1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 IntermediateVT.isVector() 419 ? EVT::getVectorVT( 420 *DAG.getContext(), IntermediateVT.getScalarType(), 421 IntermediateVT.getVectorElementCount() * NumParts) 422 : EVT::getVectorVT(*DAG.getContext(), 423 IntermediateVT.getScalarType(), 424 NumIntermediates); 425 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 426 : ISD::BUILD_VECTOR, 427 DL, BuiltVectorTy, Ops); 428 } 429 430 // There is now one part, held in Val. Correct it to match ValueVT. 431 EVT PartEVT = Val.getValueType(); 432 433 if (PartEVT == ValueVT) 434 return Val; 435 436 if (PartEVT.isVector()) { 437 // If the element type of the source/dest vectors are the same, but the 438 // parts vector has more elements than the value vector, then we have a 439 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 440 // elements we want. 441 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 442 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 443 "Cannot narrow, it would be a lossy transformation"); 444 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 445 DAG.getVectorIdxConstant(0, DL)); 446 } 447 448 // Vector/Vector bitcast. 449 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 453 "Cannot handle this kind of promotion"); 454 // Promoted vector extract 455 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 456 457 } 458 459 // Trivial bitcast if the types are the same size and the destination 460 // vector type is legal. 461 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 462 TLI.isTypeLegal(ValueVT)) 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 465 if (ValueVT.getVectorNumElements() != 1) { 466 // Certain ABIs require that vectors are passed as integers. For vectors 467 // are the same size, this is an obvious bitcast. 468 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 469 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 470 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 471 // Bitcast Val back the original type and extract the corresponding 472 // vector we want. 473 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 474 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 475 ValueVT.getVectorElementType(), Elts); 476 Val = DAG.getBitcast(WiderVecType, Val); 477 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 478 DAG.getVectorIdxConstant(0, DL)); 479 } 480 481 diagnosePossiblyInvalidConstraint( 482 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 483 return DAG.getUNDEF(ValueVT); 484 } 485 486 // Handle cases such as i8 -> <1 x i1> 487 EVT ValueSVT = ValueVT.getVectorElementType(); 488 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 489 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 490 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 491 else 492 Val = ValueVT.isFloatingPoint() 493 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 494 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 495 } 496 497 return DAG.getBuildVector(ValueVT, DL, Val); 498 } 499 500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 501 SDValue Val, SDValue *Parts, unsigned NumParts, 502 MVT PartVT, const Value *V, 503 Optional<CallingConv::ID> CallConv); 504 505 /// getCopyToParts - Create a series of nodes that contain the specified value 506 /// split into legal parts. If the parts contain more bits than Val, then, for 507 /// integers, ExtendKind can be used to specify how to generate the extra bits. 508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 509 SDValue *Parts, unsigned NumParts, MVT PartVT, 510 const Value *V, 511 Optional<CallingConv::ID> CallConv = None, 512 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 513 EVT ValueVT = Val.getValueType(); 514 515 // Handle the vector case separately. 516 if (ValueVT.isVector()) 517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 518 CallConv); 519 520 unsigned PartBits = PartVT.getSizeInBits(); 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 537 // If the parts cover more bits than the value has, promote the value. 538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 539 assert(NumParts == 1 && "Do not know what to promote to!"); 540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 541 } else { 542 if (ValueVT.isFloatingPoint()) { 543 // FP values need to be bitcast, then extended if they are being put 544 // into a larger container. 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 547 } 548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 549 ValueVT.isInteger() && 550 "Unknown mismatch!"); 551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 553 if (PartVT == MVT::x86mmx) 554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 555 } 556 } else if (PartBits == ValueVT.getSizeInBits()) { 557 // Different types of the same size. 558 assert(NumParts == 1 && PartEVT != ValueVT); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 561 // If the parts cover less bits than value has, truncate the value. 562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 563 ValueVT.isInteger() && 564 "Unknown mismatch!"); 565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 567 if (PartVT == MVT::x86mmx) 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } 570 571 // The value may have changed - recompute ValueVT. 572 ValueVT = Val.getValueType(); 573 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 574 "Failed to tile the value with PartVT!"); 575 576 if (NumParts == 1) { 577 if (PartEVT != ValueVT) { 578 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 579 "scalar-to-vector conversion failed"); 580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 581 } 582 583 Parts[0] = Val; 584 return; 585 } 586 587 // Expand the value into multiple parts. 588 if (NumParts & (NumParts - 1)) { 589 // The number of parts is not a power of 2. Split off and copy the tail. 590 assert(PartVT.isInteger() && ValueVT.isInteger() && 591 "Do not know what to expand to!"); 592 unsigned RoundParts = 1 << Log2_32(NumParts); 593 unsigned RoundBits = RoundParts * PartBits; 594 unsigned OddParts = NumParts - RoundParts; 595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 597 598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 599 CallConv); 600 601 if (DAG.getDataLayout().isBigEndian()) 602 // The odd parts were reversed by getCopyToParts - unreverse them. 603 std::reverse(Parts + RoundParts, Parts + NumParts); 604 605 NumParts = RoundParts; 606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 608 } 609 610 // The number of parts is a power of 2. Repeatedly bisect the value using 611 // EXTRACT_ELEMENT. 612 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 613 EVT::getIntegerVT(*DAG.getContext(), 614 ValueVT.getSizeInBits()), 615 Val); 616 617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 618 for (unsigned i = 0; i < NumParts; i += StepSize) { 619 unsigned ThisBits = StepSize * PartBits / 2; 620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 621 SDValue &Part0 = Parts[i]; 622 SDValue &Part1 = Parts[i+StepSize/2]; 623 624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 628 629 if (ThisBits == PartBits && ThisVT != PartVT) { 630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 632 } 633 } 634 } 635 636 if (DAG.getDataLayout().isBigEndian()) 637 std::reverse(Parts, Parts + OrigNumParts); 638 } 639 640 static SDValue widenVectorToPartType(SelectionDAG &DAG, 641 SDValue Val, const SDLoc &DL, EVT PartVT) { 642 if (!PartVT.isVector()) 643 return SDValue(); 644 645 EVT ValueVT = Val.getValueType(); 646 unsigned PartNumElts = PartVT.getVectorNumElements(); 647 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 648 if (PartNumElts > ValueNumElts && 649 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 650 EVT ElementVT = PartVT.getVectorElementType(); 651 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 652 // undef elements. 653 SmallVector<SDValue, 16> Ops; 654 DAG.ExtractVectorElements(Val, Ops); 655 SDValue EltUndef = DAG.getUNDEF(ElementVT); 656 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 657 Ops.push_back(EltUndef); 658 659 // FIXME: Use CONCAT for 2x -> 4x. 660 return DAG.getBuildVector(PartVT, DL, Ops); 661 } 662 663 return SDValue(); 664 } 665 666 /// getCopyToPartsVector - Create a series of nodes that contain the specified 667 /// value split into legal parts. 668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 669 SDValue Val, SDValue *Parts, unsigned NumParts, 670 MVT PartVT, const Value *V, 671 Optional<CallingConv::ID> CallConv) { 672 EVT ValueVT = Val.getValueType(); 673 assert(ValueVT.isVector() && "Not a vector"); 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 const bool IsABIRegCopy = CallConv.hasValue(); 676 677 if (NumParts == 1) { 678 EVT PartEVT = PartVT; 679 if (PartEVT == ValueVT) { 680 // Nothing to do. 681 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 682 // Bitconvert vector->vector case. 683 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 684 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 685 Val = Widened; 686 } else if (PartVT.isVector() && 687 PartEVT.getVectorElementType().bitsGE( 688 ValueVT.getVectorElementType()) && 689 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 690 691 // Promoted vector extract 692 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 693 } else { 694 if (ValueVT.getVectorNumElements() == 1) { 695 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 696 DAG.getVectorIdxConstant(0, DL)); 697 } else { 698 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 699 "lossy conversion of vector to scalar type"); 700 EVT IntermediateType = 701 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 702 Val = DAG.getBitcast(IntermediateType, Val); 703 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 704 } 705 } 706 707 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 708 Parts[0] = Val; 709 return; 710 } 711 712 // Handle a multi-element vector. 713 EVT IntermediateVT; 714 MVT RegisterVT; 715 unsigned NumIntermediates; 716 unsigned NumRegs; 717 if (IsABIRegCopy) { 718 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 719 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 720 NumIntermediates, RegisterVT); 721 } else { 722 NumRegs = 723 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 724 NumIntermediates, RegisterVT); 725 } 726 727 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 728 NumParts = NumRegs; // Silence a compiler warning. 729 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 730 731 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 732 IntermediateVT.getVectorNumElements() : 1; 733 734 // Convert the vector to the appropriate type if necessary. 735 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 736 737 EVT BuiltVectorTy = EVT::getVectorVT( 738 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 739 if (ValueVT != BuiltVectorTy) { 740 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 741 Val = Widened; 742 743 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 744 } 745 746 // Split the vector into intermediate operands. 747 SmallVector<SDValue, 8> Ops(NumIntermediates); 748 for (unsigned i = 0; i != NumIntermediates; ++i) { 749 if (IntermediateVT.isVector()) { 750 Ops[i] = 751 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 753 } else { 754 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 755 DAG.getVectorIdxConstant(i, DL)); 756 } 757 } 758 759 // Split the intermediate operands into legal parts. 760 if (NumParts == NumIntermediates) { 761 // If the register was not expanded, promote or copy the value, 762 // as appropriate. 763 for (unsigned i = 0; i != NumParts; ++i) 764 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 765 } else if (NumParts > 0) { 766 // If the intermediate type was expanded, split each the value into 767 // legal parts. 768 assert(NumIntermediates != 0 && "division by zero"); 769 assert(NumParts % NumIntermediates == 0 && 770 "Must expand into a divisible number of parts!"); 771 unsigned Factor = NumParts / NumIntermediates; 772 for (unsigned i = 0; i != NumIntermediates; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 774 CallConv); 775 } 776 } 777 778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 779 EVT valuevt, Optional<CallingConv::ID> CC) 780 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 781 RegCount(1, regs.size()), CallConv(CC) {} 782 783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 784 const DataLayout &DL, unsigned Reg, Type *Ty, 785 Optional<CallingConv::ID> CC) { 786 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 787 788 CallConv = CC; 789 790 for (EVT ValueVT : ValueVTs) { 791 unsigned NumRegs = 792 isABIMangled() 793 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getNumRegisters(Context, ValueVT); 795 MVT RegisterVT = 796 isABIMangled() 797 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 798 : TLI.getRegisterType(Context, ValueVT); 799 for (unsigned i = 0; i != NumRegs; ++i) 800 Regs.push_back(Reg + i); 801 RegVTs.push_back(RegisterVT); 802 RegCount.push_back(NumRegs); 803 Reg += NumRegs; 804 } 805 } 806 807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 808 FunctionLoweringInfo &FuncInfo, 809 const SDLoc &dl, SDValue &Chain, 810 SDValue *Flag, const Value *V) const { 811 // A Value with type {} or [0 x %t] needs no registers. 812 if (ValueVTs.empty()) 813 return SDValue(); 814 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 // Assemble the legal parts into the final values. 818 SmallVector<SDValue, 4> Values(ValueVTs.size()); 819 SmallVector<SDValue, 8> Parts; 820 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 821 // Copy the legal parts from the registers. 822 EVT ValueVT = ValueVTs[Value]; 823 unsigned NumRegs = RegCount[Value]; 824 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 825 *DAG.getContext(), 826 CallConv.getValue(), RegVTs[Value]) 827 : RegVTs[Value]; 828 829 Parts.resize(NumRegs); 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 SDValue P; 832 if (!Flag) { 833 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 834 } else { 835 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 836 *Flag = P.getValue(2); 837 } 838 839 Chain = P.getValue(1); 840 Parts[i] = P; 841 842 // If the source register was virtual and if we know something about it, 843 // add an assert node. 844 if (!Register::isVirtualRegister(Regs[Part + i]) || 845 !RegisterVT.isInteger()) 846 continue; 847 848 const FunctionLoweringInfo::LiveOutInfo *LOI = 849 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 850 if (!LOI) 851 continue; 852 853 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 854 unsigned NumSignBits = LOI->NumSignBits; 855 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 856 857 if (NumZeroBits == RegSize) { 858 // The current value is a zero. 859 // Explicitly express that as it would be easier for 860 // optimizations to kick in. 861 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 862 continue; 863 } 864 865 // FIXME: We capture more information than the dag can represent. For 866 // now, just use the tightest assertzext/assertsext possible. 867 bool isSExt; 868 EVT FromVT(MVT::Other); 869 if (NumZeroBits) { 870 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 871 isSExt = false; 872 } else if (NumSignBits > 1) { 873 FromVT = 874 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 875 isSExt = true; 876 } else { 877 continue; 878 } 879 // Add an assertion node. 880 assert(FromVT != MVT::Other); 881 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 882 RegisterVT, P, DAG.getValueType(FromVT)); 883 } 884 885 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 886 RegisterVT, ValueVT, V, CallConv); 887 Part += NumRegs; 888 Parts.clear(); 889 } 890 891 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 892 } 893 894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 895 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 896 const Value *V, 897 ISD::NodeType PreferredExtendType) const { 898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 899 ISD::NodeType ExtendKind = PreferredExtendType; 900 901 // Get the list of the values's legal parts. 902 unsigned NumRegs = Regs.size(); 903 SmallVector<SDValue, 8> Parts(NumRegs); 904 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 905 unsigned NumParts = RegCount[Value]; 906 907 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 908 *DAG.getContext(), 909 CallConv.getValue(), RegVTs[Value]) 910 : RegVTs[Value]; 911 912 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 913 ExtendKind = ISD::ZERO_EXTEND; 914 915 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 916 NumParts, RegisterVT, V, CallConv, ExtendKind); 917 Part += NumParts; 918 } 919 920 // Copy the parts into the registers. 921 SmallVector<SDValue, 8> Chains(NumRegs); 922 for (unsigned i = 0; i != NumRegs; ++i) { 923 SDValue Part; 924 if (!Flag) { 925 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 926 } else { 927 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 928 *Flag = Part.getValue(1); 929 } 930 931 Chains[i] = Part.getValue(0); 932 } 933 934 if (NumRegs == 1 || Flag) 935 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 936 // flagged to it. That is the CopyToReg nodes and the user are considered 937 // a single scheduling unit. If we create a TokenFactor and return it as 938 // chain, then the TokenFactor is both a predecessor (operand) of the 939 // user as well as a successor (the TF operands are flagged to the user). 940 // c1, f1 = CopyToReg 941 // c2, f2 = CopyToReg 942 // c3 = TokenFactor c1, c2 943 // ... 944 // = op c3, ..., f2 945 Chain = Chains[NumRegs-1]; 946 else 947 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 948 } 949 950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 951 unsigned MatchingIdx, const SDLoc &dl, 952 SelectionDAG &DAG, 953 std::vector<SDValue> &Ops) const { 954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 955 956 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 957 if (HasMatching) 958 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 959 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 960 // Put the register class of the virtual registers in the flag word. That 961 // way, later passes can recompute register class constraints for inline 962 // assembly as well as normal instructions. 963 // Don't do this for tied operands that can use the regclass information 964 // from the def. 965 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 966 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 967 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 968 } 969 970 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 971 Ops.push_back(Res); 972 973 if (Code == InlineAsm::Kind_Clobber) { 974 // Clobbers should always have a 1:1 mapping with registers, and may 975 // reference registers that have illegal (e.g. vector) types. Hence, we 976 // shouldn't try to apply any sort of splitting logic to them. 977 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 978 "No 1:1 mapping from clobbers to regs?"); 979 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 980 (void)SP; 981 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 982 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 983 assert( 984 (Regs[I] != SP || 985 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 986 "If we clobbered the stack pointer, MFI should know about it."); 987 } 988 return; 989 } 990 991 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 992 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 993 MVT RegisterVT = RegVTs[Value]; 994 for (unsigned i = 0; i != NumRegs; ++i) { 995 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 996 unsigned TheReg = Regs[Reg++]; 997 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 998 } 999 } 1000 } 1001 1002 SmallVector<std::pair<unsigned, unsigned>, 4> 1003 RegsForValue::getRegsAndSizes() const { 1004 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1005 unsigned I = 0; 1006 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1007 unsigned RegCount = std::get<0>(CountAndVT); 1008 MVT RegisterVT = std::get<1>(CountAndVT); 1009 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1010 for (unsigned E = I + RegCount; I != E; ++I) 1011 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1012 } 1013 return OutVec; 1014 } 1015 1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1017 const TargetLibraryInfo *li) { 1018 AA = aa; 1019 GFI = gfi; 1020 LibInfo = li; 1021 DL = &DAG.getDataLayout(); 1022 Context = DAG.getContext(); 1023 LPadToCallSiteMap.clear(); 1024 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1025 } 1026 1027 void SelectionDAGBuilder::clear() { 1028 NodeMap.clear(); 1029 UnusedArgNodeMap.clear(); 1030 PendingLoads.clear(); 1031 PendingExports.clear(); 1032 PendingConstrainedFP.clear(); 1033 PendingConstrainedFPStrict.clear(); 1034 CurInst = nullptr; 1035 HasTailCall = false; 1036 SDNodeOrder = LowestSDNodeOrder; 1037 StatepointLowering.clear(); 1038 } 1039 1040 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1041 DanglingDebugInfoMap.clear(); 1042 } 1043 1044 // Update DAG root to include dependencies on Pending chains. 1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1046 SDValue Root = DAG.getRoot(); 1047 1048 if (Pending.empty()) 1049 return Root; 1050 1051 // Add current root to PendingChains, unless we already indirectly 1052 // depend on it. 1053 if (Root.getOpcode() != ISD::EntryToken) { 1054 unsigned i = 0, e = Pending.size(); 1055 for (; i != e; ++i) { 1056 assert(Pending[i].getNode()->getNumOperands() > 1); 1057 if (Pending[i].getNode()->getOperand(0) == Root) 1058 break; // Don't add the root if we already indirectly depend on it. 1059 } 1060 1061 if (i == e) 1062 Pending.push_back(Root); 1063 } 1064 1065 if (Pending.size() == 1) 1066 Root = Pending[0]; 1067 else 1068 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1069 1070 DAG.setRoot(Root); 1071 Pending.clear(); 1072 return Root; 1073 } 1074 1075 SDValue SelectionDAGBuilder::getMemoryRoot() { 1076 return updateRoot(PendingLoads); 1077 } 1078 1079 SDValue SelectionDAGBuilder::getRoot() { 1080 // Chain up all pending constrained intrinsics together with all 1081 // pending loads, by simply appending them to PendingLoads and 1082 // then calling getMemoryRoot(). 1083 PendingLoads.reserve(PendingLoads.size() + 1084 PendingConstrainedFP.size() + 1085 PendingConstrainedFPStrict.size()); 1086 PendingLoads.append(PendingConstrainedFP.begin(), 1087 PendingConstrainedFP.end()); 1088 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFP.clear(); 1091 PendingConstrainedFPStrict.clear(); 1092 return getMemoryRoot(); 1093 } 1094 1095 SDValue SelectionDAGBuilder::getControlRoot() { 1096 // We need to emit pending fpexcept.strict constrained intrinsics, 1097 // so append them to the PendingExports list. 1098 PendingExports.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFPStrict.clear(); 1101 return updateRoot(PendingExports); 1102 } 1103 1104 void SelectionDAGBuilder::visit(const Instruction &I) { 1105 // Set up outgoing PHI node register values before emitting the terminator. 1106 if (I.isTerminator()) { 1107 HandlePHINodesInSuccessorBlocks(I.getParent()); 1108 } 1109 1110 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1111 if (!isa<DbgInfoIntrinsic>(I)) 1112 ++SDNodeOrder; 1113 1114 CurInst = &I; 1115 1116 visit(I.getOpcode(), I); 1117 1118 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1119 // ConstrainedFPIntrinsics handle their own FMF. 1120 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1121 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1122 // maps to this instruction. 1123 // TODO: We could handle all flags (nsw, etc) here. 1124 // TODO: If an IR instruction maps to >1 node, only the final node will have 1125 // flags set. 1126 if (SDNode *Node = getNodeForIRValue(&I)) { 1127 SDNodeFlags IncomingFlags; 1128 IncomingFlags.copyFMF(*FPMO); 1129 if (!Node->getFlags().isDefined()) 1130 Node->setFlags(IncomingFlags); 1131 else 1132 Node->intersectFlagsWith(IncomingFlags); 1133 } 1134 } 1135 } 1136 1137 if (!I.isTerminator() && !HasTailCall && 1138 !isStatepoint(&I)) // statepoints handle their exports internally 1139 CopyToExportRegsIfNeeded(&I); 1140 1141 CurInst = nullptr; 1142 } 1143 1144 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1145 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1146 } 1147 1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1149 // Note: this doesn't use InstVisitor, because it has to work with 1150 // ConstantExpr's in addition to instructions. 1151 switch (Opcode) { 1152 default: llvm_unreachable("Unknown instruction type encountered!"); 1153 // Build the switch statement using the Instruction.def file. 1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1155 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1156 #include "llvm/IR/Instruction.def" 1157 } 1158 } 1159 1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1161 const DIExpression *Expr) { 1162 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1163 const DbgValueInst *DI = DDI.getDI(); 1164 DIVariable *DanglingVariable = DI->getVariable(); 1165 DIExpression *DanglingExpr = DI->getExpression(); 1166 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1167 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1168 return true; 1169 } 1170 return false; 1171 }; 1172 1173 for (auto &DDIMI : DanglingDebugInfoMap) { 1174 DanglingDebugInfoVector &DDIV = DDIMI.second; 1175 1176 // If debug info is to be dropped, run it through final checks to see 1177 // whether it can be salvaged. 