLoads.push_back(Chain); 3693 } 3694 3695 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3696 DAG.getVTList(ValueVTs), Values)); 3697 } 3698 3699 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3700 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3701 "call visitStoreToSwiftError when backend supports swifterror"); 3702 3703 SmallVector<EVT, 4> ValueVTs; 3704 SmallVector<uint64_t, 4> Offsets; 3705 const Value *SrcV = I.getOperand(0); 3706 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3707 SrcV->getType(), ValueVTs, &Offsets); 3708 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3709 "expect a single EVT for swifterror"); 3710 3711 SDValue Src = getValue(SrcV); 3712 // Create a virtual register, then update the virtual register. 3713 unsigned VReg; bool CreatedVReg; 3714 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3715 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3716 // Chain can be getRoot or getControlRoot. 3717 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3718 SDValue(Src.getNode(), Src.getResNo())); 3719 DAG.setRoot(CopyNode); 3720 if (CreatedVReg) 3721 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3722 } 3723 3724 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3725 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3726 "call visitLoadFromSwiftError when backend supports swifterror"); 3727 3728 assert(!I.isVolatile() && 3729 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3730 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3731 "Support volatile, non temporal, invariant for load_from_swift_error"); 3732 3733 const Value *SV = I.getOperand(0); 3734 Type *Ty = I.getType(); 3735 AAMDNodes AAInfo; 3736 I.getAAMetadata(AAInfo); 3737 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3738 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3739 "load_from_swift_error should not be constant memory"); 3740 3741 SmallVector<EVT, 4> ValueVTs; 3742 SmallVector<uint64_t, 4> Offsets; 3743 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3744 ValueVTs, &Offsets); 3745 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3746 "expect a single EVT for swifterror"); 3747 3748 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3749 SDValue L = DAG.getCopyFromReg( 3750 getRoot(), getCurSDLoc(), 3751 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3752 ValueVTs[0]); 3753 3754 setValue(&I, L); 3755 } 3756 3757 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3758 if (I.isAtomic()) 3759 return visitAtomicStore(I); 3760 3761 const Value *SrcV = I.getOperand(0); 3762 const Value *PtrV = I.getOperand(1); 3763 3764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3765 if (TLI.supportSwiftError()) { 3766 // Swifterror values can come from either a function parameter with 3767 // swifterror attribute or an alloca with swifterror attribute. 3768 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3769 if (Arg->hasSwiftErrorAttr()) 3770 return visitStoreToSwiftError(I); 3771 } 3772 3773 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3774 if (Alloca->isSwiftError()) 3775 return visitStoreToSwiftError(I); 3776 } 3777 } 3778 3779 SmallVector<EVT, 4> ValueVTs; 3780 SmallVector<uint64_t, 4> Offsets; 3781 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3782 SrcV->getType(), ValueVTs, &Offsets); 3783 unsigned NumValues = ValueVTs.size(); 3784 if (NumValues == 0) 3785 return; 3786 3787 // Get the lowered operands. Note that we do this after 3788 // checking if NumResults is zero, because with zero results 3789 // the operands won't have values in the map. 3790 SDValue Src = getValue(SrcV); 3791 SDValue Ptr = getValue(PtrV); 3792 3793 SDValue Root = getRoot(); 3794 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3795 SDLoc dl = getCurSDLoc(); 3796 EVT PtrVT = Ptr.getValueType(); 3797 unsigned Alignment = I.getAlignment(); 3798 AAMDNodes AAInfo; 3799 I.getAAMetadata(AAInfo); 3800 3801 auto MMOFlags = MachineMemOperand::MONone; 3802 if (I.isVolatile()) 3803 MMOFlags |= MachineMemOperand::MOVolatile; 3804 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3805 MMOFlags |= MachineMemOperand::MONonTemporal; 3806 MMOFlags |= TLI.getMMOFlags(I); 3807 3808 // An aggregate load cannot wrap around the address space, so offsets to its 3809 // parts don't wrap either. 3810 SDNodeFlags Flags; 3811 Flags.setNoUnsignedWrap(true); 3812 3813 unsigned ChainI = 0; 3814 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3815 // See visitLoad comments. 3816 if (ChainI == MaxParallelChains) { 3817 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3818 makeArrayRef(Chains.data(), ChainI)); 3819 Root = Chain; 3820 ChainI = 0; 3821 } 3822 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3823 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3824 SDValue St = DAG.getStore( 3825 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3826 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3827 Chains[ChainI] = St; 3828 } 3829 3830 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3831 makeArrayRef(Chains.data(), ChainI)); 3832 DAG.setRoot(StoreNode); 3833 } 3834 3835 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3836 bool IsCompressing) { 3837 SDLoc sdl = getCurSDLoc(); 3838 3839 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3840 unsigned& Alignment) { 3841 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3842 Src0 = I.getArgOperand(0); 3843 Ptr = I.getArgOperand(1); 3844 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3845 Mask = I.getArgOperand(3); 3846 }; 3847 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3848 unsigned& Alignment) { 3849 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3850 Src0 = I.getArgOperand(0); 3851 Ptr = I.getArgOperand(1); 3852 Mask = I.getArgOperand(2); 3853 Alignment = 0; 3854 }; 3855 3856 Value *PtrOperand, *MaskOperand, *Src0Operand; 3857 unsigned Alignment; 3858 if (IsCompressing) 3859 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3860 else 3861 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3862 3863 SDValue Ptr = getValue(PtrOperand); 3864 SDValue Src0 = getValue(Src0Operand); 3865 SDValue Mask = getValue(MaskOperand); 3866 3867 EVT VT = Src0.getValueType(); 3868 if (!Alignment) 3869 Alignment = DAG.getEVTAlignment(VT); 3870 3871 AAMDNodes AAInfo; 3872 I.getAAMetadata(AAInfo); 3873 3874 MachineMemOperand *MMO = 3875 DAG.getMachineFunction(). 3876 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3877 MachineMemOperand::MOStore, VT.getStoreSize(), 3878 Alignment, AAInfo); 3879 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3880 MMO, false /* Truncating */, 3881 IsCompressing); 3882 DAG.setRoot(StoreNode); 3883 setValue(&I, StoreNode); 3884 } 3885 3886 // Get a uniform base for the Gather/Scatter intrinsic. 3887 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3888 // We try to represent it as a base pointer + vector of indices. 3889 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3890 // The first operand of the GEP may be a single pointer or a vector of pointers 3891 // Example: 3892 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3893 // or 3894 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3895 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3896 // 3897 // When the first GEP operand is a single pointer - it is the uniform base we 3898 // are looking for. If first operand of the GEP is a splat vector - we 3899 // extract the splat value and use it as a uniform base. 3900 // In all other cases the function returns 'false'. 3901 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3902 SDValue &Scale, SelectionDAGBuilder* SDB) { 3903 SelectionDAG& DAG = SDB->DAG; 3904 LLVMContext &Context = *DAG.getContext(); 3905 3906 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3907 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3908 if (!GEP) 3909 return false; 3910 3911 const Value *GEPPtr = GEP->getPointerOperand(); 3912 if (!GEPPtr->getType()->isVectorTy()) 3913 Ptr = GEPPtr; 3914 else if (!(Ptr = getSplatValue(GEPPtr))) 3915 return false; 3916 3917 unsigned FinalIndex = GEP->getNumOperands() - 1; 3918 Value *IndexVal = GEP->getOperand(FinalIndex); 3919 3920 // Ensure all the other indices are 0. 3921 for (unsigned i = 1; i < FinalIndex; ++i) { 3922 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3923 if (!C || !C->isZero()) 3924 return false; 3925 } 3926 3927 // The operands of the GEP may be defined in another basic block. 3928 // In this case we'll not find nodes for the operands. 3929 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3930 return false; 3931 3932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3933 const DataLayout &DL = DAG.getDataLayout(); 3934 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3935 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3936 Base = SDB->getValue(Ptr); 3937 Index = SDB->getValue(IndexVal); 3938 3939 if (!Index.getValueType().isVector()) { 3940 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3941 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3942 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3943 } 3944 return true; 3945 } 3946 3947 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3948 SDLoc sdl = getCurSDLoc(); 3949 3950 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3951 const Value *Ptr = I.getArgOperand(1); 3952 SDValue Src0 = getValue(I.getArgOperand(0)); 3953 SDValue Mask = getValue(I.getArgOperand(3)); 3954 EVT VT = Src0.getValueType(); 3955 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3956 if (!Alignment) 3957 Alignment = DAG.getEVTAlignment(VT); 3958 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3959 3960 AAMDNodes AAInfo; 3961 I.getAAMetadata(AAInfo); 3962 3963 SDValue Base; 3964 SDValue Index; 3965 SDValue Scale; 3966 const Value *BasePtr = Ptr; 3967 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3968 3969 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3970 MachineMemOperand *MMO = DAG.getMachineFunction(). 3971 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3972 MachineMemOperand::MOStore, VT.getStoreSize(), 3973 Alignment, AAInfo); 3974 if (!UniformBase) { 3975 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3976 Index = getValue(Ptr); 3977 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3978 } 3979 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3980 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3981 Ops, MMO); 3982 DAG.setRoot(Scatter); 3983 setValue(&I, Scatter); 3984 } 3985 3986 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3987 SDLoc sdl = getCurSDLoc(); 3988 3989 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3990 unsigned& Alignment) { 3991 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3992 Ptr = I.getArgOperand(0); 3993 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3994 Mask = I.getArgOperand(2); 3995 Src0 = I.getArgOperand(3); 3996 }; 3997 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3998 unsigned& Alignment) { 3999 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4000 Ptr = I.getArgOperand(0); 4001 Alignment = 0; 4002 Mask = I.getArgOperand(1); 4003 Src0 = I.getArgOperand(2); 4004 }; 4005 4006 Value *PtrOperand, *MaskOperand, *Src0Operand; 4007 unsigned Alignment; 4008 if (IsExpanding) 4009 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4010 else 4011 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4012 4013 SDValue Ptr = getValue(PtrOperand); 4014 SDValue Src0 = getValue(Src0Operand); 4015 SDValue Mask = getValue(MaskOperand); 4016 4017 EVT VT = Src0.getValueType(); 4018 if (!Alignment) 4019 Alignment = DAG.getEVTAlignment(VT); 4020 4021 AAMDNodes AAInfo; 4022 I.getAAMetadata(AAInfo); 4023 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4024 4025 // Do not serialize masked loads of constant memory with anything. 4026 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4027 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4028 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4029 4030 MachineMemOperand *MMO = 4031 DAG.getMachineFunction(). 4032 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4033 MachineMemOperand::MOLoad, VT.getStoreSize(), 4034 Alignment, AAInfo, Ranges); 4035 4036 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4037 ISD::NON_EXTLOAD, IsExpanding); 4038 if (AddToChain) { 4039 SDValue OutChain = Load.getValue(1); 4040 DAG.setRoot(OutChain); 4041 } 4042 setValue(&I, Load); 4043 } 4044 4045 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4046 SDLoc sdl = getCurSDLoc(); 4047 4048 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4049 const Value *Ptr = I.getArgOperand(0); 4050 SDValue Src0 = getValue(I.getArgOperand(3)); 4051 SDValue Mask = getValue(I.getArgOperand(2)); 4052 4053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4054 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4055 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4056 if (!Alignment) 4057 Alignment = DAG.getEVTAlignment(VT); 4058 4059 AAMDNodes AAInfo; 4060 I.getAAMetadata(AAInfo); 4061 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4062 4063 SDValue Root = DAG.getRoot(); 4064 SDValue Base; 4065 SDValue Index; 4066 SDValue Scale; 4067 const Value *BasePtr = Ptr; 4068 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4069 bool ConstantMemory = false; 4070 if (UniformBase && 4071 AA && AA->pointsToConstantMemory(MemoryLocation( 4072 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4073 AAInfo))) { 4074 // Do not serialize (non-volatile) loads of constant memory with anything. 4075 Root = DAG.getEntryNode(); 4076 ConstantMemory = true; 4077 } 4078 4079 MachineMemOperand *MMO = 4080 DAG.getMachineFunction(). 4081 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4082 MachineMemOperand::MOLoad, VT.getStoreSize(), 4083 Alignment, AAInfo, Ranges); 4084 4085 if (!UniformBase) { 4086 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4087 Index = getValue(Ptr); 4088 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4089 } 4090 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4091 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4092 Ops, MMO); 4093 4094 SDValue OutChain = Gather.getValue(1); 4095 if (!ConstantMemory) 4096 PendingLoads.push_back(OutChain); 4097 setValue(&I, Gather); 4098 } 4099 4100 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4101 SDLoc dl = getCurSDLoc(); 4102 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4103 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4104 SyncScope::ID SSID = I.getSyncScopeID(); 4105 4106 SDValue InChain = getRoot(); 4107 4108 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4109 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4110 SDValue L = DAG.getAtomicCmpSwap( 4111 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4112 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4113 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4114 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4115 4116 SDValue OutChain = L.getValue(2); 4117 4118 setValue(&I, L); 4119 DAG.setRoot(OutChain); 4120 } 4121 4122 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4123 SDLoc dl = getCurSDLoc(); 4124 ISD::NodeType NT; 4125 switch (I.getOperation()) { 4126 default: llvm_unreachable("Unknown atomicrmw operation"); 4127 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4128 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4129 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4130 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4131 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4132 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4133 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4134 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4135 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4136 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4137 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4138 } 4139 AtomicOrdering Order = I.getOrdering(); 4140 SyncScope::ID SSID = I.getSyncScopeID(); 4141 4142 SDValue InChain = getRoot(); 4143 4144 SDValue L = 4145 DAG.getAtomic(NT, dl, 4146 getValue(I.getValOperand()).getSimpleValueType(), 4147 InChain, 4148 getValue(I.getPointerOperand()), 4149 getValue(I.getValOperand()), 4150 I.getPointerOperand(), 4151 /* Alignment=*/ 0, Order, SSID); 4152 4153 SDValue OutChain = L.getValue(1); 4154 4155 setValue(&I, L); 4156 DAG.setRoot(OutChain); 4157 } 4158 4159 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4160 SDLoc dl = getCurSDLoc(); 4161 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4162 SDValue Ops[3]; 4163 Ops[0] = getRoot(); 4164 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4165 TLI.getFenceOperandTy(DAG.getDataLayout())); 4166 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4167 TLI.getFenceOperandTy(DAG.getDataLayout())); 4168 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4169 } 4170 4171 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4172 SDLoc dl = getCurSDLoc(); 4173 AtomicOrdering Order = I.getOrdering(); 4174 SyncScope::ID SSID = I.getSyncScopeID(); 4175 4176 SDValue InChain = getRoot(); 4177 4178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4179 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4180 4181 if (!TLI.supportsUnalignedAtomics() && 4182 I.getAlignment() < VT.getStoreSize()) 4183 report_fatal_error("Cannot generate unaligned atomic load"); 4184 4185 MachineMemOperand *MMO = 4186 DAG.getMachineFunction(). 4187 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4188 MachineMemOperand::MOVolatile | 4189 MachineMemOperand::MOLoad, 4190 VT.getStoreSize(), 4191 I.getAlignment() ? I.getAlignment() : 4192 DAG.getEVTAlignment(VT), 4193 AAMDNodes(), nullptr, SSID, Order); 4194 4195 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4196 SDValue L = 4197 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4198 getValue(I.getPointerOperand()), MMO); 4199 4200 SDValue OutChain = L.getValue(1); 4201 4202 setValue(&I, L); 4203 DAG.setRoot(OutChain); 4204 } 4205 4206 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4207 SDLoc dl = getCurSDLoc(); 4208 4209 AtomicOrdering Order = I.getOrdering(); 4210 SyncScope::ID SSID = I.getSyncScopeID(); 4211 4212 SDValue InChain = getRoot(); 4213 4214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4215 EVT VT = 4216 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4217 4218 if (I.getAlignment() < VT.getStoreSize()) 4219 report_fatal_error("Cannot generate unaligned atomic store"); 4220 4221 SDValue OutChain = 4222 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4223 InChain, 4224 getValue(I.getPointerOperand()), 4225 getValue(I.getValueOperand()), 4226 I.getPointerOperand(), I.getAlignment(), 4227 Order, SSID); 4228 4229 DAG.setRoot(OutChain); 4230 } 4231 4232 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4233 /// node. 4234 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4235 unsigned Intrinsic) { 4236 // Ignore the callsite's attributes. A specific call site may be marked with 4237 // readnone, but the lowering code will expect the chain based on the 4238 // definition. 4239 const Function *F = I.getCalledFunction(); 4240 bool HasChain = !F->doesNotAccessMemory(); 4241 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4242 4243 // Build the operand list. 4244 SmallVector<SDValue, 8> Ops; 4245 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4246 if (OnlyLoad) { 4247 // We don't need to serialize loads against other loads. 4248 Ops.push_back(DAG.getRoot()); 4249 } else { 4250 Ops.push_back(getRoot()); 4251 } 4252 } 4253 4254 // Info is set by getTgtMemInstrinsic 4255 TargetLowering::IntrinsicInfo Info; 4256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4257 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4258 DAG.getMachineFunction(), 4259 Intrinsic); 4260 4261 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4262 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4263 Info.opc == ISD::INTRINSIC_W_CHAIN) 4264 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4265 TLI.getPointerTy(DAG.getDataLayout()))); 4266 4267 // Add all operands of the call to the operand list. 4268 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4269 SDValue Op = getValue(I.getArgOperand(i)); 4270 Ops.push_back(Op); 4271 } 4272 4273 SmallVector<EVT, 4> ValueVTs; 4274 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4275 4276 if (HasChain) 4277 ValueVTs.push_back(MVT::Other); 4278 4279 SDVTList VTs = DAG.getVTList(ValueVTs); 4280 4281 // Create the node. 4282 SDValue Result; 4283 if (IsTgtIntrinsic) { 4284 // This is target intrinsic that touches memory 4285 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4286 Ops, Info.memVT, 4287 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4288 Info.flags, Info.size); 4289 } else if (!HasChain) { 4290 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4291 } else if (!I.getType()->isVoidTy()) { 4292 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4293 } else { 4294 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4295 } 4296 4297 if (HasChain) { 4298 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4299 if (OnlyLoad) 4300 PendingLoads.push_back(Chain); 4301 else 4302 DAG.setRoot(Chain); 4303 } 4304 4305 if (!I.getType()->isVoidTy()) { 4306 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4307 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4308 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4309 } else 4310 Result = lowerRangeToAssertZExt(DAG, I, Result); 4311 4312 setValue(&I, Result); 4313 } 4314 } 4315 4316 /// GetSignificand - Get the significand and build it into a floating-point 4317 /// number with exponent of 1: 4318 /// 4319 /// Op = (Op & 0x007fffff) | 0x3f800000; 4320 /// 4321 /// where Op is the hexadecimal representation of floating point value. 4322 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4323 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4324 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4325 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4326 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4327 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4328 } 4329 4330 /// GetExponent - Get the exponent: 4331 /// 4332 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4333 /// 4334 /// where Op is the hexadecimal representation of floating point value. 4335 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4336 const TargetLowering &TLI, const SDLoc &dl) { 4337 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4338 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4339 SDValue t1 = DAG.getNode( 4340 ISD::SRL, dl, MVT::i32, t0, 4341 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4342 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4343 DAG.getConstant(127, dl, MVT::i32)); 4344 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4345 } 4346 4347 /// getF32Constant - Get 32-bit floating point constant. 4348 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4349 const SDLoc &dl) { 4350 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4351 MVT::f32); 4352 } 4353 4354 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4355 SelectionDAG &DAG) { 4356 // TODO: What fast-math-flags should be set on the floating-point nodes? 4357 4358 // IntegerPartOfX = ((int32_t)(t0); 4359 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4360 4361 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4362 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4363 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4364 4365 // IntegerPartOfX <<= 23; 4366 IntegerPartOfX = DAG.getNode( 4367 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4368 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4369 DAG.getDataLayout()))); 4370 4371 SDValue TwoToFractionalPartOfX; 4372 if (LimitFloatPrecision <= 6) { 4373 // For floating-point precision of 6: 4374 // 4375 // TwoToFractionalPartOfX = 4376 // 0.997535578f + 4377 // (0.735607626f + 0.252464424f * x) * x; 4378 // 4379 // error 0.0144103317, which is 6 bits 4380 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4381 getF32Constant(DAG, 0x3e814304, dl)); 4382 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4383 getF32Constant(DAG, 0x3f3c50c8, dl)); 4384 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4385 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4386 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4387 } else if (LimitFloatPrecision <= 12) { 4388 // For floating-point precision of 12: 4389 // 4390 // TwoToFractionalPartOfX = 4391 // 0.999892986f + 4392 // (0.696457318f + 4393 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4394 // 4395 // error 0.000107046256, which is 13 to 14 bits 4396 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4397 getF32Constant(DAG, 0x3da235e3, dl)); 4398 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4399 getF32Constant(DAG, 0x3e65b8f3, dl)); 4400 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4401 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4402 getF32Constant(DAG, 0x3f324b07, dl)); 4403 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4404 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4405 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4406 } else { // LimitFloatPrecision <= 18 4407 // For floating-point precision of 18: 4408 // 4409 // TwoToFractionalPartOfX = 4410 // 0.999999982f + 4411 // (0.693148872f + 4412 // (0.240227044f + 4413 // (0.554906021e-1f + 4414 // (0.961591928e-2f + 4415 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4416 // error 2.47208000*10^(-7), which is better than 18 bits 4417 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4418 getF32Constant(DAG, 0x3924b03e, dl)); 4419 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4420 getF32Constant(DAG, 0x3ab24b87, dl)); 4421 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4422 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4423 getF32Constant(DAG, 0x3c1d8c17, dl)); 4424 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4425 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4426 getF32Constant(DAG, 0x3d634a1d, dl)); 4427 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4428 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4429 getF32Constant(DAG, 0x3e75fe14, dl)); 4430 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4431 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4432 getF32Constant(DAG, 0x3f317234, dl)); 4433 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4434 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4435 getF32Constant(DAG, 0x3f800000, dl)); 4436 } 4437 4438 // Add the exponent into the result in integer domain. 4439 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4440 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4441 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4442 } 4443 4444 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4445 /// limited-precision mode. 4446 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4447 const TargetLowering &TLI) { 4448 if (Op.getValueType() == MVT::f32 && 4449 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4450 4451 // Put the exponent in the right bit position for later addition to the 4452 // final result: 4453 // 4454 // #define LOG2OFe 1.4426950f 4455 // t0 = Op * LOG2OFe 4456 4457 // TODO: What fast-math-flags should be set here? 4458 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4459 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4460 return getLimitedPrecisionExp2(t0, dl, DAG); 4461 } 4462 4463 // No special expansion. 4464 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4465 } 4466 4467 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4468 /// limited-precision mode. 4469 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4470 const TargetLowering &TLI) { 4471 // TODO: What fast-math-flags should be set on the floating-point nodes? 4472 4473 if (Op.getValueType() == MVT::f32 && 4474 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4475 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4476 4477 // Scale the exponent by log(2) [0.69314718f]. 4478 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4479 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4480 getF32Constant(DAG, 0x3f317218, dl)); 4481 4482 // Get the significand and build it into a floating-point number with 4483 // exponent of 1. 