xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 5cdf6ed744896a23ebc3f723ee2abcfc88137da0)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
446                           DAG.getVectorIdxConstant(0, DL));
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG,
614                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isFixedLengthVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   unsigned PartNumElts = PartVT.getVectorNumElements();
620   unsigned ValueNumElts = ValueVT.getVectorNumElements();
621   if (PartNumElts > ValueNumElts &&
622       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
623     EVT ElementVT = PartVT.getVectorElementType();
624     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
625     // undef elements.
626     SmallVector<SDValue, 16> Ops;
627     DAG.ExtractVectorElements(Val, Ops);
628     SDValue EltUndef = DAG.getUNDEF(ElementVT);
629     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
630       Ops.push_back(EltUndef);
631 
632     // FIXME: Use CONCAT for 2x -> 4x.
633     return DAG.getBuildVector(PartVT, DL, Ops);
634   }
635 
636   return SDValue();
637 }
638 
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
642                                  SDValue Val, SDValue *Parts, unsigned NumParts,
643                                  MVT PartVT, const Value *V,
644                                  Optional<CallingConv::ID> CallConv) {
645   EVT ValueVT = Val.getValueType();
646   assert(ValueVT.isVector() && "Not a vector");
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648   const bool IsABIRegCopy = CallConv.hasValue();
649 
650   if (NumParts == 1) {
651     EVT PartEVT = PartVT;
652     if (PartEVT == ValueVT) {
653       // Nothing to do.
654     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
655       // Bitconvert vector->vector case.
656       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
657     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
658       Val = Widened;
659     } else if (PartVT.isVector() &&
660                PartEVT.getVectorElementType().bitsGE(
661                    ValueVT.getVectorElementType()) &&
662                PartEVT.getVectorElementCount() ==
663                    ValueVT.getVectorElementCount()) {
664 
665       // Promoted vector extract
666       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667     } else {
668       if (ValueVT.getVectorElementCount().isScalar()) {
669         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
670                           DAG.getVectorIdxConstant(0, DL));
671       } else {
672         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
673         assert(PartVT.getFixedSizeInBits() > ValueSize &&
674                "lossy conversion of vector to scalar type");
675         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
676         Val = DAG.getBitcast(IntermediateType, Val);
677         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
678       }
679     }
680 
681     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
682     Parts[0] = Val;
683     return;
684   }
685 
686   // Handle a multi-element vector.
687   EVT IntermediateVT;
688   MVT RegisterVT;
689   unsigned NumIntermediates;
690   unsigned NumRegs;
691   if (IsABIRegCopy) {
692     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
693         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
694         NumIntermediates, RegisterVT);
695   } else {
696     NumRegs =
697         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
698                                    NumIntermediates, RegisterVT);
699   }
700 
701   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
702   NumParts = NumRegs; // Silence a compiler warning.
703   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
704 
705   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
706          "Mixing scalable and fixed vectors when copying in parts");
707 
708   Optional<ElementCount> DestEltCnt;
709 
710   if (IntermediateVT.isVector())
711     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
712   else
713     DestEltCnt = ElementCount::getFixed(NumIntermediates);
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
717   if (ValueVT != BuiltVectorTy) {
718     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
719       Val = Widened;
720 
721     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
722   }
723 
724   // Split the vector into intermediate operands.
725   SmallVector<SDValue, 8> Ops(NumIntermediates);
726   for (unsigned i = 0; i != NumIntermediates; ++i) {
727     if (IntermediateVT.isVector()) {
728       // This does something sensible for scalable vectors - see the
729       // definition of EXTRACT_SUBVECTOR for further details.
730       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
731       Ops[i] =
732           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
734     } else {
735       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736                            DAG.getVectorIdxConstant(i, DL));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!Register::isVirtualRegister(Regs[Part + i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     Register SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, TypeSize>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     TypeSize RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   PendingConstrainedFP.clear();
1014   PendingConstrainedFPStrict.clear();
1015   CurInst = nullptr;
1016   HasTailCall = false;
1017   SDNodeOrder = LowestSDNodeOrder;
1018   StatepointLowering.clear();
1019 }
1020 
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022   DanglingDebugInfoMap.clear();
1023 }
1024 
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1027   SDValue Root = DAG.getRoot();
1028 
1029   if (Pending.empty())
1030     return Root;
1031 
1032   // Add current root to PendingChains, unless we already indirectly
1033   // depend on it.
1034   if (Root.getOpcode() != ISD::EntryToken) {
1035     unsigned i = 0, e = Pending.size();
1036     for (; i != e; ++i) {
1037       assert(Pending[i].getNode()->getNumOperands() > 1);
1038       if (Pending[i].getNode()->getOperand(0) == Root)
1039         break;  // Don't add the root if we already indirectly depend on it.
1040     }
1041 
1042     if (i == e)
1043       Pending.push_back(Root);
1044   }
1045 
1046   if (Pending.size() == 1)
1047     Root = Pending[0];
1048   else
1049     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1050 
1051   DAG.setRoot(Root);
1052   Pending.clear();
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getMemoryRoot() {
1057   return updateRoot(PendingLoads);
1058 }
1059 
1060 SDValue SelectionDAGBuilder::getRoot() {
1061   // Chain up all pending constrained intrinsics together with all
1062   // pending loads, by simply appending them to PendingLoads and
1063   // then calling getMemoryRoot().
1064   PendingLoads.reserve(PendingLoads.size() +
1065                        PendingConstrainedFP.size() +
1066                        PendingConstrainedFPStrict.size());
1067   PendingLoads.append(PendingConstrainedFP.begin(),
1068                       PendingConstrainedFP.end());
1069   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1070                       PendingConstrainedFPStrict.end());
1071   PendingConstrainedFP.clear();
1072   PendingConstrainedFPStrict.clear();
1073   return getMemoryRoot();
1074 }
1075 
1076 SDValue SelectionDAGBuilder::getControlRoot() {
1077   // We need to emit pending fpexcept.strict constrained intrinsics,
1078   // so append them to the PendingExports list.
1079   PendingExports.append(PendingConstrainedFPStrict.begin(),
1080                         PendingConstrainedFPStrict.end());
1081   PendingConstrainedFPStrict.clear();
1082   return updateRoot(PendingExports);
1083 }
1084 
1085 void SelectionDAGBuilder::visit(const Instruction &I) {
1086   // Set up outgoing PHI node register values before emitting the terminator.
1087   if (I.isTerminator()) {
1088     HandlePHINodesInSuccessorBlocks(I.getParent());
1089   }
1090 
1091   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092   if (!isa<DbgInfoIntrinsic>(I))
1093     ++SDNodeOrder;
1094 
1095   CurInst = &I;
1096 
1097   visit(I.getOpcode(), I);
1098 
1099   if (!I.isTerminator() && !HasTailCall &&
1100       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1101     CopyToExportRegsIfNeeded(&I);
1102 
1103   CurInst = nullptr;
1104 }
1105 
1106 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1107   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1108 }
1109 
1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1111   // Note: this doesn't use InstVisitor, because it has to work with
1112   // ConstantExpr's in addition to instructions.
1113   switch (Opcode) {
1114   default: llvm_unreachable("Unknown instruction type encountered!");
1115     // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1119   }
1120 }
1121 
1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1123                                                 const DIExpression *Expr) {
1124   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1125     const DbgValueInst *DI = DDI.getDI();
1126     DIVariable *DanglingVariable = DI->getVariable();
1127     DIExpression *DanglingExpr = DI->getExpression();
1128     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1129       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1130       return true;
1131     }
1132     return false;
1133   };
1134 
1135   for (auto &DDIMI : DanglingDebugInfoMap) {
1136     DanglingDebugInfoVector &DDIV = DDIMI.second;
1137 
1138     // If debug info is to be dropped, run it through final checks to see
1139     // whether it can be salvaged.
1140     for (auto &DDI : DDIV)
1141       if (isMatchingDbgValue(DDI))
1142         salvageUnresolvedDbgValue(DDI);
1143 
1144     erase_if(DDIV, isMatchingDbgValue);
1145   }
1146 }
1147 
1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1149 // generate the debug data structures now that we've seen its definition.
1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1151                                                    SDValue Val) {
1152   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1153   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1154     return;
1155 
1156   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1157   for (auto &DDI : DDIV) {
1158     const DbgValueInst *DI = DDI.getDI();
1159     assert(DI && "Ill-formed DanglingDebugInfo");
1160     DebugLoc dl = DDI.getdl();
1161     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1162     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1163     DILocalVariable *Variable = DI->getVariable();
1164     DIExpression *Expr = DI->getExpression();
1165     assert(Variable->isValidLocationForIntrinsic(dl) &&
1166            "Expected inlined-at fields to agree");
1167     SDDbgValue *SDV;
1168     if (Val.getNode()) {
1169       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1170       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1171       // we couldn't resolve it directly when examining the DbgValue intrinsic
1172       // in the first place we should not be more successful here). Unless we
1173       // have some test case that prove this to be correct we should avoid
1174       // calling EmitFuncArgumentDbgValue here.
1175       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1176         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1177                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1178         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1179         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1180         // inserted after the definition of Val when emitting the instructions
1181         // after ISel. An alternative could be to teach
1182         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1183         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1184                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1185                    << ValSDNodeOrder << "\n");
1186         SDV = getDbgValue(Val, Variable, Expr, dl,
1187                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1188         DAG.AddDbgValue(SDV, Val.getNode(), false);
1189       } else
1190         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1191                           << "in EmitFuncArgumentDbgValue\n");
1192     } else {
1193       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1194       auto Undef =
1195           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1196       auto SDV =
1197           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1198       DAG.AddDbgValue(SDV, nullptr, false);
1199     }
1200   }
1201   DDIV.clear();
1202 }
1203 
1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1205   Value *V = DDI.getDI()->getValue();
1206   DILocalVariable *Var = DDI.getDI()->getVariable();
1207   DIExpression *Expr = DDI.getDI()->getExpression();
1208   DebugLoc DL = DDI.getdl();
1209   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1210   unsigned SDOrder = DDI.getSDNodeOrder();
1211 
1212   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1213   // that DW_OP_stack_value is desired.
1214   assert(isa<DbgValueInst>(DDI.getDI()));
1215   bool StackValue = true;
1216 
1217   // Can this Value can be encoded without any further work?
1218   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1219     return;
1220 
1221   // Attempt to salvage back through as many instructions as possible. Bail if
1222   // a non-instruction is seen, such as a constant expression or global
1223   // variable. FIXME: Further work could recover those too.
1224   while (isa<Instruction>(V)) {
1225     Instruction &VAsInst = *cast<Instruction>(V);
1226     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1227 
1228     // If we cannot salvage any further, and haven't yet found a suitable debug
1229     // expression, bail out.
1230     if (!NewExpr)
1231       break;
1232 
1233     // New value and expr now represent this debuginfo.
1234     V = VAsInst.getOperand(0);
1235     Expr = NewExpr;
1236 
1237     // Some kind of simplification occurred: check whether the operand of the
1238     // salvaged debug expression can be encoded in this DAG.
1239     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1240       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1241                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1242       return;
1243     }
1244   }
1245 
1246   // This was the final opportunity to salvage this debug information, and it
1247   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1248   // any earlier variable location.
1249   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1250   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1251   DAG.AddDbgValue(SDV, nullptr, false);
1252 
1253   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1254                     << "\n");
1255   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1256                     << "\n");
1257 }
1258 
1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1260                                            DIExpression *Expr, DebugLoc dl,
1261                                            DebugLoc InstDL, unsigned Order) {
1262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1263   SDDbgValue *SDV;
1264   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1265       isa<ConstantPointerNull>(V)) {
1266     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1267     DAG.AddDbgValue(SDV, nullptr, false);
1268     return true;
1269   }
1270 
1271   // If the Value is a frame index, we can create a FrameIndex debug value
1272   // without relying on the DAG at all.
1273   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1274     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1275     if (SI != FuncInfo.StaticAllocaMap.end()) {
1276       auto SDV =
1277           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1278                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1279       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1280       // is still available even if the SDNode gets optimized out.
1281       DAG.AddDbgValue(SDV, nullptr, false);
1282       return true;
1283     }
1284   }
1285 
1286   // Do not use getValue() in here; we don't want to generate code at
1287   // this point if it hasn't been done yet.
1288   SDValue N = NodeMap[V];
1289   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1290     N = UnusedArgNodeMap[V];
1291   if (N.getNode()) {
1292     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1293       return true;
1294     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1295     DAG.AddDbgValue(SDV, N.getNode(), false);
1296     return true;
1297   }
1298 
1299   // Special rules apply for the first dbg.values of parameter variables in a
1300   // function. Identify them by the fact they reference Argument Values, that
1301   // they're parameters, and they are parameters of the current function. We
1302   // need to let them dangle until they get an SDNode.
1303   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1304                        !InstDL.getInlinedAt();
1305   if (!IsParamOfFunc) {
1306     // The value is not used in this block yet (or it would have an SDNode).
1307     // We still want the value to appear for the user if possible -- if it has
1308     // an associated VReg, we can refer to that instead.
1309     auto VMI = FuncInfo.ValueMap.find(V);
1310     if (VMI != FuncInfo.ValueMap.end()) {
1311       unsigned Reg = VMI->second;
1312       // If this is a PHI node, it may be split up into several MI PHI nodes
1313       // (in FunctionLoweringInfo::set).
1314       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1315                        V->getType(), None);
1316       if (RFV.occupiesMultipleRegs()) {
1317         unsigned Offset = 0;
1318         unsigned BitsToDescribe = 0;
1319         if (auto VarSize = Var->getSizeInBits())
1320           BitsToDescribe = *VarSize;
1321         if (auto Fragment = Expr->getFragmentInfo())
1322           BitsToDescribe = Fragment->SizeInBits;
1323         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1324           unsigned RegisterSize = RegAndSize.second;
1325           // Bail out if all bits are described already.
1326           if (Offset >= BitsToDescribe)
1327             break;
1328           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1329               ? BitsToDescribe - Offset
1330               : RegisterSize;
1331           auto FragmentExpr = DIExpression::createFragmentExpression(
1332               Expr, Offset, FragmentSize);
1333           if (!FragmentExpr)
1334               continue;
1335           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1336                                     false, dl, SDNodeOrder);
1337           DAG.AddDbgValue(SDV, nullptr, false);
1338           Offset += RegisterSize;
1339         }
1340       } else {
1341         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1342         DAG.AddDbgValue(SDV, nullptr, false);
1343       }
1344       return true;
1345     }
1346   }
1347 
1348   return false;
1349 }
1350 
1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1352   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1353   for (auto &Pair : DanglingDebugInfoMap)
1354     for (auto &DDI : Pair.second)
1355       salvageUnresolvedDbgValue(DDI);
1356   clearDanglingDebugInfo();
1357 }
1358 
1359 /// getCopyFromRegs - If there was virtual register allocated for the value V
1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1362   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1363   SDValue Result;
1364 
1365   if (It != FuncInfo.ValueMap.end()) {
1366     Register InReg = It->second;
1367 
1368     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1369                      DAG.getDataLayout(), InReg, Ty,
1370                      None); // This is not an ABI copy.
1371     SDValue Chain = DAG.getEntryNode();
1372     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1373                                  V);
1374     resolveDanglingDebugInfo(V, Result);
1375   }
1376 
1377   return Result;
1378 }
1379 
1380 /// getValue - Return an SDValue for the given Value.
1381 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1382   // If we already have an SDValue for this value, use it. It's important
1383   // to do this first, so that we don't create a CopyFromReg if we already
1384   // have a regular SDValue.
1385   SDValue &N = NodeMap[V];
1386   if (N.getNode()) return N;
1387 
1388   // If there's a virtual register allocated and initialized for this
1389   // value, use it.
1390   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1391     return copyFromReg;
1392 
1393   // Otherwise create a new SDValue and remember it.
1394   SDValue Val = getValueImpl(V);
1395   NodeMap[V] = Val;
1396   resolveDanglingDebugInfo(V, Val);
1397   return Val;
1398 }
1399 
1400 /// getNonRegisterValue - Return an SDValue for the given Value, but
1401 /// don't look in FuncInfo.ValueMap for a virtual register.
1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1403   // If we already have an SDValue for this value, use it.
1404   SDValue &N = NodeMap[V];
1405   if (N.getNode()) {
1406     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1407       // Remove the debug location from the node as the node is about to be used
1408       // in a location which may differ from the original debug location.  This
1409       // is relevant to Constant and ConstantFP nodes because they can appear
1410       // as constant expressions inside PHI nodes.
1411       N->setDebugLoc(DebugLoc());
1412     }
1413     return N;
1414   }
1415 
1416   // Otherwise create a new SDValue and remember it.
1417   SDValue Val = getValueImpl(V);
1418   NodeMap[V] = Val;
1419   resolveDanglingDebugInfo(V, Val);
1420   return Val;
1421 }
1422 
1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1424 /// Create an SDValue for the given value.
1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1426   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1427 
1428   if (const Constant *C = dyn_cast<Constant>(V)) {
1429     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1430 
1431     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1432       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1433 
1434     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1435       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1436 
1437     if (isa<ConstantPointerNull>(C)) {
1438       unsigned AS = V->getType()->getPointerAddressSpace();
1439       return DAG.getConstant(0, getCurSDLoc(),
1440                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1441     }
1442 
1443     if (match(C, m_VScale(DAG.getDataLayout())))
1444       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1445 
1446     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1447       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1448 
1449     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1450       return DAG.getUNDEF(VT);
1451 
1452     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1453       visit(CE->getOpcode(), *CE);
1454       SDValue N1 = NodeMap[V];
1455       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1456       return N1;
1457     }
1458 
1459     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1460       SmallVector<SDValue, 4> Constants;
1461       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1462            OI != OE; ++OI) {
1463         SDNode *Val = getValue(*OI).getNode();
1464         // If the operand is an empty aggregate, there are no values.
1465         if (!Val) continue;
1466         // Add each leaf value from the operand to the Constants list
1467         // to form a flattened list of all the values.
1468         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1469           Constants.push_back(SDValue(Val, i));
1470       }
1471 
1472       return DAG.getMergeValues(Constants, getCurSDLoc());
1473     }
1474 
1475     if (const ConstantDataSequential *CDS =
1476           dyn_cast<ConstantDataSequential>(C)) {
1477       SmallVector<SDValue, 4> Ops;
1478       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1479         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1480         // Add each leaf value from the operand to the Constants list
1481         // to form a flattened list of all the values.
1482         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1483           Ops.push_back(SDValue(Val, i));
1484       }
1485 
1486       if (isa<ArrayType>(CDS->getType()))
1487         return DAG.getMergeValues(Ops, getCurSDLoc());
1488       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1489     }
1490 
1491     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1492       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1493              "Unknown struct or array constant!");
1494 
1495       SmallVector<EVT, 4> ValueVTs;
1496       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1497       unsigned NumElts = ValueVTs.size();
1498       if (NumElts == 0)
1499         return SDValue(); // empty struct
1500       SmallVector<SDValue, 4> Constants(NumElts);
1501       for (unsigned i = 0; i != NumElts; ++i) {
1502         EVT EltVT = ValueVTs[i];
1503         if (isa<UndefValue>(C))
1504           Constants[i] = DAG.getUNDEF(EltVT);
1505         else if (EltVT.isFloatingPoint())
1506           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1507         else
1508           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1509       }
1510 
1511       return DAG.getMergeValues(Constants, getCurSDLoc());
1512     }
1513 
1514     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1515       return DAG.getBlockAddress(BA, VT);
1516 
1517     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1518       return getValue(Equiv->getGlobalValue());
1519 
1520     VectorType *VecTy = cast<VectorType>(V->getType());
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1525       SmallVector<SDValue, 16> Ops;
1526       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1527       for (unsigned i = 0; i != NumElements; ++i)
1528         Ops.push_back(getValue(CV->getOperand(i)));
1529 
1530       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1531     } else if (isa<ConstantAggregateZero>(C)) {
1532       EVT EltVT =
1533           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1534 
1535       SDValue Op;
1536       if (EltVT.isFloatingPoint())
1537         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1538       else
1539         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1540 
1541       if (isa<ScalableVectorType>(VecTy))
1542         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1543       else {
1544         SmallVector<SDValue, 16> Ops;
1545         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1546         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1547       }
1548     }
1549     llvm_unreachable("Unknown vector constant");
1550   }
1551 
1552   // If this is a static alloca, generate it as the frameindex instead of
1553   // computation.
1554   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1555     DenseMap<const AllocaInst*, int>::iterator SI =
1556       FuncInfo.StaticAllocaMap.find(AI);
1557     if (SI != FuncInfo.StaticAllocaMap.end())
1558       return DAG.getFrameIndex(SI->second,
1559                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1560   }
1561 
1562   // If this is an instruction which fast-isel has deferred, select it now.
1563   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1564     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1565 
1566     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1567                      Inst->getType(), None);
1568     SDValue Chain = DAG.getEntryNode();
1569     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1570   }
1571 
1572   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1573     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1574   }
1575   llvm_unreachable("Can't get register for value!");
1576 }
1577 
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582   bool IsSEH = isAsynchronousEHPersonality(Pers);
1583   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1584   if (!IsSEH)
1585     CatchPadMBB->setIsEHScopeEntry();
1586   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1587   if (IsMSVCCXX || IsCoreCLR)
1588     CatchPadMBB->setIsEHFuncletEntry();
1589 }
1590 
1591 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1592   // Update machine-CFG edge.
1593   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1594   FuncInfo.MBB->addSuccessor(TargetMBB);
1595 
1596   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1597   bool IsSEH = isAsynchronousEHPersonality(Pers);
1598   if (IsSEH) {
1599     // If this is not a fall-through branch or optimizations are switched off,
1600     // emit the branch.
1601     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1602         TM.getOptLevel() == CodeGenOpt::None)
1603       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1604                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1605     return;
1606   }
1607 
1608   // Figure out the funclet membership for the catchret's successor.
1609   // This will be used by the FuncletLayout pass to determine how to order the
1610   // BB's.
1611   // A 'catchret' returns to the outer scope's color.
1612   Value *ParentPad = I.getCatchSwitchParentPad();
1613   const BasicBlock *SuccessorColor;
1614   if (isa<ConstantTokenNone>(ParentPad))
1615     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1616   else
1617     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1618   assert(SuccessorColor && "No parent funclet for catchret!");
1619   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1620   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1621 
1622   // Create the terminator node.
1623   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1624                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1625                             DAG.getBasicBlock(SuccessorColorMBB));
1626   DAG.setRoot(Ret);
1627 }
1628 
1629 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1630   // Don't emit any special code for the cleanuppad instruction. It just marks
1631   // the start of an EH scope/funclet.
1632   FuncInfo.MBB->setIsEHScopeEntry();
1633   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1634   if (Pers != EHPersonality::Wasm_CXX) {
1635     FuncInfo.MBB->setIsEHFuncletEntry();
1636     FuncInfo.MBB->setIsCleanupFuncletEntry();
1637   }
1638 }
1639 
1640 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1641 // the control flow always stops at the single catch pad, as it does for a
1642 // cleanup pad. In case the exception caught is not of the types the catch pad
1643 // catches, it will be rethrown by a rethrow.
1644 static void findWasmUnwindDestinations(
1645     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1646     BranchProbability Prob,
1647     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1648         &UnwindDests) {
1649   while (EHPadBB) {
1650     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1651     if (isa<CleanupPadInst>(Pad)) {
1652       // Stop on cleanup pads.
1653       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1654       UnwindDests.back().first->setIsEHScopeEntry();
1655       break;
1656     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1657       // Add the catchpad handlers to the possible destinations. We don't
1658       // continue to the unwind destination of the catchswitch for wasm.
1659       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1660         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1661         UnwindDests.back().first->setIsEHScopeEntry();
1662       }
1663       break;
1664     } else {
1665       continue;
1666     }
1667   }
1668 }
1669 
1670 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1671 /// many places it could ultimately go. In the IR, we have a single unwind
1672 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1673 /// This function skips over imaginary basic blocks that hold catchswitch
1674 /// instructions, and finds all the "real" machine
1675 /// basic block destinations. As those destinations may not be successors of
1676 /// EHPadBB, here we also calculate the edge probability to those destinations.
1677 /// The passed-in Prob is the edge probability to EHPadBB.
1678 static void findUnwindDestinations(
1679     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1680     BranchProbability Prob,
1681     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1682         &UnwindDests) {
1683   EHPersonality Personality =
1684     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1685   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1686   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1687   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1688   bool IsSEH = isAsynchronousEHPersonality(Personality);
1689 
1690   if (IsWasmCXX) {
1691     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1692     assert(UnwindDests.size() <= 1 &&
1693            "There should be at most one unwind destination for wasm");
1694     return;
1695   }
1696 
1697   while (EHPadBB) {
1698     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1699     BasicBlock *NewEHPadBB = nullptr;
1700     if (isa<LandingPadInst>(Pad)) {
1701       // Stop on landingpads. They are not funclets.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       break;
1704     } else if (isa<CleanupPadInst>(Pad)) {
1705       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1706       // personalities.
1707       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708       UnwindDests.back().first->setIsEHScopeEntry();
1709       UnwindDests.back().first->setIsEHFuncletEntry();
1710       break;
1711     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1712       // Add the catchpad handlers to the possible destinations.
1713       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1714         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1715         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1716         if (IsMSVCCXX || IsCoreCLR)
1717           UnwindDests.back().first->setIsEHFuncletEntry();
1718         if (!IsSEH)
1719           UnwindDests.back().first->setIsEHScopeEntry();
1720       }
1721       NewEHPadBB = CatchSwitch->getUnwindDest();
1722     } else {
1723       continue;
1724     }
1725 
1726     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1727     if (BPI && NewEHPadBB)
1728       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1729     EHPadBB = NewEHPadBB;
1730   }
1731 }
1732 
1733 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1734   // Update successor info.
1735   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1736   auto UnwindDest = I.getUnwindDest();
1737   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1738   BranchProbability UnwindDestProb =
1739       (BPI && UnwindDest)
1740           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1741           : BranchProbability::getZero();
1742   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1743   for (auto &UnwindDest : UnwindDests) {
1744     UnwindDest.first->setIsEHPad();
1745     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1746   }
1747   FuncInfo.MBB->normalizeSuccProbs();
1748 
1749   // Create the terminator node.
1750   SDValue Ret =
1751       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1752   DAG.setRoot(Ret);
1753 }
1754 
1755 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1756   report_fatal_error("visitCatchSwitch not yet implemented!");
1757 }
1758 
1759 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1761   auto &DL = DAG.getDataLayout();
1762   SDValue Chain = getControlRoot();
1763   SmallVector<ISD::OutputArg, 8> Outs;
1764   SmallVector<SDValue, 8> OutVals;
1765 
1766   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1767   // lower
1768   //
1769   //   %val = call <ty> @llvm.experimental.deoptimize()
1770   //   ret <ty> %val
1771   //
1772   // differently.
1773   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1774     LowerDeoptimizingReturn();
1775     return;
1776   }
1777 
1778   if (!FuncInfo.CanLowerReturn) {
1779     unsigned DemoteReg = FuncInfo.DemoteRegister;
1780     const Function *F = I.getParent()->getParent();
1781 
1782     // Emit a store of the return value through the virtual register.
1783     // Leave Outs empty so that LowerReturn won't try to load return
1784     // registers the usual way.
1785     SmallVector<EVT, 1> PtrValueVTs;
1786     ComputeValueVTs(TLI, DL,
1787                     F->getReturnType()->getPointerTo(
1788                         DAG.getDataLayout().getAllocaAddrSpace()),
1789                     PtrValueVTs);
1790 
1791     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1792                                         DemoteReg, PtrValueVTs[0]);
1793     SDValue RetOp = getValue(I.getOperand(0));
1794 
1795     SmallVector<EVT, 4> ValueVTs, MemVTs;
1796     SmallVector<uint64_t, 4> Offsets;
1797     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1798                     &Offsets);
1799     unsigned NumValues = ValueVTs.size();
1800 
1801     SmallVector<SDValue, 4> Chains(NumValues);
1802     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1803     for (unsigned i = 0; i != NumValues; ++i) {
1804       // An aggregate return value cannot wrap around the address space, so
1805       // offsets to its parts don't wrap either.
1806       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1807                                            TypeSize::Fixed(Offsets[i]));
1808 
1809       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1810       if (MemVTs[i] != ValueVTs[i])
1811         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1812       Chains[i] = DAG.getStore(
1813           Chain, getCurSDLoc(), Val,
1814           // FIXME: better loc info would be nice.
1815           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1816           commonAlignment(BaseAlign, Offsets[i]));
1817     }
1818 
1819     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1820                         MVT::Other, Chains);
1821   } else if (I.getNumOperands() != 0) {
1822     SmallVector<EVT, 4> ValueVTs;
1823     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1824     unsigned NumValues = ValueVTs.size();
1825     if (NumValues) {
1826       SDValue RetOp = getValue(I.getOperand(0));
1827 
1828       const Function *F = I.getParent()->getParent();
1829 
1830       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1831           I.getOperand(0)->getType(), F->getCallingConv(),
1832           /*IsVarArg*/ false);
1833 
1834       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1835       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1836                                           Attribute::SExt))
1837         ExtendKind = ISD::SIGN_EXTEND;
1838       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1839                                                Attribute::ZExt))
1840         ExtendKind = ISD::ZERO_EXTEND;
1841 
1842       LLVMContext &Context = F->getContext();
1843       bool RetInReg = F->getAttributes().hasAttribute(
1844           AttributeList::ReturnIndex, Attribute::InReg);
1845 
1846       for (unsigned j = 0; j != NumValues; ++j) {
1847         EVT VT = ValueVTs[j];
1848 
1849         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1850           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1851 
1852         CallingConv::ID CC = F->getCallingConv();
1853 
1854         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1855         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1856         SmallVector<SDValue, 4> Parts(NumParts);
1857         getCopyToParts(DAG, getCurSDLoc(),
1858                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1859                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1860 
1861         // 'inreg' on function refers to return value
1862         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1863         if (RetInReg)
1864           Flags.setInReg();
1865 
1866         if (I.getOperand(0)->getType()->isPointerTy()) {
1867           Flags.setPointer();
1868           Flags.setPointerAddrSpace(
1869               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1870         }
1871 
1872         if (NeedsRegBlock) {
1873           Flags.setInConsecutiveRegs();
1874           if (j == NumValues - 1)
1875             Flags.setInConsecutiveRegsLast();
1876         }
1877 
1878         // Propagate extension type if any
1879         if (ExtendKind == ISD::SIGN_EXTEND)
1880           Flags.setSExt();
1881         else if (ExtendKind == ISD::ZERO_EXTEND)
1882           Flags.setZExt();
1883 
1884         for (unsigned i = 0; i < NumParts; ++i) {
1885           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1886                                         VT, /*isfixed=*/true, 0, 0));
1887           OutVals.push_back(Parts[i]);
1888         }
1889       }
1890     }
1891   }
1892 
1893   // Push in swifterror virtual register as the last element of Outs. This makes
1894   // sure swifterror virtual register will be returned in the swifterror
1895   // physical register.
1896   const Function *F = I.getParent()->getParent();
1897   if (TLI.supportSwiftError() &&
1898       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1899     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1900     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1901     Flags.setSwiftError();
1902     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1903                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1904                                   true /*isfixed*/, 1 /*origidx*/,
1905                                   0 /*partOffs*/));
1906     // Create SDNode for the swifterror virtual register.
1907     OutVals.push_back(
1908         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1909                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1910                         EVT(TLI.getPointerTy(DL))));
1911   }
1912 
1913   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1914   CallingConv::ID CallConv =
1915     DAG.getMachineFunction().getFunction().getCallingConv();
1916   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1917       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1918 
1919   // Verify that the target's LowerReturn behaved as expected.
1920   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1921          "LowerReturn didn't return a valid chain!");
1922 
1923   // Update the DAG with the new chain value resulting from return lowering.
1924   DAG.setRoot(Chain);
1925 }
1926 
1927 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1928 /// created for it, emit nodes to copy the value into the virtual
1929 /// registers.
1930 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1931   // Skip empty types
1932   if (V->getType()->isEmptyTy())
1933     return;
1934 
1935   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1936   if (VMI != FuncInfo.ValueMap.end()) {
1937     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1938     CopyValueToVirtualRegister(V, VMI->second);
1939   }
1940 }
1941 
1942 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1943 /// the current basic block, add it to ValueMap now so that we'll get a
1944 /// CopyTo/FromReg.
1945 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1946   // No need to export constants.
1947   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1948 
1949   // Already exported?
1950   if (FuncInfo.isExportedInst(V)) return;
1951 
1952   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1953   CopyValueToVirtualRegister(V, Reg);
1954 }
1955 
1956 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1957                                                      const BasicBlock *FromBB) {
1958   // The operands of the setcc have to be in this block.  We don't know
1959   // how to export them from some other block.
1960   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1961     // Can export from current BB.
1962     if (VI->getParent() == FromBB)
1963       return true;
1964 
1965     // Is already exported, noop.
1966     return FuncInfo.isExportedInst(V);
1967   }
1968 
1969   // If this is an argument, we can export it if the BB is the entry block or
1970   // if it is already exported.
1971   if (isa<Argument>(V)) {
1972     if (FromBB == &FromBB->getParent()->getEntryBlock())
1973       return true;
1974 
1975     // Otherwise, can only export this if it is already exported.
1976     return FuncInfo.isExportedInst(V);
1977   }
1978 
1979   // Otherwise, constants can always be exported.
1980   return true;
1981 }
1982 
1983 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1984 BranchProbability
1985 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1986                                         const MachineBasicBlock *Dst) const {
1987   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1988   const BasicBlock *SrcBB = Src->getBasicBlock();
1989   const BasicBlock *DstBB = Dst->getBasicBlock();
1990   if (!BPI) {
1991     // If BPI is not available, set the default probability as 1 / N, where N is
1992     // the number of successors.
1993     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1994     return BranchProbability(1, SuccSize);
1995   }
1996   return BPI->getEdgeProbability(SrcBB, DstBB);
1997 }
1998 
1999 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2000                                                MachineBasicBlock *Dst,
2001                                                BranchProbability Prob) {
2002   if (!FuncInfo.BPI)
2003     Src->addSuccessorWithoutProb(Dst);
2004   else {
2005     if (Prob.isUnknown())
2006       Prob = getEdgeProbability(Src, Dst);
2007     Src->addSuccessor(Dst, Prob);
2008   }
2009 }
2010 
2011 static bool InBlock(const Value *V, const BasicBlock *BB) {
2012   if (const Instruction *I = dyn_cast<Instruction>(V))
2013     return I->getParent() == BB;
2014   return true;
2015 }
2016 
2017 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2018 /// This function emits a branch and is used at the leaves of an OR or an
2019 /// AND operator tree.
2020 void
2021 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2022                                                   MachineBasicBlock *TBB,
2023                                                   MachineBasicBlock *FBB,
2024                                                   MachineBasicBlock *CurBB,
2025                                                   MachineBasicBlock *SwitchBB,
2026                                                   BranchProbability TProb,
2027                                                   BranchProbability FProb,
2028                                                   bool InvertCond) {
2029   const BasicBlock *BB = CurBB->getBasicBlock();
2030 
2031   // If the leaf of the tree is a comparison, merge the condition into
2032   // the caseblock.
2033   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2034     // The operands of the cmp have to be in this block.  We don't know
2035     // how to export them from some other block.  If this is the first block
2036     // of the sequence, no exporting is needed.
2037     if (CurBB == SwitchBB ||
2038         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2039          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2040       ISD::CondCode Condition;
2041       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2042         ICmpInst::Predicate Pred =
2043             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2044         Condition = getICmpCondCode(Pred);
2045       } else {
2046         const FCmpInst *FC = cast<FCmpInst>(Cond);
2047         FCmpInst::Predicate Pred =
2048             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2049         Condition = getFCmpCondCode(Pred);
2050         if (TM.Options.NoNaNsFPMath)
2051           Condition = getFCmpCodeWithoutNaN(Condition);
2052       }
2053 
2054       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2055                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2056       SL->SwitchCases.push_back(CB);
2057       return;
2058     }
2059   }
2060 
2061   // Create a CaseBlock record representing this branch.
2062   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2063   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2064                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2065   SL->SwitchCases.push_back(CB);
2066 }
2067 
2068 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2069                                                MachineBasicBlock *TBB,
2070                                                MachineBasicBlock *FBB,
2071                                                MachineBasicBlock *CurBB,
2072                                                MachineBasicBlock *SwitchBB,
2073                                                Instruction::BinaryOps Opc,
2074                                                BranchProbability TProb,
2075                                                BranchProbability FProb,
2076                                                bool InvertCond) {
2077   // Skip over not part of the tree and remember to invert op and operands at
2078   // next level.
2079   Value *NotCond;
2080   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2081       InBlock(NotCond, CurBB->getBasicBlock())) {
2082     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2083                          !InvertCond);
2084     return;
2085   }
2086 
2087   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2088   const Value *BOpOp0, *BOpOp1;
2089   // Compute the effective opcode for Cond, taking into account whether it needs
2090   // to be inverted, e.g.
2091   //   and (not (or A, B)), C
2092   // gets lowered as
2093   //   and (and (not A, not B), C)
2094   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2095   if (BOp) {
2096     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2097                ? Instruction::And
2098                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2099                       ? Instruction::Or
2100                       : (Instruction::BinaryOps)0);
2101     if (InvertCond) {
2102       if (BOpc == Instruction::And)
2103         BOpc = Instruction::Or;
2104       else if (BOpc == Instruction::Or)
2105         BOpc = Instruction::And;
2106     }
2107   }
2108 
2109   // If this node is not part of the or/and tree, emit it as a branch.
2110   // Note that all nodes in the tree should have same opcode.
2111   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2112   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2113       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2114       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2115     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2116                                  TProb, FProb, InvertCond);
2117     return;
2118   }
2119 
2120   //  Create TmpBB after CurBB.
2121   MachineFunction::iterator BBI(CurBB);
2122   MachineFunction &MF = DAG.getMachineFunction();
2123   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2124   CurBB->getParent()->insert(++BBI, TmpBB);
2125 
2126   if (Opc == Instruction::Or) {
2127     // Codegen X | Y as:
2128     // BB1:
2129     //   jmp_if_X TBB
2130     //   jmp TmpBB
2131     // TmpBB:
2132     //   jmp_if_Y TBB
2133     //   jmp FBB
2134     //
2135 
2136     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2137     // The requirement is that
2138     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2139     //     = TrueProb for original BB.
2140     // Assuming the original probabilities are A and B, one choice is to set
2141     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2142     // A/(1+B) and 2B/(1+B). This choice assumes that
2143     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2144     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2145     // TmpBB, but the math is more complicated.
2146 
2147     auto NewTrueProb = TProb / 2;
2148     auto NewFalseProb = TProb / 2 + FProb;
2149     // Emit the LHS condition.
2150     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2151                          NewFalseProb, InvertCond);
2152 
2153     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2154     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2155     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2156     // Emit the RHS condition into TmpBB.