1178 for (auto &DDI : DDIV) 1179 if (isMatchingDbgValue(DDI)) 1180 salvageUnresolvedDbgValue(DDI); 1181 1182 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1183 } 1184 } 1185 1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1187 // generate the debug data structures now that we've seen its definition. 1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1189 SDValue Val) { 1190 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1191 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1192 return; 1193 1194 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1195 for (auto &DDI : DDIV) { 1196 const DbgValueInst *DI = DDI.getDI(); 1197 assert(DI && "Ill-formed DanglingDebugInfo"); 1198 DebugLoc dl = DDI.getdl(); 1199 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1200 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1201 DILocalVariable *Variable = DI->getVariable(); 1202 DIExpression *Expr = DI->getExpression(); 1203 assert(Variable->isValidLocationForIntrinsic(dl) && 1204 "Expected inlined-at fields to agree"); 1205 SDDbgValue *SDV; 1206 if (Val.getNode()) { 1207 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1208 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1209 // we couldn't resolve it directly when examining the DbgValue intrinsic 1210 // in the first place we should not be more successful here). Unless we 1211 // have some test case that prove this to be correct we should avoid 1212 // calling EmitFuncArgumentDbgValue here. 1213 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1214 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1215 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1216 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1217 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1218 // inserted after the definition of Val when emitting the instructions 1219 // after ISel. An alternative could be to teach 1220 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1221 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1222 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1223 << ValSDNodeOrder << "\n"); 1224 SDV = getDbgValue(Val, Variable, Expr, dl, 1225 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1226 DAG.AddDbgValue(SDV, Val.getNode(), false); 1227 } else 1228 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1229 << "in EmitFuncArgumentDbgValue\n"); 1230 } else { 1231 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1232 auto Undef = 1233 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1234 auto SDV = 1235 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1236 DAG.AddDbgValue(SDV, nullptr, false); 1237 } 1238 } 1239 DDIV.clear(); 1240 } 1241 1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1243 Value *V = DDI.getDI()->getValue(); 1244 DILocalVariable *Var = DDI.getDI()->getVariable(); 1245 DIExpression *Expr = DDI.getDI()->getExpression(); 1246 DebugLoc DL = DDI.getdl(); 1247 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1248 unsigned SDOrder = DDI.getSDNodeOrder(); 1249 1250 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1251 // that DW_OP_stack_value is desired. 1252 assert(isa<DbgValueInst>(DDI.getDI())); 1253 bool StackValue = true; 1254 1255 // Can this Value can be encoded without any further work? 1256 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1257 return; 1258 1259 // Attempt to salvage back through as many instructions as possible. Bail if 1260 // a non-instruction is seen, such as a constant expression or global 1261 // variable. FIXME: Further work could recover those too. 1262 while (isa<Instruction>(V)) { 1263 Instruction &VAsInst = *cast<Instruction>(V); 1264 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1265 1266 // If we cannot salvage any further, and haven't yet found a suitable debug 1267 // expression, bail out. 1268 if (!NewExpr) 1269 break; 1270 1271 // New value and expr now represent this debuginfo. 1272 V = VAsInst.getOperand(0); 1273 Expr = NewExpr; 1274 1275 // Some kind of simplification occurred: check whether the operand of the 1276 // salvaged debug expression can be encoded in this DAG. 1277 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1278 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1279 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1280 return; 1281 } 1282 } 1283 1284 // This was the final opportunity to salvage this debug information, and it 1285 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1286 // any earlier variable location. 1287 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1288 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1289 DAG.AddDbgValue(SDV, nullptr, false); 1290 1291 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1292 << "\n"); 1293 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1294 << "\n"); 1295 } 1296 1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1298 DIExpression *Expr, DebugLoc dl, 1299 DebugLoc InstDL, unsigned Order) { 1300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1301 SDDbgValue *SDV; 1302 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1303 isa<ConstantPointerNull>(V)) { 1304 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, nullptr, false); 1306 return true; 1307 } 1308 1309 // If the Value is a frame index, we can create a FrameIndex debug value 1310 // without relying on the DAG at all. 1311 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1312 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1313 if (SI != FuncInfo.StaticAllocaMap.end()) { 1314 auto SDV = 1315 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1316 /*IsIndirect*/ false, dl, SDNodeOrder); 1317 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1318 // is still available even if the SDNode gets optimized out. 1319 DAG.AddDbgValue(SDV, nullptr, false); 1320 return true; 1321 } 1322 } 1323 1324 // Do not use getValue() in here; we don't want to generate code at 1325 // this point if it hasn't been done yet. 1326 SDValue N = NodeMap[V]; 1327 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1328 N = UnusedArgNodeMap[V]; 1329 if (N.getNode()) { 1330 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1331 return true; 1332 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1333 DAG.AddDbgValue(SDV, N.getNode(), false); 1334 return true; 1335 } 1336 1337 // Special rules apply for the first dbg.values of parameter variables in a 1338 // function. Identify them by the fact they reference Argument Values, that 1339 // they're parameters, and they are parameters of the current function. We 1340 // need to let them dangle until they get an SDNode. 1341 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1342 !InstDL.getInlinedAt(); 1343 if (!IsParamOfFunc) { 1344 // The value is not used in this block yet (or it would have an SDNode). 1345 // We still want the value to appear for the user if possible -- if it has 1346 // an associated VReg, we can refer to that instead. 1347 auto VMI = FuncInfo.ValueMap.find(V); 1348 if (VMI != FuncInfo.ValueMap.end()) { 1349 unsigned Reg = VMI->second; 1350 // If this is a PHI node, it may be split up into several MI PHI nodes 1351 // (in FunctionLoweringInfo::set). 1352 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1353 V->getType(), None); 1354 if (RFV.occupiesMultipleRegs()) { 1355 unsigned Offset = 0; 1356 unsigned BitsToDescribe = 0; 1357 if (auto VarSize = Var->getSizeInBits()) 1358 BitsToDescribe = *VarSize; 1359 if (auto Fragment = Expr->getFragmentInfo()) 1360 BitsToDescribe = Fragment->SizeInBits; 1361 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1362 unsigned RegisterSize = RegAndSize.second; 1363 // Bail out if all bits are described already. 1364 if (Offset >= BitsToDescribe) 1365 break; 1366 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1367 ? BitsToDescribe - Offset 1368 : RegisterSize; 1369 auto FragmentExpr = DIExpression::createFragmentExpression( 1370 Expr, Offset, FragmentSize); 1371 if (!FragmentExpr) 1372 continue; 1373 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1374 false, dl, SDNodeOrder); 1375 DAG.AddDbgValue(SDV, nullptr, false); 1376 Offset += RegisterSize; 1377 } 1378 } else { 1379 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, nullptr, false); 1381 } 1382 return true; 1383 } 1384 } 1385 1386 return false; 1387 } 1388 1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1390 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1391 for (auto &Pair : DanglingDebugInfoMap) 1392 for (auto &DDI : Pair.second) 1393 salvageUnresolvedDbgValue(DDI); 1394 clearDanglingDebugInfo(); 1395 } 1396 1397 /// getCopyFromRegs - If there was virtual register allocated for the value V 1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1400 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1401 SDValue Result; 1402 1403 if (It != FuncInfo.ValueMap.end()) { 1404 unsigned InReg = It->second; 1405 1406 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1407 DAG.getDataLayout(), InReg, Ty, 1408 None); // This is not an ABI copy. 1409 SDValue Chain = DAG.getEntryNode(); 1410 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1411 V); 1412 resolveDanglingDebugInfo(V, Result); 1413 } 1414 1415 return Result; 1416 } 1417 1418 /// getValue - Return an SDValue for the given Value. 1419 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1420 // If we already have an SDValue for this value, use it. It's important 1421 // to do this first, so that we don't create a CopyFromReg if we already 1422 // have a regular SDValue. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) return N; 1425 1426 // If there's a virtual register allocated and initialized for this 1427 // value, use it. 1428 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1429 return copyFromReg; 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 // Return true if SDValue exists for the given Value 1439 bool SelectionDAGBuilder::findValue(const Value *V) const { 1440 return (NodeMap.find(V) != NodeMap.end()) || 1441 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1442 } 1443 1444 /// getNonRegisterValue - Return an SDValue for the given Value, but 1445 /// don't look in FuncInfo.ValueMap for a virtual register. 1446 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1447 // If we already have an SDValue for this value, use it. 1448 SDValue &N = NodeMap[V]; 1449 if (N.getNode()) { 1450 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1451 // Remove the debug location from the node as the node is about to be used 1452 // in a location which may differ from the original debug location. This 1453 // is relevant to Constant and ConstantFP nodes because they can appear 1454 // as constant expressions inside PHI nodes. 1455 N->setDebugLoc(DebugLoc()); 1456 } 1457 return N; 1458 } 1459 1460 // Otherwise create a new SDValue and remember it. 1461 SDValue Val = getValueImpl(V); 1462 NodeMap[V] = Val; 1463 resolveDanglingDebugInfo(V, Val); 1464 return Val; 1465 } 1466 1467 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1468 /// Create an SDValue for the given value. 1469 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1471 1472 if (const Constant *C = dyn_cast<Constant>(V)) { 1473 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1474 1475 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1476 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1477 1478 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1479 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1480 1481 if (isa<ConstantPointerNull>(C)) { 1482 unsigned AS = V->getType()->getPointerAddressSpace(); 1483 return DAG.getConstant(0, getCurSDLoc(), 1484 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1485 } 1486 1487 if (match(C, m_VScale(DAG.getDataLayout()))) 1488 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1489 1490 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1491 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1492 1493 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1494 return DAG.getUNDEF(VT); 1495 1496 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1497 visit(CE->getOpcode(), *CE); 1498 SDValue N1 = NodeMap[V]; 1499 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1500 return N1; 1501 } 1502 1503 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1504 SmallVector<SDValue, 4> Constants; 1505 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1506 OI != OE; ++OI) { 1507 SDNode *Val = getValue(*OI).getNode(); 1508 // If the operand is an empty aggregate, there are no values. 1509 if (!Val) continue; 1510 // Add each leaf value from the operand to the Constants list 1511 // to form a flattened list of all the values. 1512 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1513 Constants.push_back(SDValue(Val, i)); 1514 } 1515 1516 return DAG.getMergeValues(Constants, getCurSDLoc()); 1517 } 1518 1519 if (const ConstantDataSequential *CDS = 1520 dyn_cast<ConstantDataSequential>(C)) { 1521 SmallVector<SDValue, 4> Ops; 1522 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1523 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1524 // Add each leaf value from the operand to the Constants list 1525 // to form a flattened list of all the values. 1526 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1527 Ops.push_back(SDValue(Val, i)); 1528 } 1529 1530 if (isa<ArrayType>(CDS->getType())) 1531 return DAG.getMergeValues(Ops, getCurSDLoc()); 1532 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1533 } 1534 1535 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1536 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1537 "Unknown struct or array constant!"); 1538 1539 SmallVector<EVT, 4> ValueVTs; 1540 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1541 unsigned NumElts = ValueVTs.size(); 1542 if (NumElts == 0) 1543 return SDValue(); // empty struct 1544 SmallVector<SDValue, 4> Constants(NumElts); 1545 for (unsigned i = 0; i != NumElts; ++i) { 1546 EVT EltVT = ValueVTs[i]; 1547 if (isa<UndefValue>(C)) 1548 Constants[i] = DAG.getUNDEF(EltVT); 1549 else if (EltVT.isFloatingPoint()) 1550 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1551 else 1552 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1553 } 1554 1555 return DAG.getMergeValues(Constants, getCurSDLoc()); 1556 } 1557 1558 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1559 return DAG.getBlockAddress(BA, VT); 1560 1561 VectorType *VecTy = cast<VectorType>(V->getType()); 1562 unsigned NumElements = VecTy->getNumElements(); 1563 1564 // Now that we know the number and type of the elements, get that number of 1565 // elements into the Ops array based on what kind of constant it is. 1566 SmallVector<SDValue, 16> Ops; 1567 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1568 for (unsigned i = 0; i != NumElements; ++i) 1569 Ops.push_back(getValue(CV->getOperand(i))); 1570 } else { 1571 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1572 EVT EltVT = 1573 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1574 1575 SDValue Op; 1576 if (EltVT.isFloatingPoint()) 1577 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1578 else 1579 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1580 Ops.assign(NumElements, Op); 1581 } 1582 1583 // Create a BUILD_VECTOR node. 1584 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1585 } 1586 1587 // If this is a static alloca, generate it as the frameindex instead of 1588 // computation. 1589 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1590 DenseMap<const AllocaInst*, int>::iterator SI = 1591 FuncInfo.StaticAllocaMap.find(AI); 1592 if (SI != FuncInfo.StaticAllocaMap.end()) 1593 return DAG.getFrameIndex(SI->second, 1594 TLI.getFrameIndexTy(DAG.getDataLayout())); 1595 } 1596 1597 // If this is an instruction which fast-isel has deferred, select it now. 1598 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1599 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1600 1601 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1602 Inst->getType(), getABIRegCopyCC(V)); 1603 SDValue Chain = DAG.getEntryNode(); 1604 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1605 } 1606 1607 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1608 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1609 } 1610 llvm_unreachable("Can't get register for value!"); 1611 } 1612 1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1616 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1617 bool IsSEH = isAsynchronousEHPersonality(Pers); 1618 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1619 if (!IsSEH) 1620 CatchPadMBB->setIsEHScopeEntry(); 1621 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1622 if (IsMSVCCXX || IsCoreCLR) 1623 CatchPadMBB->setIsEHFuncletEntry(); 1624 } 1625 1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1627 // Update machine-CFG edge. 1628 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1629 FuncInfo.MBB->addSuccessor(TargetMBB); 1630 1631 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1632 bool IsSEH = isAsynchronousEHPersonality(Pers); 1633 if (IsSEH) { 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1637 TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1639 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1640 return; 1641 } 1642 1643 // Figure out the funclet membership for the catchret's successor. 1644 // This will be used by the FuncletLayout pass to determine how to order the 1645 // BB's. 1646 // A 'catchret' returns to the outer scope's color. 1647 Value *ParentPad = I.getCatchSwitchParentPad(); 1648 const BasicBlock *SuccessorColor; 1649 if (isa<ConstantTokenNone>(ParentPad)) 1650 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1651 else 1652 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1653 assert(SuccessorColor && "No parent funclet for catchret!"); 1654 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1655 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1656 1657 // Create the terminator node. 1658 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1659 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1660 DAG.getBasicBlock(SuccessorColorMBB)); 1661 DAG.setRoot(Ret); 1662 } 1663 1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1665 // Don't emit any special code for the cleanuppad instruction. It just marks 1666 // the start of an EH scope/funclet. 1667 FuncInfo.MBB->setIsEHScopeEntry(); 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 if (Pers != EHPersonality::Wasm_CXX) { 1670 FuncInfo.MBB->setIsEHFuncletEntry(); 1671 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1672 } 1673 } 1674 1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1676 // the control flow always stops at the single catch pad, as it does for a 1677 // cleanup pad. In case the exception caught is not of the types the catch pad 1678 // catches, it will be rethrown by a rethrow. 1679 static void findWasmUnwindDestinations( 1680 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1681 BranchProbability Prob, 1682 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1683 &UnwindDests) { 1684 while (EHPadBB) { 1685 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1686 if (isa<CleanupPadInst>(Pad)) { 1687 // Stop on cleanup pads. 1688 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1689 UnwindDests.back().first->setIsEHScopeEntry(); 1690 break; 1691 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1692 // Add the catchpad handlers to the possible destinations. We don't 1693 // continue to the unwind destination of the catchswitch for wasm. 1694 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 } 1698 break; 1699 } else { 1700 continue; 1701 } 1702 } 1703 } 1704 1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1706 /// many places it could ultimately go. In the IR, we have a single unwind 1707 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1708 /// This function skips over imaginary basic blocks that hold catchswitch 1709 /// instructions, and finds all the "real" machine 1710 /// basic block destinations. As those destinations may not be successors of 1711 /// EHPadBB, here we also calculate the edge probability to those destinations. 1712 /// The passed-in Prob is the edge probability to EHPadBB. 1713 static void findUnwindDestinations( 1714 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1715 BranchProbability Prob, 1716 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1717 &UnwindDests) { 1718 EHPersonality Personality = 1719 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1720 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1721 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1722 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1723 bool IsSEH = isAsynchronousEHPersonality(Personality); 1724 1725 if (IsWasmCXX) { 1726 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1727 assert(UnwindDests.size() <= 1 && 1728 "There should be at most one unwind destination for wasm"); 1729 return; 1730 } 1731 1732 while (EHPadBB) { 1733 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1734 BasicBlock *NewEHPadBB = nullptr; 1735 if (isa<LandingPadInst>(Pad)) { 1736 // Stop on landingpads. They are not funclets. 1737 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1738 break; 1739 } else if (isa<CleanupPadInst>(Pad)) { 1740 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1741 // personalities. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 UnwindDests.back().first->setIsEHScopeEntry(); 1744 UnwindDests.back().first->setIsEHFuncletEntry(); 1745 break; 1746 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1747 // Add the catchpad handlers to the possible destinations. 1748 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1750 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1751 if (IsMSVCCXX || IsCoreCLR) 1752 UnwindDests.back().first->setIsEHFuncletEntry(); 1753 if (!IsSEH) 1754 UnwindDests.back().first->setIsEHScopeEntry(); 1755 } 1756 NewEHPadBB = CatchSwitch->getUnwindDest(); 1757 } else { 1758 continue; 1759 } 1760 1761 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1762 if (BPI && NewEHPadBB) 1763 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1764 EHPadBB = NewEHPadBB; 1765 } 1766 } 1767 1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1769 // Update successor info. 1770 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1771 auto UnwindDest = I.getUnwindDest(); 1772 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1773 BranchProbability UnwindDestProb = 1774 (BPI && UnwindDest) 1775 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1776 : BranchProbability::getZero(); 1777 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1778 for (auto &UnwindDest : UnwindDests) { 1779 UnwindDest.first->setIsEHPad(); 1780 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1781 } 1782 FuncInfo.MBB->normalizeSuccProbs(); 1783 1784 // Create the terminator node. 1785 SDValue Ret = 1786 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1787 DAG.setRoot(Ret); 1788 } 1789 1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1791 report_fatal_error("visitCatchSwitch not yet implemented!"); 1792 } 1793 1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 auto &DL = DAG.getDataLayout(); 1797 SDValue Chain = getControlRoot(); 1798 SmallVector<ISD::OutputArg, 8> Outs; 1799 SmallVector<SDValue, 8> OutVals; 1800 1801 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1802 // lower 1803 // 1804 // %val = call <ty> @llvm.experimental.deoptimize() 1805 // ret <ty> %val 1806 // 1807 // differently. 1808 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1809 LowerDeoptimizingReturn(); 1810 return; 1811 } 1812 1813 if (!FuncInfo.CanLowerReturn) { 1814 unsigned DemoteReg = FuncInfo.DemoteRegister; 1815 const Function *F = I.getParent()->getParent(); 1816 1817 // Emit a store of the return value through the virtual register. 