1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode( 442 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 443 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 444 } 445 446 // Vector/Vector bitcast. 447 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 448 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 449 450 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 451 "Cannot handle this kind of promotion"); 452 // Promoted vector extract 453 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 454 455 } 456 457 // Trivial bitcast if the types are the same size and the destination 458 // vector type is legal. 459 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 460 TLI.isTypeLegal(ValueVT)) 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 463 if (ValueVT.getVectorNumElements() != 1) { 464 // Certain ABIs require that vectors are passed as integers. For vectors 465 // are the same size, this is an obvious bitcast. 466 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 467 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 468 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 469 // Bitcast Val back the original type and extract the corresponding 470 // vector we want. 471 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 472 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 473 ValueVT.getVectorElementType(), Elts); 474 Val = DAG.getBitcast(WiderVecType, Val); 475 return DAG.getNode( 476 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 488 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 Optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 503 SDValue *Parts, unsigned NumParts, MVT PartVT, 504 const Value *V, 505 Optional<CallingConv::ID> CallConv = None, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 EVT ValueVT = Val.getValueType(); 508 509 // Handle the vector case separately. 510 if (ValueVT.isVector()) 511 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 512 CallConv); 513 514 unsigned PartBits = PartVT.getSizeInBits(); 515 unsigned OrigNumParts = NumParts; 516 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 517 "Copying to an illegal type!"); 518 519 if (NumParts == 0) 520 return; 521 522 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 523 EVT PartEVT = PartVT; 524 if (PartEVT == ValueVT) { 525 assert(NumParts == 1 && "No-op copy with multiple parts!"); 526 Parts[0] = Val; 527 return; 528 } 529 530 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 531 // If the parts cover more bits than the value has, promote the value. 532 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 533 assert(NumParts == 1 && "Do not know what to promote to!"); 534 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 535 } else { 536 if (ValueVT.isFloatingPoint()) { 537 // FP values need to be bitcast, then extended if they are being put 538 // into a larger container. 539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 540 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 541 } 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 } else if (PartBits == ValueVT.getSizeInBits()) { 551 // Different types of the same size. 552 assert(NumParts == 1 && PartEVT != ValueVT); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 555 // If the parts cover less bits than value has, truncate the value. 556 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 557 ValueVT.isInteger() && 558 "Unknown mismatch!"); 559 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 560 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 561 if (PartVT == MVT::x86mmx) 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } 564 565 // The value may have changed - recompute ValueVT. 566 ValueVT = Val.getValueType(); 567 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 568 "Failed to tile the value with PartVT!"); 569 570 if (NumParts == 1) { 571 if (PartEVT != ValueVT) { 572 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 573 "scalar-to-vector conversion failed"); 574 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 575 } 576 577 Parts[0] = Val; 578 return; 579 } 580 581 // Expand the value into multiple parts. 582 if (NumParts & (NumParts - 1)) { 583 // The number of parts is not a power of 2. Split off and copy the tail. 584 assert(PartVT.isInteger() && ValueVT.isInteger() && 585 "Do not know what to expand to!"); 586 unsigned RoundParts = 1 << Log2_32(NumParts); 587 unsigned RoundBits = RoundParts * PartBits; 588 unsigned OddParts = NumParts - RoundParts; 589 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 590 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 591 592 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 593 CallConv); 594 595 if (DAG.getDataLayout().isBigEndian()) 596 // The odd parts were reversed by getCopyToParts - unreverse them. 597 std::reverse(Parts + RoundParts, Parts + NumParts); 598 599 NumParts = RoundParts; 600 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 601 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 602 } 603 604 // The number of parts is a power of 2. Repeatedly bisect the value using 605 // EXTRACT_ELEMENT. 606 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 607 EVT::getIntegerVT(*DAG.getContext(), 608 ValueVT.getSizeInBits()), 609 Val); 610 611 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 612 for (unsigned i = 0; i < NumParts; i += StepSize) { 613 unsigned ThisBits = StepSize * PartBits / 2; 614 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 615 SDValue &Part0 = Parts[i]; 616 SDValue &Part1 = Parts[i+StepSize/2]; 617 618 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 619 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 620 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 621 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 622 623 if (ThisBits == PartBits && ThisVT != PartVT) { 624 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 625 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 626 } 627 } 628 } 629 630 if (DAG.getDataLayout().isBigEndian()) 631 std::reverse(Parts, Parts + OrigNumParts); 632 } 633 634 static SDValue widenVectorToPartType(SelectionDAG &DAG, 635 SDValue Val, const SDLoc &DL, EVT PartVT) { 636 if (!PartVT.isVector()) 637 return SDValue(); 638 639 EVT ValueVT = Val.getValueType(); 640 unsigned PartNumElts = PartVT.getVectorNumElements(); 641 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 642 if (PartNumElts > ValueNumElts && 643 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 644 EVT ElementVT = PartVT.getVectorElementType(); 645 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 646 // undef elements. 647 SmallVector<SDValue, 16> Ops; 648 DAG.ExtractVectorElements(Val, Ops); 649 SDValue EltUndef = DAG.getUNDEF(ElementVT); 650 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 651 Ops.push_back(EltUndef); 652 653 // FIXME: Use CONCAT for 2x -> 4x. 654 return DAG.getBuildVector(PartVT, DL, Ops); 655 } 656 657 return SDValue(); 658 } 659 660 /// getCopyToPartsVector - Create a series of nodes that contain the specified 661 /// value split into legal parts. 662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 663 SDValue Val, SDValue *Parts, unsigned NumParts, 664 MVT PartVT, const Value *V, 665 Optional<CallingConv::ID> CallConv) { 666 EVT ValueVT = Val.getValueType(); 667 assert(ValueVT.isVector() && "Not a vector"); 668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 669 const bool IsABIRegCopy = CallConv.hasValue(); 670 671 if (NumParts == 1) { 672 EVT PartEVT = PartVT; 673 if (PartEVT == ValueVT) { 674 // Nothing to do. 675 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 676 // Bitconvert vector->vector case. 677 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 678 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 679 Val = Widened; 680 } else if (PartVT.isVector() && 681 PartEVT.getVectorElementType().bitsGE( 682 ValueVT.getVectorElementType()) && 683 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 684 685 // Promoted vector extract 686 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorNumElements() == 1) { 689 Val = DAG.getNode( 690 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 691 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 692 } else { 693 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = 696 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 697 Val = DAG.getBitcast(IntermediateType, Val); 698 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 699 } 700 } 701 702 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 703 Parts[0] = Val; 704 return; 705 } 706 707 // Handle a multi-element vector. 708 EVT IntermediateVT; 709 MVT RegisterVT; 710 unsigned NumIntermediates; 711 unsigned NumRegs; 712 if (IsABIRegCopy) { 713 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 714 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } else { 717 NumRegs = 718 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } 721 722 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 723 NumParts = NumRegs; // Silence a compiler warning. 724 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 725 726 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 727 IntermediateVT.getVectorNumElements() : 1; 728 729 // Convert the vector to the appropriate type if necessary. 730 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 731 732 EVT BuiltVectorTy = EVT::getVectorVT( 733 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 734 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 735 if (ValueVT != BuiltVectorTy) { 736 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 737 Val = Widened; 738 739 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 740 } 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 747 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 748 } else { 749 Ops[i] = DAG.getNode( 750 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 751 DAG.getConstant(i, DL, IdxVT)); 752 } 753 } 754 755 // Split the intermediate operands into legal parts. 756 if (NumParts == NumIntermediates) { 757 // If the register was not expanded, promote or copy the value, 758 // as appropriate. 759 for (unsigned i = 0; i != NumParts; ++i) 760 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 761 } else if (NumParts > 0) { 762 // If the intermediate type was expanded, split each the value into 763 // legal parts. 764 assert(NumIntermediates != 0 && "division by zero"); 765 assert(NumParts % NumIntermediates == 0 && 766 "Must expand into a divisible number of parts!"); 767 unsigned Factor = NumParts / NumIntermediates; 768 for (unsigned i = 0; i != NumIntermediates; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 770 CallConv); 771 } 772 } 773 774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 775 EVT valuevt, Optional<CallingConv::ID> CC) 776 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 777 RegCount(1, regs.size()), CallConv(CC) {} 778 779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 780 const DataLayout &DL, unsigned Reg, Type *Ty, 781 Optional<CallingConv::ID> CC) { 782 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 783 784 CallConv = CC; 785 786 for (EVT ValueVT : ValueVTs) { 787 unsigned NumRegs = 788 isABIMangled() 789 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getNumRegisters(Context, ValueVT); 791 MVT RegisterVT = 792 isABIMangled() 793 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getRegisterType(Context, ValueVT); 795 for (unsigned i = 0; i != NumRegs; ++i) 796 Regs.push_back(Reg + i); 797 RegVTs.push_back(RegisterVT); 798 RegCount.push_back(NumRegs); 799 Reg += NumRegs; 800 } 801 } 802 803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 804 FunctionLoweringInfo &FuncInfo, 805 const SDLoc &dl, SDValue &Chain, 806 SDValue *Flag, const Value *V) const { 807 // A Value with type {} or [0 x %t] needs no registers. 808 if (ValueVTs.empty()) 809 return SDValue(); 810 811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 812 813 // Assemble the legal parts into the final values. 814 SmallVector<SDValue, 4> Values(ValueVTs.size()); 815 SmallVector<SDValue, 8> Parts; 816 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 // Copy the legal parts from the registers. 818 EVT ValueVT = ValueVTs[Value]; 819 unsigned NumRegs = RegCount[Value]; 820 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 821 *DAG.getContext(), 822 CallConv.getValue(), RegVTs[Value]) 823 : RegVTs[Value]; 824 825 Parts.resize(NumRegs); 826 for (unsigned i = 0; i != NumRegs; ++i) { 827 SDValue P; 828 if (!Flag) { 829 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 830 } else { 831 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 832 *Flag = P.getValue(2); 833 } 834 835 Chain = P.getValue(1); 836 Parts[i] = P; 837 838 // If the source register was virtual and if we know something about it, 839 // add an assert node. 840 if (!Register::isVirtualRegister(Regs[Part + i]) || 841 !RegisterVT.isInteger()) 842 continue; 843 844 const FunctionLoweringInfo::LiveOutInfo *LOI = 845 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 846 if (!LOI) 847 continue; 848 849 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 850 unsigned NumSignBits = LOI->NumSignBits; 851 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 852 853 if (NumZeroBits == RegSize) { 854 // The current value is a zero. 855 // Explicitly express that as it would be easier for 856 // optimizations to kick in. 857 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 858 continue; 859 } 860 861 // FIXME: We capture more information than the dag can represent. For 862 // now, just use the tightest assertzext/assertsext possible. 863 bool isSExt; 864 EVT FromVT(MVT::Other); 865 if (NumZeroBits) { 866 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 867 isSExt = false; 868 } else if (NumSignBits > 1) { 869 FromVT = 870 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 871 isSExt = true; 872 } else { 873 continue; 874 } 875 // Add an assertion node. 876 assert(FromVT != MVT::Other); 877 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 878 RegisterVT, P, DAG.getValueType(FromVT)); 879 } 880 881 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 882 RegisterVT, ValueVT, V, CallConv); 883 Part += NumRegs; 884 Parts.clear(); 885 } 886 887 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 888 } 889 890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 891 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 892 const Value *V, 893 ISD::NodeType PreferredExtendType) const { 894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 895 ISD::NodeType ExtendKind = PreferredExtendType; 896 897 // Get the list of the values's legal parts. 898 unsigned NumRegs = Regs.size(); 899 SmallVector<SDValue, 8> Parts(NumRegs); 900 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 901 unsigned NumParts = RegCount[Value]; 902 903 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 904 *DAG.getContext(), 905 CallConv.getValue(), RegVTs[Value]) 906 : RegVTs[Value]; 907 908 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 909 ExtendKind = ISD::ZERO_EXTEND; 910 911 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 912 NumParts, RegisterVT, V, CallConv, ExtendKind); 913 Part += NumParts; 914 } 915 916 // Copy the parts into the registers. 917 SmallVector<SDValue, 8> Chains(NumRegs); 918 for (unsigned i = 0; i != NumRegs; ++i) { 919 SDValue Part; 920 if (!Flag) { 921 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 922 } else { 923 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 924 *Flag = Part.getValue(1); 925 } 926 927 Chains[i] = Part.getValue(0); 928 } 929 930 if (NumRegs == 1 || Flag) 931 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 932 // flagged to it. That is the CopyToReg nodes and the user are considered 933 // a single scheduling unit. If we create a TokenFactor and return it as 934 // chain, then the TokenFactor is both a predecessor (operand) of the 935 // user as well as a successor (the TF operands are flagged to the user). 936 // c1, f1 = CopyToReg 937 // c2, f2 = CopyToReg 938 // c3 = TokenFactor c1, c2 939 // ... 940 // = op c3, ..., f2 941 Chain = Chains[NumRegs-1]; 942 else 943 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 944 } 945 946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 947 unsigned MatchingIdx, const SDLoc &dl, 948 SelectionDAG &DAG, 949 std::vector<SDValue> &Ops) const { 950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 951 952 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 953 if (HasMatching) 954 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 955 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 956 // Put the register class of the virtual registers in the flag word. That 957 // way, later passes can recompute register class constraints for inline 958 // assembly as well as normal instructions. 959 // Don't do this for tied operands that can use the regclass information 960 // from the def. 961 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 962 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 963 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 964 } 965 966 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 967 Ops.push_back(Res); 968 969 if (Code == InlineAsm::Kind_Clobber) { 970 // Clobbers should always have a 1:1 mapping with registers, and may 971 // reference registers that have illegal (e.g. vector) types. Hence, we 972 // shouldn't try to apply any sort of splitting logic to them. 973 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 974 "No 1:1 mapping from clobbers to regs?"); 975 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 976 (void)SP; 977 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 978 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 979 assert( 980 (Regs[I] != SP || 981 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 982 "If we clobbered the stack pointer, MFI should know about it."); 983 } 984 return; 985 } 986 987 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 988 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 989 MVT RegisterVT = RegVTs[Value]; 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 992 unsigned TheReg = Regs[Reg++]; 993 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 994 } 995 } 996 } 997 998 SmallVector<std::pair<unsigned, unsigned>, 4> 999 RegsForValue::getRegsAndSizes() const { 1000 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1001 unsigned I = 0; 1002 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1003 unsigned RegCount = std::get<0>(CountAndVT); 1004 MVT RegisterVT = std::get<1>(CountAndVT); 1005 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1006 for (unsigned E = I + RegCount; I != E; ++I) 1007 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1008 } 1009 return OutVec; 1010 } 1011 1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1013 const TargetLibraryInfo *li) { 1014 AA = aa; 1015 GFI = gfi; 1016 LibInfo = li; 1017 DL = &DAG.getDataLayout(); 1018 Context = DAG.getContext(); 1019 LPadToCallSiteMap.clear(); 1020 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1021 } 1022 1023 void SelectionDAGBuilder::clear() { 1024 NodeMap.clear(); 1025 UnusedArgNodeMap.clear(); 1026 PendingLoads.clear(); 1027 PendingExports.clear(); 1028 CurInst = nullptr; 1029 HasTailCall = false; 1030 SDNodeOrder = LowestSDNodeOrder; 1031 StatepointLowering.clear(); 1032 } 1033 1034 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1035 DanglingDebugInfoMap.clear(); 1036 } 1037 1038 SDValue SelectionDAGBuilder::getRoot() { 1039 if (PendingLoads.empty()) 1040 return DAG.getRoot(); 1041 1042 if (PendingLoads.size() == 1) { 1043 SDValue Root = PendingLoads[0]; 1044 DAG.setRoot(Root); 1045 PendingLoads.clear(); 1046 return Root; 1047 } 1048 1049 // Otherwise, we have to make a token factor node. 1050 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1051 PendingLoads.clear(); 1052 DAG.setRoot(Root); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getControlRoot() { 1057 SDValue Root = DAG.getRoot(); 1058 1059 if (PendingExports.empty()) 1060 return Root; 1061 1062 // Turn all of the CopyToReg chains into one factored node. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = PendingExports.size(); 1065 for (; i != e; ++i) { 1066 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1067 if (PendingExports[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 PendingExports.push_back(Root); 1073 } 1074 1075 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1076 PendingExports); 1077 PendingExports.clear(); 1078 DAG.setRoot(Root); 1079 return Root; 1080 } 1081 1082 void SelectionDAGBuilder::visit(const Instruction &I) { 1083 // Set up outgoing PHI node register values before emitting the terminator. 1084 if (I.isTerminator()) { 1085 HandlePHINodesInSuccessorBlocks(I.getParent()); 1086 } 1087 1088 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1089 if (!isa<DbgInfoIntrinsic>(I)) 1090 ++SDNodeOrder; 1091 1092 CurInst = &I; 1093 1094 visit(I.getOpcode(), I); 1095 1096 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1097 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1098 // maps to this instruction. 1099 // TODO: We could handle all flags (nsw, etc) here. 1100 // TODO: If an IR instruction maps to >1 node, only the final node will have 1101 // flags set. 1102 if (SDNode *Node = getNodeForIRValue(&I)) { 1103 SDNodeFlags IncomingFlags; 1104 IncomingFlags.copyFMF(*FPMO); 1105 if (!Node->getFlags().isDefined()) 1106 Node->setFlags(IncomingFlags); 1107 else 1108 Node->intersectFlagsWith(IncomingFlags); 1109 } 1110 } 1111 1112 if (!I.isTerminator() && !HasTailCall && 1113 !isStatepoint(&I)) // statepoints handle their exports internally 1114 CopyToExportRegsIfNeeded(&I); 1115 1116 CurInst = nullptr; 1117 } 1118 1119 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1120 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1121 } 1122 1123 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1124 // Note: this doesn't use InstVisitor, because it has to work with 1125 // ConstantExpr's in addition to instructions. 1126 switch (Opcode) { 1127 default: llvm_unreachable("Unknown instruction type encountered!"); 1128 // Build the switch statement using the Instruction.def file. 1129 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1130 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1131 #include "llvm/IR/Instruction.def" 1132 } 1133 } 1134 1135 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1136 const DIExpression *Expr) { 1137 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1138 const DbgValueInst *DI = DDI.getDI(); 1139 DIVariable *DanglingVariable = DI->getVariable(); 1140 DIExpression *DanglingExpr = DI->getExpression(); 1141 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1142 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1143 return true; 1144 } 1145 return false; 1146 }; 1147 1148 for (auto &DDIMI : DanglingDebugInfoMap) { 1149 DanglingDebugInfoVector &DDIV = DDIMI.second; 1150 1151 // If debug info is to be dropped, run it through final checks to see 1152 // whether it can be salvaged. 1153 for (auto &DDI : DDIV) 1154 if (isMatchingDbgValue(DDI)) 1155 salvageUnresolvedDbgValue(DDI); 1156 1157 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1158 } 1159 } 1160 1161 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1162 // generate the debug data structures now that we've seen its definition. 1163 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1164 SDValue Val) { 1165 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1166 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1167 return; 1168 1169 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1170 for (auto &DDI : DDIV) { 1171 const DbgValueInst *DI = DDI.getDI(); 1172 assert(DI && "Ill-formed DanglingDebugInfo"); 1173 DebugLoc dl = DDI.getdl(); 1174 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1175 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1176 DILocalVariable *Variable = DI->getVariable(); 1177 DIExpression *Expr = DI->getExpression(); 1178 assert(Variable->isValidLocationForIntrinsic(dl) && 1179 "Expected inlined-at fields to agree"); 1180 SDDbgValue *SDV; 1181 if (Val.getNode()) { 1182 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1183 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1184 // we couldn't resolve it directly when examining the DbgValue intrinsic 1185 // in the first place we should not be more successful here). Unless we 1186 // have some test case that prove this to be correct we should avoid 1187 // calling EmitFuncArgumentDbgValue here. 1188 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1189 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1190 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1191 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1192 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1193 // inserted after the definition of Val when emitting the instructions 1194 // after ISel. An alternative could be to teach 1195 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1196 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1197 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1198 << ValSDNodeOrder << "\n"); 1199 SDV = getDbgValue(Val, Variable, Expr, dl, 1200 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1201 DAG.AddDbgValue(SDV, Val.getNode(), false); 1202 } else 1203 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1204 << "in EmitFuncArgumentDbgValue\n"); 1205 } else { 1206 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1207 auto Undef = 1208 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1209 auto SDV = 1210 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1211 DAG.AddDbgValue(SDV, nullptr, false); 1212 } 1213 } 1214 DDIV.clear(); 1215 } 1216 1217 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1218 Value *V = DDI.getDI()->getValue(); 1219 DILocalVariable *Var = DDI.getDI()->getVariable(); 1220 DIExpression *Expr = DDI.getDI()->getExpression(); 1221 DebugLoc DL = DDI.getdl(); 1222 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1223 unsigned SDOrder = DDI.getSDNodeOrder(); 1224 1225 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1226 // that DW_OP_stack_value is desired. 1227 assert(isa<DbgValueInst>(DDI.getDI())); 1228 bool StackValue = true; 1229 1230 // Can this Value can be encoded without any further work? 1231 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1232 return; 1233 1234 // Attempt to salvage back through as many instructions as possible. Bail if 1235 // a non-instruction is seen, such as a constant expression or global 1236 // variable. FIXME: Further work could recover those too. 1237 while (isa<Instruction>(V)) { 1238 Instruction &VAsInst = *cast<Instruction>(V); 1239 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1240 1241 // If we cannot salvage any further, and haven't yet found a suitable debug 1242 // expression, bail out. 1243 if (!NewExpr) 1244 break; 1245 1246 // New value and expr now represent this debuginfo. 1247 V = VAsInst.getOperand(0); 1248 Expr = NewExpr; 1249 1250 // Some kind of simplification occurred: check whether the operand of the 1251 // salvaged debug expression can be encoded in this DAG. 1252 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1253 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1254 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1255 return; 1256 } 1257 } 1258 1259 // This was the final opportunity to salvage this debug information, and it 1260 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1261 // any earlier variable location. 1262 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1263 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1264 DAG.AddDbgValue(SDV, nullptr, false); 1265 1266 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1267 << "\n"); 1268 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1269 << "\n"); 1270 } 1271 1272 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1273 DIExpression *Expr, DebugLoc dl, 1274 DebugLoc InstDL, unsigned Order) { 1275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1276 SDDbgValue *SDV; 1277 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1278 isa<ConstantPointerNull>(V)) { 1279 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 1284 // If the Value is a frame index, we can create a FrameIndex debug value 1285 // without relying on the DAG at all. 1286 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1287 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1288 if (SI != FuncInfo.StaticAllocaMap.end()) { 1289 auto SDV = 1290 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1291 /*IsIndirect*/ false, dl, SDNodeOrder); 1292 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1293 // is still available even if the SDNode gets optimized out. 1294 DAG.AddDbgValue(SDV, nullptr, false); 1295 return true; 1296 } 1297 } 1298 1299 // Do not use getValue() in here; we don't want to generate code at 1300 // this point if it hasn't been done yet. 1301 SDValue N = NodeMap[V]; 1302 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1303 N = UnusedArgNodeMap[V]; 1304 if (N.getNode()) { 1305 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1306 return true; 1307 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1308 DAG.AddDbgValue(SDV, N.getNode(), false); 1309 return true; 1310 } 1311 1312 // Special rules apply for the first dbg.values of parameter variables in a 1313 // function. Identify them by the fact they reference Argument Values, that 1314 // they're parameters, and they are parameters of the current function. We 1315 // need to let them dangle until they get an SDNode. 1316 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1317 !InstDL.getInlinedAt(); 1318 if (!IsParamOfFunc) { 1319 // The value is not used in this block yet (or it would have an SDNode). 1320 // We still want the value to appear for the user if possible -- if it has 1321 // an associated VReg, we can refer to that instead. 1322 auto VMI = FuncInfo.ValueMap.find(V); 1323 if (VMI != FuncInfo.ValueMap.end()) { 1324 unsigned Reg = VMI->second; 1325 // If this is a PHI node, it may be split up into several MI PHI nodes 1326 // (in FunctionLoweringInfo::set). 1327 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1328 V->getType(), None); 1329 if (RFV.occupiesMultipleRegs()) { 1330 unsigned Offset = 0; 1331 unsigned BitsToDescribe = 0; 1332 if (auto VarSize = Var->getSizeInBits()) 1333 BitsToDescribe = *VarSize; 1334 if (auto Fragment = Expr->getFragmentInfo()) 1335 BitsToDescribe = Fragment->SizeInBits; 1336 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1337 unsigned RegisterSize = RegAndSize.second; 1338 // Bail out if all bits are described already. 1339 if (Offset >= BitsToDescribe) 1340 break; 1341 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1342 ? BitsToDescribe - Offset 1343 : RegisterSize; 1344 auto FragmentExpr = DIExpression::createFragmentExpression( 1345 Expr, Offset, FragmentSize); 1346 if (!FragmentExpr) 1347 continue; 1348 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1349 false, dl, SDNodeOrder); 1350 DAG.AddDbgValue(SDV, nullptr, false); 1351 Offset += RegisterSize; 1352 } 1353 } else { 1354 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1355 DAG.AddDbgValue(SDV, nullptr, false); 1356 } 1357 return true; 1358 } 1359 } 1360 1361 return false; 1362 } 1363 1364 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1365 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1366 for (auto &Pair : DanglingDebugInfoMap) 1367 for (auto &DDI : Pair.second) 1368 salvageUnresolvedDbgValue(DDI); 1369 clearDanglingDebugInfo(); 1370 } 1371 1372 /// getCopyFromRegs - If there was virtual register allocated for the value V 1373 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1374 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1375 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1376 SDValue Result; 1377 1378 if (It != FuncInfo.ValueMap.end()) { 1379 unsigned InReg = It->second; 1380 1381 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1382 DAG.getDataLayout(), InReg, Ty, 1383 None); // This is not an ABI copy. 1384 SDValue Chain = DAG.getEntryNode(); 1385 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1386 V); 1387 resolveDanglingDebugInfo(V, Result); 1388 } 1389 1390 return Result; 1391 } 1392 1393 /// getValue - Return an SDValue for the given Value. 1394 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1395 // If we already have an SDValue for this value, use it. It's important 1396 // to do this first, so that we don't create a CopyFromReg if we already 1397 // have a regular SDValue. 1398 SDValue &N = NodeMap[V]; 1399 if (N.getNode()) return N; 1400 1401 // If there's a virtual register allocated and initialized for this 1402 // value, use it. 1403 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1404 return copyFromReg; 1405 1406 // Otherwise create a new SDValue and remember it. 1407 SDValue Val = getValueImpl(V); 1408 NodeMap[V] = Val; 1409 resolveDanglingDebugInfo(V, Val); 1410 return Val; 1411 } 1412 1413 // Return true if SDValue exists for the given Value 1414 bool SelectionDAGBuilder::findValue(const Value *V) const { 1415 return (NodeMap.find(V) != NodeMap.end()) || 1416 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1417 } 1418 1419 /// getNonRegisterValue - Return an SDValue for the given Value, but 1420 /// don't look in FuncInfo.ValueMap for a virtual register. 1421 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1422 // If we already have an SDValue for this value, use it. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) { 1425 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1426 // Remove the debug location from the node as the node is about to be used 1427 // in a location which may differ from the original debug location. This 1428 // is relevant to Constant and ConstantFP nodes because they can appear 1429 // as constant expressions inside PHI nodes. 1430 N->setDebugLoc(DebugLoc()); 1431 } 1432 return N; 1433 } 1434 1435 // Otherwise create a new SDValue and remember it. 1436 SDValue Val = getValueImpl(V); 1437 NodeMap[V] = Val; 1438 resolveDanglingDebugInfo(V, Val); 1439 return Val; 1440 } 1441 1442 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1443 /// Create an SDValue for the given value. 1444 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1446 1447 if (const Constant *C = dyn_cast<Constant>(V)) { 1448 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1449 1450 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1451 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1452 1453 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1454 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1455 1456 if (isa<ConstantPointerNull>(C)) { 1457 unsigned AS = V->getType()->getPointerAddressSpace(); 1458 return DAG.getConstant(0, getCurSDLoc(), 1459 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1460 } 1461 1462 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1463 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1464 1465 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1466 return DAG.getUNDEF(VT); 1467 1468 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1469 visit(CE->getOpcode(), *CE); 1470 SDValue N1 = NodeMap[V]; 1471 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1472 return N1; 1473 } 1474 1475 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1476 SmallVector<SDValue, 4> Constants; 1477 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1478 OI != OE; ++OI) { 1479 SDNode *Val = getValue(*OI).getNode(); 1480 // If the operand is an empty aggregate, there are no values. 1481 if (!Val) continue; 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Constants.push_back(SDValue(Val, i)); 1486 } 1487 1488 return DAG.getMergeValues(Constants, getCurSDLoc()); 1489 } 1490 1491 if (const ConstantDataSequential *CDS = 1492 dyn_cast<ConstantDataSequential>(C)) { 1493 SmallVector<SDValue, 4> Ops; 1494 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1495 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1496 // Add each leaf value from the operand to the Constants list 1497 // to form a flattened list of all the values. 1498 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1499 Ops.push_back(SDValue(Val, i)); 1500 } 1501 1502 if (isa<ArrayType>(CDS->getType())) 1503 return DAG.getMergeValues(Ops, getCurSDLoc()); 1504 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1505 } 1506 1507 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1508 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1509 "Unknown struct or array constant!"); 1510 1511 SmallVector<EVT, 4> ValueVTs; 1512 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1513 unsigned NumElts = ValueVTs.size(); 1514 if (NumElts == 0) 1515 return SDValue(); // empty struct 1516 SmallVector<SDValue, 4> Constants(NumElts); 1517 for (unsigned i = 0; i != NumElts; ++i) { 1518 EVT EltVT = ValueVTs[i]; 1519 if (isa<UndefValue>(C)) 1520 Constants[i] = DAG.getUNDEF(EltVT); 1521 else if (EltVT.isFloatingPoint()) 1522 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1523 else 1524 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1525 } 1526 1527 return DAG.getMergeValues(Constants, getCurSDLoc()); 1528 } 1529 1530 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1531 return DAG.getBlockAddress(BA, VT); 1532 1533 VectorType *VecTy = cast<VectorType>(V->getType()); 1534 unsigned NumElements = VecTy->getNumElements(); 1535 1536 // Now that we know the number and type of the elements, get that number of 1537 // elements into the Ops array based on what kind of constant it is. 1538 SmallVector<SDValue, 16> Ops; 1539 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1540 for (unsigned i = 0; i != NumElements; ++i) 1541 Ops.push_back(getValue(CV->getOperand(i))); 1542 } else { 1543 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1544 EVT EltVT = 1545 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1546 1547 SDValue Op; 1548 if (EltVT.isFloatingPoint()) 1549 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1550 else 1551 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1552 Ops.assign(NumElements, Op); 1553 } 1554 1555 // Create a BUILD_VECTOR node. 1556 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1557 } 1558 1559 // If this is a static alloca, generate it as the frameindex instead of 1560 // computation. 1561 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1562 DenseMap<const AllocaInst*, int>::iterator SI = 1563 FuncInfo.StaticAllocaMap.find(AI); 1564 if (SI != FuncInfo.StaticAllocaMap.end()) 1565 return DAG.getFrameIndex(SI->second, 1566 TLI.getFrameIndexTy(DAG.getDataLayout())); 1567 } 1568 1569 // If this is an instruction which fast-isel has deferred, select it now. 1570 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1571 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1572 1573 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1574 Inst->getType(), getABIRegCopyCC(V)); 1575 SDValue Chain = DAG.getEntryNode(); 1576 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1577 } 1578 1579 llvm_unreachable("Can't get register for value!"); 1580 } 1581 1582 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1583 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1584 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1585 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1586 bool IsSEH = isAsynchronousEHPersonality(Pers); 1587 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1588 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1589 if (!IsSEH) 1590 CatchPadMBB->setIsEHScopeEntry(); 1591 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1592 if (IsMSVCCXX || IsCoreCLR) 1593 CatchPadMBB->setIsEHFuncletEntry(); 1594 // Wasm does not need catchpads anymore 1595 if (!IsWasmCXX) 1596 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1597 getControlRoot())); 1598 } 1599 1600 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1601 // Update machine-CFG edge. 1602 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1603 FuncInfo.MBB->addSuccessor(TargetMBB); 1604 1605 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1606 bool IsSEH = isAsynchronousEHPersonality(Pers); 1607 if (IsSEH) { 1608 // If this is not a fall-through branch or optimizations are switched off, 1609 // emit the branch. 1610 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1611 TM.getOptLevel() == CodeGenOpt::None) 1612 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1613 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1614 return; 1615 } 1616 1617 // Figure out the funclet membership for the catchret's successor. 1618 // This will be used by the FuncletLayout pass to determine how to order the 1619 // BB's. 1620 // A 'catchret' returns to the outer scope's color. 1621 Value *ParentPad = I.getCatchSwitchParentPad(); 1622 const BasicBlock *SuccessorColor; 1623 if (isa<ConstantTokenNone>(ParentPad)) 1624 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1625 else 1626 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1627 assert(SuccessorColor && "No parent funclet for catchret!"); 1628 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1629 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1630 1631 // Create the terminator node. 1632 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1633 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1634 DAG.getBasicBlock(SuccessorColorMBB)); 1635 DAG.setRoot(Ret); 1636 } 1637 1638 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1639 // Don't emit any special code for the cleanuppad instruction. It just marks 1640 // the start of an EH scope/funclet. 1641 FuncInfo.MBB->setIsEHScopeEntry(); 1642 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1643 if (Pers != EHPersonality::Wasm_CXX) { 1644 FuncInfo.MBB->setIsEHFuncletEntry(); 1645 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1646 } 1647 } 1648 1649 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1650 // the control flow always stops at the single catch pad, as it does for a 1651 // cleanup pad. In case the exception caught is not of the types the catch pad 1652 // catches, it will be rethrown by a rethrow. 1653 static void findWasmUnwindDestinations( 1654 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1655 BranchProbability Prob, 1656 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1657 &UnwindDests) { 1658 while (EHPadBB) { 1659 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1660 if (isa<CleanupPadInst>(Pad)) { 1661 // Stop on cleanup pads. 1662 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1663 UnwindDests.back().first->setIsEHScopeEntry(); 1664 break; 1665 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1666 // Add the catchpad handlers to the possible destinations. We don't 1667 // continue to the unwind destination of the catchswitch for wasm. 1668 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1669 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1670 UnwindDests.back().first->setIsEHScopeEntry(); 1671 } 1672 break; 1673 } else { 1674 continue; 1675 } 1676 } 1677 } 1678 1679 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1680 /// many places it could ultimately go. In the IR, we have a single unwind 1681 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1682 /// This function skips over imaginary basic blocks that hold catchswitch 1683 /// instructions, and finds all the "real" machine 1684 /// basic block destinations. As those destinations may not be successors of 1685 /// EHPadBB, here we also calculate the edge probability to those destinations. 1686 /// The passed-in Prob is the edge probability to EHPadBB. 1687 static void findUnwindDestinations( 1688 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1689 BranchProbability Prob, 1690 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1691 &UnwindDests) { 1692 EHPersonality Personality = 1693 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1694 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1695 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1696 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1697 bool IsSEH = isAsynchronousEHPersonality(Personality); 1698 1699 if (IsWasmCXX) { 1700 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1701 assert(UnwindDests.size() <= 1 && 1702 "There should be at most one unwind destination for wasm"); 1703 return; 1704 } 1705 1706 while (EHPadBB) { 1707 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1708 BasicBlock *NewEHPadBB = nullptr; 1709 if (isa<LandingPadInst>(Pad)) { 1710 // Stop on landingpads. They are not funclets. 1711 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1712 break; 1713 } else if (isa<CleanupPadInst>(Pad)) { 1714 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1715 // personalities. 1716 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1717 UnwindDests.back().first->setIsEHScopeEntry(); 1718 UnwindDests.back().first->setIsEHFuncletEntry(); 1719 break; 1720 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1721 // Add the catchpad handlers to the possible destinations. 