2157     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2158                          Probs[1], InvertCond);
2159   } else {
2160     assert(Opc == Instruction::And && "Unknown merge op!");
2161     // Codegen X & Y as:
2162     // BB1:
2163     //   jmp_if_X TmpBB
2164     //   jmp FBB
2165     // TmpBB:
2166     //   jmp_if_Y TBB
2167     //   jmp FBB
2168     //
2169     //  This requires creation of TmpBB after CurBB.
2170 
2171     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2172     // The requirement is that
2173     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2174     //     = FalseProb for original BB.
2175     // Assuming the original probabilities are A and B, one choice is to set
2176     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2177     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2178     // TrueProb for BB1 * FalseProb for TmpBB.
2179 
2180     auto NewTrueProb = TProb + FProb / 2;
2181     auto NewFalseProb = FProb / 2;
2182     // Emit the LHS condition.
2183     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2184                          NewFalseProb, InvertCond);
2185 
2186     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2187     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2188     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2189     // Emit the RHS condition into TmpBB.
2190     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2191                          Probs[1], InvertCond);
2192   }
2193 }
2194 
2195 /// If the set of cases should be emitted as a series of branches, return true.
2196 /// If we should emit this as a bunch of and/or'd together conditions, return
2197 /// false.
2198 bool
2199 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2200   if (Cases.size() != 2) return true;
2201 
2202   // If this is two comparisons of the same values or'd or and'd together, they
2203   // will get folded into a single comparison, so don't emit two blocks.
2204   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2205        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2206       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2207        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2208     return false;
2209   }
2210 
2211   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2212   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2213   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2214       Cases[0].CC == Cases[1].CC &&
2215       isa<Constant>(Cases[0].CmpRHS) &&
2216       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2217     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2218       return false;
2219     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2220       return false;
2221   }
2222 
2223   return true;
2224 }
2225 
2226 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2227   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2228 
2229   // Update machine-CFG edges.
2230   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2231 
2232   if (I.isUnconditional()) {
2233     // Update machine-CFG edges.
2234     BrMBB->addSuccessor(Succ0MBB);
2235 
2236     // If this is not a fall-through branch or optimizations are switched off,
2237     // emit the branch.
2238     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2239       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2240                               MVT::Other, getControlRoot(),
2241                               DAG.getBasicBlock(Succ0MBB)));
2242 
2243     return;
2244   }
2245 
2246   // If this condition is one of the special cases we handle, do special stuff
2247   // now.
2248   const Value *CondVal = I.getCondition();
2249   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2250 
2251   // If this is a series of conditions that are or'd or and'd together, emit
2252   // this as a sequence of branches instead of setcc's with and/or operations.
2253   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2254   // unpredictable branches, and vector extracts because those jumps are likely
2255   // expensive for any target), this should improve performance.
2256   // For example, instead of something like:
2257   //     cmp A, B
2258   //     C = seteq
2259   //     cmp D, E
2260   //     F = setle
2261   //     or C, F
2262   //     jnz foo
2263   // Emit:
2264   //     cmp A, B
2265   //     je foo
2266   //     cmp D, E
2267   //     jle foo
2268   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2269   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2270       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2271     Value *Vec;
2272     const Value *BOp0, *BOp1;
2273     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2274     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2275       Opcode = Instruction::And;
2276     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2277       Opcode = Instruction::Or;
2278 
2279     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2280                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2281       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2282                            getEdgeProbability(BrMBB, Succ0MBB),
2283                            getEdgeProbability(BrMBB, Succ1MBB),
2284                            /*InvertCond=*/false);
2285       // If the compares in later blocks need to use values not currently
2286       // exported from this block, export them now.  This block should always
2287       // be the first entry.
2288       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2289 
2290       // Allow some cases to be rejected.
2291       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2292         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2293           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2294           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2295         }
2296 
2297         // Emit the branch for this block.
2298         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2299         SL->SwitchCases.erase(SL->SwitchCases.begin());
2300         return;
2301       }
2302 
2303       // Okay, we decided not to do this, remove any inserted MBB's and clear
2304       // SwitchCases.
2305       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2306         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2307 
2308       SL->SwitchCases.clear();
2309     }
2310   }
2311 
2312   // Create a CaseBlock record representing this branch.
2313   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2314                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2315 
2316   // Use visitSwitchCase to actually insert the fast branch sequence for this
2317   // cond branch.
2318   visitSwitchCase(CB, BrMBB);
2319 }
2320 
2321 /// visitSwitchCase - Emits the necessary code to represent a single node in
2322 /// the binary search tree resulting from lowering a switch instruction.
2323 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2324                                           MachineBasicBlock *SwitchBB) {
2325   SDValue Cond;
2326   SDValue CondLHS = getValue(CB.CmpLHS);
2327   SDLoc dl = CB.DL;
2328 
2329   if (CB.CC == ISD::SETTRUE) {
2330     // Branch or fall through to TrueBB.
2331     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2332     SwitchBB->normalizeSuccProbs();
2333     if (CB.TrueBB != NextBlock(SwitchBB)) {
2334       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2335                               DAG.getBasicBlock(CB.TrueBB)));
2336     }
2337     return;
2338   }
2339 
2340   auto &TLI = DAG.getTargetLoweringInfo();
2341   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2342 
2343   // Build the setcc now.
2344   if (!CB.CmpMHS) {
2345     // Fold "(X == true)" to X and "(X == false)" to !X to
2346     // handle common cases produced by branch lowering.
2347     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2348         CB.CC == ISD::SETEQ)
2349       Cond = CondLHS;
2350     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2351              CB.CC == ISD::SETEQ) {
2352       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2353       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2354     } else {
2355       SDValue CondRHS = getValue(CB.CmpRHS);
2356 
2357       // If a pointer's DAG type is larger than its memory type then the DAG
2358       // values are zero-extended. This breaks signed comparisons so truncate
2359       // back to the underlying type before doing the compare.
2360       if (CondLHS.getValueType() != MemVT) {
2361         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2362         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2363       }
2364       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2365     }
2366   } else {
2367     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2368 
2369     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2370     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2371 
2372     SDValue CmpOp = getValue(CB.CmpMHS);
2373     EVT VT = CmpOp.getValueType();
2374 
2375     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2376       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2377                           ISD::SETLE);
2378     } else {
2379       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2380                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2381       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2382                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2383     }
2384   }
2385 
2386   // Update successor info
2387   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2388   // TrueBB and FalseBB are always different unless the incoming IR is
2389   // degenerate. This only happens when running llc on weird IR.
2390   if (CB.TrueBB != CB.FalseBB)
2391     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2392   SwitchBB->normalizeSuccProbs();
2393 
2394   // If the lhs block is the next block, invert the condition so that we can
2395   // fall through to the lhs instead of the rhs block.
2396   if (CB.TrueBB == NextBlock(SwitchBB)) {
2397     std::swap(CB.TrueBB, CB.FalseBB);
2398     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2399     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2400   }
2401 
2402   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2403                                MVT::Other, getControlRoot(), Cond,
2404                                DAG.getBasicBlock(CB.TrueBB));
2405 
2406   // Insert the false branch. Do this even if it's a fall through branch,
2407   // this makes it easier to do DAG optimizations which require inverting
2408   // the branch condition.
2409   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2410                        DAG.getBasicBlock(CB.FalseBB));
2411 
2412   DAG.setRoot(BrCond);
2413 }
2414 
2415 /// visitJumpTable - Emit JumpTable node in the current MBB
2416 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2417   // Emit the code for the jump table
2418   assert(JT.Reg != -1U && "Should lower JT Header first!");
2419   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2420   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2421                                      JT.Reg, PTy);
2422   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2423   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2424                                     MVT::Other, Index.getValue(1),
2425                                     Table, Index);
2426   DAG.setRoot(BrJumpTable);
2427 }
2428 
2429 /// visitJumpTableHeader - This function emits necessary code to produce index
2430 /// in the JumpTable from switch case.
2431 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2432                                                JumpTableHeader &JTH,
2433                                                MachineBasicBlock *SwitchBB) {
2434   SDLoc dl = getCurSDLoc();
2435 
2436   // Subtract the lowest switch case value from the value being switched on.
2437   SDValue SwitchOp = getValue(JTH.SValue);
2438   EVT VT = SwitchOp.getValueType();
2439   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2440                             DAG.getConstant(JTH.First, dl, VT));
2441 
2442   // The SDNode we just created, which holds the value being switched on minus
2443   // the smallest case value, needs to be copied to a virtual register so it
2444   // can be used as an index into the jump table in a subsequent basic block.
2445   // This value may be smaller or larger than the target's pointer type, and
2446   // therefore require extension or truncating.
2447   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2448   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2449 
2450   unsigned JumpTableReg =
2451       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2452   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2453                                     JumpTableReg, SwitchOp);
2454   JT.Reg = JumpTableReg;
2455 
2456   if (!JTH.OmitRangeCheck) {
2457     // Emit the range check for the jump table, and branch to the default block
2458     // for the switch statement if the value being switched on exceeds the
2459     // largest case in the switch.
2460     SDValue CMP = DAG.getSetCC(
2461         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2462                                    Sub.getValueType()),
2463         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2464 
2465     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2466                                  MVT::Other, CopyTo, CMP,
2467                                  DAG.getBasicBlock(JT.Default));
2468 
2469     // Avoid emitting unnecessary branches to the next block.
2470     if (JT.MBB != NextBlock(SwitchBB))
2471       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2472                            DAG.getBasicBlock(JT.MBB));
2473 
2474     DAG.setRoot(BrCond);
2475   } else {
2476     // Avoid emitting unnecessary branches to the next block.
2477     if (JT.MBB != NextBlock(SwitchBB))
2478       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2479                               DAG.getBasicBlock(JT.MBB)));
2480     else
2481       DAG.setRoot(CopyTo);
2482   }
2483 }
2484 
2485 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2486 /// variable if there exists one.
2487 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2488                                  SDValue &Chain) {
2489   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2490   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2491   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2492   MachineFunction &MF = DAG.getMachineFunction();
2493   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2494   MachineSDNode *Node =
2495       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2496   if (Global) {
2497     MachinePointerInfo MPInfo(Global);
2498     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2499                  MachineMemOperand::MODereferenceable;
2500     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2501         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2502     DAG.setNodeMemRefs(Node, {MemRef});
2503   }
2504   if (PtrTy != PtrMemTy)
2505     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2506   return SDValue(Node, 0);
2507 }
2508 
2509 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2510 /// tail spliced into a stack protector check success bb.
2511 ///
2512 /// For a high level explanation of how this fits into the stack protector
2513 /// generation see the comment on the declaration of class
2514 /// StackProtectorDescriptor.
2515 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2516                                                   MachineBasicBlock *ParentBB) {
2517 
2518   // First create the loads to the guard/stack slot for the comparison.
2519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2520   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2521   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2522 
2523   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2524   int FI = MFI.getStackProtectorIndex();
2525 
2526   SDValue Guard;
2527   SDLoc dl = getCurSDLoc();
2528   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2529   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2530   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2531 
2532   // Generate code to load the content of the guard slot.
2533   SDValue GuardVal = DAG.getLoad(
2534       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2535       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2536       MachineMemOperand::MOVolatile);
2537 
2538   if (TLI.useStackGuardXorFP())
2539     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2540 
2541   // Retrieve guard check function, nullptr if instrumentation is inlined.
2542   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2543     // The target provides a guard check function to validate the guard value.
2544     // Generate a call to that function with the content of the guard slot as
2545     // argument.
2546     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2547     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2548 
2549     TargetLowering::ArgListTy Args;
2550     TargetLowering::ArgListEntry Entry;
2551     Entry.Node = GuardVal;
2552     Entry.Ty = FnTy->getParamType(0);
2553     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2554       Entry.IsInReg = true;
2555     Args.push_back(Entry);
2556 
2557     TargetLowering::CallLoweringInfo CLI(DAG);
2558     CLI.setDebugLoc(getCurSDLoc())
2559         .setChain(DAG.getEntryNode())
2560         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2561                    getValue(GuardCheckFn), std::move(Args));
2562 
2563     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2564     DAG.setRoot(Result.second);
2565     return;
2566   }
2567 
2568   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2569   // Otherwise, emit a volatile load to retrieve the stack guard value.
2570   SDValue Chain = DAG.getEntryNode();
2571   if (TLI.useLoadStackGuardNode()) {
2572     Guard = getLoadStackGuard(DAG, dl, Chain);
2573   } else {
2574     const Value *IRGuard = TLI.getSDagStackGuard(M);
2575     SDValue GuardPtr = getValue(IRGuard);
2576 
2577     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2578                         MachinePointerInfo(IRGuard, 0), Align,
2579                         MachineMemOperand::MOVolatile);
2580   }
2581 
2582   // Perform the comparison via a getsetcc.
2583   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2584                                                         *DAG.getContext(),
2585                                                         Guard.getValueType()),
2586                              Guard, GuardVal, ISD::SETNE);
2587 
2588   // If the guard/stackslot do not equal, branch to failure MBB.
2589   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2590                                MVT::Other, GuardVal.getOperand(0),
2591                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2592   // Otherwise branch to success MBB.
2593   SDValue Br = DAG.getNode(ISD::BR, dl,
2594                            MVT::Other, BrCond,
2595                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2596 
2597   DAG.setRoot(Br);
2598 }
2599 
2600 /// Codegen the failure basic block for a stack protector check.
2601 ///
2602 /// A failure stack protector machine basic block consists simply of a call to
2603 /// __stack_chk_fail().
2604 ///
2605 /// For a high level explanation of how this fits into the stack protector
2606 /// generation see the comment on the declaration of class
2607 /// StackProtectorDescriptor.
2608 void
2609 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2611   TargetLowering::MakeLibCallOptions CallOptions;
2612   CallOptions.setDiscardResult(true);
2613   SDValue Chain =
2614       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2615                       None, CallOptions, getCurSDLoc()).second;
2616   // On PS4, the "return address" must still be within the calling function,
2617   // even if it's at the very end, so emit an explicit TRAP here.
2618   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2619   if (TM.getTargetTriple().isPS4CPU())
2620     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2621   // WebAssembly needs an unreachable instruction after a non-returning call,
2622   // because the function return type can be different from __stack_chk_fail's
2623   // return type (void).
2624   if (TM.getTargetTriple().isWasm())
2625     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2626 
2627   DAG.setRoot(Chain);
2628 }
2629 
2630 /// visitBitTestHeader - This function emits necessary code to produce value
2631 /// suitable for "bit tests"
2632 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2633                                              MachineBasicBlock *SwitchBB) {
2634   SDLoc dl = getCurSDLoc();
2635 
2636   // Subtract the minimum value.
2637   SDValue SwitchOp = getValue(B.SValue);
2638   EVT VT = SwitchOp.getValueType();
2639   SDValue RangeSub =
2640       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2641 
2642   // Determine the type of the test operands.
2643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2644   bool UsePtrType = false;
2645   if (!TLI.isTypeLegal(VT)) {
2646     UsePtrType = true;
2647   } else {
2648     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2649       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2650         // Switch table case range are encoded into series of masks.
2651         // Just use pointer type, it's guaranteed to fit.
2652         UsePtrType = true;
2653         break;
2654       }
2655   }
2656   SDValue Sub = RangeSub;
2657   if (UsePtrType) {
2658     VT = TLI.getPointerTy(DAG.getDataLayout());
2659     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2660   }
2661 
2662   B.RegVT = VT.getSimpleVT();
2663   B.Reg = FuncInfo.CreateReg(B.RegVT);
2664   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2665 
2666   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2667 
2668   if (!B.OmitRangeCheck)
2669     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2670   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2671   SwitchBB->normalizeSuccProbs();
2672 
2673   SDValue Root = CopyTo;
2674   if (!B.OmitRangeCheck) {
2675     // Conditional branch to the default block.
2676     SDValue RangeCmp = DAG.getSetCC(dl,
2677         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2678                                RangeSub.getValueType()),
2679         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2680         ISD::SETUGT);
2681 
2682     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2683                        DAG.getBasicBlock(B.Default));
2684   }
2685 
2686   // Avoid emitting unnecessary branches to the next block.
2687   if (MBB != NextBlock(SwitchBB))
2688     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2689 
2690   DAG.setRoot(Root);
2691 }
2692 
2693 /// visitBitTestCase - this function produces one "bit test"
2694 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2695                                            MachineBasicBlock* NextMBB,
2696                                            BranchProbability BranchProbToNext,
2697                                            unsigned Reg,
2698                                            BitTestCase &B,
2699                                            MachineBasicBlock *SwitchBB) {
2700   SDLoc dl = getCurSDLoc();
2701   MVT VT = BB.RegVT;
2702   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2703   SDValue Cmp;
2704   unsigned PopCount = countPopulation(B.Mask);
2705   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2706   if (PopCount == 1) {
2707     // Testing for a single bit; just compare the shift count with what it
2708     // would need to be to shift a 1 bit in that position.
2709     Cmp = DAG.getSetCC(
2710         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2711         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2712         ISD::SETEQ);
2713   } else if (PopCount == BB.Range) {
2714     // There is only one zero bit in the range, test for it directly.
2715     Cmp = DAG.getSetCC(
2716         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2717         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2718         ISD::SETNE);
2719   } else {
2720     // Make desired shift
2721     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2722                                     DAG.getConstant(1, dl, VT), ShiftOp);
2723 
2724     // Emit bit tests and jumps
2725     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2726                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2727     Cmp = DAG.getSetCC(
2728         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2729         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2730   }
2731 
2732   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2733   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2734   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2735   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2736   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2737   // one as they are relative probabilities (and thus work more like weights),
2738   // and hence we need to normalize them to let the sum of them become one.
2739   SwitchBB->normalizeSuccProbs();
2740 
2741   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2742                               MVT::Other, getControlRoot(),
2743                               Cmp, DAG.getBasicBlock(B.TargetBB));
2744 
2745   // Avoid emitting unnecessary branches to the next block.
2746   if (NextMBB != NextBlock(SwitchBB))
2747     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2748                         DAG.getBasicBlock(NextMBB));
2749 
2750   DAG.setRoot(BrAnd);
2751 }
2752 
2753 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2754   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2755 
2756   // Retrieve successors. Look through artificial IR level blocks like
2757   // catchswitch for successors.
2758   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2759   const BasicBlock *EHPadBB = I.getSuccessor(1);
2760 
2761   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2762   // have to do anything here to lower funclet bundles.
2763   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2764                                         LLVMContext::OB_gc_transition,
2765                                         LLVMContext::OB_gc_live,
2766                                         LLVMContext::OB_funclet,
2767                                         LLVMContext::OB_cfguardtarget}) &&
2768          "Cannot lower invokes with arbitrary operand bundles yet!");
2769 
2770   const Value *Callee(I.getCalledOperand());
2771   const Function *Fn = dyn_cast<Function>(Callee);
2772   if (isa<InlineAsm>(Callee))
2773     visitInlineAsm(I);
2774   else if (Fn && Fn->isIntrinsic()) {
2775     switch (Fn->getIntrinsicID()) {
2776     default:
2777       llvm_unreachable("Cannot invoke this intrinsic");
2778     case Intrinsic::donothing:
2779       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2780       break;
2781     case Intrinsic::experimental_patchpoint_void:
2782     case Intrinsic::experimental_patchpoint_i64:
2783       visitPatchpoint(I, EHPadBB);
2784       break;
2785     case Intrinsic::experimental_gc_statepoint:
2786       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2787       break;
2788     case Intrinsic::wasm_rethrow_in_catch: {
2789       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2790       // special because it can be invoked, so we manually lower it to a DAG
2791       // node here.
2792       SmallVector<SDValue, 8> Ops;
2793       Ops.push_back(getRoot()); // inchain
2794       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2795       Ops.push_back(
2796           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2797                                 TLI.getPointerTy(DAG.getDataLayout())));
2798       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2799       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2800       break;
2801     }
2802     }
2803   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2804     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2805     // Eventually we will support lowering the @llvm.experimental.deoptimize
2806     // intrinsic, and right now there are no plans to support other intrinsics
2807     // with deopt state.
2808     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2809   } else {
2810     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2811   }
2812 
2813   // If the value of the invoke is used outside of its defining block, make it
2814   // available as a virtual register.
2815   // We already took care of the exported value for the statepoint instruction
2816   // during call to the LowerStatepoint.
2817   if (!isa<GCStatepointInst>(I)) {
2818     CopyToExportRegsIfNeeded(&I);
2819   }
2820 
2821   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2822   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2823   BranchProbability EHPadBBProb =
2824       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2825           : BranchProbability::getZero();
2826   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2827 
2828   // Update successor info.
2829   addSuccessorWithProb(InvokeMBB, Return);
2830   for (auto &UnwindDest : UnwindDests) {
2831     UnwindDest.first->setIsEHPad();
2832     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2833   }
2834   InvokeMBB->normalizeSuccProbs();
2835 
2836   // Drop into normal successor.
2837   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2838                           DAG.getBasicBlock(Return)));
2839 }
2840 
2841 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2842   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2843 
2844   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2845   // have to do anything here to lower funclet bundles.
2846   assert(!I.hasOperandBundlesOtherThan(
2847              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2848          "Cannot lower callbrs with arbitrary operand bundles yet!");
2849 
2850   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2851   visitInlineAsm(I);
2852   CopyToExportRegsIfNeeded(&I);
2853 
2854   // Retrieve successors.
2855   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2856 
2857   // Update successor info.
2858   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2859   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2860     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2861     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2862     Target->setIsInlineAsmBrIndirectTarget();
2863   }
2864   CallBrMBB->normalizeSuccProbs();
2865 
2866   // Drop into default successor.
2867   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2868                           MVT::Other, getControlRoot(),
2869                           DAG.getBasicBlock(Return)));
2870 }
2871 
2872 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2873   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2874 }
2875 
2876 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2877   assert(FuncInfo.MBB->isEHPad() &&
2878          "Call to landingpad not in landing pad!");
2879 
2880   // If there aren't registers to copy the values into (e.g., during SjLj
2881   // exceptions), then don't bother to create these DAG nodes.
2882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2883   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2884   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2885       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2886     return;
2887 
2888   // If landingpad's return type is token type, we don't create DAG nodes
2889   // for its exception pointer and selector value. The extraction of exception
2890   // pointer or selector value from token type landingpads is not currently
2891   // supported.
2892   if (LP.getType()->isTokenTy())
2893     return;
2894 
2895   SmallVector<EVT, 2> ValueVTs;
2896   SDLoc dl = getCurSDLoc();
2897   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2898   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2899 
2900   // Get the two live-in registers as SDValues. The physregs have already been
2901   // copied into virtual registers.
2902   SDValue Ops[2];
2903   if (FuncInfo.ExceptionPointerVirtReg) {
2904     Ops[0] = DAG.getZExtOrTrunc(
2905         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2906                            FuncInfo.ExceptionPointerVirtReg,
2907                            TLI.getPointerTy(DAG.getDataLayout())),
2908         dl, ValueVTs[0]);
2909   } else {
2910     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2911   }
2912   Ops[1] = DAG.getZExtOrTrunc(
2913       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2914                          FuncInfo.ExceptionSelectorVirtReg,
2915                          TLI.getPointerTy(DAG.getDataLayout())),
2916       dl, ValueVTs[1]);
2917 
2918   // Merge into one.
2919   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2920                             DAG.getVTList(ValueVTs), Ops);
2921   setValue(&LP, Res);
2922 }
2923 
2924 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2925                                            MachineBasicBlock *Last) {
2926   // Update JTCases.
2927   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2928     if (SL->JTCases[i].first.HeaderBB == First)
2929       SL->JTCases[i].first.HeaderBB = Last;
2930 
2931   // Update BitTestCases.
2932   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2933     if (SL->BitTestCases[i].Parent == First)
2934       SL->BitTestCases[i].Parent = Last;
2935 }
2936 
2937 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2938   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2939 
2940   // Update machine-CFG edges with unique successors.
2941   SmallSet<BasicBlock*, 32> Done;
2942   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2943     BasicBlock *BB = I.getSuccessor(i);
2944     bool Inserted = Done.insert(BB).second;
2945     if (!Inserted)
2946         continue;
2947 
2948     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2949     addSuccessorWithProb(IndirectBrMBB, Succ);
2950   }
2951   IndirectBrMBB->normalizeSuccProbs();
2952 
2953   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2954                           MVT::Other, getControlRoot(),
2955                           getValue(I.getAddress())));
2956 }
2957 
2958 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2959   if (!DAG.getTarget().Options.TrapUnreachable)
2960     return;
2961 
2962   // We may be able to ignore unreachable behind a noreturn call.
2963   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2964     const BasicBlock &BB = *I.getParent();
2965     if (&I != &BB.front()) {
2966       BasicBlock::const_iterator PredI =
2967         std::prev(BasicBlock::const_iterator(&I));
2968       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2969         if (Call->doesNotReturn())
2970           return;
2971       }
2972     }
2973   }
2974 
2975   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2976 }
2977 
2978 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2979   SDNodeFlags Flags;
2980 
2981   SDValue Op = getValue(I.getOperand(0));
2982   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2983                                     Op, Flags);
2984   setValue(&I, UnNodeValue);
2985 }
2986 
2987 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2988   SDNodeFlags Flags;
2989   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2990     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2991     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2992   }
2993   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
2994     Flags.setExact(ExactOp->isExact());
2995   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
2996     Flags.copyFMF(*FPOp);
2997 
2998   SDValue Op1 = getValue(I.getOperand(0));
2999   SDValue Op2 = getValue(I.getOperand(1));
3000   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3001                                      Op1, Op2, Flags);
3002   setValue(&I, BinNodeValue);
3003 }
3004 
3005 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3006   SDValue Op1 = getValue(I.getOperand(0));
3007   SDValue Op2 = getValue(I.getOperand(1));
3008 
3009   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3010       Op1.getValueType(), DAG.getDataLayout());
3011 
3012   // Coerce the shift amount to the right type if we can.
3013   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3014     unsigned ShiftSize = ShiftTy.getSizeInBits();
3015     unsigned Op2Size = Op2.getValueSizeInBits();
3016     SDLoc DL = getCurSDLoc();
3017 
3018     // If the operand is smaller than the shift count type, promote it.
3019     if (ShiftSize > Op2Size)
3020       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3021 
3022     // If the operand is larger than the shift count type but the shift
3023     // count type has enough bits to represent any shift value, truncate
3024     // it now. This is a common case and it exposes the truncate to
3025     // optimization early.
3026     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3027       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3028     // Otherwise we'll need to temporarily settle for some other convenient
3029     // type.  Type legalization will make adjustments once the shiftee is split.
3030     else
3031       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3032   }
3033 
3034   bool nuw = false;
3035   bool nsw = false;
3036   bool exact = false;
3037 
3038   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3039 
3040     if (const OverflowingBinaryOperator *OFBinOp =
3041             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3042       nuw = OFBinOp->hasNoUnsignedWrap();
3043       nsw = OFBinOp->hasNoSignedWrap();
3044     }
3045     if (const PossiblyExactOperator *ExactOp =
3046             dyn_cast<const PossiblyExactOperator>(&I))
3047       exact = ExactOp->isExact();
3048   }
3049   SDNodeFlags Flags;
3050   Flags.setExact(exact);
3051   Flags.setNoSignedWrap(nsw);
3052   Flags.setNoUnsignedWrap(nuw);
3053   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3054                             Flags);
3055   setValue(&I, Res);
3056 }
3057 
3058 void SelectionDAGBuilder::visitSDiv(const User &I) {
3059   SDValue Op1 = getValue(I.getOperand(0));
3060   SDValue Op2 = getValue(I.getOperand(1));
3061 
3062   SDNodeFlags Flags;
3063   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3064                  cast<PossiblyExactOperator>(&I)->isExact());
3065   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3066                            Op2, Flags));
3067 }
3068 
3069 void SelectionDAGBuilder::visitICmp(const User &I) {
3070   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3071   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3072     predicate = IC->getPredicate();
3073   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3074     predicate = ICmpInst::Predicate(IC->getPredicate());
3075   SDValue Op1 = getValue(I.getOperand(0));
3076   SDValue Op2 = getValue(I.getOperand(1));
3077   ISD::CondCode Opcode = getICmpCondCode(predicate);
3078 
3079   auto &TLI = DAG.getTargetLoweringInfo();
3080   EVT MemVT =
3081       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3082 
3083   // If a pointer's DAG type is larger than its memory type then the DAG values
3084   // are zero-extended. This breaks signed comparisons so truncate back to the
3085   // underlying type before doing the compare.
3086   if (Op1.getValueType() != MemVT) {
3087     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3088     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3089   }
3090 
3091   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3092                                                         I.getType());
3093   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3094 }
3095 
3096 void SelectionDAGBuilder::visitFCmp(const User &I) {
3097   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3098   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3099     predicate = FC->getPredicate();
3100   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3101     predicate = FCmpInst::Predicate(FC->getPredicate());
3102   SDValue Op1 = getValue(I.getOperand(0));
3103   SDValue Op2 = getValue(I.getOperand(1));
3104 
3105   ISD::CondCode Condition = getFCmpCondCode(predicate);
3106   auto *FPMO = cast<FPMathOperator>(&I);
3107   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3108     Condition = getFCmpCodeWithoutNaN(Condition);
3109 
3110   SDNodeFlags Flags;
3111   Flags.copyFMF(*FPMO);
3112   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3113 
3114   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3115                                                         I.getType());
3116   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3117 }
3118 
3119 // Check if the condition of the select has one use or two users that are both
3120 // selects with the same condition.
3121 static bool hasOnlySelectUsers(const Value *Cond) {
3122   return llvm::all_of(Cond->users(), [](const Value *V) {
3123     return isa<SelectInst>(V);
3124   });
3125 }
3126 
3127 void SelectionDAGBuilder::visitSelect(const User &I) {
3128   SmallVector<EVT, 4> ValueVTs;
3129   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3130                   ValueVTs);
3131   unsigned NumValues = ValueVTs.size();
3132   if (NumValues == 0) return;
3133 
3134   SmallVector<SDValue, 4> Values(NumValues);
3135   SDValue Cond     = getValue(I.getOperand(0));
3136   SDValue LHSVal   = getValue(I.getOperand(1));
3137   SDValue RHSVal   = getValue(I.getOperand(2));
3138   SmallVector<SDValue, 1> BaseOps(1, Cond);
3139   ISD::NodeType OpCode =
3140       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3141 
3142   bool IsUnaryAbs = false;
3143   bool Negate = false;
3144 
3145   SDNodeFlags Flags;
3146   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3147     Flags.copyFMF(*FPOp);
3148 
3149   // Min/max matching is only viable if all output VTs are the same.
3150   if (is_splat(ValueVTs)) {
3151     EVT VT = ValueVTs[0];
3152     LLVMContext &Ctx = *DAG.getContext();
3153     auto &TLI = DAG.getTargetLoweringInfo();
3154 
3155     // We care about the legality of the operation after it has been type
3156     // legalized.
3157     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3158       VT = TLI.getTypeToTransformTo(Ctx, VT);
3159 
3160     // If the vselect is legal, assume we want to leave this as a vector setcc +
3161     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3162     // min/max is legal on the scalar type.
3163     bool UseScalarMinMax = VT.isVector() &&
3164       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3165 
3166     Value *LHS, *RHS;
3167     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3168     ISD::NodeType Opc = ISD::DELETED_NODE;
3169     switch (SPR.Flavor) {
3170     case SPF_UMAX:    Opc = ISD::UMAX; break;
3171     case SPF_UMIN:    Opc = ISD::UMIN; break;
3172     case SPF_SMAX:    Opc = ISD::SMAX; break;
3173     case SPF_SMIN:    Opc = ISD::SMIN; break;
3174     case SPF_FMINNUM:
3175       switch (SPR.NaNBehavior) {
3176       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3177       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3178       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3179       case SPNB_RETURNS_ANY: {
3180         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3181           Opc = ISD::FMINNUM;
3182         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3183           Opc = ISD::FMINIMUM;
3184         else if (UseScalarMinMax)
3185           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3186             ISD::FMINNUM : ISD::FMINIMUM;
3187         break;
3188       }
3189       }
3190       break;
3191     case SPF_FMAXNUM:
3192       switch (SPR.NaNBehavior) {
3193       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3194       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3195       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3196       case SPNB_RETURNS_ANY:
3197 
3198         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3199           Opc = ISD::FMAXNUM;
3200         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3201           Opc = ISD::FMAXIMUM;
3202         else if (UseScalarMinMax)
3203           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3204             ISD::FMAXNUM : ISD::FMAXIMUM;
3205         break;
3206       }
3207       break;
3208     case SPF_NABS:
3209       Negate = true;
3210       LLVM_FALLTHROUGH;
3211     case SPF_ABS:
3212       IsUnaryAbs = true;
3213       Opc = ISD::ABS;
3214       break;
3215     default: break;
3216     }
3217 
3218     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3219         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3220          (UseScalarMinMax &&
3221           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3222         // If the underlying comparison instruction is used by any other
3223         // instruction, the consumed instructions won't be destroyed, so it is
3224         // not profitable to convert to a min/max.
3225         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3226       OpCode = Opc;
3227       LHSVal = getValue(LHS);
3228       RHSVal = getValue(RHS);
3229       BaseOps.clear();
3230     }
3231 
3232     if (IsUnaryAbs) {
3233       OpCode = Opc;
3234       LHSVal = getValue(LHS);
3235       BaseOps.clear();
3236     }
3237   }
3238 
3239   if (IsUnaryAbs) {
3240     for (unsigned i = 0; i != NumValues; ++i) {
3241       SDLoc dl = getCurSDLoc();
3242       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3243       Values[i] =
3244           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3245       if (Negate)
3246         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3247                                 Values[i]);
3248     }
3249   } else {
3250     for (unsigned i = 0; i != NumValues; ++i) {
3251       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3252       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3253       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3254       Values[i] = DAG.getNode(
3255           OpCode, getCurSDLoc(),
3256           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3257     }
3258   }
3259 
3260   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3261                            DAG.getVTList(ValueVTs), Values));
3262 }
3263 
3264 void SelectionDAGBuilder::visitTrunc(const User &I) {
3265   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3266   SDValue N = getValue(I.getOperand(0));
3267   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3268                                                         I.getType());
3269   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3270 }
3271 
3272 void SelectionDAGBuilder::visitZExt(const User &I) {
3273   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3274   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3275   SDValue N = getValue(I.getOperand(0));
3276   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3277                                                         I.getType());
3278   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3279 }
3280 
3281 void SelectionDAGBuilder::visitSExt(const User &I) {
3282   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3283   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3284   SDValue N = getValue(I.getOperand(0));
3285   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3286                                                         I.getType());
3287   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3288 }
3289 
3290 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3291   // FPTrunc is never a no-op cast, no need to check
3292   SDValue N = getValue(I.getOperand(0));
3293   SDLoc dl = getCurSDLoc();
3294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3295   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3296   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3297                            DAG.getTargetConstant(
3298                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3299 }
3300 
3301 void SelectionDAGBuilder::visitFPExt(const User &I) {
3302   // FPExt is never a no-op cast, no need to check
3303   SDValue N = getValue(I.getOperand(0));
3304   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3305                                                         I.getType());
3306   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3307 }
3308 
3309 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3310   // FPToUI is never a no-op cast, no need to check
3311   SDValue N = getValue(I.getOperand(0));
3312   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3313                                                         I.getType());
3314   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3315 }
3316 
3317 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3318   // FPToSI is never a no-op cast, no need to check
3319   SDValue N = getValue(I.getOperand(0));
3320   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3321                                                         I.getType());
3322   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3323 }
3324 
3325 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3326   // UIToFP is never a no-op cast, no need to check
3327   SDValue N = getValue(I.getOperand(0));
3328   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3329                                                         I.getType());
3330   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3331 }
3332 
3333 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3334   // SIToFP is never a no-op cast, no need to check
3335   SDValue N = getValue(I.getOperand(0));
3336   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3337                                                         I.getType());
3338   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3339 }
3340 
3341 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3342   // What to do depends on the size of the integer and the size of the pointer.
3343   // We can either truncate, zero extend, or no-op, accordingly.
3344   SDValue N = getValue(I.getOperand(0));
3345   auto &TLI = DAG.getTargetLoweringInfo();
3346   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3347                                                         I.getType());
3348   EVT PtrMemVT =
3349       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3350   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3351   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3352   setValue(&I, N);
3353 }
3354 
3355 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3356   // What to do depends on the size of the integer and the size of the pointer.
3357   // We can either truncate, zero extend, or no-op, accordingly.
3358   SDValue N = getValue(I.getOperand(0));
3359   auto &TLI = DAG.getTargetLoweringInfo();
3360   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3361   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3362   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3363   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3364   setValue(&I, N);
3365 }
3366 
3367 void SelectionDAGBuilder::visitBitCast(const User &I) {
3368   SDValue N = getValue(I.getOperand(0));
3369   SDLoc dl = getCurSDLoc();
3370   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3371                                                         I.getType());
3372 
3373   // BitCast assures us that source and destination are the same size so this is
3374   // either a BITCAST or a no-op.
3375   if (DestVT != N.getValueType())
3376     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3377                              DestVT, N)); // convert types.
3378   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3379   // might fold any kind of constant expression to an integer constant and that
3380   // is not what we are looking for. Only recognize a bitcast of a genuine
3381   // constant integer as an opaque constant.
3382   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3383     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3384                                  /*isOpaque*/true));
3385   else
3386     setValue(&I, N);            // noop cast.
3387 }
3388 
3389 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3391   const Value *SV = I.getOperand(0);
3392   SDValue N = getValue(SV);
3393   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3394 
3395   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3396   unsigned DestAS = I.getType()->getPointerAddressSpace();
3397 
3398   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3399     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3400 
3401   setValue(&I, N);
3402 }
3403 
3404 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3406   SDValue InVec = getValue(I.getOperand(0));
3407   SDValue InVal = getValue(I.getOperand(1));
3408   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3409                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3410   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3411                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3412                            InVec, InVal, InIdx));
3413 }
3414 
3415 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3417   SDValue InVec = getValue(I.getOperand(0));
3418   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3419                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3420   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3421                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3422                            InVec, InIdx));
3423 }
3424 
3425 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3426   SDValue Src1 = getValue(I.getOperand(0));
3427   SDValue Src2 = getValue(I.getOperand(1));
3428   ArrayRef<int> Mask;
3429   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3430     Mask = SVI->getShuffleMask();
3431   else
3432     Mask = cast<ConstantExpr>(I).getShuffleMask();
3433   SDLoc DL = getCurSDLoc();
3434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3435   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3436   EVT SrcVT = Src1.getValueType();
3437 
3438   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3439       VT.isScalableVector()) {
3440     // Canonical splat form of first element of first input vector.
3441     SDValue FirstElt =
3442         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3443                     DAG.getVectorIdxConstant(0, DL));
3444     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3445     return;
3446   }
3447 
3448   // For now, we only handle splats for scalable vectors.