1818 // Leave Outs empty so that LowerReturn won't try to load return 1819 // registers the usual way. 1820 SmallVector<EVT, 1> PtrValueVTs; 1821 ComputeValueVTs(TLI, DL, 1822 F->getReturnType()->getPointerTo( 1823 DAG.getDataLayout().getAllocaAddrSpace()), 1824 PtrValueVTs); 1825 1826 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1827 DemoteReg, PtrValueVTs[0]); 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 SmallVector<EVT, 4> ValueVTs, MemVTs; 1831 SmallVector<uint64_t, 4> Offsets; 1832 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1833 &Offsets); 1834 unsigned NumValues = ValueVTs.size(); 1835 1836 SmallVector<SDValue, 4> Chains(NumValues); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1846 // FIXME: better loc info would be nice. 1847 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1848 } 1849 1850 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1851 MVT::Other, Chains); 1852 } else if (I.getNumOperands() != 0) { 1853 SmallVector<EVT, 4> ValueVTs; 1854 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1855 unsigned NumValues = ValueVTs.size(); 1856 if (NumValues) { 1857 SDValue RetOp = getValue(I.getOperand(0)); 1858 1859 const Function *F = I.getParent()->getParent(); 1860 1861 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1862 I.getOperand(0)->getType(), F->getCallingConv(), 1863 /*IsVarArg*/ false); 1864 1865 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1866 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1867 Attribute::SExt)) 1868 ExtendKind = ISD::SIGN_EXTEND; 1869 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1870 Attribute::ZExt)) 1871 ExtendKind = ISD::ZERO_EXTEND; 1872 1873 LLVMContext &Context = F->getContext(); 1874 bool RetInReg = F->getAttributes().hasAttribute( 1875 AttributeList::ReturnIndex, Attribute::InReg); 1876 1877 for (unsigned j = 0; j != NumValues; ++j) { 1878 EVT VT = ValueVTs[j]; 1879 1880 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1881 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1882 1883 CallingConv::ID CC = F->getCallingConv(); 1884 1885 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1886 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1887 SmallVector<SDValue, 4> Parts(NumParts); 1888 getCopyToParts(DAG, getCurSDLoc(), 1889 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1890 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1891 1892 // 'inreg' on function refers to return value 1893 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1894 if (RetInReg) 1895 Flags.setInReg(); 1896 1897 if (I.getOperand(0)->getType()->isPointerTy()) { 1898 Flags.setPointer(); 1899 Flags.setPointerAddrSpace( 1900 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1901 } 1902 1903 if (NeedsRegBlock) { 1904 Flags.setInConsecutiveRegs(); 1905 if (j == NumValues - 1) 1906 Flags.setInConsecutiveRegsLast(); 1907 } 1908 1909 // Propagate extension type if any 1910 if (ExtendKind == ISD::SIGN_EXTEND) 1911 Flags.setSExt(); 1912 else if (ExtendKind == ISD::ZERO_EXTEND) 1913 Flags.setZExt(); 1914 1915 for (unsigned i = 0; i < NumParts; ++i) { 1916 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1917 VT, /*isfixed=*/true, 0, 0)); 1918 OutVals.push_back(Parts[i]); 1919 } 1920 } 1921 } 1922 } 1923 1924 // Push in swifterror virtual register as the last element of Outs. This makes 1925 // sure swifterror virtual register will be returned in the swifterror 1926 // physical register. 1927 const Function *F = I.getParent()->getParent(); 1928 if (TLI.supportSwiftError() && 1929 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1930 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1931 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1932 Flags.setSwiftError(); 1933 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1934 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1935 true /*isfixed*/, 1 /*origidx*/, 1936 0 /*partOffs*/)); 1937 // Create SDNode for the swifterror virtual register. 1938 OutVals.push_back( 1939 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1940 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1941 EVT(TLI.getPointerTy(DL)))); 1942 } 1943 1944 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1945 CallingConv::ID CallConv = 1946 DAG.getMachineFunction().getFunction().getCallingConv(); 1947 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1948 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1949 1950 // Verify that the target's LowerReturn behaved as expected. 1951 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1952 "LowerReturn didn't return a valid chain!"); 1953 1954 // Update the DAG with the new chain value resulting from return lowering. 1955 DAG.setRoot(Chain); 1956 } 1957 1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1959 /// created for it, emit nodes to copy the value into the virtual 1960 /// registers. 1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1962 // Skip empty types 1963 if (V->getType()->isEmptyTy()) 1964 return; 1965 1966 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1967 if (VMI != FuncInfo.ValueMap.end()) { 1968 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1969 CopyValueToVirtualRegister(V, VMI->second); 1970 } 1971 } 1972 1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1974 /// the current basic block, add it to ValueMap now so that we'll get a 1975 /// CopyTo/FromReg. 1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1977 // No need to export constants. 1978 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1979 1980 // Already exported? 1981 if (FuncInfo.isExportedInst(V)) return; 1982 1983 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1984 CopyValueToVirtualRegister(V, Reg); 1985 } 1986 1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1988 const BasicBlock *FromBB) { 1989 // The operands of the setcc have to be in this block. We don't know 1990 // how to export them from some other block. 1991 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1992 // Can export from current BB. 1993 if (VI->getParent() == FromBB) 1994 return true; 1995 1996 // Is already exported, noop. 1997 return FuncInfo.isExportedInst(V); 1998 } 1999 2000 // If this is an argument, we can export it if the BB is the entry block or 2001 // if it is already exported. 2002 if (isa<Argument>(V)) { 2003 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2004 return true; 2005 2006 // Otherwise, can only export this if it is already exported. 2007 return FuncInfo.isExportedInst(V); 2008 } 2009 2010 // Otherwise, constants can always be exported. 2011 return true; 2012 } 2013 2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2015 BranchProbability 2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2017 const MachineBasicBlock *Dst) const { 2018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2019 const BasicBlock *SrcBB = Src->getBasicBlock(); 2020 const BasicBlock *DstBB = Dst->getBasicBlock(); 2021 if (!BPI) { 2022 // If BPI is not available, set the default probability as 1 / N, where N is 2023 // the number of successors. 2024 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2025 return BranchProbability(1, SuccSize); 2026 } 2027 return BPI->getEdgeProbability(SrcBB, DstBB); 2028 } 2029 2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2031 MachineBasicBlock *Dst, 2032 BranchProbability Prob) { 2033 if (!FuncInfo.BPI) 2034 Src->addSuccessorWithoutProb(Dst); 2035 else { 2036 if (Prob.isUnknown()) 2037 Prob = getEdgeProbability(Src, Dst); 2038 Src->addSuccessor(Dst, Prob); 2039 } 2040 } 2041 2042 static bool InBlock(const Value *V, const BasicBlock *BB) { 2043 if (const Instruction *I = dyn_cast<Instruction>(V)) 2044 return I->getParent() == BB; 2045 return true; 2046 } 2047 2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2049 /// This function emits a branch and is used at the leaves of an OR or an 2050 /// AND operator tree. 2051 void 2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2053 MachineBasicBlock *TBB, 2054 MachineBasicBlock *FBB, 2055 MachineBasicBlock *CurBB, 2056 MachineBasicBlock *SwitchBB, 2057 BranchProbability TProb, 2058 BranchProbability FProb, 2059 bool InvertCond) { 2060 const BasicBlock *BB = CurBB->getBasicBlock(); 2061 2062 // If the leaf of the tree is a comparison, merge the condition into 2063 // the caseblock. 2064 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2065 // The operands of the cmp have to be in this block. We don't know 2066 // how to export them from some other block. If this is the first block 2067 // of the sequence, no exporting is needed. 2068 if (CurBB == SwitchBB || 2069 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2070 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2071 ISD::CondCode Condition; 2072 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2073 ICmpInst::Predicate Pred = 2074 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2075 Condition = getICmpCondCode(Pred); 2076 } else { 2077 const FCmpInst *FC = cast<FCmpInst>(Cond); 2078 FCmpInst::Predicate Pred = 2079 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2080 Condition = getFCmpCondCode(Pred); 2081 if (TM.Options.NoNaNsFPMath) 2082 Condition = getFCmpCodeWithoutNaN(Condition); 2083 } 2084 2085 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2086 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2087 SL->SwitchCases.push_back(CB); 2088 return; 2089 } 2090 } 2091 2092 // Create a CaseBlock record representing this branch. 2093 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2094 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2095 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2096 SL->SwitchCases.push_back(CB); 2097 } 2098 2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2100 MachineBasicBlock *TBB, 2101 MachineBasicBlock *FBB, 2102 MachineBasicBlock *CurBB, 2103 MachineBasicBlock *SwitchBB, 2104 Instruction::BinaryOps Opc, 2105 BranchProbability TProb, 2106 BranchProbability FProb, 2107 bool InvertCond) { 2108 // Skip over not part of the tree and remember to invert op and operands at 2109 // next level. 2110 Value *NotCond; 2111 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2112 InBlock(NotCond, CurBB->getBasicBlock())) { 2113 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2114 !InvertCond); 2115 return; 2116 } 2117 2118 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2119 // Compute the effective opcode for Cond, taking into account whether it needs 2120 // to be inverted, e.g. 2121 // and (not (or A, B)), C 2122 // gets lowered as 2123 // and (and (not A, not B), C) 2124 unsigned BOpc = 0; 2125 if (BOp) { 2126 BOpc = BOp->getOpcode(); 2127 if (InvertCond) { 2128 if (BOpc == Instruction::And) 2129 BOpc = Instruction::Or; 2130 else if (BOpc == Instruction::Or) 2131 BOpc = Instruction::And; 2132 } 2133 } 2134 2135 // If this node is not part of the or/and tree, emit it as a branch. 2136 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2137 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2138 BOp->getParent() != CurBB->getBasicBlock() || 2139 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2140 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2141 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2142 TProb, FProb, InvertCond); 2143 return; 2144 } 2145 2146 // Create TmpBB after CurBB. 2147 MachineFunction::iterator BBI(CurBB); 2148 MachineFunction &MF = DAG.getMachineFunction(); 2149 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2150 CurBB->getParent()->insert(++BBI, TmpBB); 2151 2152 if (Opc == Instruction::Or) { 2153 // Codegen X | Y as: 2154 // BB1: 2155 // jmp_if_X TBB 2156 // jmp TmpBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 2162 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2163 // The requirement is that 2164 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2165 // = TrueProb for original BB. 2166 // Assuming the original probabilities are A and B, one choice is to set 2167 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2168 // A/(1+B) and 2B/(1+B). This choice assumes that 2169 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2170 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2171 // TmpBB, but the math is more complicated. 2172 2173 auto NewTrueProb = TProb / 2; 2174 auto NewFalseProb = TProb / 2 + FProb; 2175 // Emit the LHS condition. 2176 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2177 NewTrueProb, NewFalseProb, InvertCond); 2178 2179 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2180 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2181 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2182 // Emit the RHS condition into TmpBB. 2183 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2184 Probs[0], Probs[1], InvertCond); 2185 } else { 2186 assert(Opc == Instruction::And && "Unknown merge op!"); 2187 // Codegen X & Y as: 2188 // BB1: 2189 // jmp_if_X TmpBB 2190 // jmp FBB 2191 // TmpBB: 2192 // jmp_if_Y TBB 2193 // jmp FBB 2194 // 2195 // This requires creation of TmpBB after CurBB. 2196 2197 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2198 // The requirement is that 2199 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2200 // = FalseProb for original BB. 2201 // Assuming the original probabilities are A and B, one choice is to set 2202 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2203 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2204 // TrueProb for BB1 * FalseProb for TmpBB. 2205 2206 auto NewTrueProb = TProb + FProb / 2; 2207 auto NewFalseProb = FProb / 2; 2208 // Emit the LHS condition. 2209 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2210 NewTrueProb, NewFalseProb, InvertCond); 2211 2212 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2213 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2214 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2215 // Emit the RHS condition into TmpBB. 2216 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2217 Probs[0], Probs[1], InvertCond); 2218 } 2219 } 2220 2221 /// If the set of cases should be emitted as a series of branches, return true. 2222 /// If we should emit this as a bunch of and/or'd together conditions, return 2223 /// false. 2224 bool 2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2226 if (Cases.size() != 2) return true; 2227 2228 // If this is two comparisons of the same values or'd or and'd together, they 2229 // will get folded into a single comparison, so don't emit two blocks. 2230 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2231 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2232 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2233 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2234 return false; 2235 } 2236 2237 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2238 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2239 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2240 Cases[0].CC == Cases[1].CC && 2241 isa<Constant>(Cases[0].CmpRHS) && 2242 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2243 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2244 return false; 2245 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2246 return false; 2247 } 2248 2249 return true; 2250 } 2251 2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2253 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2254 2255 // Update machine-CFG edges. 2256 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 2258 if (I.isUnconditional()) { 2259 // Update machine-CFG edges. 2260 BrMBB->addSuccessor(Succ0MBB); 2261 2262 // If this is not a fall-through branch or optimizations are switched off, 2263 // emit the branch. 2264 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2266 MVT::Other, getControlRoot(), 2267 DAG.getBasicBlock(Succ0MBB))); 2268 2269 return; 2270 } 2271 2272 // If this condition is one of the special cases we handle, do special stuff 2273 // now. 2274 const Value *CondVal = I.getCondition(); 2275 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2276 2277 // If this is a series of conditions that are or'd or and'd together, emit 2278 // this as a sequence of branches instead of setcc's with and/or operations. 2279 // As long as jumps are not expensive, this should improve performance. 2280 // For example, instead of something like: 2281 // cmp A, B 2282 // C = seteq 2283 // cmp D, E 2284 // F = setle 2285 // or C, F 2286 // jnz foo 2287 // Emit: 2288 // cmp A, B 2289 // je foo 2290 // cmp D, E 2291 // jle foo 2292 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2293 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2294 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2295 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2296 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2297 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2298 Opcode, 2299 getEdgeProbability(BrMBB, Succ0MBB), 2300 getEdgeProbability(BrMBB, Succ1MBB), 2301 /*InvertCond=*/false); 2302 // If the compares in later blocks need to use values not currently 2303 // exported from this block, export them now. This block should always 2304 // be the first entry. 2305 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2306 2307 // Allow some cases to be rejected. 2308 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2309 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2310 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2311 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2312 } 2313 2314 // Emit the branch for this block. 2315 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2316 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2317 return; 2318 } 2319 2320 // Okay, we decided not to do this, remove any inserted MBB's and clear 2321 // SwitchCases. 2322 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2323 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2324 2325 SL->SwitchCases.clear(); 2326 } 2327 } 2328 2329 // Create a CaseBlock record representing this branch. 2330 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2331 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2332 2333 // Use visitSwitchCase to actually insert the fast branch sequence for this 2334 // cond branch. 2335 visitSwitchCase(CB, BrMBB); 2336 } 2337 2338 /// visitSwitchCase - Emits the necessary code to represent a single node in 2339 /// the binary search tree resulting from lowering a switch instruction. 2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2341 MachineBasicBlock *SwitchBB) { 2342 SDValue Cond; 2343 SDValue CondLHS = getValue(CB.CmpLHS); 2344 SDLoc dl = CB.DL; 2345 2346 if (CB.CC == ISD::SETTRUE) { 2347 // Branch or fall through to TrueBB. 2348 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2349 SwitchBB->normalizeSuccProbs(); 2350 if (CB.TrueBB != NextBlock(SwitchBB)) { 2351 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2352 DAG.getBasicBlock(CB.TrueBB))); 2353 } 2354 return; 2355 } 2356 2357 auto &TLI = DAG.getTargetLoweringInfo(); 2358 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2359 2360 // Build the setcc now. 2361 if (!CB.CmpMHS) { 2362 // Fold "(X == true)" to X and "(X == false)" to !X to 2363 // handle common cases produced by branch lowering. 2364 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2365 CB.CC == ISD::SETEQ) 2366 Cond = CondLHS; 2367 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2368 CB.CC == ISD::SETEQ) { 2369 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2370 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2371 } else { 2372 SDValue CondRHS = getValue(CB.CmpRHS); 2373 2374 // If a pointer's DAG type is larger than its memory type then the DAG 2375 // values are zero-extended. This breaks signed comparisons so truncate 2376 // back to the underlying type before doing the compare. 2377 if (CondLHS.getValueType() != MemVT) { 2378 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2379 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2380 } 2381 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2382 } 2383 } else { 2384 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2385 2386 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2387 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2388 2389 SDValue CmpOp = getValue(CB.CmpMHS); 2390 EVT VT = CmpOp.getValueType(); 2391 2392 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2393 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2394 ISD::SETLE); 2395 } else { 2396 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2397 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2398 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2399 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2400 } 2401 } 2402 2403 // Update successor info 2404 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2405 // TrueBB and FalseBB are always different unless the incoming IR is 2406 // degenerate. This only happens when running llc on weird IR. 2407 if (CB.TrueBB != CB.FalseBB) 2408 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2409 SwitchBB->normalizeSuccProbs(); 2410 2411 // If the lhs block is the next block, invert the condition so that we can 2412 // fall through to the lhs instead of the rhs block. 2413 if (CB.TrueBB == NextBlock(SwitchBB)) { 2414 std::swap(CB.TrueBB, CB.FalseBB); 2415 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2416 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2417 } 2418 2419 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2420 MVT::Other, getControlRoot(), Cond, 2421 DAG.getBasicBlock(CB.TrueBB)); 2422 2423 // Insert the false branch. Do this even if it's a fall through branch, 2424 // this makes it easier to do DAG optimizations which require inverting 2425 // the branch condition. 2426 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2427 DAG.getBasicBlock(CB.FalseBB)); 2428 2429 DAG.setRoot(BrCond); 2430 } 2431 2432 /// visitJumpTable - Emit JumpTable node in the current MBB 2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2434 // Emit the code for the jump table 2435 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2436 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2437 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2438 JT.Reg, PTy); 2439 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2440 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2441 MVT::Other, Index.getValue(1), 2442 Table, Index); 2443 DAG.setRoot(BrJumpTable); 2444 } 2445 2446 /// visitJumpTableHeader - This function emits necessary code to produce index 2447 /// in the JumpTable from switch case. 2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2449 JumpTableHeader &JTH, 2450 MachineBasicBlock *SwitchBB) { 2451 SDLoc dl = getCurSDLoc(); 2452 2453 // Subtract the lowest switch case value from the value being switched on. 2454 SDValue SwitchOp = getValue(JTH.SValue); 2455 EVT VT = SwitchOp.getValueType(); 2456 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2457 DAG.getConstant(JTH.First, dl, VT)); 2458 2459 // The SDNode we just created, which holds the value being switched on minus 2460 // the smallest case value, needs to be copied to a virtual register so it 2461 // can be used as an index into the jump table in a subsequent basic block. 2462 // This value may be smaller or larger than the target's pointer type, and 2463 // therefore require extension or truncating. 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2466 2467 unsigned JumpTableReg = 2468 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2469 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2470 JumpTableReg, SwitchOp); 2471 JT.Reg = JumpTableReg; 2472 2473 if (!JTH.OmitRangeCheck) { 2474 // Emit the range check for the jump table, and branch to the default block 2475 // for the switch statement if the value being switched on exceeds the 2476 // largest case in the switch. 2477 SDValue CMP = DAG.getSetCC( 2478 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2479 Sub.getValueType()), 2480 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2481 2482 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2483 MVT::Other, CopyTo, CMP, 2484 DAG.getBasicBlock(JT.Default)); 2485 2486 // Avoid emitting unnecessary branches to the next block. 2487 if (JT.MBB != NextBlock(SwitchBB)) 2488 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2489 DAG.getBasicBlock(JT.MBB)); 2490 2491 DAG.setRoot(BrCond); 2492 } else { 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2496 DAG.getBasicBlock(JT.MBB))); 2497 else 2498 DAG.setRoot(CopyTo); 2499 } 2500 } 2501 2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2503 /// variable if there exists one. 2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2505 SDValue &Chain) { 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 MachineFunction &MF = DAG.getMachineFunction(); 2510 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2511 MachineSDNode *Node = 2512 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2513 if (Global) { 2514 MachinePointerInfo MPInfo(Global); 2515 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2516 MachineMemOperand::MODereferenceable; 2517 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2518 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2519 DAG.setNodeMemRefs(Node, {MemRef}); 2520 } 2521 if (PtrTy != PtrMemTy) 2522 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2523 return SDValue(Node, 0); 2524 } 2525 2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2527 /// tail spliced into a stack protector check success bb. 2528 /// 2529 /// For a high level explanation of how this fits into the stack protector 2530 /// generation see the comment on the declaration of class 2531 /// StackProtectorDescriptor. 2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2533 MachineBasicBlock *ParentBB) { 2534 2535 // First create the loads to the guard/stack slot for the comparison. 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2538 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2539 2540 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2541 int FI = MFI.getStackProtectorIndex(); 2542 2543 SDValue Guard; 2544 SDLoc dl = getCurSDLoc(); 2545 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2546 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2547 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2548 2549 // Generate code to load the content of the guard slot. 2550 SDValue GuardVal = DAG.getLoad( 2551 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2553 MachineMemOperand::MOVolatile); 2554 2555 if (TLI.useStackGuardXorFP()) 2556 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2557 2558 // Retrieve guard check function, nullptr if instrumentation is inlined. 