1722 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1723 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1724 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1725 if (IsMSVCCXX || IsCoreCLR) 1726 UnwindDests.back().first->setIsEHFuncletEntry(); 1727 if (!IsSEH) 1728 UnwindDests.back().first->setIsEHScopeEntry(); 1729 } 1730 NewEHPadBB = CatchSwitch->getUnwindDest(); 1731 } else { 1732 continue; 1733 } 1734 1735 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1736 if (BPI && NewEHPadBB) 1737 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1738 EHPadBB = NewEHPadBB; 1739 } 1740 } 1741 1742 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1743 // Update successor info. 1744 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1745 auto UnwindDest = I.getUnwindDest(); 1746 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1747 BranchProbability UnwindDestProb = 1748 (BPI && UnwindDest) 1749 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1750 : BranchProbability::getZero(); 1751 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1752 for (auto &UnwindDest : UnwindDests) { 1753 UnwindDest.first->setIsEHPad(); 1754 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1755 } 1756 FuncInfo.MBB->normalizeSuccProbs(); 1757 1758 // Create the terminator node. 1759 SDValue Ret = 1760 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1761 DAG.setRoot(Ret); 1762 } 1763 1764 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1765 report_fatal_error("visitCatchSwitch not yet implemented!"); 1766 } 1767 1768 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1770 auto &DL = DAG.getDataLayout(); 1771 SDValue Chain = getControlRoot(); 1772 SmallVector<ISD::OutputArg, 8> Outs; 1773 SmallVector<SDValue, 8> OutVals; 1774 1775 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1776 // lower 1777 // 1778 // %val = call <ty> @llvm.experimental.deoptimize() 1779 // ret <ty> %val 1780 // 1781 // differently. 1782 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1783 LowerDeoptimizingReturn(); 1784 return; 1785 } 1786 1787 if (!FuncInfo.CanLowerReturn) { 1788 unsigned DemoteReg = FuncInfo.DemoteRegister; 1789 const Function *F = I.getParent()->getParent(); 1790 1791 // Emit a store of the return value through the virtual register. 1792 // Leave Outs empty so that LowerReturn won't try to load return 1793 // registers the usual way. 1794 SmallVector<EVT, 1> PtrValueVTs; 1795 ComputeValueVTs(TLI, DL, 1796 F->getReturnType()->getPointerTo( 1797 DAG.getDataLayout().getAllocaAddrSpace()), 1798 PtrValueVTs); 1799 1800 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1801 DemoteReg, PtrValueVTs[0]); 1802 SDValue RetOp = getValue(I.getOperand(0)); 1803 1804 SmallVector<EVT, 4> ValueVTs, MemVTs; 1805 SmallVector<uint64_t, 4> Offsets; 1806 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1807 &Offsets); 1808 unsigned NumValues = ValueVTs.size(); 1809 1810 SmallVector<SDValue, 4> Chains(NumValues); 1811 for (unsigned i = 0; i != NumValues; ++i) { 1812 // An aggregate return value cannot wrap around the address space, so 1813 // offsets to its parts don't wrap either. 1814 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1815 1816 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1817 if (MemVTs[i] != ValueVTs[i]) 1818 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1819 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1820 // FIXME: better loc info would be nice. 1821 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1822 } 1823 1824 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1825 MVT::Other, Chains); 1826 } else if (I.getNumOperands() != 0) { 1827 SmallVector<EVT, 4> ValueVTs; 1828 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1829 unsigned NumValues = ValueVTs.size(); 1830 if (NumValues) { 1831 SDValue RetOp = getValue(I.getOperand(0)); 1832 1833 const Function *F = I.getParent()->getParent(); 1834 1835 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1836 I.getOperand(0)->getType(), F->getCallingConv(), 1837 /*IsVarArg*/ false); 1838 1839 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1840 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1841 Attribute::SExt)) 1842 ExtendKind = ISD::SIGN_EXTEND; 1843 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1844 Attribute::ZExt)) 1845 ExtendKind = ISD::ZERO_EXTEND; 1846 1847 LLVMContext &Context = F->getContext(); 1848 bool RetInReg = F->getAttributes().hasAttribute( 1849 AttributeList::ReturnIndex, Attribute::InReg); 1850 1851 for (unsigned j = 0; j != NumValues; ++j) { 1852 EVT VT = ValueVTs[j]; 1853 1854 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1855 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1856 1857 CallingConv::ID CC = F->getCallingConv(); 1858 1859 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1860 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1861 SmallVector<SDValue, 4> Parts(NumParts); 1862 getCopyToParts(DAG, getCurSDLoc(), 1863 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1864 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1865 1866 // 'inreg' on function refers to return value 1867 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1868 if (RetInReg) 1869 Flags.setInReg(); 1870 1871 if (I.getOperand(0)->getType()->isPointerTy()) { 1872 Flags.setPointer(); 1873 Flags.setPointerAddrSpace( 1874 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1875 } 1876 1877 if (NeedsRegBlock) { 1878 Flags.setInConsecutiveRegs(); 1879 if (j == NumValues - 1) 1880 Flags.setInConsecutiveRegsLast(); 1881 } 1882 1883 // Propagate extension type if any 1884 if (ExtendKind == ISD::SIGN_EXTEND) 1885 Flags.setSExt(); 1886 else if (ExtendKind == ISD::ZERO_EXTEND) 1887 Flags.setZExt(); 1888 1889 for (unsigned i = 0; i < NumParts; ++i) { 1890 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1891 VT, /*isfixed=*/true, 0, 0)); 1892 OutVals.push_back(Parts[i]); 1893 } 1894 } 1895 } 1896 } 1897 1898 // Push in swifterror virtual register as the last element of Outs. This makes 1899 // sure swifterror virtual register will be returned in the swifterror 1900 // physical register. 1901 const Function *F = I.getParent()->getParent(); 1902 if (TLI.supportSwiftError() && 1903 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1904 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1905 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1906 Flags.setSwiftError(); 1907 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1908 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1909 true /*isfixed*/, 1 /*origidx*/, 1910 0 /*partOffs*/)); 1911 // Create SDNode for the swifterror virtual register. 1912 OutVals.push_back( 1913 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1914 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1915 EVT(TLI.getPointerTy(DL)))); 1916 } 1917 1918 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1919 CallingConv::ID CallConv = 1920 DAG.getMachineFunction().getFunction().getCallingConv(); 1921 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1922 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1923 1924 // Verify that the target's LowerReturn behaved as expected. 1925 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1926 "LowerReturn didn't return a valid chain!"); 1927 1928 // Update the DAG with the new chain value resulting from return lowering. 1929 DAG.setRoot(Chain); 1930 } 1931 1932 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1933 /// created for it, emit nodes to copy the value into the virtual 1934 /// registers. 1935 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1936 // Skip empty types 1937 if (V->getType()->isEmptyTy()) 1938 return; 1939 1940 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1941 if (VMI != FuncInfo.ValueMap.end()) { 1942 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1943 CopyValueToVirtualRegister(V, VMI->second); 1944 } 1945 } 1946 1947 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1948 /// the current basic block, add it to ValueMap now so that we'll get a 1949 /// CopyTo/FromReg. 1950 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1951 // No need to export constants. 1952 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1953 1954 // Already exported? 1955 if (FuncInfo.isExportedInst(V)) return; 1956 1957 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1958 CopyValueToVirtualRegister(V, Reg); 1959 } 1960 1961 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1962 const BasicBlock *FromBB) { 1963 // The operands of the setcc have to be in this block. We don't know 1964 // how to export them from some other block. 1965 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1966 // Can export from current BB. 1967 if (VI->getParent() == FromBB) 1968 return true; 1969 1970 // Is already exported, noop. 1971 return FuncInfo.isExportedInst(V); 1972 } 1973 1974 // If this is an argument, we can export it if the BB is the entry block or 1975 // if it is already exported. 1976 if (isa<Argument>(V)) { 1977 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1978 return true; 1979 1980 // Otherwise, can only export this if it is already exported. 1981 return FuncInfo.isExportedInst(V); 1982 } 1983 1984 // Otherwise, constants can always be exported. 1985 return true; 1986 } 1987 1988 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1989 BranchProbability 1990 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1991 const MachineBasicBlock *Dst) const { 1992 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1993 const BasicBlock *SrcBB = Src->getBasicBlock(); 1994 const BasicBlock *DstBB = Dst->getBasicBlock(); 1995 if (!BPI) { 1996 // If BPI is not available, set the default probability as 1 / N, where N is 1997 // the number of successors. 1998 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1999 return BranchProbability(1, SuccSize); 2000 } 2001 return BPI->getEdgeProbability(SrcBB, DstBB); 2002 } 2003 2004 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2005 MachineBasicBlock *Dst, 2006 BranchProbability Prob) { 2007 if (!FuncInfo.BPI) 2008 Src->addSuccessorWithoutProb(Dst); 2009 else { 2010 if (Prob.isUnknown()) 2011 Prob = getEdgeProbability(Src, Dst); 2012 Src->addSuccessor(Dst, Prob); 2013 } 2014 } 2015 2016 static bool InBlock(const Value *V, const BasicBlock *BB) { 2017 if (const Instruction *I = dyn_cast<Instruction>(V)) 2018 return I->getParent() == BB; 2019 return true; 2020 } 2021 2022 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2023 /// This function emits a branch and is used at the leaves of an OR or an 2024 /// AND operator tree. 2025 void 2026 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2027 MachineBasicBlock *TBB, 2028 MachineBasicBlock *FBB, 2029 MachineBasicBlock *CurBB, 2030 MachineBasicBlock *SwitchBB, 2031 BranchProbability TProb, 2032 BranchProbability FProb, 2033 bool InvertCond) { 2034 const BasicBlock *BB = CurBB->getBasicBlock(); 2035 2036 // If the leaf of the tree is a comparison, merge the condition into 2037 // the caseblock. 2038 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2039 // The operands of the cmp have to be in this block. We don't know 2040 // how to export them from some other block. If this is the first block 2041 // of the sequence, no exporting is needed. 2042 if (CurBB == SwitchBB || 2043 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2044 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2045 ISD::CondCode Condition; 2046 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2047 ICmpInst::Predicate Pred = 2048 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2049 Condition = getICmpCondCode(Pred); 2050 } else { 2051 const FCmpInst *FC = cast<FCmpInst>(Cond); 2052 FCmpInst::Predicate Pred = 2053 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2054 Condition = getFCmpCondCode(Pred); 2055 if (TM.Options.NoNaNsFPMath) 2056 Condition = getFCmpCodeWithoutNaN(Condition); 2057 } 2058 2059 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2060 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2061 SL->SwitchCases.push_back(CB); 2062 return; 2063 } 2064 } 2065 2066 // Create a CaseBlock record representing this branch. 2067 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2068 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2069 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2070 SL->SwitchCases.push_back(CB); 2071 } 2072 2073 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2074 MachineBasicBlock *TBB, 2075 MachineBasicBlock *FBB, 2076 MachineBasicBlock *CurBB, 2077 MachineBasicBlock *SwitchBB, 2078 Instruction::BinaryOps Opc, 2079 BranchProbability TProb, 2080 BranchProbability FProb, 2081 bool InvertCond) { 2082 // Skip over not part of the tree and remember to invert op and operands at 2083 // next level. 2084 Value *NotCond; 2085 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2086 InBlock(NotCond, CurBB->getBasicBlock())) { 2087 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2088 !InvertCond); 2089 return; 2090 } 2091 2092 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2093 // Compute the effective opcode for Cond, taking into account whether it needs 2094 // to be inverted, e.g. 2095 // and (not (or A, B)), C 2096 // gets lowered as 2097 // and (and (not A, not B), C) 2098 unsigned BOpc = 0; 2099 if (BOp) { 2100 BOpc = BOp->getOpcode(); 2101 if (InvertCond) { 2102 if (BOpc == Instruction::And) 2103 BOpc = Instruction::Or; 2104 else if (BOpc == Instruction::Or) 2105 BOpc = Instruction::And; 2106 } 2107 } 2108 2109 // If this node is not part of the or/and tree, emit it as a branch. 2110 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2111 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2112 BOp->getParent() != CurBB->getBasicBlock() || 2113 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2114 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2115 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2116 TProb, FProb, InvertCond); 2117 return; 2118 } 2119 2120 // Create TmpBB after CurBB. 2121 MachineFunction::iterator BBI(CurBB); 2122 MachineFunction &MF = DAG.getMachineFunction(); 2123 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2124 CurBB->getParent()->insert(++BBI, TmpBB); 2125 2126 if (Opc == Instruction::Or) { 2127 // Codegen X | Y as: 2128 // BB1: 2129 // jmp_if_X TBB 2130 // jmp TmpBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 2136 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2137 // The requirement is that 2138 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2139 // = TrueProb for original BB. 2140 // Assuming the original probabilities are A and B, one choice is to set 2141 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2142 // A/(1+B) and 2B/(1+B). This choice assumes that 2143 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2144 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2145 // TmpBB, but the math is more complicated. 2146 2147 auto NewTrueProb = TProb / 2; 2148 auto NewFalseProb = TProb / 2 + FProb; 2149 // Emit the LHS condition. 2150 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2151 NewTrueProb, NewFalseProb, InvertCond); 2152 2153 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2154 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2155 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2156 // Emit the RHS condition into TmpBB. 2157 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2158 Probs[0], Probs[1], InvertCond); 2159 } else { 2160 assert(Opc == Instruction::And && "Unknown merge op!"); 2161 // Codegen X & Y as: 2162 // BB1: 2163 // jmp_if_X TmpBB 2164 // jmp FBB 2165 // TmpBB: 2166 // jmp_if_Y TBB 2167 // jmp FBB 2168 // 2169 // This requires creation of TmpBB after CurBB. 2170 2171 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2172 // The requirement is that 2173 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2174 // = FalseProb for original BB. 2175 // Assuming the original probabilities are A and B, one choice is to set 2176 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2177 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2178 // TrueProb for BB1 * FalseProb for TmpBB. 2179 2180 auto NewTrueProb = TProb + FProb / 2; 2181 auto NewFalseProb = FProb / 2; 2182 // Emit the LHS condition. 2183 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2184 NewTrueProb, NewFalseProb, InvertCond); 2185 2186 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2187 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2188 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2189 // Emit the RHS condition into TmpBB. 2190 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2191 Probs[0], Probs[1], InvertCond); 2192 } 2193 } 2194 2195 /// If the set of cases should be emitted as a series of branches, return true. 2196 /// If we should emit this as a bunch of and/or'd together conditions, return 2197 /// false. 2198 bool 2199 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2200 if (Cases.size() != 2) return true; 2201 2202 // If this is two comparisons of the same values or'd or and'd together, they 2203 // will get folded into a single comparison, so don't emit two blocks. 2204 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2205 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2206 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2207 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2208 return false; 2209 } 2210 2211 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2212 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2213 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2214 Cases[0].CC == Cases[1].CC && 2215 isa<Constant>(Cases[0].CmpRHS) && 2216 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2217 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2218 return false; 2219 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2220 return false; 2221 } 2222 2223 return true; 2224 } 2225 2226 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2227 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2228 2229 // Update machine-CFG edges. 2230 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2231 2232 if (I.isUnconditional()) { 2233 // Update machine-CFG edges. 2234 BrMBB->addSuccessor(Succ0MBB); 2235 2236 // If this is not a fall-through branch or optimizations are switched off, 2237 // emit the branch. 2238 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2239 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2240 MVT::Other, getControlRoot(), 2241 DAG.getBasicBlock(Succ0MBB))); 2242 2243 return; 2244 } 2245 2246 // If this condition is one of the special cases we handle, do special stuff 2247 // now. 2248 const Value *CondVal = I.getCondition(); 2249 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2250 2251 // If this is a series of conditions that are or'd or and'd together, emit 2252 // this as a sequence of branches instead of setcc's with and/or operations. 2253 // As long as jumps are not expensive, this should improve performance. 2254 // For example, instead of something like: 2255 // cmp A, B 2256 // C = seteq 2257 // cmp D, E 2258 // F = setle 2259 // or C, F 2260 // jnz foo 2261 // Emit: 2262 // cmp A, B 2263 // je foo 2264 // cmp D, E 2265 // jle foo 2266 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2267 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2268 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2269 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2270 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2271 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2272 Opcode, 2273 getEdgeProbability(BrMBB, Succ0MBB), 2274 getEdgeProbability(BrMBB, Succ1MBB), 2275 /*InvertCond=*/false); 2276 // If the compares in later blocks need to use values not currently 2277 // exported from this block, export them now. This block should always 2278 // be the first entry. 2279 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2280 2281 // Allow some cases to be rejected. 2282 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2283 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2284 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2285 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2286 } 2287 2288 // Emit the branch for this block. 2289 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2290 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2291 return; 2292 } 2293 2294 // Okay, we decided not to do this, remove any inserted MBB's and clear 2295 // SwitchCases. 2296 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2297 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2298 2299 SL->SwitchCases.clear(); 2300 } 2301 } 2302 2303 // Create a CaseBlock record representing this branch. 2304 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2305 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2306 2307 // Use visitSwitchCase to actually insert the fast branch sequence for this 2308 // cond branch. 2309 visitSwitchCase(CB, BrMBB); 2310 } 2311 2312 /// visitSwitchCase - Emits the necessary code to represent a single node in 2313 /// the binary search tree resulting from lowering a switch instruction. 2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2315 MachineBasicBlock *SwitchBB) { 2316 SDValue Cond; 2317 SDValue CondLHS = getValue(CB.CmpLHS); 2318 SDLoc dl = CB.DL; 2319 2320 if (CB.CC == ISD::SETTRUE) { 2321 // Branch or fall through to TrueBB. 2322 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2323 SwitchBB->normalizeSuccProbs(); 2324 if (CB.TrueBB != NextBlock(SwitchBB)) { 2325 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2326 DAG.getBasicBlock(CB.TrueBB))); 2327 } 2328 return; 2329 } 2330 2331 auto &TLI = DAG.getTargetLoweringInfo(); 2332 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2333 2334 // Build the setcc now. 2335 if (!CB.CmpMHS) { 2336 // Fold "(X == true)" to X and "(X == false)" to !X to 2337 // handle common cases produced by branch lowering. 2338 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) 2340 Cond = CondLHS; 2341 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2342 CB.CC == ISD::SETEQ) { 2343 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2344 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2345 } else { 2346 SDValue CondRHS = getValue(CB.CmpRHS); 2347 2348 // If a pointer's DAG type is larger than its memory type then the DAG 2349 // values are zero-extended. This breaks signed comparisons so truncate 2350 // back to the underlying type before doing the compare. 2351 if (CondLHS.getValueType() != MemVT) { 2352 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2353 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2354 } 2355 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2356 } 2357 } else { 2358 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2359 2360 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2361 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2362 2363 SDValue CmpOp = getValue(CB.CmpMHS); 2364 EVT VT = CmpOp.getValueType(); 2365 2366 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2367 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2368 ISD::SETLE); 2369 } else { 2370 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2371 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2372 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2373 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2374 } 2375 } 2376 2377 // Update successor info 2378 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2379 // TrueBB and FalseBB are always different unless the incoming IR is 2380 // degenerate. This only happens when running llc on weird IR. 2381 if (CB.TrueBB != CB.FalseBB) 2382 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2383 SwitchBB->normalizeSuccProbs(); 2384 2385 // If the lhs block is the next block, invert the condition so that we can 2386 // fall through to the lhs instead of the rhs block. 2387 if (CB.TrueBB == NextBlock(SwitchBB)) { 2388 std::swap(CB.TrueBB, CB.FalseBB); 2389 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2390 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2391 } 2392 2393 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2394 MVT::Other, getControlRoot(), Cond, 2395 DAG.getBasicBlock(CB.TrueBB)); 2396 2397 // Insert the false branch. Do this even if it's a fall through branch, 2398 // this makes it easier to do DAG optimizations which require inverting 2399 // the branch condition. 2400 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2401 DAG.getBasicBlock(CB.FalseBB)); 2402 2403 DAG.setRoot(BrCond); 2404 } 2405 2406 /// visitJumpTable - Emit JumpTable node in the current MBB 2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2408 // Emit the code for the jump table 2409 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2410 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2411 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2412 JT.Reg, PTy); 2413 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2414 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2415 MVT::Other, Index.getValue(1), 2416 Table, Index); 2417 DAG.setRoot(BrJumpTable); 2418 } 2419 2420 /// visitJumpTableHeader - This function emits necessary code to produce index 2421 /// in the JumpTable from switch case. 2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2423 JumpTableHeader &JTH, 2424 MachineBasicBlock *SwitchBB) { 2425 SDLoc dl = getCurSDLoc(); 2426 2427 // Subtract the lowest switch case value from the value being switched on. 2428 SDValue SwitchOp = getValue(JTH.SValue); 2429 EVT VT = SwitchOp.getValueType(); 2430 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2431 DAG.getConstant(JTH.First, dl, VT)); 2432 2433 // The SDNode we just created, which holds the value being switched on minus 2434 // the smallest case value, needs to be copied to a virtual register so it 2435 // can be used as an index into the jump table in a subsequent basic block. 2436 // This value may be smaller or larger than the target's pointer type, and 2437 // therefore require extension or truncating. 2438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2439 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2440 2441 unsigned JumpTableReg = 2442 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2443 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2444 JumpTableReg, SwitchOp); 2445 JT.Reg = JumpTableReg; 2446 2447 if (!JTH.OmitRangeCheck) { 2448 // Emit the range check for the jump table, and branch to the default block 2449 // for the switch statement if the value being switched on exceeds the 2450 // largest case in the switch. 2451 SDValue CMP = DAG.getSetCC( 2452 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2453 Sub.getValueType()), 2454 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2455 2456 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2457 MVT::Other, CopyTo, CMP, 2458 DAG.getBasicBlock(JT.Default)); 2459 2460 // Avoid emitting unnecessary branches to the next block. 2461 if (JT.MBB != NextBlock(SwitchBB)) 2462 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2463 DAG.getBasicBlock(JT.MBB)); 2464 2465 DAG.setRoot(BrCond); 2466 } else { 2467 // Avoid emitting unnecessary branches to the next block. 2468 if (JT.MBB != NextBlock(SwitchBB)) 2469 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2470 DAG.getBasicBlock(JT.MBB))); 2471 else 2472 DAG.setRoot(CopyTo); 2473 } 2474 } 2475 2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2477 /// variable if there exists one. 2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2479 SDValue &Chain) { 2480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2481 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2482 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2483 MachineFunction &MF = DAG.getMachineFunction(); 2484 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2485 MachineSDNode *Node = 2486 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2487 if (Global) { 2488 MachinePointerInfo MPInfo(Global); 2489 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2490 MachineMemOperand::MODereferenceable; 2491 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2492 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2493 DAG.setNodeMemRefs(Node, {MemRef}); 2494 } 2495 if (PtrTy != PtrMemTy) 2496 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2497 return SDValue(Node, 0); 2498 } 2499 2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2501 /// tail spliced into a stack protector check success bb. 2502 /// 2503 /// For a high level explanation of how this fits into the stack protector 2504 /// generation see the comment on the declaration of class 2505 /// StackProtectorDescriptor. 2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2507 MachineBasicBlock *ParentBB) { 2508 2509 // First create the loads to the guard/stack slot for the comparison. 2510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2511 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2512 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2513 2514 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2515 int FI = MFI.getStackProtectorIndex(); 2516 2517 SDValue Guard; 2518 SDLoc dl = getCurSDLoc(); 2519 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2520 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2521 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2522 2523 // Generate code to load the content of the guard slot. 2524 SDValue GuardVal = DAG.getLoad( 2525 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2526 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2527 MachineMemOperand::MOVolatile); 2528 2529 if (TLI.useStackGuardXorFP()) 2530 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2531 2532 // Retrieve guard check function, nullptr if instrumentation is inlined. 2533 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2534 // The target provides a guard check function to validate the guard value. 2535 // Generate a call to that function with the content of the guard slot as 2536 // argument. 2537 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2538 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2539 2540 TargetLowering::ArgListTy Args; 2541 TargetLowering::ArgListEntry Entry; 2542 Entry.Node = GuardVal; 2543 Entry.Ty = FnTy->getParamType(0); 2544 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2545 Entry.IsInReg = true; 2546 Args.push_back(Entry); 2547 2548 TargetLowering::CallLoweringInfo CLI(DAG); 2549 CLI.setDebugLoc(getCurSDLoc()) 2550 .setChain(DAG.getEntryNode()) 2551 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2552 getValue(GuardCheckFn), std::move(Args)); 2553 2554 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2555 DAG.setRoot(Result.second); 2556 return; 2557 } 2558 2559 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2560 // Otherwise, emit a volatile load to retrieve the stack guard value. 2561 SDValue Chain = DAG.getEntryNode(); 2562 if (TLI.useLoadStackGuardNode()) { 2563 Guard = getLoadStackGuard(DAG, dl, Chain); 2564 } else { 2565 const Value *IRGuard = TLI.getSDagStackGuard(M); 2566 SDValue GuardPtr = getValue(IRGuard); 2567 2568 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2569 MachinePointerInfo(IRGuard, 0), Align, 2570 MachineMemOperand::MOVolatile); 2571 } 2572 2573 // Perform the comparison via a subtract/getsetcc. 2574 EVT VT = Guard.getValueType(); 2575 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2576 2577 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2578 *DAG.getContext(), 2579 Sub.getValueType()), 2580 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2581 2582 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2583 // branch to failure MBB. 2584 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2585 MVT::Other, GuardVal.getOperand(0), 2586 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2587 // Otherwise branch to success MBB. 2588 SDValue Br = DAG.getNode(ISD::BR, dl, 2589 MVT::Other, BrCond, 2590 DAG.getBasicBlock(SPD.getSuccessMBB())); 2591 2592 DAG.setRoot(Br); 2593 } 2594 2595 /// Codegen the failure basic block for a stack protector check. 2596 /// 2597 /// A failure stack protector machine basic block consists simply of a call to 2598 /// __stack_chk_fail(). 2599 /// 2600 /// For a high level explanation of how this fits into the stack protector 2601 /// generation see the comment on the declaration of class 2602 /// StackProtectorDescriptor. 2603 void 2604 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2606 TargetLowering::MakeLibCallOptions CallOptions; 2607 CallOptions.setDiscardResult(true); 2608 SDValue Chain = 2609 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2610 None, CallOptions, getCurSDLoc()).second; 2611 // On PS4, the "return address" must still be within the calling function, 2612 // even if it's at the very end, so emit an explicit TRAP here. 2613 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2614 if (TM.getTargetTriple().isPS4CPU()) 2615 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2616 2617 DAG.setRoot(Chain); 2618 } 2619 2620 /// visitBitTestHeader - This function emits necessary code to produce value 2621 /// suitable for "bit tests" 2622 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2623 MachineBasicBlock *SwitchBB) { 2624 SDLoc dl = getCurSDLoc(); 2625 2626 // Subtract the minimum value. 2627 SDValue SwitchOp = getValue(B.SValue); 2628 EVT VT = SwitchOp.getValueType(); 2629 SDValue RangeSub = 2630 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2631 2632 // Determine the type of the test operands. 2633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2634 bool UsePtrType = false; 2635 if (!TLI.isTypeLegal(VT)) { 2636 UsePtrType = true; 2637 } else { 2638 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2639 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2640 // Switch table case range are encoded into series of masks. 2641 // Just use pointer type, it's guaranteed to fit. 2642 UsePtrType = true; 2643 break; 2644 } 2645 } 2646 SDValue Sub = RangeSub; 2647 if (UsePtrType) { 2648 VT = TLI.getPointerTy(DAG.getDataLayout()); 2649 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2650 } 2651 2652 B.RegVT = VT.getSimpleVT(); 2653 B.Reg = FuncInfo.CreateReg(B.RegVT); 2654 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2655 2656 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2657 2658 if (!B.OmitRangeCheck) 2659 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2660 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2661 SwitchBB->normalizeSuccProbs(); 2662 2663 SDValue Root = CopyTo; 2664 if (!B.OmitRangeCheck) { 2665 // Conditional branch to the default block. 2666 SDValue RangeCmp = DAG.getSetCC(dl, 2667 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2668 RangeSub.getValueType()), 2669 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2670 ISD::SETUGT); 2671 2672 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2673 DAG.getBasicBlock(B.Default)); 2674 } 2675 2676 // Avoid emitting unnecessary branches to the next block. 2677 if (MBB != NextBlock(SwitchBB)) 2678 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2679 2680 DAG.setRoot(Root); 2681 } 2682 2683 /// visitBitTestCase - this function produces one "bit test" 2684 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2685 MachineBasicBlock* NextMBB, 2686 BranchProbability BranchProbToNext, 2687 unsigned Reg, 2688 BitTestCase &B, 2689 MachineBasicBlock *SwitchBB) { 2690 SDLoc dl = getCurSDLoc(); 2691 MVT VT = BB.RegVT; 2692 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2693 SDValue Cmp; 2694 unsigned PopCount = countPopulation(B.Mask); 2695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2696 if (PopCount == 1) { 2697 // Testing for a single bit; just compare the shift count with what it 2698 // would need to be to shift a 1 bit in that position. 2699 Cmp = DAG.getSetCC( 2700 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2701 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2702 ISD::SETEQ); 2703 } else if (PopCount == BB.Range) { 2704 // There is only one zero bit in the range, test for it directly. 2705 Cmp = DAG.getSetCC( 2706 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2707 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2708 ISD::SETNE); 2709 } else { 2710 // Make desired shift 2711 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2712 DAG.getConstant(1, dl, VT), ShiftOp); 2713 2714 // Emit bit tests and jumps 2715 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2716 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2717 Cmp = DAG.getSetCC( 2718 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2719 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2720 } 2721 2722 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2723 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2724 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2725 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2726 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2727 // one as they are relative probabilities (and thus work more like weights), 2728 // and hence we need to normalize them to let the sum of them become one. 2729 SwitchBB->normalizeSuccProbs(); 2730 2731 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2732 MVT::Other, getControlRoot(), 2733 Cmp, DAG.getBasicBlock(B.TargetBB)); 2734 2735 // Avoid emitting unnecessary branches to the next block. 2736 if (NextMBB != NextBlock(SwitchBB)) 2737 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2738 DAG.getBasicBlock(NextMBB)); 2739 2740 DAG.setRoot(BrAnd); 2741 } 2742 2743 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2744 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2745 2746 // Retrieve successors. Look through artificial IR level blocks like 2747 // catchswitch for successors. 2748 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2749 const BasicBlock *EHPadBB = I.getSuccessor(1); 2750 2751 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2752 // have to do anything here to lower funclet bundles. 2753 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2754 LLVMContext::OB_funclet, 2755 LLVMContext::OB_cfguardtarget}) && 2756 "Cannot lower invokes with arbitrary operand bundles yet!"); 2757 2758 const Value *Callee(I.getCalledValue()); 2759 const Function *Fn = dyn_cast<Function>(Callee); 2760 if (isa<InlineAsm>(Callee)) 2761 visitInlineAsm(&I); 2762 else if (Fn && Fn->isIntrinsic()) { 2763 switch (Fn->getIntrinsicID()) { 2764 default: 2765 llvm_unreachable("Cannot invoke this intrinsic"); 2766 case Intrinsic::donothing: 2767 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2768 break; 2769 case Intrinsic::experimental_patchpoint_void: 2770 case Intrinsic::experimental_patchpoint_i64: 2771 visitPatchpoint(&I, EHPadBB); 2772 break; 2773 case Intrinsic::experimental_gc_statepoint: 2774 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2775 break; 2776 case Intrinsic::wasm_rethrow_in_catch: { 2777 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2778 // special because it can be invoked, so we manually lower it to a DAG 2779 // node here. 2780 SmallVector<SDValue, 8> Ops; 2781 Ops.push_back(getRoot()); // inchain 2782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2783 Ops.push_back( 2784 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2785 TLI.getPointerTy(DAG.getDataLayout()))); 2786 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2787 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2788 break; 2789 } 2790 } 2791 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2792 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2793 // Eventually we will support lowering the @llvm.experimental.deoptimize 2794 // intrinsic, and right now there are no plans to support other intrinsics 2795 // with deopt state. 2796 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2797 } else { 2798 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2799 } 2800 2801 // If the value of the invoke is used outside of its defining block, make it 2802 // available as a virtual register. 2803 // We already took care of the exported value for the statepoint instruction 2804 // during call to the LowerStatepoint. 2805 if (!isStatepoint(I)) { 2806 CopyToExportRegsIfNeeded(&I); 2807 } 2808 2809 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2810 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2811 BranchProbability EHPadBBProb = 2812 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2813 : BranchProbability::getZero(); 2814 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2815 2816 // Update successor info. 2817 addSuccessorWithProb(InvokeMBB, Return); 2818 for (auto &UnwindDest : UnwindDests) { 2819 UnwindDest.first->setIsEHPad(); 2820 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2821 } 2822 InvokeMBB->normalizeSuccProbs(); 2823 2824 // Drop into normal successor. 2825 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2826 DAG.getBasicBlock(Return))); 2827 } 2828 2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2830 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2831 2832 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2833 // have to do anything here to lower funclet bundles. 2834 assert(!I.hasOperandBundlesOtherThan( 2835 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2836 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2837 2838 assert(isa<InlineAsm>(I.getCalledValue()) && 2839 "Only know how to handle inlineasm callbr"); 2840 visitInlineAsm(&I); 2841 2842 // Retrieve successors. 2843 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2844 2845 // Update successor info. 2846 addSuccessorWithProb(CallBrMBB, Return); 2847 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2848 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2849 addSuccessorWithProb(CallBrMBB, Target); 2850 } 2851 CallBrMBB->normalizeSuccProbs(); 2852 2853 // Drop into default successor. 2854 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2855 MVT::Other, getControlRoot(), 2856 DAG.getBasicBlock(Return))); 2857 } 2858 2859 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2860 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2861 } 2862 2863 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2864 assert(FuncInfo.MBB->isEHPad() && 2865 "Call to landingpad not in landing pad!"); 2866 2867 // If there aren't registers to copy the values into (e.g., during SjLj 2868 // exceptions), then don't bother to create these DAG nodes. 2869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2870 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2871 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2872 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2873 return; 2874 2875 // If landingpad's return type is token type, we don't create DAG nodes 2876 // for its exception pointer and selector value. The extraction of exception 2877 // pointer or selector value from token type landingpads is not currently 2878 // supported. 2879 if (LP.getType()->isTokenTy()) 2880 return; 2881 2882 SmallVector<EVT, 2> ValueVTs; 2883 SDLoc dl = getCurSDLoc(); 2884 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2885 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2886 2887 // Get the two live-in registers as SDValues. The physregs have already been 2888 // copied into virtual registers. 2889 SDValue Ops[2]; 2890 if (FuncInfo.ExceptionPointerVirtReg) { 2891 Ops[0] = DAG.getZExtOrTrunc( 2892 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2893 FuncInfo.ExceptionPointerVirtReg, 2894 TLI.getPointerTy(DAG.getDataLayout())), 2895 dl, ValueVTs[0]); 2896 } else { 2897 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2898 } 2899 Ops[1] = DAG.getZExtOrTrunc( 2900 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2901 FuncInfo.ExceptionSelectorVirtReg, 2902 TLI.getPointerTy(DAG.getDataLayout())), 2903 dl, ValueVTs[1]); 2904 2905 // Merge into one. 2906 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2907 DAG.getVTList(ValueVTs), Ops); 2908 setValue(&LP, Res); 2909 } 2910 2911 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2912 MachineBasicBlock *Last) { 2913 // Update JTCases. 2914 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2915 if (SL->JTCases[i].first.HeaderBB == First) 2916 SL->JTCases[i].first.HeaderBB = Last; 2917 2918 // Update BitTestCases. 2919 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2920 if (SL->BitTestCases[i].Parent == First) 2921 SL->BitTestCases[i].Parent = Last; 2922 } 2923 2924 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2925 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2926 2927 // Update machine-CFG edges with unique successors. 2928 SmallSet<BasicBlock*, 32> Done; 2929 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2930 BasicBlock *BB = I.getSuccessor(i); 2931 bool Inserted = Done.insert(BB).second; 2932 if (!Inserted) 2933 continue; 2934 2935 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2936 addSuccessorWithProb(IndirectBrMBB, Succ); 2937 } 2938 IndirectBrMBB->normalizeSuccProbs(); 2939 2940 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2941 MVT::Other, getControlRoot(), 2942 getValue(I.getAddress()))); 2943 } 2944 2945 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2946 if (!DAG.getTarget().Options.TrapUnreachable) 2947 return; 2948 2949 // We may be able to ignore unreachable behind a noreturn call. 2950 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2951 const BasicBlock &BB = *I.getParent(); 2952 if (&I != &BB.front()) { 2953 BasicBlock::const_iterator PredI = 2954 std::prev(BasicBlock::const_iterator(&I)); 2955 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2956 if (Call->doesNotReturn()) 2957 return; 2958 } 2959 } 2960 } 2961 2962 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2963 } 2964 2965 void SelectionDAGBuilder::visitFSub(const User &I) { 2966 // -0.0 - X --> fneg 2967 Type *Ty = I.getType(); 2968 if (isa<Constant>(I.getOperand(0)) && 2969 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2970 SDValue Op2 = getValue(I.getOperand(1)); 2971 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2972 Op2.getValueType(), Op2)); 2973 return; 2974 } 2975 2976 visitBinary(I, ISD::FSUB); 2977 } 2978 2979 /// Checks if the given instruction performs a vector reduction, in which case 2980 /// we have the freedom to alter the elements in the result as long as the 2981 /// reduction of them stays unchanged. 2982 static bool isVectorReductionOp(const User *I) { 2983 const Instruction *Inst = dyn_cast<Instruction>(I); 2984 if (!Inst || !Inst->getType()->isVectorTy()) 2985 return false; 2986 2987 auto OpCode = Inst->getOpcode(); 2988 switch (OpCode) { 2989 case Instruction::Add: 2990 case Instruction::Mul: 2991 case Instruction::And: 2992 case Instruction::Or: 2993 case Instruction::Xor: 2994 break; 2995 case Instruction::FAdd: 2996 case Instruction::FMul: 2997 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2998 if (FPOp->getFastMathFlags().isFast()) 2999 break; 3000 LLVM_FALLTHROUGH; 3001 default: 3002 return false; 3003 } 3004 3005 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3006 // Ensure the reduction size is a power of 2. 