3449   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3450   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3451   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3452 
3453   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3454   unsigned MaskNumElts = Mask.size();
3455 
3456   if (SrcNumElts == MaskNumElts) {
3457     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3458     return;
3459   }
3460 
3461   // Normalize the shuffle vector since mask and vector length don't match.
3462   if (SrcNumElts < MaskNumElts) {
3463     // Mask is longer than the source vectors. We can use concatenate vector to
3464     // make the mask and vectors lengths match.
3465 
3466     if (MaskNumElts % SrcNumElts == 0) {
3467       // Mask length is a multiple of the source vector length.
3468       // Check if the shuffle is some kind of concatenation of the input
3469       // vectors.
3470       unsigned NumConcat = MaskNumElts / SrcNumElts;
3471       bool IsConcat = true;
3472       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3473       for (unsigned i = 0; i != MaskNumElts; ++i) {
3474         int Idx = Mask[i];
3475         if (Idx < 0)
3476           continue;
3477         // Ensure the indices in each SrcVT sized piece are sequential and that
3478         // the same source is used for the whole piece.
3479         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3480             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3481              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3482           IsConcat = false;
3483           break;
3484         }
3485         // Remember which source this index came from.
3486         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3487       }
3488 
3489       // The shuffle is concatenating multiple vectors together. Just emit
3490       // a CONCAT_VECTORS operation.
3491       if (IsConcat) {
3492         SmallVector<SDValue, 8> ConcatOps;
3493         for (auto Src : ConcatSrcs) {
3494           if (Src < 0)
3495             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3496           else if (Src == 0)
3497             ConcatOps.push_back(Src1);
3498           else
3499             ConcatOps.push_back(Src2);
3500         }
3501         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3502         return;
3503       }
3504     }
3505 
3506     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3507     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3508     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3509                                     PaddedMaskNumElts);
3510 
3511     // Pad both vectors with undefs to make them the same length as the mask.
3512     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3513 
3514     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3515     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3516     MOps1[0] = Src1;
3517     MOps2[0] = Src2;
3518 
3519     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3520     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3521 
3522     // Readjust mask for new input vector length.
3523     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3524     for (unsigned i = 0; i != MaskNumElts; ++i) {
3525       int Idx = Mask[i];
3526       if (Idx >= (int)SrcNumElts)
3527         Idx -= SrcNumElts - PaddedMaskNumElts;
3528       MappedOps[i] = Idx;
3529     }
3530 
3531     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3532 
3533     // If the concatenated vector was padded, extract a subvector with the
3534     // correct number of elements.
3535     if (MaskNumElts != PaddedMaskNumElts)
3536       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3537                            DAG.getVectorIdxConstant(0, DL));
3538 
3539     setValue(&I, Result);
3540     return;
3541   }
3542 
3543   if (SrcNumElts > MaskNumElts) {
3544     // Analyze the access pattern of the vector to see if we can extract
3545     // two subvectors and do the shuffle.
3546     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3547     bool CanExtract = true;
3548     for (int Idx : Mask) {
3549       unsigned Input = 0;
3550       if (Idx < 0)
3551         continue;
3552 
3553       if (Idx >= (int)SrcNumElts) {
3554         Input = 1;
3555         Idx -= SrcNumElts;
3556       }
3557 
3558       // If all the indices come from the same MaskNumElts sized portion of
3559       // the sources we can use extract. Also make sure the extract wouldn't
3560       // extract past the end of the source.
3561       int NewStartIdx = alignDown(Idx, MaskNumElts);
3562       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3563           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3564         CanExtract = false;
3565       // Make sure we always update StartIdx as we use it to track if all
3566       // elements are undef.
3567       StartIdx[Input] = NewStartIdx;
3568     }
3569 
3570     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3571       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3572       return;
3573     }
3574     if (CanExtract) {
3575       // Extract appropriate subvector and generate a vector shuffle
3576       for (unsigned Input = 0; Input < 2; ++Input) {
3577         SDValue &Src = Input == 0 ? Src1 : Src2;
3578         if (StartIdx[Input] < 0)
3579           Src = DAG.getUNDEF(VT);
3580         else {
3581           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3582                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3583         }
3584       }
3585 
3586       // Calculate new mask.
3587       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3588       for (int &Idx : MappedOps) {
3589         if (Idx >= (int)SrcNumElts)
3590           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3591         else if (Idx >= 0)
3592           Idx -= StartIdx[0];
3593       }
3594 
3595       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3596       return;
3597     }
3598   }
3599 
3600   // We can't use either concat vectors or extract subvectors so fall back to
3601   // replacing the shuffle with extract and build vector.
3602   // to insert and build vector.
3603   EVT EltVT = VT.getVectorElementType();
3604   SmallVector<SDValue,8> Ops;
3605   for (int Idx : Mask) {
3606     SDValue Res;
3607 
3608     if (Idx < 0) {
3609       Res = DAG.getUNDEF(EltVT);
3610     } else {
3611       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3612       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3613 
3614       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3615                         DAG.getVectorIdxConstant(Idx, DL));
3616     }
3617 
3618     Ops.push_back(Res);
3619   }
3620 
3621   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3622 }
3623 
3624 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3625   ArrayRef<unsigned> Indices;
3626   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3627     Indices = IV->getIndices();
3628   else
3629     Indices = cast<ConstantExpr>(&I)->getIndices();
3630 
3631   const Value *Op0 = I.getOperand(0);
3632   const Value *Op1 = I.getOperand(1);
3633   Type *AggTy = I.getType();
3634   Type *ValTy = Op1->getType();
3635   bool IntoUndef = isa<UndefValue>(Op0);
3636   bool FromUndef = isa<UndefValue>(Op1);
3637 
3638   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3639 
3640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3641   SmallVector<EVT, 4> AggValueVTs;
3642   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3643   SmallVector<EVT, 4> ValValueVTs;
3644   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3645 
3646   unsigned NumAggValues = AggValueVTs.size();
3647   unsigned NumValValues = ValValueVTs.size();
3648   SmallVector<SDValue, 4> Values(NumAggValues);
3649 
3650   // Ignore an insertvalue that produces an empty object
3651   if (!NumAggValues) {
3652     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3653     return;
3654   }
3655 
3656   SDValue Agg = getValue(Op0);
3657   unsigned i = 0;
3658   // Copy the beginning value(s) from the original aggregate.
3659   for (; i != LinearIndex; ++i)
3660     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3661                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3662   // Copy values from the inserted value(s).
3663   if (NumValValues) {
3664     SDValue Val = getValue(Op1);
3665     for (; i != LinearIndex + NumValValues; ++i)
3666       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3667                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3668   }
3669   // Copy remaining value(s) from the original aggregate.
3670   for (; i != NumAggValues; ++i)
3671     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3672                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3673 
3674   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3675                            DAG.getVTList(AggValueVTs), Values));
3676 }
3677 
3678 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3679   ArrayRef<unsigned> Indices;
3680   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3681     Indices = EV->getIndices();
3682   else
3683     Indices = cast<ConstantExpr>(&I)->getIndices();
3684 
3685   const Value *Op0 = I.getOperand(0);
3686   Type *AggTy = Op0->getType();
3687   Type *ValTy = I.getType();
3688   bool OutOfUndef = isa<UndefValue>(Op0);
3689 
3690   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3691 
3692   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3693   SmallVector<EVT, 4> ValValueVTs;
3694   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3695 
3696   unsigned NumValValues = ValValueVTs.size();
3697 
3698   // Ignore a extractvalue that produces an empty object
3699   if (!NumValValues) {
3700     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3701     return;
3702   }
3703 
3704   SmallVector<SDValue, 4> Values(NumValValues);
3705 
3706   SDValue Agg = getValue(Op0);
3707   // Copy out the selected value(s).
3708   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3709     Values[i - LinearIndex] =
3710       OutOfUndef ?
3711         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3712         SDValue(Agg.getNode(), Agg.getResNo() + i);
3713 
3714   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3715                            DAG.getVTList(ValValueVTs), Values));
3716 }
3717 
3718 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3719   Value *Op0 = I.getOperand(0);
3720   // Note that the pointer operand may be a vector of pointers. Take the scalar
3721   // element which holds a pointer.
3722   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3723   SDValue N = getValue(Op0);
3724   SDLoc dl = getCurSDLoc();
3725   auto &TLI = DAG.getTargetLoweringInfo();
3726 
3727   // Normalize Vector GEP - all scalar operands should be converted to the
3728   // splat vector.
3729   bool IsVectorGEP = I.getType()->isVectorTy();
3730   ElementCount VectorElementCount =
3731       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3732                   : ElementCount::getFixed(0);
3733 
3734   if (IsVectorGEP && !N.getValueType().isVector()) {
3735     LLVMContext &Context = *DAG.getContext();
3736     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3737     if (VectorElementCount.isScalable())
3738       N = DAG.getSplatVector(VT, dl, N);
3739     else
3740       N = DAG.getSplatBuildVector(VT, dl, N);
3741   }
3742 
3743   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3744        GTI != E; ++GTI) {
3745     const Value *Idx = GTI.getOperand();
3746     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3747       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3748       if (Field) {
3749         // N = N + Offset
3750         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3751 
3752         // In an inbounds GEP with an offset that is nonnegative even when
3753         // interpreted as signed, assume there is no unsigned overflow.
3754         SDNodeFlags Flags;
3755         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3756           Flags.setNoUnsignedWrap(true);
3757 
3758         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3759                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3760       }
3761     } else {
3762       // IdxSize is the width of the arithmetic according to IR semantics.
3763       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3764       // (and fix up the result later).
3765       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3766       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3767       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3768       // We intentionally mask away the high bits here; ElementSize may not
3769       // fit in IdxTy.
3770       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3771       bool ElementScalable = ElementSize.isScalable();
3772 
3773       // If this is a scalar constant or a splat vector of constants,
3774       // handle it quickly.
3775       const auto *C = dyn_cast<Constant>(Idx);
3776       if (C && isa<VectorType>(C->getType()))
3777         C = C->getSplatValue();
3778 
3779       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3780       if (CI && CI->isZero())
3781         continue;
3782       if (CI && !ElementScalable) {
3783         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3784         LLVMContext &Context = *DAG.getContext();
3785         SDValue OffsVal;
3786         if (IsVectorGEP)
3787           OffsVal = DAG.getConstant(
3788               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3789         else
3790           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3791 
3792         // In an inbounds GEP with an offset that is nonnegative even when
3793         // interpreted as signed, assume there is no unsigned overflow.
3794         SDNodeFlags Flags;
3795         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3796           Flags.setNoUnsignedWrap(true);
3797 
3798         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3799 
3800         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3801         continue;
3802       }
3803 
3804       // N = N + Idx * ElementMul;
3805       SDValue IdxN = getValue(Idx);
3806 
3807       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3808         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3809                                   VectorElementCount);
3810         if (VectorElementCount.isScalable())
3811           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3812         else
3813           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3814       }
3815 
3816       // If the index is smaller or larger than intptr_t, truncate or extend
3817       // it.
3818       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3819 
3820       if (ElementScalable) {
3821         EVT VScaleTy = N.getValueType().getScalarType();
3822         SDValue VScale = DAG.getNode(
3823             ISD::VSCALE, dl, VScaleTy,
3824             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3825         if (IsVectorGEP)
3826           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3827         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3828       } else {
3829         // If this is a multiply by a power of two, turn it into a shl
3830         // immediately.  This is a very common case.
3831         if (ElementMul != 1) {
3832           if (ElementMul.isPowerOf2()) {
3833             unsigned Amt = ElementMul.logBase2();
3834             IdxN = DAG.getNode(ISD::SHL, dl,
3835                                N.getValueType(), IdxN,
3836                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3837           } else {
3838             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3839                                             IdxN.getValueType());
3840             IdxN = DAG.getNode(ISD::MUL, dl,
3841                                N.getValueType(), IdxN, Scale);
3842           }
3843         }
3844       }
3845 
3846       N = DAG.getNode(ISD::ADD, dl,
3847                       N.getValueType(), N, IdxN);
3848     }
3849   }
3850 
3851   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3852   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3853   if (IsVectorGEP) {
3854     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3855     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3856   }
3857 
3858   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3859     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3860 
3861   setValue(&I, N);
3862 }
3863 
3864 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3865   // If this is a fixed sized alloca in the entry block of the function,
3866   // allocate it statically on the stack.
3867   if (FuncInfo.StaticAllocaMap.count(&I))
3868     return;   // getValue will auto-populate this.
3869 
3870   SDLoc dl = getCurSDLoc();
3871   Type *Ty = I.getAllocatedType();
3872   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3873   auto &DL = DAG.getDataLayout();
3874   uint64_t TySize = DL.getTypeAllocSize(Ty);
3875   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3876 
3877   SDValue AllocSize = getValue(I.getArraySize());
3878 
3879   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3880   if (AllocSize.getValueType() != IntPtr)
3881     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3882 
3883   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3884                           AllocSize,
3885                           DAG.getConstant(TySize, dl, IntPtr));
3886 
3887   // Handle alignment.  If the requested alignment is less than or equal to
3888   // the stack alignment, ignore it.  If the size is greater than or equal to
3889   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3890   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3891   if (*Alignment <= StackAlign)
3892     Alignment = None;
3893 
3894   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3895   // Round the size of the allocation up to the stack alignment size
3896   // by add SA-1 to the size. This doesn't overflow because we're computing
3897   // an address inside an alloca.
3898   SDNodeFlags Flags;
3899   Flags.setNoUnsignedWrap(true);
3900   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3901                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3902 
3903   // Mask out the low bits for alignment purposes.
3904   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3905                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3906 
3907   SDValue Ops[] = {
3908       getRoot(), AllocSize,
3909       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3910   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3911   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3912   setValue(&I, DSA);
3913   DAG.setRoot(DSA.getValue(1));
3914 
3915   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3916 }
3917 
3918 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3919   if (I.isAtomic())
3920     return visitAtomicLoad(I);
3921 
3922   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3923   const Value *SV = I.getOperand(0);
3924   if (TLI.supportSwiftError()) {
3925     // Swifterror values can come from either a function parameter with
3926     // swifterror attribute or an alloca with swifterror attribute.
3927     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3928       if (Arg->hasSwiftErrorAttr())
3929         return visitLoadFromSwiftError(I);
3930     }
3931 
3932     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3933       if (Alloca->isSwiftError())
3934         return visitLoadFromSwiftError(I);
3935     }
3936   }
3937 
3938   SDValue Ptr = getValue(SV);
3939 
3940   Type *Ty = I.getType();
3941   Align Alignment = I.getAlign();
3942 
3943   AAMDNodes AAInfo;
3944   I.getAAMetadata(AAInfo);
3945   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3946 
3947   SmallVector<EVT, 4> ValueVTs, MemVTs;
3948   SmallVector<uint64_t, 4> Offsets;
3949   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3950   unsigned NumValues = ValueVTs.size();
3951   if (NumValues == 0)
3952     return;
3953 
3954   bool isVolatile = I.isVolatile();
3955 
3956   SDValue Root;
3957   bool ConstantMemory = false;
3958   if (isVolatile)
3959     // Serialize volatile loads with other side effects.
3960     Root = getRoot();
3961   else if (NumValues > MaxParallelChains)
3962     Root = getMemoryRoot();
3963   else if (AA &&
3964            AA->pointsToConstantMemory(MemoryLocation(
3965                SV,
3966                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3967                AAInfo))) {
3968     // Do not serialize (non-volatile) loads of constant memory with anything.
3969     Root = DAG.getEntryNode();
3970     ConstantMemory = true;
3971   } else {
3972     // Do not serialize non-volatile loads against each other.
3973     Root = DAG.getRoot();
3974   }
3975 
3976   SDLoc dl = getCurSDLoc();
3977 
3978   if (isVolatile)
3979     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3980 
3981   // An aggregate load cannot wrap around the address space, so offsets to its
3982   // parts don't wrap either.
3983   SDNodeFlags Flags;
3984   Flags.setNoUnsignedWrap(true);
3985 
3986   SmallVector<SDValue, 4> Values(NumValues);
3987   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3988   EVT PtrVT = Ptr.getValueType();
3989 
3990   MachineMemOperand::Flags MMOFlags
3991     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
3992 
3993   unsigned ChainI = 0;
3994   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3995     // Serializing loads here may result in excessive register pressure, and
3996     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3997     // could recover a bit by hoisting nodes upward in the chain by recognizing
3998     // they are side-effect free or do not alias. The optimizer should really
3999     // avoid this case by converting large object/array copies to llvm.memcpy
4000     // (MaxParallelChains should always remain as failsafe).
4001     if (ChainI == MaxParallelChains) {
4002       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4003       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4004                                   makeArrayRef(Chains.data(), ChainI));
4005       Root = Chain;
4006       ChainI = 0;
4007     }
4008     SDValue A = DAG.getNode(ISD::ADD, dl,
4009                             PtrVT, Ptr,
4010                             DAG.getConstant(Offsets[i], dl, PtrVT),
4011                             Flags);
4012 
4013     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4014                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4015                             MMOFlags, AAInfo, Ranges);
4016     Chains[ChainI] = L.getValue(1);
4017 
4018     if (MemVTs[i] != ValueVTs[i])
4019       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4020 
4021     Values[i] = L;
4022   }
4023 
4024   if (!ConstantMemory) {
4025     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4026                                 makeArrayRef(Chains.data(), ChainI));
4027     if (isVolatile)
4028       DAG.setRoot(Chain);
4029     else
4030       PendingLoads.push_back(Chain);
4031   }
4032 
4033   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4034                            DAG.getVTList(ValueVTs), Values));
4035 }
4036 
4037 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4038   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4039          "call visitStoreToSwiftError when backend supports swifterror");
4040 
4041   SmallVector<EVT, 4> ValueVTs;
4042   SmallVector<uint64_t, 4> Offsets;
4043   const Value *SrcV = I.getOperand(0);
4044   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4045                   SrcV->getType(), ValueVTs, &Offsets);
4046   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4047          "expect a single EVT for swifterror");
4048 
4049   SDValue Src = getValue(SrcV);
4050   // Create a virtual register, then update the virtual register.
4051   Register VReg =
4052       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4053   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4054   // Chain can be getRoot or getControlRoot.
4055   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4056                                       SDValue(Src.getNode(), Src.getResNo()));
4057   DAG.setRoot(CopyNode);
4058 }
4059 
4060 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4061   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4062          "call visitLoadFromSwiftError when backend supports swifterror");
4063 
4064   assert(!I.isVolatile() &&
4065          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4066          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4067          "Support volatile, non temporal, invariant for load_from_swift_error");
4068 
4069   const Value *SV = I.getOperand(0);
4070   Type *Ty = I.getType();
4071   AAMDNodes AAInfo;
4072   I.getAAMetadata(AAInfo);
4073   assert(
4074       (!AA ||
4075        !AA->pointsToConstantMemory(MemoryLocation(
4076            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4077            AAInfo))) &&
4078       "load_from_swift_error should not be constant memory");
4079 
4080   SmallVector<EVT, 4> ValueVTs;
4081   SmallVector<uint64_t, 4> Offsets;
4082   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4083                   ValueVTs, &Offsets);
4084   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4085          "expect a single EVT for swifterror");
4086 
4087   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4088   SDValue L = DAG.getCopyFromReg(
4089       getRoot(), getCurSDLoc(),
4090       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4091 
4092   setValue(&I, L);
4093 }
4094 
4095 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4096   if (I.isAtomic())
4097     return visitAtomicStore(I);
4098 
4099   const Value *SrcV = I.getOperand(0);
4100   const Value *PtrV = I.getOperand(1);
4101 
4102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4103   if (TLI.supportSwiftError()) {
4104     // Swifterror values can come from either a function parameter with
4105     // swifterror attribute or an alloca with swifterror attribute.
4106     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4107       if (Arg->hasSwiftErrorAttr())
4108         return visitStoreToSwiftError(I);
4109     }
4110 
4111     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4112       if (Alloca->isSwiftError())
4113         return visitStoreToSwiftError(I);
4114     }
4115   }
4116 
4117   SmallVector<EVT, 4> ValueVTs, MemVTs;
4118   SmallVector<uint64_t, 4> Offsets;
4119   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4120                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4121   unsigned NumValues = ValueVTs.size();
4122   if (NumValues == 0)
4123     return;
4124 
4125   // Get the lowered operands. Note that we do this after
4126   // checking if NumResults is zero, because with zero results
4127   // the operands won't have values in the map.
4128   SDValue Src = getValue(SrcV);
4129   SDValue Ptr = getValue(PtrV);
4130 
4131   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4132   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4133   SDLoc dl = getCurSDLoc();
4134   Align Alignment = I.getAlign();
4135   AAMDNodes AAInfo;
4136   I.getAAMetadata(AAInfo);
4137 
4138   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4139 
4140   // An aggregate load cannot wrap around the address space, so offsets to its
4141   // parts don't wrap either.
4142   SDNodeFlags Flags;
4143   Flags.setNoUnsignedWrap(true);
4144 
4145   unsigned ChainI = 0;
4146   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4147     // See visitLoad comments.
4148     if (ChainI == MaxParallelChains) {
4149       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4150                                   makeArrayRef(Chains.data(), ChainI));
4151       Root = Chain;
4152       ChainI = 0;
4153     }
4154     SDValue Add =
4155         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4156     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4157     if (MemVTs[i] != ValueVTs[i])
4158       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4159     SDValue St =
4160         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4161                      Alignment, MMOFlags, AAInfo);
4162     Chains[ChainI] = St;
4163   }
4164 
4165   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4166                                   makeArrayRef(Chains.data(), ChainI));
4167   DAG.setRoot(StoreNode);
4168 }
4169 
4170 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4171                                            bool IsCompressing) {
4172   SDLoc sdl = getCurSDLoc();
4173 
4174   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4175                                MaybeAlign &Alignment) {
4176     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4177     Src0 = I.getArgOperand(0);
4178     Ptr = I.getArgOperand(1);
4179     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4180     Mask = I.getArgOperand(3);
4181   };
4182   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4183                                     MaybeAlign &Alignment) {
4184     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4185     Src0 = I.getArgOperand(0);
4186     Ptr = I.getArgOperand(1);
4187     Mask = I.getArgOperand(2);
4188     Alignment = None;
4189   };
4190 
4191   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4192   MaybeAlign Alignment;
4193   if (IsCompressing)
4194     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4195   else
4196     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4197 
4198   SDValue Ptr = getValue(PtrOperand);
4199   SDValue Src0 = getValue(Src0Operand);
4200   SDValue Mask = getValue(MaskOperand);
4201   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4202 
4203   EVT VT = Src0.getValueType();
4204   if (!Alignment)
4205     Alignment = DAG.getEVTAlign(VT);
4206 
4207   AAMDNodes AAInfo;
4208   I.getAAMetadata(AAInfo);
4209 
4210   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4211       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4212       // TODO: Make MachineMemOperands aware of scalable
4213       // vectors.
4214       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4215   SDValue StoreNode =
4216       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4217                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4218   DAG.setRoot(StoreNode);
4219   setValue(&I, StoreNode);
4220 }
4221 
4222 // Get a uniform base for the Gather/Scatter intrinsic.
4223 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4224 // We try to represent it as a base pointer + vector of indices.
4225 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4226 // The first operand of the GEP may be a single pointer or a vector of pointers
4227 // Example:
4228 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4229 //  or
4230 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4231 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4232 //
4233 // When the first GEP operand is a single pointer - it is the uniform base we
4234 // are looking for. If first operand of the GEP is a splat vector - we
4235 // extract the splat value and use it as a uniform base.
4236 // In all other cases the function returns 'false'.
4237 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4238                            ISD::MemIndexType &IndexType, SDValue &Scale,
4239                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4240   SelectionDAG& DAG = SDB->DAG;
4241   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4242   const DataLayout &DL = DAG.getDataLayout();
4243 
4244   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4245 
4246   // Handle splat constant pointer.
4247   if (auto *C = dyn_cast<Constant>(Ptr)) {
4248     C = C->getSplatValue();
4249     if (!C)
4250       return false;
4251 
4252     Base = SDB->getValue(C);
4253 
4254     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4255     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4256     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4257     IndexType = ISD::SIGNED_SCALED;
4258     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4259     return true;
4260   }
4261 
4262   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4263   if (!GEP || GEP->getParent() != CurBB)
4264     return false;
4265 
4266   if (GEP->getNumOperands() != 2)
4267     return false;
4268 
4269   const Value *BasePtr = GEP->getPointerOperand();
4270   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4271 
4272   // Make sure the base is scalar and the index is a vector.
4273   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4274     return false;
4275 
4276   Base = SDB->getValue(BasePtr);
4277   Index = SDB->getValue(IndexVal);
4278   IndexType = ISD::SIGNED_SCALED;
4279   Scale = DAG.getTargetConstant(
4280               DL.getTypeAllocSize(GEP->getResultElementType()),
4281               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4282   return true;
4283 }
4284 
4285 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4286   SDLoc sdl = getCurSDLoc();
4287 
4288   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4289   const Value *Ptr = I.getArgOperand(1);
4290   SDValue Src0 = getValue(I.getArgOperand(0));
4291   SDValue Mask = getValue(I.getArgOperand(3));
4292   EVT VT = Src0.getValueType();
4293   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4294                         ->getMaybeAlignValue()
4295                         .getValueOr(DAG.getEVTAlign(VT));
4296   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4297 
4298   AAMDNodes AAInfo;
4299   I.getAAMetadata(AAInfo);
4300 
4301   SDValue Base;
4302   SDValue Index;
4303   ISD::MemIndexType IndexType;
4304   SDValue Scale;
4305   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4306                                     I.getParent());
4307 
4308   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4309   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4310       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4311       // TODO: Make MachineMemOperands aware of scalable
4312       // vectors.
4313       MemoryLocation::UnknownSize, Alignment, AAInfo);
4314   if (!UniformBase) {
4315     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4316     Index = getValue(Ptr);
4317     IndexType = ISD::SIGNED_UNSCALED;
4318     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4319   }
4320   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4321   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4322                                          Ops, MMO, IndexType, false);
4323   DAG.setRoot(Scatter);
4324   setValue(&I, Scatter);
4325 }
4326 
4327 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4328   SDLoc sdl = getCurSDLoc();
4329 
4330   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4331                               MaybeAlign &Alignment) {
4332     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4333     Ptr = I.getArgOperand(0);
4334     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4335     Mask = I.getArgOperand(2);
4336     Src0 = I.getArgOperand(3);
4337   };
4338   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4339                                  MaybeAlign &Alignment) {
4340     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4341     Ptr = I.getArgOperand(0);
4342     Alignment = None;
4343     Mask = I.getArgOperand(1);
4344     Src0 = I.getArgOperand(2);
4345   };
4346 
4347   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4348   MaybeAlign Alignment;
4349   if (IsExpanding)
4350     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4351   else
4352     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4353 
4354   SDValue Ptr = getValue(PtrOperand);
4355   SDValue Src0 = getValue(Src0Operand);
4356   SDValue Mask = getValue(MaskOperand);
4357   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4358 
4359   EVT VT = Src0.getValueType();
4360   if (!Alignment)
4361     Alignment = DAG.getEVTAlign(VT);
4362 
4363   AAMDNodes AAInfo;
4364   I.getAAMetadata(AAInfo);
4365   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4366 
4367   // Do not serialize masked loads of constant memory with anything.
4368   MemoryLocation ML;
4369   if (VT.isScalableVector())
4370     ML = MemoryLocation::getAfter(PtrOperand);
4371   else
4372     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4373                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4374                            AAInfo);
4375   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4376 
4377   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4378 
4379   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4380       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4381       // TODO: Make MachineMemOperands aware of scalable
4382       // vectors.
4383       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4384 
4385   SDValue Load =
4386       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4387                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4388   if (AddToChain)
4389     PendingLoads.push_back(Load.getValue(1));
4390   setValue(&I, Load);
4391 }
4392 
4393 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4394   SDLoc sdl = getCurSDLoc();
4395 
4396   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4397   const Value *Ptr = I.getArgOperand(0);
4398   SDValue Src0 = getValue(I.getArgOperand(3));
4399   SDValue Mask = getValue(I.getArgOperand(2));
4400 
4401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4402   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4403   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4404                         ->getMaybeAlignValue()
4405                         .getValueOr(DAG.getEVTAlign(VT));
4406 
4407   AAMDNodes AAInfo;
4408   I.getAAMetadata(AAInfo);
4409   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4410 
4411   SDValue Root = DAG.getRoot();
4412   SDValue Base;
4413   SDValue Index;
4414   ISD::MemIndexType IndexType;
4415   SDValue Scale;
4416   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4417                                     I.getParent());
4418   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4419   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4420       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4421       // TODO: Make MachineMemOperands aware of scalable
4422       // vectors.
4423       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4424 
4425   if (!UniformBase) {
4426     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4427     Index = getValue(Ptr);
4428     IndexType = ISD::SIGNED_UNSCALED;
4429     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4430   }
4431   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4432   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4433                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4434 
4435   PendingLoads.push_back(Gather.getValue(1));
4436   setValue(&I, Gather);
4437 }
4438 
4439 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4440   SDLoc dl = getCurSDLoc();
4441   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4442   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4443   SyncScope::ID SSID = I.getSyncScopeID();
4444 
4445   SDValue InChain = getRoot();
4446 
4447   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4448   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4449 
4450   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4451   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4452 
4453   MachineFunction &MF = DAG.getMachineFunction();
4454   MachineMemOperand *MMO = MF.getMachineMemOperand(
4455       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4456       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4457       FailureOrdering);
4458 
4459   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4460                                    dl, MemVT, VTs, InChain,
4461                                    getValue(I.getPointerOperand()),
4462                                    getValue(I.getCompareOperand()),
4463                                    getValue(I.getNewValOperand()), MMO);
4464 
4465   SDValue OutChain = L.getValue(2);
4466 
4467   setValue(&I, L);
4468   DAG.setRoot(OutChain);
4469 }
4470 
4471 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4472   SDLoc dl = getCurSDLoc();
4473   ISD::NodeType NT;
4474   switch (I.getOperation()) {
4475   default: llvm_unreachable("Unknown atomicrmw operation");
4476   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4477   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4478   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4479   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4480   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4481   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4482   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4483   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4484   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4485   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4486   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4487   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4488   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4489   }
4490   AtomicOrdering Ordering = I.getOrdering();
4491   SyncScope::ID SSID = I.getSyncScopeID();
4492 
4493   SDValue InChain = getRoot();
4494 
4495   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4496   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4497   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4498 
4499   MachineFunction &MF = DAG.getMachineFunction();
4500   MachineMemOperand *MMO = MF.getMachineMemOperand(
4501       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4502       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4503 
4504   SDValue L =
4505     DAG.getAtomic(NT, dl, MemVT, InChain,
4506                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4507                   MMO);
4508 
4509   SDValue OutChain = L.getValue(1);
4510 
4511   setValue(&I, L);
4512   DAG.setRoot(OutChain);
4513 }
4514 
4515 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4516   SDLoc dl = getCurSDLoc();
4517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4518   SDValue Ops[3];
4519   Ops[0] = getRoot();
4520   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4521                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4522   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4523                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4524   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4525 }
4526 
4527 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4528   SDLoc dl = getCurSDLoc();
4529   AtomicOrdering Order = I.getOrdering();
4530   SyncScope::ID SSID = I.getSyncScopeID();
4531 
4532   SDValue InChain = getRoot();
4533 
4534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4535   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4536   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4537 
4538   if (!TLI.supportsUnalignedAtomics() &&
4539       I.getAlignment() < MemVT.getSizeInBits() / 8)
4540     report_fatal_error("Cannot generate unaligned atomic load");
4541 
4542   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4543 
4544   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4545       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4546       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4547 
4548   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4549 
4550   SDValue Ptr = getValue(I.getPointerOperand());
4551 
4552   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4553     // TODO: Once this is better exercised by tests, it should be merged with
4554     // the normal path for loads to prevent future divergence.
4555     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4556     if (MemVT != VT)
4557       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4558 
4559     setValue(&I, L);
4560     SDValue OutChain = L.getValue(1);
4561     if (!I.isUnordered())
4562       DAG.setRoot(OutChain);
4563     else
4564       PendingLoads.push_back(OutChain);
4565     return;
4566   }
4567 
4568   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4569                             Ptr, MMO);
4570 
4571   SDValue OutChain = L.getValue(1);
4572   if (MemVT != VT)
4573     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4574 
4575   setValue(&I, L);
4576   DAG.setRoot(OutChain);
4577 }
4578 
4579 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4580   SDLoc dl = getCurSDLoc();
4581 
4582   AtomicOrdering Ordering = I.getOrdering();
4583   SyncScope::ID SSID = I.getSyncScopeID();
4584 
4585   SDValue InChain = getRoot();
4586 
4587   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4588   EVT MemVT =
4589       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4590 
4591   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4592     report_fatal_error("Cannot generate unaligned atomic store");
4593 
4594   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4595 
4596   MachineFunction &MF = DAG.getMachineFunction();
4597   MachineMemOperand *MMO = MF.getMachineMemOperand(
4598       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4599       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4600 
4601   SDValue Val = getValue(I.getValueOperand());
4602   if (Val.getValueType() != MemVT)
4603     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4604   SDValue Ptr = getValue(I.getPointerOperand());
4605 
4606   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4607     // TODO: Once this is better exercised by tests, it should be merged with
4608     // the normal path for stores to prevent future divergence.
4609     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4610     DAG.setRoot(S);
4611     return;
4612   }
4613   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4614                                    Ptr, Val, MMO);
4615 
4616 
4617   DAG.setRoot(OutChain);
4618 }
4619 
4620 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4621 /// node.
4622 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4623                                                unsigned Intrinsic) {
4624   // Ignore the callsite's attributes. A specific call site may be marked with
4625   // readnone, but the lowering code will expect the chain based on the
4626   // definition.
4627   const Function *F = I.getCalledFunction();
4628   bool HasChain = !F->doesNotAccessMemory();
4629   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4630 
4631   // Build the operand list.
4632   SmallVector<SDValue, 8> Ops;
4633   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4634     if (OnlyLoad) {
4635       // We don't need to serialize loads against other loads.
4636       Ops.push_back(DAG.getRoot());
4637     } else {
4638       Ops.push_back(getRoot());
4639     }
4640   }
4641 
4642   // Info is set by getTgtMemInstrinsic
4643   TargetLowering::IntrinsicInfo Info;
4644   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4645   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4646                                                DAG.getMachineFunction(),
4647                                                Intrinsic);
4648 
4649   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4650   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4651       Info.opc == ISD::INTRINSIC_W_CHAIN)
4652     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4653                                         TLI.getPointerTy(DAG.getDataLayout())));
4654 
4655   // Add all operands of the call to the operand list.
4656   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4657     const Value *Arg = I.getArgOperand(i);
4658     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4659       Ops.push_back(getValue(Arg));
4660       continue;
4661     }
4662 
4663     // Use TargetConstant instead of a regular constant for immarg.
4664     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4665     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4666       assert(CI->getBitWidth() <= 64 &&
4667              "large intrinsic immediates not handled");
4668       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4669     } else {
4670       Ops.push_back(
4671           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4672     }
4673   }
4674 
4675   SmallVector<EVT, 4> ValueVTs;
4676   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4677 
4678   if (HasChain)
4679     ValueVTs.push_back(MVT::Other);
4680 
4681   SDVTList VTs = DAG.getVTList(ValueVTs);
4682 
4683   // Create the node.
4684   SDValue Result;
4685   if (IsTgtIntrinsic) {
4686     // This is target intrinsic that touches memory
4687     AAMDNodes AAInfo;
4688     I.getAAMetadata(AAInfo);
4689     Result =
4690         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4691                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4692                                 Info.align, Info.flags, Info.size, AAInfo);
4693   } else if (!HasChain) {
4694     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4695   } else if (!I.getType()->isVoidTy()) {
4696     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4697   } else {
4698     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4699   }
4700 
4701   if (HasChain) {
4702     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4703     if (OnlyLoad)
4704       PendingLoads.push_back(Chain);
4705     else
4706       DAG.setRoot(Chain);
4707   }
4708 
4709   if (!I.getType()->isVoidTy()) {
4710     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4711       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4712       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4713     } else
4714       Result = lowerRangeToAssertZExt(DAG, I, Result);
4715 
4716     MaybeAlign Alignment = I.getRetAlign();
4717     if (!Alignment)
4718       Alignment = F->getAttributes().getRetAlignment();
4719     // Insert `assertalign` node if there's an alignment.
4720     if (InsertAssertAlign && Alignment) {
4721       Result =
4722           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4723     }
4724 
4725     setValue(&I, Result);
4726   }
4727 }
4728 
4729 /// GetSignificand - Get the significand and build it into a floating-point
4730 /// number with exponent of 1:
4731 ///
4732 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4733 ///
4734 /// where Op is the hexadecimal representation of floating point value.
4735 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4736   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4737                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4738   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4739                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4740   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4741 }
4742 
4743 /// GetExponent - Get the exponent:
4744 ///
4745 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4746 ///
4747 /// where Op is the hexadecimal representation of floating point value.
4748 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4749                            const TargetLowering &TLI, const SDLoc &dl) {
4750   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4751                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4752   SDValue t1 = DAG.getNode(
4753       ISD::SRL, dl, MVT::i32, t0,
4754       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4755   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4756                            DAG.getConstant(127, dl, MVT::i32));
4757   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4758 }
4759 
4760 /// getF32Constant - Get 32-bit floating point constant.
4761 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4762                               const SDLoc &dl) {
4763   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4764                            MVT::f32);
4765 }
4766 
4767 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4768                                        SelectionDAG &DAG) {
4769   // TODO: What fast-math-flags should be set on the floating-point nodes?
4770 
4771   //   IntegerPartOfX = ((int32_t)(t0);
4772   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4773 
4774   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4775   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4776   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4777 
4778   //   IntegerPartOfX <<= 23;
4779   IntegerPartOfX = DAG.getNode(
4780       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4781       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4782                                   DAG.getDataLayout())));
4783 
4784   SDValue TwoToFractionalPartOfX;
4785   if (LimitFloatPrecision <= 6) {
4786     // For floating-point precision of 6:
4787     //
4788     //   TwoToFractionalPartOfX =
4789     //     0.997535578f +
4790     //       (0.735607626f + 0.252464424f * x) * x;
4791     //
4792     // error 0.0144103317, which is 6 bits
4793     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4794                              getF32Constant(DAG, 0x3e814304, dl));
4795     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4796                              getF32Constant(DAG, 0x3f3c50c8, dl));
4797     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4798     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4799                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4800   } else if (LimitFloatPrecision <= 12) {
4801     // For floating-point precision of 12:
4802     //
4803     //   TwoToFractionalPartOfX =
4804     //     0.999892986f +
4805     //       (0.696457318f +
4806     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4807     //
4808     // error 0.000107046256, which is 13 to 14 bits
4809     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4810                              getF32Constant(DAG, 0x3da235e3, dl));
4811     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4812                              getF32Constant(DAG, 0x3e65b8f3, dl));
4813     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4814     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4815                              getF32Constant(DAG, 0x3f324b07, dl));
4816     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4817     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4818                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4819   } else { // LimitFloatPrecision <= 18
4820     // For floating-point precision of 18:
4821     //
4822     //   TwoToFractionalPartOfX =
4823     //     0.999999982f +
4824     //       (0.693148872f +
4825     //         (0.240227044f +
4826     //           (0.554906021e-1f +
4827     //             (0.961591928e-2f +
4828     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4829     // error 2.47208000*10^(-7), which is better than 18 bits
4830     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4831                              getF32Constant(DAG, 0x3924b03e, dl));
4832     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4833                              getF32Constant(DAG, 0x3ab24b87, dl));
4834     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4835     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4836                              getF32Constant(DAG, 0x3c1d8c17, dl));
4837     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4838     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4839                              getF32Constant(DAG, 0x3d634a1d, dl));
4840     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4841     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4842                              getF32Constant(DAG, 0x3e75fe14, dl));
4843     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4844     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4845                               getF32Constant(DAG, 0x3f317234, dl));
4846     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4847     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4848                                          getF32Constant(DAG, 0x3f800000, dl));
4849   }
4850 
4851   // Add the exponent into the result in integer domain.