2559 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2560 // The target provides a guard check function to validate the guard value. 2561 // Generate a call to that function with the content of the guard slot as 2562 // argument. 2563 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2564 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2565 2566 TargetLowering::ArgListTy Args; 2567 TargetLowering::ArgListEntry Entry; 2568 Entry.Node = GuardVal; 2569 Entry.Ty = FnTy->getParamType(0); 2570 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2571 Entry.IsInReg = true; 2572 Args.push_back(Entry); 2573 2574 TargetLowering::CallLoweringInfo CLI(DAG); 2575 CLI.setDebugLoc(getCurSDLoc()) 2576 .setChain(DAG.getEntryNode()) 2577 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2578 getValue(GuardCheckFn), std::move(Args)); 2579 2580 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2581 DAG.setRoot(Result.second); 2582 return; 2583 } 2584 2585 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2586 // Otherwise, emit a volatile load to retrieve the stack guard value. 2587 SDValue Chain = DAG.getEntryNode(); 2588 if (TLI.useLoadStackGuardNode()) { 2589 Guard = getLoadStackGuard(DAG, dl, Chain); 2590 } else { 2591 const Value *IRGuard = TLI.getSDagStackGuard(M); 2592 SDValue GuardPtr = getValue(IRGuard); 2593 2594 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2595 MachinePointerInfo(IRGuard, 0), Align, 2596 MachineMemOperand::MOVolatile); 2597 } 2598 2599 // Perform the comparison via a getsetcc. 2600 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2601 *DAG.getContext(), 2602 Guard.getValueType()), 2603 Guard, GuardVal, ISD::SETNE); 2604 2605 // If the guard/stackslot do not equal, branch to failure MBB. 2606 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2607 MVT::Other, GuardVal.getOperand(0), 2608 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2609 // Otherwise branch to success MBB. 2610 SDValue Br = DAG.getNode(ISD::BR, dl, 2611 MVT::Other, BrCond, 2612 DAG.getBasicBlock(SPD.getSuccessMBB())); 2613 2614 DAG.setRoot(Br); 2615 } 2616 2617 /// Codegen the failure basic block for a stack protector check. 2618 /// 2619 /// A failure stack protector machine basic block consists simply of a call to 2620 /// __stack_chk_fail(). 2621 /// 2622 /// For a high level explanation of how this fits into the stack protector 2623 /// generation see the comment on the declaration of class 2624 /// StackProtectorDescriptor. 2625 void 2626 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2628 TargetLowering::MakeLibCallOptions CallOptions; 2629 CallOptions.setDiscardResult(true); 2630 SDValue Chain = 2631 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2632 None, CallOptions, getCurSDLoc()).second; 2633 // On PS4, the "return address" must still be within the calling function, 2634 // even if it's at the very end, so emit an explicit TRAP here. 2635 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2636 if (TM.getTargetTriple().isPS4CPU()) 2637 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2638 2639 DAG.setRoot(Chain); 2640 } 2641 2642 /// visitBitTestHeader - This function emits necessary code to produce value 2643 /// suitable for "bit tests" 2644 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2645 MachineBasicBlock *SwitchBB) { 2646 SDLoc dl = getCurSDLoc(); 2647 2648 // Subtract the minimum value. 2649 SDValue SwitchOp = getValue(B.SValue); 2650 EVT VT = SwitchOp.getValueType(); 2651 SDValue RangeSub = 2652 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2653 2654 // Determine the type of the test operands. 2655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2656 bool UsePtrType = false; 2657 if (!TLI.isTypeLegal(VT)) { 2658 UsePtrType = true; 2659 } else { 2660 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2661 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2662 // Switch table case range are encoded into series of masks. 2663 // Just use pointer type, it's guaranteed to fit. 2664 UsePtrType = true; 2665 break; 2666 } 2667 } 2668 SDValue Sub = RangeSub; 2669 if (UsePtrType) { 2670 VT = TLI.getPointerTy(DAG.getDataLayout()); 2671 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2672 } 2673 2674 B.RegVT = VT.getSimpleVT(); 2675 B.Reg = FuncInfo.CreateReg(B.RegVT); 2676 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2677 2678 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2679 2680 if (!B.OmitRangeCheck) 2681 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2682 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2683 SwitchBB->normalizeSuccProbs(); 2684 2685 SDValue Root = CopyTo; 2686 if (!B.OmitRangeCheck) { 2687 // Conditional branch to the default block. 2688 SDValue RangeCmp = DAG.getSetCC(dl, 2689 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2690 RangeSub.getValueType()), 2691 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2692 ISD::SETUGT); 2693 2694 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2695 DAG.getBasicBlock(B.Default)); 2696 } 2697 2698 // Avoid emitting unnecessary branches to the next block. 2699 if (MBB != NextBlock(SwitchBB)) 2700 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2701 2702 DAG.setRoot(Root); 2703 } 2704 2705 /// visitBitTestCase - this function produces one "bit test" 2706 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2707 MachineBasicBlock* NextMBB, 2708 BranchProbability BranchProbToNext, 2709 unsigned Reg, 2710 BitTestCase &B, 2711 MachineBasicBlock *SwitchBB) { 2712 SDLoc dl = getCurSDLoc(); 2713 MVT VT = BB.RegVT; 2714 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2715 SDValue Cmp; 2716 unsigned PopCount = countPopulation(B.Mask); 2717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2718 if (PopCount == 1) { 2719 // Testing for a single bit; just compare the shift count with what it 2720 // would need to be to shift a 1 bit in that position. 2721 Cmp = DAG.getSetCC( 2722 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2723 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2724 ISD::SETEQ); 2725 } else if (PopCount == BB.Range) { 2726 // There is only one zero bit in the range, test for it directly. 2727 Cmp = DAG.getSetCC( 2728 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2729 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2730 ISD::SETNE); 2731 } else { 2732 // Make desired shift 2733 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2734 DAG.getConstant(1, dl, VT), ShiftOp); 2735 2736 // Emit bit tests and jumps 2737 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2738 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2739 Cmp = DAG.getSetCC( 2740 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2741 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2742 } 2743 2744 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2745 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2746 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2747 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2748 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2749 // one as they are relative probabilities (and thus work more like weights), 2750 // and hence we need to normalize them to let the sum of them become one. 2751 SwitchBB->normalizeSuccProbs(); 2752 2753 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2754 MVT::Other, getControlRoot(), 2755 Cmp, DAG.getBasicBlock(B.TargetBB)); 2756 2757 // Avoid emitting unnecessary branches to the next block. 2758 if (NextMBB != NextBlock(SwitchBB)) 2759 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2760 DAG.getBasicBlock(NextMBB)); 2761 2762 DAG.setRoot(BrAnd); 2763 } 2764 2765 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2766 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2767 2768 // Retrieve successors. Look through artificial IR level blocks like 2769 // catchswitch for successors. 2770 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2771 const BasicBlock *EHPadBB = I.getSuccessor(1); 2772 2773 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2774 // have to do anything here to lower funclet bundles. 2775 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2776 LLVMContext::OB_funclet, 2777 LLVMContext::OB_cfguardtarget}) && 2778 "Cannot lower invokes with arbitrary operand bundles yet!"); 2779 2780 const Value *Callee(I.getCalledValue()); 2781 const Function *Fn = dyn_cast<Function>(Callee); 2782 if (isa<InlineAsm>(Callee)) 2783 visitInlineAsm(&I); 2784 else if (Fn && Fn->isIntrinsic()) { 2785 switch (Fn->getIntrinsicID()) { 2786 default: 2787 llvm_unreachable("Cannot invoke this intrinsic"); 2788 case Intrinsic::donothing: 2789 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2790 break; 2791 case Intrinsic::experimental_patchpoint_void: 2792 case Intrinsic::experimental_patchpoint_i64: 2793 visitPatchpoint(&I, EHPadBB); 2794 break; 2795 case Intrinsic::experimental_gc_statepoint: 2796 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2797 break; 2798 case Intrinsic::wasm_rethrow_in_catch: { 2799 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2800 // special because it can be invoked, so we manually lower it to a DAG 2801 // node here. 2802 SmallVector<SDValue, 8> Ops; 2803 Ops.push_back(getRoot()); // inchain 2804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2805 Ops.push_back( 2806 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2807 TLI.getPointerTy(DAG.getDataLayout()))); 2808 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2809 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2810 break; 2811 } 2812 } 2813 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2814 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2815 // Eventually we will support lowering the @llvm.experimental.deoptimize 2816 // intrinsic, and right now there are no plans to support other intrinsics 2817 // with deopt state. 2818 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2819 } else { 2820 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2821 } 2822 2823 // If the value of the invoke is used outside of its defining block, make it 2824 // available as a virtual register. 2825 // We already took care of the exported value for the statepoint instruction 2826 // during call to the LowerStatepoint. 2827 if (!isStatepoint(I)) { 2828 CopyToExportRegsIfNeeded(&I); 2829 } 2830 2831 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2832 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2833 BranchProbability EHPadBBProb = 2834 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2835 : BranchProbability::getZero(); 2836 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2837 2838 // Update successor info. 2839 addSuccessorWithProb(InvokeMBB, Return); 2840 for (auto &UnwindDest : UnwindDests) { 2841 UnwindDest.first->setIsEHPad(); 2842 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2843 } 2844 InvokeMBB->normalizeSuccProbs(); 2845 2846 // Drop into normal successor. 2847 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2848 DAG.getBasicBlock(Return))); 2849 } 2850 2851 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2852 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2853 2854 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2855 // have to do anything here to lower funclet bundles. 2856 assert(!I.hasOperandBundlesOtherThan( 2857 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2858 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2859 2860 assert(isa<InlineAsm>(I.getCalledValue()) && 2861 "Only know how to handle inlineasm callbr"); 2862 visitInlineAsm(&I); 2863 CopyToExportRegsIfNeeded(&I); 2864 2865 // Retrieve successors. 2866 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2867 Return->setInlineAsmBrDefaultTarget(); 2868 2869 // Update successor info. 2870 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2871 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2872 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2873 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2874 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2875 } 2876 CallBrMBB->normalizeSuccProbs(); 2877 2878 // Drop into default successor. 2879 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2880 MVT::Other, getControlRoot(), 2881 DAG.getBasicBlock(Return))); 2882 } 2883 2884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2885 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2886 } 2887 2888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2889 assert(FuncInfo.MBB->isEHPad() && 2890 "Call to landingpad not in landing pad!"); 2891 2892 // If there aren't registers to copy the values into (e.g., during SjLj 2893 // exceptions), then don't bother to create these DAG nodes. 2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2895 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2896 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2897 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2898 return; 2899 2900 // If landingpad's return type is token type, we don't create DAG nodes 2901 // for its exception pointer and selector value. The extraction of exception 2902 // pointer or selector value from token type landingpads is not currently 2903 // supported. 2904 if (LP.getType()->isTokenTy()) 2905 return; 2906 2907 SmallVector<EVT, 2> ValueVTs; 2908 SDLoc dl = getCurSDLoc(); 2909 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2910 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2911 2912 // Get the two live-in registers as SDValues. The physregs have already been 2913 // copied into virtual registers. 2914 SDValue Ops[2]; 2915 if (FuncInfo.ExceptionPointerVirtReg) { 2916 Ops[0] = DAG.getZExtOrTrunc( 2917 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2918 FuncInfo.ExceptionPointerVirtReg, 2919 TLI.getPointerTy(DAG.getDataLayout())), 2920 dl, ValueVTs[0]); 2921 } else { 2922 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2923 } 2924 Ops[1] = DAG.getZExtOrTrunc( 2925 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2926 FuncInfo.ExceptionSelectorVirtReg, 2927 TLI.getPointerTy(DAG.getDataLayout())), 2928 dl, ValueVTs[1]); 2929 2930 // Merge into one. 2931 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2932 DAG.getVTList(ValueVTs), Ops); 2933 setValue(&LP, Res); 2934 } 2935 2936 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2937 MachineBasicBlock *Last) { 2938 // Update JTCases. 2939 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2940 if (SL->JTCases[i].first.HeaderBB == First) 2941 SL->JTCases[i].first.HeaderBB = Last; 2942 2943 // Update BitTestCases. 2944 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2945 if (SL->BitTestCases[i].Parent == First) 2946 SL->BitTestCases[i].Parent = Last; 2947 2948 // SelectionDAGISel::FinishBasicBlock will add PHI operands for the 2949 // successors of the fallthrough block. Here, we add PHI operands for the 2950 // successors of the INLINEASM_BR block itself. 2951 if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR) 2952 for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate) 2953 if (First->isSuccessor(pair.first->getParent())) 2954 MachineInstrBuilder(*First->getParent(), pair.first) 2955 .addReg(pair.second) 2956 .addMBB(First); 2957 } 2958 2959 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2960 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2961 2962 // Update machine-CFG edges with unique successors. 2963 SmallSet<BasicBlock*, 32> Done; 2964 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2965 BasicBlock *BB = I.getSuccessor(i); 2966 bool Inserted = Done.insert(BB).second; 2967 if (!Inserted) 2968 continue; 2969 2970 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2971 addSuccessorWithProb(IndirectBrMBB, Succ); 2972 } 2973 IndirectBrMBB->normalizeSuccProbs(); 2974 2975 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2976 MVT::Other, getControlRoot(), 2977 getValue(I.getAddress()))); 2978 } 2979 2980 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2981 if (!DAG.getTarget().Options.TrapUnreachable) 2982 return; 2983 2984 // We may be able to ignore unreachable behind a noreturn call. 2985 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2986 const BasicBlock &BB = *I.getParent(); 2987 if (&I != &BB.front()) { 2988 BasicBlock::const_iterator PredI = 2989 std::prev(BasicBlock::const_iterator(&I)); 2990 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2991 if (Call->doesNotReturn()) 2992 return; 2993 } 2994 } 2995 } 2996 2997 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2998 } 2999 3000 void SelectionDAGBuilder::visitFSub(const User &I) { 3001 // -0.0 - X --> fneg 3002 Type *Ty = I.getType(); 3003 if (isa<Constant>(I.getOperand(0)) && 3004 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3005 SDValue Op2 = getValue(I.getOperand(1)); 3006 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3007 Op2.getValueType(), Op2)); 3008 return; 3009 } 3010 3011 visitBinary(I, ISD::FSUB); 3012 } 3013 3014 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3015 SDNodeFlags Flags; 3016 3017 SDValue Op = getValue(I.getOperand(0)); 3018 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3019 Op, Flags); 3020 setValue(&I, UnNodeValue); 3021 } 3022 3023 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3024 SDNodeFlags Flags; 3025 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3026 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3027 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3028 } 3029 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3030 Flags.setExact(ExactOp->isExact()); 3031 } 3032 3033 SDValue Op1 = getValue(I.getOperand(0)); 3034 SDValue Op2 = getValue(I.getOperand(1)); 3035 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3036 Op1, Op2, Flags); 3037 setValue(&I, BinNodeValue); 3038 } 3039 3040 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3041 SDValue Op1 = getValue(I.getOperand(0)); 3042 SDValue Op2 = getValue(I.getOperand(1)); 3043 3044 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3045 Op1.getValueType(), DAG.getDataLayout()); 3046 3047 // Coerce the shift amount to the right type if we can. 3048 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3049 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3050 unsigned Op2Size = Op2.getValueSizeInBits(); 3051 SDLoc DL = getCurSDLoc(); 3052 3053 // If the operand is smaller than the shift count type, promote it. 3054 if (ShiftSize > Op2Size) 3055 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3056 3057 // If the operand is larger than the shift count type but the shift 3058 // count type has enough bits to represent any shift value, truncate 3059 // it now. This is a common case and it exposes the truncate to 3060 // optimization early. 3061 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3062 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3063 // Otherwise we'll need to temporarily settle for some other convenient 3064 // type. Type legalization will make adjustments once the shiftee is split. 3065 else 3066 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3067 } 3068 3069 bool nuw = false; 3070 bool nsw = false; 3071 bool exact = false; 3072 3073 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3074 3075 if (const OverflowingBinaryOperator *OFBinOp = 3076 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3077 nuw = OFBinOp->hasNoUnsignedWrap(); 3078 nsw = OFBinOp->hasNoSignedWrap(); 3079 } 3080 if (const PossiblyExactOperator *ExactOp = 3081 dyn_cast<const PossiblyExactOperator>(&I)) 3082 exact = ExactOp->isExact(); 3083 } 3084 SDNodeFlags Flags; 3085 Flags.setExact(exact); 3086 Flags.setNoSignedWrap(nsw); 3087 Flags.setNoUnsignedWrap(nuw); 3088 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3089 Flags); 3090 setValue(&I, Res); 3091 } 3092 3093 void SelectionDAGBuilder::visitSDiv(const User &I) { 3094 SDValue Op1 = getValue(I.getOperand(0)); 3095 SDValue Op2 = getValue(I.getOperand(1)); 3096 3097 SDNodeFlags Flags; 3098 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3099 cast<PossiblyExactOperator>(&I)->isExact()); 3100 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3101 Op2, Flags)); 3102 } 3103 3104 void SelectionDAGBuilder::visitICmp(const User &I) { 3105 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3106 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3107 predicate = IC->getPredicate(); 3108 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3109 predicate = ICmpInst::Predicate(IC->getPredicate()); 3110 SDValue Op1 = getValue(I.getOperand(0)); 3111 SDValue Op2 = getValue(I.getOperand(1)); 3112 ISD::CondCode Opcode = getICmpCondCode(predicate); 3113 3114 auto &TLI = DAG.getTargetLoweringInfo(); 3115 EVT MemVT = 3116 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3117 3118 // If a pointer's DAG type is larger than its memory type then the DAG values 3119 // are zero-extended. This breaks signed comparisons so truncate back to the 3120 // underlying type before doing the compare. 3121 if (Op1.getValueType() != MemVT) { 3122 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3123 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3124 } 3125 3126 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3127 I.getType()); 3128 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3129 } 3130 3131 void SelectionDAGBuilder::visitFCmp(const User &I) { 3132 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3133 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3134 predicate = FC->getPredicate(); 3135 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3136 predicate = FCmpInst::Predicate(FC->getPredicate()); 3137 SDValue Op1 = getValue(I.getOperand(0)); 3138 SDValue Op2 = getValue(I.getOperand(1)); 3139 3140 ISD::CondCode Condition = getFCmpCondCode(predicate); 3141 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3142 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3143 Condition = getFCmpCodeWithoutNaN(Condition); 3144 3145 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3146 I.getType()); 3147 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3148 } 3149 3150 // Check if the condition of the select has one use or two users that are both 3151 // selects with the same condition. 3152 static bool hasOnlySelectUsers(const Value *Cond) { 3153 return llvm::all_of(Cond->users(), [](const Value *V) { 3154 return isa<SelectInst>(V); 3155 }); 3156 } 3157 3158 void SelectionDAGBuilder::visitSelect(const User &I) { 3159 SmallVector<EVT, 4> ValueVTs; 3160 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3161 ValueVTs); 3162 unsigned NumValues = ValueVTs.size(); 3163 if (NumValues == 0) return; 3164 3165 SmallVector<SDValue, 4> Values(NumValues); 3166 SDValue Cond = getValue(I.getOperand(0)); 3167 SDValue LHSVal = getValue(I.getOperand(1)); 3168 SDValue RHSVal = getValue(I.getOperand(2)); 3169 SmallVector<SDValue, 1> BaseOps(1, Cond); 3170 ISD::NodeType OpCode = 3171 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3172 3173 bool IsUnaryAbs = false; 3174 3175 // Min/max matching is only viable if all output VTs are the same. 3176 if (is_splat(ValueVTs)) { 3177 EVT VT = ValueVTs[0]; 3178 LLVMContext &Ctx = *DAG.getContext(); 3179 auto &TLI = DAG.getTargetLoweringInfo(); 3180 3181 // We care about the legality of the operation after it has been type 3182 // legalized. 3183 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3184 VT = TLI.getTypeToTransformTo(Ctx, VT); 3185 3186 // If the vselect is legal, assume we want to leave this as a vector setcc + 3187 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3188 // min/max is legal on the scalar type. 3189 bool UseScalarMinMax = VT.isVector() && 3190 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3191 3192 Value *LHS, *RHS; 3193 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3194 ISD::NodeType Opc = ISD::DELETED_NODE; 3195 switch (SPR.Flavor) { 3196 case SPF_UMAX: Opc = ISD::UMAX; break; 3197 case SPF_UMIN: Opc = ISD::UMIN; break; 3198 case SPF_SMAX: Opc = ISD::SMAX; break; 3199 case SPF_SMIN: Opc = ISD::SMIN; break; 3200 case SPF_FMINNUM: 3201 switch (SPR.NaNBehavior) { 3202 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3203 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3204 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3205 case SPNB_RETURNS_ANY: { 3206 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3207 Opc = ISD::FMINNUM; 3208 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3209 Opc = ISD::FMINIMUM; 3210 else if (UseScalarMinMax) 3211 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3212 ISD::FMINNUM : ISD::FMINIMUM; 3213 break; 3214 } 3215 } 3216 break; 3217 case SPF_FMAXNUM: 3218 switch (SPR.NaNBehavior) { 3219 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3220 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3221 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3222 case SPNB_RETURNS_ANY: 3223 3224 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3225 Opc = ISD::FMAXNUM; 3226 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3227 Opc = ISD::FMAXIMUM; 3228 else if (UseScalarMinMax) 3229 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3230 ISD::FMAXNUM : ISD::FMAXIMUM; 3231 break; 3232 } 3233 break; 3234 case SPF_ABS: 3235 IsUnaryAbs = true; 3236 Opc = ISD::ABS; 3237 break; 3238 case SPF_NABS: 3239 // TODO: we need to produce sub(0, abs(X)). 