3007 if (!isPowerOf2_32(ElemNum)) 3008 return false; 3009 3010 unsigned ElemNumToReduce = ElemNum; 3011 3012 // Do DFS search on the def-use chain from the given instruction. We only 3013 // allow four kinds of operations during the search until we reach the 3014 // instruction that extracts the first element from the vector: 3015 // 3016 // 1. The reduction operation of the same opcode as the given instruction. 3017 // 3018 // 2. PHI node. 3019 // 3020 // 3. ShuffleVector instruction together with a reduction operation that 3021 // does a partial reduction. 3022 // 3023 // 4. ExtractElement that extracts the first element from the vector, and we 3024 // stop searching the def-use chain here. 3025 // 3026 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3027 // from 1-3 to the stack to continue the DFS. The given instruction is not 3028 // a reduction operation if we meet any other instructions other than those 3029 // listed above. 3030 3031 SmallVector<const User *, 16> UsersToVisit{Inst}; 3032 SmallPtrSet<const User *, 16> Visited; 3033 bool ReduxExtracted = false; 3034 3035 while (!UsersToVisit.empty()) { 3036 auto User = UsersToVisit.back(); 3037 UsersToVisit.pop_back(); 3038 if (!Visited.insert(User).second) 3039 continue; 3040 3041 for (const auto &U : User->users()) { 3042 auto Inst = dyn_cast<Instruction>(U); 3043 if (!Inst) 3044 return false; 3045 3046 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3047 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3048 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3049 return false; 3050 UsersToVisit.push_back(U); 3051 } else if (const ShuffleVectorInst *ShufInst = 3052 dyn_cast<ShuffleVectorInst>(U)) { 3053 // Detect the following pattern: A ShuffleVector instruction together 3054 // with a reduction that do partial reduction on the first and second 3055 // ElemNumToReduce / 2 elements, and store the result in 3056 // ElemNumToReduce / 2 elements in another vector. 3057 3058 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3059 if (ResultElements < ElemNum) 3060 return false; 3061 3062 if (ElemNumToReduce == 1) 3063 return false; 3064 if (!isa<UndefValue>(U->getOperand(1))) 3065 return false; 3066 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3067 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3068 return false; 3069 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3070 if (ShufInst->getMaskValue(i) != -1) 3071 return false; 3072 3073 // There is only one user of this ShuffleVector instruction, which 3074 // must be a reduction operation. 3075 if (!U->hasOneUse()) 3076 return false; 3077 3078 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3079 if (!U2 || U2->getOpcode() != OpCode) 3080 return false; 3081 3082 // Check operands of the reduction operation. 3083 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3084 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3085 UsersToVisit.push_back(U2); 3086 ElemNumToReduce /= 2; 3087 } else 3088 return false; 3089 } else if (isa<ExtractElementInst>(U)) { 3090 // At this moment we should have reduced all elements in the vector. 3091 if (ElemNumToReduce != 1) 3092 return false; 3093 3094 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3095 if (!Val || !Val->isZero()) 3096 return false; 3097 3098 ReduxExtracted = true; 3099 } else 3100 return false; 3101 } 3102 } 3103 return ReduxExtracted; 3104 } 3105 3106 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3107 SDNodeFlags Flags; 3108 3109 SDValue Op = getValue(I.getOperand(0)); 3110 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3111 Op, Flags); 3112 setValue(&I, UnNodeValue); 3113 } 3114 3115 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3116 SDNodeFlags Flags; 3117 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3118 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3119 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3120 } 3121 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3122 Flags.setExact(ExactOp->isExact()); 3123 } 3124 if (isVectorReductionOp(&I)) { 3125 Flags.setVectorReduction(true); 3126 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3127 } 3128 3129 SDValue Op1 = getValue(I.getOperand(0)); 3130 SDValue Op2 = getValue(I.getOperand(1)); 3131 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3132 Op1, Op2, Flags); 3133 setValue(&I, BinNodeValue); 3134 } 3135 3136 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3137 SDValue Op1 = getValue(I.getOperand(0)); 3138 SDValue Op2 = getValue(I.getOperand(1)); 3139 3140 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3141 Op1.getValueType(), DAG.getDataLayout()); 3142 3143 // Coerce the shift amount to the right type if we can. 3144 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3145 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3146 unsigned Op2Size = Op2.getValueSizeInBits(); 3147 SDLoc DL = getCurSDLoc(); 3148 3149 // If the operand is smaller than the shift count type, promote it. 3150 if (ShiftSize > Op2Size) 3151 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3152 3153 // If the operand is larger than the shift count type but the shift 3154 // count type has enough bits to represent any shift value, truncate 3155 // it now. This is a common case and it exposes the truncate to 3156 // optimization early. 3157 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3158 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3159 // Otherwise we'll need to temporarily settle for some other convenient 3160 // type. Type legalization will make adjustments once the shiftee is split. 3161 else 3162 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3163 } 3164 3165 bool nuw = false; 3166 bool nsw = false; 3167 bool exact = false; 3168 3169 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3170 3171 if (const OverflowingBinaryOperator *OFBinOp = 3172 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3173 nuw = OFBinOp->hasNoUnsignedWrap(); 3174 nsw = OFBinOp->hasNoSignedWrap(); 3175 } 3176 if (const PossiblyExactOperator *ExactOp = 3177 dyn_cast<const PossiblyExactOperator>(&I)) 3178 exact = ExactOp->isExact(); 3179 } 3180 SDNodeFlags Flags; 3181 Flags.setExact(exact); 3182 Flags.setNoSignedWrap(nsw); 3183 Flags.setNoUnsignedWrap(nuw); 3184 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3185 Flags); 3186 setValue(&I, Res); 3187 } 3188 3189 void SelectionDAGBuilder::visitSDiv(const User &I) { 3190 SDValue Op1 = getValue(I.getOperand(0)); 3191 SDValue Op2 = getValue(I.getOperand(1)); 3192 3193 SDNodeFlags Flags; 3194 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3195 cast<PossiblyExactOperator>(&I)->isExact()); 3196 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3197 Op2, Flags)); 3198 } 3199 3200 void SelectionDAGBuilder::visitICmp(const User &I) { 3201 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3202 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3203 predicate = IC->getPredicate(); 3204 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3205 predicate = ICmpInst::Predicate(IC->getPredicate()); 3206 SDValue Op1 = getValue(I.getOperand(0)); 3207 SDValue Op2 = getValue(I.getOperand(1)); 3208 ISD::CondCode Opcode = getICmpCondCode(predicate); 3209 3210 auto &TLI = DAG.getTargetLoweringInfo(); 3211 EVT MemVT = 3212 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3213 3214 // If a pointer's DAG type is larger than its memory type then the DAG values 3215 // are zero-extended. This breaks signed comparisons so truncate back to the 3216 // underlying type before doing the compare. 3217 if (Op1.getValueType() != MemVT) { 3218 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3219 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3220 } 3221 3222 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3223 I.getType()); 3224 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3225 } 3226 3227 void SelectionDAGBuilder::visitFCmp(const User &I) { 3228 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3229 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3230 predicate = FC->getPredicate(); 3231 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3232 predicate = FCmpInst::Predicate(FC->getPredicate()); 3233 SDValue Op1 = getValue(I.getOperand(0)); 3234 SDValue Op2 = getValue(I.getOperand(1)); 3235 3236 ISD::CondCode Condition = getFCmpCondCode(predicate); 3237 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3238 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3239 Condition = getFCmpCodeWithoutNaN(Condition); 3240 3241 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3242 I.getType()); 3243 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3244 } 3245 3246 // Check if the condition of the select has one use or two users that are both 3247 // selects with the same condition. 3248 static bool hasOnlySelectUsers(const Value *Cond) { 3249 return llvm::all_of(Cond->users(), [](const Value *V) { 3250 return isa<SelectInst>(V); 3251 }); 3252 } 3253 3254 void SelectionDAGBuilder::visitSelect(const User &I) { 3255 SmallVector<EVT, 4> ValueVTs; 3256 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3257 ValueVTs); 3258 unsigned NumValues = ValueVTs.size(); 3259 if (NumValues == 0) return; 3260 3261 SmallVector<SDValue, 4> Values(NumValues); 3262 SDValue Cond = getValue(I.getOperand(0)); 3263 SDValue LHSVal = getValue(I.getOperand(1)); 3264 SDValue RHSVal = getValue(I.getOperand(2)); 3265 auto BaseOps = {Cond}; 3266 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3267 ISD::VSELECT : ISD::SELECT; 3268 3269 bool IsUnaryAbs = false; 3270 3271 // Min/max matching is only viable if all output VTs are the same. 3272 if (is_splat(ValueVTs)) { 3273 EVT VT = ValueVTs[0]; 3274 LLVMContext &Ctx = *DAG.getContext(); 3275 auto &TLI = DAG.getTargetLoweringInfo(); 3276 3277 // We care about the legality of the operation after it has been type 3278 // legalized. 3279 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3280 VT = TLI.getTypeToTransformTo(Ctx, VT); 3281 3282 // If the vselect is legal, assume we want to leave this as a vector setcc + 3283 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3284 // min/max is legal on the scalar type. 3285 bool UseScalarMinMax = VT.isVector() && 3286 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3287 3288 Value *LHS, *RHS; 3289 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3290 ISD::NodeType Opc = ISD::DELETED_NODE; 3291 switch (SPR.Flavor) { 3292 case SPF_UMAX: Opc = ISD::UMAX; break; 3293 case SPF_UMIN: Opc = ISD::UMIN; break; 3294 case SPF_SMAX: Opc = ISD::SMAX; break; 3295 case SPF_SMIN: Opc = ISD::SMIN; break; 3296 case SPF_FMINNUM: 3297 switch (SPR.NaNBehavior) { 3298 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3299 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3300 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3301 case SPNB_RETURNS_ANY: { 3302 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3303 Opc = ISD::FMINNUM; 3304 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3305 Opc = ISD::FMINIMUM; 3306 else if (UseScalarMinMax) 3307 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3308 ISD::FMINNUM : ISD::FMINIMUM; 3309 break; 3310 } 3311 } 3312 break; 3313 case SPF_FMAXNUM: 3314 switch (SPR.NaNBehavior) { 3315 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3316 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3317 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3318 case SPNB_RETURNS_ANY: 3319 3320 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3321 Opc = ISD::FMAXNUM; 3322 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3323 Opc = ISD::FMAXIMUM; 3324 else if (UseScalarMinMax) 3325 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3326 ISD::FMAXNUM : ISD::FMAXIMUM; 3327 break; 3328 } 3329 break; 3330 case SPF_ABS: 3331 IsUnaryAbs = true; 3332 Opc = ISD::ABS; 3333 break; 3334 case SPF_NABS: 3335 // TODO: we need to produce sub(0, abs(X)). 3336 default: break; 3337 } 3338 3339 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3340 (TLI.isOperationLegalOrCustom(Opc, VT) || 3341 (UseScalarMinMax && 3342 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3343 // If the underlying comparison instruction is used by any other 3344 // instruction, the consumed instructions won't be destroyed, so it is 3345 // not profitable to convert to a min/max. 3346 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3347 OpCode = Opc; 3348 LHSVal = getValue(LHS); 3349 RHSVal = getValue(RHS); 3350 BaseOps = {}; 3351 } 3352 3353 if (IsUnaryAbs) { 3354 OpCode = Opc; 3355 LHSVal = getValue(LHS); 3356 BaseOps = {}; 3357 } 3358 } 3359 3360 if (IsUnaryAbs) { 3361 for (unsigned i = 0; i != NumValues; ++i) { 3362 Values[i] = 3363 DAG.getNode(OpCode, getCurSDLoc(), 3364 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3365 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3366 } 3367 } else { 3368 for (unsigned i = 0; i != NumValues; ++i) { 3369 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3370 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3371 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3372 Values[i] = DAG.getNode( 3373 OpCode, getCurSDLoc(), 3374 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3375 } 3376 } 3377 3378 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3379 DAG.getVTList(ValueVTs), Values)); 3380 } 3381 3382 void SelectionDAGBuilder::visitTrunc(const User &I) { 3383 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3384 SDValue N = getValue(I.getOperand(0)); 3385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3386 I.getType()); 3387 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3388 } 3389 3390 void SelectionDAGBuilder::visitZExt(const User &I) { 3391 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3392 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3393 SDValue N = getValue(I.getOperand(0)); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3397 } 3398 3399 void SelectionDAGBuilder::visitSExt(const User &I) { 3400 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3401 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3402 SDValue N = getValue(I.getOperand(0)); 3403 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3404 I.getType()); 3405 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3406 } 3407 3408 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3409 // FPTrunc is never a no-op cast, no need to check 3410 SDValue N = getValue(I.getOperand(0)); 3411 SDLoc dl = getCurSDLoc(); 3412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3413 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3414 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3415 DAG.getTargetConstant( 3416 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3417 } 3418 3419 void SelectionDAGBuilder::visitFPExt(const User &I) { 3420 // FPExt is never a no-op cast, no need to check 3421 SDValue N = getValue(I.getOperand(0)); 3422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3423 I.getType()); 3424 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3425 } 3426 3427 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3428 // FPToUI is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3436 // FPToSI is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3444 // UIToFP is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3452 // SIToFP is never a no-op cast, no need to check 3453 SDValue N = getValue(I.getOperand(0)); 3454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3455 I.getType()); 3456 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3457 } 3458 3459 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3460 // What to do depends on the size of the integer and the size of the pointer. 3461 // We can either truncate, zero extend, or no-op, accordingly. 3462 SDValue N = getValue(I.getOperand(0)); 3463 auto &TLI = DAG.getTargetLoweringInfo(); 3464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3465 I.getType()); 3466 EVT PtrMemVT = 3467 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3468 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3469 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3470 setValue(&I, N); 3471 } 3472 3473 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3474 // What to do depends on the size of the integer and the size of the pointer. 3475 // We can either truncate, zero extend, or no-op, accordingly. 3476 SDValue N = getValue(I.getOperand(0)); 3477 auto &TLI = DAG.getTargetLoweringInfo(); 3478 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3479 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3480 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3481 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3482 setValue(&I, N); 3483 } 3484 3485 void SelectionDAGBuilder::visitBitCast(const User &I) { 3486 SDValue N = getValue(I.getOperand(0)); 3487 SDLoc dl = getCurSDLoc(); 3488 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3489 I.getType()); 3490 3491 // BitCast assures us that source and destination are the same size so this is 3492 // either a BITCAST or a no-op. 3493 if (DestVT != N.getValueType()) 3494 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3495 DestVT, N)); // convert types. 3496 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3497 // might fold any kind of constant expression to an integer constant and that 3498 // is not what we are looking for. Only recognize a bitcast of a genuine 3499 // constant integer as an opaque constant. 3500 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3501 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3502 /*isOpaque*/true)); 3503 else 3504 setValue(&I, N); // noop cast. 3505 } 3506 3507 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3509 const Value *SV = I.getOperand(0); 3510 SDValue N = getValue(SV); 3511 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3512 3513 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3514 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3515 3516 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3517 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3518 3519 setValue(&I, N); 3520 } 3521 3522 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3524 SDValue InVec = getValue(I.getOperand(0)); 3525 SDValue InVal = getValue(I.getOperand(1)); 3526 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3527 TLI.getVectorIdxTy(DAG.getDataLayout())); 3528 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3529 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3530 InVec, InVal, InIdx)); 3531 } 3532 3533 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3535 SDValue InVec = getValue(I.getOperand(0)); 3536 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3537 TLI.getVectorIdxTy(DAG.getDataLayout())); 3538 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3539 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3540 InVec, InIdx)); 3541 } 3542 3543 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3544 SDValue Src1 = getValue(I.getOperand(0)); 3545 SDValue Src2 = getValue(I.getOperand(1)); 3546 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3547 SDLoc DL = getCurSDLoc(); 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3550 EVT SrcVT = Src1.getValueType(); 3551 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3552 3553 if (MaskV->isNullValue() && VT.isScalableVector()) { 3554 // Canonical splat form of first element of first input vector. 3555 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3556 SrcVT.getScalarType(), Src1, 3557 DAG.getConstant(0, DL, 3558 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3559 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3560 return; 3561 } 3562 3563 // For now, we only handle splats for scalable vectors. 3564 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3565 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3566 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3567 3568 SmallVector<int, 8> Mask; 3569 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3570 unsigned MaskNumElts = Mask.size(); 3571 3572 if (SrcNumElts == MaskNumElts) { 3573 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3574 return; 3575 } 3576 3577 // Normalize the shuffle vector since mask and vector length don't match. 3578 if (SrcNumElts < MaskNumElts) { 3579 // Mask is longer than the source vectors. We can use concatenate vector to 3580 // make the mask and vectors lengths match. 3581 3582 if (MaskNumElts % SrcNumElts == 0) { 3583 // Mask length is a multiple of the source vector length. 3584 // Check if the shuffle is some kind of concatenation of the input 3585 // vectors. 3586 unsigned NumConcat = MaskNumElts / SrcNumElts; 3587 bool IsConcat = true; 3588 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3589 for (unsigned i = 0; i != MaskNumElts; ++i) { 3590 int Idx = Mask[i]; 3591 if (Idx < 0) 3592 continue; 3593 // Ensure the indices in each SrcVT sized piece are sequential and that 3594 // the same source is used for the whole piece. 3595 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3596 (ConcatSrcs[i / SrcNumElts] >= 0 && 3597 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3598 IsConcat = false; 3599 break; 3600 } 3601 // Remember which source this index came from. 3602 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3603 } 3604 3605 // The shuffle is concatenating multiple vectors together. Just emit 3606 // a CONCAT_VECTORS operation. 3607 if (IsConcat) { 3608 SmallVector<SDValue, 8> ConcatOps; 3609 for (auto Src : ConcatSrcs) { 3610 if (Src < 0) 3611 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3612 else if (Src == 0) 3613 ConcatOps.push_back(Src1); 3614 else 3615 ConcatOps.push_back(Src2); 3616 } 3617 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3618 return; 3619 } 3620 } 3621 3622 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3623 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3624 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3625 PaddedMaskNumElts); 3626 3627 // Pad both vectors with undefs to make them the same length as the mask. 3628 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3629 3630 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3631 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3632 MOps1[0] = Src1; 3633 MOps2[0] = Src2; 3634 3635 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3636 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3637 3638 // Readjust mask for new input vector length. 3639 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3640 for (unsigned i = 0; i != MaskNumElts; ++i) { 3641 int Idx = Mask[i]; 3642 if (Idx >= (int)SrcNumElts) 3643 Idx -= SrcNumElts - PaddedMaskNumElts; 3644 MappedOps[i] = Idx; 3645 } 3646 3647 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3648 3649 // If the concatenated vector was padded, extract a subvector with the 3650 // correct number of elements. 3651 if (MaskNumElts != PaddedMaskNumElts) 3652 Result = DAG.getNode( 3653 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3654 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3655 3656 setValue(&I, Result); 3657 return; 3658 } 3659 3660 if (SrcNumElts > MaskNumElts) { 3661 // Analyze the access pattern of the vector to see if we can extract 3662 // two subvectors and do the shuffle. 3663 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3664 bool CanExtract = true; 3665 for (int Idx : Mask) { 3666 unsigned Input = 0; 3667 if (Idx < 0) 3668 continue; 3669 3670 if (Idx >= (int)SrcNumElts) { 3671 Input = 1; 3672 Idx -= SrcNumElts; 3673 } 3674 3675 // If all the indices come from the same MaskNumElts sized portion of 3676 // the sources we can use extract. Also make sure the extract wouldn't 3677 // extract past the end of the source. 3678 int NewStartIdx = alignDown(Idx, MaskNumElts); 3679 if (NewStartIdx + MaskNumElts > SrcNumElts || 3680 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3681 CanExtract = false; 3682 // Make sure we always update StartIdx as we use it to track if all 3683 // elements are undef. 3684 StartIdx[Input] = NewStartIdx; 3685 } 3686 3687 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3688 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3689 return; 3690 } 3691 if (CanExtract) { 3692 // Extract appropriate subvector and generate a vector shuffle 3693 for (unsigned Input = 0; Input < 2; ++Input) { 3694 SDValue &Src = Input == 0 ? Src1 : Src2; 3695 if (StartIdx[Input] < 0) 3696 Src = DAG.getUNDEF(VT); 3697 else { 3698 Src = DAG.getNode( 3699 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3700 DAG.getConstant(StartIdx[Input], DL, 3701 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3702 } 3703 } 3704 3705 // Calculate new mask. 3706 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3707 for (int &Idx : MappedOps) { 3708 if (Idx >= (int)SrcNumElts) 3709 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3710 else if (Idx >= 0) 3711 Idx -= StartIdx[0]; 3712 } 3713 3714 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3715 return; 3716 } 3717 } 3718 3719 // We can't use either concat vectors or extract subvectors so fall back to 3720 // replacing the shuffle with extract and build vector. 3721 // to insert and build vector. 3722 EVT EltVT = VT.getVectorElementType(); 3723 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3724 SmallVector<SDValue,8> Ops; 3725 for (int Idx : Mask) { 3726 SDValue Res; 3727 3728 if (Idx < 0) { 3729 Res = DAG.getUNDEF(EltVT); 3730 } else { 3731 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3732 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3733 3734 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3735 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3736 } 3737 3738 Ops.push_back(Res); 3739 } 3740 3741 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3742 } 3743 3744 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3745 ArrayRef<unsigned> Indices; 3746 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3747 Indices = IV->getIndices(); 3748 else 3749 Indices = cast<ConstantExpr>(&I)->getIndices(); 3750 3751 const Value *Op0 = I.getOperand(0); 3752 const Value *Op1 = I.getOperand(1); 3753 Type *AggTy = I.getType(); 3754 Type *ValTy = Op1->getType(); 3755 bool IntoUndef = isa<UndefValue>(Op0); 3756 bool FromUndef = isa<UndefValue>(Op1); 3757 3758 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3759 3760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3761 SmallVector<EVT, 4> AggValueVTs; 3762 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3763 SmallVector<EVT, 4> ValValueVTs; 3764 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3765 3766 unsigned NumAggValues = AggValueVTs.size(); 3767 unsigned NumValValues = ValValueVTs.size(); 3768 SmallVector<SDValue, 4> Values(NumAggValues); 3769 3770 // Ignore an insertvalue that produces an empty object 3771 if (!NumAggValues) { 3772 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3773 return; 3774 } 3775 3776 SDValue Agg = getValue(Op0); 3777 unsigned i = 0; 3778 // Copy the beginning value(s) from the original aggregate. 3779 for (; i != LinearIndex; ++i) 3780 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3781 SDValue(Agg.getNode(), Agg.getResNo() + i); 3782 // Copy values from the inserted value(s). 3783 if (NumValValues) { 3784 SDValue Val = getValue(Op1); 3785 for (; i != LinearIndex + NumValValues; ++i) 3786 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3787 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3788 } 3789 // Copy remaining value(s) from the original aggregate. 3790 for (; i != NumAggValues; ++i) 3791 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3792 SDValue(Agg.getNode(), Agg.getResNo() + i); 3793 3794 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3795 DAG.getVTList(AggValueVTs), Values)); 3796 } 3797 3798 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3799 ArrayRef<unsigned> Indices; 3800 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3801 Indices = EV->getIndices(); 3802 else 3803 Indices = cast<ConstantExpr>(&I)->getIndices(); 3804 3805 const Value *Op0 = I.getOperand(0); 3806 Type *AggTy = Op0->getType(); 3807 Type *ValTy = I.getType(); 3808 bool OutOfUndef = isa<UndefValue>(Op0); 3809 3810 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3811 3812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3813 SmallVector<EVT, 4> ValValueVTs; 3814 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3815 3816 unsigned NumValValues = ValValueVTs.size(); 3817 3818 // Ignore a extractvalue that produces an empty object 3819 if (!NumValValues) { 3820 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3821 return; 3822 } 3823 3824 SmallVector<SDValue, 4> Values(NumValValues); 3825 3826 SDValue Agg = getValue(Op0); 3827 // Copy out the selected value(s). 3828 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3829 Values[i - LinearIndex] = 3830 OutOfUndef ? 3831 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3832 SDValue(Agg.getNode(), Agg.getResNo() + i); 3833 3834 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3835 DAG.getVTList(ValValueVTs), Values)); 3836 } 3837 3838 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3839 Value *Op0 = I.getOperand(0); 3840 // Note that the pointer operand may be a vector of pointers. Take the scalar 3841 // element which holds a pointer. 3842 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3843 SDValue N = getValue(Op0); 3844 SDLoc dl = getCurSDLoc(); 3845 auto &TLI = DAG.getTargetLoweringInfo(); 3846 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3847 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3848 3849 // Normalize Vector GEP - all scalar operands should be converted to the 3850 // splat vector. 3851 unsigned VectorWidth = I.getType()->isVectorTy() ? 3852 I.getType()->getVectorNumElements() : 0; 3853 3854 if (VectorWidth && !N.getValueType().isVector()) { 3855 LLVMContext &Context = *DAG.getContext(); 3856 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3857 N = DAG.getSplatBuildVector(VT, dl, N); 3858 } 3859 3860 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3861 GTI != E; ++GTI) { 3862 const Value *Idx = GTI.getOperand(); 3863 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3864 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3865 if (Field) { 3866 // N = N + Offset 3867 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3868 3869 // In an inbounds GEP with an offset that is nonnegative even when 3870 // interpreted as signed, assume there is no unsigned overflow. 3871 SDNodeFlags Flags; 3872 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3873 Flags.setNoUnsignedWrap(true); 3874 3875 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3876 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3877 } 3878 } else { 3879 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3880 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3881 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3882 3883 // If this is a scalar constant or a splat vector of constants, 3884 // handle it quickly. 3885 const auto *C = dyn_cast<Constant>(Idx); 3886 if (C && isa<VectorType>(C->getType())) 3887 C = C->getSplatValue(); 3888 3889 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3890 if (CI->isZero()) 3891 continue; 3892 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3893 LLVMContext &Context = *DAG.getContext(); 3894 SDValue OffsVal = VectorWidth ? 3895 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3896 DAG.getConstant(Offs, dl, IdxTy); 3897 3898 // In an inbounds GEP with an offset that is nonnegative even when 3899 // interpreted as signed, assume there is no unsigned overflow. 3900 SDNodeFlags Flags; 3901 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3902 Flags.setNoUnsignedWrap(true); 3903 3904 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3905 3906 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3907 continue; 3908 } 3909 3910 // N = N + Idx * ElementSize; 3911 SDValue IdxN = getValue(Idx); 3912 3913 if (!IdxN.getValueType().isVector() && VectorWidth) { 3914 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3915 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3916 } 3917 3918 // If the index is smaller or larger than intptr_t, truncate or extend 3919 // it. 3920 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3921 3922 // If this is a multiply by a power of two, turn it into a shl 3923 // immediately. This is a very common case. 3924 if (ElementSize != 1) { 3925 if (ElementSize.isPowerOf2()) { 3926 unsigned Amt = ElementSize.logBase2(); 3927 IdxN = DAG.getNode(ISD::SHL, dl, 3928 N.getValueType(), IdxN, 3929 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3930 } else { 3931 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3932 IdxN.getValueType()); 3933 IdxN = DAG.getNode(ISD::MUL, dl, 3934 N.getValueType(), IdxN, Scale); 3935 } 3936 } 3937 3938 N = DAG.getNode(ISD::ADD, dl, 3939 N.getValueType(), N, IdxN); 3940 } 3941 } 3942 3943 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3944 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3945 3946 setValue(&I, N); 3947 } 3948 3949 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3950 // If this is a fixed sized alloca in the entry block of the function, 3951 // allocate it statically on the stack. 3952 if (FuncInfo.StaticAllocaMap.count(&I)) 3953 return; // getValue will auto-populate this. 3954 3955 SDLoc dl = getCurSDLoc(); 3956 Type *Ty = I.getAllocatedType(); 3957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3958 auto &DL = DAG.getDataLayout(); 3959 uint64_t TySize = DL.getTypeAllocSize(Ty); 3960 unsigned Align = 3961 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3962 3963 SDValue AllocSize = getValue(I.getArraySize()); 3964 3965 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3966 if (AllocSize.getValueType() != IntPtr) 3967 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3968 3969 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3970 AllocSize, 3971 DAG.getConstant(TySize, dl, IntPtr)); 3972 3973 // Handle alignment. If the requested alignment is less than or equal to 3974 // the stack alignment, ignore it. If the size is greater than or equal to 3975 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3976 unsigned StackAlign = 3977 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3978 if (Align <= StackAlign) 3979 Align = 0; 3980 3981 // Round the size of the allocation up to the stack alignment size 3982 // by add SA-1 to the size. This doesn't overflow because we're computing 3983 // an address inside an alloca. 3984 SDNodeFlags Flags; 3985 Flags.setNoUnsignedWrap(true); 3986 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3987 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3988 3989 // Mask out the low bits for alignment purposes. 3990 AllocSize = 3991 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3992 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3993 3994 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3995 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3996 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3997 setValue(&I, DSA); 3998 DAG.setRoot(DSA.getValue(1)); 3999 4000 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4001 } 4002 4003 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4004 if (I.isAtomic()) 4005 return visitAtomicLoad(I); 4006 4007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4008 const Value *SV = I.getOperand(0); 4009 if (TLI.supportSwiftError()) { 4010 // Swifterror values can come from either a function parameter with 4011 // swifterror attribute or an alloca with swifterror attribute. 4012 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4013 if (Arg->hasSwiftErrorAttr()) 4014 return visitLoadFromSwiftError(I); 4015 } 4016 4017 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4018 if (Alloca->isSwiftError()) 4019 return visitLoadFromSwiftError(I); 4020 } 4021 } 4022 4023 SDValue Ptr = getValue(SV); 4024 4025 Type *Ty = I.getType(); 4026 4027 bool isVolatile = I.isVolatile(); 4028 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); 4029 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); 4030 bool isDereferenceable = 4031 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4032 unsigned Alignment = I.getAlignment(); 4033 4034 AAMDNodes AAInfo; 4035 I.getAAMetadata(AAInfo); 4036 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4037 4038 SmallVector<EVT, 4> ValueVTs, MemVTs; 4039 SmallVector<uint64_t, 4> Offsets; 4040 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4041 unsigned NumValues = ValueVTs.size(); 4042 if (NumValues == 0) 4043 return; 4044 4045 SDValue Root; 4046 bool ConstantMemory = false; 4047 if (isVolatile || NumValues > MaxParallelChains) 4048 // Serialize volatile loads with other side effects. 4049 Root = getRoot(); 4050 else if (AA && 4051 AA->pointsToConstantMemory(MemoryLocation( 4052 SV, 4053 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4054 AAInfo))) { 4055 // Do not serialize (non-volatile) loads of constant memory with anything. 4056 Root = DAG.getEntryNode(); 4057 ConstantMemory = true; 4058 } else { 4059 // Do not serialize non-volatile loads against each other. 4060 Root = DAG.getRoot(); 4061 } 4062 4063 SDLoc dl = getCurSDLoc(); 4064 4065 if (isVolatile) 4066 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4067 4068 // An aggregate load cannot wrap around the address space, so offsets to its 4069 // parts don't wrap either. 4070 SDNodeFlags Flags; 4071 Flags.setNoUnsignedWrap(true); 4072 4073 SmallVector<SDValue, 4> Values(NumValues); 4074 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4075 EVT PtrVT = Ptr.getValueType(); 4076 unsigned ChainI = 0; 4077 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4078 // Serializing loads here may result in excessive register pressure, and 4079 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4080 // could recover a bit by hoisting nodes upward in the chain by recognizing 4081 // they are side-effect free or do not alias. The optimizer should really 4082 // avoid this case by converting large object/array copies to llvm.memcpy 4083 // (MaxParallelChains should always remain as failsafe). 4084 if (ChainI == MaxParallelChains) { 4085 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4086 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4087 makeArrayRef(Chains.data(), ChainI)); 4088 Root = Chain; 4089 ChainI = 0; 4090 } 4091 SDValue A = DAG.getNode(ISD::ADD, dl, 4092 PtrVT, Ptr, 4093 DAG.getConstant(Offsets[i], dl, PtrVT), 4094 Flags); 4095 auto MMOFlags = MachineMemOperand::MONone; 4096 if (isVolatile) 4097 MMOFlags |= MachineMemOperand::MOVolatile; 4098 if (isNonTemporal) 4099 MMOFlags |= MachineMemOperand::MONonTemporal; 4100 if (isInvariant) 4101 MMOFlags |= MachineMemOperand::MOInvariant; 4102 if (isDereferenceable) 4103 MMOFlags |= MachineMemOperand::MODereferenceable; 4104 MMOFlags |= TLI.getMMOFlags(I); 4105 4106 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4107 MachinePointerInfo(SV, Offsets[i]), Alignment, 4108 MMOFlags, AAInfo, Ranges); 4109 Chains[ChainI] = L.getValue(1); 4110 4111 if (MemVTs[i] != ValueVTs[i]) 4112 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4113 4114 Values[i] = L; 4115 } 4116 4117 if (!ConstantMemory) { 4118 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4119 makeArrayRef(Chains.data(), ChainI)); 4120 if (isVolatile) 4121 DAG.setRoot(Chain); 4122 else 4123 PendingLoads.push_back(Chain); 4124 } 4125 4126 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4127 DAG.getVTList(ValueVTs), Values)); 4128 } 4129 4130 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4131 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4132 "call visitStoreToSwiftError when backend supports swifterror"); 4133 4134 SmallVector<EVT, 4> ValueVTs; 4135 SmallVector<uint64_t, 4> Offsets; 4136 const Value *SrcV = I.getOperand(0); 4137 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4138 SrcV->getType(), ValueVTs, &Offsets); 4139 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4140 "expect a single EVT for swifterror"); 4141 4142 SDValue Src = getValue(SrcV); 4143 // Create a virtual register, then update the virtual register. 4144 Register VReg = 4145 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4146 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4147 // Chain can be getRoot or getControlRoot. 4148 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4149 SDValue(Src.getNode(), Src.getResNo())); 4150 DAG.setRoot(CopyNode); 4151 } 4152 4153 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4154 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4155 "call visitLoadFromSwiftError when backend supports swifterror"); 4156 4157 assert(!I.isVolatile() && 4158 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4159 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4160 "Support volatile, non temporal, invariant for load_from_swift_error"); 4161 4162 const Value *SV = I.getOperand(0); 4163 Type *Ty = I.getType(); 4164 AAMDNodes AAInfo; 4165 I.getAAMetadata(AAInfo); 4166 assert( 4167 (!AA || 4168 !AA->pointsToConstantMemory(MemoryLocation( 4169 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4170 AAInfo))) && 4171 "load_from_swift_error should not be constant memory"); 4172 4173 SmallVector<EVT, 4> ValueVTs; 4174 SmallVector<uint64_t, 4> Offsets; 4175 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4176 ValueVTs, &Offsets); 4177 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4178 "expect a single EVT for swifterror"); 4179 4180 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4181 SDValue L = DAG.getCopyFromReg( 4182 getRoot(), getCurSDLoc(), 4183 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4184 4185 setValue(&I, L); 4186 } 4187 4188 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4189 if (I.isAtomic()) 4190 return visitAtomicStore(I); 4191 4192 const Value *SrcV = I.getOperand(0); 4193 const Value *PtrV = I.getOperand(1); 4194 4195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4196 if (TLI.supportSwiftError()) { 4197 // Swifterror values can come from either a function parameter with 4198 // swifterror attribute or an alloca with swifterror attribute. 4199 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4200 if (Arg->hasSwiftErrorAttr()) 4201 return visitStoreToSwiftError(I); 4202 } 4203 4204 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4205 if (Alloca->isSwiftError()) 4206 return visitStoreToSwiftError(I); 4207 } 4208 } 4209 4210 SmallVector<EVT, 4> ValueVTs, MemVTs; 4211 SmallVector<uint64_t, 4> Offsets; 4212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4213 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4214 unsigned NumValues = ValueVTs.size(); 4215 if (NumValues == 0) 4216 return; 4217 4218 // Get the lowered operands. Note that we do this after 4219 // checking if NumResults is zero, because with zero results 4220 // the operands won't have values in the map. 4221 SDValue Src = getValue(SrcV); 4222 SDValue Ptr = getValue(PtrV); 4223 4224 SDValue Root = getRoot(); 4225 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4226 SDLoc dl = getCurSDLoc(); 4227 EVT PtrVT = Ptr.getValueType(); 4228 unsigned Alignment = I.getAlignment(); 4229 AAMDNodes AAInfo; 4230 I.getAAMetadata(AAInfo); 4231 4232 auto MMOFlags = MachineMemOperand::MONone; 4233 if (I.isVolatile()) 4234 MMOFlags |= MachineMemOperand::MOVolatile; 4235 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4236 MMOFlags |= MachineMemOperand::MONonTemporal; 4237 MMOFlags |= TLI.getMMOFlags(I); 4238 4239 // An aggregate load cannot wrap around the address space, so offsets to its 4240 // parts don't wrap either. 4241 SDNodeFlags Flags; 4242 Flags.setNoUnsignedWrap(true); 4243 4244 unsigned ChainI = 0; 4245 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4246 // See visitLoad comments. 4247 if (ChainI == MaxParallelChains) { 4248 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4249 makeArrayRef(Chains.data(), ChainI)); 4250 Root = Chain; 4251 ChainI = 0; 4252 } 4253 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4254 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4255 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4256 if (MemVTs[i] != ValueVTs[i]) 4257 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4258 SDValue St = 4259 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4260 Alignment, MMOFlags, AAInfo); 4261 Chains[ChainI] = St; 4262 } 4263 4264 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4265 makeArrayRef(Chains.data(), ChainI)); 4266 DAG.setRoot(StoreNode); 4267 } 4268 4269 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4270 bool IsCompressing) { 4271 SDLoc sdl = getCurSDLoc(); 4272 4273 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4274 unsigned& Alignment) { 4275 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4276 Src0 = I.getArgOperand(0); 4277 Ptr = I.getArgOperand(1); 4278 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4279 Mask = I.getArgOperand(3); 4280 }; 4281 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4282 unsigned& Alignment) { 4283 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4284 Src0 = I.getArgOperand(0); 4285 Ptr = I.getArgOperand(1); 4286 Mask = I.getArgOperand(2); 4287 Alignment = 0; 4288 }; 4289 4290 Value *PtrOperand, *MaskOperand, *Src0Operand; 4291 unsigned Alignment; 4292 if (IsCompressing) 4293 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4294 else 4295 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4296 4297 SDValue Ptr = getValue(PtrOperand); 4298 SDValue Src0 = getValue(Src0Operand); 4299 SDValue Mask = getValue(MaskOperand); 4300 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4301 4302 EVT VT = Src0.getValueType(); 4303 if (!Alignment) 4304 Alignment = DAG.getEVTAlignment(VT); 4305 4306 AAMDNodes AAInfo; 4307 I.getAAMetadata(AAInfo); 4308 4309 MachineMemOperand *MMO = 4310 DAG.getMachineFunction(). 4311 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4312 MachineMemOperand::MOStore, 4313 // TODO: Make MachineMemOperands aware of scalable 4314 // vectors. 