4484 SDValue X = GetSignificand(DAG, Op1, dl); 4485 4486 SDValue LogOfMantissa; 4487 if (LimitFloatPrecision <= 6) { 4488 // For floating-point precision of 6: 4489 // 4490 // LogofMantissa = 4491 // -1.1609546f + 4492 // (1.4034025f - 0.23903021f * x) * x; 4493 // 4494 // error 0.0034276066, which is better than 8 bits 4495 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4496 getF32Constant(DAG, 0xbe74c456, dl)); 4497 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4498 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4499 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4500 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4501 getF32Constant(DAG, 0x3f949a29, dl)); 4502 } else if (LimitFloatPrecision <= 12) { 4503 // For floating-point precision of 12: 4504 // 4505 // LogOfMantissa = 4506 // -1.7417939f + 4507 // (2.8212026f + 4508 // (-1.4699568f + 4509 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4510 // 4511 // error 0.000061011436, which is 14 bits 4512 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4513 getF32Constant(DAG, 0xbd67b6d6, dl)); 4514 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4515 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4516 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4517 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4518 getF32Constant(DAG, 0x3fbc278b, dl)); 4519 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4520 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4521 getF32Constant(DAG, 0x40348e95, dl)); 4522 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4523 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4524 getF32Constant(DAG, 0x3fdef31a, dl)); 4525 } else { // LimitFloatPrecision <= 18 4526 // For floating-point precision of 18: 4527 // 4528 // LogOfMantissa = 4529 // -2.1072184f + 4530 // (4.2372794f + 4531 // (-3.7029485f + 4532 // (2.2781945f + 4533 // (-0.87823314f + 4534 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4535 // 4536 // error 0.0000023660568, which is better than 18 bits 4537 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4538 getF32Constant(DAG, 0xbc91e5ac, dl)); 4539 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4540 getF32Constant(DAG, 0x3e4350aa, dl)); 4541 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4542 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4543 getF32Constant(DAG, 0x3f60d3e3, dl)); 4544 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4545 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4546 getF32Constant(DAG, 0x4011cdf0, dl)); 4547 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4548 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4549 getF32Constant(DAG, 0x406cfd1c, dl)); 4550 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4551 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4552 getF32Constant(DAG, 0x408797cb, dl)); 4553 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4554 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4555 getF32Constant(DAG, 0x4006dcab, dl)); 4556 } 4557 4558 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4559 } 4560 4561 // No special expansion. 4562 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4563 } 4564 4565 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4566 /// limited-precision mode. 4567 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4568 const TargetLowering &TLI) { 4569 // TODO: What fast-math-flags should be set on the floating-point nodes? 4570 4571 if (Op.getValueType() == MVT::f32 && 4572 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4573 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4574 4575 // Get the exponent. 4576 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4577 4578 // Get the significand and build it into a floating-point number with 4579 // exponent of 1. 4580 SDValue X = GetSignificand(DAG, Op1, dl); 4581 4582 // Different possible minimax approximations of significand in 4583 // floating-point for various degrees of accuracy over [1,2]. 4584 SDValue Log2ofMantissa; 4585 if (LimitFloatPrecision <= 6) { 4586 // For floating-point precision of 6: 4587 // 4588 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4589 // 4590 // error 0.0049451742, which is more than 7 bits 4591 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4592 getF32Constant(DAG, 0xbeb08fe0, dl)); 4593 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4594 getF32Constant(DAG, 0x40019463, dl)); 4595 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4596 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4597 getF32Constant(DAG, 0x3fd6633d, dl)); 4598 } else if (LimitFloatPrecision <= 12) { 4599 // For floating-point precision of 12: 4600 // 4601 // Log2ofMantissa = 4602 // -2.51285454f + 4603 // (4.07009056f + 4604 // (-2.12067489f + 4605 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4606 // 4607 // error 0.0000876136000, which is better than 13 bits 4608 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4609 getF32Constant(DAG, 0xbda7262e, dl)); 4610 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4611 getF32Constant(DAG, 0x3f25280b, dl)); 4612 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4613 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4614 getF32Constant(DAG, 0x4007b923, dl)); 4615 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4616 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4617 getF32Constant(DAG, 0x40823e2f, dl)); 4618 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4619 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4620 getF32Constant(DAG, 0x4020d29c, dl)); 4621 } else { // LimitFloatPrecision <= 18 4622 // For floating-point precision of 18: 4623 // 4624 // Log2ofMantissa = 4625 // -3.0400495f + 4626 // (6.1129976f + 4627 // (-5.3420409f + 4628 // (3.2865683f + 4629 // (-1.2669343f + 4630 // (0.27515199f - 4631 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4632 // 4633 // error 0.0000018516, which is better than 18 bits 4634 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4635 getF32Constant(DAG, 0xbcd2769e, dl)); 4636 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4637 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4638 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4639 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4640 getF32Constant(DAG, 0x3fa22ae7, dl)); 4641 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4642 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4643 getF32Constant(DAG, 0x40525723, dl)); 4644 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4645 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4646 getF32Constant(DAG, 0x40aaf200, dl)); 4647 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4648 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4649 getF32Constant(DAG, 0x40c39dad, dl)); 4650 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4651 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4652 getF32Constant(DAG, 0x4042902c, dl)); 4653 } 4654 4655 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4656 } 4657 4658 // No special expansion. 4659 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4660 } 4661 4662 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4663 /// limited-precision mode. 4664 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4665 const TargetLowering &TLI) { 4666 // TODO: What fast-math-flags should be set on the floating-point nodes? 4667 4668 if (Op.getValueType() == MVT::f32 && 4669 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4670 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4671 4672 // Scale the exponent by log10(2) [0.30102999f]. 4673 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4674 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4675 getF32Constant(DAG, 0x3e9a209a, dl)); 4676 4677 // Get the significand and build it into a floating-point number with 4678 // exponent of 1. 4679 SDValue X = GetSignificand(DAG, Op1, dl); 4680 4681 SDValue Log10ofMantissa; 4682 if (LimitFloatPrecision <= 6) { 4683 // For floating-point precision of 6: 4684 // 4685 // Log10ofMantissa = 4686 // -0.50419619f + 4687 // (0.60948995f - 0.10380950f * x) * x; 4688 // 4689 // error 0.0014886165, which is 6 bits 4690 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4691 getF32Constant(DAG, 0xbdd49a13, dl)); 4692 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4693 getF32Constant(DAG, 0x3f1c0789, dl)); 4694 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4695 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4696 getF32Constant(DAG, 0x3f011300, dl)); 4697 } else if (LimitFloatPrecision <= 12) { 4698 // For floating-point precision of 12: 4699 // 4700 // Log10ofMantissa = 4701 // -0.64831180f + 4702 // (0.91751397f + 4703 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4704 // 4705 // error 0.00019228036, which is better than 12 bits 4706 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4707 getF32Constant(DAG, 0x3d431f31, dl)); 4708 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4709 getF32Constant(DAG, 0x3ea21fb2, dl)); 4710 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4711 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4712 getF32Constant(DAG, 0x3f6ae232, dl)); 4713 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4714 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4715 getF32Constant(DAG, 0x3f25f7c3, dl)); 4716 } else { // LimitFloatPrecision <= 18 4717 // For floating-point precision of 18: 4718 // 4719 // Log10ofMantissa = 4720 // -0.84299375f + 4721 // (1.5327582f + 4722 // (-1.0688956f + 4723 // (0.49102474f + 4724 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4725 // 4726 // error 0.0000037995730, which is better than 18 bits 4727 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4728 getF32Constant(DAG, 0x3c5d51ce, dl)); 4729 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4730 getF32Constant(DAG, 0x3e00685a, dl)); 4731 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4732 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4733 getF32Constant(DAG, 0x3efb6798, dl)); 4734 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4735 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4736 getF32Constant(DAG, 0x3f88d192, dl)); 4737 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4738 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4739 getF32Constant(DAG, 0x3fc4316c, dl)); 4740 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4741 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4742 getF32Constant(DAG, 0x3f57ce70, dl)); 4743 } 4744 4745 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4746 } 4747 4748 // No special expansion. 4749 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4750 } 4751 4752 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4753 /// limited-precision mode. 4754 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4755 const TargetLowering &TLI) { 4756 if (Op.getValueType() == MVT::f32 && 4757 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4758 return getLimitedPrecisionExp2(Op, dl, DAG); 4759 4760 // No special expansion. 4761 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4762 } 4763 4764 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4765 /// limited-precision mode with x == 10.0f. 4766 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4767 SelectionDAG &DAG, const TargetLowering &TLI) { 4768 bool IsExp10 = false; 4769 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4770 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4771 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4772 APFloat Ten(10.0f); 4773 IsExp10 = LHSC->isExactlyValue(Ten); 4774 } 4775 } 4776 4777 // TODO: What fast-math-flags should be set on the FMUL node? 4778 if (IsExp10) { 4779 // Put the exponent in the right bit position for later addition to the 4780 // final result: 4781 // 4782 // #define LOG2OF10 3.3219281f 4783 // t0 = Op * LOG2OF10; 4784 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4785 getF32Constant(DAG, 0x40549a78, dl)); 4786 return getLimitedPrecisionExp2(t0, dl, DAG); 4787 } 4788 4789 // No special expansion. 4790 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4791 } 4792 4793 /// ExpandPowI - Expand a llvm.powi intrinsic. 4794 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4795 SelectionDAG &DAG) { 4796 // If RHS is a constant, we can expand this out to a multiplication tree, 4797 // otherwise we end up lowering to a call to __powidf2 (for example). When 4798 // optimizing for size, we only want to do this if the expansion would produce 4799 // a small number of multiplies, otherwise we do the full expansion. 4800 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4801 // Get the exponent as a positive value. 4802 unsigned Val = RHSC->getSExtValue(); 4803 if ((int)Val < 0) Val = -Val; 4804 4805 // powi(x, 0) -> 1.0 4806 if (Val == 0) 4807 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4808 4809 const Function &F = DAG.getMachineFunction().getFunction(); 4810 if (!F.optForSize() || 4811 // If optimizing for size, don't insert too many multiplies. 4812 // This inserts up to 5 multiplies. 4813 countPopulation(Val) + Log2_32(Val) < 7) { 4814 // We use the simple binary decomposition method to generate the multiply 4815 // sequence. There are more optimal ways to do this (for example, 4816 // powi(x,15) generates one more multiply than it should), but this has 4817 // the benefit of being both really simple and much better than a libcall. 4818 SDValue Res; // Logically starts equal to 1.0 4819 SDValue CurSquare = LHS; 4820 // TODO: Intrinsics should have fast-math-flags that propagate to these 4821 // nodes. 4822 while (Val) { 4823 if (Val & 1) { 4824 if (Res.getNode()) 4825 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4826 else 4827 Res = CurSquare; // 1.0*CurSquare. 4828 } 4829 4830 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4831 CurSquare, CurSquare); 4832 Val >>= 1; 4833 } 4834 4835 // If the original was negative, invert the result, producing 1/(x*x*x). 4836 if (RHSC->getSExtValue() < 0) 4837 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4838 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4839 return Res; 4840 } 4841 } 4842 4843 // Otherwise, expand to a libcall. 4844 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4845 } 4846 4847 // getUnderlyingArgReg - Find underlying register used for a truncated or 4848 // bitcasted argument. 4849 static unsigned getUnderlyingArgReg(const SDValue &N) { 4850 switch (N.getOpcode()) { 4851 case ISD::CopyFromReg: 4852 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4853 case ISD::BITCAST: 4854 case ISD::AssertZext: 4855 case ISD::AssertSext: 4856 case ISD::TRUNCATE: 4857 return getUnderlyingArgReg(N.getOperand(0)); 4858 default: 4859 return 0; 4860 } 4861 } 4862 4863 /// If the DbgValueInst is a dbg_value of a function argument, create the 4864 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4865 /// instruction selection, they will be inserted to the entry BB. 4866 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4867 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4868 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4869 const Argument *Arg = dyn_cast<Argument>(V); 4870 if (!Arg) 4871 return false; 4872 4873 MachineFunction &MF = DAG.getMachineFunction(); 4874 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4875 4876 bool IsIndirect = false; 4877 Optional<MachineOperand> Op; 4878 // Some arguments' frame index is recorded during argument lowering. 4879 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4880 if (FI != std::numeric_limits<int>::max()) 4881 Op = MachineOperand::CreateFI(FI); 4882 4883 if (!Op && N.getNode()) { 4884 unsigned Reg = getUnderlyingArgReg(N); 4885 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4886 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4887 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4888 if (PR) 4889 Reg = PR; 4890 } 4891 if (Reg) { 4892 Op = MachineOperand::CreateReg(Reg, false); 4893 IsIndirect = IsDbgDeclare; 4894 } 4895 } 4896 4897 if (!Op && N.getNode()) 4898 // Check if frame index is available. 4899 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4900 if (FrameIndexSDNode *FINode = 4901 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4902 Op = MachineOperand::CreateFI(FINode->getIndex()); 4903 4904 if (!Op) { 4905 // Check if ValueMap has reg number. 4906 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4907 if (VMI != FuncInfo.ValueMap.end()) { 4908 const auto &TLI = DAG.getTargetLoweringInfo(); 4909 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4910 V->getType(), isABIRegCopy(V)); 4911 unsigned NumRegs = 4912 std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0); 4913 if (NumRegs > 1) { 4914 unsigned I = 0; 4915 unsigned Offset = 0; 4916 auto RegisterVT = RFV.RegVTs.begin(); 4917 for (auto RegCount : RFV.RegCount) { 4918 unsigned RegisterSize = (RegisterVT++)->getSizeInBits(); 4919 for (unsigned E = I + RegCount; I != E; ++I) { 4920 // The vregs are guaranteed to be allocated in sequence. 4921 Op = MachineOperand::CreateReg(VMI->second + I, false); 4922 auto FragmentExpr = DIExpression::createFragmentExpression( 4923 Expr, Offset, RegisterSize); 4924 if (!FragmentExpr) 4925 continue; 4926 FuncInfo.ArgDbgValues.push_back( 4927 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4928 Op->getReg(), Variable, *FragmentExpr)); 4929 Offset += RegisterSize; 4930 } 4931 } 4932 return true; 4933 } 4934 Op = MachineOperand::CreateReg(VMI->second, false); 4935 IsIndirect = IsDbgDeclare; 4936 } 4937 } 4938 4939 if (!Op) 4940 return false; 4941 4942 assert(Variable->isValidLocationForIntrinsic(DL) && 4943 "Expected inlined-at fields to agree"); 4944 if (Op->isReg()) 4945 FuncInfo.ArgDbgValues.push_back( 4946 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4947 Op->getReg(), Variable, Expr)); 4948 else 4949 FuncInfo.ArgDbgValues.push_back( 4950 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4951 .add(*Op) 4952 .addImm(0) 4953 .addMetadata(Variable) 4954 .addMetadata(Expr)); 4955 4956 return true; 4957 } 4958 4959 /// Return the appropriate SDDbgValue based on N. 4960 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4961 DILocalVariable *Variable, 4962 DIExpression *Expr, 4963 const DebugLoc &dl, 4964 unsigned DbgSDNodeOrder) { 4965 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4966 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4967 // stack slot locations as such instead of as indirectly addressed 4968 // locations. 4969 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4970 DbgSDNodeOrder); 4971 } 4972 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4973 DbgSDNodeOrder); 4974 } 4975 4976 // VisualStudio defines setjmp as _setjmp 4977 #if defined(_MSC_VER) && defined(setjmp) && \ 4978 !defined(setjmp_undefined_for_msvc) 4979 # pragma push_macro("setjmp") 4980 # undef setjmp 4981 # define setjmp_undefined_for_msvc 4982 #endif 4983 4984 /// Lower the call to the specified intrinsic function. If we want to emit this 4985 /// as a call to a named external function, return the name. Otherwise, lower it 4986 /// and return null. 4987 const char * 4988 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4990 SDLoc sdl = getCurSDLoc(); 4991 DebugLoc dl = getCurDebugLoc(); 4992 SDValue Res; 4993 4994 switch (Intrinsic) { 4995 default: 4996 // By default, turn this into a target intrinsic node. 4997 visitTargetIntrinsic(I, Intrinsic); 4998 return nullptr; 4999 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5000 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5001 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5002 case Intrinsic::returnaddress: 5003 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5004 TLI.getPointerTy(DAG.getDataLayout()), 5005 getValue(I.getArgOperand(0)))); 5006 return nullptr; 5007 case Intrinsic::addressofreturnaddress: 5008 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5009 TLI.getPointerTy(DAG.getDataLayout()))); 5010 return nullptr; 5011 case Intrinsic::frameaddress: 5012 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5013 TLI.getPointerTy(DAG.getDataLayout()), 5014 getValue(I.getArgOperand(0)))); 5015 return nullptr; 5016 case Intrinsic::read_register: { 5017 Value *Reg = I.getArgOperand(0); 5018 SDValue Chain = getRoot(); 5019 SDValue RegName = 5020 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5021 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5022 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5023 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5024 setValue(&I, Res); 5025 DAG.setRoot(Res.getValue(1)); 5026 return nullptr; 5027 } 5028 case Intrinsic::write_register: { 5029 Value *Reg = I.getArgOperand(0); 5030 Value *RegValue = I.getArgOperand(1); 5031 SDValue Chain = getRoot(); 5032 SDValue RegName = 5033 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5034 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5035 RegName, getValue(RegValue))); 5036 return nullptr; 5037 } 5038 case Intrinsic::setjmp: 5039 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5040 case Intrinsic::longjmp: 5041 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5042 case Intrinsic::memcpy: { 5043 const auto &MCI = cast<MemCpyInst>(I); 5044 SDValue Op1 = getValue(I.getArgOperand(0)); 5045 SDValue Op2 = getValue(I.getArgOperand(1)); 5046 SDValue Op3 = getValue(I.getArgOperand(2)); 5047 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5048 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5049 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5050 unsigned Align = MinAlign(DstAlign, SrcAlign); 5051 bool isVol = MCI.isVolatile(); 5052 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5053 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5054 // node. 5055 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5056 false, isTC, 5057 MachinePointerInfo(I.getArgOperand(0)), 5058 MachinePointerInfo(I.getArgOperand(1))); 5059 updateDAGForMaybeTailCall(MC); 5060 return nullptr; 5061 } 5062 case Intrinsic::memset: { 5063 const auto &MSI = cast<MemSetInst>(I); 5064 SDValue Op1 = getValue(I.getArgOperand(0)); 5065 SDValue Op2 = getValue(I.getArgOperand(1)); 5066 SDValue Op3 = getValue(I.getArgOperand(2)); 5067 // @llvm.memset defines 0 and 1 to both mean no alignment. 5068 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5069 bool isVol = MSI.isVolatile(); 5070 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5071 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5072 isTC, MachinePointerInfo(I.getArgOperand(0))); 5073 updateDAGForMaybeTailCall(MS); 5074 return nullptr; 5075 } 5076 case Intrinsic::memmove: { 5077 const auto &MMI = cast<MemMoveInst>(I); 5078 SDValue Op1 = getValue(I.getArgOperand(0)); 5079 SDValue Op2 = getValue(I.getArgOperand(1)); 5080 SDValue Op3 = getValue(I.getArgOperand(2)); 5081 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5082 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5083 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5084 unsigned Align = MinAlign(DstAlign, SrcAlign); 5085 bool isVol = MMI.isVolatile(); 5086 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5087 // FIXME: Support passing different dest/src alignments to the memmove DAG 5088 // node. 5089 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5090 isTC, MachinePointerInfo(I.getArgOperand(0)), 5091 MachinePointerInfo(I.getArgOperand(1))); 5092 updateDAGForMaybeTailCall(MM); 5093 return nullptr; 5094 } 5095 case Intrinsic::memcpy_element_unordered_atomic: { 5096 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5097 SDValue Dst = getValue(MI.getRawDest()); 5098 SDValue Src = getValue(MI.getRawSource()); 5099 SDValue Length = getValue(MI.getLength()); 5100 5101 unsigned DstAlign = MI.getDestAlignment(); 5102 unsigned SrcAlign = MI.getSourceAlignment(); 5103 Type *LengthTy = MI.getLength()->getType(); 5104 unsigned ElemSz = MI.getElementSizeInBytes(); 5105 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5106 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5107 SrcAlign, Length, LengthTy, ElemSz, isTC, 5108 MachinePointerInfo(MI.getRawDest()), 5109 MachinePointerInfo(MI.getRawSource())); 5110 updateDAGForMaybeTailCall(MC); 5111 return nullptr; 5112 } 5113 case Intrinsic::memmove_element_unordered_atomic: { 5114 auto &MI = cast<AtomicMemMoveInst>(I); 5115 SDValue Dst = getValue(MI.getRawDest()); 5116 SDValue Src = getValue(MI.getRawSource()); 5117 SDValue Length = getValue(MI.getLength()); 5118 5119 unsigned DstAlign = MI.getDestAlignment(); 5120 unsigned SrcAlign = MI.getSourceAlignment(); 5121 Type *LengthTy = MI.getLength()->getType(); 5122 unsigned ElemSz = MI.getElementSizeInBytes(); 5123 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5124 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5125 SrcAlign, Length, LengthTy, ElemSz, isTC, 5126 MachinePointerInfo(MI.getRawDest()), 5127 MachinePointerInfo(MI.getRawSource())); 5128 updateDAGForMaybeTailCall(MC); 5129 return nullptr; 5130 } 5131 case Intrinsic::memset_element_unordered_atomic: { 5132 auto &MI = cast<AtomicMemSetInst>(I); 5133 SDValue Dst = getValue(MI.getRawDest()); 5134 SDValue Val = getValue(MI.getValue()); 5135 SDValue Length = getValue(MI.getLength()); 5136 5137 unsigned DstAlign = MI.getDestAlignment(); 5138 Type *LengthTy = MI.getLength()->getType(); 5139 unsigned ElemSz = MI.getElementSizeInBytes(); 5140 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5141 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5142 LengthTy, ElemSz, isTC, 5143 MachinePointerInfo(MI.getRawDest())); 5144 updateDAGForMaybeTailCall(MC); 5145 return nullptr; 5146 } 5147 case Intrinsic::dbg_addr: 5148 case Intrinsic::dbg_declare: { 5149 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5150 DILocalVariable *Variable = DI.getVariable(); 5151 DIExpression *Expression = DI.getExpression(); 5152 dropDanglingDebugInfo(Variable, Expression); 5153 assert(Variable && "Missing variable"); 5154 5155 // Check if address has undef value. 5156 const Value *Address = DI.getVariableLocation(); 5157 if (!Address || isa<UndefValue>(Address) || 5158 (Address->use_empty() && !isa<Argument>(Address))) { 5159 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5160 return nullptr; 5161 } 5162 5163 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5164 5165 // Check if this variable can be described by a frame index, typically 5166 // either as a static alloca or a byval parameter. 5167 int FI = std::numeric_limits<int>::max(); 5168 if (const auto *AI = 5169 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5170 if (AI->isStaticAlloca()) { 5171 auto I = FuncInfo.StaticAllocaMap.find(AI); 5172 if (I != FuncInfo.StaticAllocaMap.end()) 5173 FI = I->second; 5174 } 5175 } else if (const auto *Arg = dyn_cast<Argument>( 5176 Address->stripInBoundsConstantOffsets())) { 5177 FI = FuncInfo.getArgumentFrameIndex(Arg); 5178 } 5179 5180 // llvm.dbg.addr is control dependent and always generates indirect 5181 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5182 // the MachineFunction variable table. 5183 if (FI != std::numeric_limits<int>::max()) { 5184 if (Intrinsic == Intrinsic::dbg_addr) { 5185 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5186 FI, dl, SDNodeOrder); 5187 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5188 } 5189 return nullptr; 5190 } 5191 5192 SDValue &N = NodeMap[Address]; 5193 if (!N.getNode() && isa<Argument>(Address)) 5194 // Check unused arguments map. 5195 N = UnusedArgNodeMap[Address]; 5196 SDDbgValue *SDV; 5197 if (N.getNode()) { 5198 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5199 Address = BCI->getOperand(0); 5200 // Parameters are handled specially. 5201 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5202 if (isParameter && FINode) { 5203 // Byval parameter. We have a frame index at this point. 5204 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5205 FINode->getIndex(), dl, SDNodeOrder); 5206 } else if (isa<Argument>(Address)) { 5207 // Address is an argument, so try to emit its dbg value using 5208 // virtual register info from the FuncInfo.ValueMap. 5209 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5210 return nullptr; 5211 } else { 5212 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5213 true, dl, SDNodeOrder); 5214 } 5215 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5216 } else { 5217 // If Address is an argument then try to emit its dbg value using 5218 // virtual register info from the FuncInfo.ValueMap. 5219 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5220 N)) { 5221 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5222 } 5223 } 5224 return nullptr; 5225 } 5226 case Intrinsic::dbg_value: { 5227 const DbgValueInst &DI = cast<DbgValueInst>(I); 5228 assert(DI.getVariable() && "Missing variable"); 5229 5230 DILocalVariable *Variable = DI.getVariable(); 5231 DIExpression *Expression = DI.getExpression(); 5232 dropDanglingDebugInfo(Variable, Expression); 5233 const Value *V = DI.getValue(); 5234 if (!V) 5235 return nullptr; 5236 5237 SDDbgValue *SDV; 5238 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5239 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5240 DAG.AddDbgValue(SDV, nullptr, false); 5241 return nullptr; 5242 } 5243 5244 // Do not use getValue() in here; we don't want to generate code at 5245 // this point if it hasn't been done yet. 5246 SDValue N = NodeMap[V]; 5247 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5248 N = UnusedArgNodeMap[V]; 5249 if (N.getNode()) { 5250 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5251 return nullptr; 5252 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5253 DAG.AddDbgValue(SDV, N.getNode(), false); 5254 return nullptr; 5255 } 5256 5257 // PHI nodes have already been selected, so we should know which VReg that 5258 // is assigns to already. 5259 if (isa<PHINode>(V)) { 5260 auto It = FuncInfo.ValueMap.find(V); 5261 if (It != FuncInfo.ValueMap.end()) { 5262 unsigned Reg = It->second; 5263 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5264 SDNodeOrder); 5265 DAG.AddDbgValue(SDV, nullptr, false); 5266 return nullptr; 5267 } 5268 } 5269 5270 // TODO: When we get here we will either drop the dbg.value completely, or 5271 // we try to move it forward by letting it dangle for awhile. So we should 5272 // probably add an extra DbgValue to the DAG here, with a reference to 5273 // "noreg", to indicate that we have lost the debug location for the 5274 // variable. 5275 5276 if (!V->use_empty() ) { 5277 // Do not call getValue(V) yet, as we don't want to generate code. 5278 // Remember it for later. 5279 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5280 DanglingDebugInfoMap[V].push_back(DDI); 5281 return nullptr; 5282 } 5283 5284 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5285 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5286 return nullptr; 5287 } 5288 5289 case Intrinsic::eh_typeid_for: { 5290 // Find the type id for the given typeinfo. 