3240 default: break; 3241 } 3242 3243 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3244 (TLI.isOperationLegalOrCustom(Opc, VT) || 3245 (UseScalarMinMax && 3246 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3247 // If the underlying comparison instruction is used by any other 3248 // instruction, the consumed instructions won't be destroyed, so it is 3249 // not profitable to convert to a min/max. 3250 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3251 OpCode = Opc; 3252 LHSVal = getValue(LHS); 3253 RHSVal = getValue(RHS); 3254 BaseOps.clear(); 3255 } 3256 3257 if (IsUnaryAbs) { 3258 OpCode = Opc; 3259 LHSVal = getValue(LHS); 3260 BaseOps.clear(); 3261 } 3262 } 3263 3264 if (IsUnaryAbs) { 3265 for (unsigned i = 0; i != NumValues; ++i) { 3266 Values[i] = 3267 DAG.getNode(OpCode, getCurSDLoc(), 3268 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3269 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3270 } 3271 } else { 3272 for (unsigned i = 0; i != NumValues; ++i) { 3273 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3274 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3275 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3276 Values[i] = DAG.getNode( 3277 OpCode, getCurSDLoc(), 3278 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3279 } 3280 } 3281 3282 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3283 DAG.getVTList(ValueVTs), Values)); 3284 } 3285 3286 void SelectionDAGBuilder::visitTrunc(const User &I) { 3287 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3288 SDValue N = getValue(I.getOperand(0)); 3289 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3290 I.getType()); 3291 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3292 } 3293 3294 void SelectionDAGBuilder::visitZExt(const User &I) { 3295 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3296 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3297 SDValue N = getValue(I.getOperand(0)); 3298 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3299 I.getType()); 3300 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3301 } 3302 3303 void SelectionDAGBuilder::visitSExt(const User &I) { 3304 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3305 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3306 SDValue N = getValue(I.getOperand(0)); 3307 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3308 I.getType()); 3309 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3310 } 3311 3312 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3313 // FPTrunc is never a no-op cast, no need to check 3314 SDValue N = getValue(I.getOperand(0)); 3315 SDLoc dl = getCurSDLoc(); 3316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3317 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3318 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3319 DAG.getTargetConstant( 3320 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3321 } 3322 3323 void SelectionDAGBuilder::visitFPExt(const User &I) { 3324 // FPExt is never a no-op cast, no need to check 3325 SDValue N = getValue(I.getOperand(0)); 3326 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3327 I.getType()); 3328 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3329 } 3330 3331 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3332 // FPToUI is never a no-op cast, no need to check 3333 SDValue N = getValue(I.getOperand(0)); 3334 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3335 I.getType()); 3336 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3337 } 3338 3339 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3340 // FPToSI is never a no-op cast, no need to check 3341 SDValue N = getValue(I.getOperand(0)); 3342 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3343 I.getType()); 3344 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3345 } 3346 3347 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3348 // UIToFP is never a no-op cast, no need to check 3349 SDValue N = getValue(I.getOperand(0)); 3350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3351 I.getType()); 3352 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3353 } 3354 3355 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3356 // SIToFP is never a no-op cast, no need to check 3357 SDValue N = getValue(I.getOperand(0)); 3358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3359 I.getType()); 3360 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3361 } 3362 3363 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3364 // What to do depends on the size of the integer and the size of the pointer. 3365 // We can either truncate, zero extend, or no-op, accordingly. 3366 SDValue N = getValue(I.getOperand(0)); 3367 auto &TLI = DAG.getTargetLoweringInfo(); 3368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3369 I.getType()); 3370 EVT PtrMemVT = 3371 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3372 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3373 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3374 setValue(&I, N); 3375 } 3376 3377 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3378 // What to do depends on the size of the integer and the size of the pointer. 3379 // We can either truncate, zero extend, or no-op, accordingly. 3380 SDValue N = getValue(I.getOperand(0)); 3381 auto &TLI = DAG.getTargetLoweringInfo(); 3382 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3383 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3384 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3385 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3386 setValue(&I, N); 3387 } 3388 3389 void SelectionDAGBuilder::visitBitCast(const User &I) { 3390 SDValue N = getValue(I.getOperand(0)); 3391 SDLoc dl = getCurSDLoc(); 3392 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3393 I.getType()); 3394 3395 // BitCast assures us that source and destination are the same size so this is 3396 // either a BITCAST or a no-op. 3397 if (DestVT != N.getValueType()) 3398 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3399 DestVT, N)); // convert types. 3400 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3401 // might fold any kind of constant expression to an integer constant and that 3402 // is not what we are looking for. Only recognize a bitcast of a genuine 3403 // constant integer as an opaque constant. 3404 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3405 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3406 /*isOpaque*/true)); 3407 else 3408 setValue(&I, N); // noop cast. 3409 } 3410 3411 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3413 const Value *SV = I.getOperand(0); 3414 SDValue N = getValue(SV); 3415 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3416 3417 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3418 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3419 3420 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3421 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3422 3423 setValue(&I, N); 3424 } 3425 3426 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3428 SDValue InVec = getValue(I.getOperand(0)); 3429 SDValue InVal = getValue(I.getOperand(1)); 3430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3431 TLI.getVectorIdxTy(DAG.getDataLayout())); 3432 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3433 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3434 InVec, InVal, InIdx)); 3435 } 3436 3437 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3439 SDValue InVec = getValue(I.getOperand(0)); 3440 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3441 TLI.getVectorIdxTy(DAG.getDataLayout())); 3442 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3443 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3444 InVec, InIdx)); 3445 } 3446 3447 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3448 SDValue Src1 = getValue(I.getOperand(0)); 3449 SDValue Src2 = getValue(I.getOperand(1)); 3450 ArrayRef<int> Mask; 3451 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3452 Mask = SVI->getShuffleMask(); 3453 else 3454 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3455 SDLoc DL = getCurSDLoc(); 3456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3457 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3458 EVT SrcVT = Src1.getValueType(); 3459 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3460 3461 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3462 VT.isScalableVector()) { 3463 // Canonical splat form of first element of first input vector. 3464 SDValue FirstElt = 3465 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3466 DAG.getVectorIdxConstant(0, DL)); 3467 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3468 return; 3469 } 3470 3471 // For now, we only handle splats for scalable vectors. 3472 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3473 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3474 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3475 3476 unsigned MaskNumElts = Mask.size(); 3477 3478 if (SrcNumElts == MaskNumElts) { 3479 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3480 return; 3481 } 3482 3483 // Normalize the shuffle vector since mask and vector length don't match. 3484 if (SrcNumElts < MaskNumElts) { 3485 // Mask is longer than the source vectors. We can use concatenate vector to 3486 // make the mask and vectors lengths match. 3487 3488 if (MaskNumElts % SrcNumElts == 0) { 3489 // Mask length is a multiple of the source vector length. 3490 // Check if the shuffle is some kind of concatenation of the input 3491 // vectors. 3492 unsigned NumConcat = MaskNumElts / SrcNumElts; 3493 bool IsConcat = true; 3494 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3495 for (unsigned i = 0; i != MaskNumElts; ++i) { 3496 int Idx = Mask[i]; 3497 if (Idx < 0) 3498 continue; 3499 // Ensure the indices in each SrcVT sized piece are sequential and that 3500 // the same source is used for the whole piece. 3501 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3502 (ConcatSrcs[i / SrcNumElts] >= 0 && 3503 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3504 IsConcat = false; 3505 break; 3506 } 3507 // Remember which source this index came from. 3508 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3509 } 3510 3511 // The shuffle is concatenating multiple vectors together. Just emit 3512 // a CONCAT_VECTORS operation. 3513 if (IsConcat) { 3514 SmallVector<SDValue, 8> ConcatOps; 3515 for (auto Src : ConcatSrcs) { 3516 if (Src < 0) 3517 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3518 else if (Src == 0) 3519 ConcatOps.push_back(Src1); 3520 else 3521 ConcatOps.push_back(Src2); 3522 } 3523 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3524 return; 3525 } 3526 } 3527 3528 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3529 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3530 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3531 PaddedMaskNumElts); 3532 3533 // Pad both vectors with undefs to make them the same length as the mask. 3534 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3535 3536 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3537 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3538 MOps1[0] = Src1; 3539 MOps2[0] = Src2; 3540 3541 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3542 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3543 3544 // Readjust mask for new input vector length. 3545 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3546 for (unsigned i = 0; i != MaskNumElts; ++i) { 3547 int Idx = Mask[i]; 3548 if (Idx >= (int)SrcNumElts) 3549 Idx -= SrcNumElts - PaddedMaskNumElts; 3550 MappedOps[i] = Idx; 3551 } 3552 3553 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3554 3555 // If the concatenated vector was padded, extract a subvector with the 3556 // correct number of elements. 3557 if (MaskNumElts != PaddedMaskNumElts) 3558 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3559 DAG.getVectorIdxConstant(0, DL)); 3560 3561 setValue(&I, Result); 3562 return; 3563 } 3564 3565 if (SrcNumElts > MaskNumElts) { 3566 // Analyze the access pattern of the vector to see if we can extract 3567 // two subvectors and do the shuffle. 3568 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3569 bool CanExtract = true; 3570 for (int Idx : Mask) { 3571 unsigned Input = 0; 3572 if (Idx < 0) 3573 continue; 3574 3575 if (Idx >= (int)SrcNumElts) { 3576 Input = 1; 3577 Idx -= SrcNumElts; 3578 } 3579 3580 // If all the indices come from the same MaskNumElts sized portion of 3581 // the sources we can use extract. Also make sure the extract wouldn't 3582 // extract past the end of the source. 3583 int NewStartIdx = alignDown(Idx, MaskNumElts); 3584 if (NewStartIdx + MaskNumElts > SrcNumElts || 3585 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3586 CanExtract = false; 3587 // Make sure we always update StartIdx as we use it to track if all 3588 // elements are undef. 3589 StartIdx[Input] = NewStartIdx; 3590 } 3591 3592 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3593 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3594 return; 3595 } 3596 if (CanExtract) { 3597 // Extract appropriate subvector and generate a vector shuffle 3598 for (unsigned Input = 0; Input < 2; ++Input) { 3599 SDValue &Src = Input == 0 ? Src1 : Src2; 3600 if (StartIdx[Input] < 0) 3601 Src = DAG.getUNDEF(VT); 3602 else { 3603 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3604 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3605 } 3606 } 3607 3608 // Calculate new mask. 3609 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3610 for (int &Idx : MappedOps) { 3611 if (Idx >= (int)SrcNumElts) 3612 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3613 else if (Idx >= 0) 3614 Idx -= StartIdx[0]; 3615 } 3616 3617 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3618 return; 3619 } 3620 } 3621 3622 // We can't use either concat vectors or extract subvectors so fall back to 3623 // replacing the shuffle with extract and build vector. 3624 // to insert and build vector. 3625 EVT EltVT = VT.getVectorElementType(); 3626 SmallVector<SDValue,8> Ops; 3627 for (int Idx : Mask) { 3628 SDValue Res; 3629 3630 if (Idx < 0) { 3631 Res = DAG.getUNDEF(EltVT); 3632 } else { 3633 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3634 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3635 3636 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3637 DAG.getVectorIdxConstant(Idx, DL)); 3638 } 3639 3640 Ops.push_back(Res); 3641 } 3642 3643 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3644 } 3645 3646 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3647 ArrayRef<unsigned> Indices; 3648 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3649 Indices = IV->getIndices(); 3650 else 3651 Indices = cast<ConstantExpr>(&I)->getIndices(); 3652 3653 const Value *Op0 = I.getOperand(0); 3654 const Value *Op1 = I.getOperand(1); 3655 Type *AggTy = I.getType(); 3656 Type *ValTy = Op1->getType(); 3657 bool IntoUndef = isa<UndefValue>(Op0); 3658 bool FromUndef = isa<UndefValue>(Op1); 3659 3660 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3661 3662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3663 SmallVector<EVT, 4> AggValueVTs; 3664 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3665 SmallVector<EVT, 4> ValValueVTs; 3666 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3667 3668 unsigned NumAggValues = AggValueVTs.size(); 3669 unsigned NumValValues = ValValueVTs.size(); 3670 SmallVector<SDValue, 4> Values(NumAggValues); 3671 3672 // Ignore an insertvalue that produces an empty object 3673 if (!NumAggValues) { 3674 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3675 return; 3676 } 3677 3678 SDValue Agg = getValue(Op0); 3679 unsigned i = 0; 3680 // Copy the beginning value(s) from the original aggregate. 3681 for (; i != LinearIndex; ++i) 3682 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3683 SDValue(Agg.getNode(), Agg.getResNo() + i); 3684 // Copy values from the inserted value(s). 3685 if (NumValValues) { 3686 SDValue Val = getValue(Op1); 3687 for (; i != LinearIndex + NumValValues; ++i) 3688 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3689 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3690 } 3691 // Copy remaining value(s) from the original aggregate. 3692 for (; i != NumAggValues; ++i) 3693 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3694 SDValue(Agg.getNode(), Agg.getResNo() + i); 3695 3696 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3697 DAG.getVTList(AggValueVTs), Values)); 3698 } 3699 3700 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3701 ArrayRef<unsigned> Indices; 3702 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3703 Indices = EV->getIndices(); 3704 else 3705 Indices = cast<ConstantExpr>(&I)->getIndices(); 3706 3707 const Value *Op0 = I.getOperand(0); 3708 Type *AggTy = Op0->getType(); 3709 Type *ValTy = I.getType(); 3710 bool OutOfUndef = isa<UndefValue>(Op0); 3711 3712 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3713 3714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3715 SmallVector<EVT, 4> ValValueVTs; 3716 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3717 3718 unsigned NumValValues = ValValueVTs.size(); 3719 3720 // Ignore a extractvalue that produces an empty object 3721 if (!NumValValues) { 3722 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3723 return; 3724 } 3725 3726 SmallVector<SDValue, 4> Values(NumValValues); 3727 3728 SDValue Agg = getValue(Op0); 3729 // Copy out the selected value(s). 3730 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3731 Values[i - LinearIndex] = 3732 OutOfUndef ? 3733 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3734 SDValue(Agg.getNode(), Agg.getResNo() + i); 3735 3736 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3737 DAG.getVTList(ValValueVTs), Values)); 3738 } 3739 3740 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3741 Value *Op0 = I.getOperand(0); 3742 // Note that the pointer operand may be a vector of pointers. Take the scalar 3743 // element which holds a pointer. 3744 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3745 SDValue N = getValue(Op0); 3746 SDLoc dl = getCurSDLoc(); 3747 auto &TLI = DAG.getTargetLoweringInfo(); 3748 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3749 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3750 3751 // Normalize Vector GEP - all scalar operands should be converted to the 3752 // splat vector. 3753 bool IsVectorGEP = I.getType()->isVectorTy(); 3754 ElementCount VectorElementCount = IsVectorGEP ? 3755 I.getType()->getVectorElementCount() : ElementCount(0, false); 3756 3757 if (IsVectorGEP && !N.getValueType().isVector()) { 3758 LLVMContext &Context = *DAG.getContext(); 3759 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3760 if (VectorElementCount.Scalable) 3761 N = DAG.getSplatVector(VT, dl, N); 3762 else 3763 N = DAG.getSplatBuildVector(VT, dl, N); 3764 } 3765 3766 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3767 GTI != E; ++GTI) { 3768 const Value *Idx = GTI.getOperand(); 3769 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3770 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3771 if (Field) { 3772 // N = N + Offset 3773 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3774 3775 // In an inbounds GEP with an offset that is nonnegative even when 3776 // interpreted as signed, assume there is no unsigned overflow. 3777 SDNodeFlags Flags; 3778 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3779 Flags.setNoUnsignedWrap(true); 3780 3781 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3782 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3783 } 3784 } else { 3785 // IdxSize is the width of the arithmetic according to IR semantics. 3786 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3787 // (and fix up the result later). 3788 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3789 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3790 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3791 // We intentionally mask away the high bits here; ElementSize may not 3792 // fit in IdxTy. 3793 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3794 bool ElementScalable = ElementSize.isScalable(); 3795 3796 // If this is a scalar constant or a splat vector of constants, 3797 // handle it quickly. 3798 const auto *C = dyn_cast<Constant>(Idx); 3799 if (C && isa<VectorType>(C->getType())) 3800 C = C->getSplatValue(); 3801 3802 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3803 if (CI && CI->isZero()) 3804 continue; 3805 if (CI && !ElementScalable) { 3806 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3807 LLVMContext &Context = *DAG.getContext(); 3808 SDValue OffsVal; 3809 if (IsVectorGEP) 3810 OffsVal = DAG.getConstant( 3811 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3812 else 3813 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3814 3815 // In an inbounds GEP with an offset that is nonnegative even when 3816 // interpreted as signed, assume there is no unsigned overflow. 3817 SDNodeFlags Flags; 3818 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3819 Flags.setNoUnsignedWrap(true); 3820 3821 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3822 3823 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3824 continue; 3825 } 3826 3827 // N = N + Idx * ElementMul; 3828 SDValue IdxN = getValue(Idx); 3829 3830 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3831 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3832 VectorElementCount); 3833 if (VectorElementCount.Scalable) 3834 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3835 else 3836 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3837 } 3838 3839 // If the index is smaller or larger than intptr_t, truncate or extend 3840 // it. 3841 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3842 3843 if (ElementScalable) { 3844 EVT VScaleTy = N.getValueType().getScalarType(); 3845 SDValue VScale = DAG.getNode( 3846 ISD::VSCALE, dl, VScaleTy, 3847 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3848 if (IsVectorGEP) 3849 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3850 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3851 } else { 3852 // If this is a multiply by a power of two, turn it into a shl 3853 // immediately. This is a very common case. 3854 if (ElementMul != 1) { 3855 if (ElementMul.isPowerOf2()) { 3856 unsigned Amt = ElementMul.logBase2(); 3857 IdxN = DAG.getNode(ISD::SHL, dl, 3858 N.getValueType(), IdxN, 3859 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3860 } else { 3861 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3862 IdxN.getValueType()); 3863 IdxN = DAG.getNode(ISD::MUL, dl, 3864 N.getValueType(), IdxN, Scale); 3865 } 3866 } 3867 } 3868 3869 N = DAG.getNode(ISD::ADD, dl, 3870 N.getValueType(), N, IdxN); 3871 } 3872 } 3873 3874 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3875 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3876 3877 setValue(&I, N); 3878 } 3879 3880 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3881 // If this is a fixed sized alloca in the entry block of the function, 3882 // allocate it statically on the stack. 3883 if (FuncInfo.StaticAllocaMap.count(&I)) 3884 return; // getValue will auto-populate this. 3885 3886 SDLoc dl = getCurSDLoc(); 3887 Type *Ty = I.getAllocatedType(); 3888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3889 auto &DL = DAG.getDataLayout(); 3890 uint64_t TySize = DL.getTypeAllocSize(Ty); 3891 MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3892 3893 SDValue AllocSize = getValue(I.getArraySize()); 3894 3895 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3896 if (AllocSize.getValueType() != IntPtr) 3897 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3898 3899 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3900 AllocSize, 3901 DAG.getConstant(TySize, dl, IntPtr)); 3902 3903 // Handle alignment. If the requested alignment is less than or equal to 3904 // the stack alignment, ignore it. If the size is greater than or equal to 3905 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3906 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3907 if (Alignment <= StackAlign) 3908 Alignment = None; 3909 3910 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3911 // Round the size of the allocation up to the stack alignment size 3912 // by add SA-1 to the size. This doesn't overflow because we're computing 3913 // an address inside an alloca. 3914 SDNodeFlags Flags; 3915 Flags.setNoUnsignedWrap(true); 3916 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3917 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3918 3919 // Mask out the low bits for alignment purposes. 