4315 VT.getStoreSize().getKnownMinSize(), 4316 Alignment, AAInfo); 4317 SDValue StoreNode = 4318 DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4319 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4320 DAG.setRoot(StoreNode); 4321 setValue(&I, StoreNode); 4322 } 4323 4324 // Get a uniform base for the Gather/Scatter intrinsic. 4325 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4326 // We try to represent it as a base pointer + vector of indices. 4327 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4328 // The first operand of the GEP may be a single pointer or a vector of pointers 4329 // Example: 4330 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4331 // or 4332 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4333 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4334 // 4335 // When the first GEP operand is a single pointer - it is the uniform base we 4336 // are looking for. If first operand of the GEP is a splat vector - we 4337 // extract the splat value and use it as a uniform base. 4338 // In all other cases the function returns 'false'. 4339 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4340 ISD::MemIndexType &IndexType, SDValue &Scale, 4341 SelectionDAGBuilder *SDB) { 4342 SelectionDAG& DAG = SDB->DAG; 4343 LLVMContext &Context = *DAG.getContext(); 4344 4345 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4346 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4347 if (!GEP) 4348 return false; 4349 4350 const Value *GEPPtr = GEP->getPointerOperand(); 4351 if (!GEPPtr->getType()->isVectorTy()) 4352 Ptr = GEPPtr; 4353 else if (!(Ptr = getSplatValue(GEPPtr))) 4354 return false; 4355 4356 unsigned FinalIndex = GEP->getNumOperands() - 1; 4357 Value *IndexVal = GEP->getOperand(FinalIndex); 4358 4359 // Ensure all the other indices are 0. 4360 for (unsigned i = 1; i < FinalIndex; ++i) { 4361 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4362 if (!C) 4363 return false; 4364 if (isa<VectorType>(C->getType())) 4365 C = C->getSplatValue(); 4366 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4367 if (!CI || !CI->isZero()) 4368 return false; 4369 } 4370 4371 // The operands of the GEP may be defined in another basic block. 4372 // In this case we'll not find nodes for the operands. 4373 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4374 return false; 4375 4376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4377 const DataLayout &DL = DAG.getDataLayout(); 4378 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4379 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4380 Base = SDB->getValue(Ptr); 4381 Index = SDB->getValue(IndexVal); 4382 IndexType = ISD::SIGNED_SCALED; 4383 4384 if (!Index.getValueType().isVector()) { 4385 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4386 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4387 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4388 } 4389 return true; 4390 } 4391 4392 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4393 SDLoc sdl = getCurSDLoc(); 4394 4395 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4396 const Value *Ptr = I.getArgOperand(1); 4397 SDValue Src0 = getValue(I.getArgOperand(0)); 4398 SDValue Mask = getValue(I.getArgOperand(3)); 4399 EVT VT = Src0.getValueType(); 4400 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4401 if (!Alignment) 4402 Alignment = DAG.getEVTAlignment(VT); 4403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4404 4405 AAMDNodes AAInfo; 4406 I.getAAMetadata(AAInfo); 4407 4408 SDValue Base; 4409 SDValue Index; 4410 ISD::MemIndexType IndexType; 4411 SDValue Scale; 4412 const Value *BasePtr = Ptr; 4413 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4414 this); 4415 4416 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4417 MachineMemOperand *MMO = DAG.getMachineFunction(). 4418 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4419 MachineMemOperand::MOStore, 4420 // TODO: Make MachineMemOperands aware of scalable 4421 // vectors. 4422 VT.getStoreSize().getKnownMinSize(), 4423 Alignment, AAInfo); 4424 if (!UniformBase) { 4425 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4426 Index = getValue(Ptr); 4427 IndexType = ISD::SIGNED_SCALED; 4428 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4429 } 4430 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4431 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4432 Ops, MMO, IndexType); 4433 DAG.setRoot(Scatter); 4434 setValue(&I, Scatter); 4435 } 4436 4437 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4438 SDLoc sdl = getCurSDLoc(); 4439 4440 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4441 unsigned& Alignment) { 4442 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4443 Ptr = I.getArgOperand(0); 4444 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4445 Mask = I.getArgOperand(2); 4446 Src0 = I.getArgOperand(3); 4447 }; 4448 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4449 unsigned& Alignment) { 4450 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4451 Ptr = I.getArgOperand(0); 4452 Alignment = 0; 4453 Mask = I.getArgOperand(1); 4454 Src0 = I.getArgOperand(2); 4455 }; 4456 4457 Value *PtrOperand, *MaskOperand, *Src0Operand; 4458 unsigned Alignment; 4459 if (IsExpanding) 4460 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4461 else 4462 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4463 4464 SDValue Ptr = getValue(PtrOperand); 4465 SDValue Src0 = getValue(Src0Operand); 4466 SDValue Mask = getValue(MaskOperand); 4467 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4468 4469 EVT VT = Src0.getValueType(); 4470 if (!Alignment) 4471 Alignment = DAG.getEVTAlignment(VT); 4472 4473 AAMDNodes AAInfo; 4474 I.getAAMetadata(AAInfo); 4475 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4476 4477 // Do not serialize masked loads of constant memory with anything. 4478 MemoryLocation ML; 4479 if (VT.isScalableVector()) 4480 ML = MemoryLocation(PtrOperand); 4481 else 4482 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4483 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4484 AAInfo); 4485 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4486 4487 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4488 4489 MachineMemOperand *MMO = 4490 DAG.getMachineFunction(). 4491 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4492 MachineMemOperand::MOLoad, 4493 // TODO: Make MachineMemOperands aware of scalable 4494 // vectors. 4495 VT.getStoreSize().getKnownMinSize(), 4496 Alignment, AAInfo, Ranges); 4497 4498 SDValue Load = 4499 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4500 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4501 if (AddToChain) 4502 PendingLoads.push_back(Load.getValue(1)); 4503 setValue(&I, Load); 4504 } 4505 4506 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4507 SDLoc sdl = getCurSDLoc(); 4508 4509 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4510 const Value *Ptr = I.getArgOperand(0); 4511 SDValue Src0 = getValue(I.getArgOperand(3)); 4512 SDValue Mask = getValue(I.getArgOperand(2)); 4513 4514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4515 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4516 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4517 if (!Alignment) 4518 Alignment = DAG.getEVTAlignment(VT); 4519 4520 AAMDNodes AAInfo; 4521 I.getAAMetadata(AAInfo); 4522 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4523 4524 SDValue Root = DAG.getRoot(); 4525 SDValue Base; 4526 SDValue Index; 4527 ISD::MemIndexType IndexType; 4528 SDValue Scale; 4529 const Value *BasePtr = Ptr; 4530 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4531 this); 4532 bool ConstantMemory = false; 4533 if (UniformBase && AA && 4534 AA->pointsToConstantMemory( 4535 MemoryLocation(BasePtr, 4536 LocationSize::precise( 4537 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4538 AAInfo))) { 4539 // Do not serialize (non-volatile) loads of constant memory with anything. 4540 Root = DAG.getEntryNode(); 4541 ConstantMemory = true; 4542 } 4543 4544 MachineMemOperand *MMO = 4545 DAG.getMachineFunction(). 4546 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4547 MachineMemOperand::MOLoad, 4548 // TODO: Make MachineMemOperands aware of scalable 4549 // vectors. 4550 VT.getStoreSize().getKnownMinSize(), 4551 Alignment, AAInfo, Ranges); 4552 4553 if (!UniformBase) { 4554 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4555 Index = getValue(Ptr); 4556 IndexType = ISD::SIGNED_SCALED; 4557 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4558 } 4559 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4560 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4561 Ops, MMO, IndexType); 4562 4563 SDValue OutChain = Gather.getValue(1); 4564 if (!ConstantMemory) 4565 PendingLoads.push_back(OutChain); 4566 setValue(&I, Gather); 4567 } 4568 4569 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4570 SDLoc dl = getCurSDLoc(); 4571 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4572 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4573 SyncScope::ID SSID = I.getSyncScopeID(); 4574 4575 SDValue InChain = getRoot(); 4576 4577 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4578 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4579 4580 auto Alignment = DAG.getEVTAlignment(MemVT); 4581 4582 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4583 if (I.isVolatile()) 4584 Flags |= MachineMemOperand::MOVolatile; 4585 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4586 4587 MachineFunction &MF = DAG.getMachineFunction(); 4588 MachineMemOperand *MMO = 4589 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4590 Flags, MemVT.getStoreSize(), Alignment, 4591 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4592 FailureOrdering); 4593 4594 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4595 dl, MemVT, VTs, InChain, 4596 getValue(I.getPointerOperand()), 4597 getValue(I.getCompareOperand()), 4598 getValue(I.getNewValOperand()), MMO); 4599 4600 SDValue OutChain = L.getValue(2); 4601 4602 setValue(&I, L); 4603 DAG.setRoot(OutChain); 4604 } 4605 4606 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4607 SDLoc dl = getCurSDLoc(); 4608 ISD::NodeType NT; 4609 switch (I.getOperation()) { 4610 default: llvm_unreachable("Unknown atomicrmw operation"); 4611 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4612 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4613 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4614 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4615 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4616 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4617 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4618 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4619 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4620 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4621 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4622 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4623 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4624 } 4625 AtomicOrdering Ordering = I.getOrdering(); 4626 SyncScope::ID SSID = I.getSyncScopeID(); 4627 4628 SDValue InChain = getRoot(); 4629 4630 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4631 auto Alignment = DAG.getEVTAlignment(MemVT); 4632 4633 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4634 if (I.isVolatile()) 4635 Flags |= MachineMemOperand::MOVolatile; 4636 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4637 4638 MachineFunction &MF = DAG.getMachineFunction(); 4639 MachineMemOperand *MMO = 4640 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4641 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4642 nullptr, SSID, Ordering); 4643 4644 SDValue L = 4645 DAG.getAtomic(NT, dl, MemVT, InChain, 4646 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4647 MMO); 4648 4649 SDValue OutChain = L.getValue(1); 4650 4651 setValue(&I, L); 4652 DAG.setRoot(OutChain); 4653 } 4654 4655 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4656 SDLoc dl = getCurSDLoc(); 4657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4658 SDValue Ops[3]; 4659 Ops[0] = getRoot(); 4660 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4661 TLI.getFenceOperandTy(DAG.getDataLayout())); 4662 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4663 TLI.getFenceOperandTy(DAG.getDataLayout())); 4664 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4665 } 4666 4667 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4668 SDLoc dl = getCurSDLoc(); 4669 AtomicOrdering Order = I.getOrdering(); 4670 SyncScope::ID SSID = I.getSyncScopeID(); 4671 4672 SDValue InChain = getRoot(); 4673 4674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4675 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4676 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4677 4678 if (!TLI.supportsUnalignedAtomics() && 4679 I.getAlignment() < MemVT.getSizeInBits() / 8) 4680 report_fatal_error("Cannot generate unaligned atomic load"); 4681 4682 auto Flags = MachineMemOperand::MOLoad; 4683 if (I.isVolatile()) 4684 Flags |= MachineMemOperand::MOVolatile; 4685 if (I.hasMetadata(LLVMContext::MD_invariant_load)) 4686 Flags |= MachineMemOperand::MOInvariant; 4687 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4688 DAG.getDataLayout())) 4689 Flags |= MachineMemOperand::MODereferenceable; 4690 4691 Flags |= TLI.getMMOFlags(I); 4692 4693 MachineMemOperand *MMO = 4694 DAG.getMachineFunction(). 4695 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4696 Flags, MemVT.getStoreSize(), 4697 I.getAlignment() ? I.getAlignment() : 4698 DAG.getEVTAlignment(MemVT), 4699 AAMDNodes(), nullptr, SSID, Order); 4700 4701 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4702 4703 SDValue Ptr = getValue(I.getPointerOperand()); 4704 4705 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4706 // TODO: Once this is better exercised by tests, it should be merged with 4707 // the normal path for loads to prevent future divergence. 4708 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4709 if (MemVT != VT) 4710 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4711 4712 setValue(&I, L); 4713 SDValue OutChain = L.getValue(1); 4714 if (!I.isUnordered()) 4715 DAG.setRoot(OutChain); 4716 else 4717 PendingLoads.push_back(OutChain); 4718 return; 4719 } 4720 4721 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4722 Ptr, MMO); 4723 4724 SDValue OutChain = L.getValue(1); 4725 if (MemVT != VT) 4726 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4727 4728 setValue(&I, L); 4729 DAG.setRoot(OutChain); 4730 } 4731 4732 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4733 SDLoc dl = getCurSDLoc(); 4734 4735 AtomicOrdering Ordering = I.getOrdering(); 4736 SyncScope::ID SSID = I.getSyncScopeID(); 4737 4738 SDValue InChain = getRoot(); 4739 4740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4741 EVT MemVT = 4742 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4743 4744 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4745 report_fatal_error("Cannot generate unaligned atomic store"); 4746 4747 auto Flags = MachineMemOperand::MOStore; 4748 if (I.isVolatile()) 4749 Flags |= MachineMemOperand::MOVolatile; 4750 Flags |= TLI.getMMOFlags(I); 4751 4752 MachineFunction &MF = DAG.getMachineFunction(); 4753 MachineMemOperand *MMO = 4754 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4755 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4756 nullptr, SSID, Ordering); 4757 4758 SDValue Val = getValue(I.getValueOperand()); 4759 if (Val.getValueType() != MemVT) 4760 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4761 SDValue Ptr = getValue(I.getPointerOperand()); 4762 4763 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4764 // TODO: Once this is better exercised by tests, it should be merged with 4765 // the normal path for stores to prevent future divergence. 4766 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4767 DAG.setRoot(S); 4768 return; 4769 } 4770 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4771 Ptr, Val, MMO); 4772 4773 4774 DAG.setRoot(OutChain); 4775 } 4776 4777 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4778 /// node. 4779 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4780 unsigned Intrinsic) { 4781 // Ignore the callsite's attributes. A specific call site may be marked with 4782 // readnone, but the lowering code will expect the chain based on the 4783 // definition. 4784 const Function *F = I.getCalledFunction(); 4785 bool HasChain = !F->doesNotAccessMemory(); 4786 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4787 4788 // Build the operand list. 4789 SmallVector<SDValue, 8> Ops; 4790 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4791 if (OnlyLoad) { 4792 // We don't need to serialize loads against other loads. 4793 Ops.push_back(DAG.getRoot()); 4794 } else { 4795 Ops.push_back(getRoot()); 4796 } 4797 } 4798 4799 // Info is set by getTgtMemInstrinsic 4800 TargetLowering::IntrinsicInfo Info; 4801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4802 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4803 DAG.getMachineFunction(), 4804 Intrinsic); 4805 4806 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4807 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4808 Info.opc == ISD::INTRINSIC_W_CHAIN) 4809 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4810 TLI.getPointerTy(DAG.getDataLayout()))); 4811 4812 // Add all operands of the call to the operand list. 4813 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4814 const Value *Arg = I.getArgOperand(i); 4815 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4816 Ops.push_back(getValue(Arg)); 4817 continue; 4818 } 4819 4820 // Use TargetConstant instead of a regular constant for immarg. 4821 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4822 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4823 assert(CI->getBitWidth() <= 64 && 4824 "large intrinsic immediates not handled"); 4825 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4826 } else { 4827 Ops.push_back( 4828 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4829 } 4830 } 4831 4832 SmallVector<EVT, 4> ValueVTs; 4833 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4834 4835 if (HasChain) 4836 ValueVTs.push_back(MVT::Other); 4837 4838 SDVTList VTs = DAG.getVTList(ValueVTs); 4839 4840 // Create the node. 4841 SDValue Result; 4842 if (IsTgtIntrinsic) { 4843 // This is target intrinsic that touches memory 4844 AAMDNodes AAInfo; 4845 I.getAAMetadata(AAInfo); 4846 Result = DAG.getMemIntrinsicNode( 4847 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4848 MachinePointerInfo(Info.ptrVal, Info.offset), 4849 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4850 } else if (!HasChain) { 4851 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4852 } else if (!I.getType()->isVoidTy()) { 4853 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4854 } else { 4855 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4856 } 4857 4858 if (HasChain) { 4859 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4860 if (OnlyLoad) 4861 PendingLoads.push_back(Chain); 4862 else 4863 DAG.setRoot(Chain); 4864 } 4865 4866 if (!I.getType()->isVoidTy()) { 4867 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4868 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4869 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4870 } else 4871 Result = lowerRangeToAssertZExt(DAG, I, Result); 4872 4873 setValue(&I, Result); 4874 } 4875 } 4876 4877 /// GetSignificand - Get the significand and build it into a floating-point 4878 /// number with exponent of 1: 4879 /// 4880 /// Op = (Op & 0x007fffff) | 0x3f800000; 4881 /// 4882 /// where Op is the hexadecimal representation of floating point value. 4883 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4884 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4885 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4886 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4887 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4888 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4889 } 4890 4891 /// GetExponent - Get the exponent: 4892 /// 4893 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4894 /// 4895 /// where Op is the hexadecimal representation of floating point value. 4896 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4897 const TargetLowering &TLI, const SDLoc &dl) { 4898 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4899 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4900 SDValue t1 = DAG.getNode( 4901 ISD::SRL, dl, MVT::i32, t0, 4902 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4903 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4904 DAG.getConstant(127, dl, MVT::i32)); 4905 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4906 } 4907 4908 /// getF32Constant - Get 32-bit floating point constant. 4909 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4910 const SDLoc &dl) { 4911 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4912 MVT::f32); 4913 } 4914 4915 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4916 SelectionDAG &DAG) { 4917 // TODO: What fast-math-flags should be set on the floating-point nodes? 4918 4919 // IntegerPartOfX = ((int32_t)(t0); 4920 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4921 4922 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4923 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4924 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4925 4926 // IntegerPartOfX <<= 23; 4927 IntegerPartOfX = DAG.getNode( 4928 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4929 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4930 DAG.getDataLayout()))); 4931 4932 SDValue TwoToFractionalPartOfX; 4933 if (LimitFloatPrecision <= 6) { 4934 // For floating-point precision of 6: 4935 // 4936 // TwoToFractionalPartOfX = 4937 // 0.997535578f + 4938 // (0.735607626f + 0.252464424f * x) * x; 4939 // 4940 // error 0.0144103317, which is 6 bits 4941 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4942 getF32Constant(DAG, 0x3e814304, dl)); 4943 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4944 getF32Constant(DAG, 0x3f3c50c8, dl)); 4945 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4946 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4947 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4948 } else if (LimitFloatPrecision <= 12) { 4949 // For floating-point precision of 12: 4950 // 4951 // TwoToFractionalPartOfX = 4952 // 0.999892986f + 4953 // (0.696457318f + 4954 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4955 // 4956 // error 0.000107046256, which is 13 to 14 bits 4957 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4958 getF32Constant(DAG, 0x3da235e3, dl)); 4959 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4960 getF32Constant(DAG, 0x3e65b8f3, dl)); 4961 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4962 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4963 getF32Constant(DAG, 0x3f324b07, dl)); 4964 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4965 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4966 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4967 } else { // LimitFloatPrecision <= 18 4968 // For floating-point precision of 18: 4969 // 4970 // TwoToFractionalPartOfX = 4971 // 0.999999982f + 4972 // (0.693148872f + 4973 // (0.240227044f + 4974 // (0.554906021e-1f + 4975 // (0.961591928e-2f + 4976 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4977 // error 2.47208000*10^(-7), which is better than 18 bits 4978 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4979 getF32Constant(DAG, 0x3924b03e, dl)); 4980 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4981 getF32Constant(DAG, 0x3ab24b87, dl)); 4982 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4983 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4984 getF32Constant(DAG, 0x3c1d8c17, dl)); 4985 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4986 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4987 getF32Constant(DAG, 0x3d634a1d, dl)); 4988 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4989 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4990 getF32Constant(DAG, 0x3e75fe14, dl)); 4991 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4992 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4993 getF32Constant(DAG, 0x3f317234, dl)); 4994 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4995 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4996 getF32Constant(DAG, 0x3f800000, dl)); 4997 } 4998 4999 // Add the exponent into the result in integer domain. 5000 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5001 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5002 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5003 } 5004 5005 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5006 /// limited-precision mode. 5007 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5008 const TargetLowering &TLI) { 5009 if (Op.getValueType() == MVT::f32 && 5010 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5011 5012 // Put the exponent in the right bit position for later addition to the 5013 // final result: 5014 // 5015 // t0 = Op * log2(e) 5016 5017 // TODO: What fast-math-flags should be set here? 5018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5019 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5020 return getLimitedPrecisionExp2(t0, dl, DAG); 5021 } 5022 5023 // No special expansion. 5024 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5025 } 5026 5027 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5028 /// limited-precision mode. 5029 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5030 const TargetLowering &TLI) { 5031 // TODO: What fast-math-flags should be set on the floating-point nodes? 5032 5033 if (Op.getValueType() == MVT::f32 && 5034 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5035 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5036 5037 // Scale the exponent by log(2). 5038 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5039 SDValue LogOfExponent = 5040 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5041 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5042 5043 // Get the significand and build it into a floating-point number with 5044 // exponent of 1. 5045 SDValue X = GetSignificand(DAG, Op1, dl); 5046 5047 SDValue LogOfMantissa; 5048 if (LimitFloatPrecision <= 6) { 5049 // For floating-point precision of 6: 5050 // 5051 // LogofMantissa = 5052 // -1.1609546f + 5053 // (1.4034025f - 0.23903021f * x) * x; 5054 // 5055 // error 0.0034276066, which is better than 8 bits 5056 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5057 getF32Constant(DAG, 0xbe74c456, dl)); 5058 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5059 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5060 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5061 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5062 getF32Constant(DAG, 0x3f949a29, dl)); 5063 } else if (LimitFloatPrecision <= 12) { 5064 // For floating-point precision of 12: 5065 // 5066 // LogOfMantissa = 5067 // -1.7417939f + 5068 // (2.8212026f + 5069 // (-1.4699568f + 5070 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5071 // 5072 // error 0.000061011436, which is 14 bits 5073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5074 getF32Constant(DAG, 0xbd67b6d6, dl)); 5075 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5076 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5078 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5079 getF32Constant(DAG, 0x3fbc278b, dl)); 5080 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5081 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5082 getF32Constant(DAG, 0x40348e95, dl)); 5083 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5084 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5085 getF32Constant(DAG, 0x3fdef31a, dl)); 5086 } else { // LimitFloatPrecision <= 18 5087 // For floating-point precision of 18: 5088 // 5089 // LogOfMantissa = 5090 // -2.1072184f + 5091 // (4.2372794f + 5092 // (-3.7029485f + 5093 // (2.2781945f + 5094 // (-0.87823314f + 5095 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5096 // 5097 // error 0.0000023660568, which is better than 18 bits 5098 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5099 getF32Constant(DAG, 0xbc91e5ac, dl)); 5100 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5101 getF32Constant(DAG, 0x3e4350aa, dl)); 5102 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5103 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5104 getF32Constant(DAG, 0x3f60d3e3, dl)); 5105 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5106 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5107 getF32Constant(DAG, 0x4011cdf0, dl)); 5108 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5109 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5110 getF32Constant(DAG, 0x406cfd1c, dl)); 5111 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5112 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5113 getF32Constant(DAG, 0x408797cb, dl)); 5114 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5115 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5116 getF32Constant(DAG, 0x4006dcab, dl)); 5117 } 5118 5119 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5120 } 5121 5122 // No special expansion. 5123 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5124 } 5125 5126 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5127 /// limited-precision mode. 5128 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5129 const TargetLowering &TLI) { 5130 // TODO: What fast-math-flags should be set on the floating-point nodes? 5131 5132 if (Op.getValueType() == MVT::f32 && 5133 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5134 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5135 5136 // Get the exponent. 5137 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5138 5139 // Get the significand and build it into a floating-point number with 5140 // exponent of 1. 5141 SDValue X = GetSignificand(DAG, Op1, dl); 5142 5143 // Different possible minimax approximations of significand in 5144 // floating-point for various degrees of accuracy over [1,2]. 5145 SDValue Log2ofMantissa; 5146 if (LimitFloatPrecision <= 6) { 5147 // For floating-point precision of 6: 5148 // 5149 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5150 // 5151 // error 0.0049451742, which is more than 7 bits 5152 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5153 getF32Constant(DAG, 0xbeb08fe0, dl)); 5154 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5155 getF32Constant(DAG, 0x40019463, dl)); 5156 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5157 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5158 getF32Constant(DAG, 0x3fd6633d, dl)); 5159 } else if (LimitFloatPrecision <= 12) { 5160 // For floating-point precision of 12: 5161 // 5162 // Log2ofMantissa = 5163 // -2.51285454f + 5164 // (4.07009056f + 5165 // (-2.12067489f + 5166 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5167 // 5168 // error 0.0000876136000, which is better than 13 bits 5169 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5170 getF32Constant(DAG, 0xbda7262e, dl)); 5171 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5172 getF32Constant(DAG, 0x3f25280b, dl)); 5173 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5174 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5175 getF32Constant(DAG, 0x4007b923, dl)); 5176 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5177 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5178 getF32Constant(DAG, 0x40823e2f, dl)); 5179 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5180 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5181 getF32Constant(DAG, 0x4020d29c, dl)); 5182 } else { // LimitFloatPrecision <= 18 5183 // For floating-point precision of 18: 5184 // 5185 // Log2ofMantissa = 5186 // -3.0400495f + 5187 // (6.1129976f + 5188 // (-5.3420409f + 5189 // (3.2865683f + 5190 // (-1.2669343f + 5191 // (0.27515199f - 5192 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5193 // 5194 // error 0.0000018516, which is better than 18 bits 5195 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5196 getF32Constant(DAG, 0xbcd2769e, dl)); 5197 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5198 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5199 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5200 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5201 getF32Constant(DAG, 0x3fa22ae7, dl)); 5202 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5203 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5204 getF32Constant(DAG, 0x40525723, dl)); 5205 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5206 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5207 getF32Constant(DAG, 0x40aaf200, dl)); 5208 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5209 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5210 getF32Constant(DAG, 0x40c39dad, dl)); 5211 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5212 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5213 getF32Constant(DAG, 0x4042902c, dl)); 5214 } 5215 5216 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5217 } 5218 5219 // No special expansion. 5220 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5221 } 5222 5223 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5224 /// limited-precision mode. 5225 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5226 const TargetLowering &TLI) { 5227 // TODO: What fast-math-flags should be set on the floating-point nodes? 5228 5229 if (Op.getValueType() == MVT::f32 && 5230 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5231 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5232 5233 // Scale the exponent by log10(2) [0.30102999f]. 5234 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5235 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5236 getF32Constant(DAG, 0x3e9a209a, dl)); 5237 5238 // Get the significand and build it into a floating-point number with 5239 // exponent of 1. 5240 SDValue X = GetSignificand(DAG, Op1, dl); 5241 5242 SDValue Log10ofMantissa; 5243 if (LimitFloatPrecision <= 6) { 5244 // For floating-point precision of 6: 5245 // 5246 // Log10ofMantissa = 5247 // -0.50419619f + 5248 // (0.60948995f - 0.10380950f * x) * x; 5249 // 5250 // error 0.0014886165, which is 6 bits 5251 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5252 getF32Constant(DAG, 0xbdd49a13, dl)); 5253 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5254 getF32Constant(DAG, 0x3f1c0789, dl)); 5255 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5256 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5257 getF32Constant(DAG, 0x3f011300, dl)); 5258 } else if (LimitFloatPrecision <= 12) { 5259 // For floating-point precision of 12: 5260 // 5261 // Log10ofMantissa = 5262 // -0.64831180f + 5263 // (0.91751397f + 5264 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5265 // 5266 // error 0.00019228036, which is better than 12 bits 5267 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5268 getF32Constant(DAG, 0x3d431f31, dl)); 5269 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5270 getF32Constant(DAG, 0x3ea21fb2, dl)); 5271 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5272 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5273 getF32Constant(DAG, 0x3f6ae232, dl)); 5274 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5275 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5276 getF32Constant(DAG, 0x3f25f7c3, dl)); 5277 } else { // LimitFloatPrecision <= 18 5278 // For floating-point precision of 18: 5279 // 5280 // Log10ofMantissa = 5281 // -0.84299375f + 5282 // (1.5327582f + 5283 // (-1.0688956f + 5284 // (0.49102474f + 5285 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5286 // 5287 // error 0.0000037995730, which is better than 18 bits 5288 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5289 getF32Constant(DAG, 0x3c5d51ce, dl)); 5290 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5291 getF32Constant(DAG, 0x3e00685a, dl)); 5292 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5293 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5294 getF32Constant(DAG, 0x3efb6798, dl)); 5295 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5296 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5297 getF32Constant(DAG, 0x3f88d192, dl)); 5298 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5299 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5300 getF32Constant(DAG, 0x3fc4316c, dl)); 5301 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5302 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5303 getF32Constant(DAG, 0x3f57ce70, dl)); 5304 } 5305 5306 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5307 } 5308 5309 // No special expansion. 5310 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5311 } 5312 5313 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5314 /// limited-precision mode. 5315 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5316 const TargetLowering &TLI) { 5317 if (Op.getValueType() == MVT::f32 && 5318 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5319 return getLimitedPrecisionExp2(Op, dl, DAG); 5320 5321 // No special expansion. 5322 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5323 } 5324 5325 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5326 /// limited-precision mode with x == 10.0f. 5327 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5328 SelectionDAG &DAG, const TargetLowering &TLI) { 5329 bool IsExp10 = false; 5330 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5331 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5332 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5333 APFloat Ten(10.0f); 5334 IsExp10 = LHSC->isExactlyValue(Ten); 5335 } 5336 } 5337 5338 // TODO: What fast-math-flags should be set on the FMUL node? 5339 if (IsExp10) { 5340 // Put the exponent in the right bit position for later addition to the 5341 // final result: 5342 // 5343 // #define LOG2OF10 3.3219281f 5344 // t0 = Op * LOG2OF10; 5345 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5346 getF32Constant(DAG, 0x40549a78, dl)); 5347 return getLimitedPrecisionExp2(t0, dl, DAG); 5348 } 5349 5350 // No special expansion. 5351 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5352 } 5353 5354 /// ExpandPowI - Expand a llvm.powi intrinsic. 5355 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5356 SelectionDAG &DAG) { 5357 // If RHS is a constant, we can expand this out to a multiplication tree, 5358 // otherwise we end up lowering to a call to __powidf2 (for example). When 5359 // optimizing for size, we only want to do this if the expansion would produce 5360 // a small number of multiplies, otherwise we do the full expansion. 5361 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5362 // Get the exponent as a positive value. 5363 unsigned Val = RHSC->getSExtValue(); 5364 if ((int)Val < 0) Val = -Val; 5365 5366 // powi(x, 0) -> 1.0 5367 if (Val == 0) 5368 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5369 5370 bool OptForSize = DAG.shouldOptForSize(); 5371 if (!OptForSize || 5372 // If optimizing for size, don't insert too many multiplies. 5373 // This inserts up to 5 multiplies. 5374 countPopulation(Val) + Log2_32(Val) < 7) { 5375 // We use the simple binary decomposition method to generate the multiply 5376 // sequence. There are more optimal ways to do this (for example, 5377 // powi(x,15) generates one more multiply than it should), but this has 5378 // the benefit of being both really simple and much better than a libcall. 5379 SDValue Res; // Logically starts equal to 1.0 5380 SDValue CurSquare = LHS; 5381 // TODO: Intrinsics should have fast-math-flags that propagate to these 5382 // nodes. 5383 while (Val) { 5384 if (Val & 1) { 5385 if (Res.getNode()) 5386 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5387 else 5388 Res = CurSquare; // 1.0*CurSquare. 5389 } 5390 5391 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5392 CurSquare, CurSquare); 5393 Val >>= 1; 5394 } 5395 5396 // If the original was negative, invert the result, producing 1/(x*x*x). 5397 if (RHSC->getSExtValue() < 0) 5398 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5399 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5400 return Res; 5401 } 5402 } 5403 5404 // Otherwise, expand to a libcall. 5405 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5406 } 5407 5408 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5409 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5410 static void 5411 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5412 const SDValue &N) { 5413 switch (N.getOpcode()) { 5414 case ISD::CopyFromReg: { 5415 SDValue Op = N.getOperand(1); 5416 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5417 Op.getValueType().getSizeInBits()); 5418 return; 5419 } 5420 case ISD::BITCAST: 5421 case ISD::AssertZext: 5422 case ISD::AssertSext: 5423 case ISD::TRUNCATE: 5424 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5425 return; 5426 case ISD::BUILD_PAIR: 5427 case ISD::BUILD_VECTOR: 5428 case ISD::CONCAT_VECTORS: 5429 for (SDValue Op : N->op_values()) 5430 getUnderlyingArgRegs(Regs, Op); 5431 return; 5432 default: 5433 return; 5434 } 5435 } 5436 5437 /// If the DbgValueInst is a dbg_value of a function argument, create the 5438 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5439 /// instruction selection, they will be inserted to the entry BB. 5440 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5441 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5442 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5443 const Argument *Arg = dyn_cast<Argument>(V); 5444 if (!Arg) 5445 return false; 5446 5447 if (!IsDbgDeclare) { 5448 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5449 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5450 // the entry block. 5451 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5452 if (!IsInEntryBlock) 5453 return false; 5454 5455 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5456 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5457 // variable that also is a param. 5458 // 5459 // Although, if we are at the top of the entry block already, we can still 5460 // emit using ArgDbgValue. This might catch some situations when the 5461 // dbg.value refers to an argument that isn't used in the entry block, so 5462 // any CopyToReg node would be optimized out and the only way to express 5463 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5464 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5465 // we should only emit as ArgDbgValue if the Variable is an argument to the 5466 // current function, and the dbg.value intrinsic is found in the entry 5467 // block. 5468 bool VariableIsFunctionInputArg = Variable->isParameter() && 5469 !DL->getInlinedAt(); 5470 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5471 if (!IsInPrologue && !VariableIsFunctionInputArg) 5472 return false; 5473 5474 // Here we assume that a function argument on IR level only can be used to 5475 // describe one input parameter on source level. If we for example have 5476 // source code like this 5477 // 5478 // struct A { long x, y; }; 5479 // void foo(struct A a, long b) { 5480 // ... 5481 // b = a.x; 5482 // ... 5483 // } 5484 // 5485 // and IR like this 5486 // 5487 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5488 // entry: 5489 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5490 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5491 // call void @llvm.dbg.value(metadata i32 %b, "b", 5492 // ... 5493 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5494 // ... 5495 // 5496 // then the last dbg.value is describing a parameter "b" using a value that 5497 // is an argument. But since we already has used %a1 to describe a parameter 5498 // we should not handle that last dbg.value here (that would result in an 5499 // incorrect hoisting of the DBG_VALUE to the function entry). 5500 // Notice that we allow one dbg.value per IR level argument, to accommodate 5501 // for the situation with fragments above. 5502 if (VariableIsFunctionInputArg) { 5503 unsigned ArgNo = Arg->getArgNo(); 5504 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5505 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5506 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5507 return false; 5508 FuncInfo.DescribedArgs.set(ArgNo); 5509 } 5510 } 5511 5512 MachineFunction &MF = DAG.getMachineFunction(); 5513 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5514 5515 Optional<MachineOperand> Op; 5516 // Some arguments' frame index is recorded during argument lowering. 5517 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5518 if (FI != std::numeric_limits<int>::max()) 5519 Op = MachineOperand::CreateFI(FI); 5520 5521 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5522 if (!Op && N.getNode()) { 5523 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5524 Register Reg; 5525 if (ArgRegsAndSizes.size() == 1) 5526 Reg = ArgRegsAndSizes.front().first; 5527 5528 if (Reg && Reg.isVirtual()) { 5529 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5530 Register PR = RegInfo.getLiveInPhysReg(Reg); 5531 if (PR) 5532 Reg = PR; 5533 } 5534 if (Reg) { 5535 Op = MachineOperand::CreateReg(Reg, false); 5536 } 5537 } 5538 5539 if (!Op && N.getNode()) { 5540 // Check if frame index is available. 5541 SDValue LCandidate = peekThroughBitcasts(N); 5542 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5543 if (FrameIndexSDNode *FINode = 5544 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5545 Op = MachineOperand::CreateFI(FINode->getIndex()); 5546 } 5547 5548 if (!Op) { 5549 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5550 auto splitMultiRegDbgValue 5551 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5552 unsigned Offset = 0; 5553 for (auto RegAndSize : SplitRegs) { 5554 auto FragmentExpr = DIExpression::createFragmentExpression( 5555 Expr, Offset, RegAndSize.second); 5556 if (!FragmentExpr) 5557 continue; 5558 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5559 FuncInfo.ArgDbgValues.push_back( 5560 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5561 RegAndSize.first, Variable, *FragmentExpr)); 5562 Offset += RegAndSize.second; 5563 } 5564 }; 5565 5566 // Check if ValueMap has reg number. 