5291 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5292 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5293 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5294 setValue(&I, Res); 5295 return nullptr; 5296 } 5297 5298 case Intrinsic::eh_return_i32: 5299 case Intrinsic::eh_return_i64: 5300 DAG.getMachineFunction().setCallsEHReturn(true); 5301 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5302 MVT::Other, 5303 getControlRoot(), 5304 getValue(I.getArgOperand(0)), 5305 getValue(I.getArgOperand(1)))); 5306 return nullptr; 5307 case Intrinsic::eh_unwind_init: 5308 DAG.getMachineFunction().setCallsUnwindInit(true); 5309 return nullptr; 5310 case Intrinsic::eh_dwarf_cfa: 5311 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5312 TLI.getPointerTy(DAG.getDataLayout()), 5313 getValue(I.getArgOperand(0)))); 5314 return nullptr; 5315 case Intrinsic::eh_sjlj_callsite: { 5316 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5317 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5318 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5319 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5320 5321 MMI.setCurrentCallSite(CI->getZExtValue()); 5322 return nullptr; 5323 } 5324 case Intrinsic::eh_sjlj_functioncontext: { 5325 // Get and store the index of the function context. 5326 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5327 AllocaInst *FnCtx = 5328 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5329 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5330 MFI.setFunctionContextIndex(FI); 5331 return nullptr; 5332 } 5333 case Intrinsic::eh_sjlj_setjmp: { 5334 SDValue Ops[2]; 5335 Ops[0] = getRoot(); 5336 Ops[1] = getValue(I.getArgOperand(0)); 5337 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5338 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5339 setValue(&I, Op.getValue(0)); 5340 DAG.setRoot(Op.getValue(1)); 5341 return nullptr; 5342 } 5343 case Intrinsic::eh_sjlj_longjmp: 5344 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5345 getRoot(), getValue(I.getArgOperand(0)))); 5346 return nullptr; 5347 case Intrinsic::eh_sjlj_setup_dispatch: 5348 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5349 getRoot())); 5350 return nullptr; 5351 case Intrinsic::masked_gather: 5352 visitMaskedGather(I); 5353 return nullptr; 5354 case Intrinsic::masked_load: 5355 visitMaskedLoad(I); 5356 return nullptr; 5357 case Intrinsic::masked_scatter: 5358 visitMaskedScatter(I); 5359 return nullptr; 5360 case Intrinsic::masked_store: 5361 visitMaskedStore(I); 5362 return nullptr; 5363 case Intrinsic::masked_expandload: 5364 visitMaskedLoad(I, true /* IsExpanding */); 5365 return nullptr; 5366 case Intrinsic::masked_compressstore: 5367 visitMaskedStore(I, true /* IsCompressing */); 5368 return nullptr; 5369 case Intrinsic::x86_mmx_pslli_w: 5370 case Intrinsic::x86_mmx_pslli_d: 5371 case Intrinsic::x86_mmx_pslli_q: 5372 case Intrinsic::x86_mmx_psrli_w: 5373 case Intrinsic::x86_mmx_psrli_d: 5374 case Intrinsic::x86_mmx_psrli_q: 5375 case Intrinsic::x86_mmx_psrai_w: 5376 case Intrinsic::x86_mmx_psrai_d: { 5377 SDValue ShAmt = getValue(I.getArgOperand(1)); 5378 if (isa<ConstantSDNode>(ShAmt)) { 5379 visitTargetIntrinsic(I, Intrinsic); 5380 return nullptr; 5381 } 5382 unsigned NewIntrinsic = 0; 5383 EVT ShAmtVT = MVT::v2i32; 5384 switch (Intrinsic) { 5385 case Intrinsic::x86_mmx_pslli_w: 5386 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5387 break; 5388 case Intrinsic::x86_mmx_pslli_d: 5389 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5390 break; 5391 case Intrinsic::x86_mmx_pslli_q: 5392 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5393 break; 5394 case Intrinsic::x86_mmx_psrli_w: 5395 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5396 break; 5397 case Intrinsic::x86_mmx_psrli_d: 5398 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5399 break; 5400 case Intrinsic::x86_mmx_psrli_q: 5401 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5402 break; 5403 case Intrinsic::x86_mmx_psrai_w: 5404 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5405 break; 5406 case Intrinsic::x86_mmx_psrai_d: 5407 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5408 break; 5409 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5410 } 5411 5412 // The vector shift intrinsics with scalars uses 32b shift amounts but 5413 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5414 // to be zero. 5415 // We must do this early because v2i32 is not a legal type. 5416 SDValue ShOps[2]; 5417 ShOps[0] = ShAmt; 5418 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5419 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5420 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5421 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5422 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5423 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5424 getValue(I.getArgOperand(0)), ShAmt); 5425 setValue(&I, Res); 5426 return nullptr; 5427 } 5428 case Intrinsic::powi: 5429 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5430 getValue(I.getArgOperand(1)), DAG)); 5431 return nullptr; 5432 case Intrinsic::log: 5433 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5434 return nullptr; 5435 case Intrinsic::log2: 5436 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5437 return nullptr; 5438 case Intrinsic::log10: 5439 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5440 return nullptr; 5441 case Intrinsic::exp: 5442 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5443 return nullptr; 5444 case Intrinsic::exp2: 5445 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5446 return nullptr; 5447 case Intrinsic::pow: 5448 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5449 getValue(I.getArgOperand(1)), DAG, TLI)); 5450 return nullptr; 5451 case Intrinsic::sqrt: 5452 case Intrinsic::fabs: 5453 case Intrinsic::sin: 5454 case Intrinsic::cos: 5455 case Intrinsic::floor: 5456 case Intrinsic::ceil: 5457 case Intrinsic::trunc: 5458 case Intrinsic::rint: 5459 case Intrinsic::nearbyint: 5460 case Intrinsic::round: 5461 case Intrinsic::canonicalize: { 5462 unsigned Opcode; 5463 switch (Intrinsic) { 5464 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5465 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5466 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5467 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5468 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5469 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5470 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5471 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5472 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5473 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5474 case Intrinsic::round: Opcode = ISD::FROUND; break; 5475 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5476 } 5477 5478 setValue(&I, DAG.getNode(Opcode, sdl, 5479 getValue(I.getArgOperand(0)).getValueType(), 5480 getValue(I.getArgOperand(0)))); 5481 return nullptr; 5482 } 5483 case Intrinsic::minnum: { 5484 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5485 unsigned Opc = 5486 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5487 ? ISD::FMINNAN 5488 : ISD::FMINNUM; 5489 setValue(&I, DAG.getNode(Opc, sdl, VT, 5490 getValue(I.getArgOperand(0)), 5491 getValue(I.getArgOperand(1)))); 5492 return nullptr; 5493 } 5494 case Intrinsic::maxnum: { 5495 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5496 unsigned Opc = 5497 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5498 ? ISD::FMAXNAN 5499 : ISD::FMAXNUM; 5500 setValue(&I, DAG.getNode(Opc, sdl, VT, 5501 getValue(I.getArgOperand(0)), 5502 getValue(I.getArgOperand(1)))); 5503 return nullptr; 5504 } 5505 case Intrinsic::copysign: 5506 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5507 getValue(I.getArgOperand(0)).getValueType(), 5508 getValue(I.getArgOperand(0)), 5509 getValue(I.getArgOperand(1)))); 5510 return nullptr; 5511 case Intrinsic::fma: 5512 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5513 getValue(I.getArgOperand(0)).getValueType(), 5514 getValue(I.getArgOperand(0)), 5515 getValue(I.getArgOperand(1)), 5516 getValue(I.getArgOperand(2)))); 5517 return nullptr; 5518 case Intrinsic::experimental_constrained_fadd: 5519 case Intrinsic::experimental_constrained_fsub: 5520 case Intrinsic::experimental_constrained_fmul: 5521 case Intrinsic::experimental_constrained_fdiv: 5522 case Intrinsic::experimental_constrained_frem: 5523 case Intrinsic::experimental_constrained_fma: 5524 case Intrinsic::experimental_constrained_sqrt: 5525 case Intrinsic::experimental_constrained_pow: 5526 case Intrinsic::experimental_constrained_powi: 5527 case Intrinsic::experimental_constrained_sin: 5528 case Intrinsic::experimental_constrained_cos: 5529 case Intrinsic::experimental_constrained_exp: 5530 case Intrinsic::experimental_constrained_exp2: 5531 case Intrinsic::experimental_constrained_log: 5532 case Intrinsic::experimental_constrained_log10: 5533 case Intrinsic::experimental_constrained_log2: 5534 case Intrinsic::experimental_constrained_rint: 5535 case Intrinsic::experimental_constrained_nearbyint: 5536 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5537 return nullptr; 5538 case Intrinsic::fmuladd: { 5539 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5540 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5541 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5542 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5543 getValue(I.getArgOperand(0)).getValueType(), 5544 getValue(I.getArgOperand(0)), 5545 getValue(I.getArgOperand(1)), 5546 getValue(I.getArgOperand(2)))); 5547 } else { 5548 // TODO: Intrinsic calls should have fast-math-flags. 5549 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5550 getValue(I.getArgOperand(0)).getValueType(), 5551 getValue(I.getArgOperand(0)), 5552 getValue(I.getArgOperand(1))); 5553 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5554 getValue(I.getArgOperand(0)).getValueType(), 5555 Mul, 5556 getValue(I.getArgOperand(2))); 5557 setValue(&I, Add); 5558 } 5559 return nullptr; 5560 } 5561 case Intrinsic::convert_to_fp16: 5562 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5563 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5564 getValue(I.getArgOperand(0)), 5565 DAG.getTargetConstant(0, sdl, 5566 MVT::i32)))); 5567 return nullptr; 5568 case Intrinsic::convert_from_fp16: 5569 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5570 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5571 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5572 getValue(I.getArgOperand(0))))); 5573 return nullptr; 5574 case Intrinsic::pcmarker: { 5575 SDValue Tmp = getValue(I.getArgOperand(0)); 5576 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5577 return nullptr; 5578 } 5579 case Intrinsic::readcyclecounter: { 5580 SDValue Op = getRoot(); 5581 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5582 DAG.getVTList(MVT::i64, MVT::Other), Op); 5583 setValue(&I, Res); 5584 DAG.setRoot(Res.getValue(1)); 5585 return nullptr; 5586 } 5587 case Intrinsic::bitreverse: 5588 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5589 getValue(I.getArgOperand(0)).getValueType(), 5590 getValue(I.getArgOperand(0)))); 5591 return nullptr; 5592 case Intrinsic::bswap: 5593 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5594 getValue(I.getArgOperand(0)).getValueType(), 5595 getValue(I.getArgOperand(0)))); 5596 return nullptr; 5597 case Intrinsic::cttz: { 5598 SDValue Arg = getValue(I.getArgOperand(0)); 5599 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5600 EVT Ty = Arg.getValueType(); 5601 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5602 sdl, Ty, Arg)); 5603 return nullptr; 5604 } 5605 case Intrinsic::ctlz: { 5606 SDValue Arg = getValue(I.getArgOperand(0)); 5607 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5608 EVT Ty = Arg.getValueType(); 5609 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5610 sdl, Ty, Arg)); 5611 return nullptr; 5612 } 5613 case Intrinsic::ctpop: { 5614 SDValue Arg = getValue(I.getArgOperand(0)); 5615 EVT Ty = Arg.getValueType(); 5616 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5617 return nullptr; 5618 } 5619 case Intrinsic::stacksave: { 5620 SDValue Op = getRoot(); 5621 Res = DAG.getNode( 5622 ISD::STACKSAVE, sdl, 5623 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5624 setValue(&I, Res); 5625 DAG.setRoot(Res.getValue(1)); 5626 return nullptr; 5627 } 5628 case Intrinsic::stackrestore: 5629 Res = getValue(I.getArgOperand(0)); 5630 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5631 return nullptr; 5632 case Intrinsic::get_dynamic_area_offset: { 5633 SDValue Op = getRoot(); 5634 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5635 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5636 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5637 // target. 5638 if (PtrTy != ResTy) 5639 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5640 " intrinsic!"); 5641 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5642 Op); 5643 DAG.setRoot(Op); 5644 setValue(&I, Res); 5645 return nullptr; 5646 } 5647 case Intrinsic::stackguard: { 5648 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5649 MachineFunction &MF = DAG.getMachineFunction(); 5650 const Module &M = *MF.getFunction().getParent(); 5651 SDValue Chain = getRoot(); 5652 if (TLI.useLoadStackGuardNode()) { 5653 Res = getLoadStackGuard(DAG, sdl, Chain); 5654 } else { 5655 const Value *Global = TLI.getSDagStackGuard(M); 5656 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5657 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5658 MachinePointerInfo(Global, 0), Align, 5659 MachineMemOperand::MOVolatile); 5660 } 5661 if (TLI.useStackGuardXorFP()) 5662 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5663 DAG.setRoot(Chain); 5664 setValue(&I, Res); 5665 return nullptr; 5666 } 5667 case Intrinsic::stackprotector: { 5668 // Emit code into the DAG to store the stack guard onto the stack. 5669 MachineFunction &MF = DAG.getMachineFunction(); 5670 MachineFrameInfo &MFI = MF.getFrameInfo(); 5671 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5672 SDValue Src, Chain = getRoot(); 5673 5674 if (TLI.useLoadStackGuardNode()) 5675 Src = getLoadStackGuard(DAG, sdl, Chain); 5676 else 5677 Src = getValue(I.getArgOperand(0)); // The guard's value. 5678 5679 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5680 5681 int FI = FuncInfo.StaticAllocaMap[Slot]; 5682 MFI.setStackProtectorIndex(FI); 5683 5684 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5685 5686 // Store the stack protector onto the stack. 5687 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5688 DAG.getMachineFunction(), FI), 5689 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5690 setValue(&I, Res); 5691 DAG.setRoot(Res); 5692 return nullptr; 5693 } 5694 case Intrinsic::objectsize: { 5695 // If we don't know by now, we're never going to know. 5696 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5697 5698 assert(CI && "Non-constant type in __builtin_object_size?"); 5699 5700 SDValue Arg = getValue(I.getCalledValue()); 5701 EVT Ty = Arg.getValueType(); 5702 5703 if (CI->isZero()) 5704 Res = DAG.getConstant(-1ULL, sdl, Ty); 5705 else 5706 Res = DAG.getConstant(0, sdl, Ty); 5707 5708 setValue(&I, Res); 5709 return nullptr; 5710 } 5711 case Intrinsic::annotation: 5712 case Intrinsic::ptr_annotation: 5713 case Intrinsic::launder_invariant_group: 5714 // Drop the intrinsic, but forward the value 5715 setValue(&I, getValue(I.getOperand(0))); 5716 return nullptr; 5717 case Intrinsic::assume: 5718 case Intrinsic::var_annotation: 5719 case Intrinsic::sideeffect: 5720 // Discard annotate attributes, assumptions, and artificial side-effects. 5721 return nullptr; 5722 5723 case Intrinsic::codeview_annotation: { 5724 // Emit a label associated with this metadata. 5725 MachineFunction &MF = DAG.getMachineFunction(); 5726 MCSymbol *Label = 5727 MF.getMMI().getContext().createTempSymbol("annotation", true); 5728 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5729 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5730 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5731 DAG.setRoot(Res); 5732 return nullptr; 5733 } 5734 5735 case Intrinsic::init_trampoline: { 5736 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5737 5738 SDValue Ops[6]; 5739 Ops[0] = getRoot(); 5740 Ops[1] = getValue(I.getArgOperand(0)); 5741 Ops[2] = getValue(I.getArgOperand(1)); 5742 Ops[3] = getValue(I.getArgOperand(2)); 5743 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5744 Ops[5] = DAG.getSrcValue(F); 5745 5746 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5747 5748 DAG.setRoot(Res); 5749 return nullptr; 5750 } 5751 case Intrinsic::adjust_trampoline: 5752 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5753 TLI.getPointerTy(DAG.getDataLayout()), 5754 getValue(I.getArgOperand(0)))); 5755 return nullptr; 5756 case Intrinsic::gcroot: { 5757 assert(DAG.getMachineFunction().getFunction().hasGC() && 5758 "only valid in functions with gc specified, enforced by Verifier"); 5759 assert(GFI && "implied by previous"); 5760 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5761 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5762 5763 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5764 GFI->addStackRoot(FI->getIndex(), TypeMap); 5765 return nullptr; 5766 } 5767 case Intrinsic::gcread: 5768 case Intrinsic::gcwrite: 5769 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5770 case Intrinsic::flt_rounds: 5771 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5772 return nullptr; 5773 5774 case Intrinsic::expect: 5775 // Just replace __builtin_expect(exp, c) with EXP. 5776 setValue(&I, getValue(I.getArgOperand(0))); 5777 return nullptr; 5778 5779 case Intrinsic::debugtrap: 5780 case Intrinsic::trap: { 5781 StringRef TrapFuncName = 5782 I.getAttributes() 5783 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5784 .getValueAsString(); 5785 if (TrapFuncName.empty()) { 5786 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5787 ISD::TRAP : ISD::DEBUGTRAP; 5788 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5789 return nullptr; 5790 } 5791 TargetLowering::ArgListTy Args; 5792 5793 TargetLowering::CallLoweringInfo CLI(DAG); 5794 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5795 CallingConv::C, I.getType(), 5796 DAG.getExternalSymbol(TrapFuncName.data(), 5797 TLI.getPointerTy(DAG.getDataLayout())), 5798 std::move(Args)); 5799 5800 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5801 DAG.setRoot(Result.second); 5802 return nullptr; 5803 } 5804 5805 case Intrinsic::uadd_with_overflow: 5806 case Intrinsic::sadd_with_overflow: 5807 case Intrinsic::usub_with_overflow: 5808 case Intrinsic::ssub_with_overflow: 5809 case Intrinsic::umul_with_overflow: 5810 case Intrinsic::smul_with_overflow: { 5811 ISD::NodeType Op; 5812 switch (Intrinsic) { 5813 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5814 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5815 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5816 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5817 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5818 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5819 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5820 } 5821 SDValue Op1 = getValue(I.getArgOperand(0)); 5822 SDValue Op2 = getValue(I.getArgOperand(1)); 5823 5824 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5825 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5826 return nullptr; 5827 } 5828 case Intrinsic::prefetch: { 5829 SDValue Ops[5]; 5830 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5831 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5832 Ops[0] = DAG.getRoot(); 5833 Ops[1] = getValue(I.getArgOperand(0)); 5834 Ops[2] = getValue(I.getArgOperand(1)); 5835 Ops[3] = getValue(I.getArgOperand(2)); 5836 Ops[4] = getValue(I.getArgOperand(3)); 5837 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5838 DAG.getVTList(MVT::Other), Ops, 5839 EVT::getIntegerVT(*Context, 8), 5840 MachinePointerInfo(I.getArgOperand(0)), 5841 0, /* align */ 5842 Flags); 5843 5844 // Chain the prefetch in parallell with any pending loads, to stay out of 5845 // the way of later optimizations. 5846 PendingLoads.push_back(Result); 5847 Result = getRoot(); 5848 DAG.setRoot(Result); 5849 return nullptr; 5850 } 5851 case Intrinsic::lifetime_start: 5852 case Intrinsic::lifetime_end: { 5853 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5854 // Stack coloring is not enabled in O0, discard region information. 5855 if (TM.getOptLevel() == CodeGenOpt::None) 5856 return nullptr; 5857 5858 SmallVector<Value *, 4> Allocas; 5859 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5860 5861 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5862 E = Allocas.end(); Object != E; ++Object) { 5863 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5864 5865 // Could not find an Alloca. 5866 if (!LifetimeObject) 5867 continue; 5868 5869 // First check that the Alloca is static, otherwise it won't have a 5870 // valid frame index. 5871 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5872 if (SI == FuncInfo.StaticAllocaMap.end()) 5873 return nullptr; 5874 5875 int FI = SI->second; 5876 5877 SDValue Ops[2]; 5878 Ops[0] = getRoot(); 5879 Ops[1] = 5880 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5881 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5882 5883 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5884 DAG.setRoot(Res); 5885 } 5886 return nullptr; 5887 } 5888 case Intrinsic::invariant_start: 5889 // Discard region information. 5890 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5891 return nullptr; 5892 case Intrinsic::invariant_end: 5893 // Discard region information. 5894 return nullptr; 5895 case Intrinsic::clear_cache: 5896 return TLI.getClearCacheBuiltinName(); 5897 case Intrinsic::donothing: 5898 // ignore 5899 return nullptr; 5900 case Intrinsic::experimental_stackmap: 5901 visitStackmap(I); 5902 return nullptr; 5903 case Intrinsic::experimental_patchpoint_void: 5904 case Intrinsic::experimental_patchpoint_i64: 5905 visitPatchpoint(&I); 5906 return nullptr; 5907 case Intrinsic::experimental_gc_statepoint: 5908 LowerStatepoint(ImmutableStatepoint(&I)); 5909 return nullptr; 5910 case Intrinsic::experimental_gc_result: 5911 visitGCResult(cast<GCResultInst>(I)); 5912 return nullptr; 5913 case Intrinsic::experimental_gc_relocate: 5914 visitGCRelocate(cast<GCRelocateInst>(I)); 5915 return nullptr; 5916 case Intrinsic::instrprof_increment: 5917 llvm_unreachable("instrprof failed to lower an increment"); 5918 case Intrinsic::instrprof_value_profile: 5919 llvm_unreachable("instrprof failed to lower a value profiling call"); 5920 case Intrinsic::localescape: { 5921 MachineFunction &MF = DAG.getMachineFunction(); 5922 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5923 5924 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5925 // is the same on all targets. 5926 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5927 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5928 if (isa<ConstantPointerNull>(Arg)) 5929 continue; // Skip null pointers. They represent a hole in index space. 5930 AllocaInst *Slot = cast<AllocaInst>(Arg); 5931 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5932 "can only escape static allocas"); 5933 int FI = FuncInfo.StaticAllocaMap[Slot]; 5934 MCSymbol *FrameAllocSym = 5935 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5936 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5937 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5938 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5939 .addSym(FrameAllocSym) 5940 .addFrameIndex(FI); 5941 } 5942 5943 return nullptr; 5944 } 5945 5946 case Intrinsic::localrecover: { 5947 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5948 MachineFunction &MF = DAG.getMachineFunction(); 5949 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5950 5951 // Get the symbol that defines the frame offset. 5952 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5953 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5954 unsigned IdxVal = 5955 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5956 MCSymbol *FrameAllocSym = 5957 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5958 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5959 5960 // Create a MCSymbol for the label to avoid any target lowering 5961 // that would make this PC relative. 5962 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5963 SDValue OffsetVal = 5964 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5965 5966 // Add the offset to the FP. 5967 Value *FP = I.getArgOperand(1); 5968 SDValue FPVal = getValue(FP); 5969 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5970 setValue(&I, Add); 5971 5972 return nullptr; 5973 } 5974 5975 case Intrinsic::eh_exceptionpointer: 5976 case Intrinsic::eh_exceptioncode: { 5977 // Get the exception pointer vreg, copy from it, and resize it to fit. 5978 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5979 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5980 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5981 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5982 SDValue N = 5983 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5984 if (Intrinsic == Intrinsic::eh_exceptioncode) 5985 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5986 setValue(&I, N); 5987 return nullptr; 5988 } 5989 case Intrinsic::xray_customevent: { 5990 // Here we want to make sure that the intrinsic behaves as if it has a 5991 // specific calling convention, and only for x86_64. 5992 // FIXME: Support other platforms later. 5993 const auto &Triple = DAG.getTarget().getTargetTriple(); 5994 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5995 return nullptr; 5996 5997 SDLoc DL = getCurSDLoc(); 5998 SmallVector<SDValue, 8> Ops; 5999 6000 // We want to say that we always want the arguments in registers. 6001 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6002 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6003 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6004 SDValue Chain = getRoot(); 6005 Ops.push_back(LogEntryVal); 6006 Ops.push_back(StrSizeVal); 6007 Ops.push_back(Chain); 6008 6009 // We need to enforce the calling convention for the callsite, so that 6010 // argument ordering is enforced correctly, and that register allocation can 6011 // see that some registers may be assumed clobbered and have to preserve 6012 // them across calls to the intrinsic. 6013 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6014 DL, NodeTys, Ops); 6015 SDValue patchableNode = SDValue(MN, 0); 6016 DAG.setRoot(patchableNode); 6017 setValue(&I, patchableNode); 6018 return nullptr; 6019 } 6020 case Intrinsic::xray_typedevent: { 6021 // Here we want to make sure that the intrinsic behaves as if it has a 6022 // specific calling convention, and only for x86_64. 6023 // FIXME: Support other platforms later. 6024 const auto &Triple = DAG.getTarget().getTargetTriple(); 6025 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6026 return nullptr; 6027 6028 SDLoc DL = getCurSDLoc(); 6029 SmallVector<SDValue, 8> Ops; 6030 6031 // We want to say that we always want the arguments in registers. 6032 // It's unclear to me how manipulating the selection DAG here forces callers 6033 // to provide arguments in registers instead of on the stack. 6034 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6035 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6036 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6037 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6038 SDValue Chain = getRoot(); 6039 Ops.push_back(LogTypeId); 6040 Ops.push_back(LogEntryVal); 6041 Ops.push_back(StrSizeVal); 6042 Ops.push_back(Chain); 6043 6044 // We need to enforce the calling convention for the callsite, so that 6045 // argument ordering is enforced correctly, and that register allocation can 6046 // see that some registers may be assumed clobbered and have to preserve 6047 // them across calls to the intrinsic. 