4852   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4853   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4854                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4855 }
4856 
4857 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4858 /// limited-precision mode.
4859 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4860                          const TargetLowering &TLI, SDNodeFlags Flags) {
4861   if (Op.getValueType() == MVT::f32 &&
4862       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4863 
4864     // Put the exponent in the right bit position for later addition to the
4865     // final result:
4866     //
4867     // t0 = Op * log2(e)
4868 
4869     // TODO: What fast-math-flags should be set here?
4870     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4871                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4872     return getLimitedPrecisionExp2(t0, dl, DAG);
4873   }
4874 
4875   // No special expansion.
4876   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4877 }
4878 
4879 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4880 /// limited-precision mode.
4881 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4882                          const TargetLowering &TLI, SDNodeFlags Flags) {
4883   // TODO: What fast-math-flags should be set on the floating-point nodes?
4884 
4885   if (Op.getValueType() == MVT::f32 &&
4886       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4887     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4888 
4889     // Scale the exponent by log(2).
4890     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4891     SDValue LogOfExponent =
4892         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4893                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4894 
4895     // Get the significand and build it into a floating-point number with
4896     // exponent of 1.
4897     SDValue X = GetSignificand(DAG, Op1, dl);
4898 
4899     SDValue LogOfMantissa;
4900     if (LimitFloatPrecision <= 6) {
4901       // For floating-point precision of 6:
4902       //
4903       //   LogofMantissa =
4904       //     -1.1609546f +
4905       //       (1.4034025f - 0.23903021f * x) * x;
4906       //
4907       // error 0.0034276066, which is better than 8 bits
4908       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4909                                getF32Constant(DAG, 0xbe74c456, dl));
4910       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4911                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4912       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4913       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4914                                   getF32Constant(DAG, 0x3f949a29, dl));
4915     } else if (LimitFloatPrecision <= 12) {
4916       // For floating-point precision of 12:
4917       //
4918       //   LogOfMantissa =
4919       //     -1.7417939f +
4920       //       (2.8212026f +
4921       //         (-1.4699568f +
4922       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4923       //
4924       // error 0.000061011436, which is 14 bits
4925       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4926                                getF32Constant(DAG, 0xbd67b6d6, dl));
4927       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4928                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4929       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4930       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4931                                getF32Constant(DAG, 0x3fbc278b, dl));
4932       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4933       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4934                                getF32Constant(DAG, 0x40348e95, dl));
4935       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4936       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4937                                   getF32Constant(DAG, 0x3fdef31a, dl));
4938     } else { // LimitFloatPrecision <= 18
4939       // For floating-point precision of 18:
4940       //
4941       //   LogOfMantissa =
4942       //     -2.1072184f +
4943       //       (4.2372794f +
4944       //         (-3.7029485f +
4945       //           (2.2781945f +
4946       //             (-0.87823314f +
4947       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4948       //
4949       // error 0.0000023660568, which is better than 18 bits
4950       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4951                                getF32Constant(DAG, 0xbc91e5ac, dl));
4952       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4953                                getF32Constant(DAG, 0x3e4350aa, dl));
4954       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4955       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4956                                getF32Constant(DAG, 0x3f60d3e3, dl));
4957       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4958       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4959                                getF32Constant(DAG, 0x4011cdf0, dl));
4960       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4961       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4962                                getF32Constant(DAG, 0x406cfd1c, dl));
4963       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4964       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4965                                getF32Constant(DAG, 0x408797cb, dl));
4966       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4967       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4968                                   getF32Constant(DAG, 0x4006dcab, dl));
4969     }
4970 
4971     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4972   }
4973 
4974   // No special expansion.
4975   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
4976 }
4977 
4978 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4979 /// limited-precision mode.
4980 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4981                           const TargetLowering &TLI, SDNodeFlags Flags) {
4982   // TODO: What fast-math-flags should be set on the floating-point nodes?
4983 
4984   if (Op.getValueType() == MVT::f32 &&
4985       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4986     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4987 
4988     // Get the exponent.
4989     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4990 
4991     // Get the significand and build it into a floating-point number with
4992     // exponent of 1.
4993     SDValue X = GetSignificand(DAG, Op1, dl);
4994 
4995     // Different possible minimax approximations of significand in
4996     // floating-point for various degrees of accuracy over [1,2].
4997     SDValue Log2ofMantissa;
4998     if (LimitFloatPrecision <= 6) {
4999       // For floating-point precision of 6:
5000       //
5001       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5002       //
5003       // error 0.0049451742, which is more than 7 bits
5004       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5005                                getF32Constant(DAG, 0xbeb08fe0, dl));
5006       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5007                                getF32Constant(DAG, 0x40019463, dl));
5008       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5009       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5010                                    getF32Constant(DAG, 0x3fd6633d, dl));
5011     } else if (LimitFloatPrecision <= 12) {
5012       // For floating-point precision of 12:
5013       //
5014       //   Log2ofMantissa =
5015       //     -2.51285454f +
5016       //       (4.07009056f +
5017       //         (-2.12067489f +
5018       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5019       //
5020       // error 0.0000876136000, which is better than 13 bits
5021       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5022                                getF32Constant(DAG, 0xbda7262e, dl));
5023       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5024                                getF32Constant(DAG, 0x3f25280b, dl));
5025       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5026       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5027                                getF32Constant(DAG, 0x4007b923, dl));
5028       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5029       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5030                                getF32Constant(DAG, 0x40823e2f, dl));
5031       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5032       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5033                                    getF32Constant(DAG, 0x4020d29c, dl));
5034     } else { // LimitFloatPrecision <= 18
5035       // For floating-point precision of 18:
5036       //
5037       //   Log2ofMantissa =
5038       //     -3.0400495f +
5039       //       (6.1129976f +
5040       //         (-5.3420409f +
5041       //           (3.2865683f +
5042       //             (-1.2669343f +
5043       //               (0.27515199f -
5044       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5045       //
5046       // error 0.0000018516, which is better than 18 bits
5047       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5048                                getF32Constant(DAG, 0xbcd2769e, dl));
5049       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5050                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5051       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5052       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5053                                getF32Constant(DAG, 0x3fa22ae7, dl));
5054       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5055       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5056                                getF32Constant(DAG, 0x40525723, dl));
5057       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5058       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5059                                getF32Constant(DAG, 0x40aaf200, dl));
5060       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5061       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5062                                getF32Constant(DAG, 0x40c39dad, dl));
5063       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5064       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5065                                    getF32Constant(DAG, 0x4042902c, dl));
5066     }
5067 
5068     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5069   }
5070 
5071   // No special expansion.
5072   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5073 }
5074 
5075 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5076 /// limited-precision mode.
5077 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5078                            const TargetLowering &TLI, SDNodeFlags Flags) {
5079   // TODO: What fast-math-flags should be set on the floating-point nodes?
5080 
5081   if (Op.getValueType() == MVT::f32 &&
5082       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5083     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5084 
5085     // Scale the exponent by log10(2) [0.30102999f].
5086     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5087     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5088                                         getF32Constant(DAG, 0x3e9a209a, dl));
5089 
5090     // Get the significand and build it into a floating-point number with
5091     // exponent of 1.
5092     SDValue X = GetSignificand(DAG, Op1, dl);
5093 
5094     SDValue Log10ofMantissa;
5095     if (LimitFloatPrecision <= 6) {
5096       // For floating-point precision of 6:
5097       //
5098       //   Log10ofMantissa =
5099       //     -0.50419619f +
5100       //       (0.60948995f - 0.10380950f * x) * x;
5101       //
5102       // error 0.0014886165, which is 6 bits
5103       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5104                                getF32Constant(DAG, 0xbdd49a13, dl));
5105       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5106                                getF32Constant(DAG, 0x3f1c0789, dl));
5107       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5108       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5109                                     getF32Constant(DAG, 0x3f011300, dl));
5110     } else if (LimitFloatPrecision <= 12) {
5111       // For floating-point precision of 12:
5112       //
5113       //   Log10ofMantissa =
5114       //     -0.64831180f +
5115       //       (0.91751397f +
5116       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5117       //
5118       // error 0.00019228036, which is better than 12 bits
5119       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5120                                getF32Constant(DAG, 0x3d431f31, dl));
5121       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5122                                getF32Constant(DAG, 0x3ea21fb2, dl));
5123       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5124       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5125                                getF32Constant(DAG, 0x3f6ae232, dl));
5126       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5127       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5128                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5129     } else { // LimitFloatPrecision <= 18
5130       // For floating-point precision of 18:
5131       //
5132       //   Log10ofMantissa =
5133       //     -0.84299375f +
5134       //       (1.5327582f +
5135       //         (-1.0688956f +
5136       //           (0.49102474f +
5137       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5138       //
5139       // error 0.0000037995730, which is better than 18 bits
5140       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5141                                getF32Constant(DAG, 0x3c5d51ce, dl));
5142       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5143                                getF32Constant(DAG, 0x3e00685a, dl));
5144       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5145       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5146                                getF32Constant(DAG, 0x3efb6798, dl));
5147       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5148       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5149                                getF32Constant(DAG, 0x3f88d192, dl));
5150       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5151       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5152                                getF32Constant(DAG, 0x3fc4316c, dl));
5153       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5154       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5155                                     getF32Constant(DAG, 0x3f57ce70, dl));
5156     }
5157 
5158     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5159   }
5160 
5161   // No special expansion.
5162   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5163 }
5164 
5165 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5166 /// limited-precision mode.
5167 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5168                           const TargetLowering &TLI, SDNodeFlags Flags) {
5169   if (Op.getValueType() == MVT::f32 &&
5170       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5171     return getLimitedPrecisionExp2(Op, dl, DAG);
5172 
5173   // No special expansion.
5174   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5175 }
5176 
5177 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5178 /// limited-precision mode with x == 10.0f.
5179 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5180                          SelectionDAG &DAG, const TargetLowering &TLI,
5181                          SDNodeFlags Flags) {
5182   bool IsExp10 = false;
5183   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5184       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5185     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5186       APFloat Ten(10.0f);
5187       IsExp10 = LHSC->isExactlyValue(Ten);
5188     }
5189   }
5190 
5191   // TODO: What fast-math-flags should be set on the FMUL node?
5192   if (IsExp10) {
5193     // Put the exponent in the right bit position for later addition to the
5194     // final result:
5195     //
5196     //   #define LOG2OF10 3.3219281f
5197     //   t0 = Op * LOG2OF10;
5198     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5199                              getF32Constant(DAG, 0x40549a78, dl));
5200     return getLimitedPrecisionExp2(t0, dl, DAG);
5201   }
5202 
5203   // No special expansion.
5204   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5205 }
5206 
5207 /// ExpandPowI - Expand a llvm.powi intrinsic.
5208 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5209                           SelectionDAG &DAG) {
5210   // If RHS is a constant, we can expand this out to a multiplication tree,
5211   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5212   // optimizing for size, we only want to do this if the expansion would produce
5213   // a small number of multiplies, otherwise we do the full expansion.
5214   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5215     // Get the exponent as a positive value.
5216     unsigned Val = RHSC->getSExtValue();
5217     if ((int)Val < 0) Val = -Val;
5218 
5219     // powi(x, 0) -> 1.0
5220     if (Val == 0)
5221       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5222 
5223     bool OptForSize = DAG.shouldOptForSize();
5224     if (!OptForSize ||
5225         // If optimizing for size, don't insert too many multiplies.
5226         // This inserts up to 5 multiplies.
5227         countPopulation(Val) + Log2_32(Val) < 7) {
5228       // We use the simple binary decomposition method to generate the multiply
5229       // sequence.  There are more optimal ways to do this (for example,
5230       // powi(x,15) generates one more multiply than it should), but this has
5231       // the benefit of being both really simple and much better than a libcall.
5232       SDValue Res;  // Logically starts equal to 1.0
5233       SDValue CurSquare = LHS;
5234       // TODO: Intrinsics should have fast-math-flags that propagate to these
5235       // nodes.
5236       while (Val) {
5237         if (Val & 1) {
5238           if (Res.getNode())
5239             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5240           else
5241             Res = CurSquare;  // 1.0*CurSquare.
5242         }
5243 
5244         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5245                                 CurSquare, CurSquare);
5246         Val >>= 1;
5247       }
5248 
5249       // If the original was negative, invert the result, producing 1/(x*x*x).
5250       if (RHSC->getSExtValue() < 0)
5251         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5252                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5253       return Res;
5254     }
5255   }
5256 
5257   // Otherwise, expand to a libcall.
5258   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5259 }
5260 
5261 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5262                             SDValue LHS, SDValue RHS, SDValue Scale,
5263                             SelectionDAG &DAG, const TargetLowering &TLI) {
5264   EVT VT = LHS.getValueType();
5265   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5266   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5267   LLVMContext &Ctx = *DAG.getContext();
5268 
5269   // If the type is legal but the operation isn't, this node might survive all
5270   // the way to operation legalization. If we end up there and we do not have
5271   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5272   // node.
5273 
5274   // Coax the legalizer into expanding the node during type legalization instead
5275   // by bumping the size by one bit. This will force it to Promote, enabling the
5276   // early expansion and avoiding the need to expand later.
5277 
5278   // We don't have to do this if Scale is 0; that can always be expanded, unless
5279   // it's a saturating signed operation. Those can experience true integer
5280   // division overflow, a case which we must avoid.
5281 
5282   // FIXME: We wouldn't have to do this (or any of the early
5283   // expansion/promotion) if it was possible to expand a libcall of an
5284   // illegal type during operation legalization. But it's not, so things
5285   // get a bit hacky.
5286   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5287   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5288       (TLI.isTypeLegal(VT) ||
5289        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5290     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5291         Opcode, VT, ScaleInt);
5292     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5293       EVT PromVT;
5294       if (VT.isScalarInteger())
5295         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5296       else if (VT.isVector()) {
5297         PromVT = VT.getVectorElementType();
5298         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5299         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5300       } else
5301         llvm_unreachable("Wrong VT for DIVFIX?");
5302       if (Signed) {
5303         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5304         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5305       } else {
5306         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5307         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5308       }
5309       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5310       // For saturating operations, we need to shift up the LHS to get the
5311       // proper saturation width, and then shift down again afterwards.
5312       if (Saturating)
5313         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5314                           DAG.getConstant(1, DL, ShiftTy));
5315       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5316       if (Saturating)
5317         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5318                           DAG.getConstant(1, DL, ShiftTy));
5319       return DAG.getZExtOrTrunc(Res, DL, VT);
5320     }
5321   }
5322 
5323   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5324 }
5325 
5326 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5327 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5328 static void
5329 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5330                      const SDValue &N) {
5331   switch (N.getOpcode()) {
5332   case ISD::CopyFromReg: {
5333     SDValue Op = N.getOperand(1);
5334     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5335                       Op.getValueType().getSizeInBits());
5336     return;
5337   }
5338   case ISD::BITCAST:
5339   case ISD::AssertZext:
5340   case ISD::AssertSext:
5341   case ISD::TRUNCATE:
5342     getUnderlyingArgRegs(Regs, N.getOperand(0));
5343     return;
5344   case ISD::BUILD_PAIR:
5345   case ISD::BUILD_VECTOR:
5346   case ISD::CONCAT_VECTORS:
5347     for (SDValue Op : N->op_values())
5348       getUnderlyingArgRegs(Regs, Op);
5349     return;
5350   default:
5351     return;
5352   }
5353 }
5354 
5355 /// If the DbgValueInst is a dbg_value of a function argument, create the
5356 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5357 /// instruction selection, they will be inserted to the entry BB.
5358 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5359     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5360     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5361   const Argument *Arg = dyn_cast<Argument>(V);
5362   if (!Arg)
5363     return false;
5364 
5365   if (!IsDbgDeclare) {
5366     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5367     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5368     // the entry block.
5369     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5370     if (!IsInEntryBlock)
5371       return false;
5372 
5373     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5374     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5375     // variable that also is a param.
5376     //
5377     // Although, if we are at the top of the entry block already, we can still
5378     // emit using ArgDbgValue. This might catch some situations when the
5379     // dbg.value refers to an argument that isn't used in the entry block, so
5380     // any CopyToReg node would be optimized out and the only way to express
5381     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5382     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5383     // we should only emit as ArgDbgValue if the Variable is an argument to the
5384     // current function, and the dbg.value intrinsic is found in the entry
5385     // block.
5386     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5387         !DL->getInlinedAt();
5388     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5389     if (!IsInPrologue && !VariableIsFunctionInputArg)
5390       return false;
5391 
5392     // Here we assume that a function argument on IR level only can be used to
5393     // describe one input parameter on source level. If we for example have
5394     // source code like this
5395     //
5396     //    struct A { long x, y; };
5397     //    void foo(struct A a, long b) {
5398     //      ...
5399     //      b = a.x;
5400     //      ...
5401     //    }
5402     //
5403     // and IR like this
5404     //
5405     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5406     //  entry:
5407     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5408     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5409     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5410     //    ...
5411     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5412     //    ...
5413     //
5414     // then the last dbg.value is describing a parameter "b" using a value that
5415     // is an argument. But since we already has used %a1 to describe a parameter
5416     // we should not handle that last dbg.value here (that would result in an
5417     // incorrect hoisting of the DBG_VALUE to the function entry).
5418     // Notice that we allow one dbg.value per IR level argument, to accommodate
5419     // for the situation with fragments above.
5420     if (VariableIsFunctionInputArg) {
5421       unsigned ArgNo = Arg->getArgNo();
5422       if (ArgNo >= FuncInfo.DescribedArgs.size())
5423         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5424       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5425         return false;
5426       FuncInfo.DescribedArgs.set(ArgNo);
5427     }
5428   }
5429 
5430   MachineFunction &MF = DAG.getMachineFunction();
5431   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5432 
5433   bool IsIndirect = false;
5434   Optional<MachineOperand> Op;
5435   // Some arguments' frame index is recorded during argument lowering.
5436   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5437   if (FI != std::numeric_limits<int>::max())
5438     Op = MachineOperand::CreateFI(FI);
5439 
5440   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5441   if (!Op && N.getNode()) {
5442     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5443     Register Reg;
5444     if (ArgRegsAndSizes.size() == 1)
5445       Reg = ArgRegsAndSizes.front().first;
5446 
5447     if (Reg && Reg.isVirtual()) {
5448       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5449       Register PR = RegInfo.getLiveInPhysReg(Reg);
5450       if (PR)
5451         Reg = PR;
5452     }
5453     if (Reg) {
5454       Op = MachineOperand::CreateReg(Reg, false);
5455       IsIndirect = IsDbgDeclare;
5456     }
5457   }
5458 
5459   if (!Op && N.getNode()) {
5460     // Check if frame index is available.
5461     SDValue LCandidate = peekThroughBitcasts(N);
5462     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5463       if (FrameIndexSDNode *FINode =
5464           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5465         Op = MachineOperand::CreateFI(FINode->getIndex());
5466   }
5467 
5468   if (!Op) {
5469     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5470     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5471                                          SplitRegs) {
5472       unsigned Offset = 0;
5473       for (auto RegAndSize : SplitRegs) {
5474         // If the expression is already a fragment, the current register
5475         // offset+size might extend beyond the fragment. In this case, only
5476         // the register bits that are inside the fragment are relevant.
5477         int RegFragmentSizeInBits = RegAndSize.second;
5478         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5479           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5480           // The register is entirely outside the expression fragment,
5481           // so is irrelevant for debug info.
5482           if (Offset >= ExprFragmentSizeInBits)
5483             break;
5484           // The register is partially outside the expression fragment, only
5485           // the low bits within the fragment are relevant for debug info.
5486           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5487             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5488           }
5489         }
5490 
5491         auto FragmentExpr = DIExpression::createFragmentExpression(
5492             Expr, Offset, RegFragmentSizeInBits);
5493         Offset += RegAndSize.second;
5494         // If a valid fragment expression cannot be created, the variable's
5495         // correct value cannot be determined and so it is set as Undef.
5496         if (!FragmentExpr) {
5497           SDDbgValue *SDV = DAG.getConstantDbgValue(
5498               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5499           DAG.AddDbgValue(SDV, nullptr, false);
5500           continue;
5501         }
5502         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5503         FuncInfo.ArgDbgValues.push_back(
5504           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5505                   RegAndSize.first, Variable, *FragmentExpr));
5506       }
5507     };
5508 
5509     // Check if ValueMap has reg number.
5510     DenseMap<const Value *, Register>::const_iterator
5511       VMI = FuncInfo.ValueMap.find(V);
5512     if (VMI != FuncInfo.ValueMap.end()) {
5513       const auto &TLI = DAG.getTargetLoweringInfo();
5514       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5515                        V->getType(), None);
5516       if (RFV.occupiesMultipleRegs()) {
5517         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5518         return true;
5519       }
5520 
5521       Op = MachineOperand::CreateReg(VMI->second, false);
5522       IsIndirect = IsDbgDeclare;
5523     } else if (ArgRegsAndSizes.size() > 1) {
5524       // This was split due to the calling convention, and no virtual register
5525       // mapping exists for the value.
5526       splitMultiRegDbgValue(ArgRegsAndSizes);
5527       return true;
5528     }
5529   }
5530 
5531   if (!Op)
5532     return false;
5533 
5534   assert(Variable->isValidLocationForIntrinsic(DL) &&
5535          "Expected inlined-at fields to agree");
5536   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5537   FuncInfo.ArgDbgValues.push_back(
5538       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5539               *Op, Variable, Expr));
5540 
5541   return true;
5542 }
5543 
5544 /// Return the appropriate SDDbgValue based on N.
5545 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5546                                              DILocalVariable *Variable,
5547                                              DIExpression *Expr,
5548                                              const DebugLoc &dl,
5549                                              unsigned DbgSDNodeOrder) {
5550   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5551     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5552     // stack slot locations.
5553     //
5554     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5555     // debug values here after optimization:
5556     //
5557     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5558     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5559     //
5560     // Both describe the direct values of their associated variables.
5561     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5562                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5563   }
5564   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5565                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5566 }
5567 
5568 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5569   switch (Intrinsic) {
5570   case Intrinsic::smul_fix:
5571     return ISD::SMULFIX;
5572   case Intrinsic::umul_fix:
5573     return ISD::UMULFIX;
5574   case Intrinsic::smul_fix_sat:
5575     return ISD::SMULFIXSAT;
5576   case Intrinsic::umul_fix_sat:
5577     return ISD::UMULFIXSAT;
5578   case Intrinsic::sdiv_fix:
5579     return ISD::SDIVFIX;
5580   case Intrinsic::udiv_fix:
5581     return ISD::UDIVFIX;
5582   case Intrinsic::sdiv_fix_sat:
5583     return ISD::SDIVFIXSAT;
5584   case Intrinsic::udiv_fix_sat:
5585     return ISD::UDIVFIXSAT;
5586   default:
5587     llvm_unreachable("Unhandled fixed point intrinsic");
5588   }
5589 }
5590 
5591 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5592                                            const char *FunctionName) {
5593   assert(FunctionName && "FunctionName must not be nullptr");
5594   SDValue Callee = DAG.getExternalSymbol(
5595       FunctionName,
5596       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5597   LowerCallTo(I, Callee, I.isTailCall());
5598 }
5599 
5600 /// Given a @llvm.call.preallocated.setup, return the corresponding
5601 /// preallocated call.
5602 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5603   assert(cast<CallBase>(PreallocatedSetup)
5604                  ->getCalledFunction()
5605                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5606          "expected call_preallocated_setup Value");
5607   for (auto *U : PreallocatedSetup->users()) {
5608     auto *UseCall = cast<CallBase>(U);
5609     const Function *Fn = UseCall->getCalledFunction();
5610     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5611       return UseCall;
5612     }
5613   }
5614   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5615 }
5616 
5617 /// Lower the call to the specified intrinsic function.
5618 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5619                                              unsigned Intrinsic) {
5620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5621   SDLoc sdl = getCurSDLoc();
5622   DebugLoc dl = getCurDebugLoc();
5623   SDValue Res;
5624 
5625   SDNodeFlags Flags;
5626   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5627     Flags.copyFMF(*FPOp);
5628 
5629   switch (Intrinsic) {
5630   default:
5631     // By default, turn this into a target intrinsic node.
5632     visitTargetIntrinsic(I, Intrinsic);
5633     return;
5634   case Intrinsic::vscale: {
5635     match(&I, m_VScale(DAG.getDataLayout()));
5636     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5637     setValue(&I,
5638              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5639     return;
5640   }
5641   case Intrinsic::vastart:  visitVAStart(I); return;
5642   case Intrinsic::vaend:    visitVAEnd(I); return;
5643   case Intrinsic::vacopy:   visitVACopy(I); return;
5644   case Intrinsic::returnaddress:
5645     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5646                              TLI.getPointerTy(DAG.getDataLayout()),
5647                              getValue(I.getArgOperand(0))));
5648     return;
5649   case Intrinsic::addressofreturnaddress:
5650     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5651                              TLI.getPointerTy(DAG.getDataLayout())));
5652     return;
5653   case Intrinsic::sponentry:
5654     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5655                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5656     return;
5657   case Intrinsic::frameaddress:
5658     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5659                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5660                              getValue(I.getArgOperand(0))));
5661     return;
5662   case Intrinsic::read_volatile_register:
5663   case Intrinsic::read_register: {
5664     Value *Reg = I.getArgOperand(0);
5665     SDValue Chain = getRoot();
5666     SDValue RegName =
5667         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5668     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5669     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5670       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5671     setValue(&I, Res);
5672     DAG.setRoot(Res.getValue(1));
5673     return;
5674   }
5675   case Intrinsic::write_register: {
5676     Value *Reg = I.getArgOperand(0);
5677     Value *RegValue = I.getArgOperand(1);
5678     SDValue Chain = getRoot();
5679     SDValue RegName =
5680         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5681     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5682                             RegName, getValue(RegValue)));
5683     return;
5684   }
5685   case Intrinsic::memcpy: {
5686     const auto &MCI = cast<MemCpyInst>(I);
5687     SDValue Op1 = getValue(I.getArgOperand(0));
5688     SDValue Op2 = getValue(I.getArgOperand(1));
5689     SDValue Op3 = getValue(I.getArgOperand(2));
5690     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5691     Align DstAlign = MCI.getDestAlign().valueOrOne();
5692     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5693     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5694     bool isVol = MCI.isVolatile();
5695     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5696     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5697     // node.
5698     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5699     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5700                                /* AlwaysInline */ false, isTC,
5701                                MachinePointerInfo(I.getArgOperand(0)),
5702                                MachinePointerInfo(I.getArgOperand(1)));
5703     updateDAGForMaybeTailCall(MC);
5704     return;
5705   }
5706   case Intrinsic::memcpy_inline: {
5707     const auto &MCI = cast<MemCpyInlineInst>(I);
5708     SDValue Dst = getValue(I.getArgOperand(0));
5709     SDValue Src = getValue(I.getArgOperand(1));
5710     SDValue Size = getValue(I.getArgOperand(2));
5711     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5712     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5713     Align DstAlign = MCI.getDestAlign().valueOrOne();
5714     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5715     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5716     bool isVol = MCI.isVolatile();
5717     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5718     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5719     // node.
5720     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5721                                /* AlwaysInline */ true, isTC,
5722                                MachinePointerInfo(I.getArgOperand(0)),
5723                                MachinePointerInfo(I.getArgOperand(1)));
5724     updateDAGForMaybeTailCall(MC);
5725     return;
5726   }
5727   case Intrinsic::memset: {
5728     const auto &MSI = cast<MemSetInst>(I);
5729     SDValue Op1 = getValue(I.getArgOperand(0));
5730     SDValue Op2 = getValue(I.getArgOperand(1));
5731     SDValue Op3 = getValue(I.getArgOperand(2));
5732     // @llvm.memset defines 0 and 1 to both mean no alignment.
5733     Align Alignment = MSI.getDestAlign().valueOrOne();
5734     bool isVol = MSI.isVolatile();
5735     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5736     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5737     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5738                                MachinePointerInfo(I.getArgOperand(0)));
5739     updateDAGForMaybeTailCall(MS);
5740     return;
5741   }
5742   case Intrinsic::memmove: {
5743     const auto &MMI = cast<MemMoveInst>(I);
5744     SDValue Op1 = getValue(I.getArgOperand(0));
5745     SDValue Op2 = getValue(I.getArgOperand(1));
5746     SDValue Op3 = getValue(I.getArgOperand(2));
5747     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5748     Align DstAlign = MMI.getDestAlign().valueOrOne();
5749     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5750     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5751     bool isVol = MMI.isVolatile();
5752     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5753     // FIXME: Support passing different dest/src alignments to the memmove DAG
5754     // node.
5755     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5756     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5757                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5758                                 MachinePointerInfo(I.getArgOperand(1)));
5759     updateDAGForMaybeTailCall(MM);
5760     return;
5761   }
5762   case Intrinsic::memcpy_element_unordered_atomic: {
5763     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5764     SDValue Dst = getValue(MI.getRawDest());
5765     SDValue Src = getValue(MI.getRawSource());
5766     SDValue Length = getValue(MI.getLength());
5767 
5768     unsigned DstAlign = MI.getDestAlignment();
5769     unsigned SrcAlign = MI.getSourceAlignment();
5770     Type *LengthTy = MI.getLength()->getType();
5771     unsigned ElemSz = MI.getElementSizeInBytes();
5772     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5773     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5774                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5775                                      MachinePointerInfo(MI.getRawDest()),
5776                                      MachinePointerInfo(MI.getRawSource()));
5777     updateDAGForMaybeTailCall(MC);
5778     return;
5779   }
5780   case Intrinsic::memmove_element_unordered_atomic: {
5781     auto &MI = cast<AtomicMemMoveInst>(I);
5782     SDValue Dst = getValue(MI.getRawDest());
5783     SDValue Src = getValue(MI.getRawSource());
5784     SDValue Length = getValue(MI.getLength());
5785 
5786     unsigned DstAlign = MI.getDestAlignment();
5787     unsigned SrcAlign = MI.getSourceAlignment();
5788     Type *LengthTy = MI.getLength()->getType();
5789     unsigned ElemSz = MI.getElementSizeInBytes();
5790     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5791     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5792                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5793                                       MachinePointerInfo(MI.getRawDest()),
5794                                       MachinePointerInfo(MI.getRawSource()));
5795     updateDAGForMaybeTailCall(MC);
5796     return;
5797   }
5798   case Intrinsic::memset_element_unordered_atomic: {
5799     auto &MI = cast<AtomicMemSetInst>(I);
5800     SDValue Dst = getValue(MI.getRawDest());
5801     SDValue Val = getValue(MI.getValue());
5802     SDValue Length = getValue(MI.getLength());
5803 
5804     unsigned DstAlign = MI.getDestAlignment();
5805     Type *LengthTy = MI.getLength()->getType();
5806     unsigned ElemSz = MI.getElementSizeInBytes();
5807     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5808     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5809                                      LengthTy, ElemSz, isTC,
5810                                      MachinePointerInfo(MI.getRawDest()));
5811     updateDAGForMaybeTailCall(MC);
5812     return;
5813   }
5814   case Intrinsic::call_preallocated_setup: {
5815     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5816     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5817     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5818                               getRoot(), SrcValue);
5819     setValue(&I, Res);
5820     DAG.setRoot(Res);
5821     return;
5822   }
5823   case Intrinsic::call_preallocated_arg: {
5824     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5825     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5826     SDValue Ops[3];
5827     Ops[0] = getRoot();
5828     Ops[1] = SrcValue;
5829     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5830                                    MVT::i32); // arg index
5831     SDValue Res = DAG.getNode(
5832         ISD::PREALLOCATED_ARG, sdl,
5833         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5834     setValue(&I, Res);
5835     DAG.setRoot(Res.getValue(1));
5836     return;
5837   }
5838   case Intrinsic::dbg_addr:
5839   case Intrinsic::dbg_declare: {
5840     const auto &DI = cast<DbgVariableIntrinsic>(I);
5841     DILocalVariable *Variable = DI.getVariable();
5842     DIExpression *Expression = DI.getExpression();
5843     dropDanglingDebugInfo(Variable, Expression);
5844     assert(Variable && "Missing variable");
5845     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5846                       << "\n");
5847     // Check if address has undef value.
5848     const Value *Address = DI.getVariableLocation();
5849     if (!Address || isa<UndefValue>(Address) ||
5850         (Address->use_empty() && !isa<Argument>(Address))) {
5851       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5852                         << " (bad/undef/unused-arg address)\n");
5853       return;
5854     }
5855 
5856     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5857 
5858     // Check if this variable can be described by a frame index, typically
5859     // either as a static alloca or a byval parameter.
5860     int FI = std::numeric_limits<int>::max();
5861     if (const auto *AI =
5862             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5863       if (AI->isStaticAlloca()) {
5864         auto I = FuncInfo.StaticAllocaMap.find(AI);
5865         if (I != FuncInfo.StaticAllocaMap.end())
5866           FI = I->second;
5867       }
5868     } else if (const auto *Arg = dyn_cast<Argument>(
5869                    Address->stripInBoundsConstantOffsets())) {
5870       FI = FuncInfo.getArgumentFrameIndex(Arg);
5871     }
5872 
5873     // llvm.dbg.addr is control dependent and always generates indirect
5874     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5875     // the MachineFunction variable table.
5876     if (FI != std::numeric_limits<int>::max()) {
5877       if (Intrinsic == Intrinsic::dbg_addr) {
5878         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5879             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5880         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5881       } else {
5882         LLVM_DEBUG(dbgs() << "Skipping " << DI
5883                           << " (variable info stashed in MF side table)\n");
5884       }
5885       return;
5886     }
5887 
5888     SDValue &N = NodeMap[Address];
5889     if (!N.getNode() && isa<Argument>(Address))
5890       // Check unused arguments map.
5891       N = UnusedArgNodeMap[Address];
5892     SDDbgValue *SDV;
5893     if (N.getNode()) {
5894       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5895         Address = BCI->getOperand(0);
5896       // Parameters are handled specially.
5897       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5898       if (isParameter && FINode) {
5899         // Byval parameter. We have a frame index at this point.
5900         SDV =
5901             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5902                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5903       } else if (isa<Argument>(Address)) {
5904         // Address is an argument, so try to emit its dbg value using
5905         // virtual register info from the FuncInfo.ValueMap.
5906         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5907         return;
5908       } else {
5909         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5910                               true, dl, SDNodeOrder);
5911       }
5912       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5913     } else {
5914       // If Address is an argument then try to emit its dbg value using
5915       // virtual register info from the FuncInfo.ValueMap.
5916       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5917                                     N)) {
5918         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5919                           << " (could not emit func-arg dbg_value)\n");
5920       }
5921     }
5922     return;
5923   }
5924   case Intrinsic::dbg_label: {
5925     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5926     DILabel *Label = DI.getLabel();
5927     assert(Label && "Missing label");
5928 
5929     SDDbgLabel *SDV;
5930     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5931     DAG.AddDbgLabel(SDV);
5932     return;
5933   }
5934   case Intrinsic::dbg_value: {
5935     const DbgValueInst &DI = cast<DbgValueInst>(I);
5936     assert(DI.getVariable() && "Missing variable");
5937 
5938     DILocalVariable *Variable = DI.getVariable();
5939     DIExpression *Expression = DI.getExpression();
5940     dropDanglingDebugInfo(Variable, Expression);
5941     const Value *V = DI.getValue();
5942     if (!V)
5943       return;
5944 
5945     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5946         SDNodeOrder))
5947       return;
5948 
5949     // TODO: Dangling debug info will eventually either be resolved or produce
5950     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5951     // between the original dbg.value location and its resolved DBG_VALUE, which
5952     // we should ideally fill with an extra Undef DBG_VALUE.
5953 
5954     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5955     return;
5956   }
5957 
5958   case Intrinsic::eh_typeid_for: {
5959     // Find the type id for the given typeinfo.
5960     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5961     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5962     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5963     setValue(&I, Res);
5964     return;
5965   }
5966 
5967   case Intrinsic::eh_return_i32:
5968   case Intrinsic::eh_return_i64:
5969     DAG.getMachineFunction().setCallsEHReturn(true);
5970     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5971                             MVT::Other,
5972                             getControlRoot(),
5973                             getValue(I.getArgOperand(0)),
5974                             getValue(I.getArgOperand(1))));
5975     return;
5976   case Intrinsic::eh_unwind_init:
5977     DAG.getMachineFunction().setCallsUnwindInit(true);
5978     return;
5979   case Intrinsic::eh_dwarf_cfa:
5980     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5981                              TLI.getPointerTy(DAG.getDataLayout()),
5982                              getValue(I.getArgOperand(0))));
5983     return;
5984   case Intrinsic::eh_sjlj_callsite: {
5985     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5986     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5987     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5988     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5989 
5990     MMI.setCurrentCallSite(CI->getZExtValue());
5991     return;
5992   }
5993   case Intrinsic::eh_sjlj_functioncontext: {
5994     // Get and store the index of the function context.