5567 DenseMap<const Value *, unsigned>::const_iterator 5568 VMI = FuncInfo.ValueMap.find(V); 5569 if (VMI != FuncInfo.ValueMap.end()) { 5570 const auto &TLI = DAG.getTargetLoweringInfo(); 5571 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5572 V->getType(), getABIRegCopyCC(V)); 5573 if (RFV.occupiesMultipleRegs()) { 5574 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5575 return true; 5576 } 5577 5578 Op = MachineOperand::CreateReg(VMI->second, false); 5579 } else if (ArgRegsAndSizes.size() > 1) { 5580 // This was split due to the calling convention, and no virtual register 5581 // mapping exists for the value. 5582 splitMultiRegDbgValue(ArgRegsAndSizes); 5583 return true; 5584 } 5585 } 5586 5587 if (!Op) 5588 return false; 5589 5590 assert(Variable->isValidLocationForIntrinsic(DL) && 5591 "Expected inlined-at fields to agree"); 5592 5593 // If the argument arrives in a stack slot, then what the IR thought was a 5594 // normal Value is actually in memory, and we must add a deref to load it. 5595 if (Op->isFI()) { 5596 int FI = Op->getIndex(); 5597 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5598 if (Expr->isImplicit()) { 5599 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5600 Expr = DIExpression::prependOpcodes(Expr, Ops); 5601 } else { 5602 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5603 } 5604 } 5605 5606 // If this location was specified with a dbg.declare, then it and its 5607 // expression calculate the address of the variable. Append a deref to 5608 // force it to be a memory location. 5609 if (IsDbgDeclare) 5610 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5611 5612 FuncInfo.ArgDbgValues.push_back( 5613 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5614 *Op, Variable, Expr)); 5615 5616 return true; 5617 } 5618 5619 /// Return the appropriate SDDbgValue based on N. 5620 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5621 DILocalVariable *Variable, 5622 DIExpression *Expr, 5623 const DebugLoc &dl, 5624 unsigned DbgSDNodeOrder) { 5625 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5626 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5627 // stack slot locations. 5628 // 5629 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5630 // debug values here after optimization: 5631 // 5632 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5633 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5634 // 5635 // Both describe the direct values of their associated variables. 5636 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5637 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5638 } 5639 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5640 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5641 } 5642 5643 // VisualStudio defines setjmp as _setjmp 5644 #if defined(_MSC_VER) && defined(setjmp) && \ 5645 !defined(setjmp_undefined_for_msvc) 5646 # pragma push_macro("setjmp") 5647 # undef setjmp 5648 # define setjmp_undefined_for_msvc 5649 #endif 5650 5651 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5652 switch (Intrinsic) { 5653 case Intrinsic::smul_fix: 5654 return ISD::SMULFIX; 5655 case Intrinsic::umul_fix: 5656 return ISD::UMULFIX; 5657 default: 5658 llvm_unreachable("Unhandled fixed point intrinsic"); 5659 } 5660 } 5661 5662 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5663 const char *FunctionName) { 5664 assert(FunctionName && "FunctionName must not be nullptr"); 5665 SDValue Callee = DAG.getExternalSymbol( 5666 FunctionName, 5667 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5668 LowerCallTo(&I, Callee, I.isTailCall()); 5669 } 5670 5671 /// Lower the call to the specified intrinsic function. 5672 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5673 unsigned Intrinsic) { 5674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5675 SDLoc sdl = getCurSDLoc(); 5676 DebugLoc dl = getCurDebugLoc(); 5677 SDValue Res; 5678 5679 switch (Intrinsic) { 5680 default: 5681 // By default, turn this into a target intrinsic node. 5682 visitTargetIntrinsic(I, Intrinsic); 5683 return; 5684 case Intrinsic::vastart: visitVAStart(I); return; 5685 case Intrinsic::vaend: visitVAEnd(I); return; 5686 case Intrinsic::vacopy: visitVACopy(I); return; 5687 case Intrinsic::returnaddress: 5688 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5689 TLI.getPointerTy(DAG.getDataLayout()), 5690 getValue(I.getArgOperand(0)))); 5691 return; 5692 case Intrinsic::addressofreturnaddress: 5693 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5694 TLI.getPointerTy(DAG.getDataLayout()))); 5695 return; 5696 case Intrinsic::sponentry: 5697 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5698 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5699 return; 5700 case Intrinsic::frameaddress: 5701 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5702 TLI.getFrameIndexTy(DAG.getDataLayout()), 5703 getValue(I.getArgOperand(0)))); 5704 return; 5705 case Intrinsic::read_register: { 5706 Value *Reg = I.getArgOperand(0); 5707 SDValue Chain = getRoot(); 5708 SDValue RegName = 5709 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5710 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5711 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5712 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5713 setValue(&I, Res); 5714 DAG.setRoot(Res.getValue(1)); 5715 return; 5716 } 5717 case Intrinsic::write_register: { 5718 Value *Reg = I.getArgOperand(0); 5719 Value *RegValue = I.getArgOperand(1); 5720 SDValue Chain = getRoot(); 5721 SDValue RegName = 5722 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5723 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5724 RegName, getValue(RegValue))); 5725 return; 5726 } 5727 case Intrinsic::setjmp: 5728 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5729 return; 5730 case Intrinsic::longjmp: 5731 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5732 return; 5733 case Intrinsic::memcpy: { 5734 const auto &MCI = cast<MemCpyInst>(I); 5735 SDValue Op1 = getValue(I.getArgOperand(0)); 5736 SDValue Op2 = getValue(I.getArgOperand(1)); 5737 SDValue Op3 = getValue(I.getArgOperand(2)); 5738 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5739 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5740 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5741 unsigned Align = MinAlign(DstAlign, SrcAlign); 5742 bool isVol = MCI.isVolatile(); 5743 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5744 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5745 // node. 5746 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5747 false, isTC, 5748 MachinePointerInfo(I.getArgOperand(0)), 5749 MachinePointerInfo(I.getArgOperand(1))); 5750 updateDAGForMaybeTailCall(MC); 5751 return; 5752 } 5753 case Intrinsic::memset: { 5754 const auto &MSI = cast<MemSetInst>(I); 5755 SDValue Op1 = getValue(I.getArgOperand(0)); 5756 SDValue Op2 = getValue(I.getArgOperand(1)); 5757 SDValue Op3 = getValue(I.getArgOperand(2)); 5758 // @llvm.memset defines 0 and 1 to both mean no alignment. 5759 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5760 bool isVol = MSI.isVolatile(); 5761 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5762 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5763 isTC, MachinePointerInfo(I.getArgOperand(0))); 5764 updateDAGForMaybeTailCall(MS); 5765 return; 5766 } 5767 case Intrinsic::memmove: { 5768 const auto &MMI = cast<MemMoveInst>(I); 5769 SDValue Op1 = getValue(I.getArgOperand(0)); 5770 SDValue Op2 = getValue(I.getArgOperand(1)); 5771 SDValue Op3 = getValue(I.getArgOperand(2)); 5772 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5773 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5774 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5775 unsigned Align = MinAlign(DstAlign, SrcAlign); 5776 bool isVol = MMI.isVolatile(); 5777 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5778 // FIXME: Support passing different dest/src alignments to the memmove DAG 5779 // node. 5780 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5781 isTC, MachinePointerInfo(I.getArgOperand(0)), 5782 MachinePointerInfo(I.getArgOperand(1))); 5783 updateDAGForMaybeTailCall(MM); 5784 return; 5785 } 5786 case Intrinsic::memcpy_element_unordered_atomic: { 5787 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5788 SDValue Dst = getValue(MI.getRawDest()); 5789 SDValue Src = getValue(MI.getRawSource()); 5790 SDValue Length = getValue(MI.getLength()); 5791 5792 unsigned DstAlign = MI.getDestAlignment(); 5793 unsigned SrcAlign = MI.getSourceAlignment(); 5794 Type *LengthTy = MI.getLength()->getType(); 5795 unsigned ElemSz = MI.getElementSizeInBytes(); 5796 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5797 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5798 SrcAlign, Length, LengthTy, ElemSz, isTC, 5799 MachinePointerInfo(MI.getRawDest()), 5800 MachinePointerInfo(MI.getRawSource())); 5801 updateDAGForMaybeTailCall(MC); 5802 return; 5803 } 5804 case Intrinsic::memmove_element_unordered_atomic: { 5805 auto &MI = cast<AtomicMemMoveInst>(I); 5806 SDValue Dst = getValue(MI.getRawDest()); 5807 SDValue Src = getValue(MI.getRawSource()); 5808 SDValue Length = getValue(MI.getLength()); 5809 5810 unsigned DstAlign = MI.getDestAlignment(); 5811 unsigned SrcAlign = MI.getSourceAlignment(); 5812 Type *LengthTy = MI.getLength()->getType(); 5813 unsigned ElemSz = MI.getElementSizeInBytes(); 5814 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5815 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5816 SrcAlign, Length, LengthTy, ElemSz, isTC, 5817 MachinePointerInfo(MI.getRawDest()), 5818 MachinePointerInfo(MI.getRawSource())); 5819 updateDAGForMaybeTailCall(MC); 5820 return; 5821 } 5822 case Intrinsic::memset_element_unordered_atomic: { 5823 auto &MI = cast<AtomicMemSetInst>(I); 5824 SDValue Dst = getValue(MI.getRawDest()); 5825 SDValue Val = getValue(MI.getValue()); 5826 SDValue Length = getValue(MI.getLength()); 5827 5828 unsigned DstAlign = MI.getDestAlignment(); 5829 Type *LengthTy = MI.getLength()->getType(); 5830 unsigned ElemSz = MI.getElementSizeInBytes(); 5831 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5832 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5833 LengthTy, ElemSz, isTC, 5834 MachinePointerInfo(MI.getRawDest())); 5835 updateDAGForMaybeTailCall(MC); 5836 return; 5837 } 5838 case Intrinsic::dbg_addr: 5839 case Intrinsic::dbg_declare: { 5840 const auto &DI = cast<DbgVariableIntrinsic>(I); 5841 DILocalVariable *Variable = DI.getVariable(); 5842 DIExpression *Expression = DI.getExpression(); 5843 dropDanglingDebugInfo(Variable, Expression); 5844 assert(Variable && "Missing variable"); 5845 5846 // Check if address has undef value. 5847 const Value *Address = DI.getVariableLocation(); 5848 if (!Address || isa<UndefValue>(Address) || 5849 (Address->use_empty() && !isa<Argument>(Address))) { 5850 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5851 return; 5852 } 5853 5854 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5855 5856 // Check if this variable can be described by a frame index, typically 5857 // either as a static alloca or a byval parameter. 5858 int FI = std::numeric_limits<int>::max(); 5859 if (const auto *AI = 5860 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5861 if (AI->isStaticAlloca()) { 5862 auto I = FuncInfo.StaticAllocaMap.find(AI); 5863 if (I != FuncInfo.StaticAllocaMap.end()) 5864 FI = I->second; 5865 } 5866 } else if (const auto *Arg = dyn_cast<Argument>( 5867 Address->stripInBoundsConstantOffsets())) { 5868 FI = FuncInfo.getArgumentFrameIndex(Arg); 5869 } 5870 5871 // llvm.dbg.addr is control dependent and always generates indirect 5872 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5873 // the MachineFunction variable table. 5874 if (FI != std::numeric_limits<int>::max()) { 5875 if (Intrinsic == Intrinsic::dbg_addr) { 5876 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5877 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5878 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5879 } 5880 return; 5881 } 5882 5883 SDValue &N = NodeMap[Address]; 5884 if (!N.getNode() && isa<Argument>(Address)) 5885 // Check unused arguments map. 5886 N = UnusedArgNodeMap[Address]; 5887 SDDbgValue *SDV; 5888 if (N.getNode()) { 5889 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5890 Address = BCI->getOperand(0); 5891 // Parameters are handled specially. 5892 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5893 if (isParameter && FINode) { 5894 // Byval parameter. We have a frame index at this point. 5895 SDV = 5896 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5897 /*IsIndirect*/ true, dl, SDNodeOrder); 5898 } else if (isa<Argument>(Address)) { 5899 // Address is an argument, so try to emit its dbg value using 5900 // virtual register info from the FuncInfo.ValueMap. 5901 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5902 return; 5903 } else { 5904 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5905 true, dl, SDNodeOrder); 5906 } 5907 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5908 } else { 5909 // If Address is an argument then try to emit its dbg value using 5910 // virtual register info from the FuncInfo.ValueMap. 5911 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5912 N)) { 5913 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5914 } 5915 } 5916 return; 5917 } 5918 case Intrinsic::dbg_label: { 5919 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5920 DILabel *Label = DI.getLabel(); 5921 assert(Label && "Missing label"); 5922 5923 SDDbgLabel *SDV; 5924 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5925 DAG.AddDbgLabel(SDV); 5926 return; 5927 } 5928 case Intrinsic::dbg_value: { 5929 const DbgValueInst &DI = cast<DbgValueInst>(I); 5930 assert(DI.getVariable() && "Missing variable"); 5931 5932 DILocalVariable *Variable = DI.getVariable(); 5933 DIExpression *Expression = DI.getExpression(); 5934 dropDanglingDebugInfo(Variable, Expression); 5935 const Value *V = DI.getValue(); 5936 if (!V) 5937 return; 5938 5939 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5940 SDNodeOrder)) 5941 return; 5942 5943 // TODO: Dangling debug info will eventually either be resolved or produce 5944 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5945 // between the original dbg.value location and its resolved DBG_VALUE, which 5946 // we should ideally fill with an extra Undef DBG_VALUE. 5947 5948 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5949 return; 5950 } 5951 5952 case Intrinsic::eh_typeid_for: { 5953 // Find the type id for the given typeinfo. 5954 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5955 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5956 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5957 setValue(&I, Res); 5958 return; 5959 } 5960 5961 case Intrinsic::eh_return_i32: 5962 case Intrinsic::eh_return_i64: 5963 DAG.getMachineFunction().setCallsEHReturn(true); 5964 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5965 MVT::Other, 5966 getControlRoot(), 5967 getValue(I.getArgOperand(0)), 5968 getValue(I.getArgOperand(1)))); 5969 return; 5970 case Intrinsic::eh_unwind_init: 5971 DAG.getMachineFunction().setCallsUnwindInit(true); 5972 return; 5973 case Intrinsic::eh_dwarf_cfa: 5974 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5975 TLI.getPointerTy(DAG.getDataLayout()), 5976 getValue(I.getArgOperand(0)))); 5977 return; 5978 case Intrinsic::eh_sjlj_callsite: { 5979 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5980 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5981 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5982 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5983 5984 MMI.setCurrentCallSite(CI->getZExtValue()); 5985 return; 5986 } 5987 case Intrinsic::eh_sjlj_functioncontext: { 5988 // Get and store the index of the function context. 5989 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5990 AllocaInst *FnCtx = 5991 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5992 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5993 MFI.setFunctionContextIndex(FI); 5994 return; 5995 } 5996 case Intrinsic::eh_sjlj_setjmp: { 5997 SDValue Ops[2]; 5998 Ops[0] = getRoot(); 5999 Ops[1] = getValue(I.getArgOperand(0)); 6000 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6001 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6002 setValue(&I, Op.getValue(0)); 6003 DAG.setRoot(Op.getValue(1)); 6004 return; 6005 } 6006 case Intrinsic::eh_sjlj_longjmp: 6007 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6008 getRoot(), getValue(I.getArgOperand(0)))); 6009 return; 6010 case Intrinsic::eh_sjlj_setup_dispatch: 6011 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6012 getRoot())); 6013 return; 6014 case Intrinsic::masked_gather: 6015 visitMaskedGather(I); 6016 return; 6017 case Intrinsic::masked_load: 6018 visitMaskedLoad(I); 6019 return; 6020 case Intrinsic::masked_scatter: 6021 visitMaskedScatter(I); 6022 return; 6023 case Intrinsic::masked_store: 6024 visitMaskedStore(I); 6025 return; 6026 case Intrinsic::masked_expandload: 6027 visitMaskedLoad(I, true /* IsExpanding */); 6028 return; 6029 case Intrinsic::masked_compressstore: 6030 visitMaskedStore(I, true /* IsCompressing */); 6031 return; 6032 case Intrinsic::powi: 6033 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6034 getValue(I.getArgOperand(1)), DAG)); 6035 return; 6036 case Intrinsic::log: 6037 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6038 return; 6039 case Intrinsic::log2: 6040 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6041 return; 6042 case Intrinsic::log10: 6043 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6044 return; 6045 case Intrinsic::exp: 6046 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6047 return; 6048 case Intrinsic::exp2: 6049 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6050 return; 6051 case Intrinsic::pow: 6052 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6053 getValue(I.getArgOperand(1)), DAG, TLI)); 6054 return; 6055 case Intrinsic::sqrt: 6056 case Intrinsic::fabs: 6057 case Intrinsic::sin: 6058 case Intrinsic::cos: 6059 case Intrinsic::floor: 6060 case Intrinsic::ceil: 6061 case Intrinsic::trunc: 6062 case Intrinsic::rint: 6063 case Intrinsic::nearbyint: 6064 case Intrinsic::round: 6065 case Intrinsic::canonicalize: { 6066 unsigned Opcode; 6067 switch (Intrinsic) { 6068 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6069 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6070 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6071 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6072 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6073 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6074 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6075 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6076 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6077 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6078 case Intrinsic::round: Opcode = ISD::FROUND; break; 6079 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6080 } 6081 6082 setValue(&I, DAG.getNode(Opcode, sdl, 6083 getValue(I.getArgOperand(0)).getValueType(), 6084 getValue(I.getArgOperand(0)))); 6085 return; 6086 } 6087 case Intrinsic::lround: 6088 case Intrinsic::llround: 6089 case Intrinsic::lrint: 6090 case Intrinsic::llrint: { 6091 unsigned Opcode; 6092 switch (Intrinsic) { 6093 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6094 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6095 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6096 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6097 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6098 } 6099 6100 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6101 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6102 getValue(I.getArgOperand(0)))); 6103 return; 6104 } 6105 case Intrinsic::minnum: 6106 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6107 getValue(I.getArgOperand(0)).getValueType(), 6108 getValue(I.getArgOperand(0)), 6109 getValue(I.getArgOperand(1)))); 6110 return; 6111 case Intrinsic::maxnum: 6112 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6113 getValue(I.getArgOperand(0)).getValueType(), 6114 getValue(I.getArgOperand(0)), 6115 getValue(I.getArgOperand(1)))); 6116 return; 6117 case Intrinsic::minimum: 6118 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6119 getValue(I.getArgOperand(0)).getValueType(), 6120 getValue(I.getArgOperand(0)), 6121 getValue(I.getArgOperand(1)))); 6122 return; 6123 case Intrinsic::maximum: 6124 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6125 getValue(I.getArgOperand(0)).getValueType(), 6126 getValue(I.getArgOperand(0)), 6127 getValue(I.getArgOperand(1)))); 6128 return; 6129 case Intrinsic::copysign: 6130 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6131 getValue(I.getArgOperand(0)).getValueType(), 6132 getValue(I.getArgOperand(0)), 6133 getValue(I.getArgOperand(1)))); 6134 return; 6135 case Intrinsic::fma: 6136 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6137 getValue(I.getArgOperand(0)).getValueType(), 6138 getValue(I.getArgOperand(0)), 6139 getValue(I.getArgOperand(1)), 6140 getValue(I.getArgOperand(2)))); 6141 return; 6142 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6143 case Intrinsic::INTRINSIC: 6144 #include "llvm/IR/ConstrainedOps.def" 6145 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6146 return; 6147 case Intrinsic::fmuladd: { 6148 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6149 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6150 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6151 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6152 getValue(I.getArgOperand(0)).getValueType(), 6153 getValue(I.getArgOperand(0)), 6154 getValue(I.getArgOperand(1)), 6155 getValue(I.getArgOperand(2)))); 6156 } else { 6157 // TODO: Intrinsic calls should have fast-math-flags. 6158 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6159 getValue(I.getArgOperand(0)).getValueType(), 6160 getValue(I.getArgOperand(0)), 6161 getValue(I.getArgOperand(1))); 6162 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6163 getValue(I.getArgOperand(0)).getValueType(), 6164 Mul, 6165 getValue(I.getArgOperand(2))); 6166 setValue(&I, Add); 6167 } 6168 return; 6169 } 6170 case Intrinsic::convert_to_fp16: 6171 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6172 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6173 getValue(I.getArgOperand(0)), 6174 DAG.getTargetConstant(0, sdl, 6175 MVT::i32)))); 6176 return; 6177 case Intrinsic::convert_from_fp16: 6178 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6179 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6180 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6181 getValue(I.getArgOperand(0))))); 6182 return; 6183 case Intrinsic::pcmarker: { 6184 SDValue Tmp = getValue(I.getArgOperand(0)); 6185 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6186 return; 6187 } 6188 case Intrinsic::readcyclecounter: { 6189 SDValue Op = getRoot(); 6190 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6191 DAG.getVTList(MVT::i64, MVT::Other), Op); 6192 setValue(&I, Res); 6193 DAG.setRoot(Res.getValue(1)); 6194 return; 6195 } 6196 case Intrinsic::bitreverse: 6197 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6198 getValue(I.getArgOperand(0)).getValueType(), 6199 getValue(I.getArgOperand(0)))); 6200 return; 6201 case Intrinsic::bswap: 6202 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6203 getValue(I.getArgOperand(0)).getValueType(), 6204 getValue(I.getArgOperand(0)))); 6205 return; 6206 case Intrinsic::cttz: { 6207 SDValue Arg = getValue(I.getArgOperand(0)); 6208 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6209 EVT Ty = Arg.getValueType(); 6210 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6211 sdl, Ty, Arg)); 6212 return; 6213 } 6214 case Intrinsic::ctlz: { 6215 SDValue Arg = getValue(I.getArgOperand(0)); 6216 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6217 EVT Ty = Arg.getValueType(); 6218 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6219 sdl, Ty, Arg)); 6220 return; 6221 } 6222 case Intrinsic::ctpop: { 6223 SDValue Arg = getValue(I.getArgOperand(0)); 6224 EVT Ty = Arg.getValueType(); 6225 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6226 return; 6227 } 6228 case Intrinsic::fshl: 6229 case Intrinsic::fshr: { 6230 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6231 SDValue X = getValue(I.getArgOperand(0)); 6232 SDValue Y = getValue(I.getArgOperand(1)); 6233 SDValue Z = getValue(I.getArgOperand(2)); 6234 EVT VT = X.getValueType(); 6235 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6236 SDValue Zero = DAG.getConstant(0, sdl, VT); 6237 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6238 6239 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6240 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6241 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6242 return; 6243 } 6244 6245 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6246 // avoid the select that is necessary in the general case to filter out 6247 // the 0-shift possibility that leads to UB. 6248 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6249 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6250 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6251 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6252 return; 6253 } 6254 6255 // Some targets only rotate one way. Try the opposite direction. 6256 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6257 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6258 // Negate the shift amount because it is safe to ignore the high bits. 6259 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6260 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6261 return; 6262 } 6263 6264 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6265 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6266 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6267 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6268 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6269 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6270 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6271 return; 6272 } 6273 6274 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6275 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6276 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6277 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6278 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6279 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6280 6281 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6282 // and that is undefined. We must compare and select to avoid UB. 6283 EVT CCVT = MVT::i1; 6284 if (VT.isVector()) 6285 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6286 6287 // For fshl, 0-shift returns the 1st arg (X). 6288 // For fshr, 0-shift returns the 2nd arg (Y). 6289 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6290 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6291 return; 6292 } 6293 case Intrinsic::sadd_sat: { 6294 SDValue Op1 = getValue(I.getArgOperand(0)); 6295 SDValue Op2 = getValue(I.getArgOperand(1)); 6296 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6297 return; 6298 } 6299 case Intrinsic::uadd_sat: { 6300 SDValue Op1 = getValue(I.getArgOperand(0)); 6301 SDValue Op2 = getValue(I.getArgOperand(1)); 6302 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6303 return; 6304 } 6305 case Intrinsic::ssub_sat: { 6306 SDValue Op1 = getValue(I.getArgOperand(0)); 6307 SDValue Op2 = getValue(I.getArgOperand(1)); 6308 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6309 return; 6310 } 6311 case Intrinsic::usub_sat: { 6312 SDValue Op1 = getValue(I.getArgOperand(0)); 6313 SDValue Op2 = getValue(I.getArgOperand(1)); 6314 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6315 return; 6316 } 6317 case Intrinsic::smul_fix: 6318 case Intrinsic::umul_fix: { 6319 SDValue Op1 = getValue(I.getArgOperand(0)); 6320 SDValue Op2 = getValue(I.getArgOperand(1)); 6321 SDValue Op3 = getValue(I.getArgOperand(2)); 6322 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6323 Op1.getValueType(), Op1, Op2, Op3)); 6324 return; 6325 } 6326 case Intrinsic::smul_fix_sat: { 6327 SDValue Op1 = getValue(I.getArgOperand(0)); 6328 SDValue Op2 = getValue(I.getArgOperand(1)); 6329 SDValue Op3 = getValue(I.getArgOperand(2)); 6330 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6331 Op3)); 6332 return; 6333 } 6334 case Intrinsic::umul_fix_sat: { 6335 SDValue Op1 = getValue(I.getArgOperand(0)); 6336 SDValue Op2 = getValue(I.getArgOperand(1)); 6337 SDValue Op3 = getValue(I.getArgOperand(2)); 6338 setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6339 Op3)); 6340 return; 6341 } 6342 case Intrinsic::stacksave: { 6343 SDValue Op = getRoot(); 6344 Res = DAG.getNode( 6345 ISD::STACKSAVE, sdl, 6346 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6347 setValue(&I, Res); 6348 DAG.setRoot(Res.getValue(1)); 6349 return; 6350 } 6351 case Intrinsic::stackrestore: 6352 Res = getValue(I.getArgOperand(0)); 6353 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6354 return; 6355 case Intrinsic::get_dynamic_area_offset: { 6356 SDValue Op = getRoot(); 6357 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6358 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6359 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6360 // target. 6361 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6362 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6363 " intrinsic!"); 6364 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6365 Op); 6366 DAG.setRoot(Op); 6367 setValue(&I, Res); 6368 return; 6369 } 6370 case Intrinsic::stackguard: { 6371 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6372 MachineFunction &MF = DAG.getMachineFunction(); 6373 const Module &M = *MF.getFunction().getParent(); 6374 SDValue Chain = getRoot(); 6375 if (TLI.useLoadStackGuardNode()) { 6376 Res = getLoadStackGuard(DAG, sdl, Chain); 6377 } else { 6378 const Value *Global = TLI.getSDagStackGuard(M); 6379 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6380 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6381 MachinePointerInfo(Global, 0), Align, 6382 MachineMemOperand::MOVolatile); 6383 } 6384 if (TLI.useStackGuardXorFP()) 6385 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6386 DAG.setRoot(Chain); 6387 setValue(&I, Res); 6388 return; 6389 } 6390 case Intrinsic::stackprotector: { 6391 // Emit code into the DAG to store the stack guard onto the stack. 6392 MachineFunction &MF = DAG.getMachineFunction(); 6393 MachineFrameInfo &MFI = MF.getFrameInfo(); 6394 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6395 SDValue Src, Chain = getRoot(); 6396 6397 if (TLI.useLoadStackGuardNode()) 6398 Src = getLoadStackGuard(DAG, sdl, Chain); 6399 else 6400 Src = getValue(I.getArgOperand(0)); // The guard's value. 6401 6402 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6403 6404 int FI = FuncInfo.StaticAllocaMap[Slot]; 6405 MFI.setStackProtectorIndex(FI); 6406 6407 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6408 6409 // Store the stack protector onto the stack. 6410 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6411 DAG.getMachineFunction(), FI), 6412 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6413 setValue(&I, Res); 6414 DAG.setRoot(Res); 6415 return; 6416 } 6417 case Intrinsic::objectsize: 6418 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6419 6420 case Intrinsic::is_constant: 6421 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6422 6423 case Intrinsic::annotation: 6424 case Intrinsic::ptr_annotation: 6425 case Intrinsic::launder_invariant_group: 6426 case Intrinsic::strip_invariant_group: 6427 // Drop the intrinsic, but forward the value 6428 setValue(&I, getValue(I.getOperand(0))); 6429 return; 6430 case Intrinsic::assume: 6431 case Intrinsic::var_annotation: 6432 case Intrinsic::sideeffect: 6433 // Discard annotate attributes, assumptions, and artificial side-effects. 6434 return; 6435 6436 case Intrinsic::codeview_annotation: { 6437 // Emit a label associated with this metadata. 6438 MachineFunction &MF = DAG.getMachineFunction(); 6439 MCSymbol *Label = 6440 MF.getMMI().getContext().createTempSymbol("annotation", true); 6441 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6442 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6443 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6444 DAG.setRoot(Res); 6445 return; 6446 } 6447 6448 case Intrinsic::init_trampoline: { 6449 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6450 6451 SDValue Ops[6]; 6452 Ops[0] = getRoot(); 6453 Ops[1] = getValue(I.getArgOperand(0)); 6454 Ops[2] = getValue(I.getArgOperand(1)); 6455 Ops[3] = getValue(I.getArgOperand(2)); 6456 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6457 Ops[5] = DAG.getSrcValue(F); 6458 6459 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6460 6461 DAG.setRoot(Res); 6462 return; 6463 } 6464 case Intrinsic::adjust_trampoline: 6465 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6466 TLI.getPointerTy(DAG.getDataLayout()), 6467 getValue(I.getArgOperand(0)))); 6468 return; 6469 case Intrinsic::gcroot: { 6470 assert(DAG.getMachineFunction().getFunction().hasGC() && 6471 "only valid in functions with gc specified, enforced by Verifier"); 6472 assert(GFI && "implied by previous"); 6473 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6474 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6475 6476 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6477 GFI->addStackRoot(FI->getIndex(), TypeMap); 6478 return; 6479 } 6480 case Intrinsic::gcread: 6481 case Intrinsic::gcwrite: 6482 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6483 case Intrinsic::flt_rounds: 6484 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6485 return; 6486 6487 case Intrinsic::expect: 6488 // Just replace __builtin_expect(exp, c) with EXP. 6489 setValue(&I, getValue(I.getArgOperand(0))); 6490 return; 6491 6492 case Intrinsic::debugtrap: 6493 case Intrinsic::trap: { 6494 StringRef TrapFuncName = 6495 I.getAttributes() 6496 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6497 .getValueAsString(); 6498 if (TrapFuncName.empty()) { 6499 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6500 ISD::TRAP : ISD::DEBUGTRAP; 6501 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6502 return; 6503 } 6504 TargetLowering::ArgListTy Args; 6505 6506 TargetLowering::CallLoweringInfo CLI(DAG); 6507 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6508 CallingConv::C, I.getType(), 6509 DAG.getExternalSymbol(TrapFuncName.data(), 6510 TLI.getPointerTy(DAG.getDataLayout())), 6511 std::move(Args)); 6512 6513 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6514 DAG.setRoot(Result.second); 6515 return; 6516 } 6517 6518 case Intrinsic::uadd_with_overflow: 6519 case Intrinsic::sadd_with_overflow: 6520 case Intrinsic::usub_with_overflow: 6521 case Intrinsic::ssub_with_overflow: 6522 case Intrinsic::umul_with_overflow: 6523 case Intrinsic::smul_with_overflow: { 6524 ISD::NodeType Op; 6525 switch (Intrinsic) { 6526 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6527 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6528 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6529 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6530 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6531 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6532 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6533 } 6534 SDValue Op1 = getValue(I.getArgOperand(0)); 6535 SDValue Op2 = getValue(I.getArgOperand(1)); 6536 6537 EVT ResultVT = Op1.getValueType(); 6538 EVT OverflowVT = MVT::i1; 6539 if (ResultVT.isVector()) 6540 OverflowVT = EVT::getVectorVT( 6541 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6542 6543 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6544 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6545 return; 6546 } 6547 case Intrinsic::prefetch: { 6548 SDValue Ops[5]; 6549 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6550 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6551 Ops[0] = DAG.getRoot(); 6552 Ops[1] = getValue(I.getArgOperand(0)); 6553 Ops[2] = getValue(I.getArgOperand(1)); 6554 Ops[3] = getValue(I.getArgOperand(2)); 6555 Ops[4] = getValue(I.getArgOperand(3)); 6556 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6557 DAG.getVTList(MVT::Other), Ops, 6558 EVT::getIntegerVT(*Context, 8), 6559 MachinePointerInfo(I.getArgOperand(0)), 6560 0, /* align */ 6561 Flags); 6562 6563 // Chain the prefetch in parallell with any pending loads, to stay out of 6564 // the way of later optimizations. 6565 PendingLoads.push_back(Result); 6566 Result = getRoot(); 6567 DAG.setRoot(Result); 6568 return; 6569 } 6570 case Intrinsic::lifetime_start: 6571 case Intrinsic::lifetime_end: { 6572 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6573 // Stack coloring is not enabled in O0, discard region information. 6574 if (TM.getOptLevel() == CodeGenOpt::None) 6575 return; 6576 6577 const int64_t ObjectSize = 6578 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6579 Value *const ObjectPtr = I.getArgOperand(1); 6580 SmallVector<const Value *, 4> Allocas; 6581 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6582 6583 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6584 E = Allocas.end(); Object != E; ++Object) { 6585 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6586 6587 // Could not find an Alloca. 6588 if (!LifetimeObject) 6589 continue; 6590 6591 // First check that the Alloca is static, otherwise it won't have a 6592 // valid frame index. 6593 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6594 if (SI == FuncInfo.StaticAllocaMap.end()) 6595 return; 6596 6597 const int FrameIndex = SI->second; 6598 int64_t Offset; 6599 if (GetPointerBaseWithConstantOffset( 6600 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6601 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6602 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6603 Offset); 6604 DAG.setRoot(Res); 6605 } 6606 return; 6607 } 6608 case Intrinsic::invariant_start: 6609 // Discard region information. 6610 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6611 return; 6612 case Intrinsic::invariant_end: 6613 // Discard region information. 6614 return; 6615 case Intrinsic::clear_cache: 6616 /// FunctionName may be null. 6617 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6618 lowerCallToExternalSymbol(I, FunctionName); 6619 return; 6620 case Intrinsic::donothing: 6621 // ignore 6622 return; 6623 case Intrinsic::experimental_stackmap: 6624 visitStackmap(I); 6625 return; 6626 case Intrinsic::experimental_patchpoint_void: 6627 case Intrinsic::experimental_patchpoint_i64: 6628 visitPatchpoint(&I); 6629 return; 6630 case Intrinsic::experimental_gc_statepoint: 6631 LowerStatepoint(ImmutableStatepoint(&I)); 6632 return; 6633 case Intrinsic::experimental_gc_result: 6634 visitGCResult(cast<GCResultInst>(I)); 6635 return; 6636 case Intrinsic::experimental_gc_relocate: 6637 visitGCRelocate(cast<GCRelocateInst>(I)); 6638 return; 6639 case Intrinsic::instrprof_increment: 6640 llvm_unreachable("instrprof failed to lower an increment"); 6641 case Intrinsic::instrprof_value_profile: 6642 llvm_unreachable("instrprof failed to lower a value profiling call"); 6643 case Intrinsic::localescape: { 6644 MachineFunction &MF = DAG.getMachineFunction(); 6645 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6646 6647 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6648 // is the same on all targets. 6649 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6650 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6651 if (isa<ConstantPointerNull>(Arg)) 6652 continue; // Skip null pointers. They represent a hole in index space. 6653 AllocaInst *Slot = cast<AllocaInst>(Arg); 6654 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6655 "can only escape static allocas"); 6656 int FI = FuncInfo.StaticAllocaMap[Slot]; 6657 MCSymbol *FrameAllocSym = 6658 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6659 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6660 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6661 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6662 .addSym(FrameAllocSym) 6663 .addFrameIndex(FI); 6664 } 6665 6666 return; 6667 } 6668 6669 case Intrinsic::localrecover: { 6670 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6671 MachineFunction &MF = DAG.getMachineFunction(); 6672 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6673 6674 // Get the symbol that defines the frame offset. 6675 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6676 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6677 unsigned IdxVal = 6678 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6679 MCSymbol *FrameAllocSym = 6680 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6681 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6682 6683 // Create a MCSymbol for the label to avoid any target lowering 6684 // that would make this PC relative. 6685 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6686 SDValue OffsetVal = 6687 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6688 6689 // Add the offset to the FP. 6690 Value *FP = I.getArgOperand(1); 6691 SDValue FPVal = getValue(FP); 6692 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6693 setValue(&I, Add); 6694 6695 return; 6696 } 6697 6698 case Intrinsic::eh_exceptionpointer: 6699 case Intrinsic::eh_exceptioncode: { 6700 // Get the exception pointer vreg, copy from it, and resize it to fit. 6701 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6702 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6703 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6704 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6705 SDValue N = 6706 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6707 if (Intrinsic == Intrinsic::eh_exceptioncode) 6708 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6709 setValue(&I, N); 6710 return; 6711 } 6712 case Intrinsic::xray_customevent: { 6713 // Here we want to make sure that the intrinsic behaves as if it has a 6714 // specific calling convention, and only for x86_64. 6715 // FIXME: Support other platforms later. 6716 const auto &Triple = DAG.getTarget().getTargetTriple(); 6717 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6718 return; 6719 6720 SDLoc DL = getCurSDLoc(); 6721 SmallVector<SDValue, 8> Ops; 6722 6723 // We want to say that we always want the arguments in registers. 6724 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6725 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6726 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6727 SDValue Chain = getRoot(); 6728 Ops.push_back(LogEntryVal); 6729 Ops.push_back(StrSizeVal); 6730 Ops.push_back(Chain); 6731 6732 // We need to enforce the calling convention for the callsite, so that 6733 // argument ordering is enforced correctly, and that register allocation can 6734 // see that some registers may be assumed clobbered and have to preserve 6735 // them across calls to the intrinsic. 6736 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6737 DL, NodeTys, Ops); 6738 SDValue patchableNode = SDValue(MN, 0); 6739 DAG.setRoot(patchableNode); 6740 setValue(&I, patchableNode); 6741 return; 6742 } 6743 case Intrinsic::xray_typedevent: { 6744 // Here we want to make sure that the intrinsic behaves as if it has a 6745 // specific calling convention, and only for x86_64. 6746 // FIXME: Support other platforms later. 6747 const auto &Triple = DAG.getTarget().getTargetTriple(); 6748 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6749 return; 6750 6751 SDLoc DL = getCurSDLoc(); 6752 SmallVector<SDValue, 8> Ops; 6753 6754 // We want to say that we always want the arguments in registers. 6755 // It's unclear to me how manipulating the selection DAG here forces callers 6756 // to provide arguments in registers instead of on the stack. 6757 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6758 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6759 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6760 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6761 SDValue Chain = getRoot(); 6762 Ops.push_back(LogTypeId); 6763 Ops.push_back(LogEntryVal); 6764 Ops.push_back(StrSizeVal); 6765 Ops.push_back(Chain); 6766 6767 // We need to enforce the calling convention for the callsite, so that 6768 // argument ordering is enforced correctly, and that register allocation can 6769 // see that some registers may be assumed clobbered and have to preserve 6770 // them across calls to the intrinsic. 