6048 MachineSDNode *MN = DAG.getMachineNode( 6049 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6050 SDValue patchableNode = SDValue(MN, 0); 6051 DAG.setRoot(patchableNode); 6052 setValue(&I, patchableNode); 6053 return nullptr; 6054 } 6055 case Intrinsic::experimental_deoptimize: 6056 LowerDeoptimizeCall(&I); 6057 return nullptr; 6058 6059 case Intrinsic::experimental_vector_reduce_fadd: 6060 case Intrinsic::experimental_vector_reduce_fmul: 6061 case Intrinsic::experimental_vector_reduce_add: 6062 case Intrinsic::experimental_vector_reduce_mul: 6063 case Intrinsic::experimental_vector_reduce_and: 6064 case Intrinsic::experimental_vector_reduce_or: 6065 case Intrinsic::experimental_vector_reduce_xor: 6066 case Intrinsic::experimental_vector_reduce_smax: 6067 case Intrinsic::experimental_vector_reduce_smin: 6068 case Intrinsic::experimental_vector_reduce_umax: 6069 case Intrinsic::experimental_vector_reduce_umin: 6070 case Intrinsic::experimental_vector_reduce_fmax: 6071 case Intrinsic::experimental_vector_reduce_fmin: 6072 visitVectorReduce(I, Intrinsic); 6073 return nullptr; 6074 6075 case Intrinsic::icall_branch_funnel: { 6076 SmallVector<SDValue, 16> Ops; 6077 Ops.push_back(DAG.getRoot()); 6078 Ops.push_back(getValue(I.getArgOperand(0))); 6079 6080 int64_t Offset; 6081 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6082 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6083 if (!Base) 6084 report_fatal_error( 6085 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6086 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6087 6088 struct BranchFunnelTarget { 6089 int64_t Offset; 6090 SDValue Target; 6091 }; 6092 SmallVector<BranchFunnelTarget, 8> Targets; 6093 6094 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6095 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6096 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6097 if (ElemBase != Base) 6098 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6099 "to the same GlobalValue"); 6100 6101 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6102 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6103 if (!GA) 6104 report_fatal_error( 6105 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6106 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6107 GA->getGlobal(), getCurSDLoc(), 6108 Val.getValueType(), GA->getOffset())}); 6109 } 6110 llvm::sort(Targets.begin(), Targets.end(), 6111 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6112 return T1.Offset < T2.Offset; 6113 }); 6114 6115 for (auto &T : Targets) { 6116 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6117 Ops.push_back(T.Target); 6118 } 6119 6120 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6121 getCurSDLoc(), MVT::Other, Ops), 6122 0); 6123 DAG.setRoot(N); 6124 setValue(&I, N); 6125 HasTailCall = true; 6126 return nullptr; 6127 } 6128 } 6129 } 6130 6131 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6132 const ConstrainedFPIntrinsic &FPI) { 6133 SDLoc sdl = getCurSDLoc(); 6134 unsigned Opcode; 6135 switch (FPI.getIntrinsicID()) { 6136 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6137 case Intrinsic::experimental_constrained_fadd: 6138 Opcode = ISD::STRICT_FADD; 6139 break; 6140 case Intrinsic::experimental_constrained_fsub: 6141 Opcode = ISD::STRICT_FSUB; 6142 break; 6143 case Intrinsic::experimental_constrained_fmul: 6144 Opcode = ISD::STRICT_FMUL; 6145 break; 6146 case Intrinsic::experimental_constrained_fdiv: 6147 Opcode = ISD::STRICT_FDIV; 6148 break; 6149 case Intrinsic::experimental_constrained_frem: 6150 Opcode = ISD::STRICT_FREM; 6151 break; 6152 case Intrinsic::experimental_constrained_fma: 6153 Opcode = ISD::STRICT_FMA; 6154 break; 6155 case Intrinsic::experimental_constrained_sqrt: 6156 Opcode = ISD::STRICT_FSQRT; 6157 break; 6158 case Intrinsic::experimental_constrained_pow: 6159 Opcode = ISD::STRICT_FPOW; 6160 break; 6161 case Intrinsic::experimental_constrained_powi: 6162 Opcode = ISD::STRICT_FPOWI; 6163 break; 6164 case Intrinsic::experimental_constrained_sin: 6165 Opcode = ISD::STRICT_FSIN; 6166 break; 6167 case Intrinsic::experimental_constrained_cos: 6168 Opcode = ISD::STRICT_FCOS; 6169 break; 6170 case Intrinsic::experimental_constrained_exp: 6171 Opcode = ISD::STRICT_FEXP; 6172 break; 6173 case Intrinsic::experimental_constrained_exp2: 6174 Opcode = ISD::STRICT_FEXP2; 6175 break; 6176 case Intrinsic::experimental_constrained_log: 6177 Opcode = ISD::STRICT_FLOG; 6178 break; 6179 case Intrinsic::experimental_constrained_log10: 6180 Opcode = ISD::STRICT_FLOG10; 6181 break; 6182 case Intrinsic::experimental_constrained_log2: 6183 Opcode = ISD::STRICT_FLOG2; 6184 break; 6185 case Intrinsic::experimental_constrained_rint: 6186 Opcode = ISD::STRICT_FRINT; 6187 break; 6188 case Intrinsic::experimental_constrained_nearbyint: 6189 Opcode = ISD::STRICT_FNEARBYINT; 6190 break; 6191 } 6192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6193 SDValue Chain = getRoot(); 6194 SmallVector<EVT, 4> ValueVTs; 6195 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6196 ValueVTs.push_back(MVT::Other); // Out chain 6197 6198 SDVTList VTs = DAG.getVTList(ValueVTs); 6199 SDValue Result; 6200 if (FPI.isUnaryOp()) 6201 Result = DAG.getNode(Opcode, sdl, VTs, 6202 { Chain, getValue(FPI.getArgOperand(0)) }); 6203 else if (FPI.isTernaryOp()) 6204 Result = DAG.getNode(Opcode, sdl, VTs, 6205 { Chain, getValue(FPI.getArgOperand(0)), 6206 getValue(FPI.getArgOperand(1)), 6207 getValue(FPI.getArgOperand(2)) }); 6208 else 6209 Result = DAG.getNode(Opcode, sdl, VTs, 6210 { Chain, getValue(FPI.getArgOperand(0)), 6211 getValue(FPI.getArgOperand(1)) }); 6212 6213 assert(Result.getNode()->getNumValues() == 2); 6214 SDValue OutChain = Result.getValue(1); 6215 DAG.setRoot(OutChain); 6216 SDValue FPResult = Result.getValue(0); 6217 setValue(&FPI, FPResult); 6218 } 6219 6220 std::pair<SDValue, SDValue> 6221 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6222 const BasicBlock *EHPadBB) { 6223 MachineFunction &MF = DAG.getMachineFunction(); 6224 MachineModuleInfo &MMI = MF.getMMI(); 6225 MCSymbol *BeginLabel = nullptr; 6226 6227 if (EHPadBB) { 6228 // Insert a label before the invoke call to mark the try range. This can be 6229 // used to detect deletion of the invoke via the MachineModuleInfo. 6230 BeginLabel = MMI.getContext().createTempSymbol(); 6231 6232 // For SjLj, keep track of which landing pads go with which invokes 6233 // so as to maintain the ordering of pads in the LSDA. 6234 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6235 if (CallSiteIndex) { 6236 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6237 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6238 6239 // Now that the call site is handled, stop tracking it. 6240 MMI.setCurrentCallSite(0); 6241 } 6242 6243 // Both PendingLoads and PendingExports must be flushed here; 6244 // this call might not return. 6245 (void)getRoot(); 6246 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6247 6248 CLI.setChain(getRoot()); 6249 } 6250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6251 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6252 6253 assert((CLI.IsTailCall || Result.second.getNode()) && 6254 "Non-null chain expected with non-tail call!"); 6255 assert((Result.second.getNode() || !Result.first.getNode()) && 6256 "Null value expected with tail call!"); 6257 6258 if (!Result.second.getNode()) { 6259 // As a special case, a null chain means that a tail call has been emitted 6260 // and the DAG root is already updated. 6261 HasTailCall = true; 6262 6263 // Since there's no actual continuation from this block, nothing can be 6264 // relying on us setting vregs for them. 6265 PendingExports.clear(); 6266 } else { 6267 DAG.setRoot(Result.second); 6268 } 6269 6270 if (EHPadBB) { 6271 // Insert a label at the end of the invoke call to mark the try range. This 6272 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6273 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6274 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6275 6276 // Inform MachineModuleInfo of range. 6277 if (MF.hasEHFunclets()) { 6278 assert(CLI.CS); 6279 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6280 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6281 BeginLabel, EndLabel); 6282 } else { 6283 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6284 } 6285 } 6286 6287 return Result; 6288 } 6289 6290 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6291 bool isTailCall, 6292 const BasicBlock *EHPadBB) { 6293 auto &DL = DAG.getDataLayout(); 6294 FunctionType *FTy = CS.getFunctionType(); 6295 Type *RetTy = CS.getType(); 6296 6297 TargetLowering::ArgListTy Args; 6298 Args.reserve(CS.arg_size()); 6299 6300 const Value *SwiftErrorVal = nullptr; 6301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6302 6303 // We can't tail call inside a function with a swifterror argument. Lowering 6304 // does not support this yet. It would have to move into the swifterror 6305 // register before the call. 6306 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6307 if (TLI.supportSwiftError() && 6308 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6309 isTailCall = false; 6310 6311 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6312 i != e; ++i) { 6313 TargetLowering::ArgListEntry Entry; 6314 const Value *V = *i; 6315 6316 // Skip empty types 6317 if (V->getType()->isEmptyTy()) 6318 continue; 6319 6320 SDValue ArgNode = getValue(V); 6321 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6322 6323 Entry.setAttributes(&CS, i - CS.arg_begin()); 6324 6325 // Use swifterror virtual register as input to the call. 6326 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6327 SwiftErrorVal = V; 6328 // We find the virtual register for the actual swifterror argument. 6329 // Instead of using the Value, we use the virtual register instead. 6330 Entry.Node = DAG.getRegister(FuncInfo 6331 .getOrCreateSwiftErrorVRegUseAt( 6332 CS.getInstruction(), FuncInfo.MBB, V) 6333 .first, 6334 EVT(TLI.getPointerTy(DL))); 6335 } 6336 6337 Args.push_back(Entry); 6338 6339 // If we have an explicit sret argument that is an Instruction, (i.e., it 6340 // might point to function-local memory), we can't meaningfully tail-call. 6341 if (Entry.IsSRet && isa<Instruction>(V)) 6342 isTailCall = false; 6343 } 6344 6345 // Check if target-independent constraints permit a tail call here. 6346 // Target-dependent constraints are checked within TLI->LowerCallTo. 6347 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6348 isTailCall = false; 6349 6350 // Disable tail calls if there is an swifterror argument. Targets have not 6351 // been updated to support tail calls. 6352 if (TLI.supportSwiftError() && SwiftErrorVal) 6353 isTailCall = false; 6354 6355 TargetLowering::CallLoweringInfo CLI(DAG); 6356 CLI.setDebugLoc(getCurSDLoc()) 6357 .setChain(getRoot()) 6358 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6359 .setTailCall(isTailCall) 6360 .setConvergent(CS.isConvergent()); 6361 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6362 6363 if (Result.first.getNode()) { 6364 const Instruction *Inst = CS.getInstruction(); 6365 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6366 setValue(Inst, Result.first); 6367 } 6368 6369 // The last element of CLI.InVals has the SDValue for swifterror return. 6370 // Here we copy it to a virtual register and update SwiftErrorMap for 6371 // book-keeping. 6372 if (SwiftErrorVal && TLI.supportSwiftError()) { 6373 // Get the last element of InVals. 6374 SDValue Src = CLI.InVals.back(); 6375 unsigned VReg; bool CreatedVReg; 6376 std::tie(VReg, CreatedVReg) = 6377 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6378 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6379 // We update the virtual register for the actual swifterror argument. 6380 if (CreatedVReg) 6381 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6382 DAG.setRoot(CopyNode); 6383 } 6384 } 6385 6386 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6387 SelectionDAGBuilder &Builder) { 6388 // Check to see if this load can be trivially constant folded, e.g. if the 6389 // input is from a string literal. 6390 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6391 // Cast pointer to the type we really want to load. 6392 Type *LoadTy = 6393 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6394 if (LoadVT.isVector()) 6395 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6396 6397 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6398 PointerType::getUnqual(LoadTy)); 6399 6400 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6401 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6402 return Builder.getValue(LoadCst); 6403 } 6404 6405 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6406 // still constant memory, the input chain can be the entry node. 6407 SDValue Root; 6408 bool ConstantMemory = false; 6409 6410 // Do not serialize (non-volatile) loads of constant memory with anything. 6411 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6412 Root = Builder.DAG.getEntryNode(); 6413 ConstantMemory = true; 6414 } else { 6415 // Do not serialize non-volatile loads against each other. 6416 Root = Builder.DAG.getRoot(); 6417 } 6418 6419 SDValue Ptr = Builder.getValue(PtrVal); 6420 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6421 Ptr, MachinePointerInfo(PtrVal), 6422 /* Alignment = */ 1); 6423 6424 if (!ConstantMemory) 6425 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6426 return LoadVal; 6427 } 6428 6429 /// Record the value for an instruction that produces an integer result, 6430 /// converting the type where necessary. 6431 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6432 SDValue Value, 6433 bool IsSigned) { 6434 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6435 I.getType(), true); 6436 if (IsSigned) 6437 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6438 else 6439 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6440 setValue(&I, Value); 6441 } 6442 6443 /// See if we can lower a memcmp call into an optimized form. If so, return 6444 /// true and lower it. Otherwise return false, and it will be lowered like a 6445 /// normal call. 6446 /// The caller already checked that \p I calls the appropriate LibFunc with a 6447 /// correct prototype. 6448 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6449 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6450 const Value *Size = I.getArgOperand(2); 6451 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6452 if (CSize && CSize->getZExtValue() == 0) { 6453 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6454 I.getType(), true); 6455 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6456 return true; 6457 } 6458 6459 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6460 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6461 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6462 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6463 if (Res.first.getNode()) { 6464 processIntegerCallValue(I, Res.first, true); 6465 PendingLoads.push_back(Res.second); 6466 return true; 6467 } 6468 6469 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6470 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6471 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6472 return false; 6473 6474 // If the target has a fast compare for the given size, it will return a 6475 // preferred load type for that size. Require that the load VT is legal and 6476 // that the target supports unaligned loads of that type. Otherwise, return 6477 // INVALID. 6478 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6480 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6481 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6482 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6483 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6484 // TODO: Check alignment of src and dest ptrs. 6485 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6486 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6487 if (!TLI.isTypeLegal(LVT) || 6488 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6489 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6490 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6491 } 6492 6493 return LVT; 6494 }; 6495 6496 // This turns into unaligned loads. We only do this if the target natively 6497 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6498 // we'll only produce a small number of byte loads. 6499 MVT LoadVT; 6500 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6501 switch (NumBitsToCompare) { 6502 default: 6503 return false; 6504 case 16: 6505 LoadVT = MVT::i16; 6506 break; 6507 case 32: 6508 LoadVT = MVT::i32; 6509 break; 6510 case 64: 6511 case 128: 6512 case 256: 6513 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6514 break; 6515 } 6516 6517 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6518 return false; 6519 6520 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6521 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6522 6523 // Bitcast to a wide integer type if the loads are vectors. 6524 if (LoadVT.isVector()) { 6525 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6526 LoadL = DAG.getBitcast(CmpVT, LoadL); 6527 LoadR = DAG.getBitcast(CmpVT, LoadR); 6528 } 6529 6530 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6531 processIntegerCallValue(I, Cmp, false); 6532 return true; 6533 } 6534 6535 /// See if we can lower a memchr call into an optimized form. If so, return 6536 /// true and lower it. Otherwise return false, and it will be lowered like a 6537 /// normal call. 6538 /// The caller already checked that \p I calls the appropriate LibFunc with a 6539 /// correct prototype. 6540 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6541 const Value *Src = I.getArgOperand(0); 6542 const Value *Char = I.getArgOperand(1); 6543 const Value *Length = I.getArgOperand(2); 6544 6545 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6546 std::pair<SDValue, SDValue> Res = 6547 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6548 getValue(Src), getValue(Char), getValue(Length), 6549 MachinePointerInfo(Src)); 6550 if (Res.first.getNode()) { 6551 setValue(&I, Res.first); 6552 PendingLoads.push_back(Res.second); 6553 return true; 6554 } 6555 6556 return false; 6557 } 6558 6559 /// See if we can lower a mempcpy call into an optimized form. If so, return 6560 /// true and lower it. Otherwise return false, and it will be lowered like a 6561 /// normal call. 6562 /// The caller already checked that \p I calls the appropriate LibFunc with a 6563 /// correct prototype. 6564 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6565 SDValue Dst = getValue(I.getArgOperand(0)); 6566 SDValue Src = getValue(I.getArgOperand(1)); 6567 SDValue Size = getValue(I.getArgOperand(2)); 6568 6569 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6570 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6571 unsigned Align = std::min(DstAlign, SrcAlign); 6572 if (Align == 0) // Alignment of one or both could not be inferred. 6573 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6574 6575 bool isVol = false; 6576 SDLoc sdl = getCurSDLoc(); 6577 6578 // In the mempcpy context we need to pass in a false value for isTailCall 6579 // because the return pointer needs to be adjusted by the size of 6580 // the copied memory. 6581 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6582 false, /*isTailCall=*/false, 6583 MachinePointerInfo(I.getArgOperand(0)), 6584 MachinePointerInfo(I.getArgOperand(1))); 6585 assert(MC.getNode() != nullptr && 6586 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6587 DAG.setRoot(MC); 6588 6589 // Check if Size needs to be truncated or extended. 6590 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6591 6592 // Adjust return pointer to point just past the last dst byte. 6593 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6594 Dst, Size); 6595 setValue(&I, DstPlusSize); 6596 return true; 6597 } 6598 6599 /// See if we can lower a strcpy call into an optimized form. If so, return 6600 /// true and lower it, otherwise return false and it will be lowered like a 6601 /// normal call. 6602 /// The caller already checked that \p I calls the appropriate LibFunc with a 6603 /// correct prototype. 6604 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6605 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6606 6607 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6608 std::pair<SDValue, SDValue> Res = 6609 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6610 getValue(Arg0), getValue(Arg1), 6611 MachinePointerInfo(Arg0), 6612 MachinePointerInfo(Arg1), isStpcpy); 6613 if (Res.first.getNode()) { 6614 setValue(&I, Res.first); 6615 DAG.setRoot(Res.second); 6616 return true; 6617 } 6618 6619 return false; 6620 } 6621 6622 /// See if we can lower a strcmp call into an optimized form. If so, return 6623 /// true and lower it, otherwise return false and it will be lowered like a 6624 /// normal call. 6625 /// The caller already checked that \p I calls the appropriate LibFunc with a 6626 /// correct prototype. 6627 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6628 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6629 6630 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6631 std::pair<SDValue, SDValue> Res = 6632 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6633 getValue(Arg0), getValue(Arg1), 6634 MachinePointerInfo(Arg0), 6635 MachinePointerInfo(Arg1)); 6636 if (Res.first.getNode()) { 6637 processIntegerCallValue(I, Res.first, true); 6638 PendingLoads.push_back(Res.second); 6639 return true; 6640 } 6641 6642 return false; 6643 } 6644 6645 /// See if we can lower a strlen call into an optimized form. If so, return 6646 /// true and lower it, otherwise return false and it will be lowered like a 6647 /// normal call. 6648 /// The caller already checked that \p I calls the appropriate LibFunc with a 6649 /// correct prototype. 6650 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6651 const Value *Arg0 = I.getArgOperand(0); 6652 6653 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6654 std::pair<SDValue, SDValue> Res = 6655 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6656 getValue(Arg0), MachinePointerInfo(Arg0)); 6657 if (Res.first.getNode()) { 6658 processIntegerCallValue(I, Res.first, false); 6659 PendingLoads.push_back(Res.second); 6660 return true; 6661 } 6662 6663 return false; 6664 } 6665 6666 /// See if we can lower a strnlen call into an optimized form. If so, return 6667 /// true and lower it, otherwise return false and it will be lowered like a 6668 /// normal call. 6669 /// The caller already checked that \p I calls the appropriate LibFunc with a 6670 /// correct prototype. 6671 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6672 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6673 6674 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6675 std::pair<SDValue, SDValue> Res = 6676 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6677 getValue(Arg0), getValue(Arg1), 6678 MachinePointerInfo(Arg0)); 6679 if (Res.first.getNode()) { 6680 processIntegerCallValue(I, Res.first, false); 6681 PendingLoads.push_back(Res.second); 6682 return true; 6683 } 6684 6685 return false; 6686 } 6687 6688 /// See if we can lower a unary floating-point operation into an SDNode with 6689 /// the specified Opcode. If so, return true and lower it, otherwise return 6690 /// false and it will be lowered like a normal call. 6691 /// The caller already checked that \p I calls the appropriate LibFunc with a 6692 /// correct prototype. 6693 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6694 unsigned Opcode) { 6695 // We already checked this call's prototype; verify it doesn't modify errno. 6696 if (!I.onlyReadsMemory()) 6697 return false; 6698 6699 SDValue Tmp = getValue(I.getArgOperand(0)); 6700 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6701 return true; 6702 } 6703 6704 /// See if we can lower a binary floating-point operation into an SDNode with 6705 /// the specified Opcode. If so, return true and lower it. Otherwise return 6706 /// false, and it will be lowered like a normal call. 6707 /// The caller already checked that \p I calls the appropriate LibFunc with a 6708 /// correct prototype. 6709 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6710 unsigned Opcode) { 6711 // We already checked this call's prototype; verify it doesn't modify errno. 6712 if (!I.onlyReadsMemory()) 6713 return false; 6714 6715 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6716 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6717 EVT VT = Tmp0.getValueType(); 6718 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6719 return true; 6720 } 6721 6722 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6723 // Handle inline assembly differently. 6724 if (isa<InlineAsm>(I.getCalledValue())) { 6725 visitInlineAsm(&I); 6726 return; 6727 } 6728 6729 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6730 computeUsesVAFloatArgument(I, MMI); 6731 6732 const char *RenameFn = nullptr; 6733 if (Function *F = I.getCalledFunction()) { 6734 if (F->isDeclaration()) { 6735 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6736 if (unsigned IID = II->getIntrinsicID(F)) { 6737 RenameFn = visitIntrinsicCall(I, IID); 6738 if (!RenameFn) 6739 return; 6740 } 6741 } 6742 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6743 RenameFn = visitIntrinsicCall(I, IID); 6744 if (!RenameFn) 6745 return; 6746 } 6747 } 6748 6749 // Check for well-known libc/libm calls. If the function is internal, it 6750 // can't be a library call. Don't do the check if marked as nobuiltin for 6751 // some reason or the call site requires strict floating point semantics. 6752 LibFunc Func; 6753 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6754 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6755 LibInfo->hasOptimizedCodeGen(Func)) { 6756 switch (Func) { 6757 default: break; 6758 case LibFunc_copysign: 6759 case LibFunc_copysignf: 6760 case LibFunc_copysignl: 6761 // We already checked this call's prototype; verify it doesn't modify 6762 // errno. 6763 if (I.onlyReadsMemory()) { 6764 SDValue LHS = getValue(I.getArgOperand(0)); 6765 SDValue RHS = getValue(I.getArgOperand(1)); 6766 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6767 LHS.getValueType(), LHS, RHS)); 6768 return; 6769 } 6770 break; 6771 case LibFunc_fabs: 6772 case LibFunc_fabsf: 6773 case LibFunc_fabsl: 6774 if (visitUnaryFloatCall(I, ISD::FABS)) 6775 return; 6776 break; 6777 case LibFunc_fmin: 6778 case LibFunc_fminf: 6779 case LibFunc_fminl: 6780 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6781 return; 6782 break; 6783 case LibFunc_fmax: 6784 case LibFunc_fmaxf: 6785 case LibFunc_fmaxl: 6786 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6787 return; 6788 break; 6789 case LibFunc_sin: 6790 case LibFunc_sinf: 6791 case LibFunc_sinl: 6792 if (visitUnaryFloatCall(I, ISD::FSIN)) 6793 return; 6794 break; 6795 case LibFunc_cos: 6796 case LibFunc_cosf: 6797 case LibFunc_cosl: 6798 if (visitUnaryFloatCall(I, ISD::FCOS)) 6799 return; 6800 break; 6801 case LibFunc_sqrt: 6802 case LibFunc_sqrtf: 6803 case LibFunc_sqrtl: 6804 case LibFunc_sqrt_finite: 6805 case LibFunc_sqrtf_finite: 6806 case LibFunc_sqrtl_finite: 6807 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6808 return; 6809 break; 6810 case LibFunc_floor: 6811 case LibFunc_floorf: 6812 case LibFunc_floorl: 6813 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6814 return; 6815 break; 6816 case LibFunc_nearbyint: 6817 case LibFunc_nearbyintf: 6818 case LibFunc_nearbyintl: 6819 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6820 return; 6821 break; 6822 case LibFunc_ceil: 6823 case LibFunc_ceilf: 6824 case LibFunc_ceill: 6825 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6826 return; 6827 break; 6828 case LibFunc_rint: 6829 case LibFunc_rintf: 6830 case LibFunc_rintl: 6831 if (visitUnaryFloatCall(I, ISD::FRINT)) 6832 return; 6833 break; 6834 case LibFunc_round: 6835 case LibFunc_roundf: 6836 case LibFunc_roundl: 6837 if (visitUnaryFloatCall(I, ISD::FROUND)) 6838 return; 6839 break; 6840 case LibFunc_trunc: 6841 case LibFunc_truncf: 6842 case LibFunc_truncl: 6843 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6844 return; 6845 break; 6846 case LibFunc_log2: 6847 case LibFunc_log2f: 6848 case LibFunc_log2l: 6849 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6850 return; 6851 break; 6852 case LibFunc_exp2: 6853 case LibFunc_exp2f: 6854 case LibFunc_exp2l: 6855 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6856 return; 6857 break; 6858 case LibFunc_memcmp: 6859 if (visitMemCmpCall(I)) 6860 return; 6861 break; 6862 case LibFunc_mempcpy: 6863 if (visitMemPCpyCall(I)) 6864 return; 6865 break; 6866 case LibFunc_memchr: 6867 if (visitMemChrCall(I)) 6868 return; 6869 break; 6870 case LibFunc_strcpy: 6871 if (visitStrCpyCall(I, false)) 6872 return; 6873 break; 6874 case LibFunc_stpcpy: 6875 if (visitStrCpyCall(I, true)) 6876 return; 6877 break; 6878 case LibFunc_strcmp: 6879 if (visitStrCmpCall(I)) 6880 return; 6881 break; 6882 case LibFunc_strlen: 6883 if (visitStrLenCall(I)) 6884 return; 6885 break; 6886 case LibFunc_strnlen: 6887 if (visitStrNLenCall(I)) 6888 return; 6889 break; 6890 } 6891 } 6892 } 6893 6894 SDValue Callee; 6895 if (!RenameFn) 6896 Callee = getValue(I.getCalledValue()); 6897 else 6898 Callee = DAG.getExternalSymbol( 6899 RenameFn, 6900 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6901 6902 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6903 // have to do anything here to lower funclet bundles. 6904 assert(!I.hasOperandBundlesOtherThan( 6905 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6906 "Cannot lower calls with arbitrary operand bundles!"); 6907 6908 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6909 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6910 else 6911 // Check if we can potentially perform a tail call. More detailed checking 6912 // is be done within LowerCallTo, after more information about the call is 6913 // known. 6914 LowerCallTo(&I, Callee, I.isTailCall()); 6915 } 6916 6917 namespace { 6918 6919 /// AsmOperandInfo - This contains information for each constraint that we are 6920 /// lowering. 6921 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6922 public: 6923 /// CallOperand - If this is the result output operand or a clobber 6924 /// this is null, otherwise it is the incoming operand to the CallInst. 6925 /// This gets modified as the asm is processed. 6926 SDValue CallOperand; 6927 6928 /// AssignedRegs - If this is a register or register class operand, this 6929 /// contains the set of register corresponding to the operand. 6930 RegsForValue AssignedRegs; 6931 6932 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6933 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6934 } 6935 6936 /// Whether or not this operand accesses memory 6937 bool hasMemory(const TargetLowering &TLI) const { 6938 // Indirect operand accesses access memory. 6939 if (isIndirect) 6940 return true; 6941 6942 for (const auto &Code : Codes) 6943 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6944 return true; 6945 6946 return false; 6947 } 6948 6949 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6950 /// corresponds to. If there is no Value* for this operand, it returns 6951 /// MVT::Other. 