5995     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5996     AllocaInst *FnCtx =
5997       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5998     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5999     MFI.setFunctionContextIndex(FI);
6000     return;
6001   }
6002   case Intrinsic::eh_sjlj_setjmp: {
6003     SDValue Ops[2];
6004     Ops[0] = getRoot();
6005     Ops[1] = getValue(I.getArgOperand(0));
6006     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6007                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6008     setValue(&I, Op.getValue(0));
6009     DAG.setRoot(Op.getValue(1));
6010     return;
6011   }
6012   case Intrinsic::eh_sjlj_longjmp:
6013     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6014                             getRoot(), getValue(I.getArgOperand(0))));
6015     return;
6016   case Intrinsic::eh_sjlj_setup_dispatch:
6017     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6018                             getRoot()));
6019     return;
6020   case Intrinsic::masked_gather:
6021     visitMaskedGather(I);
6022     return;
6023   case Intrinsic::masked_load:
6024     visitMaskedLoad(I);
6025     return;
6026   case Intrinsic::masked_scatter:
6027     visitMaskedScatter(I);
6028     return;
6029   case Intrinsic::masked_store:
6030     visitMaskedStore(I);
6031     return;
6032   case Intrinsic::masked_expandload:
6033     visitMaskedLoad(I, true /* IsExpanding */);
6034     return;
6035   case Intrinsic::masked_compressstore:
6036     visitMaskedStore(I, true /* IsCompressing */);
6037     return;
6038   case Intrinsic::powi:
6039     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6040                             getValue(I.getArgOperand(1)), DAG));
6041     return;
6042   case Intrinsic::log:
6043     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6044     return;
6045   case Intrinsic::log2:
6046     setValue(&I,
6047              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6048     return;
6049   case Intrinsic::log10:
6050     setValue(&I,
6051              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6052     return;
6053   case Intrinsic::exp:
6054     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6055     return;
6056   case Intrinsic::exp2:
6057     setValue(&I,
6058              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6059     return;
6060   case Intrinsic::pow:
6061     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6062                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6063     return;
6064   case Intrinsic::sqrt:
6065   case Intrinsic::fabs:
6066   case Intrinsic::sin:
6067   case Intrinsic::cos:
6068   case Intrinsic::floor:
6069   case Intrinsic::ceil:
6070   case Intrinsic::trunc:
6071   case Intrinsic::rint:
6072   case Intrinsic::nearbyint:
6073   case Intrinsic::round:
6074   case Intrinsic::roundeven:
6075   case Intrinsic::canonicalize: {
6076     unsigned Opcode;
6077     switch (Intrinsic) {
6078     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6079     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6080     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6081     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6082     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6083     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6084     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6085     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6086     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6087     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6088     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6089     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6090     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6091     }
6092 
6093     setValue(&I, DAG.getNode(Opcode, sdl,
6094                              getValue(I.getArgOperand(0)).getValueType(),
6095                              getValue(I.getArgOperand(0)), Flags));
6096     return;
6097   }
6098   case Intrinsic::lround:
6099   case Intrinsic::llround:
6100   case Intrinsic::lrint:
6101   case Intrinsic::llrint: {
6102     unsigned Opcode;
6103     switch (Intrinsic) {
6104     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6105     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6106     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6107     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6108     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6109     }
6110 
6111     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6112     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6113                              getValue(I.getArgOperand(0))));
6114     return;
6115   }
6116   case Intrinsic::minnum:
6117     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6118                              getValue(I.getArgOperand(0)).getValueType(),
6119                              getValue(I.getArgOperand(0)),
6120                              getValue(I.getArgOperand(1)), Flags));
6121     return;
6122   case Intrinsic::maxnum:
6123     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6124                              getValue(I.getArgOperand(0)).getValueType(),
6125                              getValue(I.getArgOperand(0)),
6126                              getValue(I.getArgOperand(1)), Flags));
6127     return;
6128   case Intrinsic::minimum:
6129     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6130                              getValue(I.getArgOperand(0)).getValueType(),
6131                              getValue(I.getArgOperand(0)),
6132                              getValue(I.getArgOperand(1)), Flags));
6133     return;
6134   case Intrinsic::maximum:
6135     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6136                              getValue(I.getArgOperand(0)).getValueType(),
6137                              getValue(I.getArgOperand(0)),
6138                              getValue(I.getArgOperand(1)), Flags));
6139     return;
6140   case Intrinsic::copysign:
6141     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6142                              getValue(I.getArgOperand(0)).getValueType(),
6143                              getValue(I.getArgOperand(0)),
6144                              getValue(I.getArgOperand(1)), Flags));
6145     return;
6146   case Intrinsic::fma:
6147     setValue(&I, DAG.getNode(
6148                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6149                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6150                      getValue(I.getArgOperand(2)), Flags));
6151     return;
6152 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6153   case Intrinsic::INTRINSIC:
6154 #include "llvm/IR/ConstrainedOps.def"
6155     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6156     return;
6157 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6158 #include "llvm/IR/VPIntrinsics.def"
6159     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6160     return;
6161   case Intrinsic::fmuladd: {
6162     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6163     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6164         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6165       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6166                                getValue(I.getArgOperand(0)).getValueType(),
6167                                getValue(I.getArgOperand(0)),
6168                                getValue(I.getArgOperand(1)),
6169                                getValue(I.getArgOperand(2)), Flags));
6170     } else {
6171       // TODO: Intrinsic calls should have fast-math-flags.
6172       SDValue Mul = DAG.getNode(
6173           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6174           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6175       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6176                                 getValue(I.getArgOperand(0)).getValueType(),
6177                                 Mul, getValue(I.getArgOperand(2)), Flags);
6178       setValue(&I, Add);
6179     }
6180     return;
6181   }
6182   case Intrinsic::convert_to_fp16:
6183     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6184                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6185                                          getValue(I.getArgOperand(0)),
6186                                          DAG.getTargetConstant(0, sdl,
6187                                                                MVT::i32))));
6188     return;
6189   case Intrinsic::convert_from_fp16:
6190     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6191                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6192                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6193                                          getValue(I.getArgOperand(0)))));
6194     return;
6195   case Intrinsic::fptosi_sat: {
6196     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6197     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6198     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type,
6199                              getValue(I.getArgOperand(0)), SatW));
6200     return;
6201   }
6202   case Intrinsic::fptoui_sat: {
6203     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6204     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6205     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type,
6206                              getValue(I.getArgOperand(0)), SatW));
6207     return;
6208   }
6209   case Intrinsic::pcmarker: {
6210     SDValue Tmp = getValue(I.getArgOperand(0));
6211     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6212     return;
6213   }
6214   case Intrinsic::readcyclecounter: {
6215     SDValue Op = getRoot();
6216     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6217                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6218     setValue(&I, Res);
6219     DAG.setRoot(Res.getValue(1));
6220     return;
6221   }
6222   case Intrinsic::bitreverse:
6223     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6224                              getValue(I.getArgOperand(0)).getValueType(),
6225                              getValue(I.getArgOperand(0))));
6226     return;
6227   case Intrinsic::bswap:
6228     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6229                              getValue(I.getArgOperand(0)).getValueType(),
6230                              getValue(I.getArgOperand(0))));
6231     return;
6232   case Intrinsic::cttz: {
6233     SDValue Arg = getValue(I.getArgOperand(0));
6234     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6235     EVT Ty = Arg.getValueType();
6236     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6237                              sdl, Ty, Arg));
6238     return;
6239   }
6240   case Intrinsic::ctlz: {
6241     SDValue Arg = getValue(I.getArgOperand(0));
6242     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6243     EVT Ty = Arg.getValueType();
6244     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6245                              sdl, Ty, Arg));
6246     return;
6247   }
6248   case Intrinsic::ctpop: {
6249     SDValue Arg = getValue(I.getArgOperand(0));
6250     EVT Ty = Arg.getValueType();
6251     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6252     return;
6253   }
6254   case Intrinsic::fshl:
6255   case Intrinsic::fshr: {
6256     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6257     SDValue X = getValue(I.getArgOperand(0));
6258     SDValue Y = getValue(I.getArgOperand(1));
6259     SDValue Z = getValue(I.getArgOperand(2));
6260     EVT VT = X.getValueType();
6261 
6262     if (X == Y) {
6263       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6264       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6265     } else {
6266       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6267       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6268     }
6269     return;
6270   }
6271   case Intrinsic::sadd_sat: {
6272     SDValue Op1 = getValue(I.getArgOperand(0));
6273     SDValue Op2 = getValue(I.getArgOperand(1));
6274     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6275     return;
6276   }
6277   case Intrinsic::uadd_sat: {
6278     SDValue Op1 = getValue(I.getArgOperand(0));
6279     SDValue Op2 = getValue(I.getArgOperand(1));
6280     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6281     return;
6282   }
6283   case Intrinsic::ssub_sat: {
6284     SDValue Op1 = getValue(I.getArgOperand(0));
6285     SDValue Op2 = getValue(I.getArgOperand(1));
6286     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6287     return;
6288   }
6289   case Intrinsic::usub_sat: {
6290     SDValue Op1 = getValue(I.getArgOperand(0));
6291     SDValue Op2 = getValue(I.getArgOperand(1));
6292     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6293     return;
6294   }
6295   case Intrinsic::sshl_sat: {
6296     SDValue Op1 = getValue(I.getArgOperand(0));
6297     SDValue Op2 = getValue(I.getArgOperand(1));
6298     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6299     return;
6300   }
6301   case Intrinsic::ushl_sat: {
6302     SDValue Op1 = getValue(I.getArgOperand(0));
6303     SDValue Op2 = getValue(I.getArgOperand(1));
6304     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6305     return;
6306   }
6307   case Intrinsic::smul_fix:
6308   case Intrinsic::umul_fix:
6309   case Intrinsic::smul_fix_sat:
6310   case Intrinsic::umul_fix_sat: {
6311     SDValue Op1 = getValue(I.getArgOperand(0));
6312     SDValue Op2 = getValue(I.getArgOperand(1));
6313     SDValue Op3 = getValue(I.getArgOperand(2));
6314     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6315                              Op1.getValueType(), Op1, Op2, Op3));
6316     return;
6317   }
6318   case Intrinsic::sdiv_fix:
6319   case Intrinsic::udiv_fix:
6320   case Intrinsic::sdiv_fix_sat:
6321   case Intrinsic::udiv_fix_sat: {
6322     SDValue Op1 = getValue(I.getArgOperand(0));
6323     SDValue Op2 = getValue(I.getArgOperand(1));
6324     SDValue Op3 = getValue(I.getArgOperand(2));
6325     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6326                               Op1, Op2, Op3, DAG, TLI));
6327     return;
6328   }
6329   case Intrinsic::smax: {
6330     SDValue Op1 = getValue(I.getArgOperand(0));
6331     SDValue Op2 = getValue(I.getArgOperand(1));
6332     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6333     return;
6334   }
6335   case Intrinsic::smin: {
6336     SDValue Op1 = getValue(I.getArgOperand(0));
6337     SDValue Op2 = getValue(I.getArgOperand(1));
6338     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6339     return;
6340   }
6341   case Intrinsic::umax: {
6342     SDValue Op1 = getValue(I.getArgOperand(0));
6343     SDValue Op2 = getValue(I.getArgOperand(1));
6344     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6345     return;
6346   }
6347   case Intrinsic::umin: {
6348     SDValue Op1 = getValue(I.getArgOperand(0));
6349     SDValue Op2 = getValue(I.getArgOperand(1));
6350     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6351     return;
6352   }
6353   case Intrinsic::abs: {
6354     // TODO: Preserve "int min is poison" arg in SDAG?
6355     SDValue Op1 = getValue(I.getArgOperand(0));
6356     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6357     return;
6358   }
6359   case Intrinsic::stacksave: {
6360     SDValue Op = getRoot();
6361     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6362     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6363     setValue(&I, Res);
6364     DAG.setRoot(Res.getValue(1));
6365     return;
6366   }
6367   case Intrinsic::stackrestore:
6368     Res = getValue(I.getArgOperand(0));
6369     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6370     return;
6371   case Intrinsic::get_dynamic_area_offset: {
6372     SDValue Op = getRoot();
6373     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6374     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6375     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6376     // target.
6377     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6378       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6379                          " intrinsic!");
6380     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6381                       Op);
6382     DAG.setRoot(Op);
6383     setValue(&I, Res);
6384     return;
6385   }
6386   case Intrinsic::stackguard: {
6387     MachineFunction &MF = DAG.getMachineFunction();
6388     const Module &M = *MF.getFunction().getParent();
6389     SDValue Chain = getRoot();
6390     if (TLI.useLoadStackGuardNode()) {
6391       Res = getLoadStackGuard(DAG, sdl, Chain);
6392     } else {
6393       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6394       const Value *Global = TLI.getSDagStackGuard(M);
6395       Align Align = DL->getPrefTypeAlign(Global->getType());
6396       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6397                         MachinePointerInfo(Global, 0), Align,
6398                         MachineMemOperand::MOVolatile);
6399     }
6400     if (TLI.useStackGuardXorFP())
6401       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6402     DAG.setRoot(Chain);
6403     setValue(&I, Res);
6404     return;
6405   }
6406   case Intrinsic::stackprotector: {
6407     // Emit code into the DAG to store the stack guard onto the stack.
6408     MachineFunction &MF = DAG.getMachineFunction();
6409     MachineFrameInfo &MFI = MF.getFrameInfo();
6410     SDValue Src, Chain = getRoot();
6411 
6412     if (TLI.useLoadStackGuardNode())
6413       Src = getLoadStackGuard(DAG, sdl, Chain);
6414     else
6415       Src = getValue(I.getArgOperand(0));   // The guard's value.
6416 
6417     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6418 
6419     int FI = FuncInfo.StaticAllocaMap[Slot];
6420     MFI.setStackProtectorIndex(FI);
6421     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6422 
6423     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6424 
6425     // Store the stack protector onto the stack.
6426     Res = DAG.getStore(
6427         Chain, sdl, Src, FIN,
6428         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6429         MaybeAlign(), MachineMemOperand::MOVolatile);
6430     setValue(&I, Res);
6431     DAG.setRoot(Res);
6432     return;
6433   }
6434   case Intrinsic::objectsize:
6435     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6436 
6437   case Intrinsic::is_constant:
6438     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6439 
6440   case Intrinsic::annotation:
6441   case Intrinsic::ptr_annotation:
6442   case Intrinsic::launder_invariant_group:
6443   case Intrinsic::strip_invariant_group:
6444     // Drop the intrinsic, but forward the value
6445     setValue(&I, getValue(I.getOperand(0)));
6446     return;
6447   case Intrinsic::assume:
6448   case Intrinsic::var_annotation:
6449   case Intrinsic::sideeffect:
6450     // Discard annotate attributes, assumptions, and artificial side-effects.
6451     return;
6452 
6453   case Intrinsic::codeview_annotation: {
6454     // Emit a label associated with this metadata.
6455     MachineFunction &MF = DAG.getMachineFunction();
6456     MCSymbol *Label =
6457         MF.getMMI().getContext().createTempSymbol("annotation", true);
6458     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6459     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6460     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6461     DAG.setRoot(Res);
6462     return;
6463   }
6464 
6465   case Intrinsic::init_trampoline: {
6466     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6467 
6468     SDValue Ops[6];
6469     Ops[0] = getRoot();
6470     Ops[1] = getValue(I.getArgOperand(0));
6471     Ops[2] = getValue(I.getArgOperand(1));
6472     Ops[3] = getValue(I.getArgOperand(2));
6473     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6474     Ops[5] = DAG.getSrcValue(F);
6475 
6476     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6477 
6478     DAG.setRoot(Res);
6479     return;
6480   }
6481   case Intrinsic::adjust_trampoline:
6482     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6483                              TLI.getPointerTy(DAG.getDataLayout()),
6484                              getValue(I.getArgOperand(0))));
6485     return;
6486   case Intrinsic::gcroot: {
6487     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6488            "only valid in functions with gc specified, enforced by Verifier");
6489     assert(GFI && "implied by previous");
6490     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6491     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6492 
6493     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6494     GFI->addStackRoot(FI->getIndex(), TypeMap);
6495     return;
6496   }
6497   case Intrinsic::gcread:
6498   case Intrinsic::gcwrite:
6499     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6500   case Intrinsic::flt_rounds:
6501     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6502     setValue(&I, Res);
6503     DAG.setRoot(Res.getValue(1));
6504     return;
6505 
6506   case Intrinsic::expect:
6507     // Just replace __builtin_expect(exp, c) with EXP.
6508     setValue(&I, getValue(I.getArgOperand(0)));
6509     return;
6510 
6511   case Intrinsic::ubsantrap:
6512   case Intrinsic::debugtrap:
6513   case Intrinsic::trap: {
6514     StringRef TrapFuncName =
6515         I.getAttributes()
6516             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6517             .getValueAsString();
6518     if (TrapFuncName.empty()) {
6519       switch (Intrinsic) {
6520       case Intrinsic::trap:
6521         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6522         break;
6523       case Intrinsic::debugtrap:
6524         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6525         break;
6526       case Intrinsic::ubsantrap:
6527         DAG.setRoot(DAG.getNode(
6528             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6529             DAG.getTargetConstant(
6530                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6531                 MVT::i32)));
6532         break;
6533       default: llvm_unreachable("unknown trap intrinsic");
6534       }
6535       return;
6536     }
6537     TargetLowering::ArgListTy Args;
6538     if (Intrinsic == Intrinsic::ubsantrap) {
6539       Args.push_back(TargetLoweringBase::ArgListEntry());
6540       Args[0].Val = I.getArgOperand(0);
6541       Args[0].Node = getValue(Args[0].Val);
6542       Args[0].Ty = Args[0].Val->getType();
6543     }
6544 
6545     TargetLowering::CallLoweringInfo CLI(DAG);
6546     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6547         CallingConv::C, I.getType(),
6548         DAG.getExternalSymbol(TrapFuncName.data(),
6549                               TLI.getPointerTy(DAG.getDataLayout())),
6550         std::move(Args));
6551 
6552     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6553     DAG.setRoot(Result.second);
6554     return;
6555   }
6556 
6557   case Intrinsic::uadd_with_overflow:
6558   case Intrinsic::sadd_with_overflow:
6559   case Intrinsic::usub_with_overflow:
6560   case Intrinsic::ssub_with_overflow:
6561   case Intrinsic::umul_with_overflow:
6562   case Intrinsic::smul_with_overflow: {
6563     ISD::NodeType Op;
6564     switch (Intrinsic) {
6565     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6566     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6567     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6568     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6569     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6570     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6571     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6572     }
6573     SDValue Op1 = getValue(I.getArgOperand(0));
6574     SDValue Op2 = getValue(I.getArgOperand(1));
6575 
6576     EVT ResultVT = Op1.getValueType();
6577     EVT OverflowVT = MVT::i1;
6578     if (ResultVT.isVector())
6579       OverflowVT = EVT::getVectorVT(
6580           *Context, OverflowVT, ResultVT.getVectorNumElements());
6581 
6582     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6583     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6584     return;
6585   }
6586   case Intrinsic::prefetch: {
6587     SDValue Ops[5];
6588     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6589     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6590     Ops[0] = DAG.getRoot();
6591     Ops[1] = getValue(I.getArgOperand(0));
6592     Ops[2] = getValue(I.getArgOperand(1));
6593     Ops[3] = getValue(I.getArgOperand(2));
6594     Ops[4] = getValue(I.getArgOperand(3));
6595     SDValue Result = DAG.getMemIntrinsicNode(
6596         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6597         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6598         /* align */ None, Flags);
6599 
6600     // Chain the prefetch in parallell with any pending loads, to stay out of
6601     // the way of later optimizations.
6602     PendingLoads.push_back(Result);
6603     Result = getRoot();
6604     DAG.setRoot(Result);
6605     return;
6606   }
6607   case Intrinsic::lifetime_start:
6608   case Intrinsic::lifetime_end: {
6609     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6610     // Stack coloring is not enabled in O0, discard region information.
6611     if (TM.getOptLevel() == CodeGenOpt::None)
6612       return;
6613 
6614     const int64_t ObjectSize =
6615         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6616     Value *const ObjectPtr = I.getArgOperand(1);
6617     SmallVector<const Value *, 4> Allocas;
6618     getUnderlyingObjects(ObjectPtr, Allocas);
6619 
6620     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6621            E = Allocas.end(); Object != E; ++Object) {
6622       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6623 
6624       // Could not find an Alloca.
6625       if (!LifetimeObject)
6626         continue;
6627 
6628       // First check that the Alloca is static, otherwise it won't have a
6629       // valid frame index.
6630       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6631       if (SI == FuncInfo.StaticAllocaMap.end())
6632         return;
6633 
6634       const int FrameIndex = SI->second;
6635       int64_t Offset;
6636       if (GetPointerBaseWithConstantOffset(
6637               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6638         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6639       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6640                                 Offset);
6641       DAG.setRoot(Res);
6642     }
6643     return;
6644   }
6645   case Intrinsic::pseudoprobe: {
6646     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6647     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6648     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6649     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6650     DAG.setRoot(Res);
6651     return;
6652   }
6653   case Intrinsic::invariant_start:
6654     // Discard region information.
6655     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6656     return;
6657   case Intrinsic::invariant_end:
6658     // Discard region information.
6659     return;
6660   case Intrinsic::clear_cache:
6661     /// FunctionName may be null.
6662     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6663       lowerCallToExternalSymbol(I, FunctionName);
6664     return;
6665   case Intrinsic::donothing:
6666     // ignore
6667     return;
6668   case Intrinsic::experimental_stackmap:
6669     visitStackmap(I);
6670     return;
6671   case Intrinsic::experimental_patchpoint_void:
6672   case Intrinsic::experimental_patchpoint_i64:
6673     visitPatchpoint(I);
6674     return;
6675   case Intrinsic::experimental_gc_statepoint:
6676     LowerStatepoint(cast<GCStatepointInst>(I));
6677     return;
6678   case Intrinsic::experimental_gc_result:
6679     visitGCResult(cast<GCResultInst>(I));
6680     return;
6681   case Intrinsic::experimental_gc_relocate:
6682     visitGCRelocate(cast<GCRelocateInst>(I));
6683     return;
6684   case Intrinsic::instrprof_increment:
6685     llvm_unreachable("instrprof failed to lower an increment");
6686   case Intrinsic::instrprof_value_profile:
6687     llvm_unreachable("instrprof failed to lower a value profiling call");
6688   case Intrinsic::localescape: {
6689     MachineFunction &MF = DAG.getMachineFunction();
6690     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6691 
6692     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6693     // is the same on all targets.
6694     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6695       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6696       if (isa<ConstantPointerNull>(Arg))
6697         continue; // Skip null pointers. They represent a hole in index space.
6698       AllocaInst *Slot = cast<AllocaInst>(Arg);
6699       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6700              "can only escape static allocas");
6701       int FI = FuncInfo.StaticAllocaMap[Slot];
6702       MCSymbol *FrameAllocSym =
6703           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6704               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6705       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6706               TII->get(TargetOpcode::LOCAL_ESCAPE))
6707           .addSym(FrameAllocSym)
6708           .addFrameIndex(FI);
6709     }
6710 
6711     return;
6712   }
6713 
6714   case Intrinsic::localrecover: {
6715     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6716     MachineFunction &MF = DAG.getMachineFunction();
6717 
6718     // Get the symbol that defines the frame offset.
6719     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6720     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6721     unsigned IdxVal =
6722         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6723     MCSymbol *FrameAllocSym =
6724         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6725             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6726 
6727     Value *FP = I.getArgOperand(1);
6728     SDValue FPVal = getValue(FP);
6729     EVT PtrVT = FPVal.getValueType();
6730 
6731     // Create a MCSymbol for the label to avoid any target lowering
6732     // that would make this PC relative.
6733     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6734     SDValue OffsetVal =
6735         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6736 
6737     // Add the offset to the FP.
6738     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6739     setValue(&I, Add);
6740 
6741     return;
6742   }
6743 
6744   case Intrinsic::eh_exceptionpointer:
6745   case Intrinsic::eh_exceptioncode: {
6746     // Get the exception pointer vreg, copy from it, and resize it to fit.
6747     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6748     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6749     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6750     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6751     SDValue N =
6752         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6753     if (Intrinsic == Intrinsic::eh_exceptioncode)
6754       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6755     setValue(&I, N);
6756     return;
6757   }
6758   case Intrinsic::xray_customevent: {
6759     // Here we want to make sure that the intrinsic behaves as if it has a
6760     // specific calling convention, and only for x86_64.
6761     // FIXME: Support other platforms later.
6762     const auto &Triple = DAG.getTarget().getTargetTriple();
6763     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6764       return;
6765 
6766     SDLoc DL = getCurSDLoc();
6767     SmallVector<SDValue, 8> Ops;
6768 
6769     // We want to say that we always want the arguments in registers.
6770     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6771     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6772     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6773     SDValue Chain = getRoot();
6774     Ops.push_back(LogEntryVal);
6775     Ops.push_back(StrSizeVal);
6776     Ops.push_back(Chain);
6777 
6778     // We need to enforce the calling convention for the callsite, so that
6779     // argument ordering is enforced correctly, and that register allocation can
6780     // see that some registers may be assumed clobbered and have to preserve
6781     // them across calls to the intrinsic.
6782     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6783                                            DL, NodeTys, Ops);
6784     SDValue patchableNode = SDValue(MN, 0);
6785     DAG.setRoot(patchableNode);
6786     setValue(&I, patchableNode);
6787     return;
6788   }
6789   case Intrinsic::xray_typedevent: {
6790     // Here we want to make sure that the intrinsic behaves as if it has a
6791     // specific calling convention, and only for x86_64.
6792     // FIXME: Support other platforms later.
6793     const auto &Triple = DAG.getTarget().getTargetTriple();
6794     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6795       return;
6796 
6797     SDLoc DL = getCurSDLoc();
6798     SmallVector<SDValue, 8> Ops;
6799 
6800     // We want to say that we always want the arguments in registers.
6801     // It's unclear to me how manipulating the selection DAG here forces callers
6802     // to provide arguments in registers instead of on the stack.
6803     SDValue LogTypeId = getValue(I.getArgOperand(0));
6804     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6805     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6806     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6807     SDValue Chain = getRoot();
6808     Ops.push_back(LogTypeId);
6809     Ops.push_back(LogEntryVal);
6810     Ops.push_back(StrSizeVal);
6811     Ops.push_back(Chain);
6812 
6813     // We need to enforce the calling convention for the callsite, so that
6814     // argument ordering is enforced correctly, and that register allocation can
6815     // see that some registers may be assumed clobbered and have to preserve
6816     // them across calls to the intrinsic.
6817     MachineSDNode *MN = DAG.getMachineNode(
6818         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6819     SDValue patchableNode = SDValue(MN, 0);
6820     DAG.setRoot(patchableNode);
6821     setValue(&I, patchableNode);
6822     return;
6823   }
6824   case Intrinsic::experimental_deoptimize:
6825     LowerDeoptimizeCall(&I);
6826     return;
6827 
6828   case Intrinsic::vector_reduce_fadd:
6829   case Intrinsic::vector_reduce_fmul:
6830   case Intrinsic::vector_reduce_add:
6831   case Intrinsic::vector_reduce_mul:
6832   case Intrinsic::vector_reduce_and:
6833   case Intrinsic::vector_reduce_or:
6834   case Intrinsic::vector_reduce_xor:
6835   case Intrinsic::vector_reduce_smax:
6836   case Intrinsic::vector_reduce_smin:
6837   case Intrinsic::vector_reduce_umax:
6838   case Intrinsic::vector_reduce_umin:
6839   case Intrinsic::vector_reduce_fmax:
6840   case Intrinsic::vector_reduce_fmin:
6841     visitVectorReduce(I, Intrinsic);
6842     return;
6843 
6844   case Intrinsic::icall_branch_funnel: {
6845     SmallVector<SDValue, 16> Ops;
6846     Ops.push_back(getValue(I.getArgOperand(0)));
6847 
6848     int64_t Offset;
6849     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6850         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6851     if (!Base)
6852       report_fatal_error(
6853           "llvm.icall.branch.funnel operand must be a GlobalValue");
6854     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6855 
6856     struct BranchFunnelTarget {
6857       int64_t Offset;
6858       SDValue Target;
6859     };
6860     SmallVector<BranchFunnelTarget, 8> Targets;
6861 
6862     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6863       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6864           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6865       if (ElemBase != Base)
6866         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6867                            "to the same GlobalValue");
6868 
6869       SDValue Val = getValue(I.getArgOperand(Op + 1));
6870       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6871       if (!GA)
6872         report_fatal_error(
6873             "llvm.icall.branch.funnel operand must be a GlobalValue");
6874       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6875                                      GA->getGlobal(), getCurSDLoc(),
6876                                      Val.getValueType(), GA->getOffset())});
6877     }
6878     llvm::sort(Targets,
6879                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6880                  return T1.Offset < T2.Offset;
6881                });
6882 
6883     for (auto &T : Targets) {
6884       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6885       Ops.push_back(T.Target);
6886     }
6887 
6888     Ops.push_back(DAG.getRoot()); // Chain
6889     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6890                                  getCurSDLoc(), MVT::Other, Ops),
6891               0);
6892     DAG.setRoot(N);
6893     setValue(&I, N);
6894     HasTailCall = true;
6895     return;
6896   }
6897 
6898   case Intrinsic::wasm_landingpad_index:
6899     // Information this intrinsic contained has been transferred to
6900     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6901     // delete it now.
6902     return;
6903 
6904   case Intrinsic::aarch64_settag:
6905   case Intrinsic::aarch64_settag_zero: {
6906     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6907     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6908     SDValue Val = TSI.EmitTargetCodeForSetTag(
6909         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6910         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6911         ZeroMemory);
6912     DAG.setRoot(Val);
6913     setValue(&I, Val);
6914     return;
6915   }
6916   case Intrinsic::ptrmask: {
6917     SDValue Ptr = getValue(I.getOperand(0));
6918     SDValue Const = getValue(I.getOperand(1));
6919 
6920     EVT PtrVT = Ptr.getValueType();
6921     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6922                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6923     return;
6924   }
6925   case Intrinsic::get_active_lane_mask: {
6926     auto DL = getCurSDLoc();
6927     SDValue Index = getValue(I.getOperand(0));
6928     SDValue TripCount = getValue(I.getOperand(1));
6929     Type *ElementTy = I.getOperand(0)->getType();
6930     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6931     unsigned VecWidth = VT.getVectorNumElements();
6932 
6933     SmallVector<SDValue, 16> OpsTripCount;
6934     SmallVector<SDValue, 16> OpsIndex;
6935     SmallVector<SDValue, 16> OpsStepConstants;
6936     for (unsigned i = 0; i < VecWidth; i++) {
6937       OpsTripCount.push_back(TripCount);
6938       OpsIndex.push_back(Index);
6939       OpsStepConstants.push_back(
6940           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6941     }
6942 
6943     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6944 
6945     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6946     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6947     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6948     SDValue VectorInduction = DAG.getNode(
6949        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6950     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
6951     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6952                                  VectorTripCount, ISD::CondCode::SETULT);
6953     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6954                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6955                              SetCC));
6956     return;
6957   }
6958   case Intrinsic::experimental_vector_insert: {
6959     auto DL = getCurSDLoc();
6960 
6961     SDValue Vec = getValue(I.getOperand(0));
6962     SDValue SubVec = getValue(I.getOperand(1));
6963     SDValue Index = getValue(I.getOperand(2));
6964     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6965     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
6966                              Index));
6967     return;
6968   }
6969   case Intrinsic::experimental_vector_extract: {
6970     auto DL = getCurSDLoc();
6971 
6972     SDValue Vec = getValue(I.getOperand(0));
6973     SDValue Index = getValue(I.getOperand(1));
6974     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6975 
6976     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
6977     return;
6978   }
6979   }
6980 }
6981 
6982 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6983     const ConstrainedFPIntrinsic &FPI) {
6984   SDLoc sdl = getCurSDLoc();
6985 
6986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6987   SmallVector<EVT, 4> ValueVTs;
6988   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6989   ValueVTs.push_back(MVT::Other); // Out chain
6990 
6991   // We do not need to serialize constrained FP intrinsics against
6992   // each other or against (nonvolatile) loads, so they can be
6993   // chained like loads.
6994   SDValue Chain = DAG.getRoot();
6995   SmallVector<SDValue, 4> Opers;
6996   Opers.push_back(Chain);
6997   if (FPI.isUnaryOp()) {
6998     Opers.push_back(getValue(FPI.getArgOperand(0)));
6999   } else if (FPI.isTernaryOp()) {
7000     Opers.push_back(getValue(FPI.getArgOperand(0)));
7001     Opers.push_back(getValue(FPI.getArgOperand(1)));
7002     Opers.push_back(getValue(FPI.getArgOperand(2)));
7003   } else {
7004     Opers.push_back(getValue(FPI.getArgOperand(0)));
7005     Opers.push_back(getValue(FPI.getArgOperand(1)));
7006   }
7007 
7008   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7009     assert(Result.getNode()->getNumValues() == 2);
7010 
7011     // Push node to the appropriate list so that future instructions can be
7012     // chained up correctly.
7013     SDValue OutChain = Result.getValue(1);
7014     switch (EB) {
7015     case fp::ExceptionBehavior::ebIgnore:
7016       // The only reason why ebIgnore nodes still need to be chained is that
7017       // they might depend on the current rounding mode, and therefore must
7018       // not be moved across instruction that may change that mode.
7019       LLVM_FALLTHROUGH;
7020     case fp::ExceptionBehavior::ebMayTrap:
7021       // These must not be moved across calls or instructions that may change
7022       // floating-point exception masks.
7023       PendingConstrainedFP.push_back(OutChain);
7024       break;
7025     case fp::ExceptionBehavior::ebStrict:
7026       // These must not be moved across calls or instructions that may change
7027       // floating-point exception masks or read floating-point exception flags.
7028       // In addition, they cannot be optimized out even if unused.
7029       PendingConstrainedFPStrict.push_back(OutChain);
7030       break;
7031     }
7032   };
7033 
7034   SDVTList VTs = DAG.getVTList(ValueVTs);
7035   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7036 
7037   SDNodeFlags Flags;
7038   if (EB == fp::ExceptionBehavior::ebIgnore)
7039     Flags.setNoFPExcept(true);
7040 
7041   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7042     Flags.copyFMF(*FPOp);
7043 
7044   unsigned Opcode;
7045   switch (FPI.getIntrinsicID()) {
7046   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7047 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7048   case Intrinsic::INTRINSIC:                                                   \
7049     Opcode = ISD::STRICT_##DAGN;                                               \
7050     break;
7051 #include "llvm/IR/ConstrainedOps.def"
7052   case Intrinsic::experimental_constrained_fmuladd: {
7053     Opcode = ISD::STRICT_FMA;
7054     // Break fmuladd into fmul and fadd.
7055     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7056         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7057                                         ValueVTs[0])) {
7058       Opers.pop_back();
7059       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7060       pushOutChain(Mul, EB);
7061       Opcode = ISD::STRICT_FADD;
7062       Opers.clear();
7063       Opers.push_back(Mul.getValue(1));
7064       Opers.push_back(Mul.getValue(0));
7065       Opers.push_back(getValue(FPI.getArgOperand(2)));
7066     }
7067     break;
7068   }
7069   }
7070 
7071   // A few strict DAG nodes carry additional operands that are not
7072   // set up by the default code above.
7073   switch (Opcode) {
7074   default: break;
7075   case ISD::STRICT_FP_ROUND:
7076     Opers.push_back(
7077         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7078     break;
7079   case ISD::STRICT_FSETCC:
7080   case ISD::STRICT_FSETCCS: {
7081     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7082     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7083     break;
7084   }
7085   }
7086 
7087   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7088   pushOutChain(Result, EB);
7089 
7090   SDValue FPResult = Result.getValue(0);
7091   setValue(&FPI, FPResult);
7092 }
7093 
7094 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7095   Optional<unsigned> ResOPC;
7096   switch (VPIntrin.getIntrinsicID()) {
7097 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7098 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7099 #define END_REGISTER_VP_INTRINSIC(...) break;
7100 #include "llvm/IR/VPIntrinsics.def"
7101   }
7102 
7103   if (!ResOPC.hasValue())
7104     llvm_unreachable(
7105         "Inconsistency: no SDNode available for this VPIntrinsic!");
7106 
7107   return ResOPC.getValue();
7108 }
7109 
7110 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7111     const VPIntrinsic &VPIntrin) {
7112   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7113 
7114   SmallVector<EVT, 4> ValueVTs;
7115   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7116   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7117   SDVTList VTs = DAG.getVTList(ValueVTs);
7118 
7119   // Request operands.
7120   SmallVector<SDValue, 7> OpValues;
7121   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7122     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7123 
7124   SDLoc DL = getCurSDLoc();
7125   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7126   setValue(&VPIntrin, Result);
7127 }
7128 
7129 std::pair<SDValue, SDValue>
7130 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7131                                     const BasicBlock *EHPadBB) {
7132   MachineFunction &MF = DAG.getMachineFunction();
7133   MachineModuleInfo &MMI = MF.getMMI();
7134   MCSymbol *BeginLabel = nullptr;
7135 
7136   if (EHPadBB) {
7137     // Insert a label before the invoke call to mark the try range.  This can be
7138     // used to detect deletion of the invoke via the MachineModuleInfo.
7139     BeginLabel = MMI.getContext().createTempSymbol();
7140 
7141     // For SjLj, keep track of which landing pads go with which invokes
7142     // so as to maintain the ordering of pads in the LSDA.
7143     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7144     if (CallSiteIndex) {
7145       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7146       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7147 
7148       // Now that the call site is handled, stop tracking it.
7149       MMI.setCurrentCallSite(0);
7150     }
7151 
7152     // Both PendingLoads and PendingExports must be flushed here;
7153     // this call might not return.
7154     (void)getRoot();
7155     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7156 
7157     CLI.setChain(getRoot());
7158   }
7159   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7160   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7161 
7162   assert((CLI.IsTailCall || Result.second.getNode()) &&
7163          "Non-null chain expected with non-tail call!");
7164   assert((Result.second.getNode() || !Result.first.getNode()) &&
7165          "Null value expected with tail call!");
7166 
7167   if (!Result.second.getNode()) {
7168     // As a special case, a null chain means that a tail call has been emitted
7169     // and the DAG root is already updated.
7170     HasTailCall = true;
7171 
7172     // Since there's no actual continuation from this block, nothing can be
7173     // relying on us setting vregs for them.
7174     PendingExports.clear();
7175   } else {
7176     DAG.setRoot(Result.second);
7177   }
7178 
7179   if (EHPadBB) {
7180     // Insert a label at the end of the invoke call to mark the try range.  This
7181     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7182     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7183     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7184 
7185     // Inform MachineModuleInfo of range.
7186     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7187     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7188     // actually use outlined funclets and their LSDA info style.
7189     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7190       assert(CLI.CB);
7191       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7192       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7193     } else if (!isScopedEHPersonality(Pers)) {
7194       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7195     }
7196   }
7197 
7198   return Result;
7199 }
7200 
7201 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7202                                       bool isTailCall,
7203                                       const BasicBlock *EHPadBB) {
7204   auto &DL = DAG.getDataLayout();
7205   FunctionType *FTy = CB.getFunctionType();
7206   Type *RetTy = CB.getType();
7207 
7208   TargetLowering::ArgListTy Args;
7209   Args.reserve(CB.arg_size());
7210 
7211   const Value *SwiftErrorVal = nullptr;
7212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7213 
7214   if (isTailCall) {
7215     // Avoid emitting tail calls in functions with the disable-tail-calls
7216     // attribute.
7217     auto *Caller = CB.getParent()->getParent();
7218     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7219         "true")
7220       isTailCall = false;
7221 
7222     // We can't tail call inside a function with a swifterror argument. Lowering
7223     // does not support this yet. It would have to move into the swifterror
7224     // register before the call.