6771 MachineSDNode *MN = DAG.getMachineNode( 6772 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6773 SDValue patchableNode = SDValue(MN, 0); 6774 DAG.setRoot(patchableNode); 6775 setValue(&I, patchableNode); 6776 return; 6777 } 6778 case Intrinsic::experimental_deoptimize: 6779 LowerDeoptimizeCall(&I); 6780 return; 6781 6782 case Intrinsic::experimental_vector_reduce_v2_fadd: 6783 case Intrinsic::experimental_vector_reduce_v2_fmul: 6784 case Intrinsic::experimental_vector_reduce_add: 6785 case Intrinsic::experimental_vector_reduce_mul: 6786 case Intrinsic::experimental_vector_reduce_and: 6787 case Intrinsic::experimental_vector_reduce_or: 6788 case Intrinsic::experimental_vector_reduce_xor: 6789 case Intrinsic::experimental_vector_reduce_smax: 6790 case Intrinsic::experimental_vector_reduce_smin: 6791 case Intrinsic::experimental_vector_reduce_umax: 6792 case Intrinsic::experimental_vector_reduce_umin: 6793 case Intrinsic::experimental_vector_reduce_fmax: 6794 case Intrinsic::experimental_vector_reduce_fmin: 6795 visitVectorReduce(I, Intrinsic); 6796 return; 6797 6798 case Intrinsic::icall_branch_funnel: { 6799 SmallVector<SDValue, 16> Ops; 6800 Ops.push_back(getValue(I.getArgOperand(0))); 6801 6802 int64_t Offset; 6803 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6804 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6805 if (!Base) 6806 report_fatal_error( 6807 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6808 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6809 6810 struct BranchFunnelTarget { 6811 int64_t Offset; 6812 SDValue Target; 6813 }; 6814 SmallVector<BranchFunnelTarget, 8> Targets; 6815 6816 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6817 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6818 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6819 if (ElemBase != Base) 6820 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6821 "to the same GlobalValue"); 6822 6823 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6824 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6825 if (!GA) 6826 report_fatal_error( 6827 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6828 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6829 GA->getGlobal(), getCurSDLoc(), 6830 Val.getValueType(), GA->getOffset())}); 6831 } 6832 llvm::sort(Targets, 6833 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6834 return T1.Offset < T2.Offset; 6835 }); 6836 6837 for (auto &T : Targets) { 6838 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6839 Ops.push_back(T.Target); 6840 } 6841 6842 Ops.push_back(DAG.getRoot()); // Chain 6843 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6844 getCurSDLoc(), MVT::Other, Ops), 6845 0); 6846 DAG.setRoot(N); 6847 setValue(&I, N); 6848 HasTailCall = true; 6849 return; 6850 } 6851 6852 case Intrinsic::wasm_landingpad_index: 6853 // Information this intrinsic contained has been transferred to 6854 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6855 // delete it now. 6856 return; 6857 6858 case Intrinsic::aarch64_settag: 6859 case Intrinsic::aarch64_settag_zero: { 6860 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6861 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6862 SDValue Val = TSI.EmitTargetCodeForSetTag( 6863 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6864 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6865 ZeroMemory); 6866 DAG.setRoot(Val); 6867 setValue(&I, Val); 6868 return; 6869 } 6870 case Intrinsic::ptrmask: { 6871 SDValue Ptr = getValue(I.getOperand(0)); 6872 SDValue Const = getValue(I.getOperand(1)); 6873 6874 EVT DestVT = 6875 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6876 6877 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6878 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6879 return; 6880 } 6881 } 6882 } 6883 6884 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6885 const ConstrainedFPIntrinsic &FPI) { 6886 SDLoc sdl = getCurSDLoc(); 6887 6888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6889 SmallVector<EVT, 4> ValueVTs; 6890 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6891 ValueVTs.push_back(MVT::Other); // Out chain 6892 6893 // We do not need to serialize constrained FP intrinsics against 6894 // each other or against (nonvolatile) loads, so they can be 6895 // chained like loads. 6896 SDValue Chain = DAG.getRoot(); 6897 SmallVector<SDValue, 4> Opers; 6898 Opers.push_back(Chain); 6899 if (FPI.isUnaryOp()) { 6900 Opers.push_back(getValue(FPI.getArgOperand(0))); 6901 } else if (FPI.isTernaryOp()) { 6902 Opers.push_back(getValue(FPI.getArgOperand(0))); 6903 Opers.push_back(getValue(FPI.getArgOperand(1))); 6904 Opers.push_back(getValue(FPI.getArgOperand(2))); 6905 } else { 6906 Opers.push_back(getValue(FPI.getArgOperand(0))); 6907 Opers.push_back(getValue(FPI.getArgOperand(1))); 6908 } 6909 6910 unsigned Opcode; 6911 switch (FPI.getIntrinsicID()) { 6912 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6913 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6914 case Intrinsic::INTRINSIC: \ 6915 Opcode = ISD::STRICT_##DAGN; \ 6916 break; 6917 #include "llvm/IR/ConstrainedOps.def" 6918 } 6919 6920 // A few strict DAG nodes carry additional operands that are not 6921 // set up by the default code above. 6922 switch (Opcode) { 6923 default: break; 6924 case ISD::STRICT_FP_ROUND: 6925 Opers.push_back( 6926 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6927 break; 6928 case ISD::STRICT_FSETCC: 6929 case ISD::STRICT_FSETCCS: { 6930 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6931 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6932 break; 6933 } 6934 } 6935 6936 SDVTList VTs = DAG.getVTList(ValueVTs); 6937 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 6938 6939 if (FPI.getExceptionBehavior() != fp::ExceptionBehavior::ebIgnore) { 6940 SDNodeFlags Flags; 6941 Flags.setFPExcept(true); 6942 Result->setFlags(Flags); 6943 } 6944 6945 assert(Result.getNode()->getNumValues() == 2); 6946 // See above -- chain is handled like for loads here. 6947 SDValue OutChain = Result.getValue(1); 6948 PendingLoads.push_back(OutChain); 6949 SDValue FPResult = Result.getValue(0); 6950 setValue(&FPI, FPResult); 6951 } 6952 6953 std::pair<SDValue, SDValue> 6954 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6955 const BasicBlock *EHPadBB) { 6956 MachineFunction &MF = DAG.getMachineFunction(); 6957 MachineModuleInfo &MMI = MF.getMMI(); 6958 MCSymbol *BeginLabel = nullptr; 6959 6960 if (EHPadBB) { 6961 // Insert a label before the invoke call to mark the try range. This can be 6962 // used to detect deletion of the invoke via the MachineModuleInfo. 6963 BeginLabel = MMI.getContext().createTempSymbol(); 6964 6965 // For SjLj, keep track of which landing pads go with which invokes 6966 // so as to maintain the ordering of pads in the LSDA. 6967 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6968 if (CallSiteIndex) { 6969 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6970 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6971 6972 // Now that the call site is handled, stop tracking it. 6973 MMI.setCurrentCallSite(0); 6974 } 6975 6976 // Both PendingLoads and PendingExports must be flushed here; 6977 // this call might not return. 6978 (void)getRoot(); 6979 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6980 6981 CLI.setChain(getRoot()); 6982 } 6983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6984 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6985 6986 assert((CLI.IsTailCall || Result.second.getNode()) && 6987 "Non-null chain expected with non-tail call!"); 6988 assert((Result.second.getNode() || !Result.first.getNode()) && 6989 "Null value expected with tail call!"); 6990 6991 if (!Result.second.getNode()) { 6992 // As a special case, a null chain means that a tail call has been emitted 6993 // and the DAG root is already updated. 6994 HasTailCall = true; 6995 6996 // Since there's no actual continuation from this block, nothing can be 6997 // relying on us setting vregs for them. 6998 PendingExports.clear(); 6999 } else { 7000 DAG.setRoot(Result.second); 7001 } 7002 7003 if (EHPadBB) { 7004 // Insert a label at the end of the invoke call to mark the try range. This 7005 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7006 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7007 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7008 7009 // Inform MachineModuleInfo of range. 7010 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7011 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7012 // actually use outlined funclets and their LSDA info style. 7013 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7014 assert(CLI.CS); 7015 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7016 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7017 BeginLabel, EndLabel); 7018 } else if (!isScopedEHPersonality(Pers)) { 7019 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7020 } 7021 } 7022 7023 return Result; 7024 } 7025 7026 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7027 bool isTailCall, 7028 const BasicBlock *EHPadBB) { 7029 auto &DL = DAG.getDataLayout(); 7030 FunctionType *FTy = CS.getFunctionType(); 7031 Type *RetTy = CS.getType(); 7032 7033 TargetLowering::ArgListTy Args; 7034 Args.reserve(CS.arg_size()); 7035 7036 const Value *SwiftErrorVal = nullptr; 7037 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7038 7039 // We can't tail call inside a function with a swifterror argument. Lowering 7040 // does not support this yet. It would have to move into the swifterror 7041 // register before the call. 7042 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7043 if (TLI.supportSwiftError() && 7044 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7045 isTailCall = false; 7046 7047 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7048 i != e; ++i) { 7049 TargetLowering::ArgListEntry Entry; 7050 const Value *V = *i; 7051 7052 // Skip empty types 7053 if (V->getType()->isEmptyTy()) 7054 continue; 7055 7056 SDValue ArgNode = getValue(V); 7057 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7058 7059 Entry.setAttributes(&CS, i - CS.arg_begin()); 7060 7061 // Use swifterror virtual register as input to the call. 7062 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7063 SwiftErrorVal = V; 7064 // We find the virtual register for the actual swifterror argument. 7065 // Instead of using the Value, we use the virtual register instead. 7066 Entry.Node = DAG.getRegister( 7067 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7068 EVT(TLI.getPointerTy(DL))); 7069 } 7070 7071 Args.push_back(Entry); 7072 7073 // If we have an explicit sret argument that is an Instruction, (i.e., it 7074 // might point to function-local memory), we can't meaningfully tail-call. 7075 if (Entry.IsSRet && isa<Instruction>(V)) 7076 isTailCall = false; 7077 } 7078 7079 // If call site has a cfguardtarget operand bundle, create and add an 7080 // additional ArgListEntry. 7081 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7082 TargetLowering::ArgListEntry Entry; 7083 Value *V = Bundle->Inputs[0]; 7084 SDValue ArgNode = getValue(V); 7085 Entry.Node = ArgNode; 7086 Entry.Ty = V->getType(); 7087 Entry.IsCFGuardTarget = true; 7088 Args.push_back(Entry); 7089 } 7090 7091 // Check if target-independent constraints permit a tail call here. 7092 // Target-dependent constraints are checked within TLI->LowerCallTo. 7093 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7094 isTailCall = false; 7095 7096 // Disable tail calls if there is an swifterror argument. Targets have not 7097 // been updated to support tail calls. 7098 if (TLI.supportSwiftError() && SwiftErrorVal) 7099 isTailCall = false; 7100 7101 TargetLowering::CallLoweringInfo CLI(DAG); 7102 CLI.setDebugLoc(getCurSDLoc()) 7103 .setChain(getRoot()) 7104 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7105 .setTailCall(isTailCall) 7106 .setConvergent(CS.isConvergent()); 7107 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7108 7109 if (Result.first.getNode()) { 7110 const Instruction *Inst = CS.getInstruction(); 7111 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7112 setValue(Inst, Result.first); 7113 } 7114 7115 // The last element of CLI.InVals has the SDValue for swifterror return. 7116 // Here we copy it to a virtual register and update SwiftErrorMap for 7117 // book-keeping. 7118 if (SwiftErrorVal && TLI.supportSwiftError()) { 7119 // Get the last element of InVals. 7120 SDValue Src = CLI.InVals.back(); 7121 Register VReg = SwiftError.getOrCreateVRegDefAt( 7122 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7123 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7124 DAG.setRoot(CopyNode); 7125 } 7126 } 7127 7128 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7129 SelectionDAGBuilder &Builder) { 7130 // Check to see if this load can be trivially constant folded, e.g. if the 7131 // input is from a string literal. 7132 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7133 // Cast pointer to the type we really want to load. 7134 Type *LoadTy = 7135 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7136 if (LoadVT.isVector()) 7137 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7138 7139 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7140 PointerType::getUnqual(LoadTy)); 7141 7142 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7143 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7144 return Builder.getValue(LoadCst); 7145 } 7146 7147 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7148 // still constant memory, the input chain can be the entry node. 7149 SDValue Root; 7150 bool ConstantMemory = false; 7151 7152 // Do not serialize (non-volatile) loads of constant memory with anything. 7153 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7154 Root = Builder.DAG.getEntryNode(); 7155 ConstantMemory = true; 7156 } else { 7157 // Do not serialize non-volatile loads against each other. 7158 Root = Builder.DAG.getRoot(); 7159 } 7160 7161 SDValue Ptr = Builder.getValue(PtrVal); 7162 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7163 Ptr, MachinePointerInfo(PtrVal), 7164 /* Alignment = */ 1); 7165 7166 if (!ConstantMemory) 7167 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7168 return LoadVal; 7169 } 7170 7171 /// Record the value for an instruction that produces an integer result, 7172 /// converting the type where necessary. 7173 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7174 SDValue Value, 7175 bool IsSigned) { 7176 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7177 I.getType(), true); 7178 if (IsSigned) 7179 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7180 else 7181 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7182 setValue(&I, Value); 7183 } 7184 7185 /// See if we can lower a memcmp call into an optimized form. If so, return 7186 /// true and lower it. Otherwise return false, and it will be lowered like a 7187 /// normal call. 7188 /// The caller already checked that \p I calls the appropriate LibFunc with a 7189 /// correct prototype. 7190 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7191 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7192 const Value *Size = I.getArgOperand(2); 7193 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7194 if (CSize && CSize->getZExtValue() == 0) { 7195 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7196 I.getType(), true); 7197 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7198 return true; 7199 } 7200 7201 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7202 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7203 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7204 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7205 if (Res.first.getNode()) { 7206 processIntegerCallValue(I, Res.first, true); 7207 PendingLoads.push_back(Res.second); 7208 return true; 7209 } 7210 7211 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7212 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7213 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7214 return false; 7215 7216 // If the target has a fast compare for the given size, it will return a 7217 // preferred load type for that size. Require that the load VT is legal and 7218 // that the target supports unaligned loads of that type. Otherwise, return 7219 // INVALID. 7220 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7222 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7223 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7224 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7225 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7226 // TODO: Check alignment of src and dest ptrs. 7227 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7228 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7229 if (!TLI.isTypeLegal(LVT) || 7230 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7231 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7232 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7233 } 7234 7235 return LVT; 7236 }; 7237 7238 // This turns into unaligned loads. We only do this if the target natively 7239 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7240 // we'll only produce a small number of byte loads. 7241 MVT LoadVT; 7242 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7243 switch (NumBitsToCompare) { 7244 default: 7245 return false; 7246 case 16: 7247 LoadVT = MVT::i16; 7248 break; 7249 case 32: 7250 LoadVT = MVT::i32; 7251 break; 7252 case 64: 7253 case 128: 7254 case 256: 7255 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7256 break; 7257 } 7258 7259 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7260 return false; 7261 7262 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7263 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7264 7265 // Bitcast to a wide integer type if the loads are vectors. 7266 if (LoadVT.isVector()) { 7267 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7268 LoadL = DAG.getBitcast(CmpVT, LoadL); 7269 LoadR = DAG.getBitcast(CmpVT, LoadR); 7270 } 7271 7272 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7273 processIntegerCallValue(I, Cmp, false); 7274 return true; 7275 } 7276 7277 /// See if we can lower a memchr call into an optimized form. If so, return 7278 /// true and lower it. Otherwise return false, and it will be lowered like a 7279 /// normal call. 7280 /// The caller already checked that \p I calls the appropriate LibFunc with a 7281 /// correct prototype. 7282 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7283 const Value *Src = I.getArgOperand(0); 7284 const Value *Char = I.getArgOperand(1); 7285 const Value *Length = I.getArgOperand(2); 7286 7287 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7288 std::pair<SDValue, SDValue> Res = 7289 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7290 getValue(Src), getValue(Char), getValue(Length), 7291 MachinePointerInfo(Src)); 7292 if (Res.first.getNode()) { 7293 setValue(&I, Res.first); 7294 PendingLoads.push_back(Res.second); 7295 return true; 7296 } 7297 7298 return false; 7299 } 7300 7301 /// See if we can lower a mempcpy call into an optimized form. If so, return 7302 /// true and lower it. Otherwise return false, and it will be lowered like a 7303 /// normal call. 7304 /// The caller already checked that \p I calls the appropriate LibFunc with a 7305 /// correct prototype. 7306 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7307 SDValue Dst = getValue(I.getArgOperand(0)); 7308 SDValue Src = getValue(I.getArgOperand(1)); 7309 SDValue Size = getValue(I.getArgOperand(2)); 7310 7311 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7312 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7313 unsigned Align = std::min(DstAlign, SrcAlign); 7314 if (Align == 0) // Alignment of one or both could not be inferred. 7315 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7316 7317 bool isVol = false; 7318 SDLoc sdl = getCurSDLoc(); 7319 7320 // In the mempcpy context we need to pass in a false value for isTailCall 7321 // because the return pointer needs to be adjusted by the size of 7322 // the copied memory. 7323 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7324 false, /*isTailCall=*/false, 7325 MachinePointerInfo(I.getArgOperand(0)), 7326 MachinePointerInfo(I.getArgOperand(1))); 7327 assert(MC.getNode() != nullptr && 7328 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7329 DAG.setRoot(MC); 7330 7331 // Check if Size needs to be truncated or extended. 7332 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7333 7334 // Adjust return pointer to point just past the last dst byte. 7335 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7336 Dst, Size); 7337 setValue(&I, DstPlusSize); 7338 return true; 7339 } 7340 7341 /// See if we can lower a strcpy call into an optimized form. If so, return 7342 /// true and lower it, otherwise return false and it will be lowered like a 7343 /// normal call. 7344 /// The caller already checked that \p I calls the appropriate LibFunc with a 7345 /// correct prototype. 7346 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7347 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7348 7349 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7350 std::pair<SDValue, SDValue> Res = 7351 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7352 getValue(Arg0), getValue(Arg1), 7353 MachinePointerInfo(Arg0), 7354 MachinePointerInfo(Arg1), isStpcpy); 7355 if (Res.first.getNode()) { 7356 setValue(&I, Res.first); 7357 DAG.setRoot(Res.second); 7358 return true; 7359 } 7360 7361 return false; 7362 } 7363 7364 /// See if we can lower a strcmp call into an optimized form. If so, return 7365 /// true and lower it, otherwise return false and it will be lowered like a 7366 /// normal call. 7367 /// The caller already checked that \p I calls the appropriate LibFunc with a 7368 /// correct prototype. 7369 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7370 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7371 7372 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7373 std::pair<SDValue, SDValue> Res = 7374 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7375 getValue(Arg0), getValue(Arg1), 7376 MachinePointerInfo(Arg0), 7377 MachinePointerInfo(Arg1)); 7378 if (Res.first.getNode()) { 7379 processIntegerCallValue(I, Res.first, true); 7380 PendingLoads.push_back(Res.second); 7381 return true; 7382 } 7383 7384 return false; 7385 } 7386 7387 /// See if we can lower a strlen call into an optimized form. If so, return 7388 /// true and lower it, otherwise return false and it will be lowered like a 7389 /// normal call. 7390 /// The caller already checked that \p I calls the appropriate LibFunc with a 7391 /// correct prototype. 7392 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7393 const Value *Arg0 = I.getArgOperand(0); 7394 7395 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7396 std::pair<SDValue, SDValue> Res = 7397 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7398 getValue(Arg0), MachinePointerInfo(Arg0)); 7399 if (Res.first.getNode()) { 7400 processIntegerCallValue(I, Res.first, false); 7401 PendingLoads.push_back(Res.second); 7402 return true; 7403 } 7404 7405 return false; 7406 } 7407 7408 /// See if we can lower a strnlen call into an optimized form. If so, return 7409 /// true and lower it, otherwise return false and it will be lowered like a 7410 /// normal call. 7411 /// The caller already checked that \p I calls the appropriate LibFunc with a 7412 /// correct prototype. 7413 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7414 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7415 7416 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7417 std::pair<SDValue, SDValue> Res = 7418 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7419 getValue(Arg0), getValue(Arg1), 7420 MachinePointerInfo(Arg0)); 7421 if (Res.first.getNode()) { 7422 processIntegerCallValue(I, Res.first, false); 7423 PendingLoads.push_back(Res.second); 7424 return true; 7425 } 7426 7427 return false; 7428 } 7429 7430 /// See if we can lower a unary floating-point operation into an SDNode with 7431 /// the specified Opcode. If so, return true and lower it, otherwise return 7432 /// false and it will be lowered like a normal call. 7433 /// The caller already checked that \p I calls the appropriate LibFunc with a 7434 /// correct prototype. 7435 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7436 unsigned Opcode) { 7437 // We already checked this call's prototype; verify it doesn't modify errno. 7438 if (!I.onlyReadsMemory()) 7439 return false; 7440 7441 SDValue Tmp = getValue(I.getArgOperand(0)); 7442 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7443 return true; 7444 } 7445 7446 /// See if we can lower a binary floating-point operation into an SDNode with 7447 /// the specified Opcode. If so, return true and lower it. Otherwise return 7448 /// false, and it will be lowered like a normal call. 7449 /// The caller already checked that \p I calls the appropriate LibFunc with a 7450 /// correct prototype. 7451 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7452 unsigned Opcode) { 7453 // We already checked this call's prototype; verify it doesn't modify errno. 7454 if (!I.onlyReadsMemory()) 7455 return false; 7456 7457 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7458 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7459 EVT VT = Tmp0.getValueType(); 7460 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7461 return true; 7462 } 7463 7464 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7465 // Handle inline assembly differently. 7466 if (isa<InlineAsm>(I.getCalledValue())) { 7467 visitInlineAsm(&I); 7468 return; 7469 } 7470 7471 if (Function *F = I.getCalledFunction()) { 7472 if (F->isDeclaration()) { 7473 // Is this an LLVM intrinsic or a target-specific intrinsic? 7474 unsigned IID = F->getIntrinsicID(); 7475 if (!IID) 7476 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7477 IID = II->getIntrinsicID(F); 7478 7479 if (IID) { 7480 visitIntrinsicCall(I, IID); 7481 return; 7482 } 7483 } 7484 7485 // Check for well-known libc/libm calls. If the function is internal, it 7486 // can't be a library call. Don't do the check if marked as nobuiltin for 7487 // some reason or the call site requires strict floating point semantics. 7488 LibFunc Func; 7489 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7490 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7491 LibInfo->hasOptimizedCodeGen(Func)) { 7492 switch (Func) { 7493 default: break; 7494 case LibFunc_copysign: 7495 case LibFunc_copysignf: 7496 case LibFunc_copysignl: 7497 // We already checked this call's prototype; verify it doesn't modify 7498 // errno. 7499 if (I.onlyReadsMemory()) { 7500 SDValue LHS = getValue(I.getArgOperand(0)); 7501 SDValue RHS = getValue(I.getArgOperand(1)); 7502 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7503 LHS.getValueType(), LHS, RHS)); 7504 return; 7505 } 7506 break; 7507 case LibFunc_fabs: 7508 case LibFunc_fabsf: 7509 case LibFunc_fabsl: 7510 if (visitUnaryFloatCall(I, ISD::FABS)) 7511 return; 7512 break; 7513 case LibFunc_fmin: 7514 case LibFunc_fminf: 7515 case LibFunc_fminl: 7516 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7517 return; 7518 break; 7519 case LibFunc_fmax: 7520 case LibFunc_fmaxf: 7521 case LibFunc_fmaxl: 7522 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7523 return; 7524 break; 7525 case LibFunc_sin: 7526 case LibFunc_sinf: 7527 case LibFunc_sinl: 7528 if (visitUnaryFloatCall(I, ISD::FSIN)) 7529 return; 7530 break; 7531 case LibFunc_cos: 7532 case LibFunc_cosf: 7533 case LibFunc_cosl: 7534 if (visitUnaryFloatCall(I, ISD::FCOS)) 7535 return; 7536 break; 7537 case LibFunc_sqrt: 7538 case LibFunc_sqrtf: 7539 case LibFunc_sqrtl: 7540 case LibFunc_sqrt_finite: 7541 case LibFunc_sqrtf_finite: 7542 case LibFunc_sqrtl_finite: 7543 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7544 return; 7545 break; 7546 case LibFunc_floor: 7547 case LibFunc_floorf: 7548 case LibFunc_floorl: 7549 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7550 return; 7551 break; 7552 case LibFunc_nearbyint: 7553 case LibFunc_nearbyintf: 7554 case LibFunc_nearbyintl: 7555 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7556 return; 7557 break; 7558 case LibFunc_ceil: 7559 case LibFunc_ceilf: 7560 case LibFunc_ceill: 7561 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7562 return; 7563 break; 7564 case LibFunc_rint: 7565 case LibFunc_rintf: 7566 case LibFunc_rintl: 7567 if (visitUnaryFloatCall(I, ISD::FRINT)) 7568 return; 7569 break; 7570 case LibFunc_round: 7571 case LibFunc_roundf: 7572 case LibFunc_roundl: 7573 if (visitUnaryFloatCall(I, ISD::FROUND)) 7574 return; 7575 break; 7576 case LibFunc_trunc: 7577 case LibFunc_truncf: 7578 case LibFunc_truncl: 7579 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7580 return; 7581 break; 7582 case LibFunc_log2: 7583 case LibFunc_log2f: 7584 case LibFunc_log2l: 7585 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7586 return; 7587 break; 7588 case LibFunc_exp2: 7589 case LibFunc_exp2f: 7590 case LibFunc_exp2l: 7591 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7592 return; 7593 break; 7594 case LibFunc_memcmp: 7595 if (visitMemCmpCall(I)) 7596 return; 7597 break; 7598 case LibFunc_mempcpy: 7599 if (visitMemPCpyCall(I)) 7600 return; 7601 break; 7602 case LibFunc_memchr: 7603 if (visitMemChrCall(I)) 7604 return; 7605 break; 7606 case LibFunc_strcpy: 7607 if (visitStrCpyCall(I, false)) 7608 return; 7609 break; 7610 case LibFunc_stpcpy: 7611 if (visitStrCpyCall(I, true)) 7612 return; 7613 break; 7614 case LibFunc_strcmp: 7615 if (visitStrCmpCall(I)) 7616 return; 7617 break; 7618 case LibFunc_strlen: 7619 if (visitStrLenCall(I)) 7620 return; 7621 break; 7622 case LibFunc_strnlen: 7623 if (visitStrNLenCall(I)) 7624 return; 7625 break; 7626 } 7627 } 7628 } 7629 7630 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7631 // have to do anything here to lower funclet bundles. 7632 // CFGuardTarget bundles are lowered in LowerCallTo. 7633 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7634 LLVMContext::OB_funclet, 7635 LLVMContext::OB_cfguardtarget}) && 7636 "Cannot lower calls with arbitrary operand bundles!"); 7637 7638 SDValue Callee = getValue(I.getCalledValue()); 7639 7640 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7641 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7642 else 7643 // Check if we can potentially perform a tail call. More detailed checking 7644 // is be done within LowerCallTo, after more information about the call is 7645 // known. 7646 LowerCallTo(&I, Callee, I.isTailCall()); 7647 } 7648 7649 namespace { 7650 7651 /// AsmOperandInfo - This contains information for each constraint that we are 7652 /// lowering. 7653 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7654 public: 7655 /// CallOperand - If this is the result output operand or a clobber 7656 /// this is null, otherwise it is the incoming operand to the CallInst. 7657 /// This gets modified as the asm is processed. 7658 SDValue CallOperand; 7659 7660 /// AssignedRegs - If this is a register or register class operand, this 7661 /// contains the set of register corresponding to the operand. 7662 RegsForValue AssignedRegs; 7663 7664 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7665 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7666 } 7667 7668 /// Whether or not this operand accesses memory 7669 bool hasMemory(const TargetLowering &TLI) const { 7670 // Indirect operand accesses access memory. 7671 if (isIndirect) 7672 return true; 7673 7674 for (const auto &Code : Codes) 7675 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7676 return true; 7677 7678 return false; 7679 } 7680 7681 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7682 /// corresponds to. If there is no Value* for this operand, it returns 7683 /// MVT::Other. 7684 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7685 const DataLayout &DL) const { 7686 if (!CallOperandVal) return MVT::Other; 7687 7688 if (isa<BasicBlock>(CallOperandVal)) 7689 return TLI.getPointerTy(DL); 7690 7691 llvm::Type *OpTy = CallOperandVal->getType(); 7692 7693 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7694 // If this is an indirect operand, the operand is a pointer to the 7695 // accessed type. 7696 if (isIndirect) { 7697 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7698 if (!PtrTy) 7699 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7700 OpTy = PtrTy->getElementType(); 7701 } 7702 7703 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7704 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7705 if (STy->getNumElements() == 1) 7706 OpTy = STy->getElementType(0); 7707 7708 // If OpTy is not a single value, it may be a struct/union that we 7709 // can tile with integers. 7710 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7711 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7712 switch (BitSize) { 7713 default: break; 7714 case 1: 7715 case 8: 7716 case 16: 7717 case 32: 7718 case 64: 7719 case 128: 7720 OpTy = IntegerType::get(Context, BitSize); 7721 break; 7722 } 7723 } 7724 7725 return TLI.getValueType(DL, OpTy, true); 7726 } 7727 }; 7728 7729 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7730 7731 } // end anonymous namespace 7732 7733 /// Make sure that the output operand \p OpInfo and its corresponding input 7734 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7735 /// out). 7736 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7737 SDISelAsmOperandInfo &MatchingOpInfo, 7738 SelectionDAG &DAG) { 7739 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7740 return; 7741 7742 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7743 const auto &TLI = DAG.getTargetLoweringInfo(); 7744 7745 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7746 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7747 OpInfo.ConstraintVT); 7748 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7749 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7750 MatchingOpInfo.ConstraintVT); 7751 if ((OpInfo.ConstraintVT.isInteger() != 7752 MatchingOpInfo.ConstraintVT.isInteger()) || 7753 (MatchRC.second != InputRC.second)) { 7754 // FIXME: error out in a more elegant fashion 7755 report_fatal_error("Unsupported asm: input constraint" 7756 " with a matching output constraint of" 7757 " incompatible type!"); 7758 } 7759 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7760 } 7761 7762 /// Get a direct memory input to behave well as an indirect operand. 7763 /// This may introduce stores, hence the need for a \p Chain. 7764 /// \return The (possibly updated) chain. 7765 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7766 SDISelAsmOperandInfo &OpInfo, 7767 SelectionDAG &DAG) { 7768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7769 7770 // If we don't have an indirect input, put it in the constpool if we can, 7771 // otherwise spill it to a stack slot. 7772 // TODO: This isn't quite right. We need to handle these according to 7773 // the addressing mode that the constraint wants. Also, this may take 7774 // an additional register for the computation and we don't want that 7775 // either. 7776 7777 // If the operand is a float, integer, or vector constant, spill to a 7778 // constant pool entry to get its address. 7779 const Value *OpVal = OpInfo.CallOperandVal; 7780 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7781 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7782 OpInfo.CallOperand = DAG.getConstantPool( 7783 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7784 return Chain; 7785 } 7786 7787 // Otherwise, create a stack slot and emit a store to it before the asm. 7788 Type *Ty = OpVal->getType(); 7789 auto &DL = DAG.getDataLayout(); 7790 uint64_t TySize = DL.getTypeAllocSize(Ty); 7791 unsigned Align = DL.getPrefTypeAlignment(Ty); 7792 MachineFunction &MF = DAG.getMachineFunction(); 7793 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7794 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7795 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7796 MachinePointerInfo::getFixedStack(MF, SSFI), 7797 TLI.getMemValueType(DL, Ty)); 7798 OpInfo.CallOperand = StackSlot; 7799 7800 return Chain; 7801 } 7802 7803 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7804 /// specified operand. We prefer to assign virtual registers, to allow the 7805 /// register allocator to handle the assignment process. However, if the asm 7806 /// uses features that we can't model on machineinstrs, we have SDISel do the 7807 /// allocation. This produces generally horrible, but correct, code. 7808 /// 7809 /// OpInfo describes the operand 7810 /// RefOpInfo describes the matching operand if any, the operand otherwise 7811 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7812 SDISelAsmOperandInfo &OpInfo, 7813 SDISelAsmOperandInfo &RefOpInfo) { 7814 LLVMContext &Context = *DAG.getContext(); 7815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7816 7817 MachineFunction &MF = DAG.getMachineFunction(); 7818 SmallVector<unsigned, 4> Regs; 7819 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7820 7821 // No work to do for memory operations. 7822 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7823 return; 7824 7825 // If this is a constraint for a single physreg, or a constraint for a 7826 // register class, find it. 7827 unsigned AssignedReg; 7828 const TargetRegisterClass *RC; 7829 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7830 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7831 // RC is unset only on failure. Return immediately. 7832 if (!RC) 7833 return; 7834 7835 // Get the actual register value type. This is important, because the user 7836 // may have asked for (e.g.) the AX register in i32 type. We need to 7837 // remember that AX is actually i16 to get the right extension. 7838 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7839 7840 if (OpInfo.ConstraintVT != MVT::Other) { 7841 // If this is an FP operand in an integer register (or visa versa), or more 7842 // generally if the operand value disagrees with the register class we plan 7843 // to stick it in, fix the operand type. 7844 // 7845 // If this is an input value, the bitcast to the new type is done now. 7846 // Bitcast for output value is done at the end of visitInlineAsm(). 7847 if ((OpInfo.Type == InlineAsm::isOutput || 7848 OpInfo.Type == InlineAsm::isInput) && 7849 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7850 // Try to convert to the first EVT that the reg class contains. If the 7851 // types are identical size, use a bitcast to convert (e.g. two differing 7852 // vector types). Note: output bitcast is done at the end of 7853 // visitInlineAsm(). 7854 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7855 // Exclude indirect inputs while they are unsupported because the code 7856 // to perform the load is missing and thus OpInfo.CallOperand still 7857 // refers to the input address rather than the pointed-to value. 7858 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7859 OpInfo.CallOperand = 7860 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7861 OpInfo.ConstraintVT = RegVT; 7862 // If the operand is an FP value and we want it in integer registers, 7863 // use the corresponding integer type. This turns an f64 value into 7864 // i64, which can be passed with two i32 values on a 32-bit machine. 7865 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7866 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7867 if (OpInfo.Type == InlineAsm::isInput) 7868 OpInfo.CallOperand = 7869 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7870 OpInfo.ConstraintVT = VT; 7871 } 7872 } 7873 } 7874 7875 // No need to allocate a matching input constraint since the constraint it's 7876 // matching to has already been allocated. 7877 if (OpInfo.isMatchingInputConstraint()) 7878 return; 7879 7880 EVT ValueVT = OpInfo.ConstraintVT; 7881 if (OpInfo.ConstraintVT == MVT::Other) 7882 ValueVT = RegVT; 7883 7884 // Initialize NumRegs. 7885 unsigned NumRegs = 1; 7886 if (OpInfo.ConstraintVT != MVT::Other) 7887 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7888 7889 // If this is a constraint for a specific physical register, like {r17}, 7890 // assign it now. 7891 7892 // If this associated to a specific register, initialize iterator to correct 7893 // place. If virtual, make sure we have enough registers 7894 7895 // Initialize iterator if necessary 7896 TargetRegisterClass::iterator I = RC->begin(); 7897 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7898 7899 // Do not check for single registers. 7900 if (AssignedReg) { 7901 for (; *I != AssignedReg; ++I) 7902 assert(I != RC->end() && "AssignedReg should be member of RC"); 7903 } 7904 7905 for (; NumRegs; --NumRegs, ++I) { 7906 assert(I != RC->end() && "Ran out of registers to allocate!"); 7907 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7908 Regs.push_back(R); 7909 } 7910 7911 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7912 } 7913 7914 static unsigned 7915 findMatchingInlineAsmOperand(unsigned OperandNo, 7916 const std::vector<SDValue> &AsmNodeOperands) { 7917 // Scan until we find the definition we already emitted of this operand. 7918 unsigned CurOp = InlineAsm::Op_FirstOperand; 7919 for (; OperandNo; --OperandNo) { 7920 // Advance to the next operand. 7921 unsigned OpFlag = 7922 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7923 assert((InlineAsm::isRegDefKind(OpFlag) || 7924 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7925 InlineAsm::isMemKind(OpFlag)) && 7926 "Skipped past definitions?"); 7927 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7928 } 7929 return CurOp; 7930 } 7931 7932 namespace { 7933 7934 class ExtraFlags { 7935 unsigned Flags = 0; 7936 7937 public: 7938 explicit ExtraFlags(ImmutableCallSite CS) { 7939 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7940 if (IA->hasSideEffects()) 7941 Flags |= InlineAsm::Extra_HasSideEffects; 7942 if (IA->isAlignStack()) 7943 Flags |= InlineAsm::Extra_IsAlignStack; 7944 if (CS.isConvergent()) 7945 Flags |= InlineAsm::Extra_IsConvergent; 7946 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7947 } 7948 7949 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7950 // Ideally, we would only check against memory constraints. However, the 7951 // meaning of an Other constraint can be target-specific and we can't easily 7952 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7953 // for Other constraints as well. 7954 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7955 OpInfo.ConstraintType == TargetLowering::C_Other) { 7956 if (OpInfo.Type == InlineAsm::isInput) 7957 Flags |= InlineAsm::Extra_MayLoad; 7958 else if (OpInfo.Type == InlineAsm::isOutput) 7959 Flags |= InlineAsm::Extra_MayStore; 7960 else if (OpInfo.Type == InlineAsm::isClobber) 7961 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7962 } 7963 } 7964 7965 unsigned get() const { return Flags; } 7966 }; 7967 7968 } // end anonymous namespace 7969 7970 /// visitInlineAsm - Handle a call to an InlineAsm object. 7971 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7972 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7973 7974 /// ConstraintOperands - Information about all of the constraints. 7975 SDISelAsmOperandInfoVector ConstraintOperands; 7976 7977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7978 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7979 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7980 7981 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7982 // AsmDialect, MayLoad, MayStore). 7983 bool HasSideEffect = IA->hasSideEffects(); 7984 ExtraFlags ExtraInfo(CS); 7985 7986 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7987 unsigned ResNo = 0; // ResNo - The result number of the next output. 7988 for (auto &T : TargetConstraints) { 7989 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7990 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7991 7992 // Compute the value type for each operand. 7993 if (OpInfo.Type == InlineAsm::isInput || 7994 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7995 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7996 7997 // Process the call argument. BasicBlocks are labels, currently appearing 7998 // only in asm's. 7999 const Instruction *I = CS.getInstruction(); 8000 if (isa<CallBrInst>(I) && 8001 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8002 cast<CallBrInst>(I)->getNumIndirectDests())) { 8003 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8004 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8005 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8006 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8007 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8008 } else { 8009 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8010 } 8011 8012 OpInfo.ConstraintVT = 8013 OpInfo 8014 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8015 .getSimpleVT(); 8016 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8017 // The return value of the call is this value. As such, there is no 8018 // corresponding argument. 8019 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8020 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8021 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8022 DAG.getDataLayout(), STy->getElementType(ResNo)); 8023 } else { 8024 assert(ResNo == 0 && "Asm only has one result!"); 8025 OpInfo.ConstraintVT = 8026 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8027 } 8028 ++ResNo; 8029 } else { 8030 OpInfo.ConstraintVT = MVT::Other; 8031 } 8032 8033 if (!HasSideEffect) 8034 HasSideEffect = OpInfo.hasMemory(TLI); 8035 8036 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8037 // FIXME: Could we compute this on OpInfo rather than T? 8038 8039 // Compute the constraint code and ConstraintType to use. 8040 TLI.ComputeConstraintToUse(T, SDValue()); 8041 8042 if (T.ConstraintType == TargetLowering::C_Immediate && 8043 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8044 // We've delayed emitting a diagnostic like the "n" constraint because 8045 // inlining could cause an integer showing up. 8046 return emitInlineAsmError( 8047 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8048 "integer constant expression"); 8049 8050 ExtraInfo.update(T); 8051 } 8052 8053 8054 // We won't need to flush pending loads if this asm doesn't touch 8055 // memory and is nonvolatile. 8056 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8057 8058 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8059 if (IsCallBr) { 8060 // If this is a callbr we need to flush pending exports since inlineasm_br 8061 // is a terminator. We need to do this before nodes are glued to 8062 // the inlineasm_br node. 8063 Chain = getControlRoot(); 8064 } 8065 8066 // Second pass over the constraints: compute which constraint option to use. 8067 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8068 // If this is an output operand with a matching input operand, look up the 8069 // matching input. If their types mismatch, e.g. one is an integer, the 8070 // other is floating point, or their sizes are different, flag it as an 8071 // error. 