6952 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6953 const DataLayout &DL) const { 6954 if (!CallOperandVal) return MVT::Other; 6955 6956 if (isa<BasicBlock>(CallOperandVal)) 6957 return TLI.getPointerTy(DL); 6958 6959 llvm::Type *OpTy = CallOperandVal->getType(); 6960 6961 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6962 // If this is an indirect operand, the operand is a pointer to the 6963 // accessed type. 6964 if (isIndirect) { 6965 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6966 if (!PtrTy) 6967 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6968 OpTy = PtrTy->getElementType(); 6969 } 6970 6971 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6972 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6973 if (STy->getNumElements() == 1) 6974 OpTy = STy->getElementType(0); 6975 6976 // If OpTy is not a single value, it may be a struct/union that we 6977 // can tile with integers. 6978 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6979 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6980 switch (BitSize) { 6981 default: break; 6982 case 1: 6983 case 8: 6984 case 16: 6985 case 32: 6986 case 64: 6987 case 128: 6988 OpTy = IntegerType::get(Context, BitSize); 6989 break; 6990 } 6991 } 6992 6993 return TLI.getValueType(DL, OpTy, true); 6994 } 6995 }; 6996 6997 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 6998 6999 } // end anonymous namespace 7000 7001 /// Make sure that the output operand \p OpInfo and its corresponding input 7002 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7003 /// out). 7004 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7005 SDISelAsmOperandInfo &MatchingOpInfo, 7006 SelectionDAG &DAG) { 7007 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7008 return; 7009 7010 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7011 const auto &TLI = DAG.getTargetLoweringInfo(); 7012 7013 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7014 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7015 OpInfo.ConstraintVT); 7016 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7017 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7018 MatchingOpInfo.ConstraintVT); 7019 if ((OpInfo.ConstraintVT.isInteger() != 7020 MatchingOpInfo.ConstraintVT.isInteger()) || 7021 (MatchRC.second != InputRC.second)) { 7022 // FIXME: error out in a more elegant fashion 7023 report_fatal_error("Unsupported asm: input constraint" 7024 " with a matching output constraint of" 7025 " incompatible type!"); 7026 } 7027 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7028 } 7029 7030 /// Get a direct memory input to behave well as an indirect operand. 7031 /// This may introduce stores, hence the need for a \p Chain. 7032 /// \return The (possibly updated) chain. 7033 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7034 SDISelAsmOperandInfo &OpInfo, 7035 SelectionDAG &DAG) { 7036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7037 7038 // If we don't have an indirect input, put it in the constpool if we can, 7039 // otherwise spill it to a stack slot. 7040 // TODO: This isn't quite right. We need to handle these according to 7041 // the addressing mode that the constraint wants. Also, this may take 7042 // an additional register for the computation and we don't want that 7043 // either. 7044 7045 // If the operand is a float, integer, or vector constant, spill to a 7046 // constant pool entry to get its address. 7047 const Value *OpVal = OpInfo.CallOperandVal; 7048 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7049 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7050 OpInfo.CallOperand = DAG.getConstantPool( 7051 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7052 return Chain; 7053 } 7054 7055 // Otherwise, create a stack slot and emit a store to it before the asm. 7056 Type *Ty = OpVal->getType(); 7057 auto &DL = DAG.getDataLayout(); 7058 uint64_t TySize = DL.getTypeAllocSize(Ty); 7059 unsigned Align = DL.getPrefTypeAlignment(Ty); 7060 MachineFunction &MF = DAG.getMachineFunction(); 7061 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7062 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7063 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7064 MachinePointerInfo::getFixedStack(MF, SSFI)); 7065 OpInfo.CallOperand = StackSlot; 7066 7067 return Chain; 7068 } 7069 7070 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7071 /// specified operand. We prefer to assign virtual registers, to allow the 7072 /// register allocator to handle the assignment process. However, if the asm 7073 /// uses features that we can't model on machineinstrs, we have SDISel do the 7074 /// allocation. This produces generally horrible, but correct, code. 7075 /// 7076 /// OpInfo describes the operand. 7077 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7078 const SDLoc &DL, 7079 SDISelAsmOperandInfo &OpInfo) { 7080 LLVMContext &Context = *DAG.getContext(); 7081 7082 MachineFunction &MF = DAG.getMachineFunction(); 7083 SmallVector<unsigned, 4> Regs; 7084 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7085 7086 // If this is a constraint for a single physreg, or a constraint for a 7087 // register class, find it. 7088 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7089 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7090 OpInfo.ConstraintVT); 7091 7092 unsigned NumRegs = 1; 7093 if (OpInfo.ConstraintVT != MVT::Other) { 7094 // If this is a FP input in an integer register (or visa versa) insert a bit 7095 // cast of the input value. More generally, handle any case where the input 7096 // value disagrees with the register class we plan to stick this in. 7097 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7098 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7099 // Try to convert to the first EVT that the reg class contains. If the 7100 // types are identical size, use a bitcast to convert (e.g. two differing 7101 // vector types). 7102 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7103 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7104 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7105 RegVT, OpInfo.CallOperand); 7106 OpInfo.ConstraintVT = RegVT; 7107 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7108 // If the input is a FP value and we want it in FP registers, do a 7109 // bitcast to the corresponding integer type. This turns an f64 value 7110 // into i64, which can be passed with two i32 values on a 32-bit 7111 // machine. 7112 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7113 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7114 RegVT, OpInfo.CallOperand); 7115 OpInfo.ConstraintVT = RegVT; 7116 } 7117 } 7118 7119 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7120 } 7121 7122 MVT RegVT; 7123 EVT ValueVT = OpInfo.ConstraintVT; 7124 7125 // If this is a constraint for a specific physical register, like {r17}, 7126 // assign it now. 7127 if (unsigned AssignedReg = PhysReg.first) { 7128 const TargetRegisterClass *RC = PhysReg.second; 7129 if (OpInfo.ConstraintVT == MVT::Other) 7130 ValueVT = *TRI.legalclasstypes_begin(*RC); 7131 7132 // Get the actual register value type. This is important, because the user 7133 // may have asked for (e.g.) the AX register in i32 type. We need to 7134 // remember that AX is actually i16 to get the right extension. 7135 RegVT = *TRI.legalclasstypes_begin(*RC); 7136 7137 // This is a explicit reference to a physical register. 7138 Regs.push_back(AssignedReg); 7139 7140 // If this is an expanded reference, add the rest of the regs to Regs. 7141 if (NumRegs != 1) { 7142 TargetRegisterClass::iterator I = RC->begin(); 7143 for (; *I != AssignedReg; ++I) 7144 assert(I != RC->end() && "Didn't find reg!"); 7145 7146 // Already added the first reg. 7147 --NumRegs; ++I; 7148 for (; NumRegs; --NumRegs, ++I) { 7149 assert(I != RC->end() && "Ran out of registers to allocate!"); 7150 Regs.push_back(*I); 7151 } 7152 } 7153 7154 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7155 return; 7156 } 7157 7158 // Otherwise, if this was a reference to an LLVM register class, create vregs 7159 // for this reference. 7160 if (const TargetRegisterClass *RC = PhysReg.second) { 7161 RegVT = *TRI.legalclasstypes_begin(*RC); 7162 if (OpInfo.ConstraintVT == MVT::Other) 7163 ValueVT = RegVT; 7164 7165 // Create the appropriate number of virtual registers. 7166 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7167 for (; NumRegs; --NumRegs) 7168 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7169 7170 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7171 return; 7172 } 7173 7174 // Otherwise, we couldn't allocate enough registers for this. 7175 } 7176 7177 static unsigned 7178 findMatchingInlineAsmOperand(unsigned OperandNo, 7179 const std::vector<SDValue> &AsmNodeOperands) { 7180 // Scan until we find the definition we already emitted of this operand. 7181 unsigned CurOp = InlineAsm::Op_FirstOperand; 7182 for (; OperandNo; --OperandNo) { 7183 // Advance to the next operand. 7184 unsigned OpFlag = 7185 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7186 assert((InlineAsm::isRegDefKind(OpFlag) || 7187 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7188 InlineAsm::isMemKind(OpFlag)) && 7189 "Skipped past definitions?"); 7190 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7191 } 7192 return CurOp; 7193 } 7194 7195 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7196 /// \return true if it has succeeded, false otherwise 7197 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7198 MVT RegVT, SelectionDAG &DAG) { 7199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7200 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7201 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7202 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7203 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7204 else 7205 return false; 7206 } 7207 return true; 7208 } 7209 7210 namespace { 7211 7212 class ExtraFlags { 7213 unsigned Flags = 0; 7214 7215 public: 7216 explicit ExtraFlags(ImmutableCallSite CS) { 7217 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7218 if (IA->hasSideEffects()) 7219 Flags |= InlineAsm::Extra_HasSideEffects; 7220 if (IA->isAlignStack()) 7221 Flags |= InlineAsm::Extra_IsAlignStack; 7222 if (CS.isConvergent()) 7223 Flags |= InlineAsm::Extra_IsConvergent; 7224 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7225 } 7226 7227 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7228 // Ideally, we would only check against memory constraints. However, the 7229 // meaning of an Other constraint can be target-specific and we can't easily 7230 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7231 // for Other constraints as well. 7232 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7233 OpInfo.ConstraintType == TargetLowering::C_Other) { 7234 if (OpInfo.Type == InlineAsm::isInput) 7235 Flags |= InlineAsm::Extra_MayLoad; 7236 else if (OpInfo.Type == InlineAsm::isOutput) 7237 Flags |= InlineAsm::Extra_MayStore; 7238 else if (OpInfo.Type == InlineAsm::isClobber) 7239 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7240 } 7241 } 7242 7243 unsigned get() const { return Flags; } 7244 }; 7245 7246 } // end anonymous namespace 7247 7248 /// visitInlineAsm - Handle a call to an InlineAsm object. 7249 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7250 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7251 7252 /// ConstraintOperands - Information about all of the constraints. 7253 SDISelAsmOperandInfoVector ConstraintOperands; 7254 7255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7256 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7257 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7258 7259 bool hasMemory = false; 7260 7261 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7262 ExtraFlags ExtraInfo(CS); 7263 7264 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7265 unsigned ResNo = 0; // ResNo - The result number of the next output. 7266 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7267 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7268 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7269 7270 MVT OpVT = MVT::Other; 7271 7272 // Compute the value type for each operand. 7273 if (OpInfo.Type == InlineAsm::isInput || 7274 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7275 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7276 7277 // Process the call argument. BasicBlocks are labels, currently appearing 7278 // only in asm's. 7279 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7280 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7281 } else { 7282 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7283 } 7284 7285 OpVT = 7286 OpInfo 7287 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7288 .getSimpleVT(); 7289 } 7290 7291 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7292 // The return value of the call is this value. As such, there is no 7293 // corresponding argument. 7294 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7295 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7296 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7297 STy->getElementType(ResNo)); 7298 } else { 7299 assert(ResNo == 0 && "Asm only has one result!"); 7300 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7301 } 7302 ++ResNo; 7303 } 7304 7305 OpInfo.ConstraintVT = OpVT; 7306 7307 if (!hasMemory) 7308 hasMemory = OpInfo.hasMemory(TLI); 7309 7310 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7311 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7312 auto TargetConstraint = TargetConstraints[i]; 7313 7314 // Compute the constraint code and ConstraintType to use. 7315 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7316 7317 ExtraInfo.update(TargetConstraint); 7318 } 7319 7320 SDValue Chain, Flag; 7321 7322 // We won't need to flush pending loads if this asm doesn't touch 7323 // memory and is nonvolatile. 7324 if (hasMemory || IA->hasSideEffects()) 7325 Chain = getRoot(); 7326 else 7327 Chain = DAG.getRoot(); 7328 7329 // Second pass over the constraints: compute which constraint option to use 7330 // and assign registers to constraints that want a specific physreg. 7331 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7332 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7333 7334 // If this is an output operand with a matching input operand, look up the 7335 // matching input. If their types mismatch, e.g. one is an integer, the 7336 // other is floating point, or their sizes are different, flag it as an 7337 // error. 7338 if (OpInfo.hasMatchingInput()) { 7339 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7340 patchMatchingInput(OpInfo, Input, DAG); 7341 } 7342 7343 // Compute the constraint code and ConstraintType to use. 7344 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7345 7346 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7347 OpInfo.Type == InlineAsm::isClobber) 7348 continue; 7349 7350 // If this is a memory input, and if the operand is not indirect, do what we 7351 // need to provide an address for the memory input. 7352 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7353 !OpInfo.isIndirect) { 7354 assert((OpInfo.isMultipleAlternative || 7355 (OpInfo.Type == InlineAsm::isInput)) && 7356 "Can only indirectify direct input operands!"); 7357 7358 // Memory operands really want the address of the value. 7359 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7360 7361 // There is no longer a Value* corresponding to this operand. 7362 OpInfo.CallOperandVal = nullptr; 7363 7364 // It is now an indirect operand. 7365 OpInfo.isIndirect = true; 7366 } 7367 7368 // If this constraint is for a specific register, allocate it before 7369 // anything else. 7370 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7371 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7372 } 7373 7374 // Third pass - Loop over all of the operands, assigning virtual or physregs 7375 // to register class operands. 7376 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7377 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7378 7379 // C_Register operands have already been allocated, Other/Memory don't need 7380 // to be. 7381 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7382 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7383 } 7384 7385 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7386 std::vector<SDValue> AsmNodeOperands; 7387 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7388 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7389 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7390 7391 // If we have a !srcloc metadata node associated with it, we want to attach 7392 // this to the ultimately generated inline asm machineinstr. To do this, we 7393 // pass in the third operand as this (potentially null) inline asm MDNode. 7394 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7395 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7396 7397 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7398 // bits as operand 3. 7399 AsmNodeOperands.push_back(DAG.getTargetConstant( 7400 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7401 7402 // Loop over all of the inputs, copying the operand values into the 7403 // appropriate registers and processing the output regs. 7404 RegsForValue RetValRegs; 7405 7406 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7407 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7408 7409 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7410 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7411 7412 switch (OpInfo.Type) { 7413 case InlineAsm::isOutput: 7414 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7415 OpInfo.ConstraintType != TargetLowering::C_Register) { 7416 // Memory output, or 'other' output (e.g. 'X' constraint). 7417 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7418 7419 unsigned ConstraintID = 7420 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7421 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7422 "Failed to convert memory constraint code to constraint id."); 7423 7424 // Add information to the INLINEASM node to know about this output. 7425 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7426 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7427 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7428 MVT::i32)); 7429 AsmNodeOperands.push_back(OpInfo.CallOperand); 7430 break; 7431 } 7432 7433 // Otherwise, this is a register or register class output. 7434 7435 // Copy the output from the appropriate register. Find a register that 7436 // we can use. 7437 if (OpInfo.AssignedRegs.Regs.empty()) { 7438 emitInlineAsmError( 7439 CS, "couldn't allocate output register for constraint '" + 7440 Twine(OpInfo.ConstraintCode) + "'"); 7441 return; 7442 } 7443 7444 // If this is an indirect operand, store through the pointer after the 7445 // asm. 7446 if (OpInfo.isIndirect) { 7447 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7448 OpInfo.CallOperandVal)); 7449 } else { 7450 // This is the result value of the call. 7451 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7452 // Concatenate this output onto the outputs list. 7453 RetValRegs.append(OpInfo.AssignedRegs); 7454 } 7455 7456 // Add information to the INLINEASM node to know that this register is 7457 // set. 7458 OpInfo.AssignedRegs 7459 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7460 ? InlineAsm::Kind_RegDefEarlyClobber 7461 : InlineAsm::Kind_RegDef, 7462 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7463 break; 7464 7465 case InlineAsm::isInput: { 7466 SDValue InOperandVal = OpInfo.CallOperand; 7467 7468 if (OpInfo.isMatchingInputConstraint()) { 7469 // If this is required to match an output register we have already set, 7470 // just use its register. 7471 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7472 AsmNodeOperands); 7473 unsigned OpFlag = 7474 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7475 if (InlineAsm::isRegDefKind(OpFlag) || 7476 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7477 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7478 if (OpInfo.isIndirect) { 7479 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7480 emitInlineAsmError(CS, "inline asm not supported yet:" 7481 " don't know how to handle tied " 7482 "indirect register inputs"); 7483 return; 7484 } 7485 7486 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7487 SmallVector<unsigned, 4> Regs; 7488 7489 if (!createVirtualRegs(Regs, 7490 InlineAsm::getNumOperandRegisters(OpFlag), 7491 RegVT, DAG)) { 7492 emitInlineAsmError(CS, "inline asm error: This value type register " 7493 "class is not natively supported!"); 7494 return; 7495 } 7496 7497 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7498 7499 SDLoc dl = getCurSDLoc(); 7500 // Use the produced MatchedRegs object to 7501 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7502 CS.getInstruction()); 7503 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7504 true, OpInfo.getMatchedOperand(), dl, 7505 DAG, AsmNodeOperands); 7506 break; 7507 } 7508 7509 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7510 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7511 "Unexpected number of operands"); 7512 // Add information to the INLINEASM node to know about this input. 7513 // See InlineAsm.h isUseOperandTiedToDef. 7514 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7515 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7516 OpInfo.getMatchedOperand()); 7517 AsmNodeOperands.push_back(DAG.getTargetConstant( 7518 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7519 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7520 break; 7521 } 7522 7523 // Treat indirect 'X' constraint as memory. 7524 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7525 OpInfo.isIndirect) 7526 OpInfo.ConstraintType = TargetLowering::C_Memory; 7527 7528 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7529 std::vector<SDValue> Ops; 7530 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7531 Ops, DAG); 7532 if (Ops.empty()) { 7533 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7534 Twine(OpInfo.ConstraintCode) + "'"); 7535 return; 7536 } 7537 7538 // Add information to the INLINEASM node to know about this input. 7539 unsigned ResOpType = 7540 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7541 AsmNodeOperands.push_back(DAG.getTargetConstant( 7542 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7543 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7544 break; 7545 } 7546 7547 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7548 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7549 assert(InOperandVal.getValueType() == 7550 TLI.getPointerTy(DAG.getDataLayout()) && 7551 "Memory operands expect pointer values"); 7552 7553 unsigned ConstraintID = 7554 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7555 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7556 "Failed to convert memory constraint code to constraint id."); 7557 7558 // Add information to the INLINEASM node to know about this input. 7559 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7560 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7561 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7562 getCurSDLoc(), 7563 MVT::i32)); 7564 AsmNodeOperands.push_back(InOperandVal); 7565 break; 7566 } 7567 7568 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7569 OpInfo.ConstraintType == TargetLowering::C_Register) && 7570 "Unknown constraint type!"); 7571 7572 // TODO: Support this. 7573 if (OpInfo.isIndirect) { 7574 emitInlineAsmError( 7575 CS, "Don't know how to handle indirect register inputs yet " 7576 "for constraint '" + 7577 Twine(OpInfo.ConstraintCode) + "'"); 7578 return; 7579 } 7580 7581 // Copy the input into the appropriate registers. 7582 if (OpInfo.AssignedRegs.Regs.empty()) { 7583 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7584 Twine(OpInfo.ConstraintCode) + "'"); 7585 return; 7586 } 7587 7588 SDLoc dl = getCurSDLoc(); 7589 7590 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7591 Chain, &Flag, CS.getInstruction()); 7592 7593 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7594 dl, DAG, AsmNodeOperands); 7595 break; 7596 } 7597 case InlineAsm::isClobber: 7598 // Add the clobbered value to the operand list, so that the register 7599 // allocator is aware that the physreg got clobbered. 7600 if (!OpInfo.AssignedRegs.Regs.empty()) 7601 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7602 false, 0, getCurSDLoc(), DAG, 7603 AsmNodeOperands); 7604 break; 7605 } 7606 } 7607 7608 // Finish up input operands. Set the input chain and add the flag last. 7609 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7610 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7611 7612 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7613 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7614 Flag = Chain.getValue(1); 7615 7616 // If this asm returns a register value, copy the result from that register 7617 // and set it as the value of the call. 7618 if (!RetValRegs.Regs.empty()) { 7619 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7620 Chain, &Flag, CS.getInstruction()); 7621 7622 // FIXME: Why don't we do this for inline asms with MRVs? 7623 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7624 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7625 7626 // If any of the results of the inline asm is a vector, it may have the 7627 // wrong width/num elts. This can happen for register classes that can 7628 // contain multiple different value types. The preg or vreg allocated may 7629 // not have the same VT as was expected. Convert it to the right type 7630 // with bit_convert. 7631 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7632 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7633 ResultType, Val); 7634 7635 } else if (ResultType != Val.getValueType() && 7636 ResultType.isInteger() && Val.getValueType().isInteger()) { 7637 // If a result value was tied to an input value, the computed result may 7638 // have a wider width than the expected result. Extract the relevant 7639 // portion. 7640 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7641 } 7642 7643 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7644 } 7645 7646 setValue(CS.getInstruction(), Val); 7647 // Don't need to use this as a chain in this case. 7648 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7649 return; 7650 } 7651 7652 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7653 7654 // Process indirect outputs, first output all of the flagged copies out of 7655 // physregs. 7656 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7657 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7658 const Value *Ptr = IndirectStoresToEmit[i].second; 7659 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7660 Chain, &Flag, IA); 7661 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7662 } 7663 7664 // Emit the non-flagged stores from the physregs. 7665 SmallVector<SDValue, 8> OutChains; 7666 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7667 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7668 getValue(StoresToEmit[i].second), 7669 MachinePointerInfo(StoresToEmit[i].second)); 7670 OutChains.push_back(Val); 7671 } 7672 7673 if (!OutChains.empty()) 7674 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7675 7676 DAG.setRoot(Chain); 7677 } 7678 7679 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7680 const Twine &Message) { 7681 LLVMContext &Ctx = *DAG.getContext(); 7682 Ctx.emitError(CS.getInstruction(), Message); 7683 7684 // Make sure we leave the DAG in a valid state 7685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7686 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7687 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7688 } 7689 7690 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7691 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7692 MVT::Other, getRoot(), 7693 getValue(I.getArgOperand(0)), 7694 DAG.getSrcValue(I.getArgOperand(0)))); 7695 } 7696 7697 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7699 const DataLayout &DL = DAG.getDataLayout(); 7700 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7701 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7702 DAG.getSrcValue(I.getOperand(0)), 7703 DL.getABITypeAlignment(I.getType())); 7704 setValue(&I, V); 7705 DAG.setRoot(V.getValue(1)); 7706 } 7707 7708 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7709 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7710 MVT::Other, getRoot(), 7711 getValue(I.getArgOperand(0)), 7712 DAG.getSrcValue(I.getArgOperand(0)))); 7713 } 7714 7715 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7716 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7717 MVT::Other, getRoot(), 7718 getValue(I.getArgOperand(0)), 7719 getValue(I.getArgOperand(1)), 7720 DAG.getSrcValue(I.getArgOperand(0)), 7721 DAG.getSrcValue(I.getArgOperand(1)))); 7722 } 7723 7724 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7725 const Instruction &I, 7726 SDValue Op) { 7727 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7728 if (!Range) 7729 return Op; 7730 7731 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7732 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7733 return Op; 7734 7735 APInt Lo = CR.getUnsignedMin(); 7736 if (!Lo.isMinValue()) 7737 return Op; 7738 7739 APInt Hi = CR.getUnsignedMax(); 7740 unsigned Bits = Hi.getActiveBits(); 7741 7742 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7743 7744 SDLoc SL = getCurSDLoc(); 7745 7746 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7747 DAG.getValueType(SmallVT)); 7748 unsigned NumVals = Op.getNode()->getNumValues(); 7749 if (NumVals == 1) 7750 return ZExt; 7751 7752 SmallVector<SDValue, 4> Ops; 7753 7754 Ops.push_back(ZExt); 7755 for (unsigned I = 1; I != NumVals; ++I) 7756 Ops.push_back(Op.getValue(I)); 7757 7758 return DAG.getMergeValues(Ops, SL); 7759 } 7760 7761 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7762 /// the call being lowered. 