7225     if (TLI.supportSwiftError() &&
7226         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7227       isTailCall = false;
7228   }
7229 
7230   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7231     TargetLowering::ArgListEntry Entry;
7232     const Value *V = *I;
7233 
7234     // Skip empty types
7235     if (V->getType()->isEmptyTy())
7236       continue;
7237 
7238     SDValue ArgNode = getValue(V);
7239     Entry.Node = ArgNode; Entry.Ty = V->getType();
7240 
7241     Entry.setAttributes(&CB, I - CB.arg_begin());
7242 
7243     // Use swifterror virtual register as input to the call.
7244     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7245       SwiftErrorVal = V;
7246       // We find the virtual register for the actual swifterror argument.
7247       // Instead of using the Value, we use the virtual register instead.
7248       Entry.Node =
7249           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7250                           EVT(TLI.getPointerTy(DL)));
7251     }
7252 
7253     Args.push_back(Entry);
7254 
7255     // If we have an explicit sret argument that is an Instruction, (i.e., it
7256     // might point to function-local memory), we can't meaningfully tail-call.
7257     if (Entry.IsSRet && isa<Instruction>(V))
7258       isTailCall = false;
7259   }
7260 
7261   // If call site has a cfguardtarget operand bundle, create and add an
7262   // additional ArgListEntry.
7263   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7264     TargetLowering::ArgListEntry Entry;
7265     Value *V = Bundle->Inputs[0];
7266     SDValue ArgNode = getValue(V);
7267     Entry.Node = ArgNode;
7268     Entry.Ty = V->getType();
7269     Entry.IsCFGuardTarget = true;
7270     Args.push_back(Entry);
7271   }
7272 
7273   // Check if target-independent constraints permit a tail call here.
7274   // Target-dependent constraints are checked within TLI->LowerCallTo.
7275   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7276     isTailCall = false;
7277 
7278   // Disable tail calls if there is an swifterror argument. Targets have not
7279   // been updated to support tail calls.
7280   if (TLI.supportSwiftError() && SwiftErrorVal)
7281     isTailCall = false;
7282 
7283   TargetLowering::CallLoweringInfo CLI(DAG);
7284   CLI.setDebugLoc(getCurSDLoc())
7285       .setChain(getRoot())
7286       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7287       .setTailCall(isTailCall)
7288       .setConvergent(CB.isConvergent())
7289       .setIsPreallocated(
7290           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7291   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7292 
7293   if (Result.first.getNode()) {
7294     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7295     setValue(&CB, Result.first);
7296   }
7297 
7298   // The last element of CLI.InVals has the SDValue for swifterror return.
7299   // Here we copy it to a virtual register and update SwiftErrorMap for
7300   // book-keeping.
7301   if (SwiftErrorVal && TLI.supportSwiftError()) {
7302     // Get the last element of InVals.
7303     SDValue Src = CLI.InVals.back();
7304     Register VReg =
7305         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7306     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7307     DAG.setRoot(CopyNode);
7308   }
7309 }
7310 
7311 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7312                              SelectionDAGBuilder &Builder) {
7313   // Check to see if this load can be trivially constant folded, e.g. if the
7314   // input is from a string literal.
7315   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7316     // Cast pointer to the type we really want to load.
7317     Type *LoadTy =
7318         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7319     if (LoadVT.isVector())
7320       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7321 
7322     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7323                                          PointerType::getUnqual(LoadTy));
7324 
7325     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7326             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7327       return Builder.getValue(LoadCst);
7328   }
7329 
7330   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7331   // still constant memory, the input chain can be the entry node.
7332   SDValue Root;
7333   bool ConstantMemory = false;
7334 
7335   // Do not serialize (non-volatile) loads of constant memory with anything.
7336   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7337     Root = Builder.DAG.getEntryNode();
7338     ConstantMemory = true;
7339   } else {
7340     // Do not serialize non-volatile loads against each other.
7341     Root = Builder.DAG.getRoot();
7342   }
7343 
7344   SDValue Ptr = Builder.getValue(PtrVal);
7345   SDValue LoadVal =
7346       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7347                           MachinePointerInfo(PtrVal), Align(1));
7348 
7349   if (!ConstantMemory)
7350     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7351   return LoadVal;
7352 }
7353 
7354 /// Record the value for an instruction that produces an integer result,
7355 /// converting the type where necessary.
7356 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7357                                                   SDValue Value,
7358                                                   bool IsSigned) {
7359   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7360                                                     I.getType(), true);
7361   if (IsSigned)
7362     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7363   else
7364     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7365   setValue(&I, Value);
7366 }
7367 
7368 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7369 /// true and lower it. Otherwise return false, and it will be lowered like a
7370 /// normal call.
7371 /// The caller already checked that \p I calls the appropriate LibFunc with a
7372 /// correct prototype.
7373 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7374   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7375   const Value *Size = I.getArgOperand(2);
7376   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7377   if (CSize && CSize->getZExtValue() == 0) {
7378     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7379                                                           I.getType(), true);
7380     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7381     return true;
7382   }
7383 
7384   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7385   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7386       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7387       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7388   if (Res.first.getNode()) {
7389     processIntegerCallValue(I, Res.first, true);
7390     PendingLoads.push_back(Res.second);
7391     return true;
7392   }
7393 
7394   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7395   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7396   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7397     return false;
7398 
7399   // If the target has a fast compare for the given size, it will return a
7400   // preferred load type for that size. Require that the load VT is legal and
7401   // that the target supports unaligned loads of that type. Otherwise, return
7402   // INVALID.
7403   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7404     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7405     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7406     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7407       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7408       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7409       // TODO: Check alignment of src and dest ptrs.
7410       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7411       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7412       if (!TLI.isTypeLegal(LVT) ||
7413           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7414           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7415         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7416     }
7417 
7418     return LVT;
7419   };
7420 
7421   // This turns into unaligned loads. We only do this if the target natively
7422   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7423   // we'll only produce a small number of byte loads.
7424   MVT LoadVT;
7425   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7426   switch (NumBitsToCompare) {
7427   default:
7428     return false;
7429   case 16:
7430     LoadVT = MVT::i16;
7431     break;
7432   case 32:
7433     LoadVT = MVT::i32;
7434     break;
7435   case 64:
7436   case 128:
7437   case 256:
7438     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7439     break;
7440   }
7441 
7442   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7443     return false;
7444 
7445   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7446   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7447 
7448   // Bitcast to a wide integer type if the loads are vectors.
7449   if (LoadVT.isVector()) {
7450     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7451     LoadL = DAG.getBitcast(CmpVT, LoadL);
7452     LoadR = DAG.getBitcast(CmpVT, LoadR);
7453   }
7454 
7455   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7456   processIntegerCallValue(I, Cmp, false);
7457   return true;
7458 }
7459 
7460 /// See if we can lower a memchr call into an optimized form. If so, return
7461 /// true and lower it. Otherwise return false, and it will be lowered like a
7462 /// normal call.
7463 /// The caller already checked that \p I calls the appropriate LibFunc with a
7464 /// correct prototype.
7465 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7466   const Value *Src = I.getArgOperand(0);
7467   const Value *Char = I.getArgOperand(1);
7468   const Value *Length = I.getArgOperand(2);
7469 
7470   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7471   std::pair<SDValue, SDValue> Res =
7472     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7473                                 getValue(Src), getValue(Char), getValue(Length),
7474                                 MachinePointerInfo(Src));
7475   if (Res.first.getNode()) {
7476     setValue(&I, Res.first);
7477     PendingLoads.push_back(Res.second);
7478     return true;
7479   }
7480 
7481   return false;
7482 }
7483 
7484 /// See if we can lower a mempcpy call into an optimized form. If so, return
7485 /// true and lower it. Otherwise return false, and it will be lowered like a
7486 /// normal call.
7487 /// The caller already checked that \p I calls the appropriate LibFunc with a
7488 /// correct prototype.
7489 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7490   SDValue Dst = getValue(I.getArgOperand(0));
7491   SDValue Src = getValue(I.getArgOperand(1));
7492   SDValue Size = getValue(I.getArgOperand(2));
7493 
7494   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7495   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7496   // DAG::getMemcpy needs Alignment to be defined.
7497   Align Alignment = std::min(DstAlign, SrcAlign);
7498 
7499   bool isVol = false;
7500   SDLoc sdl = getCurSDLoc();
7501 
7502   // In the mempcpy context we need to pass in a false value for isTailCall
7503   // because the return pointer needs to be adjusted by the size of
7504   // the copied memory.
7505   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7506   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7507                              /*isTailCall=*/false,
7508                              MachinePointerInfo(I.getArgOperand(0)),
7509                              MachinePointerInfo(I.getArgOperand(1)));
7510   assert(MC.getNode() != nullptr &&
7511          "** memcpy should not be lowered as TailCall in mempcpy context **");
7512   DAG.setRoot(MC);
7513 
7514   // Check if Size needs to be truncated or extended.
7515   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7516 
7517   // Adjust return pointer to point just past the last dst byte.
7518   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7519                                     Dst, Size);
7520   setValue(&I, DstPlusSize);
7521   return true;
7522 }
7523 
7524 /// See if we can lower a strcpy call into an optimized form.  If so, return
7525 /// true and lower it, otherwise return false and it will be lowered like a
7526 /// normal call.
7527 /// The caller already checked that \p I calls the appropriate LibFunc with a
7528 /// correct prototype.
7529 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7530   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7531 
7532   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7533   std::pair<SDValue, SDValue> Res =
7534     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7535                                 getValue(Arg0), getValue(Arg1),
7536                                 MachinePointerInfo(Arg0),
7537                                 MachinePointerInfo(Arg1), isStpcpy);
7538   if (Res.first.getNode()) {
7539     setValue(&I, Res.first);
7540     DAG.setRoot(Res.second);
7541     return true;
7542   }
7543 
7544   return false;
7545 }
7546 
7547 /// See if we can lower a strcmp call into an optimized form.  If so, return
7548 /// true and lower it, otherwise return false and it will be lowered like a
7549 /// normal call.
7550 /// The caller already checked that \p I calls the appropriate LibFunc with a
7551 /// correct prototype.
7552 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7553   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7554 
7555   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7556   std::pair<SDValue, SDValue> Res =
7557     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7558                                 getValue(Arg0), getValue(Arg1),
7559                                 MachinePointerInfo(Arg0),
7560                                 MachinePointerInfo(Arg1));
7561   if (Res.first.getNode()) {
7562     processIntegerCallValue(I, Res.first, true);
7563     PendingLoads.push_back(Res.second);
7564     return true;
7565   }
7566 
7567   return false;
7568 }
7569 
7570 /// See if we can lower a strlen call into an optimized form.  If so, return
7571 /// true and lower it, otherwise return false and it will be lowered like a
7572 /// normal call.
7573 /// The caller already checked that \p I calls the appropriate LibFunc with a
7574 /// correct prototype.
7575 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7576   const Value *Arg0 = I.getArgOperand(0);
7577 
7578   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7579   std::pair<SDValue, SDValue> Res =
7580     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7581                                 getValue(Arg0), MachinePointerInfo(Arg0));
7582   if (Res.first.getNode()) {
7583     processIntegerCallValue(I, Res.first, false);
7584     PendingLoads.push_back(Res.second);
7585     return true;
7586   }
7587 
7588   return false;
7589 }
7590 
7591 /// See if we can lower a strnlen call into an optimized form.  If so, return
7592 /// true and lower it, otherwise return false and it will be lowered like a
7593 /// normal call.
7594 /// The caller already checked that \p I calls the appropriate LibFunc with a
7595 /// correct prototype.
7596 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7597   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7598 
7599   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7600   std::pair<SDValue, SDValue> Res =
7601     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7602                                  getValue(Arg0), getValue(Arg1),
7603                                  MachinePointerInfo(Arg0));
7604   if (Res.first.getNode()) {
7605     processIntegerCallValue(I, Res.first, false);
7606     PendingLoads.push_back(Res.second);
7607     return true;
7608   }
7609 
7610   return false;
7611 }
7612 
7613 /// See if we can lower a unary floating-point operation into an SDNode with
7614 /// the specified Opcode.  If so, return true and lower it, otherwise return
7615 /// false and it will be lowered like a normal call.
7616 /// The caller already checked that \p I calls the appropriate LibFunc with a
7617 /// correct prototype.
7618 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7619                                               unsigned Opcode) {
7620   // We already checked this call's prototype; verify it doesn't modify errno.
7621   if (!I.onlyReadsMemory())
7622     return false;
7623 
7624   SDNodeFlags Flags;
7625   Flags.copyFMF(cast<FPMathOperator>(I));
7626 
7627   SDValue Tmp = getValue(I.getArgOperand(0));
7628   setValue(&I,
7629            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7630   return true;
7631 }
7632 
7633 /// See if we can lower a binary floating-point operation into an SDNode with
7634 /// the specified Opcode. If so, return true and lower it. Otherwise return
7635 /// false, and it will be lowered like a normal call.
7636 /// The caller already checked that \p I calls the appropriate LibFunc with a
7637 /// correct prototype.
7638 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7639                                                unsigned Opcode) {
7640   // We already checked this call's prototype; verify it doesn't modify errno.
7641   if (!I.onlyReadsMemory())
7642     return false;
7643 
7644   SDNodeFlags Flags;
7645   Flags.copyFMF(cast<FPMathOperator>(I));
7646 
7647   SDValue Tmp0 = getValue(I.getArgOperand(0));
7648   SDValue Tmp1 = getValue(I.getArgOperand(1));
7649   EVT VT = Tmp0.getValueType();
7650   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7651   return true;
7652 }
7653 
7654 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7655   // Handle inline assembly differently.
7656   if (I.isInlineAsm()) {
7657     visitInlineAsm(I);
7658     return;
7659   }
7660 
7661   if (Function *F = I.getCalledFunction()) {
7662     if (F->isDeclaration()) {
7663       // Is this an LLVM intrinsic or a target-specific intrinsic?
7664       unsigned IID = F->getIntrinsicID();
7665       if (!IID)
7666         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7667           IID = II->getIntrinsicID(F);
7668 
7669       if (IID) {
7670         visitIntrinsicCall(I, IID);
7671         return;
7672       }
7673     }
7674 
7675     // Check for well-known libc/libm calls.  If the function is internal, it
7676     // can't be a library call.  Don't do the check if marked as nobuiltin for
7677     // some reason or the call site requires strict floating point semantics.
7678     LibFunc Func;
7679     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7680         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7681         LibInfo->hasOptimizedCodeGen(Func)) {
7682       switch (Func) {
7683       default: break;
7684       case LibFunc_bcmp:
7685         if (visitMemCmpBCmpCall(I))
7686           return;
7687         break;
7688       case LibFunc_copysign:
7689       case LibFunc_copysignf:
7690       case LibFunc_copysignl:
7691         // We already checked this call's prototype; verify it doesn't modify
7692         // errno.
7693         if (I.onlyReadsMemory()) {
7694           SDValue LHS = getValue(I.getArgOperand(0));
7695           SDValue RHS = getValue(I.getArgOperand(1));
7696           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7697                                    LHS.getValueType(), LHS, RHS));
7698           return;
7699         }
7700         break;
7701       case LibFunc_fabs:
7702       case LibFunc_fabsf:
7703       case LibFunc_fabsl:
7704         if (visitUnaryFloatCall(I, ISD::FABS))
7705           return;
7706         break;
7707       case LibFunc_fmin:
7708       case LibFunc_fminf:
7709       case LibFunc_fminl:
7710         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7711           return;
7712         break;
7713       case LibFunc_fmax:
7714       case LibFunc_fmaxf:
7715       case LibFunc_fmaxl:
7716         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7717           return;
7718         break;
7719       case LibFunc_sin:
7720       case LibFunc_sinf:
7721       case LibFunc_sinl:
7722         if (visitUnaryFloatCall(I, ISD::FSIN))
7723           return;
7724         break;
7725       case LibFunc_cos:
7726       case LibFunc_cosf:
7727       case LibFunc_cosl:
7728         if (visitUnaryFloatCall(I, ISD::FCOS))
7729           return;
7730         break;
7731       case LibFunc_sqrt:
7732       case LibFunc_sqrtf:
7733       case LibFunc_sqrtl:
7734       case LibFunc_sqrt_finite:
7735       case LibFunc_sqrtf_finite:
7736       case LibFunc_sqrtl_finite:
7737         if (visitUnaryFloatCall(I, ISD::FSQRT))
7738           return;
7739         break;
7740       case LibFunc_floor:
7741       case LibFunc_floorf:
7742       case LibFunc_floorl:
7743         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7744           return;
7745         break;
7746       case LibFunc_nearbyint:
7747       case LibFunc_nearbyintf:
7748       case LibFunc_nearbyintl:
7749         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7750           return;
7751         break;
7752       case LibFunc_ceil:
7753       case LibFunc_ceilf:
7754       case LibFunc_ceill:
7755         if (visitUnaryFloatCall(I, ISD::FCEIL))
7756           return;
7757         break;
7758       case LibFunc_rint:
7759       case LibFunc_rintf:
7760       case LibFunc_rintl:
7761         if (visitUnaryFloatCall(I, ISD::FRINT))
7762           return;
7763         break;
7764       case LibFunc_round:
7765       case LibFunc_roundf:
7766       case LibFunc_roundl:
7767         if (visitUnaryFloatCall(I, ISD::FROUND))
7768           return;
7769         break;
7770       case LibFunc_trunc:
7771       case LibFunc_truncf:
7772       case LibFunc_truncl:
7773         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7774           return;
7775         break;
7776       case LibFunc_log2:
7777       case LibFunc_log2f:
7778       case LibFunc_log2l:
7779         if (visitUnaryFloatCall(I, ISD::FLOG2))
7780           return;
7781         break;
7782       case LibFunc_exp2:
7783       case LibFunc_exp2f:
7784       case LibFunc_exp2l:
7785         if (visitUnaryFloatCall(I, ISD::FEXP2))
7786           return;
7787         break;
7788       case LibFunc_memcmp:
7789         if (visitMemCmpBCmpCall(I))
7790           return;
7791         break;
7792       case LibFunc_mempcpy:
7793         if (visitMemPCpyCall(I))
7794           return;
7795         break;
7796       case LibFunc_memchr:
7797         if (visitMemChrCall(I))
7798           return;
7799         break;
7800       case LibFunc_strcpy:
7801         if (visitStrCpyCall(I, false))
7802           return;
7803         break;
7804       case LibFunc_stpcpy:
7805         if (visitStrCpyCall(I, true))
7806           return;
7807         break;
7808       case LibFunc_strcmp:
7809         if (visitStrCmpCall(I))
7810           return;
7811         break;
7812       case LibFunc_strlen:
7813         if (visitStrLenCall(I))
7814           return;
7815         break;
7816       case LibFunc_strnlen:
7817         if (visitStrNLenCall(I))
7818           return;
7819         break;
7820       }
7821     }
7822   }
7823 
7824   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7825   // have to do anything here to lower funclet bundles.
7826   // CFGuardTarget bundles are lowered in LowerCallTo.
7827   assert(!I.hasOperandBundlesOtherThan(
7828              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7829               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7830          "Cannot lower calls with arbitrary operand bundles!");
7831 
7832   SDValue Callee = getValue(I.getCalledOperand());
7833 
7834   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7835     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7836   else
7837     // Check if we can potentially perform a tail call. More detailed checking
7838     // is be done within LowerCallTo, after more information about the call is
7839     // known.
7840     LowerCallTo(I, Callee, I.isTailCall());
7841 }
7842 
7843 namespace {
7844 
7845 /// AsmOperandInfo - This contains information for each constraint that we are
7846 /// lowering.
7847 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7848 public:
7849   /// CallOperand - If this is the result output operand or a clobber
7850   /// this is null, otherwise it is the incoming operand to the CallInst.
7851   /// This gets modified as the asm is processed.
7852   SDValue CallOperand;
7853 
7854   /// AssignedRegs - If this is a register or register class operand, this
7855   /// contains the set of register corresponding to the operand.
7856   RegsForValue AssignedRegs;
7857 
7858   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7859     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7860   }
7861 
7862   /// Whether or not this operand accesses memory
7863   bool hasMemory(const TargetLowering &TLI) const {
7864     // Indirect operand accesses access memory.
7865     if (isIndirect)
7866       return true;
7867 
7868     for (const auto &Code : Codes)
7869       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7870         return true;
7871 
7872     return false;
7873   }
7874 
7875   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7876   /// corresponds to.  If there is no Value* for this operand, it returns
7877   /// MVT::Other.
7878   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7879                            const DataLayout &DL) const {
7880     if (!CallOperandVal) return MVT::Other;
7881 
7882     if (isa<BasicBlock>(CallOperandVal))
7883       return TLI.getProgramPointerTy(DL);
7884 
7885     llvm::Type *OpTy = CallOperandVal->getType();
7886 
7887     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7888     // If this is an indirect operand, the operand is a pointer to the
7889     // accessed type.
7890     if (isIndirect) {
7891       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7892       if (!PtrTy)
7893         report_fatal_error("Indirect operand for inline asm not a pointer!");
7894       OpTy = PtrTy->getElementType();
7895     }
7896 
7897     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7898     if (StructType *STy = dyn_cast<StructType>(OpTy))
7899       if (STy->getNumElements() == 1)
7900         OpTy = STy->getElementType(0);
7901 
7902     // If OpTy is not a single value, it may be a struct/union that we
7903     // can tile with integers.
7904     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7905       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7906       switch (BitSize) {
7907       default: break;
7908       case 1:
7909       case 8:
7910       case 16:
7911       case 32:
7912       case 64:
7913       case 128:
7914         OpTy = IntegerType::get(Context, BitSize);
7915         break;
7916       }
7917     }
7918 
7919     return TLI.getValueType(DL, OpTy, true);
7920   }
7921 };
7922 
7923 
7924 } // end anonymous namespace
7925 
7926 /// Make sure that the output operand \p OpInfo and its corresponding input
7927 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7928 /// out).
7929 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7930                                SDISelAsmOperandInfo &MatchingOpInfo,
7931                                SelectionDAG &DAG) {
7932   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7933     return;
7934 
7935   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7936   const auto &TLI = DAG.getTargetLoweringInfo();
7937 
7938   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7939       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7940                                        OpInfo.ConstraintVT);
7941   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7942       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7943                                        MatchingOpInfo.ConstraintVT);
7944   if ((OpInfo.ConstraintVT.isInteger() !=
7945        MatchingOpInfo.ConstraintVT.isInteger()) ||
7946       (MatchRC.second != InputRC.second)) {
7947     // FIXME: error out in a more elegant fashion
7948     report_fatal_error("Unsupported asm: input constraint"
7949                        " with a matching output constraint of"
7950                        " incompatible type!");
7951   }
7952   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7953 }
7954 
7955 /// Get a direct memory input to behave well as an indirect operand.
7956 /// This may introduce stores, hence the need for a \p Chain.
7957 /// \return The (possibly updated) chain.
7958 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7959                                         SDISelAsmOperandInfo &OpInfo,
7960                                         SelectionDAG &DAG) {
7961   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7962 
7963   // If we don't have an indirect input, put it in the constpool if we can,
7964   // otherwise spill it to a stack slot.
7965   // TODO: This isn't quite right. We need to handle these according to
7966   // the addressing mode that the constraint wants. Also, this may take
7967   // an additional register for the computation and we don't want that
7968   // either.
7969 
7970   // If the operand is a float, integer, or vector constant, spill to a
7971   // constant pool entry to get its address.
7972   const Value *OpVal = OpInfo.CallOperandVal;
7973   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7974       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7975     OpInfo.CallOperand = DAG.getConstantPool(
7976         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7977     return Chain;
7978   }
7979 
7980   // Otherwise, create a stack slot and emit a store to it before the asm.
7981   Type *Ty = OpVal->getType();
7982   auto &DL = DAG.getDataLayout();
7983   uint64_t TySize = DL.getTypeAllocSize(Ty);
7984   MachineFunction &MF = DAG.getMachineFunction();
7985   int SSFI = MF.getFrameInfo().CreateStackObject(
7986       TySize, DL.getPrefTypeAlign(Ty), false);
7987   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7988   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7989                             MachinePointerInfo::getFixedStack(MF, SSFI),
7990                             TLI.getMemValueType(DL, Ty));
7991   OpInfo.CallOperand = StackSlot;
7992 
7993   return Chain;
7994 }
7995 
7996 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7997 /// specified operand.  We prefer to assign virtual registers, to allow the
7998 /// register allocator to handle the assignment process.  However, if the asm
7999 /// uses features that we can't model on machineinstrs, we have SDISel do the
8000 /// allocation.  This produces generally horrible, but correct, code.
8001 ///
8002 ///   OpInfo describes the operand
8003 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8004 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8005                                  SDISelAsmOperandInfo &OpInfo,
8006                                  SDISelAsmOperandInfo &RefOpInfo) {
8007   LLVMContext &Context = *DAG.getContext();
8008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8009 
8010   MachineFunction &MF = DAG.getMachineFunction();
8011   SmallVector<unsigned, 4> Regs;
8012   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8013 
8014   // No work to do for memory operations.
8015   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8016     return;
8017 
8018   // If this is a constraint for a single physreg, or a constraint for a
8019   // register class, find it.
8020   unsigned AssignedReg;
8021   const TargetRegisterClass *RC;
8022   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8023       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8024   // RC is unset only on failure. Return immediately.
8025   if (!RC)
8026     return;
8027 
8028   // Get the actual register value type.  This is important, because the user
8029   // may have asked for (e.g.) the AX register in i32 type.  We need to
8030   // remember that AX is actually i16 to get the right extension.
8031   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8032 
8033   if (OpInfo.ConstraintVT != MVT::Other) {
8034     // If this is an FP operand in an integer register (or visa versa), or more
8035     // generally if the operand value disagrees with the register class we plan
8036     // to stick it in, fix the operand type.
8037     //
8038     // If this is an input value, the bitcast to the new type is done now.
8039     // Bitcast for output value is done at the end of visitInlineAsm().
8040     if ((OpInfo.Type == InlineAsm::isOutput ||
8041          OpInfo.Type == InlineAsm::isInput) &&
8042         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8043       // Try to convert to the first EVT that the reg class contains.  If the
8044       // types are identical size, use a bitcast to convert (e.g. two differing
8045       // vector types).  Note: output bitcast is done at the end of
8046       // visitInlineAsm().
8047       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8048         // Exclude indirect inputs while they are unsupported because the code
8049         // to perform the load is missing and thus OpInfo.CallOperand still
8050         // refers to the input address rather than the pointed-to value.
8051         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8052           OpInfo.CallOperand =
8053               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8054         OpInfo.ConstraintVT = RegVT;
8055         // If the operand is an FP value and we want it in integer registers,
8056         // use the corresponding integer type. This turns an f64 value into
8057         // i64, which can be passed with two i32 values on a 32-bit machine.
8058       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8059         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8060         if (OpInfo.Type == InlineAsm::isInput)
8061           OpInfo.CallOperand =
8062               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8063         OpInfo.ConstraintVT = VT;
8064       }
8065     }
8066   }
8067 
8068   // No need to allocate a matching input constraint since the constraint it's
8069   // matching to has already been allocated.
8070   if (OpInfo.isMatchingInputConstraint())
8071     return;
8072 
8073   EVT ValueVT = OpInfo.ConstraintVT;
8074   if (OpInfo.ConstraintVT == MVT::Other)
8075     ValueVT = RegVT;
8076 
8077   // Initialize NumRegs.
8078   unsigned NumRegs = 1;
8079   if (OpInfo.ConstraintVT != MVT::Other)
8080     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8081 
8082   // If this is a constraint for a specific physical register, like {r17},
8083   // assign it now.
8084 
8085   // If this associated to a specific register, initialize iterator to correct
8086   // place. If virtual, make sure we have enough registers
8087 
8088   // Initialize iterator if necessary
8089   TargetRegisterClass::iterator I = RC->begin();
8090   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8091 
8092   // Do not check for single registers.
8093   if (AssignedReg) {
8094       for (; *I != AssignedReg; ++I)
8095         assert(I != RC->end() && "AssignedReg should be member of RC");
8096   }
8097 
8098   for (; NumRegs; --NumRegs, ++I) {
8099     assert(I != RC->end() && "Ran out of registers to allocate!");
8100     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8101     Regs.push_back(R);
8102   }
8103 
8104   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8105 }
8106 
8107 static unsigned
8108 findMatchingInlineAsmOperand(unsigned OperandNo,
8109                              const std::vector<SDValue> &AsmNodeOperands) {
8110   // Scan until we find the definition we already emitted of this operand.
8111   unsigned CurOp = InlineAsm::Op_FirstOperand;
8112   for (; OperandNo; --OperandNo) {
8113     // Advance to the next operand.
8114     unsigned OpFlag =
8115         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8116     assert((InlineAsm::isRegDefKind(OpFlag) ||
8117             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8118             InlineAsm::isMemKind(OpFlag)) &&
8119            "Skipped past definitions?");
8120     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8121   }
8122   return CurOp;
8123 }
8124 
8125 namespace {
8126 
8127 class ExtraFlags {
8128   unsigned Flags = 0;
8129 
8130 public:
8131   explicit ExtraFlags(const CallBase &Call) {
8132     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8133     if (IA->hasSideEffects())
8134       Flags |= InlineAsm::Extra_HasSideEffects;
8135     if (IA->isAlignStack())
8136       Flags |= InlineAsm::Extra_IsAlignStack;
8137     if (Call.isConvergent())
8138       Flags |= InlineAsm::Extra_IsConvergent;
8139     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8140   }
8141 
8142   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8143     // Ideally, we would only check against memory constraints.  However, the
8144     // meaning of an Other constraint can be target-specific and we can't easily
8145     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8146     // for Other constraints as well.
8147     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8148         OpInfo.ConstraintType == TargetLowering::C_Other) {
8149       if (OpInfo.Type == InlineAsm::isInput)
8150         Flags |= InlineAsm::Extra_MayLoad;
8151       else if (OpInfo.Type == InlineAsm::isOutput)
8152         Flags |= InlineAsm::Extra_MayStore;
8153       else if (OpInfo.Type == InlineAsm::isClobber)
8154         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8155     }
8156   }
8157 
8158   unsigned get() const { return Flags; }
8159 };
8160 
8161 } // end anonymous namespace
8162 
8163 /// visitInlineAsm - Handle a call to an InlineAsm object.
8164 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8165   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8166 
8167   /// ConstraintOperands - Information about all of the constraints.
8168   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8169 
8170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8171   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8172       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8173 
8174   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8175   // AsmDialect, MayLoad, MayStore).
8176   bool HasSideEffect = IA->hasSideEffects();
8177   ExtraFlags ExtraInfo(Call);
8178 
8179   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8180   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8181   unsigned NumMatchingOps = 0;
8182   for (auto &T : TargetConstraints) {
8183     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8184     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8185 
8186     // Compute the value type for each operand.
8187     if (OpInfo.Type == InlineAsm::isInput ||
8188         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8189       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8190 
8191       // Process the call argument. BasicBlocks are labels, currently appearing
8192       // only in asm's.
8193       if (isa<CallBrInst>(Call) &&
8194           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8195                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8196                         NumMatchingOps) &&
8197           (NumMatchingOps == 0 ||
8198            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8199                         NumMatchingOps))) {
8200         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8201         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8202         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8203       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8204         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8205       } else {
8206         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8207       }
8208 
8209       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8210                                            DAG.getDataLayout());
8211       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8212     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8213       // The return value of the call is this value.  As such, there is no
8214       // corresponding argument.
8215       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8216       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8217         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8218             DAG.getDataLayout(), STy->getElementType(ResNo));
8219       } else {
8220         assert(ResNo == 0 && "Asm only has one result!");
8221         OpInfo.ConstraintVT =
8222             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8223       }
8224       ++ResNo;
8225     } else {
8226       OpInfo.ConstraintVT = MVT::Other;
8227     }
8228 
8229     if (OpInfo.hasMatchingInput())
8230       ++NumMatchingOps;
8231 
8232     if (!HasSideEffect)
8233       HasSideEffect = OpInfo.hasMemory(TLI);
8234 
8235     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8236     // FIXME: Could we compute this on OpInfo rather than T?
8237 
8238     // Compute the constraint code and ConstraintType to use.
8239     TLI.ComputeConstraintToUse(T, SDValue());
8240 
8241     if (T.ConstraintType == TargetLowering::C_Immediate &&
8242         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8243       // We've delayed emitting a diagnostic like the "n" constraint because
8244       // inlining could cause an integer showing up.
8245       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8246                                           "' expects an integer constant "
8247                                           "expression");
8248 
8249     ExtraInfo.update(T);
8250   }
8251 
8252 
8253   // We won't need to flush pending loads if this asm doesn't touch
8254   // memory and is nonvolatile.
8255   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8256 
8257   bool IsCallBr = isa<CallBrInst>(Call);
8258   if (IsCallBr) {
8259     // If this is a callbr we need to flush pending exports since inlineasm_br
8260     // is a terminator. We need to do this before nodes are glued to
8261     // the inlineasm_br node.
8262     Chain = getControlRoot();
8263   }
8264 
8265   // Second pass over the constraints: compute which constraint option to use.
8266   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8267     // If this is an output operand with a matching input operand, look up the
8268     // matching input. If their types mismatch, e.g. one is an integer, the
8269     // other is floating point, or their sizes are different, flag it as an
8270     // error.
8271     if (OpInfo.hasMatchingInput()) {
8272       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8273       patchMatchingInput(OpInfo, Input, DAG);
8274     }
8275 
8276     // Compute the constraint code and ConstraintType to use.
8277     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8278 
8279     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8280         OpInfo.Type == InlineAsm::isClobber)
8281       continue;
8282 
8283     // If this is a memory input, and if the operand is not indirect, do what we
8284     // need to provide an address for the memory input.
8285     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8286         !OpInfo.isIndirect) {
8287       assert((OpInfo.isMultipleAlternative ||
8288               (OpInfo.Type == InlineAsm::isInput)) &&
8289              "Can only indirectify direct input operands!");
8290 
8291       // Memory operands really want the address of the value.
8292       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8293 
8294       // There is no longer a Value* corresponding to this operand.
8295       OpInfo.CallOperandVal = nullptr;
8296 
8297       // It is now an indirect operand.
8298       OpInfo.isIndirect = true;
8299     }
8300 
8301   }
8302 
8303   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8304   std::vector<SDValue> AsmNodeOperands;
8305   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8306   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8307       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8308 
8309   // If we have a !srcloc metadata node associated with it, we want to attach
8310   // this to the ultimately generated inline asm machineinstr.  To do this, we
8311   // pass in the third operand as this (potentially null) inline asm MDNode.
8312   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8313   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8314 
8315   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8316   // bits as operand 3.
8317   AsmNodeOperands.push_back(DAG.getTargetConstant(
8318       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8319 
8320   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8321   // this, assign virtual and physical registers for inputs and otput.
8322   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8323     // Assign Registers.
8324     SDISelAsmOperandInfo &RefOpInfo =
8325         OpInfo.isMatchingInputConstraint()
8326             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8327             : OpInfo;
8328     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8329 
8330     auto DetectWriteToReservedRegister = [&]() {
8331       const MachineFunction &MF = DAG.getMachineFunction();
8332       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8333       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8334         if (Register::isPhysicalRegister(Reg) &&
8335             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8336           const char *RegName = TRI.getName(Reg);
8337           emitInlineAsmError(Call, "write to reserved register '" +
8338                                        Twine(RegName) + "'");
8339           return true;
8340         }
8341       }
8342       return false;
8343     };
8344 
8345     switch (OpInfo.Type) {
8346     case InlineAsm::isOutput:
8347       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8348         unsigned ConstraintID =
8349             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8350         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8351                "Failed to convert memory constraint code to constraint id.");
8352 
8353         // Add information to the INLINEASM node to know about this output.
8354         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8355         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8356         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8357                                                         MVT::i32));
8358         AsmNodeOperands.push_back(OpInfo.CallOperand);
8359       } else {
8360         // Otherwise, this outputs to a register (directly for C_Register /
8361         // C_RegisterClass, and a target-defined fashion for
8362         // C_Immediate/C_Other). Find a register that we can use.
8363         if (OpInfo.AssignedRegs.Regs.empty()) {
8364           emitInlineAsmError(
8365               Call, "couldn't allocate output register for constraint '" +
8366                         Twine(OpInfo.ConstraintCode) + "'");
8367           return;
8368         }
8369 
8370         if (DetectWriteToReservedRegister())
8371           return;
8372 
8373         // Add information to the INLINEASM node to know that this register is
8374         // set.
8375         OpInfo.AssignedRegs.AddInlineAsmOperands(
8376             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8377                                   : InlineAsm::Kind_RegDef,
8378             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8379       }
8380       break;
8381 
8382     case InlineAsm::isInput: {
8383       SDValue InOperandVal = OpInfo.CallOperand;
8384 
8385       if (OpInfo.isMatchingInputConstraint()) {
8386         // If this is required to match an output register we have already set,
8387         // just use its register.
8388         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8389                                                   AsmNodeOperands);
8390         unsigned OpFlag =
8391           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8392         if (InlineAsm::isRegDefKind(OpFlag) ||
8393             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8394           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8395           if (OpInfo.isIndirect) {
8396             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8397             emitInlineAsmError(Call, "inline asm not supported yet: "
8398                                      "don't know how to handle tied "
8399                                      "indirect register inputs");
8400             return;
8401           }
8402 
8403           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8404           SmallVector<unsigned, 4> Regs;
8405 
8406           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8407             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8408             MachineRegisterInfo &RegInfo =
8409                 DAG.getMachineFunction().getRegInfo();
8410             for (unsigned i = 0; i != NumRegs; ++i)
8411               Regs.push_back(RegInfo.createVirtualRegister(RC));
8412           } else {
8413             emitInlineAsmError(Call,
8414                                "inline asm error: This value type register "
8415                                "class is not natively supported!");
8416             return;
8417           }
8418 
8419           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8420 
8421           SDLoc dl = getCurSDLoc();
8422           // Use the produced MatchedRegs object to
8423           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8424           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8425                                            true, OpInfo.getMatchedOperand(), dl,
8426                                            DAG, AsmNodeOperands);
8427           break;
8428         }
8429 
8430         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8431         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8432                "Unexpected number of operands");
8433         // Add information to the INLINEASM node to know about this input.
8434         // See InlineAsm.h isUseOperandTiedToDef.
8435         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8436         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8437                                                     OpInfo.getMatchedOperand());
8438         AsmNodeOperands.push_back(DAG.getTargetConstant(
8439             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8440         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8441         break;
8442       }
8443 
8444       // Treat indirect 'X' constraint as memory.
8445       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8446           OpInfo.isIndirect)
8447         OpInfo.ConstraintType = TargetLowering::C_Memory;
8448 
8449       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8450           OpInfo.ConstraintType == TargetLowering::C_Other) {
8451         std::vector<SDValue> Ops;
8452         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8453                                           Ops, DAG);
8454         if (Ops.empty()) {
8455           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8456             if (isa<ConstantSDNode>(InOperandVal)) {
8457               emitInlineAsmError(Call, "value out of range for constraint '" +
8458                                            Twine(OpInfo.ConstraintCode) + "'");
8459               return;
8460             }
8461 
8462           emitInlineAsmError(Call,
8463                              "invalid operand for inline asm constraint '" +
8464                                  Twine(OpInfo.ConstraintCode) + "'");
8465           return;
8466         }
8467 
8468         // Add information to the INLINEASM node to know about this input.