3920 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3921 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3922 3923 SDValue Ops[] = { 3924 getRoot(), AllocSize, 3925 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3926 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3927 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3928 setValue(&I, DSA); 3929 DAG.setRoot(DSA.getValue(1)); 3930 3931 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3932 } 3933 3934 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3935 if (I.isAtomic()) 3936 return visitAtomicLoad(I); 3937 3938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3939 const Value *SV = I.getOperand(0); 3940 if (TLI.supportSwiftError()) { 3941 // Swifterror values can come from either a function parameter with 3942 // swifterror attribute or an alloca with swifterror attribute. 3943 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3944 if (Arg->hasSwiftErrorAttr()) 3945 return visitLoadFromSwiftError(I); 3946 } 3947 3948 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3949 if (Alloca->isSwiftError()) 3950 return visitLoadFromSwiftError(I); 3951 } 3952 } 3953 3954 SDValue Ptr = getValue(SV); 3955 3956 Type *Ty = I.getType(); 3957 unsigned Alignment = I.getAlignment(); 3958 3959 AAMDNodes AAInfo; 3960 I.getAAMetadata(AAInfo); 3961 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3962 3963 SmallVector<EVT, 4> ValueVTs, MemVTs; 3964 SmallVector<uint64_t, 4> Offsets; 3965 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3966 unsigned NumValues = ValueVTs.size(); 3967 if (NumValues == 0) 3968 return; 3969 3970 bool isVolatile = I.isVolatile(); 3971 3972 SDValue Root; 3973 bool ConstantMemory = false; 3974 if (isVolatile) 3975 // Serialize volatile loads with other side effects. 3976 Root = getRoot(); 3977 else if (NumValues > MaxParallelChains) 3978 Root = getMemoryRoot(); 3979 else if (AA && 3980 AA->pointsToConstantMemory(MemoryLocation( 3981 SV, 3982 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3983 AAInfo))) { 3984 // Do not serialize (non-volatile) loads of constant memory with anything. 3985 Root = DAG.getEntryNode(); 3986 ConstantMemory = true; 3987 } else { 3988 // Do not serialize non-volatile loads against each other. 3989 Root = DAG.getRoot(); 3990 } 3991 3992 SDLoc dl = getCurSDLoc(); 3993 3994 if (isVolatile) 3995 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3996 3997 // An aggregate load cannot wrap around the address space, so offsets to its 3998 // parts don't wrap either. 3999 SDNodeFlags Flags; 4000 Flags.setNoUnsignedWrap(true); 4001 4002 SmallVector<SDValue, 4> Values(NumValues); 4003 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4004 EVT PtrVT = Ptr.getValueType(); 4005 4006 MachineMemOperand::Flags MMOFlags 4007 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4008 4009 unsigned ChainI = 0; 4010 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4011 // Serializing loads here may result in excessive register pressure, and 4012 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4013 // could recover a bit by hoisting nodes upward in the chain by recognizing 4014 // they are side-effect free or do not alias. The optimizer should really 4015 // avoid this case by converting large object/array copies to llvm.memcpy 4016 // (MaxParallelChains should always remain as failsafe). 4017 if (ChainI == MaxParallelChains) { 4018 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4019 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4020 makeArrayRef(Chains.data(), ChainI)); 4021 Root = Chain; 4022 ChainI = 0; 4023 } 4024 SDValue A = DAG.getNode(ISD::ADD, dl, 4025 PtrVT, Ptr, 4026 DAG.getConstant(Offsets[i], dl, PtrVT), 4027 Flags); 4028 4029 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4030 MachinePointerInfo(SV, Offsets[i]), Alignment, 4031 MMOFlags, AAInfo, Ranges); 4032 Chains[ChainI] = L.getValue(1); 4033 4034 if (MemVTs[i] != ValueVTs[i]) 4035 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4036 4037 Values[i] = L; 4038 } 4039 4040 if (!ConstantMemory) { 4041 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4042 makeArrayRef(Chains.data(), ChainI)); 4043 if (isVolatile) 4044 DAG.setRoot(Chain); 4045 else 4046 PendingLoads.push_back(Chain); 4047 } 4048 4049 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4050 DAG.getVTList(ValueVTs), Values)); 4051 } 4052 4053 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4054 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4055 "call visitStoreToSwiftError when backend supports swifterror"); 4056 4057 SmallVector<EVT, 4> ValueVTs; 4058 SmallVector<uint64_t, 4> Offsets; 4059 const Value *SrcV = I.getOperand(0); 4060 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4061 SrcV->getType(), ValueVTs, &Offsets); 4062 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4063 "expect a single EVT for swifterror"); 4064 4065 SDValue Src = getValue(SrcV); 4066 // Create a virtual register, then update the virtual register. 4067 Register VReg = 4068 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4069 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4070 // Chain can be getRoot or getControlRoot. 4071 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4072 SDValue(Src.getNode(), Src.getResNo())); 4073 DAG.setRoot(CopyNode); 4074 } 4075 4076 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4077 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4078 "call visitLoadFromSwiftError when backend supports swifterror"); 4079 4080 assert(!I.isVolatile() && 4081 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4082 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4083 "Support volatile, non temporal, invariant for load_from_swift_error"); 4084 4085 const Value *SV = I.getOperand(0); 4086 Type *Ty = I.getType(); 4087 AAMDNodes AAInfo; 4088 I.getAAMetadata(AAInfo); 4089 assert( 4090 (!AA || 4091 !AA->pointsToConstantMemory(MemoryLocation( 4092 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4093 AAInfo))) && 4094 "load_from_swift_error should not be constant memory"); 4095 4096 SmallVector<EVT, 4> ValueVTs; 4097 SmallVector<uint64_t, 4> Offsets; 4098 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4099 ValueVTs, &Offsets); 4100 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4101 "expect a single EVT for swifterror"); 4102 4103 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4104 SDValue L = DAG.getCopyFromReg( 4105 getRoot(), getCurSDLoc(), 4106 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4107 4108 setValue(&I, L); 4109 } 4110 4111 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4112 if (I.isAtomic()) 4113 return visitAtomicStore(I); 4114 4115 const Value *SrcV = I.getOperand(0); 4116 const Value *PtrV = I.getOperand(1); 4117 4118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4119 if (TLI.supportSwiftError()) { 4120 // Swifterror values can come from either a function parameter with 4121 // swifterror attribute or an alloca with swifterror attribute. 4122 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4123 if (Arg->hasSwiftErrorAttr()) 4124 return visitStoreToSwiftError(I); 4125 } 4126 4127 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4128 if (Alloca->isSwiftError()) 4129 return visitStoreToSwiftError(I); 4130 } 4131 } 4132 4133 SmallVector<EVT, 4> ValueVTs, MemVTs; 4134 SmallVector<uint64_t, 4> Offsets; 4135 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4136 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4137 unsigned NumValues = ValueVTs.size(); 4138 if (NumValues == 0) 4139 return; 4140 4141 // Get the lowered operands. Note that we do this after 4142 // checking if NumResults is zero, because with zero results 4143 // the operands won't have values in the map. 4144 SDValue Src = getValue(SrcV); 4145 SDValue Ptr = getValue(PtrV); 4146 4147 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4148 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4149 SDLoc dl = getCurSDLoc(); 4150 unsigned Alignment = I.getAlignment(); 4151 AAMDNodes AAInfo; 4152 I.getAAMetadata(AAInfo); 4153 4154 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4155 4156 // An aggregate load cannot wrap around the address space, so offsets to its 4157 // parts don't wrap either. 4158 SDNodeFlags Flags; 4159 Flags.setNoUnsignedWrap(true); 4160 4161 unsigned ChainI = 0; 4162 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4163 // See visitLoad comments. 4164 if (ChainI == MaxParallelChains) { 4165 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4166 makeArrayRef(Chains.data(), ChainI)); 4167 Root = Chain; 4168 ChainI = 0; 4169 } 4170 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4171 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4172 if (MemVTs[i] != ValueVTs[i]) 4173 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4174 SDValue St = 4175 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4176 Alignment, MMOFlags, AAInfo); 4177 Chains[ChainI] = St; 4178 } 4179 4180 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4181 makeArrayRef(Chains.data(), ChainI)); 4182 DAG.setRoot(StoreNode); 4183 } 4184 4185 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4186 bool IsCompressing) { 4187 SDLoc sdl = getCurSDLoc(); 4188 4189 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4190 MaybeAlign &Alignment) { 4191 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4192 Src0 = I.getArgOperand(0); 4193 Ptr = I.getArgOperand(1); 4194 Alignment = 4195 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4196 Mask = I.getArgOperand(3); 4197 }; 4198 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4199 MaybeAlign &Alignment) { 4200 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4201 Src0 = I.getArgOperand(0); 4202 Ptr = I.getArgOperand(1); 4203 Mask = I.getArgOperand(2); 4204 Alignment = None; 4205 }; 4206 4207 Value *PtrOperand, *MaskOperand, *Src0Operand; 4208 MaybeAlign Alignment; 4209 if (IsCompressing) 4210 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4211 else 4212 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4213 4214 SDValue Ptr = getValue(PtrOperand); 4215 SDValue Src0 = getValue(Src0Operand); 4216 SDValue Mask = getValue(MaskOperand); 4217 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4218 4219 EVT VT = Src0.getValueType(); 4220 if (!Alignment) 4221 Alignment = DAG.getEVTAlign(VT); 4222 4223 AAMDNodes AAInfo; 4224 I.getAAMetadata(AAInfo); 4225 4226 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4227 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4228 // TODO: Make MachineMemOperands aware of scalable 4229 // vectors. 4230 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4231 SDValue StoreNode = 4232 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4233 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4234 DAG.setRoot(StoreNode); 4235 setValue(&I, StoreNode); 4236 } 4237 4238 // Get a uniform base for the Gather/Scatter intrinsic. 4239 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4240 // We try to represent it as a base pointer + vector of indices. 4241 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4242 // The first operand of the GEP may be a single pointer or a vector of pointers 4243 // Example: 4244 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4245 // or 4246 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4247 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4248 // 4249 // When the first GEP operand is a single pointer - it is the uniform base we 4250 // are looking for. If first operand of the GEP is a splat vector - we 4251 // extract the splat value and use it as a uniform base. 4252 // In all other cases the function returns 'false'. 4253 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4254 ISD::MemIndexType &IndexType, SDValue &Scale, 4255 SelectionDAGBuilder *SDB) { 4256 SelectionDAG& DAG = SDB->DAG; 4257 LLVMContext &Context = *DAG.getContext(); 4258 4259 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4260 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4261 if (!GEP) 4262 return false; 4263 4264 const Value *BasePtr = GEP->getPointerOperand(); 4265 if (BasePtr->getType()->isVectorTy()) { 4266 BasePtr = getSplatValue(BasePtr); 4267 if (!BasePtr) 4268 return false; 4269 } 4270 4271 unsigned FinalIndex = GEP->getNumOperands() - 1; 4272 Value *IndexVal = GEP->getOperand(FinalIndex); 4273 gep_type_iterator GTI = gep_type_begin(*GEP); 4274 4275 // Ensure all the other indices are 0. 4276 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4277 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4278 if (!C) 4279 return false; 4280 if (isa<VectorType>(C->getType())) 4281 C = C->getSplatValue(); 4282 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4283 if (!CI || !CI->isZero()) 4284 return false; 4285 } 4286 4287 // The operands of the GEP may be defined in another basic block. 4288 // In this case we'll not find nodes for the operands. 4289 if (!SDB->findValue(BasePtr)) 4290 return false; 4291 Constant *C = dyn_cast<Constant>(IndexVal); 4292 if (!C && !SDB->findValue(IndexVal)) 4293 return false; 4294 4295 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4296 const DataLayout &DL = DAG.getDataLayout(); 4297 StructType *STy = GTI.getStructTypeOrNull(); 4298 4299 if (STy) { 4300 const StructLayout *SL = DL.getStructLayout(STy); 4301 unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue(); 4302 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4303 Index = DAG.getConstant(SL->getElementOffset(Field), 4304 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4305 } else { 4306 Scale = DAG.getTargetConstant( 4307 DL.getTypeAllocSize(GEP->getResultElementType()), 4308 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4309 Index = SDB->getValue(IndexVal); 4310 } 4311 Base = SDB->getValue(BasePtr); 4312 IndexType = ISD::SIGNED_SCALED; 4313 4314 if (STy || !Index.getValueType().isVector()) { 4315 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4316 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4317 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4318 } 4319 return true; 4320 } 4321 4322 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4323 SDLoc sdl = getCurSDLoc(); 4324 4325 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4326 const Value *Ptr = I.getArgOperand(1); 4327 SDValue Src0 = getValue(I.getArgOperand(0)); 4328 SDValue Mask = getValue(I.getArgOperand(3)); 4329 EVT VT = Src0.getValueType(); 4330 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4331 if (!Alignment) 4332 Alignment = DAG.getEVTAlign(VT); 4333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4334 4335 AAMDNodes AAInfo; 4336 I.getAAMetadata(AAInfo); 4337 4338 SDValue Base; 4339 SDValue Index; 4340 ISD::MemIndexType IndexType; 4341 SDValue Scale; 4342 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4343 4344 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4345 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4346 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4347 // TODO: Make MachineMemOperands aware of scalable 4348 // vectors. 4349 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4350 if (!UniformBase) { 4351 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4352 Index = getValue(Ptr); 4353 IndexType = ISD::SIGNED_SCALED; 4354 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4355 } 4356 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4357 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4358 Ops, MMO, IndexType); 4359 DAG.setRoot(Scatter); 4360 setValue(&I, Scatter); 4361 } 4362 4363 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4364 SDLoc sdl = getCurSDLoc(); 4365 4366 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4367 MaybeAlign &Alignment) { 4368 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4369 Ptr = I.getArgOperand(0); 4370 Alignment = 4371 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4372 Mask = I.getArgOperand(2); 4373 Src0 = I.getArgOperand(3); 4374 }; 4375 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4376 MaybeAlign &Alignment) { 4377 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4378 Ptr = I.getArgOperand(0); 4379 Alignment = None; 4380 Mask = I.getArgOperand(1); 4381 Src0 = I.getArgOperand(2); 4382 }; 4383 4384 Value *PtrOperand, *MaskOperand, *Src0Operand; 4385 MaybeAlign Alignment; 4386 if (IsExpanding) 4387 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4388 else 4389 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4390 4391 SDValue Ptr = getValue(PtrOperand); 4392 SDValue Src0 = getValue(Src0Operand); 4393 SDValue Mask = getValue(MaskOperand); 4394 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4395 4396 EVT VT = Src0.getValueType(); 4397 if (!Alignment) 4398 Alignment = DAG.getEVTAlign(VT); 4399 4400 AAMDNodes AAInfo; 4401 I.getAAMetadata(AAInfo); 4402 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4403 4404 // Do not serialize masked loads of constant memory with anything. 4405 MemoryLocation ML; 4406 if (VT.isScalableVector()) 4407 ML = MemoryLocation(PtrOperand); 4408 else 4409 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4410 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4411 AAInfo); 4412 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4413 4414 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4415 4416 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4417 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4418 // TODO: Make MachineMemOperands aware of scalable 4419 // vectors. 4420 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4421 4422 SDValue Load = 4423 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4424 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4425 if (AddToChain) 4426 PendingLoads.push_back(Load.getValue(1)); 4427 setValue(&I, Load); 4428 } 4429 4430 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4431 SDLoc sdl = getCurSDLoc(); 4432 4433 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4434 const Value *Ptr = I.getArgOperand(0); 4435 SDValue Src0 = getValue(I.getArgOperand(3)); 4436 SDValue Mask = getValue(I.getArgOperand(2)); 4437 4438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4439 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4440 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4441 if (!Alignment) 4442 Alignment = DAG.getEVTAlign(VT); 4443 4444 AAMDNodes AAInfo; 4445 I.getAAMetadata(AAInfo); 4446 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4447 4448 SDValue Root = DAG.getRoot(); 4449 SDValue Base; 4450 SDValue Index; 4451 ISD::MemIndexType IndexType; 4452 SDValue Scale; 4453 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4454 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4455 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4456 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4457 // TODO: Make MachineMemOperands aware of scalable 4458 // vectors. 4459 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4460 4461 if (!UniformBase) { 4462 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4463 Index = getValue(Ptr); 4464 IndexType = ISD::SIGNED_SCALED; 4465 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4466 } 4467 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4468 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4469 Ops, MMO, IndexType); 4470 4471 PendingLoads.push_back(Gather.getValue(1)); 4472 setValue(&I, Gather); 4473 } 4474 4475 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4476 SDLoc dl = getCurSDLoc(); 4477 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4478 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4479 SyncScope::ID SSID = I.getSyncScopeID(); 4480 4481 SDValue InChain = getRoot(); 4482 4483 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4484 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4485 4486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4487 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4488 4489 MachineFunction &MF = DAG.getMachineFunction(); 4490 MachineMemOperand *MMO = MF.getMachineMemOperand( 4491 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4492 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4493 FailureOrdering); 4494 4495 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4496 dl, MemVT, VTs, InChain, 4497 getValue(I.getPointerOperand()), 4498 getValue(I.getCompareOperand()), 4499 getValue(I.getNewValOperand()), MMO); 4500 4501 SDValue OutChain = L.getValue(2); 4502 4503 setValue(&I, L); 4504 DAG.setRoot(OutChain); 4505 } 4506 4507 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4508 SDLoc dl = getCurSDLoc(); 4509 ISD::NodeType NT; 4510 switch (I.getOperation()) { 4511 default: llvm_unreachable("Unknown atomicrmw operation"); 4512 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4513 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4514 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4515 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4516 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4517 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4518 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4519 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4520 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4521 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4522 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4523 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4524 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4525 } 4526 AtomicOrdering Ordering = I.getOrdering(); 4527 SyncScope::ID SSID = I.getSyncScopeID(); 4528 4529 SDValue InChain = getRoot(); 4530 4531 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4533 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4534 4535 MachineFunction &MF = DAG.getMachineFunction(); 4536 MachineMemOperand *MMO = MF.getMachineMemOperand( 4537 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4538 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4539 4540 SDValue L = 4541 DAG.getAtomic(NT, dl, MemVT, InChain, 4542 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4543 MMO); 4544 4545 SDValue OutChain = L.getValue(1); 4546 4547 setValue(&I, L); 4548 DAG.setRoot(OutChain); 4549 } 4550 4551 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4552 SDLoc dl = getCurSDLoc(); 4553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4554 SDValue Ops[3]; 4555 Ops[0] = getRoot(); 4556 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4557 TLI.getFenceOperandTy(DAG.getDataLayout())); 4558 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4559 TLI.getFenceOperandTy(DAG.getDataLayout())); 4560 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4561 } 4562 4563 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4564 SDLoc dl = getCurSDLoc(); 4565 AtomicOrdering Order = I.getOrdering(); 4566 SyncScope::ID SSID = I.getSyncScopeID(); 4567 4568 SDValue InChain = getRoot(); 4569 4570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4571 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4572 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4573 4574 if (!TLI.supportsUnalignedAtomics() && 4575 I.getAlignment() < MemVT.getSizeInBits() / 8) 4576 report_fatal_error("Cannot generate unaligned atomic load"); 4577 4578 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4579 4580 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4581 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4582 I.getAlign().getValueOr(DAG.getEVTAlign(MemVT)), AAMDNodes(), nullptr, 4583 SSID, Order); 4584 4585 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4586 4587 SDValue Ptr = getValue(I.getPointerOperand()); 4588 4589 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4590 // TODO: Once this is better exercised by tests, it should be merged with 4591 // the normal path for loads to prevent future divergence. 4592 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4593 if (MemVT != VT) 4594 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4595 4596 setValue(&I, L); 4597 SDValue OutChain = L.getValue(1); 4598 if (!I.isUnordered()) 4599 DAG.setRoot(OutChain); 4600 else 4601 PendingLoads.push_back(OutChain); 4602 return; 4603 } 4604 4605 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4606 Ptr, MMO); 4607 4608 SDValue OutChain = L.getValue(1); 4609 if (MemVT != VT) 4610 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4611 4612 setValue(&I, L); 4613 DAG.setRoot(OutChain); 4614 } 4615 4616 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4617 SDLoc dl = getCurSDLoc(); 4618 4619 AtomicOrdering Ordering = I.getOrdering(); 4620 SyncScope::ID SSID = I.getSyncScopeID(); 4621 4622 SDValue InChain = getRoot(); 4623 4624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4625 EVT MemVT = 4626 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4627 4628 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4629 report_fatal_error("Cannot generate unaligned atomic store"); 4630 4631 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4632 4633 MachineFunction &MF = DAG.getMachineFunction(); 4634 MachineMemOperand *MMO = MF.getMachineMemOperand( 4635 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4636 *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4637 4638 SDValue Val = getValue(I.getValueOperand()); 4639 if (Val.getValueType() != MemVT) 4640 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4641 SDValue Ptr = getValue(I.getPointerOperand()); 4642 4643 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4644 // TODO: Once this is better exercised by tests, it should be merged with 4645 // the normal path for stores to prevent future divergence. 