7763 /// 7764 /// This is a helper for lowering intrinsics that follow a target calling 7765 /// convention or require stack pointer adjustment. Only a subset of the 7766 /// intrinsic's operands need to participate in the calling convention. 7767 void SelectionDAGBuilder::populateCallLoweringInfo( 7768 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7769 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7770 bool IsPatchPoint) { 7771 TargetLowering::ArgListTy Args; 7772 Args.reserve(NumArgs); 7773 7774 // Populate the argument list. 7775 // Attributes for args start at offset 1, after the return attribute. 7776 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7777 ArgI != ArgE; ++ArgI) { 7778 const Value *V = CS->getOperand(ArgI); 7779 7780 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7781 7782 TargetLowering::ArgListEntry Entry; 7783 Entry.Node = getValue(V); 7784 Entry.Ty = V->getType(); 7785 Entry.setAttributes(&CS, ArgI); 7786 Args.push_back(Entry); 7787 } 7788 7789 CLI.setDebugLoc(getCurSDLoc()) 7790 .setChain(getRoot()) 7791 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7792 .setDiscardResult(CS->use_empty()) 7793 .setIsPatchPoint(IsPatchPoint); 7794 } 7795 7796 /// Add a stack map intrinsic call's live variable operands to a stackmap 7797 /// or patchpoint target node's operand list. 7798 /// 7799 /// Constants are converted to TargetConstants purely as an optimization to 7800 /// avoid constant materialization and register allocation. 7801 /// 7802 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7803 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7804 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7805 /// address materialization and register allocation, but may also be required 7806 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7807 /// alloca in the entry block, then the runtime may assume that the alloca's 7808 /// StackMap location can be read immediately after compilation and that the 7809 /// location is valid at any point during execution (this is similar to the 7810 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7811 /// only available in a register, then the runtime would need to trap when 7812 /// execution reaches the StackMap in order to read the alloca's location. 7813 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7814 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7815 SelectionDAGBuilder &Builder) { 7816 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7817 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7818 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7819 Ops.push_back( 7820 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7821 Ops.push_back( 7822 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7823 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7824 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7825 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7826 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7827 } else 7828 Ops.push_back(OpVal); 7829 } 7830 } 7831 7832 /// Lower llvm.experimental.stackmap directly to its target opcode. 7833 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7834 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7835 // [live variables...]) 7836 7837 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7838 7839 SDValue Chain, InFlag, Callee, NullPtr; 7840 SmallVector<SDValue, 32> Ops; 7841 7842 SDLoc DL = getCurSDLoc(); 7843 Callee = getValue(CI.getCalledValue()); 7844 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7845 7846 // The stackmap intrinsic only records the live variables (the arguemnts 7847 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7848 // intrinsic, this won't be lowered to a function call. This means we don't 7849 // have to worry about calling conventions and target specific lowering code. 7850 // Instead we perform the call lowering right here. 7851 // 7852 // chain, flag = CALLSEQ_START(chain, 0, 0) 7853 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7854 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7855 // 7856 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7857 InFlag = Chain.getValue(1); 7858 7859 // Add the <id> and <numBytes> constants. 7860 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7861 Ops.push_back(DAG.getTargetConstant( 7862 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7863 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7864 Ops.push_back(DAG.getTargetConstant( 7865 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7866 MVT::i32)); 7867 7868 // Push live variables for the stack map. 7869 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7870 7871 // We are not pushing any register mask info here on the operands list, 7872 // because the stackmap doesn't clobber anything. 7873 7874 // Push the chain and the glue flag. 7875 Ops.push_back(Chain); 7876 Ops.push_back(InFlag); 7877 7878 // Create the STACKMAP node. 7879 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7880 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7881 Chain = SDValue(SM, 0); 7882 InFlag = Chain.getValue(1); 7883 7884 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7885 7886 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7887 7888 // Set the root to the target-lowered call chain. 7889 DAG.setRoot(Chain); 7890 7891 // Inform the Frame Information that we have a stackmap in this function. 7892 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7893 } 7894 7895 /// Lower llvm.experimental.patchpoint directly to its target opcode. 7896 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7897 const BasicBlock *EHPadBB) { 7898 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7899 // i32 <numBytes>, 7900 // i8* <target>, 7901 // i32 <numArgs>, 7902 // [Args...], 7903 // [live variables...]) 7904 7905 CallingConv::ID CC = CS.getCallingConv(); 7906 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7907 bool HasDef = !CS->getType()->isVoidTy(); 7908 SDLoc dl = getCurSDLoc(); 7909 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7910 7911 // Handle immediate and symbolic callees. 7912 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7913 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7914 /*isTarget=*/true); 7915 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7916 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7917 SDLoc(SymbolicCallee), 7918 SymbolicCallee->getValueType(0)); 7919 7920 // Get the real number of arguments participating in the call <numArgs> 7921 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7922 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7923 7924 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7925 // Intrinsics include all meta-operands up to but not including CC. 7926 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7927 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7928 "Not enough arguments provided to the patchpoint intrinsic"); 7929 7930 // For AnyRegCC the arguments are lowered later on manually. 7931 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7932 Type *ReturnTy = 7933 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7934 7935 TargetLowering::CallLoweringInfo CLI(DAG); 7936 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7937 true); 7938 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7939 7940 SDNode *CallEnd = Result.second.getNode(); 7941 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7942 CallEnd = CallEnd->getOperand(0).getNode(); 7943 7944 /// Get a call instruction from the call sequence chain. 7945 /// Tail calls are not allowed. 7946 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7947 "Expected a callseq node."); 7948 SDNode *Call = CallEnd->getOperand(0).getNode(); 7949 bool HasGlue = Call->getGluedNode(); 7950 7951 // Replace the target specific call node with the patchable intrinsic. 7952 SmallVector<SDValue, 8> Ops; 7953 7954 // Add the <id> and <numBytes> constants. 7955 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7956 Ops.push_back(DAG.getTargetConstant( 7957 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7958 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7959 Ops.push_back(DAG.getTargetConstant( 7960 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7961 MVT::i32)); 7962 7963 // Add the callee. 7964 Ops.push_back(Callee); 7965 7966 // Adjust <numArgs> to account for any arguments that have been passed on the 7967 // stack instead. 7968 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7969 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7970 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7971 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7972 7973 // Add the calling convention 7974 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7975 7976 // Add the arguments we omitted previously. The register allocator should 7977 // place these in any free register. 7978 if (IsAnyRegCC) 7979 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7980 Ops.push_back(getValue(CS.getArgument(i))); 7981 7982 // Push the arguments from the call instruction up to the register mask. 7983 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7984 Ops.append(Call->op_begin() + 2, e); 7985 7986 // Push live variables for the stack map. 7987 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7988 7989 // Push the register mask info. 7990 if (HasGlue) 7991 Ops.push_back(*(Call->op_end()-2)); 7992 else 7993 Ops.push_back(*(Call->op_end()-1)); 7994 7995 // Push the chain (this is originally the first operand of the call, but 7996 // becomes now the last or second to last operand). 7997 Ops.push_back(*(Call->op_begin())); 7998 7999 // Push the glue flag (last operand). 8000 if (HasGlue) 8001 Ops.push_back(*(Call->op_end()-1)); 8002 8003 SDVTList NodeTys; 8004 if (IsAnyRegCC && HasDef) { 8005 // Create the return types based on the intrinsic definition 8006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8007 SmallVector<EVT, 3> ValueVTs; 8008 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8009 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8010 8011 // There is always a chain and a glue type at the end 8012 ValueVTs.push_back(MVT::Other); 8013 ValueVTs.push_back(MVT::Glue); 8014 NodeTys = DAG.getVTList(ValueVTs); 8015 } else 8016 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8017 8018 // Replace the target specific call node with a PATCHPOINT node. 8019 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8020 dl, NodeTys, Ops); 8021 8022 // Update the NodeMap. 8023 if (HasDef) { 8024 if (IsAnyRegCC) 8025 setValue(CS.getInstruction(), SDValue(MN, 0)); 8026 else 8027 setValue(CS.getInstruction(), Result.first); 8028 } 8029 8030 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8031 // call sequence. Furthermore the location of the chain and glue can change 8032 // when the AnyReg calling convention is used and the intrinsic returns a 8033 // value. 8034 if (IsAnyRegCC && HasDef) { 8035 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8036 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8037 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8038 } else 8039 DAG.ReplaceAllUsesWith(Call, MN); 8040 DAG.DeleteNode(Call); 8041 8042 // Inform the Frame Information that we have a patchpoint in this function. 8043 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8044 } 8045 8046 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8047 unsigned Intrinsic) { 8048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8049 SDValue Op1 = getValue(I.getArgOperand(0)); 8050 SDValue Op2; 8051 if (I.getNumArgOperands() > 1) 8052 Op2 = getValue(I.getArgOperand(1)); 8053 SDLoc dl = getCurSDLoc(); 8054 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8055 SDValue Res; 8056 FastMathFlags FMF; 8057 if (isa<FPMathOperator>(I)) 8058 FMF = I.getFastMathFlags(); 8059 SDNodeFlags SDFlags; 8060 SDFlags.setNoNaNs(FMF.noNaNs()); 8061 8062 switch (Intrinsic) { 8063 case Intrinsic::experimental_vector_reduce_fadd: 8064 if (FMF.isFast()) 8065 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8066 else 8067 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8068 break; 8069 case Intrinsic::experimental_vector_reduce_fmul: 8070 if (FMF.isFast()) 8071 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8072 else 8073 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8074 break; 8075 case Intrinsic::experimental_vector_reduce_add: 8076 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8077 break; 8078 case Intrinsic::experimental_vector_reduce_mul: 8079 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8080 break; 8081 case Intrinsic::experimental_vector_reduce_and: 8082 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8083 break; 8084 case Intrinsic::experimental_vector_reduce_or: 8085 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8086 break; 8087 case Intrinsic::experimental_vector_reduce_xor: 8088 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8089 break; 8090 case Intrinsic::experimental_vector_reduce_smax: 8091 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8092 break; 8093 case Intrinsic::experimental_vector_reduce_smin: 8094 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8095 break; 8096 case Intrinsic::experimental_vector_reduce_umax: 8097 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8098 break; 8099 case Intrinsic::experimental_vector_reduce_umin: 8100 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8101 break; 8102 case Intrinsic::experimental_vector_reduce_fmax: 8103 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8104 break; 8105 case Intrinsic::experimental_vector_reduce_fmin: 8106 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8107 break; 8108 default: 8109 llvm_unreachable("Unhandled vector reduce intrinsic"); 8110 } 8111 setValue(&I, Res); 8112 } 8113 8114 /// Returns an AttributeList representing the attributes applied to the return 8115 /// value of the given call. 8116 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8117 SmallVector<Attribute::AttrKind, 2> Attrs; 8118 if (CLI.RetSExt) 8119 Attrs.push_back(Attribute::SExt); 8120 if (CLI.RetZExt) 8121 Attrs.push_back(Attribute::ZExt); 8122 if (CLI.IsInReg) 8123 Attrs.push_back(Attribute::InReg); 8124 8125 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8126 Attrs); 8127 } 8128 8129 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8130 /// implementation, which just calls LowerCall. 8131 /// FIXME: When all targets are 8132 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8133 std::pair<SDValue, SDValue> 8134 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8135 // Handle the incoming return values from the call. 8136 CLI.Ins.clear(); 8137 Type *OrigRetTy = CLI.RetTy; 8138 SmallVector<EVT, 4> RetTys; 8139 SmallVector<uint64_t, 4> Offsets; 8140 auto &DL = CLI.DAG.getDataLayout(); 8141 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8142 8143 if (CLI.IsPostTypeLegalization) { 8144 // If we are lowering a libcall after legalization, split the return type. 8145 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8146 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8147 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8148 EVT RetVT = OldRetTys[i]; 8149 uint64_t Offset = OldOffsets[i]; 8150 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8151 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8152 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8153 RetTys.append(NumRegs, RegisterVT); 8154 for (unsigned j = 0; j != NumRegs; ++j) 8155 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8156 } 8157 } 8158 8159 SmallVector<ISD::OutputArg, 4> Outs; 8160 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8161 8162 bool CanLowerReturn = 8163 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8164 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8165 8166 SDValue DemoteStackSlot; 8167 int DemoteStackIdx = -100; 8168 if (!CanLowerReturn) { 8169 // FIXME: equivalent assert? 8170 // assert(!CS.hasInAllocaArgument() && 8171 // "sret demotion is incompatible with inalloca"); 8172 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8173 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8174 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8175 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8176 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8177 8178 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8179 ArgListEntry Entry; 8180 Entry.Node = DemoteStackSlot; 8181 Entry.Ty = StackSlotPtrType; 8182 Entry.IsSExt = false; 8183 Entry.IsZExt = false; 8184 Entry.IsInReg = false; 8185 Entry.IsSRet = true; 8186 Entry.IsNest = false; 8187 Entry.IsByVal = false; 8188 Entry.IsReturned = false; 8189 Entry.IsSwiftSelf = false; 8190 Entry.IsSwiftError = false; 8191 Entry.Alignment = Align; 8192 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8193 CLI.NumFixedArgs += 1; 8194 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8195 8196 // sret demotion isn't compatible with tail-calls, since the sret argument 8197 // points into the callers stack frame. 8198 CLI.IsTailCall = false; 8199 } else { 8200 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8201 EVT VT = RetTys[I]; 8202 MVT RegisterVT = 8203 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8204 unsigned NumRegs = 8205 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8206 for (unsigned i = 0; i != NumRegs; ++i) { 8207 ISD::InputArg MyFlags; 8208 MyFlags.VT = RegisterVT; 8209 MyFlags.ArgVT = VT; 8210 MyFlags.Used = CLI.IsReturnValueUsed; 8211 if (CLI.RetSExt) 8212 MyFlags.Flags.setSExt(); 8213 if (CLI.RetZExt) 8214 MyFlags.Flags.setZExt(); 8215 if (CLI.IsInReg) 8216 MyFlags.Flags.setInReg(); 8217 CLI.Ins.push_back(MyFlags); 8218 } 8219 } 8220 } 8221 8222 // We push in swifterror return as the last element of CLI.Ins. 8223 ArgListTy &Args = CLI.getArgs(); 8224 if (supportSwiftError()) { 8225 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8226 if (Args[i].IsSwiftError) { 8227 ISD::InputArg MyFlags; 8228 MyFlags.VT = getPointerTy(DL); 8229 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8230 MyFlags.Flags.setSwiftError(); 8231 CLI.Ins.push_back(MyFlags); 8232 } 8233 } 8234 } 8235 8236 // Handle all of the outgoing arguments. 8237 CLI.Outs.clear(); 8238 CLI.OutVals.clear(); 8239 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8240 SmallVector<EVT, 4> ValueVTs; 8241 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8242 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8243 Type *FinalType = Args[i].Ty; 8244 if (Args[i].IsByVal) 8245 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8246 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8247 FinalType, CLI.CallConv, CLI.IsVarArg); 8248 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8249 ++Value) { 8250 EVT VT = ValueVTs[Value]; 8251 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8252 SDValue Op = SDValue(Args[i].Node.getNode(), 8253 Args[i].Node.getResNo() + Value); 8254 ISD::ArgFlagsTy Flags; 8255 8256 // Certain targets (such as MIPS), may have a different ABI alignment 8257 // for a type depending on the context. Give the target a chance to 8258 // specify the alignment it wants. 8259 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8260 8261 if (Args[i].IsZExt) 8262 Flags.setZExt(); 8263 if (Args[i].IsSExt) 8264 Flags.setSExt(); 8265 if (Args[i].IsInReg) { 8266 // If we are using vectorcall calling convention, a structure that is 8267 // passed InReg - is surely an HVA 8268 if (CLI.CallConv == CallingConv::X86_VectorCall && 8269 isa<StructType>(FinalType)) { 8270 // The first value of a structure is marked 8271 if (0 == Value) 8272 Flags.setHvaStart(); 8273 Flags.setHva(); 8274 } 8275 // Set InReg Flag 8276 Flags.setInReg(); 8277 } 8278 if (Args[i].IsSRet) 8279 Flags.setSRet(); 8280 if (Args[i].IsSwiftSelf) 8281 Flags.setSwiftSelf(); 8282 if (Args[i].IsSwiftError) 8283 Flags.setSwiftError(); 8284 if (Args[i].IsByVal) 8285 Flags.setByVal(); 8286 if (Args[i].IsInAlloca) { 8287 Flags.setInAlloca(); 8288 // Set the byval flag for CCAssignFn callbacks that don't know about 8289 // inalloca. This way we can know how many bytes we should've allocated 8290 // and how many bytes a callee cleanup function will pop. If we port 8291 // inalloca to more targets, we'll have to add custom inalloca handling 8292 // in the various CC lowering callbacks. 8293 Flags.setByVal(); 8294 } 8295 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8296 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8297 Type *ElementTy = Ty->getElementType(); 8298 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8299 // For ByVal, alignment should come from FE. BE will guess if this 8300 // info is not there but there are cases it cannot get right. 8301 unsigned FrameAlign; 8302 if (Args[i].Alignment) 8303 FrameAlign = Args[i].Alignment; 8304 else 8305 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8306 Flags.setByValAlign(FrameAlign); 8307 } 8308 if (Args[i].IsNest) 8309 Flags.setNest(); 8310 if (NeedsRegBlock) 8311 Flags.setInConsecutiveRegs(); 8312 Flags.setOrigAlign(OriginalAlignment); 8313 8314 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8315 unsigned NumParts = 8316 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8317 SmallVector<SDValue, 4> Parts(NumParts); 8318 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8319 8320 if (Args[i].IsSExt) 8321 ExtendKind = ISD::SIGN_EXTEND; 8322 else if (Args[i].IsZExt) 8323 ExtendKind = ISD::ZERO_EXTEND; 8324 8325 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8326 // for now. 8327 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8328 CanLowerReturn) { 8329 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8330 "unexpected use of 'returned'"); 8331 // Before passing 'returned' to the target lowering code, ensure that 8332 // either the register MVT and the actual EVT are the same size or that 8333 // the return value and argument are extended in the same way; in these 8334 // cases it's safe to pass the argument register value unchanged as the 8335 // return register value (although it's at the target's option whether 8336 // to do so) 8337 // TODO: allow code generation to take advantage of partially preserved 8338 // registers rather than clobbering the entire register when the 8339 // parameter extension method is not compatible with the return 8340 // extension method 8341 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8342 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8343 CLI.RetZExt == Args[i].IsZExt)) 8344 Flags.setReturned(); 8345 } 8346 8347 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8348 CLI.CS.getInstruction(), ExtendKind, true); 8349 8350 for (unsigned j = 0; j != NumParts; ++j) { 8351 // if it isn't first piece, alignment must be 1 8352 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8353 i < CLI.NumFixedArgs, 8354 i, j*Parts[j].getValueType().getStoreSize()); 8355 if (NumParts > 1 && j == 0) 8356 MyFlags.Flags.setSplit(); 8357 else if (j != 0) { 8358 MyFlags.Flags.setOrigAlign(1); 8359 if (j == NumParts - 1) 8360 MyFlags.Flags.setSplitEnd(); 8361 } 8362 8363 CLI.Outs.push_back(MyFlags); 8364 CLI.OutVals.push_back(Parts[j]); 8365 } 8366 8367 if (NeedsRegBlock && Value == NumValues - 1) 8368 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8369 } 8370 } 8371 8372 SmallVector<SDValue, 4> InVals; 8373 CLI.Chain = LowerCall(CLI, InVals); 8374 8375 // Update CLI.InVals to use outside of this function. 8376 CLI.InVals = InVals; 8377 8378 // Verify that the target's LowerCall behaved as expected. 8379 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8380 "LowerCall didn't return a valid chain!"); 8381 assert((!CLI.IsTailCall || InVals.empty()) && 8382 "LowerCall emitted a return value for a tail call!"); 8383 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8384 "LowerCall didn't emit the correct number of values!"); 8385 8386 // For a tail call, the return value is merely live-out and there aren't 8387 // any nodes in the DAG representing it. Return a special value to 8388 // indicate that a tail call has been emitted and no more Instructions 8389 // should be processed in the current block. 8390 if (CLI.IsTailCall) { 8391 CLI.DAG.setRoot(CLI.Chain); 8392 return std::make_pair(SDValue(), SDValue()); 8393 } 8394 8395 #ifndef NDEBUG 8396 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8397 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8398 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8399 "LowerCall emitted a value with the wrong type!"); 8400 } 8401 #endif 8402 8403 SmallVector<SDValue, 4> ReturnValues; 8404 if (!CanLowerReturn) { 8405 // The instruction result is the result of loading from the 8406 // hidden sret parameter. 8407 SmallVector<EVT, 1> PVTs; 8408 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8409 8410 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8411 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8412 EVT PtrVT = PVTs[0]; 8413 8414 unsigned NumValues = RetTys.size(); 8415 ReturnValues.resize(NumValues); 8416 SmallVector<SDValue, 4> Chains(NumValues); 8417 8418 // An aggregate return value cannot wrap around the address space, so 8419 // offsets to its parts don't wrap either. 8420 SDNodeFlags Flags; 8421 Flags.setNoUnsignedWrap(true); 8422 8423 for (unsigned i = 0; i < NumValues; ++i) { 8424 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8425 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8426 PtrVT), Flags); 8427 SDValue L = CLI.DAG.getLoad( 8428 RetTys[i], CLI.DL, CLI.Chain, Add, 8429 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8430 DemoteStackIdx, Offsets[i]), 8431 /* Alignment = */ 1); 8432 ReturnValues[i] = L; 8433 Chains[i] = L.getValue(1); 8434 } 8435 8436 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8437 } else { 8438 // Collect the legal value parts into potentially illegal values 8439 // that correspond to the original function's return values. 8440 Optional<ISD::NodeType> AssertOp; 8441 if (CLI.RetSExt) 8442 AssertOp = ISD::AssertSext; 8443 else if (CLI.RetZExt) 8444 AssertOp = ISD::AssertZext; 8445 unsigned CurReg = 0; 8446 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8447 EVT VT = RetTys[I]; 8448 MVT RegisterVT = 8449 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8450 unsigned NumRegs = 8451 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8452 8453 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8454 NumRegs, RegisterVT, VT, nullptr, 8455 AssertOp, true)); 8456 CurReg += NumRegs; 8457 } 8458 8459 // For a function returning void, there is no return value. We can't create 8460 // such a node, so we just return a null return value in that case. In 8461 // that case, nothing will actually look at the value. 8462 if (ReturnValues.empty()) 8463 return std::make_pair(SDValue(), CLI.Chain); 8464 } 8465 8466 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8467 CLI.DAG.getVTList(RetTys), ReturnValues); 8468 return std::make_pair(Res, CLI.Chain); 8469 } 8470 8471 void TargetLowering::LowerOperationWrapper(SDNode *N, 8472 SmallVectorImpl<SDValue> &Results, 8473 SelectionDAG &DAG) const { 8474 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8475 Results.push_back(Res); 8476 } 8477 8478 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8479 llvm_unreachable("LowerOperation not implemented for this target!"); 8480 } 8481 8482 void 8483 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8484 SDValue Op = getNonRegisterValue(V); 8485 assert((Op.getOpcode() != ISD::CopyFromReg || 8486 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8487 "Copy from a reg to the same reg!"); 8488 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8489 8490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8491 // If this is an InlineAsm we have to match the registers required, not the 8492 // notional registers required by the type. 8493 8494 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8495 V->getType(), isABIRegCopy(V)); 8496 SDValue Chain = DAG.getEntryNode(); 8497 8498 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8499 FuncInfo.PreferredExtendType.end()) 8500 ? ISD::ANY_EXTEND 8501 : FuncInfo.PreferredExtendType[V]; 8502 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8503 PendingExports.push_back(Chain); 8504 } 8505 8506 #include "llvm/CodeGen/SelectionDAGISel.h" 8507 8508 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8509 /// entry block, return true. This includes arguments used by switches, since 8510 /// the switch may expand into multiple basic blocks. 8511 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8512 // With FastISel active, we may be splitting blocks, so force creation 8513 // of virtual registers for all non-dead arguments. 8514 if (FastISel) 8515 return A->use_empty(); 8516 8517 const BasicBlock &Entry = A->getParent()->front(); 8518 for (const User *U : A->users()) 8519 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8520 return false; // Use not in entry block. 8521 8522 return true; 8523 } 8524 8525 using ArgCopyElisionMapTy = 8526 DenseMap<const Argument *, 8527 std::pair<const AllocaInst *, const StoreInst *>>; 8528 8529 /// Scan the entry block of the function in FuncInfo for arguments that look 8530 /// like copies into a local alloca. Record any copied arguments in 8531 /// ArgCopyElisionCandidates. 8532 static void 8533 findArgumentCopyElisionCandidates(const DataLayout &DL, 8534 FunctionLoweringInfo *FuncInfo, 8535 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8536 // Record the state of every static alloca used in the entry block. Argument 8537 // allocas are all used in the entry block, so we need approximately as many 8538 // entries as we have arguments. 