8072 if (OpInfo.hasMatchingInput()) { 8073 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8074 patchMatchingInput(OpInfo, Input, DAG); 8075 } 8076 8077 // Compute the constraint code and ConstraintType to use. 8078 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8079 8080 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8081 OpInfo.Type == InlineAsm::isClobber) 8082 continue; 8083 8084 // If this is a memory input, and if the operand is not indirect, do what we 8085 // need to provide an address for the memory input. 8086 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8087 !OpInfo.isIndirect) { 8088 assert((OpInfo.isMultipleAlternative || 8089 (OpInfo.Type == InlineAsm::isInput)) && 8090 "Can only indirectify direct input operands!"); 8091 8092 // Memory operands really want the address of the value. 8093 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8094 8095 // There is no longer a Value* corresponding to this operand. 8096 OpInfo.CallOperandVal = nullptr; 8097 8098 // It is now an indirect operand. 8099 OpInfo.isIndirect = true; 8100 } 8101 8102 } 8103 8104 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8105 std::vector<SDValue> AsmNodeOperands; 8106 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8107 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8108 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8109 8110 // If we have a !srcloc metadata node associated with it, we want to attach 8111 // this to the ultimately generated inline asm machineinstr. To do this, we 8112 // pass in the third operand as this (potentially null) inline asm MDNode. 8113 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8114 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8115 8116 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8117 // bits as operand 3. 8118 AsmNodeOperands.push_back(DAG.getTargetConstant( 8119 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8120 8121 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8122 // this, assign virtual and physical registers for inputs and otput. 8123 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8124 // Assign Registers. 8125 SDISelAsmOperandInfo &RefOpInfo = 8126 OpInfo.isMatchingInputConstraint() 8127 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8128 : OpInfo; 8129 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8130 8131 switch (OpInfo.Type) { 8132 case InlineAsm::isOutput: 8133 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8134 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8135 OpInfo.ConstraintType == TargetLowering::C_Other) && 8136 OpInfo.isIndirect)) { 8137 unsigned ConstraintID = 8138 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8139 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8140 "Failed to convert memory constraint code to constraint id."); 8141 8142 // Add information to the INLINEASM node to know about this output. 8143 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8144 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8145 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8146 MVT::i32)); 8147 AsmNodeOperands.push_back(OpInfo.CallOperand); 8148 break; 8149 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8150 OpInfo.ConstraintType == TargetLowering::C_Other) && 8151 !OpInfo.isIndirect) || 8152 OpInfo.ConstraintType == TargetLowering::C_Register || 8153 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8154 // Otherwise, this outputs to a register (directly for C_Register / 8155 // C_RegisterClass, and a target-defined fashion for 8156 // C_Immediate/C_Other). Find a register that we can use. 8157 if (OpInfo.AssignedRegs.Regs.empty()) { 8158 emitInlineAsmError( 8159 CS, "couldn't allocate output register for constraint '" + 8160 Twine(OpInfo.ConstraintCode) + "'"); 8161 return; 8162 } 8163 8164 // Add information to the INLINEASM node to know that this register is 8165 // set. 8166 OpInfo.AssignedRegs.AddInlineAsmOperands( 8167 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8168 : InlineAsm::Kind_RegDef, 8169 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8170 } 8171 break; 8172 8173 case InlineAsm::isInput: { 8174 SDValue InOperandVal = OpInfo.CallOperand; 8175 8176 if (OpInfo.isMatchingInputConstraint()) { 8177 // If this is required to match an output register we have already set, 8178 // just use its register. 8179 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8180 AsmNodeOperands); 8181 unsigned OpFlag = 8182 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8183 if (InlineAsm::isRegDefKind(OpFlag) || 8184 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8185 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8186 if (OpInfo.isIndirect) { 8187 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8188 emitInlineAsmError(CS, "inline asm not supported yet:" 8189 " don't know how to handle tied " 8190 "indirect register inputs"); 8191 return; 8192 } 8193 8194 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8195 SmallVector<unsigned, 4> Regs; 8196 8197 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8198 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8199 MachineRegisterInfo &RegInfo = 8200 DAG.getMachineFunction().getRegInfo(); 8201 for (unsigned i = 0; i != NumRegs; ++i) 8202 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8203 } else { 8204 emitInlineAsmError(CS, "inline asm error: This value type register " 8205 "class is not natively supported!"); 8206 return; 8207 } 8208 8209 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8210 8211 SDLoc dl = getCurSDLoc(); 8212 // Use the produced MatchedRegs object to 8213 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8214 CS.getInstruction()); 8215 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8216 true, OpInfo.getMatchedOperand(), dl, 8217 DAG, AsmNodeOperands); 8218 break; 8219 } 8220 8221 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8222 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8223 "Unexpected number of operands"); 8224 // Add information to the INLINEASM node to know about this input. 8225 // See InlineAsm.h isUseOperandTiedToDef. 8226 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8227 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8228 OpInfo.getMatchedOperand()); 8229 AsmNodeOperands.push_back(DAG.getTargetConstant( 8230 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8231 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8232 break; 8233 } 8234 8235 // Treat indirect 'X' constraint as memory. 8236 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8237 OpInfo.ConstraintType == TargetLowering::C_Other) && 8238 OpInfo.isIndirect) 8239 OpInfo.ConstraintType = TargetLowering::C_Memory; 8240 8241 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8242 OpInfo.ConstraintType == TargetLowering::C_Other) { 8243 std::vector<SDValue> Ops; 8244 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8245 Ops, DAG); 8246 if (Ops.empty()) { 8247 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8248 if (isa<ConstantSDNode>(InOperandVal)) { 8249 emitInlineAsmError(CS, "value out of range for constraint '" + 8250 Twine(OpInfo.ConstraintCode) + "'"); 8251 return; 8252 } 8253 8254 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8255 Twine(OpInfo.ConstraintCode) + "'"); 8256 return; 8257 } 8258 8259 // Add information to the INLINEASM node to know about this input. 8260 unsigned ResOpType = 8261 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8262 AsmNodeOperands.push_back(DAG.getTargetConstant( 8263 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8264 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8265 break; 8266 } 8267 8268 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8269 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8270 assert(InOperandVal.getValueType() == 8271 TLI.getPointerTy(DAG.getDataLayout()) && 8272 "Memory operands expect pointer values"); 8273 8274 unsigned ConstraintID = 8275 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8276 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8277 "Failed to convert memory constraint code to constraint id."); 8278 8279 // Add information to the INLINEASM node to know about this input. 8280 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8281 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8282 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8283 getCurSDLoc(), 8284 MVT::i32)); 8285 AsmNodeOperands.push_back(InOperandVal); 8286 break; 8287 } 8288 8289 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8290 OpInfo.ConstraintType == TargetLowering::C_Register || 8291 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8292 "Unknown constraint type!"); 8293 8294 // TODO: Support this. 8295 if (OpInfo.isIndirect) { 8296 emitInlineAsmError( 8297 CS, "Don't know how to handle indirect register inputs yet " 8298 "for constraint '" + 8299 Twine(OpInfo.ConstraintCode) + "'"); 8300 return; 8301 } 8302 8303 // Copy the input into the appropriate registers. 8304 if (OpInfo.AssignedRegs.Regs.empty()) { 8305 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8306 Twine(OpInfo.ConstraintCode) + "'"); 8307 return; 8308 } 8309 8310 SDLoc dl = getCurSDLoc(); 8311 8312 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8313 Chain, &Flag, CS.getInstruction()); 8314 8315 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8316 dl, DAG, AsmNodeOperands); 8317 break; 8318 } 8319 case InlineAsm::isClobber: 8320 // Add the clobbered value to the operand list, so that the register 8321 // allocator is aware that the physreg got clobbered. 8322 if (!OpInfo.AssignedRegs.Regs.empty()) 8323 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8324 false, 0, getCurSDLoc(), DAG, 8325 AsmNodeOperands); 8326 break; 8327 } 8328 } 8329 8330 // Finish up input operands. Set the input chain and add the flag last. 8331 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8332 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8333 8334 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8335 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8336 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8337 Flag = Chain.getValue(1); 8338 8339 // Do additional work to generate outputs. 8340 8341 SmallVector<EVT, 1> ResultVTs; 8342 SmallVector<SDValue, 1> ResultValues; 8343 SmallVector<SDValue, 8> OutChains; 8344 8345 llvm::Type *CSResultType = CS.getType(); 8346 ArrayRef<Type *> ResultTypes; 8347 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8348 ResultTypes = StructResult->elements(); 8349 else if (!CSResultType->isVoidTy()) 8350 ResultTypes = makeArrayRef(CSResultType); 8351 8352 auto CurResultType = ResultTypes.begin(); 8353 auto handleRegAssign = [&](SDValue V) { 8354 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8355 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8356 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8357 ++CurResultType; 8358 // If the type of the inline asm call site return value is different but has 8359 // same size as the type of the asm output bitcast it. One example of this 8360 // is for vectors with different width / number of elements. This can 8361 // happen for register classes that can contain multiple different value 8362 // types. The preg or vreg allocated may not have the same VT as was 8363 // expected. 8364 // 8365 // This can also happen for a return value that disagrees with the register 8366 // class it is put in, eg. a double in a general-purpose register on a 8367 // 32-bit machine. 8368 if (ResultVT != V.getValueType() && 8369 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8370 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8371 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8372 V.getValueType().isInteger()) { 8373 // If a result value was tied to an input value, the computed result 8374 // may have a wider width than the expected result. Extract the 8375 // relevant portion. 8376 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8377 } 8378 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8379 ResultVTs.push_back(ResultVT); 8380 ResultValues.push_back(V); 8381 }; 8382 8383 // Deal with output operands. 8384 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8385 if (OpInfo.Type == InlineAsm::isOutput) { 8386 SDValue Val; 8387 // Skip trivial output operands. 8388 if (OpInfo.AssignedRegs.Regs.empty()) 8389 continue; 8390 8391 switch (OpInfo.ConstraintType) { 8392 case TargetLowering::C_Register: 8393 case TargetLowering::C_RegisterClass: 8394 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8395 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8396 break; 8397 case TargetLowering::C_Immediate: 8398 case TargetLowering::C_Other: 8399 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8400 OpInfo, DAG); 8401 break; 8402 case TargetLowering::C_Memory: 8403 break; // Already handled. 8404 case TargetLowering::C_Unknown: 8405 assert(false && "Unexpected unknown constraint"); 8406 } 8407 8408 // Indirect output manifest as stores. Record output chains. 8409 if (OpInfo.isIndirect) { 8410 const Value *Ptr = OpInfo.CallOperandVal; 8411 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8412 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8413 MachinePointerInfo(Ptr)); 8414 OutChains.push_back(Store); 8415 } else { 8416 // generate CopyFromRegs to associated registers. 8417 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8418 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8419 for (const SDValue &V : Val->op_values()) 8420 handleRegAssign(V); 8421 } else 8422 handleRegAssign(Val); 8423 } 8424 } 8425 } 8426 8427 // Set results. 8428 if (!ResultValues.empty()) { 8429 assert(CurResultType == ResultTypes.end() && 8430 "Mismatch in number of ResultTypes"); 8431 assert(ResultValues.size() == ResultTypes.size() && 8432 "Mismatch in number of output operands in asm result"); 8433 8434 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8435 DAG.getVTList(ResultVTs), ResultValues); 8436 setValue(CS.getInstruction(), V); 8437 } 8438 8439 // Collect store chains. 8440 if (!OutChains.empty()) 8441 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8442 8443 // Only Update Root if inline assembly has a memory effect. 8444 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8445 DAG.setRoot(Chain); 8446 } 8447 8448 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8449 const Twine &Message) { 8450 LLVMContext &Ctx = *DAG.getContext(); 8451 Ctx.emitError(CS.getInstruction(), Message); 8452 8453 // Make sure we leave the DAG in a valid state 8454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8455 SmallVector<EVT, 1> ValueVTs; 8456 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8457 8458 if (ValueVTs.empty()) 8459 return; 8460 8461 SmallVector<SDValue, 1> Ops; 8462 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8463 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8464 8465 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8466 } 8467 8468 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8469 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8470 MVT::Other, getRoot(), 8471 getValue(I.getArgOperand(0)), 8472 DAG.getSrcValue(I.getArgOperand(0)))); 8473 } 8474 8475 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8477 const DataLayout &DL = DAG.getDataLayout(); 8478 SDValue V = DAG.getVAArg( 8479 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8480 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8481 DL.getABITypeAlignment(I.getType())); 8482 DAG.setRoot(V.getValue(1)); 8483 8484 if (I.getType()->isPointerTy()) 8485 V = DAG.getPtrExtOrTrunc( 8486 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8487 setValue(&I, V); 8488 } 8489 8490 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8491 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8492 MVT::Other, getRoot(), 8493 getValue(I.getArgOperand(0)), 8494 DAG.getSrcValue(I.getArgOperand(0)))); 8495 } 8496 8497 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8498 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8499 MVT::Other, getRoot(), 8500 getValue(I.getArgOperand(0)), 8501 getValue(I.getArgOperand(1)), 8502 DAG.getSrcValue(I.getArgOperand(0)), 8503 DAG.getSrcValue(I.getArgOperand(1)))); 8504 } 8505 8506 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8507 const Instruction &I, 8508 SDValue Op) { 8509 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8510 if (!Range) 8511 return Op; 8512 8513 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8514 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8515 return Op; 8516 8517 APInt Lo = CR.getUnsignedMin(); 8518 if (!Lo.isMinValue()) 8519 return Op; 8520 8521 APInt Hi = CR.getUnsignedMax(); 8522 unsigned Bits = std::max(Hi.getActiveBits(), 8523 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8524 8525 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8526 8527 SDLoc SL = getCurSDLoc(); 8528 8529 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8530 DAG.getValueType(SmallVT)); 8531 unsigned NumVals = Op.getNode()->getNumValues(); 8532 if (NumVals == 1) 8533 return ZExt; 8534 8535 SmallVector<SDValue, 4> Ops; 8536 8537 Ops.push_back(ZExt); 8538 for (unsigned I = 1; I != NumVals; ++I) 8539 Ops.push_back(Op.getValue(I)); 8540 8541 return DAG.getMergeValues(Ops, SL); 8542 } 8543 8544 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8545 /// the call being lowered. 8546 /// 8547 /// This is a helper for lowering intrinsics that follow a target calling 8548 /// convention or require stack pointer adjustment. Only a subset of the 8549 /// intrinsic's operands need to participate in the calling convention. 8550 void SelectionDAGBuilder::populateCallLoweringInfo( 8551 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8552 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8553 bool IsPatchPoint) { 8554 TargetLowering::ArgListTy Args; 8555 Args.reserve(NumArgs); 8556 8557 // Populate the argument list. 8558 // Attributes for args start at offset 1, after the return attribute. 8559 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8560 ArgI != ArgE; ++ArgI) { 8561 const Value *V = Call->getOperand(ArgI); 8562 8563 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8564 8565 TargetLowering::ArgListEntry Entry; 8566 Entry.Node = getValue(V); 8567 Entry.Ty = V->getType(); 8568 Entry.setAttributes(Call, ArgI); 8569 Args.push_back(Entry); 8570 } 8571 8572 CLI.setDebugLoc(getCurSDLoc()) 8573 .setChain(getRoot()) 8574 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8575 .setDiscardResult(Call->use_empty()) 8576 .setIsPatchPoint(IsPatchPoint); 8577 } 8578 8579 /// Add a stack map intrinsic call's live variable operands to a stackmap 8580 /// or patchpoint target node's operand list. 8581 /// 8582 /// Constants are converted to TargetConstants purely as an optimization to 8583 /// avoid constant materialization and register allocation. 8584 /// 8585 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8586 /// generate addess computation nodes, and so FinalizeISel can convert the 8587 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8588 /// address materialization and register allocation, but may also be required 8589 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8590 /// alloca in the entry block, then the runtime may assume that the alloca's 8591 /// StackMap location can be read immediately after compilation and that the 8592 /// location is valid at any point during execution (this is similar to the 8593 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8594 /// only available in a register, then the runtime would need to trap when 8595 /// execution reaches the StackMap in order to read the alloca's location. 8596 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8597 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8598 SelectionDAGBuilder &Builder) { 8599 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8600 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8601 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8602 Ops.push_back( 8603 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8604 Ops.push_back( 8605 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8606 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8607 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8608 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8609 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8610 } else 8611 Ops.push_back(OpVal); 8612 } 8613 } 8614 8615 /// Lower llvm.experimental.stackmap directly to its target opcode. 8616 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8617 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8618 // [live variables...]) 8619 8620 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8621 8622 SDValue Chain, InFlag, Callee, NullPtr; 8623 SmallVector<SDValue, 32> Ops; 8624 8625 SDLoc DL = getCurSDLoc(); 8626 Callee = getValue(CI.getCalledValue()); 8627 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8628 8629 // The stackmap intrinsic only records the live variables (the arguments 8630 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8631 // intrinsic, this won't be lowered to a function call. This means we don't 8632 // have to worry about calling conventions and target specific lowering code. 8633 // Instead we perform the call lowering right here. 8634 // 8635 // chain, flag = CALLSEQ_START(chain, 0, 0) 8636 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8637 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8638 // 8639 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8640 InFlag = Chain.getValue(1); 8641 8642 // Add the <id> and <numBytes> constants. 8643 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8644 Ops.push_back(DAG.getTargetConstant( 8645 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8646 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8647 Ops.push_back(DAG.getTargetConstant( 8648 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8649 MVT::i32)); 8650 8651 // Push live variables for the stack map. 8652 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8653 8654 // We are not pushing any register mask info here on the operands list, 8655 // because the stackmap doesn't clobber anything. 8656 8657 // Push the chain and the glue flag. 8658 Ops.push_back(Chain); 8659 Ops.push_back(InFlag); 8660 8661 // Create the STACKMAP node. 8662 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8663 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8664 Chain = SDValue(SM, 0); 8665 InFlag = Chain.getValue(1); 8666 8667 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8668 8669 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8670 8671 // Set the root to the target-lowered call chain. 8672 DAG.setRoot(Chain); 8673 8674 // Inform the Frame Information that we have a stackmap in this function. 8675 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8676 } 8677 8678 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8679 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8680 const BasicBlock *EHPadBB) { 8681 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8682 // i32 <numBytes>, 8683 // i8* <target>, 8684 // i32 <numArgs>, 8685 // [Args...], 8686 // [live variables...]) 8687 8688 CallingConv::ID CC = CS.getCallingConv(); 8689 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8690 bool HasDef = !CS->getType()->isVoidTy(); 8691 SDLoc dl = getCurSDLoc(); 8692 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8693 8694 // Handle immediate and symbolic callees. 8695 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8696 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8697 /*isTarget=*/true); 8698 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8699 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8700 SDLoc(SymbolicCallee), 8701 SymbolicCallee->getValueType(0)); 8702 8703 // Get the real number of arguments participating in the call <numArgs> 8704 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8705 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8706 8707 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8708 // Intrinsics include all meta-operands up to but not including CC. 8709 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8710 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8711 "Not enough arguments provided to the patchpoint intrinsic"); 8712 8713 // For AnyRegCC the arguments are lowered later on manually. 8714 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8715 Type *ReturnTy = 8716 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8717 8718 TargetLowering::CallLoweringInfo CLI(DAG); 8719 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8720 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8721 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8722 8723 SDNode *CallEnd = Result.second.getNode(); 8724 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8725 CallEnd = CallEnd->getOperand(0).getNode(); 8726 8727 /// Get a call instruction from the call sequence chain. 8728 /// Tail calls are not allowed. 8729 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8730 "Expected a callseq node."); 8731 SDNode *Call = CallEnd->getOperand(0).getNode(); 8732 bool HasGlue = Call->getGluedNode(); 8733 8734 // Replace the target specific call node with the patchable intrinsic. 8735 SmallVector<SDValue, 8> Ops; 8736 8737 // Add the <id> and <numBytes> constants. 8738 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8739 Ops.push_back(DAG.getTargetConstant( 8740 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8741 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8742 Ops.push_back(DAG.getTargetConstant( 8743 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8744 MVT::i32)); 8745 8746 // Add the callee. 8747 Ops.push_back(Callee); 8748 8749 // Adjust <numArgs> to account for any arguments that have been passed on the 8750 // stack instead. 8751 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8752 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8753 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8754 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8755 8756 // Add the calling convention 8757 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8758 8759 // Add the arguments we omitted previously. The register allocator should 8760 // place these in any free register. 8761 if (IsAnyRegCC) 8762 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8763 Ops.push_back(getValue(CS.getArgument(i))); 8764 8765 // Push the arguments from the call instruction up to the register mask. 8766 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8767 Ops.append(Call->op_begin() + 2, e); 8768 8769 // Push live variables for the stack map. 8770 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8771 8772 // Push the register mask info. 8773 if (HasGlue) 8774 Ops.push_back(*(Call->op_end()-2)); 8775 else 8776 Ops.push_back(*(Call->op_end()-1)); 8777 8778 // Push the chain (this is originally the first operand of the call, but 8779 // becomes now the last or second to last operand). 8780 Ops.push_back(*(Call->op_begin())); 8781 8782 // Push the glue flag (last operand). 8783 if (HasGlue) 8784 Ops.push_back(*(Call->op_end()-1)); 8785 8786 SDVTList NodeTys; 8787 if (IsAnyRegCC && HasDef) { 8788 // Create the return types based on the intrinsic definition 8789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8790 SmallVector<EVT, 3> ValueVTs; 8791 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8792 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8793 8794 // There is always a chain and a glue type at the end 8795 ValueVTs.push_back(MVT::Other); 8796 ValueVTs.push_back(MVT::Glue); 8797 NodeTys = DAG.getVTList(ValueVTs); 8798 } else 8799 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8800 8801 // Replace the target specific call node with a PATCHPOINT node. 8802 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8803 dl, NodeTys, Ops); 8804 8805 // Update the NodeMap. 8806 if (HasDef) { 8807 if (IsAnyRegCC) 8808 setValue(CS.getInstruction(), SDValue(MN, 0)); 8809 else 8810 setValue(CS.getInstruction(), Result.first); 8811 } 8812 8813 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8814 // call sequence. Furthermore the location of the chain and glue can change 8815 // when the AnyReg calling convention is used and the intrinsic returns a 8816 // value. 8817 if (IsAnyRegCC && HasDef) { 8818 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8819 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8820 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8821 } else 8822 DAG.ReplaceAllUsesWith(Call, MN); 8823 DAG.DeleteNode(Call); 8824 8825 // Inform the Frame Information that we have a patchpoint in this function. 8826 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8827 } 8828 8829 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8830 unsigned Intrinsic) { 8831 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8832 SDValue Op1 = getValue(I.getArgOperand(0)); 8833 SDValue Op2; 8834 if (I.getNumArgOperands() > 1) 8835 Op2 = getValue(I.getArgOperand(1)); 8836 SDLoc dl = getCurSDLoc(); 8837 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8838 SDValue Res; 8839 FastMathFlags FMF; 8840 if (isa<FPMathOperator>(I)) 8841 FMF = I.getFastMathFlags(); 8842 8843 switch (Intrinsic) { 8844 case Intrinsic::experimental_vector_reduce_v2_fadd: 8845 if (FMF.allowReassoc()) 8846 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8847 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8848 else 8849 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8850 break; 8851 case Intrinsic::experimental_vector_reduce_v2_fmul: 8852 if (FMF.allowReassoc()) 8853 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8854 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8855 else 8856 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8857 break; 8858 case Intrinsic::experimental_vector_reduce_add: 8859 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8860 break; 8861 case Intrinsic::experimental_vector_reduce_mul: 8862 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8863 break; 8864 case Intrinsic::experimental_vector_reduce_and: 8865 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8866 break; 8867 case Intrinsic::experimental_vector_reduce_or: 8868 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8869 break; 8870 case Intrinsic::experimental_vector_reduce_xor: 8871 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8872 break; 8873 case Intrinsic::experimental_vector_reduce_smax: 8874 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8875 break; 8876 case Intrinsic::experimental_vector_reduce_smin: 8877 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8878 break; 8879 case Intrinsic::experimental_vector_reduce_umax: 8880 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8881 break; 8882 case Intrinsic::experimental_vector_reduce_umin: 8883 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8884 break; 8885 case Intrinsic::experimental_vector_reduce_fmax: 8886 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8887 break; 8888 case Intrinsic::experimental_vector_reduce_fmin: 8889 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8890 break; 8891 default: 8892 llvm_unreachable("Unhandled vector reduce intrinsic"); 8893 } 8894 setValue(&I, Res); 8895 } 8896 8897 /// Returns an AttributeList representing the attributes applied to the return 8898 /// value of the given call. 8899 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8900 SmallVector<Attribute::AttrKind, 2> Attrs; 8901 if (CLI.RetSExt) 8902 Attrs.push_back(Attribute::SExt); 8903 if (CLI.RetZExt) 8904 Attrs.push_back(Attribute::ZExt); 8905 if (CLI.IsInReg) 8906 Attrs.push_back(Attribute::InReg); 8907 8908 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8909 Attrs); 8910 } 8911 8912 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8913 /// implementation, which just calls LowerCall. 8914 /// FIXME: When all targets are 8915 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8916 std::pair<SDValue, SDValue> 8917 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8918 // Handle the incoming return values from the call. 8919 CLI.Ins.clear(); 8920 Type *OrigRetTy = CLI.RetTy; 8921 SmallVector<EVT, 4> RetTys; 8922 SmallVector<uint64_t, 4> Offsets; 8923 auto &DL = CLI.DAG.getDataLayout(); 8924 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8925 8926 if (CLI.IsPostTypeLegalization) { 8927 // If we are lowering a libcall after legalization, split the return type. 8928 SmallVector<EVT, 4> OldRetTys; 8929 SmallVector<uint64_t, 4> OldOffsets; 8930 RetTys.swap(OldRetTys); 8931 Offsets.swap(OldOffsets); 8932 8933 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8934 EVT RetVT = OldRetTys[i]; 8935 uint64_t Offset = OldOffsets[i]; 8936 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8937 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8938 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8939 RetTys.append(NumRegs, RegisterVT); 8940 for (unsigned j = 0; j != NumRegs; ++j) 8941 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8942 } 8943 } 8944 8945 SmallVector<ISD::OutputArg, 4> Outs; 8946 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8947 8948 bool CanLowerReturn = 8949 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8950 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8951 8952 SDValue DemoteStackSlot; 8953 int DemoteStackIdx = -100; 8954 if (!CanLowerReturn) { 8955 // FIXME: equivalent assert? 8956 // assert(!CS.hasInAllocaArgument() && 8957 // "sret demotion is incompatible with inalloca"); 8958 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8959 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8960 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8961 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8962 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8963 DL.getAllocaAddrSpace()); 8964 8965 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8966 ArgListEntry Entry; 8967 Entry.Node = DemoteStackSlot; 8968 Entry.Ty = StackSlotPtrType; 8969 Entry.IsSExt = false; 8970 Entry.IsZExt = false; 8971 Entry.IsInReg = false; 8972 Entry.IsSRet = true; 8973 Entry.IsNest = false; 8974 Entry.IsByVal = false; 8975 Entry.IsReturned = false; 8976 Entry.IsSwiftSelf = false; 8977 Entry.IsSwiftError = false; 8978 Entry.IsCFGuardTarget = false; 8979 Entry.Alignment = Align; 8980 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8981 CLI.NumFixedArgs += 1; 8982 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8983 8984 // sret demotion isn't compatible with tail-calls, since the sret argument 8985 // points into the callers stack frame. 8986 CLI.IsTailCall = false; 8987 } else { 8988 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8989 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 8990 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8991 ISD::ArgFlagsTy Flags; 8992 if (NeedsRegBlock) { 8993 Flags.setInConsecutiveRegs(); 8994 if (I == RetTys.size() - 1) 8995 Flags.setInConsecutiveRegsLast(); 8996 } 8997 EVT VT = RetTys[I]; 8998 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8999 CLI.CallConv, VT); 9000 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9001 CLI.CallConv, VT); 9002 for (unsigned i = 0; i != NumRegs; ++i) { 9003 ISD::InputArg MyFlags; 9004 MyFlags.Flags = Flags; 9005 MyFlags.VT = RegisterVT; 9006 MyFlags.ArgVT = VT; 9007 MyFlags.Used = CLI.IsReturnValueUsed; 9008 if (CLI.RetTy->isPointerTy()) { 9009 MyFlags.Flags.setPointer(); 9010 MyFlags.Flags.setPointerAddrSpace( 9011 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9012 } 9013 if (CLI.RetSExt) 9014 MyFlags.Flags.setSExt(); 9015 if (CLI.RetZExt) 9016 MyFlags.Flags.setZExt(); 9017 if (CLI.IsInReg) 9018 MyFlags.Flags.setInReg(); 9019 CLI.Ins.push_back(MyFlags); 9020 } 9021 } 9022 } 9023 9024 // We push in swifterror return as the last element of CLI.Ins. 9025 ArgListTy &Args = CLI.getArgs(); 9026 if (supportSwiftError()) { 9027 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9028 if (Args[i].IsSwiftError) { 9029 ISD::InputArg MyFlags; 9030 MyFlags.VT = getPointerTy(DL); 9031 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9032 MyFlags.Flags.setSwiftError(); 9033 CLI.Ins.push_back(MyFlags); 9034 } 9035 } 9036 } 9037 9038 // Handle all of the outgoing arguments. 9039 CLI.Outs.clear(); 9040 CLI.OutVals.clear(); 9041 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9042 SmallVector<EVT, 4> ValueVTs; 9043 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9044 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9045 Type *FinalType = Args[i].Ty; 9046 if (Args[i].IsByVal) 9047 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9048 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9049 FinalType, CLI.CallConv, CLI.IsVarArg); 9050 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9051 ++Value) { 9052 EVT VT = ValueVTs[Value]; 9053 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9054 SDValue Op = SDValue(Args[i].Node.getNode(), 9055 Args[i].Node.getResNo() + Value); 9056 ISD::ArgFlagsTy Flags; 9057 9058 // Certain targets (such as MIPS), may have a different ABI alignment 9059 // for a type depending on the context. Give the target a chance to 9060 // specify the alignment it wants. 9061 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9062 9063 if (Args[i].Ty->isPointerTy()) { 9064 Flags.setPointer(); 9065 Flags.setPointerAddrSpace( 9066 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9067 } 9068 if (Args[i].IsZExt) 9069 Flags.setZExt(); 9070 if (Args[i].IsSExt) 9071 Flags.setSExt(); 9072 if (Args[i].IsInReg) { 9073 // If we are using vectorcall calling convention, a structure that is 9074 // passed InReg - is surely an HVA 9075 if (CLI.CallConv == CallingConv::X86_VectorCall && 9076 isa<StructType>(FinalType)) { 9077 // The first value of a structure is marked 9078 if (0 == Value) 9079 Flags.setHvaStart(); 9080 Flags.setHva(); 9081 } 9082 // Set InReg Flag 9083 Flags.setInReg(); 9084 } 9085 if (Args[i].IsSRet) 9086 Flags.setSRet(); 9087 if (Args[i].IsSwiftSelf) 9088 Flags.setSwiftSelf(); 9089 if (Args[i].IsSwiftError) 9090 Flags.setSwiftError(); 9091 if (Args[i].IsCFGuardTarget) 9092 Flags.setCFGuardTarget(); 9093 if (Args[i].IsByVal) 9094 Flags.setByVal(); 9095 if (Args[i].IsInAlloca) { 9096 Flags.setInAlloca(); 9097 // Set the byval flag for CCAssignFn callbacks that don't know about 9098 // inalloca. This way we can know how many bytes we should've allocated 9099 // and how many bytes a callee cleanup function will pop. If we port 9100 // inalloca to more targets, we'll have to add custom inalloca handling 9101 // in the various CC lowering callbacks. 9102 Flags.setByVal(); 9103 } 9104 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9105 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9106 Type *ElementTy = Ty->getElementType(); 9107 9108 unsigned FrameSize = DL.getTypeAllocSize( 9109 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9110 Flags.setByValSize(FrameSize); 9111 9112 // info is not there but there are cases it cannot get right. 9113 unsigned FrameAlign; 9114 if (Args[i].Alignment) 9115 FrameAlign = Args[i].Alignment; 9116 else 9117 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9118 Flags.setByValAlign(Align(FrameAlign)); 9119 } 9120 if (Args[i].IsNest) 9121 Flags.setNest(); 9122 if (NeedsRegBlock) 9123 Flags.setInConsecutiveRegs(); 9124 Flags.setOrigAlign(OriginalAlignment); 9125 9126 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9127 CLI.CallConv, VT); 9128 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9129 CLI.CallConv, VT); 9130 SmallVector<SDValue, 4> Parts(NumParts); 9131 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9132 9133 if (Args[i].IsSExt) 9134 ExtendKind = ISD::SIGN_EXTEND; 9135 else if (Args[i].IsZExt) 9136 ExtendKind = ISD::ZERO_EXTEND; 9137 9138 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9139 // for now. 9140 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9141 CanLowerReturn) { 9142 assert((CLI.RetTy == Args[i].Ty || 9143 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9144 CLI.RetTy->getPointerAddressSpace() == 9145 Args[i].Ty->getPointerAddressSpace())) && 9146 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9147 // Before passing 'returned' to the target lowering code, ensure that 9148 // either the register MVT and the actual EVT are the same size or that 9149 // the return value and argument are extended in the same way; in these 9150 // cases it's safe to pass the argument register value unchanged as the 9151 // return register value (although it's at the target's option whether 9152 // to do so) 9153 // TODO: allow code generation to take advantage of partially preserved 9154 // registers rather than clobbering the entire register when the 9155 // parameter extension method is not compatible with the return 9156 // extension method 9157 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9158 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9159 CLI.RetZExt == Args[i].IsZExt)) 9160 Flags.setReturned(); 9161 } 9162 9163 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9164 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9165 9166 for (unsigned j = 0; j != NumParts; ++j) { 9167 // if it isn't first piece, alignment must be 1 9168 // For scalable vectors the scalable part is currently handled 9169 // by individual targets, so we just use the known minimum size here. 9170 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9171 i < CLI.NumFixedArgs, i, 9172 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9173 if (NumParts > 1 && j == 0) 9174 MyFlags.Flags.setSplit(); 9175 else if (j != 0) { 9176 MyFlags.Flags.setOrigAlign(Align::None()); 9177 if (j == NumParts - 1) 9178 MyFlags.Flags.setSplitEnd(); 9179 } 9180 9181 CLI.Outs.push_back(MyFlags); 9182 CLI.OutVals.push_back(Parts[j]); 9183 } 9184 9185 if (NeedsRegBlock && Value == NumValues - 1) 9186 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9187 } 9188 } 9189 9190 SmallVector<SDValue, 4> InVals; 9191 CLI.Chain = LowerCall(CLI, InVals); 9192 9193 // Update CLI.InVals to use outside of this function. 9194 CLI.InVals = InVals; 9195 9196 // Verify that the target's LowerCall behaved as expected. 9197 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9198 "LowerCall didn't return a valid chain!"); 9199 assert((!CLI.IsTailCall || InVals.empty()) && 9200 "LowerCall emitted a return value for a tail call!"); 9201 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9202 "LowerCall didn't emit the correct number of values!"); 9203 9204 // For a tail call, the return value is merely live-out and there aren't 9205 // any nodes in the DAG representing it. Return a special value to 9206 // indicate that a tail call has been emitted and no more Instructions 9207 // should be processed in the current block. 9208 if (CLI.IsTailCall) { 9209 CLI.DAG.setRoot(CLI.Chain); 9210 return std::make_pair(SDValue(), SDValue()); 9211 } 9212 9213 #ifndef NDEBUG 9214 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9215 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9216 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9217 "LowerCall emitted a value with the wrong type!"); 9218 } 9219 #endif 9220 9221 SmallVector<SDValue, 4> ReturnValues; 9222 if (!CanLowerReturn) { 9223 // The instruction result is the result of loading from the 9224 // hidden sret parameter. 9225 SmallVector<EVT, 1> PVTs; 9226 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9227 9228 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9229 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9230 EVT PtrVT = PVTs[0]; 9231 9232 unsigned NumValues = RetTys.size(); 9233 ReturnValues.resize(NumValues); 9234 SmallVector<SDValue, 4> Chains(NumValues); 9235 9236 // An aggregate return value cannot wrap around the address space, so 9237 // offsets to its parts don't wrap either. 9238 SDNodeFlags Flags; 9239 Flags.setNoUnsignedWrap(true); 9240 9241 for (unsigned i = 0; i < NumValues; ++i) { 9242 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9243 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9244 PtrVT), Flags); 9245 SDValue L = CLI.DAG.getLoad( 9246 RetTys[i], CLI.DL, CLI.Chain, Add, 9247 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9248 DemoteStackIdx, Offsets[i]), 9249 /* Alignment = */ 1); 9250 ReturnValues[i] = L; 9251 Chains[i] = L.getValue(1); 9252 } 9253 9254 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9255 } else { 9256 // Collect the legal value parts into potentially illegal values 9257 // that correspond to the original function's return values. 9258 Optional<ISD::NodeType> AssertOp; 9259 if (CLI.RetSExt) 9260 AssertOp = ISD::AssertSext; 9261 else if (CLI.RetZExt) 9262 AssertOp = ISD::AssertZext; 9263 unsigned CurReg = 0; 9264 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9265 EVT VT = RetTys[I]; 9266 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9267 CLI.CallConv, VT); 9268 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9269 CLI.CallConv, VT); 9270 9271 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9272 NumRegs, RegisterVT, VT, nullptr, 9273 CLI.CallConv, AssertOp)); 9274 CurReg += NumRegs; 9275 } 9276 9277 // For a function returning void, there is no return value. We can't create 9278 // such a node, so we just return a null return value in that case. In 9279 // that case, nothing will actually look at the value. 