4646 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4647 DAG.setRoot(S); 4648 return; 4649 } 4650 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4651 Ptr, Val, MMO); 4652 4653 4654 DAG.setRoot(OutChain); 4655 } 4656 4657 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4658 /// node. 4659 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4660 unsigned Intrinsic) { 4661 // Ignore the callsite's attributes. A specific call site may be marked with 4662 // readnone, but the lowering code will expect the chain based on the 4663 // definition. 4664 const Function *F = I.getCalledFunction(); 4665 bool HasChain = !F->doesNotAccessMemory(); 4666 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4667 4668 // Build the operand list. 4669 SmallVector<SDValue, 8> Ops; 4670 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4671 if (OnlyLoad) { 4672 // We don't need to serialize loads against other loads. 4673 Ops.push_back(DAG.getRoot()); 4674 } else { 4675 Ops.push_back(getRoot()); 4676 } 4677 } 4678 4679 // Info is set by getTgtMemInstrinsic 4680 TargetLowering::IntrinsicInfo Info; 4681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4682 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4683 DAG.getMachineFunction(), 4684 Intrinsic); 4685 4686 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4687 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4688 Info.opc == ISD::INTRINSIC_W_CHAIN) 4689 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4690 TLI.getPointerTy(DAG.getDataLayout()))); 4691 4692 // Add all operands of the call to the operand list. 4693 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4694 const Value *Arg = I.getArgOperand(i); 4695 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4696 Ops.push_back(getValue(Arg)); 4697 continue; 4698 } 4699 4700 // Use TargetConstant instead of a regular constant for immarg. 4701 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4702 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4703 assert(CI->getBitWidth() <= 64 && 4704 "large intrinsic immediates not handled"); 4705 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4706 } else { 4707 Ops.push_back( 4708 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4709 } 4710 } 4711 4712 SmallVector<EVT, 4> ValueVTs; 4713 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4714 4715 if (HasChain) 4716 ValueVTs.push_back(MVT::Other); 4717 4718 SDVTList VTs = DAG.getVTList(ValueVTs); 4719 4720 // Create the node. 4721 SDValue Result; 4722 if (IsTgtIntrinsic) { 4723 // This is target intrinsic that touches memory 4724 AAMDNodes AAInfo; 4725 I.getAAMetadata(AAInfo); 4726 Result = 4727 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4728 MachinePointerInfo(Info.ptrVal, Info.offset), 4729 Info.align, Info.flags, Info.size, AAInfo); 4730 } else if (!HasChain) { 4731 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4732 } else if (!I.getType()->isVoidTy()) { 4733 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4734 } else { 4735 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4736 } 4737 4738 if (HasChain) { 4739 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4740 if (OnlyLoad) 4741 PendingLoads.push_back(Chain); 4742 else 4743 DAG.setRoot(Chain); 4744 } 4745 4746 if (!I.getType()->isVoidTy()) { 4747 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4748 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4749 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4750 } else 4751 Result = lowerRangeToAssertZExt(DAG, I, Result); 4752 4753 setValue(&I, Result); 4754 } 4755 } 4756 4757 /// GetSignificand - Get the significand and build it into a floating-point 4758 /// number with exponent of 1: 4759 /// 4760 /// Op = (Op & 0x007fffff) | 0x3f800000; 4761 /// 4762 /// where Op is the hexadecimal representation of floating point value. 4763 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4764 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4765 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4766 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4767 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4768 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4769 } 4770 4771 /// GetExponent - Get the exponent: 4772 /// 4773 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4774 /// 4775 /// where Op is the hexadecimal representation of floating point value. 4776 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4777 const TargetLowering &TLI, const SDLoc &dl) { 4778 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4779 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4780 SDValue t1 = DAG.getNode( 4781 ISD::SRL, dl, MVT::i32, t0, 4782 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4783 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4784 DAG.getConstant(127, dl, MVT::i32)); 4785 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4786 } 4787 4788 /// getF32Constant - Get 32-bit floating point constant. 4789 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4790 const SDLoc &dl) { 4791 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4792 MVT::f32); 4793 } 4794 4795 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4796 SelectionDAG &DAG) { 4797 // TODO: What fast-math-flags should be set on the floating-point nodes? 4798 4799 // IntegerPartOfX = ((int32_t)(t0); 4800 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4801 4802 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4803 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4804 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4805 4806 // IntegerPartOfX <<= 23; 4807 IntegerPartOfX = DAG.getNode( 4808 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4809 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4810 DAG.getDataLayout()))); 4811 4812 SDValue TwoToFractionalPartOfX; 4813 if (LimitFloatPrecision <= 6) { 4814 // For floating-point precision of 6: 4815 // 4816 // TwoToFractionalPartOfX = 4817 // 0.997535578f + 4818 // (0.735607626f + 0.252464424f * x) * x; 4819 // 4820 // error 0.0144103317, which is 6 bits 4821 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4822 getF32Constant(DAG, 0x3e814304, dl)); 4823 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4824 getF32Constant(DAG, 0x3f3c50c8, dl)); 4825 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4826 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4827 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4828 } else if (LimitFloatPrecision <= 12) { 4829 // For floating-point precision of 12: 4830 // 4831 // TwoToFractionalPartOfX = 4832 // 0.999892986f + 4833 // (0.696457318f + 4834 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4835 // 4836 // error 0.000107046256, which is 13 to 14 bits 4837 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4838 getF32Constant(DAG, 0x3da235e3, dl)); 4839 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4840 getF32Constant(DAG, 0x3e65b8f3, dl)); 4841 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4842 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4843 getF32Constant(DAG, 0x3f324b07, dl)); 4844 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4845 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4846 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4847 } else { // LimitFloatPrecision <= 18 4848 // For floating-point precision of 18: 4849 // 4850 // TwoToFractionalPartOfX = 4851 // 0.999999982f + 4852 // (0.693148872f + 4853 // (0.240227044f + 4854 // (0.554906021e-1f + 4855 // (0.961591928e-2f + 4856 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4857 // error 2.47208000*10^(-7), which is better than 18 bits 4858 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4859 getF32Constant(DAG, 0x3924b03e, dl)); 4860 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4861 getF32Constant(DAG, 0x3ab24b87, dl)); 4862 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4863 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4864 getF32Constant(DAG, 0x3c1d8c17, dl)); 4865 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4866 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4867 getF32Constant(DAG, 0x3d634a1d, dl)); 4868 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4869 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4870 getF32Constant(DAG, 0x3e75fe14, dl)); 4871 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4872 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4873 getF32Constant(DAG, 0x3f317234, dl)); 4874 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4875 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4876 getF32Constant(DAG, 0x3f800000, dl)); 4877 } 4878 4879 // Add the exponent into the result in integer domain. 4880 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4881 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4882 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4883 } 4884 4885 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4886 /// limited-precision mode. 4887 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4888 const TargetLowering &TLI) { 4889 if (Op.getValueType() == MVT::f32 && 4890 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4891 4892 // Put the exponent in the right bit position for later addition to the 4893 // final result: 4894 // 4895 // t0 = Op * log2(e) 4896 4897 // TODO: What fast-math-flags should be set here? 4898 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4899 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4900 return getLimitedPrecisionExp2(t0, dl, DAG); 4901 } 4902 4903 // No special expansion. 4904 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4905 } 4906 4907 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4908 /// limited-precision mode. 4909 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4910 const TargetLowering &TLI) { 4911 // TODO: What fast-math-flags should be set on the floating-point nodes? 4912 4913 if (Op.getValueType() == MVT::f32 && 4914 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4915 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4916 4917 // Scale the exponent by log(2). 4918 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4919 SDValue LogOfExponent = 4920 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4921 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4922 4923 // Get the significand and build it into a floating-point number with 4924 // exponent of 1. 4925 SDValue X = GetSignificand(DAG, Op1, dl); 4926 4927 SDValue LogOfMantissa; 4928 if (LimitFloatPrecision <= 6) { 4929 // For floating-point precision of 6: 4930 // 4931 // LogofMantissa = 4932 // -1.1609546f + 4933 // (1.4034025f - 0.23903021f * x) * x; 4934 // 4935 // error 0.0034276066, which is better than 8 bits 4936 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4937 getF32Constant(DAG, 0xbe74c456, dl)); 4938 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4939 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4941 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4942 getF32Constant(DAG, 0x3f949a29, dl)); 4943 } else if (LimitFloatPrecision <= 12) { 4944 // For floating-point precision of 12: 4945 // 4946 // LogOfMantissa = 4947 // -1.7417939f + 4948 // (2.8212026f + 4949 // (-1.4699568f + 4950 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4951 // 4952 // error 0.000061011436, which is 14 bits 4953 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4954 getF32Constant(DAG, 0xbd67b6d6, dl)); 4955 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4956 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4957 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4958 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4959 getF32Constant(DAG, 0x3fbc278b, dl)); 4960 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4961 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4962 getF32Constant(DAG, 0x40348e95, dl)); 4963 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4964 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4965 getF32Constant(DAG, 0x3fdef31a, dl)); 4966 } else { // LimitFloatPrecision <= 18 4967 // For floating-point precision of 18: 4968 // 4969 // LogOfMantissa = 4970 // -2.1072184f + 4971 // (4.2372794f + 4972 // (-3.7029485f + 4973 // (2.2781945f + 4974 // (-0.87823314f + 4975 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4976 // 4977 // error 0.0000023660568, which is better than 18 bits 4978 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4979 getF32Constant(DAG, 0xbc91e5ac, dl)); 4980 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4981 getF32Constant(DAG, 0x3e4350aa, dl)); 4982 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4983 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4984 getF32Constant(DAG, 0x3f60d3e3, dl)); 4985 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4986 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4987 getF32Constant(DAG, 0x4011cdf0, dl)); 4988 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4989 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4990 getF32Constant(DAG, 0x406cfd1c, dl)); 4991 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4992 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4993 getF32Constant(DAG, 0x408797cb, dl)); 4994 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4995 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4996 getF32Constant(DAG, 0x4006dcab, dl)); 4997 } 4998 4999 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5000 } 5001 5002 // No special expansion. 5003 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5004 } 5005 5006 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5007 /// limited-precision mode. 5008 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5009 const TargetLowering &TLI) { 5010 // TODO: What fast-math-flags should be set on the floating-point nodes? 5011 5012 if (Op.getValueType() == MVT::f32 && 5013 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5014 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5015 5016 // Get the exponent. 5017 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5018 5019 // Get the significand and build it into a floating-point number with 5020 // exponent of 1. 5021 SDValue X = GetSignificand(DAG, Op1, dl); 5022 5023 // Different possible minimax approximations of significand in 5024 // floating-point for various degrees of accuracy over [1,2]. 5025 SDValue Log2ofMantissa; 5026 if (LimitFloatPrecision <= 6) { 5027 // For floating-point precision of 6: 5028 // 5029 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5030 // 5031 // error 0.0049451742, which is more than 7 bits 5032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5033 getF32Constant(DAG, 0xbeb08fe0, dl)); 5034 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5035 getF32Constant(DAG, 0x40019463, dl)); 5036 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5037 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5038 getF32Constant(DAG, 0x3fd6633d, dl)); 5039 } else if (LimitFloatPrecision <= 12) { 5040 // For floating-point precision of 12: 5041 // 5042 // Log2ofMantissa = 5043 // -2.51285454f + 5044 // (4.07009056f + 5045 // (-2.12067489f + 5046 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5047 // 5048 // error 0.0000876136000, which is better than 13 bits 5049 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5050 getF32Constant(DAG, 0xbda7262e, dl)); 5051 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5052 getF32Constant(DAG, 0x3f25280b, dl)); 5053 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5054 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5055 getF32Constant(DAG, 0x4007b923, dl)); 5056 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5057 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5058 getF32Constant(DAG, 0x40823e2f, dl)); 5059 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5060 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5061 getF32Constant(DAG, 0x4020d29c, dl)); 5062 } else { // LimitFloatPrecision <= 18 5063 // For floating-point precision of 18: 5064 // 5065 // Log2ofMantissa = 5066 // -3.0400495f + 5067 // (6.1129976f + 5068 // (-5.3420409f + 5069 // (3.2865683f + 5070 // (-1.2669343f + 5071 // (0.27515199f - 5072 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5073 // 5074 // error 0.0000018516, which is better than 18 bits 5075 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5076 getF32Constant(DAG, 0xbcd2769e, dl)); 5077 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5078 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5080 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5081 getF32Constant(DAG, 0x3fa22ae7, dl)); 5082 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5083 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5084 getF32Constant(DAG, 0x40525723, dl)); 5085 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5086 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5087 getF32Constant(DAG, 0x40aaf200, dl)); 5088 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5089 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5090 getF32Constant(DAG, 0x40c39dad, dl)); 5091 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5092 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5093 getF32Constant(DAG, 0x4042902c, dl)); 5094 } 5095 5096 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5097 } 5098 5099 // No special expansion. 5100 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5101 } 5102 5103 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5104 /// limited-precision mode. 5105 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5106 const TargetLowering &TLI) { 5107 // TODO: What fast-math-flags should be set on the floating-point nodes? 5108 5109 if (Op.getValueType() == MVT::f32 && 5110 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5111 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5112 5113 // Scale the exponent by log10(2) [0.30102999f]. 5114 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5115 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5116 getF32Constant(DAG, 0x3e9a209a, dl)); 5117 5118 // Get the significand and build it into a floating-point number with 5119 // exponent of 1. 5120 SDValue X = GetSignificand(DAG, Op1, dl); 5121 5122 SDValue Log10ofMantissa; 5123 if (LimitFloatPrecision <= 6) { 5124 // For floating-point precision of 6: 5125 // 5126 // Log10ofMantissa = 5127 // -0.50419619f + 5128 // (0.60948995f - 0.10380950f * x) * x; 5129 // 5130 // error 0.0014886165, which is 6 bits 5131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5132 getF32Constant(DAG, 0xbdd49a13, dl)); 5133 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5134 getF32Constant(DAG, 0x3f1c0789, dl)); 5135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5136 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5137 getF32Constant(DAG, 0x3f011300, dl)); 5138 } else if (LimitFloatPrecision <= 12) { 5139 // For floating-point precision of 12: 5140 // 5141 // Log10ofMantissa = 5142 // -0.64831180f + 5143 // (0.91751397f + 5144 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5145 // 5146 // error 0.00019228036, which is better than 12 bits 5147 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5148 getF32Constant(DAG, 0x3d431f31, dl)); 5149 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5150 getF32Constant(DAG, 0x3ea21fb2, dl)); 5151 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5152 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5153 getF32Constant(DAG, 0x3f6ae232, dl)); 5154 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5155 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5156 getF32Constant(DAG, 0x3f25f7c3, dl)); 5157 } else { // LimitFloatPrecision <= 18 5158 // For floating-point precision of 18: 5159 // 5160 // Log10ofMantissa = 5161 // -0.84299375f + 5162 // (1.5327582f + 5163 // (-1.0688956f + 5164 // (0.49102474f + 5165 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5166 // 5167 // error 0.0000037995730, which is better than 18 bits 5168 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5169 getF32Constant(DAG, 0x3c5d51ce, dl)); 5170 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5171 getF32Constant(DAG, 0x3e00685a, dl)); 5172 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5173 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5174 getF32Constant(DAG, 0x3efb6798, dl)); 5175 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5176 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5177 getF32Constant(DAG, 0x3f88d192, dl)); 5178 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5179 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5180 getF32Constant(DAG, 0x3fc4316c, dl)); 5181 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5182 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5183 getF32Constant(DAG, 0x3f57ce70, dl)); 5184 } 5185 5186 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5187 } 5188 5189 // No special expansion. 5190 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5191 } 5192 5193 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5194 /// limited-precision mode. 5195 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5196 const TargetLowering &TLI) { 5197 if (Op.getValueType() == MVT::f32 && 5198 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5199 return getLimitedPrecisionExp2(Op, dl, DAG); 5200 5201 // No special expansion. 5202 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5203 } 5204 5205 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5206 /// limited-precision mode with x == 10.0f. 5207 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5208 SelectionDAG &DAG, const TargetLowering &TLI) { 5209 bool IsExp10 = false; 5210 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5211 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5212 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5213 APFloat Ten(10.0f); 5214 IsExp10 = LHSC->isExactlyValue(Ten); 5215 } 5216 } 5217 5218 // TODO: What fast-math-flags should be set on the FMUL node? 5219 if (IsExp10) { 5220 // Put the exponent in the right bit position for later addition to the 5221 // final result: 5222 // 5223 // #define LOG2OF10 3.3219281f 5224 // t0 = Op * LOG2OF10; 5225 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5226 getF32Constant(DAG, 0x40549a78, dl)); 5227 return getLimitedPrecisionExp2(t0, dl, DAG); 5228 } 5229 5230 // No special expansion. 5231 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5232 } 5233 5234 /// ExpandPowI - Expand a llvm.powi intrinsic. 5235 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5236 SelectionDAG &DAG) { 5237 // If RHS is a constant, we can expand this out to a multiplication tree, 5238 // otherwise we end up lowering to a call to __powidf2 (for example). When 5239 // optimizing for size, we only want to do this if the expansion would produce 5240 // a small number of multiplies, otherwise we do the full expansion. 5241 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5242 // Get the exponent as a positive value. 5243 unsigned Val = RHSC->getSExtValue(); 5244 if ((int)Val < 0) Val = -Val; 5245 5246 // powi(x, 0) -> 1.0 5247 if (Val == 0) 5248 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5249 5250 bool OptForSize = DAG.shouldOptForSize(); 5251 if (!OptForSize || 5252 // If optimizing for size, don't insert too many multiplies. 5253 // This inserts up to 5 multiplies. 5254 countPopulation(Val) + Log2_32(Val) < 7) { 5255 // We use the simple binary decomposition method to generate the multiply 5256 // sequence. There are more optimal ways to do this (for example, 5257 // powi(x,15) generates one more multiply than it should), but this has 5258 // the benefit of being both really simple and much better than a libcall. 5259 SDValue Res; // Logically starts equal to 1.0 5260 SDValue CurSquare = LHS; 5261 // TODO: Intrinsics should have fast-math-flags that propagate to these 5262 // nodes. 5263 while (Val) { 5264 if (Val & 1) { 5265 if (Res.getNode()) 5266 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5267 else 5268 Res = CurSquare; // 1.0*CurSquare. 5269 } 5270 5271 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5272 CurSquare, CurSquare); 5273 Val >>= 1; 5274 } 5275 5276 // If the original was negative, invert the result, producing 1/(x*x*x). 5277 if (RHSC->getSExtValue() < 0) 5278 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5279 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5280 return Res; 5281 } 5282 } 5283 5284 // Otherwise, expand to a libcall. 5285 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5286 } 5287 5288 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5289 SDValue LHS, SDValue RHS, SDValue Scale, 5290 SelectionDAG &DAG, const TargetLowering &TLI) { 5291 EVT VT = LHS.getValueType(); 5292 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5293 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5294 LLVMContext &Ctx = *DAG.getContext(); 5295 5296 // If the type is legal but the operation isn't, this node might survive all 5297 // the way to operation legalization. If we end up there and we do not have 5298 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5299 // node. 5300 5301 // Coax the legalizer into expanding the node during type legalization instead 5302 // by bumping the size by one bit. This will force it to Promote, enabling the 5303 // early expansion and avoiding the need to expand later. 