8539 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8540 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8541 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8542 StaticAllocas.reserve(NumArgs * 2); 8543 8544 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8545 if (!V) 8546 return nullptr; 8547 V = V->stripPointerCasts(); 8548 const auto *AI = dyn_cast<AllocaInst>(V); 8549 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8550 return nullptr; 8551 auto Iter = StaticAllocas.insert({AI, Unknown}); 8552 return &Iter.first->second; 8553 }; 8554 8555 // Look for stores of arguments to static allocas. Look through bitcasts and 8556 // GEPs to handle type coercions, as long as the alloca is fully initialized 8557 // by the store. Any non-store use of an alloca escapes it and any subsequent 8558 // unanalyzed store might write it. 8559 // FIXME: Handle structs initialized with multiple stores. 8560 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8561 // Look for stores, and handle non-store uses conservatively. 8562 const auto *SI = dyn_cast<StoreInst>(&I); 8563 if (!SI) { 8564 // We will look through cast uses, so ignore them completely. 8565 if (I.isCast()) 8566 continue; 8567 // Ignore debug info intrinsics, they don't escape or store to allocas. 8568 if (isa<DbgInfoIntrinsic>(I)) 8569 continue; 8570 // This is an unknown instruction. Assume it escapes or writes to all 8571 // static alloca operands. 8572 for (const Use &U : I.operands()) { 8573 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8574 *Info = StaticAllocaInfo::Clobbered; 8575 } 8576 continue; 8577 } 8578 8579 // If the stored value is a static alloca, mark it as escaped. 8580 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8581 *Info = StaticAllocaInfo::Clobbered; 8582 8583 // Check if the destination is a static alloca. 8584 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8585 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8586 if (!Info) 8587 continue; 8588 const AllocaInst *AI = cast<AllocaInst>(Dst); 8589 8590 // Skip allocas that have been initialized or clobbered. 8591 if (*Info != StaticAllocaInfo::Unknown) 8592 continue; 8593 8594 // Check if the stored value is an argument, and that this store fully 8595 // initializes the alloca. Don't elide copies from the same argument twice. 8596 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8597 const auto *Arg = dyn_cast<Argument>(Val); 8598 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8599 Arg->getType()->isEmptyTy() || 8600 DL.getTypeStoreSize(Arg->getType()) != 8601 DL.getTypeAllocSize(AI->getAllocatedType()) || 8602 ArgCopyElisionCandidates.count(Arg)) { 8603 *Info = StaticAllocaInfo::Clobbered; 8604 continue; 8605 } 8606 8607 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8608 8609 // Mark this alloca and store for argument copy elision. 8610 *Info = StaticAllocaInfo::Elidable; 8611 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8612 8613 // Stop scanning if we've seen all arguments. This will happen early in -O0 8614 // builds, which is useful, because -O0 builds have large entry blocks and 8615 // many allocas. 8616 if (ArgCopyElisionCandidates.size() == NumArgs) 8617 break; 8618 } 8619 } 8620 8621 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8622 /// ArgVal is a load from a suitable fixed stack object. 8623 static void tryToElideArgumentCopy( 8624 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8625 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8626 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8627 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8628 SDValue ArgVal, bool &ArgHasUses) { 8629 // Check if this is a load from a fixed stack object. 8630 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8631 if (!LNode) 8632 return; 8633 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8634 if (!FINode) 8635 return; 8636 8637 // Check that the fixed stack object is the right size and alignment. 8638 // Look at the alignment that the user wrote on the alloca instead of looking 8639 // at the stack object. 8640 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8641 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8642 const AllocaInst *AI = ArgCopyIter->second.first; 8643 int FixedIndex = FINode->getIndex(); 8644 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8645 int OldIndex = AllocaIndex; 8646 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8647 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8648 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8649 "object size\n"); 8650 return; 8651 } 8652 unsigned RequiredAlignment = AI->getAlignment(); 8653 if (!RequiredAlignment) { 8654 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8655 AI->getAllocatedType()); 8656 } 8657 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8658 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8659 "greater than stack argument alignment (" 8660 << RequiredAlignment << " vs " 8661 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8662 return; 8663 } 8664 8665 // Perform the elision. Delete the old stack object and replace its only use 8666 // in the variable info map. Mark the stack object as mutable. 8667 DEBUG({ 8668 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8669 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8670 << '\n'; 8671 }); 8672 MFI.RemoveStackObject(OldIndex); 8673 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8674 AllocaIndex = FixedIndex; 8675 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8676 Chains.push_back(ArgVal.getValue(1)); 8677 8678 // Avoid emitting code for the store implementing the copy. 8679 const StoreInst *SI = ArgCopyIter->second.second; 8680 ElidedArgCopyInstrs.insert(SI); 8681 8682 // Check for uses of the argument again so that we can avoid exporting ArgVal 8683 // if it is't used by anything other than the store. 8684 for (const Value *U : Arg.users()) { 8685 if (U != SI) { 8686 ArgHasUses = true; 8687 break; 8688 } 8689 } 8690 } 8691 8692 void SelectionDAGISel::LowerArguments(const Function &F) { 8693 SelectionDAG &DAG = SDB->DAG; 8694 SDLoc dl = SDB->getCurSDLoc(); 8695 const DataLayout &DL = DAG.getDataLayout(); 8696 SmallVector<ISD::InputArg, 16> Ins; 8697 8698 if (!FuncInfo->CanLowerReturn) { 8699 // Put in an sret pointer parameter before all the other parameters. 8700 SmallVector<EVT, 1> ValueVTs; 8701 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8702 F.getReturnType()->getPointerTo( 8703 DAG.getDataLayout().getAllocaAddrSpace()), 8704 ValueVTs); 8705 8706 // NOTE: Assuming that a pointer will never break down to more than one VT 8707 // or one register. 8708 ISD::ArgFlagsTy Flags; 8709 Flags.setSRet(); 8710 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8711 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8712 ISD::InputArg::NoArgIndex, 0); 8713 Ins.push_back(RetArg); 8714 } 8715 8716 // Look for stores of arguments to static allocas. Mark such arguments with a 8717 // flag to ask the target to give us the memory location of that argument if 8718 // available. 8719 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8720 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8721 8722 // Set up the incoming argument description vector. 8723 for (const Argument &Arg : F.args()) { 8724 unsigned ArgNo = Arg.getArgNo(); 8725 SmallVector<EVT, 4> ValueVTs; 8726 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8727 bool isArgValueUsed = !Arg.use_empty(); 8728 unsigned PartBase = 0; 8729 Type *FinalType = Arg.getType(); 8730 if (Arg.hasAttribute(Attribute::ByVal)) 8731 FinalType = cast<PointerType>(FinalType)->getElementType(); 8732 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8733 FinalType, F.getCallingConv(), F.isVarArg()); 8734 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8735 Value != NumValues; ++Value) { 8736 EVT VT = ValueVTs[Value]; 8737 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8738 ISD::ArgFlagsTy Flags; 8739 8740 // Certain targets (such as MIPS), may have a different ABI alignment 8741 // for a type depending on the context. Give the target a chance to 8742 // specify the alignment it wants. 8743 unsigned OriginalAlignment = 8744 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8745 8746 if (Arg.hasAttribute(Attribute::ZExt)) 8747 Flags.setZExt(); 8748 if (Arg.hasAttribute(Attribute::SExt)) 8749 Flags.setSExt(); 8750 if (Arg.hasAttribute(Attribute::InReg)) { 8751 // If we are using vectorcall calling convention, a structure that is 8752 // passed InReg - is surely an HVA 8753 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8754 isa<StructType>(Arg.getType())) { 8755 // The first value of a structure is marked 8756 if (0 == Value) 8757 Flags.setHvaStart(); 8758 Flags.setHva(); 8759 } 8760 // Set InReg Flag 8761 Flags.setInReg(); 8762 } 8763 if (Arg.hasAttribute(Attribute::StructRet)) 8764 Flags.setSRet(); 8765 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8766 Flags.setSwiftSelf(); 8767 if (Arg.hasAttribute(Attribute::SwiftError)) 8768 Flags.setSwiftError(); 8769 if (Arg.hasAttribute(Attribute::ByVal)) 8770 Flags.setByVal(); 8771 if (Arg.hasAttribute(Attribute::InAlloca)) { 8772 Flags.setInAlloca(); 8773 // Set the byval flag for CCAssignFn callbacks that don't know about 8774 // inalloca. This way we can know how many bytes we should've allocated 8775 // and how many bytes a callee cleanup function will pop. If we port 8776 // inalloca to more targets, we'll have to add custom inalloca handling 8777 // in the various CC lowering callbacks. 8778 Flags.setByVal(); 8779 } 8780 if (F.getCallingConv() == CallingConv::X86_INTR) { 8781 // IA Interrupt passes frame (1st parameter) by value in the stack. 8782 if (ArgNo == 0) 8783 Flags.setByVal(); 8784 } 8785 if (Flags.isByVal() || Flags.isInAlloca()) { 8786 PointerType *Ty = cast<PointerType>(Arg.getType()); 8787 Type *ElementTy = Ty->getElementType(); 8788 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8789 // For ByVal, alignment should be passed from FE. BE will guess if 8790 // this info is not there but there are cases it cannot get right. 8791 unsigned FrameAlign; 8792 if (Arg.getParamAlignment()) 8793 FrameAlign = Arg.getParamAlignment(); 8794 else 8795 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8796 Flags.setByValAlign(FrameAlign); 8797 } 8798 if (Arg.hasAttribute(Attribute::Nest)) 8799 Flags.setNest(); 8800 if (NeedsRegBlock) 8801 Flags.setInConsecutiveRegs(); 8802 Flags.setOrigAlign(OriginalAlignment); 8803 if (ArgCopyElisionCandidates.count(&Arg)) 8804 Flags.setCopyElisionCandidate(); 8805 8806 MVT RegisterVT = 8807 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8808 unsigned NumRegs = 8809 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8810 for (unsigned i = 0; i != NumRegs; ++i) { 8811 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8812 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8813 if (NumRegs > 1 && i == 0) 8814 MyFlags.Flags.setSplit(); 8815 // if it isn't first piece, alignment must be 1 8816 else if (i > 0) { 8817 MyFlags.Flags.setOrigAlign(1); 8818 if (i == NumRegs - 1) 8819 MyFlags.Flags.setSplitEnd(); 8820 } 8821 Ins.push_back(MyFlags); 8822 } 8823 if (NeedsRegBlock && Value == NumValues - 1) 8824 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8825 PartBase += VT.getStoreSize(); 8826 } 8827 } 8828 8829 // Call the target to set up the argument values. 8830 SmallVector<SDValue, 8> InVals; 8831 SDValue NewRoot = TLI->LowerFormalArguments( 8832 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8833 8834 // Verify that the target's LowerFormalArguments behaved as expected. 8835 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8836 "LowerFormalArguments didn't return a valid chain!"); 8837 assert(InVals.size() == Ins.size() && 8838 "LowerFormalArguments didn't emit the correct number of values!"); 8839 DEBUG({ 8840 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8841 assert(InVals[i].getNode() && 8842 "LowerFormalArguments emitted a null value!"); 8843 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8844 "LowerFormalArguments emitted a value with the wrong type!"); 8845 } 8846 }); 8847 8848 // Update the DAG with the new chain value resulting from argument lowering. 8849 DAG.setRoot(NewRoot); 8850 8851 // Set up the argument values. 8852 unsigned i = 0; 8853 if (!FuncInfo->CanLowerReturn) { 8854 // Create a virtual register for the sret pointer, and put in a copy 8855 // from the sret argument into it. 8856 SmallVector<EVT, 1> ValueVTs; 8857 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8858 F.getReturnType()->getPointerTo( 8859 DAG.getDataLayout().getAllocaAddrSpace()), 8860 ValueVTs); 8861 MVT VT = ValueVTs[0].getSimpleVT(); 8862 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8863 Optional<ISD::NodeType> AssertOp = None; 8864 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8865 RegVT, VT, nullptr, AssertOp); 8866 8867 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8868 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8869 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8870 FuncInfo->DemoteRegister = SRetReg; 8871 NewRoot = 8872 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8873 DAG.setRoot(NewRoot); 8874 8875 // i indexes lowered arguments. Bump it past the hidden sret argument. 8876 ++i; 8877 } 8878 8879 SmallVector<SDValue, 4> Chains; 8880 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8881 for (const Argument &Arg : F.args()) { 8882 SmallVector<SDValue, 4> ArgValues; 8883 SmallVector<EVT, 4> ValueVTs; 8884 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8885 unsigned NumValues = ValueVTs.size(); 8886 if (NumValues == 0) 8887 continue; 8888 8889 bool ArgHasUses = !Arg.use_empty(); 8890 8891 // Elide the copying store if the target loaded this argument from a 8892 // suitable fixed stack object. 8893 if (Ins[i].Flags.isCopyElisionCandidate()) { 8894 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8895 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8896 InVals[i], ArgHasUses); 8897 } 8898 8899 // If this argument is unused then remember its value. It is used to generate 8900 // debugging information. 8901 bool isSwiftErrorArg = 8902 TLI->supportSwiftError() && 8903 Arg.hasAttribute(Attribute::SwiftError); 8904 if (!ArgHasUses && !isSwiftErrorArg) { 8905 SDB->setUnusedArgValue(&Arg, InVals[i]); 8906 8907 // Also remember any frame index for use in FastISel. 8908 if (FrameIndexSDNode *FI = 8909 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8910 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8911 } 8912 8913 for (unsigned Val = 0; Val != NumValues; ++Val) { 8914 EVT VT = ValueVTs[Val]; 8915 MVT PartVT = 8916 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8917 unsigned NumParts = 8918 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8919 8920 // Even an apparant 'unused' swifterror argument needs to be returned. So 8921 // we do generate a copy for it that can be used on return from the 8922 // function. 8923 if (ArgHasUses || isSwiftErrorArg) { 8924 Optional<ISD::NodeType> AssertOp; 8925 if (Arg.hasAttribute(Attribute::SExt)) 8926 AssertOp = ISD::AssertSext; 8927 else if (Arg.hasAttribute(Attribute::ZExt)) 8928 AssertOp = ISD::AssertZext; 8929 8930 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8931 PartVT, VT, nullptr, AssertOp, 8932 true)); 8933 } 8934 8935 i += NumParts; 8936 } 8937 8938 // We don't need to do anything else for unused arguments. 8939 if (ArgValues.empty()) 8940 continue; 8941 8942 // Note down frame index. 8943 if (FrameIndexSDNode *FI = 8944 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8945 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8946 8947 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8948 SDB->getCurSDLoc()); 8949 8950 SDB->setValue(&Arg, Res); 8951 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8952 // We want to associate the argument with the frame index, among 8953 // involved operands, that correspond to the lowest address. The 8954 // getCopyFromParts function, called earlier, is swapping the order of 8955 // the operands to BUILD_PAIR depending on endianness. The result of 8956 // that swapping is that the least significant bits of the argument will 8957 // be in the first operand of the BUILD_PAIR node, and the most 8958 // significant bits will be in the second operand. 8959 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8960 if (LoadSDNode *LNode = 8961 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 8962 if (FrameIndexSDNode *FI = 8963 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8964 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8965 } 8966 8967 // Update the SwiftErrorVRegDefMap. 8968 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8969 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8970 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8971 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8972 FuncInfo->SwiftErrorArg, Reg); 8973 } 8974 8975 // If this argument is live outside of the entry block, insert a copy from 8976 // wherever we got it to the vreg that other BB's will reference it as. 8977 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8978 // If we can, though, try to skip creating an unnecessary vreg. 8979 // FIXME: This isn't very clean... it would be nice to make this more 8980 // general. It's also subtly incompatible with the hacks FastISel 8981 // uses with vregs. 8982 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8983 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8984 FuncInfo->ValueMap[&Arg] = Reg; 8985 continue; 8986 } 8987 } 8988 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8989 FuncInfo->InitializeRegForValue(&Arg); 8990 SDB->CopyToExportRegsIfNeeded(&Arg); 8991 } 8992 } 8993 8994 if (!Chains.empty()) { 8995 Chains.push_back(NewRoot); 8996 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8997 } 8998 8999 DAG.setRoot(NewRoot); 9000 9001 assert(i == InVals.size() && "Argument register count mismatch!"); 9002 9003 // If any argument copy elisions occurred and we have debug info, update the 9004 // stale frame indices used in the dbg.declare variable info table. 9005 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9006 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9007 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9008 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9009 if (I != ArgCopyElisionFrameIndexMap.end()) 9010 VI.Slot = I->second; 9011 } 9012 } 9013 9014 // Finally, if the target has anything special to do, allow it to do so. 9015 EmitFunctionEntryCode(); 9016 } 9017 9018 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9019 /// ensure constants are generated when needed. Remember the virtual registers 9020 /// that need to be added to the Machine PHI nodes as input. We cannot just 9021 /// directly add them, because expansion might result in multiple MBB's for one 9022 /// BB. As such, the start of the BB might correspond to a different MBB than 9023 /// the end. 9024 void 9025 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9026 const TerminatorInst *TI = LLVMBB->getTerminator(); 9027 9028 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9029 9030 // Check PHI nodes in successors that expect a value to be available from this 9031 // block. 9032 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9033 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9034 if (!isa<PHINode>(SuccBB->begin())) continue; 9035 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9036 9037 // If this terminator has multiple identical successors (common for 9038 // switches), only handle each succ once. 9039 if (!SuccsHandled.insert(SuccMBB).second) 9040 continue; 9041 9042 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9043 9044 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9045 // nodes and Machine PHI nodes, but the incoming operands have not been 9046 // emitted yet. 9047 for (const PHINode &PN : SuccBB->phis()) { 9048 // Ignore dead phi's. 9049 if (PN.use_empty()) 9050 continue; 9051 9052 // Skip empty types 9053 if (PN.getType()->isEmptyTy()) 9054 continue; 9055 9056 unsigned Reg; 9057 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9058 9059 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9060 unsigned &RegOut = ConstantsOut[C]; 9061 if (RegOut == 0) { 9062 RegOut = FuncInfo.CreateRegs(C->getType()); 9063 CopyValueToVirtualRegister(C, RegOut); 9064 } 9065 Reg = RegOut; 9066 } else { 9067 DenseMap<const Value *, unsigned>::iterator I = 9068 FuncInfo.ValueMap.find(PHIOp); 9069 if (I != FuncInfo.ValueMap.end()) 9070 Reg = I->second; 9071 else { 9072 assert(isa<AllocaInst>(PHIOp) && 9073 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9074 "Didn't codegen value into a register!??"); 9075 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9076 CopyValueToVirtualRegister(PHIOp, Reg); 9077 } 9078 } 9079 9080 // Remember that this register needs to added to the machine PHI node as 9081 // the input for this MBB. 9082 SmallVector<EVT, 4> ValueVTs; 9083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9084 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9085 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9086 EVT VT = ValueVTs[vti]; 9087 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9088 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9089 FuncInfo.PHINodesToUpdate.push_back( 9090 std::make_pair(&*MBBI++, Reg + i)); 9091 Reg += NumRegisters; 9092 } 9093 } 9094 } 9095 9096 ConstantsOut.clear(); 9097 } 9098 9099 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9100 /// is 0. 9101 MachineBasicBlock * 9102 SelectionDAGBuilder::StackProtectorDescriptor:: 9103 AddSuccessorMBB(const BasicBlock *BB, 9104 MachineBasicBlock *ParentMBB, 9105 bool IsLikely, 9106 MachineBasicBlock *SuccMBB) { 9107 // If SuccBB has not been created yet, create it. 9108 if (!SuccMBB) { 9109 MachineFunction *MF = ParentMBB->getParent(); 9110 MachineFunction::iterator BBI(ParentMBB); 9111 SuccMBB = MF->CreateMachineBasicBlock(BB); 9112 MF->insert(++BBI, SuccMBB); 9113 } 9114 // Add it as a successor of ParentMBB. 9115 ParentMBB->addSuccessor( 9116 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9117 return SuccMBB; 9118 } 9119 9120 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9121 MachineFunction::iterator I(MBB); 9122 if (++I == FuncInfo.MF->end()) 9123 return nullptr; 9124 return &*I; 9125 } 9126 9127 /// During lowering new call nodes can be created (such as memset, etc.). 9128 /// Those will become new roots of the current DAG, but complications arise 9129 /// when they are tail calls. In such cases, the call lowering will update 9130 /// the root, but the builder still needs to know that a tail call has been 9131 /// lowered in order to avoid generating an additional return. 9132 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9133 // If the node is null, we do have a tail call. 9134 if (MaybeTC.getNode() != nullptr) 9135 DAG.setRoot(MaybeTC); 9136 else 9137 HasTailCall = true; 9138 } 9139 9140 uint64_t 9141 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9142 unsigned First, unsigned Last) const { 9143 assert(Last >= First); 9144 const APInt &LowCase = Clusters[First].Low->getValue(); 9145 const APInt &HighCase = Clusters[Last].High->getValue(); 9146 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9147 9148 // FIXME: A range of consecutive cases has 100% density, but only requires one 9149 // comparison to lower. We should discriminate against such consecutive ranges 9150 // in jump tables. 9151 9152 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9153 } 9154 9155 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9156 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9157 unsigned Last) const { 9158 assert(Last >= First); 9159 assert(TotalCases[Last] >= TotalCases[First]); 9160 uint64_t NumCases = 9161 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9162 return NumCases; 9163 } 9164 9165 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9166 unsigned First, unsigned Last, 9167 const SwitchInst *SI, 9168 MachineBasicBlock *DefaultMBB, 9169 CaseCluster &JTCluster) { 9170 assert(First <= Last); 9171 9172 auto Prob = BranchProbability::getZero(); 9173 unsigned NumCmps = 0; 9174 std::vector<MachineBasicBlock*> Table; 9175 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9176 9177 // Initialize probabilities in JTProbs. 9178 for (unsigned I = First; I <= Last; ++I) 9179 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9180 9181 for (unsigned I = First; I <= Last; ++I) { 9182 assert(Clusters[I].Kind == CC_Range); 9183 Prob += Clusters[I].Prob; 9184 const APInt &Low = Clusters[I].Low->getValue(); 9185 const APInt &High = Clusters[I].High->getValue(); 9186 NumCmps += (Low == High) ? 1 : 2; 9187 if (I != First) { 9188 // Fill the gap between this and the previous cluster. 9189 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9190 assert(PreviousHigh.slt(Low)); 9191 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9192 for (uint64_t J = 0; J < Gap; J++) 9193 Table.push_back(DefaultMBB); 9194 } 9195 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9196 for (uint64_t J = 0; J < ClusterSize; ++J) 9197 Table.push_back(Clusters[I].MBB); 9198 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9199 } 9200 9201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9202 unsigned NumDests = JTProbs.size(); 9203 if (TLI.isSuitableForBitTests( 9204 NumDests, NumCmps, Clusters[First].Low->getValue(), 9205 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9206 // Clusters[First..Last] should be lowered as bit tests instead. 9207 return false; 9208 } 9209 9210 // Create the MBB that will load from and jump through the table. 9211 // Note: We create it here, but it's not inserted into the function yet. 9212 MachineFunction *CurMF = FuncInfo.MF; 9213 MachineBasicBlock *JumpTableMBB = 9214 CurMF->CreateMachineBasicBlock(SI->getParent()); 9215 9216 // Add successors. Note: use table order for determinism. 9217 SmallPtrSet<MachineBasicBlock *, 8> Done; 9218 for (MachineBasicBlock *Succ : Table) { 9219 if (Done.count(Succ)) 9220 continue; 9221 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9222 Done.insert(Succ); 9223 } 9224 JumpTableMBB->normalizeSuccProbs(); 9225 9226 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9227 ->createJumpTableIndex(Table); 9228 9229 // Set up the jump table info. 9230 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9231 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9232 Clusters[Last].High->getValue(), SI->getCondition(), 9233 nullptr, false); 9234 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9235 9236 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9237 JTCases.size() - 1, Prob); 9238 return true; 9239 } 9240 9241 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9242 const SwitchInst *SI, 9243 MachineBasicBlock *DefaultMBB) { 9244 #ifndef NDEBUG 9245 // Clusters must be non-empty, sorted, and only contain Range clusters. 9246 assert(!Clusters.empty()); 9247 for (CaseCluster &C : Clusters) 9248 assert(C.Kind == CC_Range); 9249 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9250 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9251 #endif 9252 9253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9254 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9255 return; 9256 9257 const int64_t N = Clusters.size(); 9258 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9259 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9260 9261 if (N < 2 || N < MinJumpTableEntries) 9262 return; 9263 9264 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9265 SmallVector<unsigned, 8> TotalCases(N); 9266 for (unsigned i = 0; i < N; ++i) { 9267 const APInt &Hi = Clusters[i].High->getValue(); 9268 const APInt &Lo = Clusters[i].Low->getValue(); 9269 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9270 if (i != 0) 9271 TotalCases[i] += TotalCases[i - 1]; 9272 } 9273 9274 // Cheap case: the whole range may be suitable for jump table. 9275 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9276 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9277 assert(NumCases < UINT64_MAX / 100); 9278 assert(Range >= NumCases); 9279 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9280 CaseCluster JTCluster; 9281 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9282 Clusters[0] = JTCluster; 9283 Clusters.resize(1); 9284 return; 9285 } 9286 } 9287 9288 // The algorithm below is not suitable for -O0. 9289 if (TM.getOptLevel() == CodeGenOpt::None) 9290 return; 9291 9292 // Split Clusters into minimum number of dense partitions. The algorithm uses 9293 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9294 // for the Case Statement'" (1994), but builds the MinPartitions array in 9295 // reverse order to make it easier to reconstruct the partitions in ascending 9296 // order. In the choice between two optimal partitionings, it picks the one 9297 // which yields more jump tables. 9298 9299 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9300 SmallVector<unsigned, 8> MinPartitions(N); 9301 // LastElement[i] is the last element of the partition starting at i. 9302 SmallVector<unsigned, 8> LastElement(N); 9303 // PartitionsScore[i] is used to break ties when choosing between two 9304 // partitionings resulting in the same number of partitions. 9305 SmallVector<unsigned, 8> PartitionsScore(N); 9306 // For PartitionsScore, a small number of comparisons is considered as good as 9307 // a jump table and a single comparison is considered better than a jump 9308 // table. 