9280 if (ReturnValues.empty()) 9281 return std::make_pair(SDValue(), CLI.Chain); 9282 } 9283 9284 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9285 CLI.DAG.getVTList(RetTys), ReturnValues); 9286 return std::make_pair(Res, CLI.Chain); 9287 } 9288 9289 void TargetLowering::LowerOperationWrapper(SDNode *N, 9290 SmallVectorImpl<SDValue> &Results, 9291 SelectionDAG &DAG) const { 9292 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9293 Results.push_back(Res); 9294 } 9295 9296 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9297 llvm_unreachable("LowerOperation not implemented for this target!"); 9298 } 9299 9300 void 9301 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9302 SDValue Op = getNonRegisterValue(V); 9303 assert((Op.getOpcode() != ISD::CopyFromReg || 9304 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9305 "Copy from a reg to the same reg!"); 9306 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9307 9308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9309 // If this is an InlineAsm we have to match the registers required, not the 9310 // notional registers required by the type. 9311 9312 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9313 None); // This is not an ABI copy. 9314 SDValue Chain = DAG.getEntryNode(); 9315 9316 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9317 FuncInfo.PreferredExtendType.end()) 9318 ? ISD::ANY_EXTEND 9319 : FuncInfo.PreferredExtendType[V]; 9320 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9321 PendingExports.push_back(Chain); 9322 } 9323 9324 #include "llvm/CodeGen/SelectionDAGISel.h" 9325 9326 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9327 /// entry block, return true. This includes arguments used by switches, since 9328 /// the switch may expand into multiple basic blocks. 9329 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9330 // With FastISel active, we may be splitting blocks, so force creation 9331 // of virtual registers for all non-dead arguments. 9332 if (FastISel) 9333 return A->use_empty(); 9334 9335 const BasicBlock &Entry = A->getParent()->front(); 9336 for (const User *U : A->users()) 9337 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9338 return false; // Use not in entry block. 9339 9340 return true; 9341 } 9342 9343 using ArgCopyElisionMapTy = 9344 DenseMap<const Argument *, 9345 std::pair<const AllocaInst *, const StoreInst *>>; 9346 9347 /// Scan the entry block of the function in FuncInfo for arguments that look 9348 /// like copies into a local alloca. Record any copied arguments in 9349 /// ArgCopyElisionCandidates. 9350 static void 9351 findArgumentCopyElisionCandidates(const DataLayout &DL, 9352 FunctionLoweringInfo *FuncInfo, 9353 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9354 // Record the state of every static alloca used in the entry block. Argument 9355 // allocas are all used in the entry block, so we need approximately as many 9356 // entries as we have arguments. 9357 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9358 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9359 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9360 StaticAllocas.reserve(NumArgs * 2); 9361 9362 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9363 if (!V) 9364 return nullptr; 9365 V = V->stripPointerCasts(); 9366 const auto *AI = dyn_cast<AllocaInst>(V); 9367 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9368 return nullptr; 9369 auto Iter = StaticAllocas.insert({AI, Unknown}); 9370 return &Iter.first->second; 9371 }; 9372 9373 // Look for stores of arguments to static allocas. Look through bitcasts and 9374 // GEPs to handle type coercions, as long as the alloca is fully initialized 9375 // by the store. Any non-store use of an alloca escapes it and any subsequent 9376 // unanalyzed store might write it. 9377 // FIXME: Handle structs initialized with multiple stores. 9378 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9379 // Look for stores, and handle non-store uses conservatively. 9380 const auto *SI = dyn_cast<StoreInst>(&I); 9381 if (!SI) { 9382 // We will look through cast uses, so ignore them completely. 9383 if (I.isCast()) 9384 continue; 9385 // Ignore debug info intrinsics, they don't escape or store to allocas. 9386 if (isa<DbgInfoIntrinsic>(I)) 9387 continue; 9388 // This is an unknown instruction. Assume it escapes or writes to all 9389 // static alloca operands. 9390 for (const Use &U : I.operands()) { 9391 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9392 *Info = StaticAllocaInfo::Clobbered; 9393 } 9394 continue; 9395 } 9396 9397 // If the stored value is a static alloca, mark it as escaped. 9398 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9399 *Info = StaticAllocaInfo::Clobbered; 9400 9401 // Check if the destination is a static alloca. 9402 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9403 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9404 if (!Info) 9405 continue; 9406 const AllocaInst *AI = cast<AllocaInst>(Dst); 9407 9408 // Skip allocas that have been initialized or clobbered. 9409 if (*Info != StaticAllocaInfo::Unknown) 9410 continue; 9411 9412 // Check if the stored value is an argument, and that this store fully 9413 // initializes the alloca. Don't elide copies from the same argument twice. 9414 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9415 const auto *Arg = dyn_cast<Argument>(Val); 9416 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9417 Arg->getType()->isEmptyTy() || 9418 DL.getTypeStoreSize(Arg->getType()) != 9419 DL.getTypeAllocSize(AI->getAllocatedType()) || 9420 ArgCopyElisionCandidates.count(Arg)) { 9421 *Info = StaticAllocaInfo::Clobbered; 9422 continue; 9423 } 9424 9425 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9426 << '\n'); 9427 9428 // Mark this alloca and store for argument copy elision. 9429 *Info = StaticAllocaInfo::Elidable; 9430 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9431 9432 // Stop scanning if we've seen all arguments. This will happen early in -O0 9433 // builds, which is useful, because -O0 builds have large entry blocks and 9434 // many allocas. 9435 if (ArgCopyElisionCandidates.size() == NumArgs) 9436 break; 9437 } 9438 } 9439 9440 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9441 /// ArgVal is a load from a suitable fixed stack object. 9442 static void tryToElideArgumentCopy( 9443 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9444 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9445 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9446 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9447 SDValue ArgVal, bool &ArgHasUses) { 9448 // Check if this is a load from a fixed stack object. 9449 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9450 if (!LNode) 9451 return; 9452 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9453 if (!FINode) 9454 return; 9455 9456 // Check that the fixed stack object is the right size and alignment. 9457 // Look at the alignment that the user wrote on the alloca instead of looking 9458 // at the stack object. 9459 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9460 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9461 const AllocaInst *AI = ArgCopyIter->second.first; 9462 int FixedIndex = FINode->getIndex(); 9463 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9464 int OldIndex = AllocaIndex; 9465 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9466 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9467 LLVM_DEBUG( 9468 dbgs() << " argument copy elision failed due to bad fixed stack " 9469 "object size\n"); 9470 return; 9471 } 9472 unsigned RequiredAlignment = AI->getAlignment(); 9473 if (!RequiredAlignment) { 9474 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9475 AI->getAllocatedType()); 9476 } 9477 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9478 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9479 "greater than stack argument alignment (" 9480 << RequiredAlignment << " vs " 9481 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9482 return; 9483 } 9484 9485 // Perform the elision. Delete the old stack object and replace its only use 9486 // in the variable info map. Mark the stack object as mutable. 9487 LLVM_DEBUG({ 9488 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9489 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9490 << '\n'; 9491 }); 9492 MFI.RemoveStackObject(OldIndex); 9493 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9494 AllocaIndex = FixedIndex; 9495 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9496 Chains.push_back(ArgVal.getValue(1)); 9497 9498 // Avoid emitting code for the store implementing the copy. 9499 const StoreInst *SI = ArgCopyIter->second.second; 9500 ElidedArgCopyInstrs.insert(SI); 9501 9502 // Check for uses of the argument again so that we can avoid exporting ArgVal 9503 // if it is't used by anything other than the store. 9504 for (const Value *U : Arg.users()) { 9505 if (U != SI) { 9506 ArgHasUses = true; 9507 break; 9508 } 9509 } 9510 } 9511 9512 void SelectionDAGISel::LowerArguments(const Function &F) { 9513 SelectionDAG &DAG = SDB->DAG; 9514 SDLoc dl = SDB->getCurSDLoc(); 9515 const DataLayout &DL = DAG.getDataLayout(); 9516 SmallVector<ISD::InputArg, 16> Ins; 9517 9518 if (!FuncInfo->CanLowerReturn) { 9519 // Put in an sret pointer parameter before all the other parameters. 9520 SmallVector<EVT, 1> ValueVTs; 9521 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9522 F.getReturnType()->getPointerTo( 9523 DAG.getDataLayout().getAllocaAddrSpace()), 9524 ValueVTs); 9525 9526 // NOTE: Assuming that a pointer will never break down to more than one VT 9527 // or one register. 9528 ISD::ArgFlagsTy Flags; 9529 Flags.setSRet(); 9530 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9531 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9532 ISD::InputArg::NoArgIndex, 0); 9533 Ins.push_back(RetArg); 9534 } 9535 9536 // Look for stores of arguments to static allocas. Mark such arguments with a 9537 // flag to ask the target to give us the memory location of that argument if 9538 // available. 9539 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9540 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9541 9542 // Set up the incoming argument description vector. 9543 for (const Argument &Arg : F.args()) { 9544 unsigned ArgNo = Arg.getArgNo(); 9545 SmallVector<EVT, 4> ValueVTs; 9546 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9547 bool isArgValueUsed = !Arg.use_empty(); 9548 unsigned PartBase = 0; 9549 Type *FinalType = Arg.getType(); 9550 if (Arg.hasAttribute(Attribute::ByVal)) 9551 FinalType = Arg.getParamByValType(); 9552 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9553 FinalType, F.getCallingConv(), F.isVarArg()); 9554 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9555 Value != NumValues; ++Value) { 9556 EVT VT = ValueVTs[Value]; 9557 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9558 ISD::ArgFlagsTy Flags; 9559 9560 // Certain targets (such as MIPS), may have a different ABI alignment 9561 // for a type depending on the context. Give the target a chance to 9562 // specify the alignment it wants. 9563 const Align OriginalAlignment( 9564 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9565 9566 if (Arg.getType()->isPointerTy()) { 9567 Flags.setPointer(); 9568 Flags.setPointerAddrSpace( 9569 cast<PointerType>(Arg.getType())->getAddressSpace()); 9570 } 9571 if (Arg.hasAttribute(Attribute::ZExt)) 9572 Flags.setZExt(); 9573 if (Arg.hasAttribute(Attribute::SExt)) 9574 Flags.setSExt(); 9575 if (Arg.hasAttribute(Attribute::InReg)) { 9576 // If we are using vectorcall calling convention, a structure that is 9577 // passed InReg - is surely an HVA 9578 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9579 isa<StructType>(Arg.getType())) { 9580 // The first value of a structure is marked 9581 if (0 == Value) 9582 Flags.setHvaStart(); 9583 Flags.setHva(); 9584 } 9585 // Set InReg Flag 9586 Flags.setInReg(); 9587 } 9588 if (Arg.hasAttribute(Attribute::StructRet)) 9589 Flags.setSRet(); 9590 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9591 Flags.setSwiftSelf(); 9592 if (Arg.hasAttribute(Attribute::SwiftError)) 9593 Flags.setSwiftError(); 9594 if (Arg.hasAttribute(Attribute::ByVal)) 9595 Flags.setByVal(); 9596 if (Arg.hasAttribute(Attribute::InAlloca)) { 9597 Flags.setInAlloca(); 9598 // Set the byval flag for CCAssignFn callbacks that don't know about 9599 // inalloca. This way we can know how many bytes we should've allocated 9600 // and how many bytes a callee cleanup function will pop. If we port 9601 // inalloca to more targets, we'll have to add custom inalloca handling 9602 // in the various CC lowering callbacks. 9603 Flags.setByVal(); 9604 } 9605 if (F.getCallingConv() == CallingConv::X86_INTR) { 9606 // IA Interrupt passes frame (1st parameter) by value in the stack. 9607 if (ArgNo == 0) 9608 Flags.setByVal(); 9609 } 9610 if (Flags.isByVal() || Flags.isInAlloca()) { 9611 Type *ElementTy = Arg.getParamByValType(); 9612 9613 // For ByVal, size and alignment should be passed from FE. BE will 9614 // guess if this info is not there but there are cases it cannot get 9615 // right. 9616 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9617 Flags.setByValSize(FrameSize); 9618 9619 unsigned FrameAlign; 9620 if (Arg.getParamAlignment()) 9621 FrameAlign = Arg.getParamAlignment(); 9622 else 9623 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9624 Flags.setByValAlign(Align(FrameAlign)); 9625 } 9626 if (Arg.hasAttribute(Attribute::Nest)) 9627 Flags.setNest(); 9628 if (NeedsRegBlock) 9629 Flags.setInConsecutiveRegs(); 9630 Flags.setOrigAlign(OriginalAlignment); 9631 if (ArgCopyElisionCandidates.count(&Arg)) 9632 Flags.setCopyElisionCandidate(); 9633 if (Arg.hasAttribute(Attribute::Returned)) 9634 Flags.setReturned(); 9635 9636 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9637 *CurDAG->getContext(), F.getCallingConv(), VT); 9638 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9639 *CurDAG->getContext(), F.getCallingConv(), VT); 9640 for (unsigned i = 0; i != NumRegs; ++i) { 9641 // For scalable vectors, use the minimum size; individual targets 9642 // are responsible for handling scalable vector arguments and 9643 // return values. 9644 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9645 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9646 if (NumRegs > 1 && i == 0) 9647 MyFlags.Flags.setSplit(); 9648 // if it isn't first piece, alignment must be 1 9649 else if (i > 0) { 9650 MyFlags.Flags.setOrigAlign(Align::None()); 9651 if (i == NumRegs - 1) 9652 MyFlags.Flags.setSplitEnd(); 9653 } 9654 Ins.push_back(MyFlags); 9655 } 9656 if (NeedsRegBlock && Value == NumValues - 1) 9657 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9658 PartBase += VT.getStoreSize().getKnownMinSize(); 9659 } 9660 } 9661 9662 // Call the target to set up the argument values. 9663 SmallVector<SDValue, 8> InVals; 9664 SDValue NewRoot = TLI->LowerFormalArguments( 9665 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9666 9667 // Verify that the target's LowerFormalArguments behaved as expected. 9668 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9669 "LowerFormalArguments didn't return a valid chain!"); 9670 assert(InVals.size() == Ins.size() && 9671 "LowerFormalArguments didn't emit the correct number of values!"); 9672 LLVM_DEBUG({ 9673 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9674 assert(InVals[i].getNode() && 9675 "LowerFormalArguments emitted a null value!"); 9676 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9677 "LowerFormalArguments emitted a value with the wrong type!"); 9678 } 9679 }); 9680 9681 // Update the DAG with the new chain value resulting from argument lowering. 9682 DAG.setRoot(NewRoot); 9683 9684 // Set up the argument values. 9685 unsigned i = 0; 9686 if (!FuncInfo->CanLowerReturn) { 9687 // Create a virtual register for the sret pointer, and put in a copy 9688 // from the sret argument into it. 9689 SmallVector<EVT, 1> ValueVTs; 9690 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9691 F.getReturnType()->getPointerTo( 9692 DAG.getDataLayout().getAllocaAddrSpace()), 9693 ValueVTs); 9694 MVT VT = ValueVTs[0].getSimpleVT(); 9695 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9696 Optional<ISD::NodeType> AssertOp = None; 9697 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9698 nullptr, F.getCallingConv(), AssertOp); 9699 9700 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9701 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9702 Register SRetReg = 9703 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9704 FuncInfo->DemoteRegister = SRetReg; 9705 NewRoot = 9706 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9707 DAG.setRoot(NewRoot); 9708 9709 // i indexes lowered arguments. Bump it past the hidden sret argument. 9710 ++i; 9711 } 9712 9713 SmallVector<SDValue, 4> Chains; 9714 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9715 for (const Argument &Arg : F.args()) { 9716 SmallVector<SDValue, 4> ArgValues; 9717 SmallVector<EVT, 4> ValueVTs; 9718 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9719 unsigned NumValues = ValueVTs.size(); 9720 if (NumValues == 0) 9721 continue; 9722 9723 bool ArgHasUses = !Arg.use_empty(); 9724 9725 // Elide the copying store if the target loaded this argument from a 9726 // suitable fixed stack object. 9727 if (Ins[i].Flags.isCopyElisionCandidate()) { 9728 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9729 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9730 InVals[i], ArgHasUses); 9731 } 9732 9733 // If this argument is unused then remember its value. It is used to generate 9734 // debugging information. 9735 bool isSwiftErrorArg = 9736 TLI->supportSwiftError() && 9737 Arg.hasAttribute(Attribute::SwiftError); 9738 if (!ArgHasUses && !isSwiftErrorArg) { 9739 SDB->setUnusedArgValue(&Arg, InVals[i]); 9740 9741 // Also remember any frame index for use in FastISel. 9742 if (FrameIndexSDNode *FI = 9743 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9744 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9745 } 9746 9747 for (unsigned Val = 0; Val != NumValues; ++Val) { 9748 EVT VT = ValueVTs[Val]; 9749 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9750 F.getCallingConv(), VT); 9751 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9752 *CurDAG->getContext(), F.getCallingConv(), VT); 9753 9754 // Even an apparent 'unused' swifterror argument needs to be returned. So 9755 // we do generate a copy for it that can be used on return from the 9756 // function. 9757 if (ArgHasUses || isSwiftErrorArg) { 9758 Optional<ISD::NodeType> AssertOp; 9759 if (Arg.hasAttribute(Attribute::SExt)) 9760 AssertOp = ISD::AssertSext; 9761 else if (Arg.hasAttribute(Attribute::ZExt)) 9762 AssertOp = ISD::AssertZext; 9763 9764 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9765 PartVT, VT, nullptr, 9766 F.getCallingConv(), AssertOp)); 9767 } 9768 9769 i += NumParts; 9770 } 9771 9772 // We don't need to do anything else for unused arguments. 9773 if (ArgValues.empty()) 9774 continue; 9775 9776 // Note down frame index. 9777 if (FrameIndexSDNode *FI = 9778 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9779 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9780 9781 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9782 SDB->getCurSDLoc()); 9783 9784 SDB->setValue(&Arg, Res); 9785 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9786 // We want to associate the argument with the frame index, among 9787 // involved operands, that correspond to the lowest address. The 9788 // getCopyFromParts function, called earlier, is swapping the order of 9789 // the operands to BUILD_PAIR depending on endianness. The result of 9790 // that swapping is that the least significant bits of the argument will 9791 // be in the first operand of the BUILD_PAIR node, and the most 9792 // significant bits will be in the second operand. 9793 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9794 if (LoadSDNode *LNode = 9795 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9796 if (FrameIndexSDNode *FI = 9797 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9798 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9799 } 9800 9801 // Analyses past this point are naive and don't expect an assertion. 9802 if (Res.getOpcode() == ISD::AssertZext) 9803 Res = Res.getOperand(0); 9804 9805 // Update the SwiftErrorVRegDefMap. 9806 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9807 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9808 if (Register::isVirtualRegister(Reg)) 9809 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9810 Reg); 9811 } 9812 9813 // If this argument is live outside of the entry block, insert a copy from 9814 // wherever we got it to the vreg that other BB's will reference it as. 9815 if (Res.getOpcode() == ISD::CopyFromReg) { 9816 // If we can, though, try to skip creating an unnecessary vreg. 9817 // FIXME: This isn't very clean... it would be nice to make this more 9818 // general. 9819 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9820 if (Register::isVirtualRegister(Reg)) { 9821 FuncInfo->ValueMap[&Arg] = Reg; 9822 continue; 9823 } 9824 } 9825 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9826 FuncInfo->InitializeRegForValue(&Arg); 9827 SDB->CopyToExportRegsIfNeeded(&Arg); 9828 } 9829 } 9830 9831 if (!Chains.empty()) { 9832 Chains.push_back(NewRoot); 9833 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9834 } 9835 9836 DAG.setRoot(NewRoot); 9837 9838 assert(i == InVals.size() && "Argument register count mismatch!"); 9839 9840 // If any argument copy elisions occurred and we have debug info, update the 9841 // stale frame indices used in the dbg.declare variable info table. 9842 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9843 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9844 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9845 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9846 if (I != ArgCopyElisionFrameIndexMap.end()) 9847 VI.Slot = I->second; 9848 } 9849 } 9850 9851 // Finally, if the target has anything special to do, allow it to do so. 9852 EmitFunctionEntryCode(); 9853 } 9854 9855 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9856 /// ensure constants are generated when needed. Remember the virtual registers 9857 /// that need to be added to the Machine PHI nodes as input. We cannot just 9858 /// directly add them, because expansion might result in multiple MBB's for one 9859 /// BB. As such, the start of the BB might correspond to a different MBB than 9860 /// the end. 9861 void 9862 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9863 const Instruction *TI = LLVMBB->getTerminator(); 9864 9865 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9866 9867 // Check PHI nodes in successors that expect a value to be available from this 9868 // block. 9869 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9870 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9871 if (!isa<PHINode>(SuccBB->begin())) continue; 9872 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9873 9874 // If this terminator has multiple identical successors (common for 9875 // switches), only handle each succ once. 9876 if (!SuccsHandled.insert(SuccMBB).second) 9877 continue; 9878 9879 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9880 9881 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9882 // nodes and Machine PHI nodes, but the incoming operands have not been 9883 // emitted yet. 9884 for (const PHINode &PN : SuccBB->phis()) { 9885 // Ignore dead phi's. 9886 if (PN.use_empty()) 9887 continue; 9888 9889 // Skip empty types 9890 if (PN.getType()->isEmptyTy()) 9891 continue; 9892 9893 unsigned Reg; 9894 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9895 9896 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9897 unsigned &RegOut = ConstantsOut[C]; 9898 if (RegOut == 0) { 9899 RegOut = FuncInfo.CreateRegs(C); 9900 CopyValueToVirtualRegister(C, RegOut); 9901 } 9902 Reg = RegOut; 9903 } else { 9904 DenseMap<const Value *, unsigned>::iterator I = 9905 FuncInfo.ValueMap.find(PHIOp); 9906 if (I != FuncInfo.ValueMap.end()) 9907 Reg = I->second; 9908 else { 9909 assert(isa<AllocaInst>(PHIOp) && 9910 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9911 "Didn't codegen value into a register!??"); 9912 Reg = FuncInfo.CreateRegs(PHIOp); 9913 CopyValueToVirtualRegister(PHIOp, Reg); 9914 } 9915 } 9916 9917 // Remember that this register needs to added to the machine PHI node as 9918 // the input for this MBB. 9919 SmallVector<EVT, 4> ValueVTs; 9920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9921 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9922 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9923 EVT VT = ValueVTs[vti]; 9924 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9925 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9926 FuncInfo.PHINodesToUpdate.push_back( 9927 std::make_pair(&*MBBI++, Reg + i)); 9928 Reg += NumRegisters; 9929 } 9930 } 9931 } 9932 9933 ConstantsOut.clear(); 9934 } 9935 9936 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9937 /// is 0. 9938 MachineBasicBlock * 9939 SelectionDAGBuilder::StackProtectorDescriptor:: 9940 AddSuccessorMBB(const BasicBlock *BB, 9941 MachineBasicBlock *ParentMBB, 9942 bool IsLikely, 9943 MachineBasicBlock *SuccMBB) { 9944 // If SuccBB has not been created yet, create it. 9945 if (!SuccMBB) { 9946 MachineFunction *MF = ParentMBB->getParent(); 9947 MachineFunction::iterator BBI(ParentMBB); 9948 SuccMBB = MF->CreateMachineBasicBlock(BB); 9949 MF->insert(++BBI, SuccMBB); 9950 } 9951 // Add it as a successor of ParentMBB. 9952 ParentMBB->addSuccessor( 9953 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9954 return SuccMBB; 9955 } 9956 9957 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9958 MachineFunction::iterator I(MBB); 9959 if (++I == FuncInfo.MF->end()) 9960 return nullptr; 9961 return &*I; 9962 } 9963 9964 /// During lowering new call nodes can be created (such as memset, etc.). 9965 /// Those will become new roots of the current DAG, but complications arise 9966 /// when they are tail calls. In such cases, the call lowering will update 9967 /// the root, but the builder still needs to know that a tail call has been 9968 /// lowered in order to avoid generating an additional return. 9969 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9970 // If the node is null, we do have a tail call. 9971 if (MaybeTC.getNode() != nullptr) 9972 DAG.setRoot(MaybeTC); 9973 else 9974 HasTailCall = true; 9975 } 9976 9977 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9978 MachineBasicBlock *SwitchMBB, 9979 MachineBasicBlock *DefaultMBB) { 9980 MachineFunction *CurMF = FuncInfo.MF; 9981 MachineBasicBlock *NextMBB = nullptr; 9982 MachineFunction::iterator BBI(W.MBB); 9983 if (++BBI != FuncInfo.MF->end()) 9984 NextMBB = &*BBI; 9985 9986 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9987 9988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9989 9990 if (Size == 2 && W.MBB == SwitchMBB) { 9991 // If any two of the cases has the same destination, and if one value 9992 // is the same as the other, but has one bit unset that the other has set, 9993 // use bit manipulation to do two compares at once. For example: 9994 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9995 // TODO: This could be extended to merge any 2 cases in switches with 3 9996 // cases. 9997 // TODO: Handle cases where W.CaseBB != SwitchBB. 9998 CaseCluster &Small = *W.FirstCluster; 9999 CaseCluster &Big = *W.LastCluster; 10000 10001 if (Small.Low == Small.High && Big.Low == Big.High && 10002 Small.MBB == Big.MBB) { 10003 const APInt &SmallValue = Small.Low->getValue(); 10004 const APInt &BigValue = Big.Low->getValue(); 10005 10006 // Check that there is only one bit different. 10007 APInt CommonBit = BigValue ^ SmallValue; 10008 if (CommonBit.isPowerOf2()) { 10009 SDValue CondLHS = getValue(Cond); 10010 EVT VT = CondLHS.getValueType(); 10011 SDLoc DL = getCurSDLoc(); 10012 10013 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10014 DAG.getConstant(CommonBit, DL, VT)); 10015 SDValue Cond = DAG.getSetCC( 10016 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10017 ISD::SETEQ); 10018 10019 // Update successor info. 10020 // Both Small and Big will jump to Small.BB, so we sum up the 10021 // probabilities. 10022 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10023 if (BPI) 10024 addSuccessorWithProb( 10025 SwitchMBB, DefaultMBB, 10026 // The default destination is the first successor in IR. 10027 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10028 else 10029 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10030 10031 // Insert the true branch. 10032 SDValue BrCond = 10033 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10034 DAG.getBasicBlock(Small.MBB)); 10035 // Insert the false branch. 10036 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10037 DAG.getBasicBlock(DefaultMBB)); 10038 10039 DAG.setRoot(BrCond); 10040 return; 10041 } 10042 } 10043 } 10044 10045 if (TM.getOptLevel() != CodeGenOpt::None) { 10046 // Here, we order cases by probability so the most likely case will be 10047 // checked first. However, two clusters can have the same probability in 10048 // which case their relative ordering is non-deterministic. So we use Low 10049 // as a tie-breaker as clusters are guaranteed to never overlap. 10050 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10051 [](const CaseCluster &a, const CaseCluster &b) { 10052 return a.Prob != b.Prob ? 10053 a.Prob > b.Prob : 10054 a.Low->getValue().slt(b.Low->getValue()); 10055 }); 10056 10057 // Rearrange the case blocks so that the last one falls through if possible 10058 // without changing the order of probabilities. 10059 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10060 --I; 10061 if (I->Prob > W.LastCluster->Prob) 10062 break; 10063 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10064 std::swap(*I, *W.LastCluster); 10065 break; 10066 } 10067 } 10068 } 10069 10070 // Compute total probability. 10071 BranchProbability DefaultProb = W.DefaultProb; 10072 BranchProbability UnhandledProbs = DefaultProb; 10073 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10074 UnhandledProbs += I->Prob; 10075 10076 MachineBasicBlock *CurMBB = W.MBB; 10077 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10078 bool FallthroughUnreachable = false; 10079 MachineBasicBlock *Fallthrough; 10080 if (I == W.LastCluster) { 10081 // For the last cluster, fall through to the default destination. 10082 Fallthrough = DefaultMBB; 10083 FallthroughUnreachable = isa<UnreachableInst>( 10084 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10085 } else { 10086 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10087 CurMF->insert(BBI, Fallthrough); 10088 // Put Cond in a virtual register to make it available from the new blocks. 10089 ExportFromCurrentBlock(Cond); 10090 } 10091 UnhandledProbs -= I->Prob; 10092 10093 switch (I->Kind) { 10094 case CC_JumpTable: { 10095 // FIXME: Optimize away range check based on pivot comparisons. 10096 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10097 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10098 10099 // The jump block hasn't been inserted yet; insert it here. 10100 MachineBasicBlock *JumpMBB = JT->MBB; 10101 CurMF->insert(BBI, JumpMBB); 10102 10103 auto JumpProb = I->Prob; 10104 auto FallthroughProb = UnhandledProbs; 10105 10106 // If the default statement is a target of the jump table, we evenly 10107 // distribute the default probability to successors of CurMBB. Also 10108 // update the probability on the edge from JumpMBB to Fallthrough. 10109 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10110 SE = JumpMBB->succ_end(); 10111 SI != SE; ++SI) { 10112 if (*SI == DefaultMBB) { 10113 JumpProb += DefaultProb / 2; 10114 FallthroughProb -= DefaultProb / 2; 10115 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10116 JumpMBB->normalizeSuccProbs(); 10117 break; 10118 } 10119 } 10120 10121 if (FallthroughUnreachable) { 10122 // Skip the range check if the fallthrough block is unreachable. 10123 JTH->OmitRangeCheck = true; 10124 } 10125 10126 if (!JTH->OmitRangeCheck) 10127 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10128 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10129 CurMBB->normalizeSuccProbs(); 10130 10131 // The jump table header will be inserted in our current block, do the 10132 // range check, and fall through to our fallthrough block. 10133 JTH->HeaderBB = CurMBB; 10134 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10135 10136 // If we're in the right place, emit the jump table header right now. 10137 if (CurMBB == SwitchMBB) { 10138 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10139 JTH->Emitted = true; 10140 } 10141 break; 10142 } 10143 case CC_BitTests: { 10144 // FIXME: Optimize away range check based on pivot comparisons. 10145 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10146 10147 // The bit test blocks haven't been inserted yet; insert them here. 10148 for (BitTestCase &BTC : BTB->Cases) 10149 CurMF->insert(BBI, BTC.ThisBB); 10150 10151 // Fill in fields of the BitTestBlock. 10152 BTB->Parent = CurMBB; 10153 BTB->Default = Fallthrough; 10154 10155 BTB->DefaultProb = UnhandledProbs; 10156 // If the cases in bit test don't form a contiguous range, we evenly 10157 // distribute the probability on the edge to Fallthrough to two 10158 // successors of CurMBB. 10159 if (!BTB->ContiguousRange) { 10160 BTB->Prob += DefaultProb / 2; 10161 BTB->DefaultProb -= DefaultProb / 2; 10162 } 10163 10164 if (FallthroughUnreachable) { 10165 // Skip the range check if the fallthrough block is unreachable. 10166 BTB->OmitRangeCheck = true; 10167 } 10168 10169 // If we're in the right place, emit the bit test header right now. 10170 if (CurMBB == SwitchMBB) { 10171 visitBitTestHeader(*BTB, SwitchMBB); 10172 BTB->Emitted = true; 10173 } 10174 break; 10175 } 10176 case CC_Range: { 10177 const Value *RHS, *LHS, *MHS; 10178 ISD::CondCode CC; 10179 if (I->Low == I->High) { 10180 // Check Cond == I->Low. 10181 CC = ISD::SETEQ; 10182 LHS = Cond; 10183 RHS=I->Low; 10184 MHS = nullptr; 10185 } else { 10186 // Check I->Low <= Cond <= I->High. 10187 CC = ISD::SETLE; 10188 LHS = I->Low; 10189 MHS = Cond; 10190 RHS = I->High; 10191 } 10192 10193 // If Fallthrough is unreachable, fold away the comparison. 10194 if (FallthroughUnreachable) 10195 CC = ISD::SETTRUE; 10196 10197 // The false probability is the sum of all unhandled cases. 10198 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10199 getCurSDLoc(), I->Prob, UnhandledProbs); 10200 10201 if (CurMBB == SwitchMBB) 10202 visitSwitchCase(CB, SwitchMBB); 10203 else 10204 SL->SwitchCases.push_back(CB); 10205 10206 break; 10207 } 10208 } 10209 CurMBB = Fallthrough; 10210 } 10211 } 10212 10213 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10214 CaseClusterIt First, 10215 CaseClusterIt Last) { 10216 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10217 if (X.Prob != CC.Prob) 10218 return X.Prob > CC.Prob; 10219 10220 // Ties are broken by comparing the case value. 10221 return X.Low->getValue().slt(CC.Low->getValue()); 10222 }); 10223 } 10224 10225 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10226 const SwitchWorkListItem &W, 10227 Value *Cond, 10228 MachineBasicBlock *SwitchMBB) { 10229 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10230 "Clusters not sorted?"); 10231 10232 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10233 10234 // Balance the tree based on branch probabilities to create a near-optimal (in 10235 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10236 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10237 CaseClusterIt LastLeft = W.FirstCluster; 10238 CaseClusterIt FirstRight = W.LastCluster; 10239 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10240 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10241 10242 // Move LastLeft and FirstRight towards each other from opposite directions to 10243 // find a partitioning of the clusters which balances the probability on both 10244 // sides. If LeftProb and RightProb are equal, alternate which side is 10245 // taken to ensure 0-probability nodes are distributed evenly. 10246 unsigned I = 0; 10247 while (LastLeft + 1 < FirstRight) { 10248 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10249 LeftProb += (++LastLeft)->Prob; 10250 else 10251 RightProb += (--FirstRight)->Prob; 10252 I++; 10253 } 10254 10255 while (true) { 10256 // Our binary search tree differs from a typical BST in that ours can have up 10257 // to three values in each leaf. The pivot selection above doesn't take that 10258 // into account, which means the tree might require more nodes and be less 10259 // efficient. We compensate for this here. 10260 10261 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10262 unsigned NumRight = W.LastCluster - FirstRight + 1; 10263 10264 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10265 // If one side has less than 3 clusters, and the other has more than 3, 10266 // consider taking a cluster from the other side. 10267 10268 if (NumLeft < NumRight) { 10269 // Consider moving the first cluster on the right to the left side. 10270 CaseCluster &CC = *FirstRight; 10271 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10272 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10273 if (LeftSideRank <= RightSideRank) { 10274 // Moving the cluster to the left does not demote it. 10275 ++LastLeft; 10276 ++FirstRight; 10277 continue; 10278 } 10279 } else { 10280 assert(NumRight < NumLeft); 10281 // Consider moving the last element on the left to the right side. 10282 CaseCluster &CC = *LastLeft; 10283 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10284 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10285 if (RightSideRank <= LeftSideRank) { 10286 // Moving the cluster to the right does not demot it. 10287 --LastLeft; 10288 --FirstRight; 10289 continue; 10290 } 10291 } 10292 } 10293 break; 10294 } 10295 10296 assert(LastLeft + 1 == FirstRight); 10297 assert(LastLeft >= W.FirstCluster); 10298 assert(FirstRight <= W.LastCluster); 10299 10300 // Use the first element on the right as pivot since we will make less-than 10301 // comparisons against it. 10302 CaseClusterIt PivotCluster = FirstRight; 10303 assert(PivotCluster > W.FirstCluster); 10304 assert(PivotCluster <= W.LastCluster); 10305 10306 CaseClusterIt FirstLeft = W.FirstCluster; 10307 CaseClusterIt LastRight = W.LastCluster; 10308 10309 const ConstantInt *Pivot = PivotCluster->Low; 10310 10311 // New blocks will be inserted immediately after the current one. 10312 MachineFunction::iterator BBI(W.MBB); 10313 ++BBI; 10314 10315 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10316 // we can branch to its destination directly if it's squeezed exactly in 10317 // between the known lower bound and Pivot - 1. 10318 MachineBasicBlock *LeftMBB; 10319 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10320 FirstLeft->Low == W.GE && 10321 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10322 LeftMBB = FirstLeft->MBB; 10323 } else { 10324 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10325 FuncInfo.MF->insert(BBI, LeftMBB); 10326 WorkList.push_back( 10327 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10328 // Put Cond in a virtual register to make it available from the new blocks. 10329 ExportFromCurrentBlock(Cond); 10330 } 10331 10332 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10333 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10334 // directly if RHS.High equals the current upper bound. 10335 MachineBasicBlock *RightMBB; 10336 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10337 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10338 RightMBB = FirstRight->MBB; 10339 } else { 10340 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10341 FuncInfo.MF->insert(BBI, RightMBB); 10342 WorkList.push_back( 10343 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10344 // Put Cond in a virtual register to make it available from the new blocks. 10345 ExportFromCurrentBlock(Cond); 10346 } 10347 10348 // Create the CaseBlock record that will be used to lower the branch. 10349 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10350 getCurSDLoc(), LeftProb, RightProb); 10351 10352 if (W.MBB == SwitchMBB) 10353 visitSwitchCase(CB, SwitchMBB); 10354 else 10355 SL->SwitchCases.push_back(CB); 10356 } 10357 10358 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10359 // from the swith statement. 10360 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10361 BranchProbability PeeledCaseProb) { 10362 if (PeeledCaseProb == BranchProbability::getOne()) 10363 return BranchProbability::getZero(); 10364 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10365 10366 uint32_t Numerator = CaseProb.getNumerator(); 10367 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10368 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10369 } 10370 10371 // Try to peel the top probability case if it exceeds the threshold. 10372 // Return current MachineBasicBlock for the switch statement if the peeling 10373 // does not occur. 10374 // If the peeling is performed, return the newly created MachineBasicBlock 10375 // for the peeled switch statement. Also update Clusters to remove the peeled 10376 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10377 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10378 const SwitchInst &SI, CaseClusterVector &Clusters, 10379 BranchProbability &PeeledCaseProb) { 10380 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10381 // Don't perform if there is only one cluster or optimizing for size. 10382 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10383 TM.getOptLevel() == CodeGenOpt::None || 10384 SwitchMBB->getParent()->getFunction().hasMinSize()) 10385 return SwitchMBB; 10386 10387 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10388 unsigned PeeledCaseIndex = 0; 10389 bool SwitchPeeled = false; 10390 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10391 CaseCluster &CC = Clusters[Index]; 10392 if (CC.Prob < TopCaseProb) 10393 continue; 10394 TopCaseProb = CC.Prob; 10395 PeeledCaseIndex = Index; 10396 SwitchPeeled = true; 10397 } 10398 if (!SwitchPeeled) 10399 return SwitchMBB; 10400 10401 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10402 << TopCaseProb << "\n"); 10403 10404 // Record the MBB for the peeled switch statement. 10405 MachineFunction::iterator BBI(SwitchMBB); 10406 ++BBI; 10407 MachineBasicBlock *PeeledSwitchMBB = 10408 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10409 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10410 10411 ExportFromCurrentBlock(SI.getCondition()); 10412 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10413 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10414 nullptr, nullptr, TopCaseProb.getCompl()}; 10415 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10416 10417 Clusters.erase(PeeledCaseIt); 10418 for (CaseCluster &CC : Clusters) { 10419 LLVM_DEBUG( 10420 dbgs() << "Scale the probablity for one cluster, before scaling: " 10421 << CC.Prob << "\n"); 10422 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10423 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10424 } 10425 PeeledCaseProb = TopCaseProb; 10426 return PeeledSwitchMBB; 10427 } 10428 10429 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10430 // Extract cases from the switch. 10431 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10432 CaseClusterVector Clusters; 10433 Clusters.reserve(SI.getNumCases()); 10434 for (auto I : SI.cases()) { 10435 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10436 const ConstantInt *CaseVal = I.getCaseValue(); 10437 BranchProbability Prob = 10438 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10439 : BranchProbability(1, SI.getNumCases() + 1); 10440 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10441 } 10442 10443 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10444 10445 // Cluster adjacent cases with the same destination. We do this at all 10446 // optimization levels because it's cheap to do and will make codegen faster 10447 // if there are many clusters. 10448 sortAndRangeify(Clusters); 10449 10450 // The branch probablity of the peeled case. 10451 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10452 MachineBasicBlock *PeeledSwitchMBB = 10453 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10454 10455 // If there is only the default destination, jump there directly. 10456 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10457 if (Clusters.empty()) { 10458 assert(PeeledSwitchMBB == SwitchMBB); 10459 SwitchMBB->addSuccessor(DefaultMBB); 10460 if (DefaultMBB != NextBlock(SwitchMBB)) { 10461 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10462 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10463 } 10464 return; 10465 } 10466 10467 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10468 SL->findBitTestClusters(Clusters, &SI); 10469 10470 LLVM_DEBUG({ 10471 dbgs() << "Case clusters: "; 10472 for (const CaseCluster &C : Clusters) { 10473 if (C.Kind == CC_JumpTable) 10474 dbgs() << "JT:"; 10475 if (C.Kind == CC_BitTests) 10476 dbgs() << "BT:"; 10477 10478 C.Low->getValue().print(dbgs(), true); 10479 if (C.Low != C.High) { 10480 dbgs() << '-'; 10481 C.High->getValue().print(dbgs(), true); 10482 } 10483 dbgs() << ' '; 10484 } 10485 dbgs() << '\n'; 10486 }); 10487 10488 assert(!Clusters.empty()); 10489 SwitchWorkList WorkList; 10490 CaseClusterIt First = Clusters.begin(); 10491 CaseClusterIt Last = Clusters.end() - 1; 10492 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10493 // Scale the branchprobability for DefaultMBB if the peel occurs and 10494 // DefaultMBB is not replaced. 10495 if (PeeledCaseProb != BranchProbability::getZero() && 10496 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10497 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10498 WorkList.push_back( 10499 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10500 10501 while (!WorkList.empty()) { 10502 SwitchWorkListItem W = WorkList.back(); 10503 WorkList.pop_back(); 10504 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10505 10506 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10507 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10508 // For optimized builds, lower large range as a balanced binary tree. 10509 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10510 continue; 10511 } 10512 10513 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10514 } 10515 } 10516 10517 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10518 SDValue N = getValue(I.getOperand(0)); 10519 setValue(&I, N); 10520 } 10521