8469         unsigned ResOpType =
8470           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8471         AsmNodeOperands.push_back(DAG.getTargetConstant(
8472             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8473         llvm::append_range(AsmNodeOperands, Ops);
8474         break;
8475       }
8476 
8477       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8478         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8479         assert(InOperandVal.getValueType() ==
8480                    TLI.getPointerTy(DAG.getDataLayout()) &&
8481                "Memory operands expect pointer values");
8482 
8483         unsigned ConstraintID =
8484             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8485         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8486                "Failed to convert memory constraint code to constraint id.");
8487 
8488         // Add information to the INLINEASM node to know about this input.
8489         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8490         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8491         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8492                                                         getCurSDLoc(),
8493                                                         MVT::i32));
8494         AsmNodeOperands.push_back(InOperandVal);
8495         break;
8496       }
8497 
8498       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8499               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8500              "Unknown constraint type!");
8501 
8502       // TODO: Support this.
8503       if (OpInfo.isIndirect) {
8504         emitInlineAsmError(
8505             Call, "Don't know how to handle indirect register inputs yet "
8506                   "for constraint '" +
8507                       Twine(OpInfo.ConstraintCode) + "'");
8508         return;
8509       }
8510 
8511       // Copy the input into the appropriate registers.
8512       if (OpInfo.AssignedRegs.Regs.empty()) {
8513         emitInlineAsmError(Call,
8514                            "couldn't allocate input reg for constraint '" +
8515                                Twine(OpInfo.ConstraintCode) + "'");
8516         return;
8517       }
8518 
8519       if (DetectWriteToReservedRegister())
8520         return;
8521 
8522       SDLoc dl = getCurSDLoc();
8523 
8524       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8525                                         &Call);
8526 
8527       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8528                                                dl, DAG, AsmNodeOperands);
8529       break;
8530     }
8531     case InlineAsm::isClobber:
8532       // Add the clobbered value to the operand list, so that the register
8533       // allocator is aware that the physreg got clobbered.
8534       if (!OpInfo.AssignedRegs.Regs.empty())
8535         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8536                                                  false, 0, getCurSDLoc(), DAG,
8537                                                  AsmNodeOperands);
8538       break;
8539     }
8540   }
8541 
8542   // Finish up input operands.  Set the input chain and add the flag last.
8543   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8544   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8545 
8546   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8547   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8548                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8549   Flag = Chain.getValue(1);
8550 
8551   // Do additional work to generate outputs.
8552 
8553   SmallVector<EVT, 1> ResultVTs;
8554   SmallVector<SDValue, 1> ResultValues;
8555   SmallVector<SDValue, 8> OutChains;
8556 
8557   llvm::Type *CallResultType = Call.getType();
8558   ArrayRef<Type *> ResultTypes;
8559   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8560     ResultTypes = StructResult->elements();
8561   else if (!CallResultType->isVoidTy())
8562     ResultTypes = makeArrayRef(CallResultType);
8563 
8564   auto CurResultType = ResultTypes.begin();
8565   auto handleRegAssign = [&](SDValue V) {
8566     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8567     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8568     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8569     ++CurResultType;
8570     // If the type of the inline asm call site return value is different but has
8571     // same size as the type of the asm output bitcast it.  One example of this
8572     // is for vectors with different width / number of elements.  This can
8573     // happen for register classes that can contain multiple different value
8574     // types.  The preg or vreg allocated may not have the same VT as was
8575     // expected.
8576     //
8577     // This can also happen for a return value that disagrees with the register
8578     // class it is put in, eg. a double in a general-purpose register on a
8579     // 32-bit machine.
8580     if (ResultVT != V.getValueType() &&
8581         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8582       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8583     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8584              V.getValueType().isInteger()) {
8585       // If a result value was tied to an input value, the computed result
8586       // may have a wider width than the expected result.  Extract the
8587       // relevant portion.
8588       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8589     }
8590     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8591     ResultVTs.push_back(ResultVT);
8592     ResultValues.push_back(V);
8593   };
8594 
8595   // Deal with output operands.
8596   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8597     if (OpInfo.Type == InlineAsm::isOutput) {
8598       SDValue Val;
8599       // Skip trivial output operands.
8600       if (OpInfo.AssignedRegs.Regs.empty())
8601         continue;
8602 
8603       switch (OpInfo.ConstraintType) {
8604       case TargetLowering::C_Register:
8605       case TargetLowering::C_RegisterClass:
8606         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8607                                                   Chain, &Flag, &Call);
8608         break;
8609       case TargetLowering::C_Immediate:
8610       case TargetLowering::C_Other:
8611         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8612                                               OpInfo, DAG);
8613         break;
8614       case TargetLowering::C_Memory:
8615         break; // Already handled.
8616       case TargetLowering::C_Unknown:
8617         assert(false && "Unexpected unknown constraint");
8618       }
8619 
8620       // Indirect output manifest as stores. Record output chains.
8621       if (OpInfo.isIndirect) {
8622         const Value *Ptr = OpInfo.CallOperandVal;
8623         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8624         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8625                                      MachinePointerInfo(Ptr));
8626         OutChains.push_back(Store);
8627       } else {
8628         // generate CopyFromRegs to associated registers.
8629         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8630         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8631           for (const SDValue &V : Val->op_values())
8632             handleRegAssign(V);
8633         } else
8634           handleRegAssign(Val);
8635       }
8636     }
8637   }
8638 
8639   // Set results.
8640   if (!ResultValues.empty()) {
8641     assert(CurResultType == ResultTypes.end() &&
8642            "Mismatch in number of ResultTypes");
8643     assert(ResultValues.size() == ResultTypes.size() &&
8644            "Mismatch in number of output operands in asm result");
8645 
8646     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8647                             DAG.getVTList(ResultVTs), ResultValues);
8648     setValue(&Call, V);
8649   }
8650 
8651   // Collect store chains.
8652   if (!OutChains.empty())
8653     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8654 
8655   // Only Update Root if inline assembly has a memory effect.
8656   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8657     DAG.setRoot(Chain);
8658 }
8659 
8660 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8661                                              const Twine &Message) {
8662   LLVMContext &Ctx = *DAG.getContext();
8663   Ctx.emitError(&Call, Message);
8664 
8665   // Make sure we leave the DAG in a valid state
8666   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8667   SmallVector<EVT, 1> ValueVTs;
8668   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8669 
8670   if (ValueVTs.empty())
8671     return;
8672 
8673   SmallVector<SDValue, 1> Ops;
8674   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8675     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8676 
8677   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8678 }
8679 
8680 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8681   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8682                           MVT::Other, getRoot(),
8683                           getValue(I.getArgOperand(0)),
8684                           DAG.getSrcValue(I.getArgOperand(0))));
8685 }
8686 
8687 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8689   const DataLayout &DL = DAG.getDataLayout();
8690   SDValue V = DAG.getVAArg(
8691       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8692       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8693       DL.getABITypeAlign(I.getType()).value());
8694   DAG.setRoot(V.getValue(1));
8695 
8696   if (I.getType()->isPointerTy())
8697     V = DAG.getPtrExtOrTrunc(
8698         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8699   setValue(&I, V);
8700 }
8701 
8702 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8703   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8704                           MVT::Other, getRoot(),
8705                           getValue(I.getArgOperand(0)),
8706                           DAG.getSrcValue(I.getArgOperand(0))));
8707 }
8708 
8709 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8710   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8711                           MVT::Other, getRoot(),
8712                           getValue(I.getArgOperand(0)),
8713                           getValue(I.getArgOperand(1)),
8714                           DAG.getSrcValue(I.getArgOperand(0)),
8715                           DAG.getSrcValue(I.getArgOperand(1))));
8716 }
8717 
8718 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8719                                                     const Instruction &I,
8720                                                     SDValue Op) {
8721   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8722   if (!Range)
8723     return Op;
8724 
8725   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8726   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8727     return Op;
8728 
8729   APInt Lo = CR.getUnsignedMin();
8730   if (!Lo.isMinValue())
8731     return Op;
8732 
8733   APInt Hi = CR.getUnsignedMax();
8734   unsigned Bits = std::max(Hi.getActiveBits(),
8735                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8736 
8737   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8738 
8739   SDLoc SL = getCurSDLoc();
8740 
8741   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8742                              DAG.getValueType(SmallVT));
8743   unsigned NumVals = Op.getNode()->getNumValues();
8744   if (NumVals == 1)
8745     return ZExt;
8746 
8747   SmallVector<SDValue, 4> Ops;
8748 
8749   Ops.push_back(ZExt);
8750   for (unsigned I = 1; I != NumVals; ++I)
8751     Ops.push_back(Op.getValue(I));
8752 
8753   return DAG.getMergeValues(Ops, SL);
8754 }
8755 
8756 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8757 /// the call being lowered.
8758 ///
8759 /// This is a helper for lowering intrinsics that follow a target calling
8760 /// convention or require stack pointer adjustment. Only a subset of the
8761 /// intrinsic's operands need to participate in the calling convention.
8762 void SelectionDAGBuilder::populateCallLoweringInfo(
8763     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8764     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8765     bool IsPatchPoint) {
8766   TargetLowering::ArgListTy Args;
8767   Args.reserve(NumArgs);
8768 
8769   // Populate the argument list.
8770   // Attributes for args start at offset 1, after the return attribute.
8771   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8772        ArgI != ArgE; ++ArgI) {
8773     const Value *V = Call->getOperand(ArgI);
8774 
8775     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8776 
8777     TargetLowering::ArgListEntry Entry;
8778     Entry.Node = getValue(V);
8779     Entry.Ty = V->getType();
8780     Entry.setAttributes(Call, ArgI);
8781     Args.push_back(Entry);
8782   }
8783 
8784   CLI.setDebugLoc(getCurSDLoc())
8785       .setChain(getRoot())
8786       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8787       .setDiscardResult(Call->use_empty())
8788       .setIsPatchPoint(IsPatchPoint)
8789       .setIsPreallocated(
8790           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8791 }
8792 
8793 /// Add a stack map intrinsic call's live variable operands to a stackmap
8794 /// or patchpoint target node's operand list.
8795 ///
8796 /// Constants are converted to TargetConstants purely as an optimization to
8797 /// avoid constant materialization and register allocation.
8798 ///
8799 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8800 /// generate addess computation nodes, and so FinalizeISel can convert the
8801 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8802 /// address materialization and register allocation, but may also be required
8803 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8804 /// alloca in the entry block, then the runtime may assume that the alloca's
8805 /// StackMap location can be read immediately after compilation and that the
8806 /// location is valid at any point during execution (this is similar to the
8807 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8808 /// only available in a register, then the runtime would need to trap when
8809 /// execution reaches the StackMap in order to read the alloca's location.
8810 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8811                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8812                                 SelectionDAGBuilder &Builder) {
8813   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8814     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8815     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8816       Ops.push_back(
8817         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8818       Ops.push_back(
8819         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8820     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8821       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8822       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8823           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8824     } else
8825       Ops.push_back(OpVal);
8826   }
8827 }
8828 
8829 /// Lower llvm.experimental.stackmap directly to its target opcode.
8830 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8831   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8832   //                                  [live variables...])
8833 
8834   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8835 
8836   SDValue Chain, InFlag, Callee, NullPtr;
8837   SmallVector<SDValue, 32> Ops;
8838 
8839   SDLoc DL = getCurSDLoc();
8840   Callee = getValue(CI.getCalledOperand());
8841   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8842 
8843   // The stackmap intrinsic only records the live variables (the arguments
8844   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8845   // intrinsic, this won't be lowered to a function call. This means we don't
8846   // have to worry about calling conventions and target specific lowering code.
8847   // Instead we perform the call lowering right here.
8848   //
8849   // chain, flag = CALLSEQ_START(chain, 0, 0)
8850   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8851   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8852   //
8853   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8854   InFlag = Chain.getValue(1);
8855 
8856   // Add the <id> and <numBytes> constants.
8857   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8858   Ops.push_back(DAG.getTargetConstant(
8859                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8860   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8861   Ops.push_back(DAG.getTargetConstant(
8862                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8863                   MVT::i32));
8864 
8865   // Push live variables for the stack map.
8866   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8867 
8868   // We are not pushing any register mask info here on the operands list,
8869   // because the stackmap doesn't clobber anything.
8870 
8871   // Push the chain and the glue flag.
8872   Ops.push_back(Chain);
8873   Ops.push_back(InFlag);
8874 
8875   // Create the STACKMAP node.
8876   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8877   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8878   Chain = SDValue(SM, 0);
8879   InFlag = Chain.getValue(1);
8880 
8881   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8882 
8883   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8884 
8885   // Set the root to the target-lowered call chain.
8886   DAG.setRoot(Chain);
8887 
8888   // Inform the Frame Information that we have a stackmap in this function.
8889   FuncInfo.MF->getFrameInfo().setHasStackMap();
8890 }
8891 
8892 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8893 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8894                                           const BasicBlock *EHPadBB) {
8895   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8896   //                                                 i32 <numBytes>,
8897   //                                                 i8* <target>,
8898   //                                                 i32 <numArgs>,
8899   //                                                 [Args...],
8900   //                                                 [live variables...])
8901 
8902   CallingConv::ID CC = CB.getCallingConv();
8903   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8904   bool HasDef = !CB.getType()->isVoidTy();
8905   SDLoc dl = getCurSDLoc();
8906   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8907 
8908   // Handle immediate and symbolic callees.
8909   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8910     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8911                                    /*isTarget=*/true);
8912   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8913     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8914                                          SDLoc(SymbolicCallee),
8915                                          SymbolicCallee->getValueType(0));
8916 
8917   // Get the real number of arguments participating in the call <numArgs>
8918   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8919   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8920 
8921   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8922   // Intrinsics include all meta-operands up to but not including CC.
8923   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8924   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8925          "Not enough arguments provided to the patchpoint intrinsic");
8926 
8927   // For AnyRegCC the arguments are lowered later on manually.
8928   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8929   Type *ReturnTy =
8930       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8931 
8932   TargetLowering::CallLoweringInfo CLI(DAG);
8933   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8934                            ReturnTy, true);
8935   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8936 
8937   SDNode *CallEnd = Result.second.getNode();
8938   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8939     CallEnd = CallEnd->getOperand(0).getNode();
8940 
8941   /// Get a call instruction from the call sequence chain.
8942   /// Tail calls are not allowed.
8943   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8944          "Expected a callseq node.");
8945   SDNode *Call = CallEnd->getOperand(0).getNode();
8946   bool HasGlue = Call->getGluedNode();
8947 
8948   // Replace the target specific call node with the patchable intrinsic.
8949   SmallVector<SDValue, 8> Ops;
8950 
8951   // Add the <id> and <numBytes> constants.
8952   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8953   Ops.push_back(DAG.getTargetConstant(
8954                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8955   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8956   Ops.push_back(DAG.getTargetConstant(
8957                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8958                   MVT::i32));
8959 
8960   // Add the callee.
8961   Ops.push_back(Callee);
8962 
8963   // Adjust <numArgs> to account for any arguments that have been passed on the
8964   // stack instead.
8965   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8966   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8967   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8968   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8969 
8970   // Add the calling convention
8971   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8972 
8973   // Add the arguments we omitted previously. The register allocator should
8974   // place these in any free register.
8975   if (IsAnyRegCC)
8976     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8977       Ops.push_back(getValue(CB.getArgOperand(i)));
8978 
8979   // Push the arguments from the call instruction up to the register mask.
8980   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8981   Ops.append(Call->op_begin() + 2, e);
8982 
8983   // Push live variables for the stack map.
8984   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8985 
8986   // Push the register mask info.
8987   if (HasGlue)
8988     Ops.push_back(*(Call->op_end()-2));
8989   else
8990     Ops.push_back(*(Call->op_end()-1));
8991 
8992   // Push the chain (this is originally the first operand of the call, but
8993   // becomes now the last or second to last operand).
8994   Ops.push_back(*(Call->op_begin()));
8995 
8996   // Push the glue flag (last operand).
8997   if (HasGlue)
8998     Ops.push_back(*(Call->op_end()-1));
8999 
9000   SDVTList NodeTys;
9001   if (IsAnyRegCC && HasDef) {
9002     // Create the return types based on the intrinsic definition
9003     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9004     SmallVector<EVT, 3> ValueVTs;
9005     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9006     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9007 
9008     // There is always a chain and a glue type at the end
9009     ValueVTs.push_back(MVT::Other);
9010     ValueVTs.push_back(MVT::Glue);
9011     NodeTys = DAG.getVTList(ValueVTs);
9012   } else
9013     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9014 
9015   // Replace the target specific call node with a PATCHPOINT node.
9016   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9017                                          dl, NodeTys, Ops);
9018 
9019   // Update the NodeMap.
9020   if (HasDef) {
9021     if (IsAnyRegCC)
9022       setValue(&CB, SDValue(MN, 0));
9023     else
9024       setValue(&CB, Result.first);
9025   }
9026 
9027   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9028   // call sequence. Furthermore the location of the chain and glue can change
9029   // when the AnyReg calling convention is used and the intrinsic returns a
9030   // value.
9031   if (IsAnyRegCC && HasDef) {
9032     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9033     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9034     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9035   } else
9036     DAG.ReplaceAllUsesWith(Call, MN);
9037   DAG.DeleteNode(Call);
9038 
9039   // Inform the Frame Information that we have a patchpoint in this function.
9040   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9041 }
9042 
9043 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9044                                             unsigned Intrinsic) {
9045   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9046   SDValue Op1 = getValue(I.getArgOperand(0));
9047   SDValue Op2;
9048   if (I.getNumArgOperands() > 1)
9049     Op2 = getValue(I.getArgOperand(1));
9050   SDLoc dl = getCurSDLoc();
9051   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9052   SDValue Res;
9053   SDNodeFlags SDFlags;
9054   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9055     SDFlags.copyFMF(*FPMO);
9056 
9057   switch (Intrinsic) {
9058   case Intrinsic::vector_reduce_fadd:
9059     if (SDFlags.hasAllowReassociation())
9060       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9061                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9062                         SDFlags);
9063     else
9064       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9065     break;
9066   case Intrinsic::vector_reduce_fmul:
9067     if (SDFlags.hasAllowReassociation())
9068       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9069                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9070                         SDFlags);
9071     else
9072       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9073     break;
9074   case Intrinsic::vector_reduce_add:
9075     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9076     break;
9077   case Intrinsic::vector_reduce_mul:
9078     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9079     break;
9080   case Intrinsic::vector_reduce_and:
9081     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9082     break;
9083   case Intrinsic::vector_reduce_or:
9084     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9085     break;
9086   case Intrinsic::vector_reduce_xor:
9087     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9088     break;
9089   case Intrinsic::vector_reduce_smax:
9090     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9091     break;
9092   case Intrinsic::vector_reduce_smin:
9093     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9094     break;
9095   case Intrinsic::vector_reduce_umax:
9096     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9097     break;
9098   case Intrinsic::vector_reduce_umin:
9099     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9100     break;
9101   case Intrinsic::vector_reduce_fmax:
9102     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9103     break;
9104   case Intrinsic::vector_reduce_fmin:
9105     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9106     break;
9107   default:
9108     llvm_unreachable("Unhandled vector reduce intrinsic");
9109   }
9110   setValue(&I, Res);
9111 }
9112 
9113 /// Returns an AttributeList representing the attributes applied to the return
9114 /// value of the given call.
9115 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9116   SmallVector<Attribute::AttrKind, 2> Attrs;
9117   if (CLI.RetSExt)
9118     Attrs.push_back(Attribute::SExt);
9119   if (CLI.RetZExt)
9120     Attrs.push_back(Attribute::ZExt);
9121   if (CLI.IsInReg)
9122     Attrs.push_back(Attribute::InReg);
9123 
9124   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9125                             Attrs);
9126 }
9127 
9128 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9129 /// implementation, which just calls LowerCall.
9130 /// FIXME: When all targets are
9131 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9132 std::pair<SDValue, SDValue>
9133 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9134   // Handle the incoming return values from the call.
9135   CLI.Ins.clear();
9136   Type *OrigRetTy = CLI.RetTy;
9137   SmallVector<EVT, 4> RetTys;
9138   SmallVector<uint64_t, 4> Offsets;
9139   auto &DL = CLI.DAG.getDataLayout();
9140   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9141 
9142   if (CLI.IsPostTypeLegalization) {
9143     // If we are lowering a libcall after legalization, split the return type.
9144     SmallVector<EVT, 4> OldRetTys;
9145     SmallVector<uint64_t, 4> OldOffsets;
9146     RetTys.swap(OldRetTys);
9147     Offsets.swap(OldOffsets);
9148 
9149     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9150       EVT RetVT = OldRetTys[i];
9151       uint64_t Offset = OldOffsets[i];
9152       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9153       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9154       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9155       RetTys.append(NumRegs, RegisterVT);
9156       for (unsigned j = 0; j != NumRegs; ++j)
9157         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9158     }
9159   }
9160 
9161   SmallVector<ISD::OutputArg, 4> Outs;
9162   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9163 
9164   bool CanLowerReturn =
9165       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9166                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9167 
9168   SDValue DemoteStackSlot;
9169   int DemoteStackIdx = -100;
9170   if (!CanLowerReturn) {
9171     // FIXME: equivalent assert?
9172     // assert(!CS.hasInAllocaArgument() &&
9173     //        "sret demotion is incompatible with inalloca");
9174     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9175     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9176     MachineFunction &MF = CLI.DAG.getMachineFunction();
9177     DemoteStackIdx =
9178         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9179     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9180                                               DL.getAllocaAddrSpace());
9181 
9182     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9183     ArgListEntry Entry;
9184     Entry.Node = DemoteStackSlot;
9185     Entry.Ty = StackSlotPtrType;
9186     Entry.IsSExt = false;
9187     Entry.IsZExt = false;
9188     Entry.IsInReg = false;
9189     Entry.IsSRet = true;
9190     Entry.IsNest = false;
9191     Entry.IsByVal = false;
9192     Entry.IsByRef = false;
9193     Entry.IsReturned = false;
9194     Entry.IsSwiftSelf = false;
9195     Entry.IsSwiftError = false;
9196     Entry.IsCFGuardTarget = false;
9197     Entry.Alignment = Alignment;
9198     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9199     CLI.NumFixedArgs += 1;
9200     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9201 
9202     // sret demotion isn't compatible with tail-calls, since the sret argument
9203     // points into the callers stack frame.
9204     CLI.IsTailCall = false;
9205   } else {
9206     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9207         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9208     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9209       ISD::ArgFlagsTy Flags;
9210       if (NeedsRegBlock) {
9211         Flags.setInConsecutiveRegs();
9212         if (I == RetTys.size() - 1)
9213           Flags.setInConsecutiveRegsLast();
9214       }
9215       EVT VT = RetTys[I];
9216       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9217                                                      CLI.CallConv, VT);
9218       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9219                                                        CLI.CallConv, VT);
9220       for (unsigned i = 0; i != NumRegs; ++i) {
9221         ISD::InputArg MyFlags;
9222         MyFlags.Flags = Flags;
9223         MyFlags.VT = RegisterVT;
9224         MyFlags.ArgVT = VT;
9225         MyFlags.Used = CLI.IsReturnValueUsed;
9226         if (CLI.RetTy->isPointerTy()) {
9227           MyFlags.Flags.setPointer();
9228           MyFlags.Flags.setPointerAddrSpace(
9229               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9230         }
9231         if (CLI.RetSExt)
9232           MyFlags.Flags.setSExt();
9233         if (CLI.RetZExt)
9234           MyFlags.Flags.setZExt();
9235         if (CLI.IsInReg)
9236           MyFlags.Flags.setInReg();
9237         CLI.Ins.push_back(MyFlags);
9238       }
9239     }
9240   }
9241 
9242   // We push in swifterror return as the last element of CLI.Ins.
9243   ArgListTy &Args = CLI.getArgs();
9244   if (supportSwiftError()) {
9245     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9246       if (Args[i].IsSwiftError) {
9247         ISD::InputArg MyFlags;
9248         MyFlags.VT = getPointerTy(DL);
9249         MyFlags.ArgVT = EVT(getPointerTy(DL));
9250         MyFlags.Flags.setSwiftError();
9251         CLI.Ins.push_back(MyFlags);
9252       }
9253     }
9254   }
9255 
9256   // Handle all of the outgoing arguments.
9257   CLI.Outs.clear();
9258   CLI.OutVals.clear();
9259   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9260     SmallVector<EVT, 4> ValueVTs;
9261     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9262     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9263     Type *FinalType = Args[i].Ty;
9264     if (Args[i].IsByVal)
9265       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9266     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9267         FinalType, CLI.CallConv, CLI.IsVarArg);
9268     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9269          ++Value) {
9270       EVT VT = ValueVTs[Value];
9271       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9272       SDValue Op = SDValue(Args[i].Node.getNode(),
9273                            Args[i].Node.getResNo() + Value);
9274       ISD::ArgFlagsTy Flags;
9275 
9276       // Certain targets (such as MIPS), may have a different ABI alignment
9277       // for a type depending on the context. Give the target a chance to
9278       // specify the alignment it wants.
9279       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9280 
9281       if (Args[i].Ty->isPointerTy()) {
9282         Flags.setPointer();
9283         Flags.setPointerAddrSpace(
9284             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9285       }
9286       if (Args[i].IsZExt)
9287         Flags.setZExt();
9288       if (Args[i].IsSExt)
9289         Flags.setSExt();
9290       if (Args[i].IsInReg) {
9291         // If we are using vectorcall calling convention, a structure that is
9292         // passed InReg - is surely an HVA
9293         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9294             isa<StructType>(FinalType)) {
9295           // The first value of a structure is marked
9296           if (0 == Value)
9297             Flags.setHvaStart();
9298           Flags.setHva();
9299         }
9300         // Set InReg Flag
9301         Flags.setInReg();
9302       }
9303       if (Args[i].IsSRet)
9304         Flags.setSRet();
9305       if (Args[i].IsSwiftSelf)
9306         Flags.setSwiftSelf();
9307       if (Args[i].IsSwiftError)
9308         Flags.setSwiftError();
9309       if (Args[i].IsCFGuardTarget)
9310         Flags.setCFGuardTarget();
9311       if (Args[i].IsByVal)
9312         Flags.setByVal();
9313       if (Args[i].IsByRef)
9314         Flags.setByRef();
9315       if (Args[i].IsPreallocated) {
9316         Flags.setPreallocated();
9317         // Set the byval flag for CCAssignFn callbacks that don't know about
9318         // preallocated.  This way we can know how many bytes we should've
9319         // allocated and how many bytes a callee cleanup function will pop.  If
9320         // we port preallocated to more targets, we'll have to add custom
9321         // preallocated handling in the various CC lowering callbacks.
9322         Flags.setByVal();
9323       }
9324       if (Args[i].IsInAlloca) {
9325         Flags.setInAlloca();
9326         // Set the byval flag for CCAssignFn callbacks that don't know about
9327         // inalloca.  This way we can know how many bytes we should've allocated
9328         // and how many bytes a callee cleanup function will pop.  If we port
9329         // inalloca to more targets, we'll have to add custom inalloca handling
9330         // in the various CC lowering callbacks.
9331         Flags.setByVal();
9332       }
9333       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9334         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9335         Type *ElementTy = Ty->getElementType();
9336 
9337         unsigned FrameSize = DL.getTypeAllocSize(
9338             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9339         Flags.setByValSize(FrameSize);
9340 
9341         // info is not there but there are cases it cannot get right.
9342         Align FrameAlign;
9343         if (auto MA = Args[i].Alignment)
9344           FrameAlign = *MA;
9345         else
9346           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9347         Flags.setByValAlign(FrameAlign);
9348       }
9349       if (Args[i].IsNest)
9350         Flags.setNest();
9351       if (NeedsRegBlock)
9352         Flags.setInConsecutiveRegs();
9353       Flags.setOrigAlign(OriginalAlignment);
9354 
9355       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9356                                                  CLI.CallConv, VT);
9357       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9358                                                         CLI.CallConv, VT);
9359       SmallVector<SDValue, 4> Parts(NumParts);
9360       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9361 
9362       if (Args[i].IsSExt)
9363         ExtendKind = ISD::SIGN_EXTEND;
9364       else if (Args[i].IsZExt)
9365         ExtendKind = ISD::ZERO_EXTEND;
9366 
9367       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9368       // for now.
9369       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9370           CanLowerReturn) {
9371         assert((CLI.RetTy == Args[i].Ty ||
9372                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9373                  CLI.RetTy->getPointerAddressSpace() ==
9374                      Args[i].Ty->getPointerAddressSpace())) &&
9375                RetTys.size() == NumValues && "unexpected use of 'returned'");
9376         // Before passing 'returned' to the target lowering code, ensure that
9377         // either the register MVT and the actual EVT are the same size or that
9378         // the return value and argument are extended in the same way; in these
9379         // cases it's safe to pass the argument register value unchanged as the
9380         // return register value (although it's at the target's option whether
9381         // to do so)
9382         // TODO: allow code generation to take advantage of partially preserved
9383         // registers rather than clobbering the entire register when the
9384         // parameter extension method is not compatible with the return
9385         // extension method
9386         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9387             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9388              CLI.RetZExt == Args[i].IsZExt))
9389           Flags.setReturned();
9390       }
9391 
9392       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9393                      CLI.CallConv, ExtendKind);
9394 
9395       for (unsigned j = 0; j != NumParts; ++j) {
9396         // if it isn't first piece, alignment must be 1
9397         // For scalable vectors the scalable part is currently handled
9398         // by individual targets, so we just use the known minimum size here.
9399         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9400                     i < CLI.NumFixedArgs, i,
9401                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9402         if (NumParts > 1 && j == 0)
9403           MyFlags.Flags.setSplit();
9404         else if (j != 0) {
9405           MyFlags.Flags.setOrigAlign(Align(1));
9406           if (j == NumParts - 1)
9407             MyFlags.Flags.setSplitEnd();
9408         }
9409 
9410         CLI.Outs.push_back(MyFlags);
9411         CLI.OutVals.push_back(Parts[j]);
9412       }
9413 
9414       if (NeedsRegBlock && Value == NumValues - 1)
9415         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9416     }
9417   }
9418 
9419   SmallVector<SDValue, 4> InVals;
9420   CLI.Chain = LowerCall(CLI, InVals);
9421 
9422   // Update CLI.InVals to use outside of this function.
9423   CLI.InVals = InVals;
9424 
9425   // Verify that the target's LowerCall behaved as expected.
9426   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9427          "LowerCall didn't return a valid chain!");
9428   assert((!CLI.IsTailCall || InVals.empty()) &&
9429          "LowerCall emitted a return value for a tail call!");
9430   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9431          "LowerCall didn't emit the correct number of values!");
9432 
9433   // For a tail call, the return value is merely live-out and there aren't
9434   // any nodes in the DAG representing it. Return a special value to
9435   // indicate that a tail call has been emitted and no more Instructions
9436   // should be processed in the current block.
9437   if (CLI.IsTailCall) {
9438     CLI.DAG.setRoot(CLI.Chain);
9439     return std::make_pair(SDValue(), SDValue());
9440   }
9441 
9442 #ifndef NDEBUG
9443   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9444     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9445     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9446            "LowerCall emitted a value with the wrong type!");
9447   }
9448 #endif
9449 
9450   SmallVector<SDValue, 4> ReturnValues;
9451   if (!CanLowerReturn) {
9452     // The instruction result is the result of loading from the
9453     // hidden sret parameter.
9454     SmallVector<EVT, 1> PVTs;
9455     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9456 
9457     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9458     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9459     EVT PtrVT = PVTs[0];
9460 
9461     unsigned NumValues = RetTys.size();
9462     ReturnValues.resize(NumValues);
9463     SmallVector<SDValue, 4> Chains(NumValues);
9464 
9465     // An aggregate return value cannot wrap around the address space, so
9466     // offsets to its parts don't wrap either.
9467     SDNodeFlags Flags;
9468     Flags.setNoUnsignedWrap(true);
9469 
9470     MachineFunction &MF = CLI.DAG.getMachineFunction();
9471     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9472     for (unsigned i = 0; i < NumValues; ++i) {
9473       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9474                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9475                                                         PtrVT), Flags);
9476       SDValue L = CLI.DAG.getLoad(
9477           RetTys[i], CLI.DL, CLI.Chain, Add,
9478           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9479                                             DemoteStackIdx, Offsets[i]),
9480           HiddenSRetAlign);
9481       ReturnValues[i] = L;
9482       Chains[i] = L.getValue(1);
9483     }
9484 
9485     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9486   } else {
9487     // Collect the legal value parts into potentially illegal values
9488     // that correspond to the original function's return values.
9489     Optional<ISD::NodeType> AssertOp;
9490     if (CLI.RetSExt)
9491       AssertOp = ISD::AssertSext;
9492     else if (CLI.RetZExt)
9493       AssertOp = ISD::AssertZext;
9494     unsigned CurReg = 0;
9495     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9496       EVT VT = RetTys[I];
9497       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9498                                                      CLI.CallConv, VT);
9499       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9500                                                        CLI.CallConv, VT);
9501 
9502       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9503                                               NumRegs, RegisterVT, VT, nullptr,
9504                                               CLI.CallConv, AssertOp));
9505       CurReg += NumRegs;
9506     }
9507 
9508     // For a function returning void, there is no return value. We can't create
9509     // such a node, so we just return a null return value in that case. In
9510     // that case, nothing will actually look at the value.
9511     if (ReturnValues.empty())
9512       return std::make_pair(SDValue(), CLI.Chain);
9513   }
9514 
9515   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9516                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9517   return std::make_pair(Res, CLI.Chain);
9518 }
9519 
9520 /// Places new result values for the node in Results (their number
9521 /// and types must exactly match those of the original return values of
9522 /// the node), or leaves Results empty, which indicates that the node is not
9523 /// to be custom lowered after all.
9524 void TargetLowering::LowerOperationWrapper(SDNode *N,
9525                                            SmallVectorImpl<SDValue> &Results,
9526                                            SelectionDAG &DAG) const {
9527   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9528 
9529   if (!Res.getNode())
9530     return;
9531 
9532   // If the original node has one result, take the return value from
9533   // LowerOperation as is. It might not be result number 0.
9534   if (N->getNumValues() == 1) {
9535     Results.push_back(Res);
9536     return;
9537   }
9538 
9539   // If the original node has multiple results, then the return node should
9540   // have the same number of results.
9541   assert((N->getNumValues() == Res->getNumValues()) &&
9542       "Lowering returned the wrong number of results!");
9543 
9544   // Places new result values base on N result number.
9545   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9546     Results.push_back(Res.getValue(I));
9547 }
9548 
9549 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9550   llvm_unreachable("LowerOperation not implemented for this target!");
9551 }
9552 
9553 void
9554 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9555   SDValue Op = getNonRegisterValue(V);
9556   assert((Op.getOpcode() != ISD::CopyFromReg ||
9557           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9558          "Copy from a reg to the same reg!");
9559   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9560 
9561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9562   // If this is an InlineAsm we have to match the registers required, not the
9563   // notional registers required by the type.
9564 
9565   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9566                    None); // This is not an ABI copy.
9567   SDValue Chain = DAG.getEntryNode();
9568 
9569   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9570                               FuncInfo.PreferredExtendType.end())
9571                                  ? ISD::ANY_EXTEND
9572                                  : FuncInfo.PreferredExtendType[V];
9573   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9574   PendingExports.push_back(Chain);
9575 }
9576 
9577 #include "llvm/CodeGen/SelectionDAGISel.h"
9578 
9579 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9580 /// entry block, return true.  This includes arguments used by switches, since
9581 /// the switch may expand into multiple basic blocks.
9582 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9583   // With FastISel active, we may be splitting blocks, so force creation
9584   // of virtual registers for all non-dead arguments.
9585   if (FastISel)
9586     return A->use_empty();
9587 
9588   const BasicBlock &Entry = A->getParent()->front();
9589   for (const User *U : A->users())
9590     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9591       return false;  // Use not in entry block.
9592 
9593   return true;
9594 }
9595 
9596 using ArgCopyElisionMapTy =
9597     DenseMap<const Argument *,
9598              std::pair<const AllocaInst *, const StoreInst *>>;
9599 
9600 /// Scan the entry block of the function in FuncInfo for arguments that look
9601 /// like copies into a local alloca. Record any copied arguments in
9602 /// ArgCopyElisionCandidates.
9603 static void
9604 findArgumentCopyElisionCandidates(const DataLayout &DL,
9605                                   FunctionLoweringInfo *FuncInfo,
9606                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9607   // Record the state of every static alloca used in the entry block. Argument
9608   // allocas are all used in the entry block, so we need approximately as many
9609   // entries as we have arguments.
9610   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9611   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9612   unsigned NumArgs = FuncInfo->Fn->arg_size();
9613   StaticAllocas.reserve(NumArgs * 2);
9614 
9615   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9616     if (!V)
9617       return nullptr;
9618     V = V->stripPointerCasts();
9619     const auto *AI = dyn_cast<AllocaInst>(V);
9620     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9621       return nullptr;
9622     auto Iter = StaticAllocas.insert({AI, Unknown});
9623     return &Iter.first->second;
9624   };
9625 
9626   // Look for stores of arguments to static allocas. Look through bitcasts and
9627   // GEPs to handle type coercions, as long as the alloca is fully initialized
9628   // by the store. Any non-store use of an alloca escapes it and any subsequent
9629   // unanalyzed store might write it.
9630   // FIXME: Handle structs initialized with multiple stores.
9631   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9632     // Look for stores, and handle non-store uses conservatively.
9633     const auto *SI = dyn_cast<StoreInst>(&I);
9634     if (!SI) {
9635       // We will look through cast uses, so ignore them completely.
9636       if (I.isCast())
9637         continue;
9638       // Ignore debug info intrinsics, they don't escape or store to allocas.
9639       if (isa<DbgInfoIntrinsic>(I))
9640         continue;
9641       // This is an unknown instruction. Assume it escapes or writes to all
9642       // static alloca operands.
9643       for (const Use &U : I.operands()) {
9644         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9645           *Info = StaticAllocaInfo::Clobbered;
9646       }
9647       continue;
9648     }
9649 
9650     // If the stored value is a static alloca, mark it as escaped.
9651     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9652       *Info = StaticAllocaInfo::Clobbered;
9653 
9654     // Check if the destination is a static alloca.
9655     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9656     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9657     if (!Info)
9658       continue;
9659     const AllocaInst *AI = cast<AllocaInst>(Dst);
9660 
9661     // Skip allocas that have been initialized or clobbered.