9309 enum PartitionScores : unsigned { 9310 NoTable = 0, 9311 Table = 1, 9312 FewCases = 1, 9313 SingleCase = 2 9314 }; 9315 9316 // Base case: There is only one way to partition Clusters[N-1]. 9317 MinPartitions[N - 1] = 1; 9318 LastElement[N - 1] = N - 1; 9319 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9320 9321 // Note: loop indexes are signed to avoid underflow. 9322 for (int64_t i = N - 2; i >= 0; i--) { 9323 // Find optimal partitioning of Clusters[i..N-1]. 9324 // Baseline: Put Clusters[i] into a partition on its own. 9325 MinPartitions[i] = MinPartitions[i + 1] + 1; 9326 LastElement[i] = i; 9327 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9328 9329 // Search for a solution that results in fewer partitions. 9330 for (int64_t j = N - 1; j > i; j--) { 9331 // Try building a partition from Clusters[i..j]. 9332 uint64_t Range = getJumpTableRange(Clusters, i, j); 9333 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9334 assert(NumCases < UINT64_MAX / 100); 9335 assert(Range >= NumCases); 9336 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9337 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9338 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9339 int64_t NumEntries = j - i + 1; 9340 9341 if (NumEntries == 1) 9342 Score += PartitionScores::SingleCase; 9343 else if (NumEntries <= SmallNumberOfEntries) 9344 Score += PartitionScores::FewCases; 9345 else if (NumEntries >= MinJumpTableEntries) 9346 Score += PartitionScores::Table; 9347 9348 // If this leads to fewer partitions, or to the same number of 9349 // partitions with better score, it is a better partitioning. 9350 if (NumPartitions < MinPartitions[i] || 9351 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9352 MinPartitions[i] = NumPartitions; 9353 LastElement[i] = j; 9354 PartitionsScore[i] = Score; 9355 } 9356 } 9357 } 9358 } 9359 9360 // Iterate over the partitions, replacing some with jump tables in-place. 9361 unsigned DstIndex = 0; 9362 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9363 Last = LastElement[First]; 9364 assert(Last >= First); 9365 assert(DstIndex <= First); 9366 unsigned NumClusters = Last - First + 1; 9367 9368 CaseCluster JTCluster; 9369 if (NumClusters >= MinJumpTableEntries && 9370 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9371 Clusters[DstIndex++] = JTCluster; 9372 } else { 9373 for (unsigned I = First; I <= Last; ++I) 9374 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9375 } 9376 } 9377 Clusters.resize(DstIndex); 9378 } 9379 9380 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9381 unsigned First, unsigned Last, 9382 const SwitchInst *SI, 9383 CaseCluster &BTCluster) { 9384 assert(First <= Last); 9385 if (First == Last) 9386 return false; 9387 9388 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9389 unsigned NumCmps = 0; 9390 for (int64_t I = First; I <= Last; ++I) { 9391 assert(Clusters[I].Kind == CC_Range); 9392 Dests.set(Clusters[I].MBB->getNumber()); 9393 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9394 } 9395 unsigned NumDests = Dests.count(); 9396 9397 APInt Low = Clusters[First].Low->getValue(); 9398 APInt High = Clusters[Last].High->getValue(); 9399 assert(Low.slt(High)); 9400 9401 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9402 const DataLayout &DL = DAG.getDataLayout(); 9403 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9404 return false; 9405 9406 APInt LowBound; 9407 APInt CmpRange; 9408 9409 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9410 assert(TLI.rangeFitsInWord(Low, High, DL) && 9411 "Case range must fit in bit mask!"); 9412 9413 // Check if the clusters cover a contiguous range such that no value in the 9414 // range will jump to the default statement. 9415 bool ContiguousRange = true; 9416 for (int64_t I = First + 1; I <= Last; ++I) { 9417 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9418 ContiguousRange = false; 9419 break; 9420 } 9421 } 9422 9423 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9424 // Optimize the case where all the case values fit in a word without having 9425 // to subtract minValue. In this case, we can optimize away the subtraction. 9426 LowBound = APInt::getNullValue(Low.getBitWidth()); 9427 CmpRange = High; 9428 ContiguousRange = false; 9429 } else { 9430 LowBound = Low; 9431 CmpRange = High - Low; 9432 } 9433 9434 CaseBitsVector CBV; 9435 auto TotalProb = BranchProbability::getZero(); 9436 for (unsigned i = First; i <= Last; ++i) { 9437 // Find the CaseBits for this destination. 9438 unsigned j; 9439 for (j = 0; j < CBV.size(); ++j) 9440 if (CBV[j].BB == Clusters[i].MBB) 9441 break; 9442 if (j == CBV.size()) 9443 CBV.push_back( 9444 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9445 CaseBits *CB = &CBV[j]; 9446 9447 // Update Mask, Bits and ExtraProb. 9448 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9449 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9450 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9451 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9452 CB->Bits += Hi - Lo + 1; 9453 CB->ExtraProb += Clusters[i].Prob; 9454 TotalProb += Clusters[i].Prob; 9455 } 9456 9457 BitTestInfo BTI; 9458 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9459 // Sort by probability first, number of bits second, bit mask third. 9460 if (a.ExtraProb != b.ExtraProb) 9461 return a.ExtraProb > b.ExtraProb; 9462 if (a.Bits != b.Bits) 9463 return a.Bits > b.Bits; 9464 return a.Mask < b.Mask; 9465 }); 9466 9467 for (auto &CB : CBV) { 9468 MachineBasicBlock *BitTestBB = 9469 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9470 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9471 } 9472 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9473 SI->getCondition(), -1U, MVT::Other, false, 9474 ContiguousRange, nullptr, nullptr, std::move(BTI), 9475 TotalProb); 9476 9477 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9478 BitTestCases.size() - 1, TotalProb); 9479 return true; 9480 } 9481 9482 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9483 const SwitchInst *SI) { 9484 // Partition Clusters into as few subsets as possible, where each subset has a 9485 // range that fits in a machine word and has <= 3 unique destinations. 9486 9487 #ifndef NDEBUG 9488 // Clusters must be sorted and contain Range or JumpTable clusters. 9489 assert(!Clusters.empty()); 9490 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9491 for (const CaseCluster &C : Clusters) 9492 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9493 for (unsigned i = 1; i < Clusters.size(); ++i) 9494 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9495 #endif 9496 9497 // The algorithm below is not suitable for -O0. 9498 if (TM.getOptLevel() == CodeGenOpt::None) 9499 return; 9500 9501 // If target does not have legal shift left, do not emit bit tests at all. 9502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9503 const DataLayout &DL = DAG.getDataLayout(); 9504 9505 EVT PTy = TLI.getPointerTy(DL); 9506 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9507 return; 9508 9509 int BitWidth = PTy.getSizeInBits(); 9510 const int64_t N = Clusters.size(); 9511 9512 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9513 SmallVector<unsigned, 8> MinPartitions(N); 9514 // LastElement[i] is the last element of the partition starting at i. 9515 SmallVector<unsigned, 8> LastElement(N); 9516 9517 // FIXME: This might not be the best algorithm for finding bit test clusters. 9518 9519 // Base case: There is only one way to partition Clusters[N-1]. 9520 MinPartitions[N - 1] = 1; 9521 LastElement[N - 1] = N - 1; 9522 9523 // Note: loop indexes are signed to avoid underflow. 9524 for (int64_t i = N - 2; i >= 0; --i) { 9525 // Find optimal partitioning of Clusters[i..N-1]. 9526 // Baseline: Put Clusters[i] into a partition on its own. 9527 MinPartitions[i] = MinPartitions[i + 1] + 1; 9528 LastElement[i] = i; 9529 9530 // Search for a solution that results in fewer partitions. 9531 // Note: the search is limited by BitWidth, reducing time complexity. 9532 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9533 // Try building a partition from Clusters[i..j]. 9534 9535 // Check the range. 9536 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9537 Clusters[j].High->getValue(), DL)) 9538 continue; 9539 9540 // Check nbr of destinations and cluster types. 9541 // FIXME: This works, but doesn't seem very efficient. 9542 bool RangesOnly = true; 9543 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9544 for (int64_t k = i; k <= j; k++) { 9545 if (Clusters[k].Kind != CC_Range) { 9546 RangesOnly = false; 9547 break; 9548 } 9549 Dests.set(Clusters[k].MBB->getNumber()); 9550 } 9551 if (!RangesOnly || Dests.count() > 3) 9552 break; 9553 9554 // Check if it's a better partition. 9555 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9556 if (NumPartitions < MinPartitions[i]) { 9557 // Found a better partition. 9558 MinPartitions[i] = NumPartitions; 9559 LastElement[i] = j; 9560 } 9561 } 9562 } 9563 9564 // Iterate over the partitions, replacing with bit-test clusters in-place. 9565 unsigned DstIndex = 0; 9566 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9567 Last = LastElement[First]; 9568 assert(First <= Last); 9569 assert(DstIndex <= First); 9570 9571 CaseCluster BitTestCluster; 9572 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9573 Clusters[DstIndex++] = BitTestCluster; 9574 } else { 9575 size_t NumClusters = Last - First + 1; 9576 std::memmove(&Clusters[DstIndex], &Clusters[First], 9577 sizeof(Clusters[0]) * NumClusters); 9578 DstIndex += NumClusters; 9579 } 9580 } 9581 Clusters.resize(DstIndex); 9582 } 9583 9584 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9585 MachineBasicBlock *SwitchMBB, 9586 MachineBasicBlock *DefaultMBB) { 9587 MachineFunction *CurMF = FuncInfo.MF; 9588 MachineBasicBlock *NextMBB = nullptr; 9589 MachineFunction::iterator BBI(W.MBB); 9590 if (++BBI != FuncInfo.MF->end()) 9591 NextMBB = &*BBI; 9592 9593 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9594 9595 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9596 9597 if (Size == 2 && W.MBB == SwitchMBB) { 9598 // If any two of the cases has the same destination, and if one value 9599 // is the same as the other, but has one bit unset that the other has set, 9600 // use bit manipulation to do two compares at once. For example: 9601 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9602 // TODO: This could be extended to merge any 2 cases in switches with 3 9603 // cases. 9604 // TODO: Handle cases where W.CaseBB != SwitchBB. 9605 CaseCluster &Small = *W.FirstCluster; 9606 CaseCluster &Big = *W.LastCluster; 9607 9608 if (Small.Low == Small.High && Big.Low == Big.High && 9609 Small.MBB == Big.MBB) { 9610 const APInt &SmallValue = Small.Low->getValue(); 9611 const APInt &BigValue = Big.Low->getValue(); 9612 9613 // Check that there is only one bit different. 9614 APInt CommonBit = BigValue ^ SmallValue; 9615 if (CommonBit.isPowerOf2()) { 9616 SDValue CondLHS = getValue(Cond); 9617 EVT VT = CondLHS.getValueType(); 9618 SDLoc DL = getCurSDLoc(); 9619 9620 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9621 DAG.getConstant(CommonBit, DL, VT)); 9622 SDValue Cond = DAG.getSetCC( 9623 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9624 ISD::SETEQ); 9625 9626 // Update successor info. 9627 // Both Small and Big will jump to Small.BB, so we sum up the 9628 // probabilities. 9629 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9630 if (BPI) 9631 addSuccessorWithProb( 9632 SwitchMBB, DefaultMBB, 9633 // The default destination is the first successor in IR. 9634 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9635 else 9636 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9637 9638 // Insert the true branch. 9639 SDValue BrCond = 9640 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9641 DAG.getBasicBlock(Small.MBB)); 9642 // Insert the false branch. 9643 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9644 DAG.getBasicBlock(DefaultMBB)); 9645 9646 DAG.setRoot(BrCond); 9647 return; 9648 } 9649 } 9650 } 9651 9652 if (TM.getOptLevel() != CodeGenOpt::None) { 9653 // Here, we order cases by probability so the most likely case will be 9654 // checked first. However, two clusters can have the same probability in 9655 // which case their relative ordering is non-deterministic. So we use Low 9656 // as a tie-breaker as clusters are guaranteed to never overlap. 9657 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9658 [](const CaseCluster &a, const CaseCluster &b) { 9659 return a.Prob != b.Prob ? 9660 a.Prob > b.Prob : 9661 a.Low->getValue().slt(b.Low->getValue()); 9662 }); 9663 9664 // Rearrange the case blocks so that the last one falls through if possible 9665 // without changing the order of probabilities. 9666 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9667 --I; 9668 if (I->Prob > W.LastCluster->Prob) 9669 break; 9670 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9671 std::swap(*I, *W.LastCluster); 9672 break; 9673 } 9674 } 9675 } 9676 9677 // Compute total probability. 9678 BranchProbability DefaultProb = W.DefaultProb; 9679 BranchProbability UnhandledProbs = DefaultProb; 9680 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9681 UnhandledProbs += I->Prob; 9682 9683 MachineBasicBlock *CurMBB = W.MBB; 9684 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9685 MachineBasicBlock *Fallthrough; 9686 if (I == W.LastCluster) { 9687 // For the last cluster, fall through to the default destination. 9688 Fallthrough = DefaultMBB; 9689 } else { 9690 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9691 CurMF->insert(BBI, Fallthrough); 9692 // Put Cond in a virtual register to make it available from the new blocks. 9693 ExportFromCurrentBlock(Cond); 9694 } 9695 UnhandledProbs -= I->Prob; 9696 9697 switch (I->Kind) { 9698 case CC_JumpTable: { 9699 // FIXME: Optimize away range check based on pivot comparisons. 9700 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9701 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9702 9703 // The jump block hasn't been inserted yet; insert it here. 9704 MachineBasicBlock *JumpMBB = JT->MBB; 9705 CurMF->insert(BBI, JumpMBB); 9706 9707 auto JumpProb = I->Prob; 9708 auto FallthroughProb = UnhandledProbs; 9709 9710 // If the default statement is a target of the jump table, we evenly 9711 // distribute the default probability to successors of CurMBB. Also 9712 // update the probability on the edge from JumpMBB to Fallthrough. 9713 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9714 SE = JumpMBB->succ_end(); 9715 SI != SE; ++SI) { 9716 if (*SI == DefaultMBB) { 9717 JumpProb += DefaultProb / 2; 9718 FallthroughProb -= DefaultProb / 2; 9719 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9720 JumpMBB->normalizeSuccProbs(); 9721 break; 9722 } 9723 } 9724 9725 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9726 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9727 CurMBB->normalizeSuccProbs(); 9728 9729 // The jump table header will be inserted in our current block, do the 9730 // range check, and fall through to our fallthrough block. 9731 JTH->HeaderBB = CurMBB; 9732 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9733 9734 // If we're in the right place, emit the jump table header right now. 9735 if (CurMBB == SwitchMBB) { 9736 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9737 JTH->Emitted = true; 9738 } 9739 break; 9740 } 9741 case CC_BitTests: { 9742 // FIXME: Optimize away range check based on pivot comparisons. 9743 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9744 9745 // The bit test blocks haven't been inserted yet; insert them here. 9746 for (BitTestCase &BTC : BTB->Cases) 9747 CurMF->insert(BBI, BTC.ThisBB); 9748 9749 // Fill in fields of the BitTestBlock. 9750 BTB->Parent = CurMBB; 9751 BTB->Default = Fallthrough; 9752 9753 BTB->DefaultProb = UnhandledProbs; 9754 // If the cases in bit test don't form a contiguous range, we evenly 9755 // distribute the probability on the edge to Fallthrough to two 9756 // successors of CurMBB. 9757 if (!BTB->ContiguousRange) { 9758 BTB->Prob += DefaultProb / 2; 9759 BTB->DefaultProb -= DefaultProb / 2; 9760 } 9761 9762 // If we're in the right place, emit the bit test header right now. 9763 if (CurMBB == SwitchMBB) { 9764 visitBitTestHeader(*BTB, SwitchMBB); 9765 BTB->Emitted = true; 9766 } 9767 break; 9768 } 9769 case CC_Range: { 9770 const Value *RHS, *LHS, *MHS; 9771 ISD::CondCode CC; 9772 if (I->Low == I->High) { 9773 // Check Cond == I->Low. 9774 CC = ISD::SETEQ; 9775 LHS = Cond; 9776 RHS=I->Low; 9777 MHS = nullptr; 9778 } else { 9779 // Check I->Low <= Cond <= I->High. 9780 CC = ISD::SETLE; 9781 LHS = I->Low; 9782 MHS = Cond; 9783 RHS = I->High; 9784 } 9785 9786 // The false probability is the sum of all unhandled cases. 9787 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9788 getCurSDLoc(), I->Prob, UnhandledProbs); 9789 9790 if (CurMBB == SwitchMBB) 9791 visitSwitchCase(CB, SwitchMBB); 9792 else 9793 SwitchCases.push_back(CB); 9794 9795 break; 9796 } 9797 } 9798 CurMBB = Fallthrough; 9799 } 9800 } 9801 9802 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9803 CaseClusterIt First, 9804 CaseClusterIt Last) { 9805 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9806 if (X.Prob != CC.Prob) 9807 return X.Prob > CC.Prob; 9808 9809 // Ties are broken by comparing the case value. 9810 return X.Low->getValue().slt(CC.Low->getValue()); 9811 }); 9812 } 9813 9814 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9815 const SwitchWorkListItem &W, 9816 Value *Cond, 9817 MachineBasicBlock *SwitchMBB) { 9818 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9819 "Clusters not sorted?"); 9820 9821 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9822 9823 // Balance the tree based on branch probabilities to create a near-optimal (in 9824 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9825 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9826 CaseClusterIt LastLeft = W.FirstCluster; 9827 CaseClusterIt FirstRight = W.LastCluster; 9828 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9829 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9830 9831 // Move LastLeft and FirstRight towards each other from opposite directions to 9832 // find a partitioning of the clusters which balances the probability on both 9833 // sides. If LeftProb and RightProb are equal, alternate which side is 9834 // taken to ensure 0-probability nodes are distributed evenly. 9835 unsigned I = 0; 9836 while (LastLeft + 1 < FirstRight) { 9837 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9838 LeftProb += (++LastLeft)->Prob; 9839 else 9840 RightProb += (--FirstRight)->Prob; 9841 I++; 9842 } 9843 9844 while (true) { 9845 // Our binary search tree differs from a typical BST in that ours can have up 9846 // to three values in each leaf. The pivot selection above doesn't take that 9847 // into account, which means the tree might require more nodes and be less 9848 // efficient. We compensate for this here. 9849 9850 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9851 unsigned NumRight = W.LastCluster - FirstRight + 1; 9852 9853 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9854 // If one side has less than 3 clusters, and the other has more than 3, 9855 // consider taking a cluster from the other side. 9856 9857 if (NumLeft < NumRight) { 9858 // Consider moving the first cluster on the right to the left side. 9859 CaseCluster &CC = *FirstRight; 9860 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9861 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9862 if (LeftSideRank <= RightSideRank) { 9863 // Moving the cluster to the left does not demote it. 9864 ++LastLeft; 9865 ++FirstRight; 9866 continue; 9867 } 9868 } else { 9869 assert(NumRight < NumLeft); 9870 // Consider moving the last element on the left to the right side. 9871 CaseCluster &CC = *LastLeft; 9872 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9873 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9874 if (RightSideRank <= LeftSideRank) { 9875 // Moving the cluster to the right does not demot it. 9876 --LastLeft; 9877 --FirstRight; 9878 continue; 9879 } 9880 } 9881 } 9882 break; 9883 } 9884 9885 assert(LastLeft + 1 == FirstRight); 9886 assert(LastLeft >= W.FirstCluster); 9887 assert(FirstRight <= W.LastCluster); 9888 9889 // Use the first element on the right as pivot since we will make less-than 9890 // comparisons against it. 9891 CaseClusterIt PivotCluster = FirstRight; 9892 assert(PivotCluster > W.FirstCluster); 9893 assert(PivotCluster <= W.LastCluster); 9894 9895 CaseClusterIt FirstLeft = W.FirstCluster; 9896 CaseClusterIt LastRight = W.LastCluster; 9897 9898 const ConstantInt *Pivot = PivotCluster->Low; 9899 9900 // New blocks will be inserted immediately after the current one. 9901 MachineFunction::iterator BBI(W.MBB); 9902 ++BBI; 9903 9904 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9905 // we can branch to its destination directly if it's squeezed exactly in 9906 // between the known lower bound and Pivot - 1. 9907 MachineBasicBlock *LeftMBB; 9908 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9909 FirstLeft->Low == W.GE && 9910 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9911 LeftMBB = FirstLeft->MBB; 9912 } else { 9913 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9914 FuncInfo.MF->insert(BBI, LeftMBB); 9915 WorkList.push_back( 9916 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9917 // Put Cond in a virtual register to make it available from the new blocks. 9918 ExportFromCurrentBlock(Cond); 9919 } 9920 9921 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9922 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9923 // directly if RHS.High equals the current upper bound. 9924 MachineBasicBlock *RightMBB; 9925 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9926 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9927 RightMBB = FirstRight->MBB; 9928 } else { 9929 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9930 FuncInfo.MF->insert(BBI, RightMBB); 9931 WorkList.push_back( 9932 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9933 // Put Cond in a virtual register to make it available from the new blocks. 9934 ExportFromCurrentBlock(Cond); 9935 } 9936 9937 // Create the CaseBlock record that will be used to lower the branch. 9938 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9939 getCurSDLoc(), LeftProb, RightProb); 9940 9941 if (W.MBB == SwitchMBB) 9942 visitSwitchCase(CB, SwitchMBB); 9943 else 9944 SwitchCases.push_back(CB); 9945 } 9946 9947 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 9948 // from the swith statement. 9949 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 9950 BranchProbability PeeledCaseProb) { 9951 if (PeeledCaseProb == BranchProbability::getOne()) 9952 return BranchProbability::getZero(); 9953 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 9954 9955 uint32_t Numerator = CaseProb.getNumerator(); 9956 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 9957 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 9958 } 9959 9960 // Try to peel the top probability case if it exceeds the threshold. 9961 // Return current MachineBasicBlock for the switch statement if the peeling 9962 // does not occur. 9963 // If the peeling is performed, return the newly created MachineBasicBlock 9964 // for the peeled switch statement. Also update Clusters to remove the peeled 9965 // case. PeeledCaseProb is the BranchProbability for the peeled case. 9966 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 9967 const SwitchInst &SI, CaseClusterVector &Clusters, 9968 BranchProbability &PeeledCaseProb) { 9969 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9970 // Don't perform if there is only one cluster or optimizing for size. 9971 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 9972 TM.getOptLevel() == CodeGenOpt::None || 9973 SwitchMBB->getParent()->getFunction().optForMinSize()) 9974 return SwitchMBB; 9975 9976 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 9977 unsigned PeeledCaseIndex = 0; 9978 bool SwitchPeeled = false; 9979 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 9980 CaseCluster &CC = Clusters[Index]; 9981 if (CC.Prob < TopCaseProb) 9982 continue; 9983 TopCaseProb = CC.Prob; 9984 PeeledCaseIndex = Index; 9985 SwitchPeeled = true; 9986 } 9987 if (!SwitchPeeled) 9988 return SwitchMBB; 9989 9990 DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb 9991 << "\n"); 9992 9993 // Record the MBB for the peeled switch statement. 9994 MachineFunction::iterator BBI(SwitchMBB); 9995 ++BBI; 9996 MachineBasicBlock *PeeledSwitchMBB = 9997 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 9998 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 9999 10000 ExportFromCurrentBlock(SI.getCondition()); 10001 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10002 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10003 nullptr, nullptr, TopCaseProb.getCompl()}; 10004 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10005 10006 Clusters.erase(PeeledCaseIt); 10007 for (CaseCluster &CC : Clusters) { 10008 DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: " 10009 << CC.Prob << "\n"); 10010 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10011 DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10012 } 10013 PeeledCaseProb = TopCaseProb; 10014 return PeeledSwitchMBB; 10015 } 10016 10017 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10018 // Extract cases from the switch. 10019 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10020 CaseClusterVector Clusters; 10021 Clusters.reserve(SI.getNumCases()); 10022 for (auto I : SI.cases()) { 10023 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10024 const ConstantInt *CaseVal = I.getCaseValue(); 10025 BranchProbability Prob = 10026 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10027 : BranchProbability(1, SI.getNumCases() + 1); 10028 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10029 } 10030 10031 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10032 10033 // Cluster adjacent cases with the same destination. We do this at all 10034 // optimization levels because it's cheap to do and will make codegen faster 10035 // if there are many clusters. 10036 sortAndRangeify(Clusters); 10037 10038 if (TM.getOptLevel() != CodeGenOpt::None) { 10039 // Replace an unreachable default with the most popular destination. 10040 // FIXME: Exploit unreachable default more aggressively. 10041 bool UnreachableDefault = 10042 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10043 if (UnreachableDefault && !Clusters.empty()) { 10044 DenseMap<const BasicBlock *, unsigned> Popularity; 10045 unsigned MaxPop = 0; 10046 const BasicBlock *MaxBB = nullptr; 10047 for (auto I : SI.cases()) { 10048 const BasicBlock *BB = I.getCaseSuccessor(); 10049 if (++Popularity[BB] > MaxPop) { 10050 MaxPop = Popularity[BB]; 10051 MaxBB = BB; 10052 } 10053 } 10054 // Set new default. 10055 assert(MaxPop > 0 && MaxBB); 10056 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10057 10058 // Remove cases that were pointing to the destination that is now the 10059 // default. 10060 CaseClusterVector New; 10061 New.reserve(Clusters.size()); 10062 for (CaseCluster &CC : Clusters) { 10063 if (CC.MBB != DefaultMBB) 10064 New.push_back(CC); 10065 } 10066 Clusters = std::move(New); 10067 } 10068 } 10069 10070 // The branch probablity of the peeled case. 10071 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10072 MachineBasicBlock *PeeledSwitchMBB = 10073 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10074 10075 // If there is only the default destination, jump there directly. 10076 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10077 if (Clusters.empty()) { 10078 assert(PeeledSwitchMBB == SwitchMBB); 10079 SwitchMBB->addSuccessor(DefaultMBB); 10080 if (DefaultMBB != NextBlock(SwitchMBB)) { 10081 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10082 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10083 } 10084 return; 10085 } 10086 10087 findJumpTables(Clusters, &SI, DefaultMBB); 10088 findBitTestClusters(Clusters, &SI); 10089 10090 DEBUG({ 10091 dbgs() << "Case clusters: "; 10092 for (const CaseCluster &C : Clusters) { 10093 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 10094 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 10095 10096 C.Low->getValue().print(dbgs(), true); 10097 if (C.Low != C.High) { 10098 dbgs() << '-'; 10099 C.High->getValue().print(dbgs(), true); 10100 } 10101 dbgs() << ' '; 10102 } 10103 dbgs() << '\n'; 10104 }); 10105 10106 assert(!Clusters.empty()); 10107 SwitchWorkList WorkList; 10108 CaseClusterIt First = Clusters.begin(); 10109 CaseClusterIt Last = Clusters.end() - 1; 10110 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10111 // Scale the branchprobability for DefaultMBB if the peel occurs and 10112 // DefaultMBB is not replaced. 10113 if (PeeledCaseProb != BranchProbability::getZero() && 10114 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10115 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10116 WorkList.push_back( 10117 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10118 10119 while (!WorkList.empty()) { 10120 SwitchWorkListItem W = WorkList.back(); 10121 WorkList.pop_back(); 10122 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10123 10124 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10125 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10126 // For optimized builds, lower large range as a balanced binary tree. 10127 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10128 continue; 10129 } 10130 10131 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10132 } 10133 } 10134