9662     if (*Info != StaticAllocaInfo::Unknown)
9663       continue;
9664 
9665     // Check if the stored value is an argument, and that this store fully
9666     // initializes the alloca. Don't elide copies from the same argument twice.
9667     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9668     const auto *Arg = dyn_cast<Argument>(Val);
9669     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9670         Arg->getType()->isEmptyTy() ||
9671         DL.getTypeStoreSize(Arg->getType()) !=
9672             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9673         ArgCopyElisionCandidates.count(Arg)) {
9674       *Info = StaticAllocaInfo::Clobbered;
9675       continue;
9676     }
9677 
9678     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9679                       << '\n');
9680 
9681     // Mark this alloca and store for argument copy elision.
9682     *Info = StaticAllocaInfo::Elidable;
9683     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9684 
9685     // Stop scanning if we've seen all arguments. This will happen early in -O0
9686     // builds, which is useful, because -O0 builds have large entry blocks and
9687     // many allocas.
9688     if (ArgCopyElisionCandidates.size() == NumArgs)
9689       break;
9690   }
9691 }
9692 
9693 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9694 /// ArgVal is a load from a suitable fixed stack object.
9695 static void tryToElideArgumentCopy(
9696     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9697     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9698     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9699     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9700     SDValue ArgVal, bool &ArgHasUses) {
9701   // Check if this is a load from a fixed stack object.
9702   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9703   if (!LNode)
9704     return;
9705   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9706   if (!FINode)
9707     return;
9708 
9709   // Check that the fixed stack object is the right size and alignment.
9710   // Look at the alignment that the user wrote on the alloca instead of looking
9711   // at the stack object.
9712   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9713   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9714   const AllocaInst *AI = ArgCopyIter->second.first;
9715   int FixedIndex = FINode->getIndex();
9716   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9717   int OldIndex = AllocaIndex;
9718   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9719   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9720     LLVM_DEBUG(
9721         dbgs() << "  argument copy elision failed due to bad fixed stack "
9722                   "object size\n");
9723     return;
9724   }
9725   Align RequiredAlignment = AI->getAlign();
9726   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9727     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9728                          "greater than stack argument alignment ("
9729                       << DebugStr(RequiredAlignment) << " vs "
9730                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9731     return;
9732   }
9733 
9734   // Perform the elision. Delete the old stack object and replace its only use
9735   // in the variable info map. Mark the stack object as mutable.
9736   LLVM_DEBUG({
9737     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9738            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9739            << '\n';
9740   });
9741   MFI.RemoveStackObject(OldIndex);
9742   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9743   AllocaIndex = FixedIndex;
9744   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9745   Chains.push_back(ArgVal.getValue(1));
9746 
9747   // Avoid emitting code for the store implementing the copy.
9748   const StoreInst *SI = ArgCopyIter->second.second;
9749   ElidedArgCopyInstrs.insert(SI);
9750 
9751   // Check for uses of the argument again so that we can avoid exporting ArgVal
9752   // if it is't used by anything other than the store.
9753   for (const Value *U : Arg.users()) {
9754     if (U != SI) {
9755       ArgHasUses = true;
9756       break;
9757     }
9758   }
9759 }
9760 
9761 void SelectionDAGISel::LowerArguments(const Function &F) {
9762   SelectionDAG &DAG = SDB->DAG;
9763   SDLoc dl = SDB->getCurSDLoc();
9764   const DataLayout &DL = DAG.getDataLayout();
9765   SmallVector<ISD::InputArg, 16> Ins;
9766 
9767   // In Naked functions we aren't going to save any registers.
9768   if (F.hasFnAttribute(Attribute::Naked))
9769     return;
9770 
9771   if (!FuncInfo->CanLowerReturn) {
9772     // Put in an sret pointer parameter before all the other parameters.
9773     SmallVector<EVT, 1> ValueVTs;
9774     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9775                     F.getReturnType()->getPointerTo(
9776                         DAG.getDataLayout().getAllocaAddrSpace()),
9777                     ValueVTs);
9778 
9779     // NOTE: Assuming that a pointer will never break down to more than one VT
9780     // or one register.
9781     ISD::ArgFlagsTy Flags;
9782     Flags.setSRet();
9783     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9784     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9785                          ISD::InputArg::NoArgIndex, 0);
9786     Ins.push_back(RetArg);
9787   }
9788 
9789   // Look for stores of arguments to static allocas. Mark such arguments with a
9790   // flag to ask the target to give us the memory location of that argument if
9791   // available.
9792   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9793   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9794                                     ArgCopyElisionCandidates);
9795 
9796   // Set up the incoming argument description vector.
9797   for (const Argument &Arg : F.args()) {
9798     unsigned ArgNo = Arg.getArgNo();
9799     SmallVector<EVT, 4> ValueVTs;
9800     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9801     bool isArgValueUsed = !Arg.use_empty();
9802     unsigned PartBase = 0;
9803     Type *FinalType = Arg.getType();
9804     if (Arg.hasAttribute(Attribute::ByVal))
9805       FinalType = Arg.getParamByValType();
9806     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9807         FinalType, F.getCallingConv(), F.isVarArg());
9808     for (unsigned Value = 0, NumValues = ValueVTs.size();
9809          Value != NumValues; ++Value) {
9810       EVT VT = ValueVTs[Value];
9811       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9812       ISD::ArgFlagsTy Flags;
9813 
9814       // Certain targets (such as MIPS), may have a different ABI alignment
9815       // for a type depending on the context. Give the target a chance to
9816       // specify the alignment it wants.
9817       const Align OriginalAlignment(
9818           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9819 
9820       if (Arg.getType()->isPointerTy()) {
9821         Flags.setPointer();
9822         Flags.setPointerAddrSpace(
9823             cast<PointerType>(Arg.getType())->getAddressSpace());
9824       }
9825       if (Arg.hasAttribute(Attribute::ZExt))
9826         Flags.setZExt();
9827       if (Arg.hasAttribute(Attribute::SExt))
9828         Flags.setSExt();
9829       if (Arg.hasAttribute(Attribute::InReg)) {
9830         // If we are using vectorcall calling convention, a structure that is
9831         // passed InReg - is surely an HVA
9832         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9833             isa<StructType>(Arg.getType())) {
9834           // The first value of a structure is marked
9835           if (0 == Value)
9836             Flags.setHvaStart();
9837           Flags.setHva();
9838         }
9839         // Set InReg Flag
9840         Flags.setInReg();
9841       }
9842       if (Arg.hasAttribute(Attribute::StructRet))
9843         Flags.setSRet();
9844       if (Arg.hasAttribute(Attribute::SwiftSelf))
9845         Flags.setSwiftSelf();
9846       if (Arg.hasAttribute(Attribute::SwiftError))
9847         Flags.setSwiftError();
9848       if (Arg.hasAttribute(Attribute::ByVal))
9849         Flags.setByVal();
9850       if (Arg.hasAttribute(Attribute::ByRef))
9851         Flags.setByRef();
9852       if (Arg.hasAttribute(Attribute::InAlloca)) {
9853         Flags.setInAlloca();
9854         // Set the byval flag for CCAssignFn callbacks that don't know about
9855         // inalloca.  This way we can know how many bytes we should've allocated
9856         // and how many bytes a callee cleanup function will pop.  If we port
9857         // inalloca to more targets, we'll have to add custom inalloca handling
9858         // in the various CC lowering callbacks.
9859         Flags.setByVal();
9860       }
9861       if (Arg.hasAttribute(Attribute::Preallocated)) {
9862         Flags.setPreallocated();
9863         // Set the byval flag for CCAssignFn callbacks that don't know about
9864         // preallocated.  This way we can know how many bytes we should've
9865         // allocated and how many bytes a callee cleanup function will pop.  If
9866         // we port preallocated to more targets, we'll have to add custom
9867         // preallocated handling in the various CC lowering callbacks.
9868         Flags.setByVal();
9869       }
9870 
9871       Type *ArgMemTy = nullptr;
9872       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9873           Flags.isByRef()) {
9874         if (!ArgMemTy)
9875           ArgMemTy = Arg.getPointeeInMemoryValueType();
9876 
9877         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9878 
9879         // For in-memory arguments, size and alignment should be passed from FE.
9880         // BE will guess if this info is not there but there are cases it cannot
9881         // get right.
9882         MaybeAlign MemAlign = Arg.getParamAlign();
9883         if (!MemAlign)
9884           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9885 
9886         if (Flags.isByRef()) {
9887           Flags.setByRefSize(MemSize);
9888           Flags.setByRefAlign(*MemAlign);
9889         } else {
9890           Flags.setByValSize(MemSize);
9891           Flags.setByValAlign(*MemAlign);
9892         }
9893       }
9894 
9895       if (Arg.hasAttribute(Attribute::Nest))
9896         Flags.setNest();
9897       if (NeedsRegBlock)
9898         Flags.setInConsecutiveRegs();
9899       Flags.setOrigAlign(OriginalAlignment);
9900       if (ArgCopyElisionCandidates.count(&Arg))
9901         Flags.setCopyElisionCandidate();
9902       if (Arg.hasAttribute(Attribute::Returned))
9903         Flags.setReturned();
9904 
9905       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9906           *CurDAG->getContext(), F.getCallingConv(), VT);
9907       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9908           *CurDAG->getContext(), F.getCallingConv(), VT);
9909       for (unsigned i = 0; i != NumRegs; ++i) {
9910         // For scalable vectors, use the minimum size; individual targets
9911         // are responsible for handling scalable vector arguments and
9912         // return values.
9913         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9914                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9915         if (NumRegs > 1 && i == 0)
9916           MyFlags.Flags.setSplit();
9917         // if it isn't first piece, alignment must be 1
9918         else if (i > 0) {
9919           MyFlags.Flags.setOrigAlign(Align(1));
9920           if (i == NumRegs - 1)
9921             MyFlags.Flags.setSplitEnd();
9922         }
9923         Ins.push_back(MyFlags);
9924       }
9925       if (NeedsRegBlock && Value == NumValues - 1)
9926         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9927       PartBase += VT.getStoreSize().getKnownMinSize();
9928     }
9929   }
9930 
9931   // Call the target to set up the argument values.
9932   SmallVector<SDValue, 8> InVals;
9933   SDValue NewRoot = TLI->LowerFormalArguments(
9934       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9935 
9936   // Verify that the target's LowerFormalArguments behaved as expected.
9937   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9938          "LowerFormalArguments didn't return a valid chain!");
9939   assert(InVals.size() == Ins.size() &&
9940          "LowerFormalArguments didn't emit the correct number of values!");
9941   LLVM_DEBUG({
9942     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9943       assert(InVals[i].getNode() &&
9944              "LowerFormalArguments emitted a null value!");
9945       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9946              "LowerFormalArguments emitted a value with the wrong type!");
9947     }
9948   });
9949 
9950   // Update the DAG with the new chain value resulting from argument lowering.
9951   DAG.setRoot(NewRoot);
9952 
9953   // Set up the argument values.
9954   unsigned i = 0;
9955   if (!FuncInfo->CanLowerReturn) {
9956     // Create a virtual register for the sret pointer, and put in a copy
9957     // from the sret argument into it.
9958     SmallVector<EVT, 1> ValueVTs;
9959     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9960                     F.getReturnType()->getPointerTo(
9961                         DAG.getDataLayout().getAllocaAddrSpace()),
9962                     ValueVTs);
9963     MVT VT = ValueVTs[0].getSimpleVT();
9964     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9965     Optional<ISD::NodeType> AssertOp = None;
9966     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9967                                         nullptr, F.getCallingConv(), AssertOp);
9968 
9969     MachineFunction& MF = SDB->DAG.getMachineFunction();
9970     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9971     Register SRetReg =
9972         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9973     FuncInfo->DemoteRegister = SRetReg;
9974     NewRoot =
9975         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9976     DAG.setRoot(NewRoot);
9977 
9978     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9979     ++i;
9980   }
9981 
9982   SmallVector<SDValue, 4> Chains;
9983   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9984   for (const Argument &Arg : F.args()) {
9985     SmallVector<SDValue, 4> ArgValues;
9986     SmallVector<EVT, 4> ValueVTs;
9987     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9988     unsigned NumValues = ValueVTs.size();
9989     if (NumValues == 0)
9990       continue;
9991 
9992     bool ArgHasUses = !Arg.use_empty();
9993 
9994     // Elide the copying store if the target loaded this argument from a
9995     // suitable fixed stack object.
9996     if (Ins[i].Flags.isCopyElisionCandidate()) {
9997       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9998                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9999                              InVals[i], ArgHasUses);
10000     }
10001 
10002     // If this argument is unused then remember its value. It is used to generate
10003     // debugging information.
10004     bool isSwiftErrorArg =
10005         TLI->supportSwiftError() &&
10006         Arg.hasAttribute(Attribute::SwiftError);
10007     if (!ArgHasUses && !isSwiftErrorArg) {
10008       SDB->setUnusedArgValue(&Arg, InVals[i]);
10009 
10010       // Also remember any frame index for use in FastISel.
10011       if (FrameIndexSDNode *FI =
10012           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10013         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10014     }
10015 
10016     for (unsigned Val = 0; Val != NumValues; ++Val) {
10017       EVT VT = ValueVTs[Val];
10018       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10019                                                       F.getCallingConv(), VT);
10020       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10021           *CurDAG->getContext(), F.getCallingConv(), VT);
10022 
10023       // Even an apparent 'unused' swifterror argument needs to be returned. So
10024       // we do generate a copy for it that can be used on return from the
10025       // function.
10026       if (ArgHasUses || isSwiftErrorArg) {
10027         Optional<ISD::NodeType> AssertOp;
10028         if (Arg.hasAttribute(Attribute::SExt))
10029           AssertOp = ISD::AssertSext;
10030         else if (Arg.hasAttribute(Attribute::ZExt))
10031           AssertOp = ISD::AssertZext;
10032 
10033         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10034                                              PartVT, VT, nullptr,
10035                                              F.getCallingConv(), AssertOp));
10036       }
10037 
10038       i += NumParts;
10039     }
10040 
10041     // We don't need to do anything else for unused arguments.
10042     if (ArgValues.empty())
10043       continue;
10044 
10045     // Note down frame index.
10046     if (FrameIndexSDNode *FI =
10047         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10048       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10049 
10050     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10051                                      SDB->getCurSDLoc());
10052 
10053     SDB->setValue(&Arg, Res);
10054     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10055       // We want to associate the argument with the frame index, among
10056       // involved operands, that correspond to the lowest address. The
10057       // getCopyFromParts function, called earlier, is swapping the order of
10058       // the operands to BUILD_PAIR depending on endianness. The result of
10059       // that swapping is that the least significant bits of the argument will
10060       // be in the first operand of the BUILD_PAIR node, and the most
10061       // significant bits will be in the second operand.
10062       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10063       if (LoadSDNode *LNode =
10064           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10065         if (FrameIndexSDNode *FI =
10066             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10067           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10068     }
10069 
10070     // Analyses past this point are naive and don't expect an assertion.
10071     if (Res.getOpcode() == ISD::AssertZext)
10072       Res = Res.getOperand(0);
10073 
10074     // Update the SwiftErrorVRegDefMap.
10075     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10076       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10077       if (Register::isVirtualRegister(Reg))
10078         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10079                                    Reg);
10080     }
10081 
10082     // If this argument is live outside of the entry block, insert a copy from
10083     // wherever we got it to the vreg that other BB's will reference it as.
10084     if (Res.getOpcode() == ISD::CopyFromReg) {
10085       // If we can, though, try to skip creating an unnecessary vreg.
10086       // FIXME: This isn't very clean... it would be nice to make this more
10087       // general.
10088       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10089       if (Register::isVirtualRegister(Reg)) {
10090         FuncInfo->ValueMap[&Arg] = Reg;
10091         continue;
10092       }
10093     }
10094     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10095       FuncInfo->InitializeRegForValue(&Arg);
10096       SDB->CopyToExportRegsIfNeeded(&Arg);
10097     }
10098   }
10099 
10100   if (!Chains.empty()) {
10101     Chains.push_back(NewRoot);
10102     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10103   }
10104 
10105   DAG.setRoot(NewRoot);
10106 
10107   assert(i == InVals.size() && "Argument register count mismatch!");
10108 
10109   // If any argument copy elisions occurred and we have debug info, update the
10110   // stale frame indices used in the dbg.declare variable info table.
10111   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10112   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10113     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10114       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10115       if (I != ArgCopyElisionFrameIndexMap.end())
10116         VI.Slot = I->second;
10117     }
10118   }
10119 
10120   // Finally, if the target has anything special to do, allow it to do so.
10121   emitFunctionEntryCode();
10122 }
10123 
10124 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10125 /// ensure constants are generated when needed.  Remember the virtual registers
10126 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10127 /// directly add them, because expansion might result in multiple MBB's for one
10128 /// BB.  As such, the start of the BB might correspond to a different MBB than
10129 /// the end.
10130 void
10131 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10132   const Instruction *TI = LLVMBB->getTerminator();
10133 
10134   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10135 
10136   // Check PHI nodes in successors that expect a value to be available from this
10137   // block.
10138   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10139     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10140     if (!isa<PHINode>(SuccBB->begin())) continue;
10141     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10142 
10143     // If this terminator has multiple identical successors (common for
10144     // switches), only handle each succ once.
10145     if (!SuccsHandled.insert(SuccMBB).second)
10146       continue;
10147 
10148     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10149 
10150     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10151     // nodes and Machine PHI nodes, but the incoming operands have not been
10152     // emitted yet.
10153     for (const PHINode &PN : SuccBB->phis()) {
10154       // Ignore dead phi's.
10155       if (PN.use_empty())
10156         continue;
10157 
10158       // Skip empty types
10159       if (PN.getType()->isEmptyTy())
10160         continue;
10161 
10162       unsigned Reg;
10163       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10164 
10165       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10166         unsigned &RegOut = ConstantsOut[C];
10167         if (RegOut == 0) {
10168           RegOut = FuncInfo.CreateRegs(C);
10169           CopyValueToVirtualRegister(C, RegOut);
10170         }
10171         Reg = RegOut;
10172       } else {
10173         DenseMap<const Value *, Register>::iterator I =
10174           FuncInfo.ValueMap.find(PHIOp);
10175         if (I != FuncInfo.ValueMap.end())
10176           Reg = I->second;
10177         else {
10178           assert(isa<AllocaInst>(PHIOp) &&
10179                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10180                  "Didn't codegen value into a register!??");
10181           Reg = FuncInfo.CreateRegs(PHIOp);
10182           CopyValueToVirtualRegister(PHIOp, Reg);
10183         }
10184       }
10185 
10186       // Remember that this register needs to added to the machine PHI node as
10187       // the input for this MBB.
10188       SmallVector<EVT, 4> ValueVTs;
10189       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10190       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10191       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10192         EVT VT = ValueVTs[vti];
10193         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10194         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10195           FuncInfo.PHINodesToUpdate.push_back(
10196               std::make_pair(&*MBBI++, Reg + i));
10197         Reg += NumRegisters;
10198       }
10199     }
10200   }
10201 
10202   ConstantsOut.clear();
10203 }
10204 
10205 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10206 /// is 0.
10207 MachineBasicBlock *
10208 SelectionDAGBuilder::StackProtectorDescriptor::
10209 AddSuccessorMBB(const BasicBlock *BB,
10210                 MachineBasicBlock *ParentMBB,
10211                 bool IsLikely,
10212                 MachineBasicBlock *SuccMBB) {
10213   // If SuccBB has not been created yet, create it.
10214   if (!SuccMBB) {
10215     MachineFunction *MF = ParentMBB->getParent();
10216     MachineFunction::iterator BBI(ParentMBB);
10217     SuccMBB = MF->CreateMachineBasicBlock(BB);
10218     MF->insert(++BBI, SuccMBB);
10219   }
10220   // Add it as a successor of ParentMBB.
10221   ParentMBB->addSuccessor(
10222       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10223   return SuccMBB;
10224 }
10225 
10226 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10227   MachineFunction::iterator I(MBB);
10228   if (++I == FuncInfo.MF->end())
10229     return nullptr;
10230   return &*I;
10231 }
10232 
10233 /// During lowering new call nodes can be created (such as memset, etc.).
10234 /// Those will become new roots of the current DAG, but complications arise
10235 /// when they are tail calls. In such cases, the call lowering will update
10236 /// the root, but the builder still needs to know that a tail call has been
10237 /// lowered in order to avoid generating an additional return.
10238 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10239   // If the node is null, we do have a tail call.
10240   if (MaybeTC.getNode() != nullptr)
10241     DAG.setRoot(MaybeTC);
10242   else
10243     HasTailCall = true;
10244 }
10245 
10246 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10247                                         MachineBasicBlock *SwitchMBB,
10248                                         MachineBasicBlock *DefaultMBB) {
10249   MachineFunction *CurMF = FuncInfo.MF;
10250   MachineBasicBlock *NextMBB = nullptr;
10251   MachineFunction::iterator BBI(W.MBB);
10252   if (++BBI != FuncInfo.MF->end())
10253     NextMBB = &*BBI;
10254 
10255   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10256 
10257   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10258 
10259   if (Size == 2 && W.MBB == SwitchMBB) {
10260     // If any two of the cases has the same destination, and if one value
10261     // is the same as the other, but has one bit unset that the other has set,
10262     // use bit manipulation to do two compares at once.  For example:
10263     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10264     // TODO: This could be extended to merge any 2 cases in switches with 3
10265     // cases.
10266     // TODO: Handle cases where W.CaseBB != SwitchBB.
10267     CaseCluster &Small = *W.FirstCluster;
10268     CaseCluster &Big = *W.LastCluster;
10269 
10270     if (Small.Low == Small.High && Big.Low == Big.High &&
10271         Small.MBB == Big.MBB) {
10272       const APInt &SmallValue = Small.Low->getValue();
10273       const APInt &BigValue = Big.Low->getValue();
10274 
10275       // Check that there is only one bit different.
10276       APInt CommonBit = BigValue ^ SmallValue;
10277       if (CommonBit.isPowerOf2()) {
10278         SDValue CondLHS = getValue(Cond);
10279         EVT VT = CondLHS.getValueType();
10280         SDLoc DL = getCurSDLoc();
10281 
10282         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10283                                  DAG.getConstant(CommonBit, DL, VT));
10284         SDValue Cond = DAG.getSetCC(
10285             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10286             ISD::SETEQ);
10287 
10288         // Update successor info.
10289         // Both Small and Big will jump to Small.BB, so we sum up the
10290         // probabilities.
10291         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10292         if (BPI)
10293           addSuccessorWithProb(
10294               SwitchMBB, DefaultMBB,
10295               // The default destination is the first successor in IR.
10296               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10297         else
10298           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10299 
10300         // Insert the true branch.
10301         SDValue BrCond =
10302             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10303                         DAG.getBasicBlock(Small.MBB));
10304         // Insert the false branch.
10305         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10306                              DAG.getBasicBlock(DefaultMBB));
10307 
10308         DAG.setRoot(BrCond);
10309         return;
10310       }
10311     }
10312   }
10313 
10314   if (TM.getOptLevel() != CodeGenOpt::None) {
10315     // Here, we order cases by probability so the most likely case will be
10316     // checked first. However, two clusters can have the same probability in
10317     // which case their relative ordering is non-deterministic. So we use Low
10318     // as a tie-breaker as clusters are guaranteed to never overlap.
10319     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10320                [](const CaseCluster &a, const CaseCluster &b) {
10321       return a.Prob != b.Prob ?
10322              a.Prob > b.Prob :
10323              a.Low->getValue().slt(b.Low->getValue());
10324     });
10325 
10326     // Rearrange the case blocks so that the last one falls through if possible
10327     // without changing the order of probabilities.
10328     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10329       --I;
10330       if (I->Prob > W.LastCluster->Prob)
10331         break;
10332       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10333         std::swap(*I, *W.LastCluster);
10334         break;
10335       }
10336     }
10337   }
10338 
10339   // Compute total probability.
10340   BranchProbability DefaultProb = W.DefaultProb;
10341   BranchProbability UnhandledProbs = DefaultProb;
10342   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10343     UnhandledProbs += I->Prob;
10344 
10345   MachineBasicBlock *CurMBB = W.MBB;
10346   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10347     bool FallthroughUnreachable = false;
10348     MachineBasicBlock *Fallthrough;
10349     if (I == W.LastCluster) {
10350       // For the last cluster, fall through to the default destination.
10351       Fallthrough = DefaultMBB;
10352       FallthroughUnreachable = isa<UnreachableInst>(
10353           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10354     } else {
10355       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10356       CurMF->insert(BBI, Fallthrough);
10357       // Put Cond in a virtual register to make it available from the new blocks.
10358       ExportFromCurrentBlock(Cond);
10359     }
10360     UnhandledProbs -= I->Prob;
10361 
10362     switch (I->Kind) {
10363       case CC_JumpTable: {
10364         // FIXME: Optimize away range check based on pivot comparisons.
10365         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10366         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10367 
10368         // The jump block hasn't been inserted yet; insert it here.
10369         MachineBasicBlock *JumpMBB = JT->MBB;
10370         CurMF->insert(BBI, JumpMBB);
10371 
10372         auto JumpProb = I->Prob;
10373         auto FallthroughProb = UnhandledProbs;
10374 
10375         // If the default statement is a target of the jump table, we evenly
10376         // distribute the default probability to successors of CurMBB. Also
10377         // update the probability on the edge from JumpMBB to Fallthrough.
10378         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10379                                               SE = JumpMBB->succ_end();
10380              SI != SE; ++SI) {
10381           if (*SI == DefaultMBB) {
10382             JumpProb += DefaultProb / 2;
10383             FallthroughProb -= DefaultProb / 2;
10384             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10385             JumpMBB->normalizeSuccProbs();
10386             break;
10387           }
10388         }
10389 
10390         if (FallthroughUnreachable) {
10391           // Skip the range check if the fallthrough block is unreachable.
10392           JTH->OmitRangeCheck = true;
10393         }
10394 
10395         if (!JTH->OmitRangeCheck)
10396           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10397         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10398         CurMBB->normalizeSuccProbs();
10399 
10400         // The jump table header will be inserted in our current block, do the
10401         // range check, and fall through to our fallthrough block.
10402         JTH->HeaderBB = CurMBB;
10403         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10404 
10405         // If we're in the right place, emit the jump table header right now.
10406         if (CurMBB == SwitchMBB) {
10407           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10408           JTH->Emitted = true;
10409         }
10410         break;
10411       }
10412       case CC_BitTests: {
10413         // FIXME: Optimize away range check based on pivot comparisons.
10414         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10415 
10416         // The bit test blocks haven't been inserted yet; insert them here.
10417         for (BitTestCase &BTC : BTB->Cases)
10418           CurMF->insert(BBI, BTC.ThisBB);
10419 
10420         // Fill in fields of the BitTestBlock.
10421         BTB->Parent = CurMBB;
10422         BTB->Default = Fallthrough;
10423 
10424         BTB->DefaultProb = UnhandledProbs;
10425         // If the cases in bit test don't form a contiguous range, we evenly
10426         // distribute the probability on the edge to Fallthrough to two
10427         // successors of CurMBB.
10428         if (!BTB->ContiguousRange) {
10429           BTB->Prob += DefaultProb / 2;
10430           BTB->DefaultProb -= DefaultProb / 2;
10431         }
10432 
10433         if (FallthroughUnreachable) {
10434           // Skip the range check if the fallthrough block is unreachable.
10435           BTB->OmitRangeCheck = true;
10436         }
10437 
10438         // If we're in the right place, emit the bit test header right now.
10439         if (CurMBB == SwitchMBB) {
10440           visitBitTestHeader(*BTB, SwitchMBB);
10441           BTB->Emitted = true;
10442         }
10443         break;
10444       }
10445       case CC_Range: {
10446         const Value *RHS, *LHS, *MHS;
10447         ISD::CondCode CC;
10448         if (I->Low == I->High) {
10449           // Check Cond == I->Low.
10450           CC = ISD::SETEQ;
10451           LHS = Cond;
10452           RHS=I->Low;
10453           MHS = nullptr;
10454         } else {
10455           // Check I->Low <= Cond <= I->High.
10456           CC = ISD::SETLE;
10457           LHS = I->Low;
10458           MHS = Cond;
10459           RHS = I->High;
10460         }
10461 
10462         // If Fallthrough is unreachable, fold away the comparison.
10463         if (FallthroughUnreachable)
10464           CC = ISD::SETTRUE;
10465 
10466         // The false probability is the sum of all unhandled cases.
10467         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10468                      getCurSDLoc(), I->Prob, UnhandledProbs);
10469 
10470         if (CurMBB == SwitchMBB)
10471           visitSwitchCase(CB, SwitchMBB);
10472         else
10473           SL->SwitchCases.push_back(CB);
10474 
10475         break;
10476       }
10477     }
10478     CurMBB = Fallthrough;
10479   }
10480 }
10481 
10482 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10483                                               CaseClusterIt First,
10484                                               CaseClusterIt Last) {
10485   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10486     if (X.Prob != CC.Prob)
10487       return X.Prob > CC.Prob;
10488 
10489     // Ties are broken by comparing the case value.
10490     return X.Low->getValue().slt(CC.Low->getValue());
10491   });
10492 }
10493 
10494 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10495                                         const SwitchWorkListItem &W,
10496                                         Value *Cond,
10497                                         MachineBasicBlock *SwitchMBB) {
10498   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10499          "Clusters not sorted?");
10500 
10501   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10502 
10503   // Balance the tree based on branch probabilities to create a near-optimal (in
10504   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10505   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10506   CaseClusterIt LastLeft = W.FirstCluster;
10507   CaseClusterIt FirstRight = W.LastCluster;
10508   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10509   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10510 
10511   // Move LastLeft and FirstRight towards each other from opposite directions to
10512   // find a partitioning of the clusters which balances the probability on both
10513   // sides. If LeftProb and RightProb are equal, alternate which side is
10514   // taken to ensure 0-probability nodes are distributed evenly.
10515   unsigned I = 0;
10516   while (LastLeft + 1 < FirstRight) {
10517     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10518       LeftProb += (++LastLeft)->Prob;
10519     else
10520       RightProb += (--FirstRight)->Prob;
10521     I++;
10522   }
10523 
10524   while (true) {
10525     // Our binary search tree differs from a typical BST in that ours can have up
10526     // to three values in each leaf. The pivot selection above doesn't take that
10527     // into account, which means the tree might require more nodes and be less
10528     // efficient. We compensate for this here.
10529 
10530     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10531     unsigned NumRight = W.LastCluster - FirstRight + 1;
10532 
10533     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10534       // If one side has less than 3 clusters, and the other has more than 3,
10535       // consider taking a cluster from the other side.
10536 
10537       if (NumLeft < NumRight) {
10538         // Consider moving the first cluster on the right to the left side.
10539         CaseCluster &CC = *FirstRight;
10540         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10541         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10542         if (LeftSideRank <= RightSideRank) {
10543           // Moving the cluster to the left does not demote it.
10544           ++LastLeft;
10545           ++FirstRight;
10546           continue;
10547         }
10548       } else {
10549         assert(NumRight < NumLeft);
10550         // Consider moving the last element on the left to the right side.
10551         CaseCluster &CC = *LastLeft;
10552         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10553         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10554         if (RightSideRank <= LeftSideRank) {
10555           // Moving the cluster to the right does not demot it.
10556           --LastLeft;
10557           --FirstRight;
10558           continue;
10559         }
10560       }
10561     }
10562     break;
10563   }
10564 
10565   assert(LastLeft + 1 == FirstRight);
10566   assert(LastLeft >= W.FirstCluster);
10567   assert(FirstRight <= W.LastCluster);
10568 
10569   // Use the first element on the right as pivot since we will make less-than
10570   // comparisons against it.
10571   CaseClusterIt PivotCluster = FirstRight;
10572   assert(PivotCluster > W.FirstCluster);
10573   assert(PivotCluster <= W.LastCluster);
10574 
10575   CaseClusterIt FirstLeft = W.FirstCluster;
10576   CaseClusterIt LastRight = W.LastCluster;
10577 
10578   const ConstantInt *Pivot = PivotCluster->Low;
10579 
10580   // New blocks will be inserted immediately after the current one.
10581   MachineFunction::iterator BBI(W.MBB);
10582   ++BBI;
10583 
10584   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10585   // we can branch to its destination directly if it's squeezed exactly in
10586   // between the known lower bound and Pivot - 1.
10587   MachineBasicBlock *LeftMBB;
10588   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10589       FirstLeft->Low == W.GE &&
10590       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10591     LeftMBB = FirstLeft->MBB;
10592   } else {
10593     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10594     FuncInfo.MF->insert(BBI, LeftMBB);
10595     WorkList.push_back(
10596         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10597     // Put Cond in a virtual register to make it available from the new blocks.
10598     ExportFromCurrentBlock(Cond);
10599   }
10600 
10601   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10602   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10603   // directly if RHS.High equals the current upper bound.
10604   MachineBasicBlock *RightMBB;
10605   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10606       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10607     RightMBB = FirstRight->MBB;
10608   } else {
10609     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10610     FuncInfo.MF->insert(BBI, RightMBB);
10611     WorkList.push_back(
10612         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10613     // Put Cond in a virtual register to make it available from the new blocks.
10614     ExportFromCurrentBlock(Cond);
10615   }
10616 
10617   // Create the CaseBlock record that will be used to lower the branch.
10618   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10619                getCurSDLoc(), LeftProb, RightProb);
10620 
10621   if (W.MBB == SwitchMBB)
10622     visitSwitchCase(CB, SwitchMBB);
10623   else
10624     SL->SwitchCases.push_back(CB);
10625 }
10626 
10627 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10628 // from the swith statement.
10629 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10630                                             BranchProbability PeeledCaseProb) {
10631   if (PeeledCaseProb == BranchProbability::getOne())
10632     return BranchProbability::getZero();
10633   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10634 
10635   uint32_t Numerator = CaseProb.getNumerator();
10636   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10637   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10638 }
10639 
10640 // Try to peel the top probability case if it exceeds the threshold.
10641 // Return current MachineBasicBlock for the switch statement if the peeling
10642 // does not occur.
10643 // If the peeling is performed, return the newly created MachineBasicBlock
10644 // for the peeled switch statement. Also update Clusters to remove the peeled
10645 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10646 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10647     const SwitchInst &SI, CaseClusterVector &Clusters,
10648     BranchProbability &PeeledCaseProb) {
10649   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10650   // Don't perform if there is only one cluster or optimizing for size.
10651   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10652       TM.getOptLevel() == CodeGenOpt::None ||
10653       SwitchMBB->getParent()->getFunction().hasMinSize())
10654     return SwitchMBB;
10655 
10656   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10657   unsigned PeeledCaseIndex = 0;
10658   bool SwitchPeeled = false;
10659   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10660     CaseCluster &CC = Clusters[Index];
10661     if (CC.Prob < TopCaseProb)
10662       continue;
10663     TopCaseProb = CC.Prob;
10664     PeeledCaseIndex = Index;
10665     SwitchPeeled = true;
10666   }
10667   if (!SwitchPeeled)
10668     return SwitchMBB;
10669 
10670   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10671                     << TopCaseProb << "\n");
10672 
10673   // Record the MBB for the peeled switch statement.
10674   MachineFunction::iterator BBI(SwitchMBB);
10675   ++BBI;
10676   MachineBasicBlock *PeeledSwitchMBB =
10677       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10678   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10679 
10680   ExportFromCurrentBlock(SI.getCondition());
10681   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10682   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10683                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10684   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10685 
10686   Clusters.erase(PeeledCaseIt);
10687   for (CaseCluster &CC : Clusters) {
10688     LLVM_DEBUG(
10689         dbgs() << "Scale the probablity for one cluster, before scaling: "
10690                << CC.Prob << "\n");
10691     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10692     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10693   }
10694   PeeledCaseProb = TopCaseProb;
10695   return PeeledSwitchMBB;
10696 }
10697 
10698 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10699   // Extract cases from the switch.
10700   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10701   CaseClusterVector Clusters;
10702   Clusters.reserve(SI.getNumCases());
10703   for (auto I : SI.cases()) {
10704     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10705     const ConstantInt *CaseVal = I.getCaseValue();
10706     BranchProbability Prob =
10707         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10708             : BranchProbability(1, SI.getNumCases() + 1);
10709     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10710   }
10711 
10712   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10713 
10714   // Cluster adjacent cases with the same destination. We do this at all
10715   // optimization levels because it's cheap to do and will make codegen faster
10716   // if there are many clusters.
10717   sortAndRangeify(Clusters);
10718 
10719   // The branch probablity of the peeled case.
10720   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10721   MachineBasicBlock *PeeledSwitchMBB =
10722       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10723 
10724   // If there is only the default destination, jump there directly.
10725   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10726   if (Clusters.empty()) {
10727     assert(PeeledSwitchMBB == SwitchMBB);
10728     SwitchMBB->addSuccessor(DefaultMBB);
10729     if (DefaultMBB != NextBlock(SwitchMBB)) {
10730       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10731                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10732     }
10733     return;
10734   }
10735 
10736   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10737   SL->findBitTestClusters(Clusters, &SI);
10738 
10739   LLVM_DEBUG({
10740     dbgs() << "Case clusters: ";
10741     for (const CaseCluster &C : Clusters) {
10742       if (C.Kind == CC_JumpTable)
10743         dbgs() << "JT:";
10744       if (C.Kind == CC_BitTests)
10745         dbgs() << "BT:";
10746 
10747       C.Low->getValue().print(dbgs(), true);
10748       if (C.Low != C.High) {
10749         dbgs() << '-';
10750         C.High->getValue().print(dbgs(), true);
10751       }
10752       dbgs() << ' ';
10753     }
10754     dbgs() << '\n';
10755   });
10756 
10757   assert(!Clusters.empty());
10758   SwitchWorkList WorkList;
10759   CaseClusterIt First = Clusters.begin();
10760   CaseClusterIt Last = Clusters.end() - 1;
10761   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10762   // Scale the branchprobability for DefaultMBB if the peel occurs and
10763   // DefaultMBB is not replaced.
10764   if (PeeledCaseProb != BranchProbability::getZero() &&
10765       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10766     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10767   WorkList.push_back(
10768       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10769 
10770   while (!WorkList.empty()) {
10771     SwitchWorkListItem W = WorkList.back();
10772     WorkList.pop_back();
10773     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10774 
10775     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10776         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10777       // For optimized builds, lower large range as a balanced binary tree.
10778       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10779       continue;
10780     }
10781 
10782     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10783   }
10784 }
10785 
10786 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10787   SmallVector<EVT, 4> ValueVTs;
10788   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10789                   ValueVTs);
10790   unsigned NumValues = ValueVTs.size();
10791   if (NumValues == 0) return;
10792 
10793   SmallVector<SDValue, 4> Values(NumValues);
10794   SDValue Op = getValue(I.getOperand(0));
10795 
10796   for (unsigned i = 0; i != NumValues; ++i)
10797     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10798                             SDValue(Op.getNode(), Op.getResNo() + i));
10799 
10800   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10801                            DAG.getVTList(ValueVTs), Values));
10802 }
10803