5304 5305 // We don't have to do this if Scale is 0; that can always be expanded, unless 5306 // it's a saturating signed operation. Those can experience true integer 5307 // division overflow, a case which we must avoid. 5308 5309 // FIXME: We wouldn't have to do this (or any of the early 5310 // expansion/promotion) if it was possible to expand a libcall of an 5311 // illegal type during operation legalization. But it's not, so things 5312 // get a bit hacky. 5313 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5314 if ((ScaleInt > 0 || (Saturating && Signed)) && 5315 (TLI.isTypeLegal(VT) || 5316 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5317 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5318 Opcode, VT, ScaleInt); 5319 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5320 EVT PromVT; 5321 if (VT.isScalarInteger()) 5322 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5323 else if (VT.isVector()) { 5324 PromVT = VT.getVectorElementType(); 5325 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5326 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5327 } else 5328 llvm_unreachable("Wrong VT for DIVFIX?"); 5329 if (Signed) { 5330 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5331 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5332 } else { 5333 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5334 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5335 } 5336 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5337 // For saturating operations, we need to shift up the LHS to get the 5338 // proper saturation width, and then shift down again afterwards. 5339 if (Saturating) 5340 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5341 DAG.getConstant(1, DL, ShiftTy)); 5342 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5343 if (Saturating) 5344 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5345 DAG.getConstant(1, DL, ShiftTy)); 5346 return DAG.getZExtOrTrunc(Res, DL, VT); 5347 } 5348 } 5349 5350 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5351 } 5352 5353 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5354 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5355 static void 5356 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5357 const SDValue &N) { 5358 switch (N.getOpcode()) { 5359 case ISD::CopyFromReg: { 5360 SDValue Op = N.getOperand(1); 5361 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5362 Op.getValueType().getSizeInBits()); 5363 return; 5364 } 5365 case ISD::BITCAST: 5366 case ISD::AssertZext: 5367 case ISD::AssertSext: 5368 case ISD::TRUNCATE: 5369 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5370 return; 5371 case ISD::BUILD_PAIR: 5372 case ISD::BUILD_VECTOR: 5373 case ISD::CONCAT_VECTORS: 5374 for (SDValue Op : N->op_values()) 5375 getUnderlyingArgRegs(Regs, Op); 5376 return; 5377 default: 5378 return; 5379 } 5380 } 5381 5382 /// If the DbgValueInst is a dbg_value of a function argument, create the 5383 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5384 /// instruction selection, they will be inserted to the entry BB. 5385 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5386 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5387 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5388 const Argument *Arg = dyn_cast<Argument>(V); 5389 if (!Arg) 5390 return false; 5391 5392 if (!IsDbgDeclare) { 5393 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5394 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5395 // the entry block. 5396 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5397 if (!IsInEntryBlock) 5398 return false; 5399 5400 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5401 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5402 // variable that also is a param. 5403 // 5404 // Although, if we are at the top of the entry block already, we can still 5405 // emit using ArgDbgValue. This might catch some situations when the 5406 // dbg.value refers to an argument that isn't used in the entry block, so 5407 // any CopyToReg node would be optimized out and the only way to express 5408 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5409 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5410 // we should only emit as ArgDbgValue if the Variable is an argument to the 5411 // current function, and the dbg.value intrinsic is found in the entry 5412 // block. 5413 bool VariableIsFunctionInputArg = Variable->isParameter() && 5414 !DL->getInlinedAt(); 5415 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5416 if (!IsInPrologue && !VariableIsFunctionInputArg) 5417 return false; 5418 5419 // Here we assume that a function argument on IR level only can be used to 5420 // describe one input parameter on source level. If we for example have 5421 // source code like this 5422 // 5423 // struct A { long x, y; }; 5424 // void foo(struct A a, long b) { 5425 // ... 5426 // b = a.x; 5427 // ... 5428 // } 5429 // 5430 // and IR like this 5431 // 5432 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5433 // entry: 5434 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5435 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5436 // call void @llvm.dbg.value(metadata i32 %b, "b", 5437 // ... 5438 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5439 // ... 5440 // 5441 // then the last dbg.value is describing a parameter "b" using a value that 5442 // is an argument. But since we already has used %a1 to describe a parameter 5443 // we should not handle that last dbg.value here (that would result in an 5444 // incorrect hoisting of the DBG_VALUE to the function entry). 5445 // Notice that we allow one dbg.value per IR level argument, to accommodate 5446 // for the situation with fragments above. 5447 if (VariableIsFunctionInputArg) { 5448 unsigned ArgNo = Arg->getArgNo(); 5449 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5450 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5451 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5452 return false; 5453 FuncInfo.DescribedArgs.set(ArgNo); 5454 } 5455 } 5456 5457 MachineFunction &MF = DAG.getMachineFunction(); 5458 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5459 5460 bool IsIndirect = false; 5461 Optional<MachineOperand> Op; 5462 // Some arguments' frame index is recorded during argument lowering. 5463 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5464 if (FI != std::numeric_limits<int>::max()) 5465 Op = MachineOperand::CreateFI(FI); 5466 5467 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5468 if (!Op && N.getNode()) { 5469 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5470 Register Reg; 5471 if (ArgRegsAndSizes.size() == 1) 5472 Reg = ArgRegsAndSizes.front().first; 5473 5474 if (Reg && Reg.isVirtual()) { 5475 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5476 Register PR = RegInfo.getLiveInPhysReg(Reg); 5477 if (PR) 5478 Reg = PR; 5479 } 5480 if (Reg) { 5481 Op = MachineOperand::CreateReg(Reg, false); 5482 IsIndirect = IsDbgDeclare; 5483 } 5484 } 5485 5486 if (!Op && N.getNode()) { 5487 // Check if frame index is available. 5488 SDValue LCandidate = peekThroughBitcasts(N); 5489 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5490 if (FrameIndexSDNode *FINode = 5491 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5492 Op = MachineOperand::CreateFI(FINode->getIndex()); 5493 } 5494 5495 if (!Op) { 5496 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5497 auto splitMultiRegDbgValue 5498 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5499 unsigned Offset = 0; 5500 for (auto RegAndSize : SplitRegs) { 5501 // If the expression is already a fragment, the current register 5502 // offset+size might extend beyond the fragment. In this case, only 5503 // the register bits that are inside the fragment are relevant. 5504 int RegFragmentSizeInBits = RegAndSize.second; 5505 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5506 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5507 // The register is entirely outside the expression fragment, 5508 // so is irrelevant for debug info. 5509 if (Offset >= ExprFragmentSizeInBits) 5510 break; 5511 // The register is partially outside the expression fragment, only 5512 // the low bits within the fragment are relevant for debug info. 5513 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5514 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5515 } 5516 } 5517 5518 auto FragmentExpr = DIExpression::createFragmentExpression( 5519 Expr, Offset, RegFragmentSizeInBits); 5520 Offset += RegAndSize.second; 5521 // If a valid fragment expression cannot be created, the variable's 5522 // correct value cannot be determined and so it is set as Undef. 5523 if (!FragmentExpr) { 5524 SDDbgValue *SDV = DAG.getConstantDbgValue( 5525 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5526 DAG.AddDbgValue(SDV, nullptr, false); 5527 continue; 5528 } 5529 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5530 FuncInfo.ArgDbgValues.push_back( 5531 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5532 RegAndSize.first, Variable, *FragmentExpr)); 5533 } 5534 }; 5535 5536 // Check if ValueMap has reg number. 5537 DenseMap<const Value *, unsigned>::const_iterator 5538 VMI = FuncInfo.ValueMap.find(V); 5539 if (VMI != FuncInfo.ValueMap.end()) { 5540 const auto &TLI = DAG.getTargetLoweringInfo(); 5541 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5542 V->getType(), getABIRegCopyCC(V)); 5543 if (RFV.occupiesMultipleRegs()) { 5544 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5545 return true; 5546 } 5547 5548 Op = MachineOperand::CreateReg(VMI->second, false); 5549 IsIndirect = IsDbgDeclare; 5550 } else if (ArgRegsAndSizes.size() > 1) { 5551 // This was split due to the calling convention, and no virtual register 5552 // mapping exists for the value. 5553 splitMultiRegDbgValue(ArgRegsAndSizes); 5554 return true; 5555 } 5556 } 5557 5558 if (!Op) 5559 return false; 5560 5561 assert(Variable->isValidLocationForIntrinsic(DL) && 5562 "Expected inlined-at fields to agree"); 5563 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5564 FuncInfo.ArgDbgValues.push_back( 5565 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5566 *Op, Variable, Expr)); 5567 5568 return true; 5569 } 5570 5571 /// Return the appropriate SDDbgValue based on N. 5572 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5573 DILocalVariable *Variable, 5574 DIExpression *Expr, 5575 const DebugLoc &dl, 5576 unsigned DbgSDNodeOrder) { 5577 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5578 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5579 // stack slot locations. 5580 // 5581 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5582 // debug values here after optimization: 5583 // 5584 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5585 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5586 // 5587 // Both describe the direct values of their associated variables. 5588 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5589 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5590 } 5591 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5592 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5593 } 5594 5595 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5596 switch (Intrinsic) { 5597 case Intrinsic::smul_fix: 5598 return ISD::SMULFIX; 5599 case Intrinsic::umul_fix: 5600 return ISD::UMULFIX; 5601 case Intrinsic::smul_fix_sat: 5602 return ISD::SMULFIXSAT; 5603 case Intrinsic::umul_fix_sat: 5604 return ISD::UMULFIXSAT; 5605 case Intrinsic::sdiv_fix: 5606 return ISD::SDIVFIX; 5607 case Intrinsic::udiv_fix: 5608 return ISD::UDIVFIX; 5609 case Intrinsic::sdiv_fix_sat: 5610 return ISD::SDIVFIXSAT; 5611 case Intrinsic::udiv_fix_sat: 5612 return ISD::UDIVFIXSAT; 5613 default: 5614 llvm_unreachable("Unhandled fixed point intrinsic"); 5615 } 5616 } 5617 5618 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5619 const char *FunctionName) { 5620 assert(FunctionName && "FunctionName must not be nullptr"); 5621 SDValue Callee = DAG.getExternalSymbol( 5622 FunctionName, 5623 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5624 LowerCallTo(&I, Callee, I.isTailCall()); 5625 } 5626 5627 /// Lower the call to the specified intrinsic function. 5628 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5629 unsigned Intrinsic) { 5630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5631 SDLoc sdl = getCurSDLoc(); 5632 DebugLoc dl = getCurDebugLoc(); 5633 SDValue Res; 5634 5635 switch (Intrinsic) { 5636 default: 5637 // By default, turn this into a target intrinsic node. 5638 visitTargetIntrinsic(I, Intrinsic); 5639 return; 5640 case Intrinsic::vscale: { 5641 match(&I, m_VScale(DAG.getDataLayout())); 5642 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5643 setValue(&I, 5644 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5645 return; 5646 } 5647 case Intrinsic::vastart: visitVAStart(I); return; 5648 case Intrinsic::vaend: visitVAEnd(I); return; 5649 case Intrinsic::vacopy: visitVACopy(I); return; 5650 case Intrinsic::returnaddress: 5651 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5652 TLI.getPointerTy(DAG.getDataLayout()), 5653 getValue(I.getArgOperand(0)))); 5654 return; 5655 case Intrinsic::addressofreturnaddress: 5656 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5657 TLI.getPointerTy(DAG.getDataLayout()))); 5658 return; 5659 case Intrinsic::sponentry: 5660 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5661 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5662 return; 5663 case Intrinsic::frameaddress: 5664 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5665 TLI.getFrameIndexTy(DAG.getDataLayout()), 5666 getValue(I.getArgOperand(0)))); 5667 return; 5668 case Intrinsic::read_register: { 5669 Value *Reg = I.getArgOperand(0); 5670 SDValue Chain = getRoot(); 5671 SDValue RegName = 5672 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5673 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5674 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5675 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5676 setValue(&I, Res); 5677 DAG.setRoot(Res.getValue(1)); 5678 return; 5679 } 5680 case Intrinsic::write_register: { 5681 Value *Reg = I.getArgOperand(0); 5682 Value *RegValue = I.getArgOperand(1); 5683 SDValue Chain = getRoot(); 5684 SDValue RegName = 5685 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5686 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5687 RegName, getValue(RegValue))); 5688 return; 5689 } 5690 case Intrinsic::memcpy: { 5691 const auto &MCI = cast<MemCpyInst>(I); 5692 SDValue Op1 = getValue(I.getArgOperand(0)); 5693 SDValue Op2 = getValue(I.getArgOperand(1)); 5694 SDValue Op3 = getValue(I.getArgOperand(2)); 5695 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5696 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5697 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5698 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5699 bool isVol = MCI.isVolatile(); 5700 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5701 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5702 // node. 5703 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5704 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5705 /* AlwaysInline */ false, isTC, 5706 MachinePointerInfo(I.getArgOperand(0)), 5707 MachinePointerInfo(I.getArgOperand(1))); 5708 updateDAGForMaybeTailCall(MC); 5709 return; 5710 } 5711 case Intrinsic::memcpy_inline: { 5712 const auto &MCI = cast<MemCpyInlineInst>(I); 5713 SDValue Dst = getValue(I.getArgOperand(0)); 5714 SDValue Src = getValue(I.getArgOperand(1)); 5715 SDValue Size = getValue(I.getArgOperand(2)); 5716 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5717 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5718 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5719 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5720 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5721 bool isVol = MCI.isVolatile(); 5722 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5723 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5724 // node. 5725 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5726 /* AlwaysInline */ true, isTC, 5727 MachinePointerInfo(I.getArgOperand(0)), 5728 MachinePointerInfo(I.getArgOperand(1))); 5729 updateDAGForMaybeTailCall(MC); 5730 return; 5731 } 5732 case Intrinsic::memset: { 5733 const auto &MSI = cast<MemSetInst>(I); 5734 SDValue Op1 = getValue(I.getArgOperand(0)); 5735 SDValue Op2 = getValue(I.getArgOperand(1)); 5736 SDValue Op3 = getValue(I.getArgOperand(2)); 5737 // @llvm.memset defines 0 and 1 to both mean no alignment. 5738 Align Alignment = MSI.getDestAlign().valueOrOne(); 5739 bool isVol = MSI.isVolatile(); 5740 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5741 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5742 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5743 MachinePointerInfo(I.getArgOperand(0))); 5744 updateDAGForMaybeTailCall(MS); 5745 return; 5746 } 5747 case Intrinsic::memmove: { 5748 const auto &MMI = cast<MemMoveInst>(I); 5749 SDValue Op1 = getValue(I.getArgOperand(0)); 5750 SDValue Op2 = getValue(I.getArgOperand(1)); 5751 SDValue Op3 = getValue(I.getArgOperand(2)); 5752 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5753 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5754 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5755 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5756 bool isVol = MMI.isVolatile(); 5757 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5758 // FIXME: Support passing different dest/src alignments to the memmove DAG 5759 // node. 5760 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5761 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5762 isTC, MachinePointerInfo(I.getArgOperand(0)), 5763 MachinePointerInfo(I.getArgOperand(1))); 5764 updateDAGForMaybeTailCall(MM); 5765 return; 5766 } 5767 case Intrinsic::memcpy_element_unordered_atomic: { 5768 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5769 SDValue Dst = getValue(MI.getRawDest()); 5770 SDValue Src = getValue(MI.getRawSource()); 5771 SDValue Length = getValue(MI.getLength()); 5772 5773 unsigned DstAlign = MI.getDestAlignment(); 5774 unsigned SrcAlign = MI.getSourceAlignment(); 5775 Type *LengthTy = MI.getLength()->getType(); 5776 unsigned ElemSz = MI.getElementSizeInBytes(); 5777 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5778 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5779 SrcAlign, Length, LengthTy, ElemSz, isTC, 5780 MachinePointerInfo(MI.getRawDest()), 5781 MachinePointerInfo(MI.getRawSource())); 5782 updateDAGForMaybeTailCall(MC); 5783 return; 5784 } 5785 case Intrinsic::memmove_element_unordered_atomic: { 5786 auto &MI = cast<AtomicMemMoveInst>(I); 5787 SDValue Dst = getValue(MI.getRawDest()); 5788 SDValue Src = getValue(MI.getRawSource()); 5789 SDValue Length = getValue(MI.getLength()); 5790 5791 unsigned DstAlign = MI.getDestAlignment(); 5792 unsigned SrcAlign = MI.getSourceAlignment(); 5793 Type *LengthTy = MI.getLength()->getType(); 5794 unsigned ElemSz = MI.getElementSizeInBytes(); 5795 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5796 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5797 SrcAlign, Length, LengthTy, ElemSz, isTC, 5798 MachinePointerInfo(MI.getRawDest()), 5799 MachinePointerInfo(MI.getRawSource())); 5800 updateDAGForMaybeTailCall(MC); 5801 return; 5802 } 5803 case Intrinsic::memset_element_unordered_atomic: { 5804 auto &MI = cast<AtomicMemSetInst>(I); 5805 SDValue Dst = getValue(MI.getRawDest()); 5806 SDValue Val = getValue(MI.getValue()); 5807 SDValue Length = getValue(MI.getLength()); 5808 5809 unsigned DstAlign = MI.getDestAlignment(); 5810 Type *LengthTy = MI.getLength()->getType(); 5811 unsigned ElemSz = MI.getElementSizeInBytes(); 5812 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5813 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5814 LengthTy, ElemSz, isTC, 5815 MachinePointerInfo(MI.getRawDest())); 5816 updateDAGForMaybeTailCall(MC); 5817 return; 5818 } 5819 case Intrinsic::dbg_addr: 5820 case Intrinsic::dbg_declare: { 5821 const auto &DI = cast<DbgVariableIntrinsic>(I); 5822 DILocalVariable *Variable = DI.getVariable(); 5823 DIExpression *Expression = DI.getExpression(); 5824 dropDanglingDebugInfo(Variable, Expression); 5825 assert(Variable && "Missing variable"); 5826 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5827 << "\n"); 5828 // Check if address has undef value. 5829 const Value *Address = DI.getVariableLocation(); 5830 if (!Address || isa<UndefValue>(Address) || 5831 (Address->use_empty() && !isa<Argument>(Address))) { 5832 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5833 << " (bad/undef/unused-arg address)\n"); 5834 return; 5835 } 5836 5837 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5838 5839 // Check if this variable can be described by a frame index, typically 5840 // either as a static alloca or a byval parameter. 5841 int FI = std::numeric_limits<int>::max(); 5842 if (const auto *AI = 5843 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5844 if (AI->isStaticAlloca()) { 5845 auto I = FuncInfo.StaticAllocaMap.find(AI); 5846 if (I != FuncInfo.StaticAllocaMap.end()) 5847 FI = I->second; 5848 } 5849 } else if (const auto *Arg = dyn_cast<Argument>( 5850 Address->stripInBoundsConstantOffsets())) { 5851 FI = FuncInfo.getArgumentFrameIndex(Arg); 5852 } 5853 5854 // llvm.dbg.addr is control dependent and always generates indirect 5855 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5856 // the MachineFunction variable table. 5857 if (FI != std::numeric_limits<int>::max()) { 5858 if (Intrinsic == Intrinsic::dbg_addr) { 5859 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5860 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5861 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5862 } else { 5863 LLVM_DEBUG(dbgs() << "Skipping " << DI 5864 << " (variable info stashed in MF side table)\n"); 5865 } 5866 return; 5867 } 5868 5869 SDValue &N = NodeMap[Address]; 5870 if (!N.getNode() && isa<Argument>(Address)) 5871 // Check unused arguments map. 5872 N = UnusedArgNodeMap[Address]; 5873 SDDbgValue *SDV; 5874 if (N.getNode()) { 5875 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5876 Address = BCI->getOperand(0); 5877 // Parameters are handled specially. 5878 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5879 if (isParameter && FINode) { 5880 // Byval parameter. We have a frame index at this point. 5881 SDV = 5882 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5883 /*IsIndirect*/ true, dl, SDNodeOrder); 5884 } else if (isa<Argument>(Address)) { 5885 // Address is an argument, so try to emit its dbg value using 5886 // virtual register info from the FuncInfo.ValueMap. 5887 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5888 return; 5889 } else { 5890 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5891 true, dl, SDNodeOrder); 5892 } 5893 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5894 } else { 5895 // If Address is an argument then try to emit its dbg value using 5896 // virtual register info from the FuncInfo.ValueMap. 5897 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5898 N)) { 5899 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5900 << " (could not emit func-arg dbg_value)\n"); 5901 } 5902 } 5903 return; 5904 } 5905 case Intrinsic::dbg_label: { 5906 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5907 DILabel *Label = DI.getLabel(); 5908 assert(Label && "Missing label"); 5909 5910 SDDbgLabel *SDV; 5911 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5912 DAG.AddDbgLabel(SDV); 5913 return; 5914 } 5915 case Intrinsic::dbg_value: { 5916 const DbgValueInst &DI = cast<DbgValueInst>(I); 5917 assert(DI.getVariable() && "Missing variable"); 5918 5919 DILocalVariable *Variable = DI.getVariable(); 5920 DIExpression *Expression = DI.getExpression(); 5921 dropDanglingDebugInfo(Variable, Expression); 5922 const Value *V = DI.getValue(); 5923 if (!V) 5924 return; 5925 5926 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5927 SDNodeOrder)) 5928 return; 5929 5930 // TODO: Dangling debug info will eventually either be resolved or produce 5931 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5932 // between the original dbg.value location and its resolved DBG_VALUE, which 5933 // we should ideally fill with an extra Undef DBG_VALUE. 5934 5935 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5936 return; 5937 } 5938 5939 case Intrinsic::eh_typeid_for: { 5940 // Find the type id for the given typeinfo. 5941 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5942 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5943 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5944 setValue(&I, Res); 5945 return; 5946 } 5947 5948 case Intrinsic::eh_return_i32: 5949 case Intrinsic::eh_return_i64: 5950 DAG.getMachineFunction().setCallsEHReturn(true); 5951 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5952 MVT::Other, 5953 getControlRoot(), 5954 getValue(I.getArgOperand(0)), 5955 getValue(I.getArgOperand(1)))); 5956 return; 5957 case Intrinsic::eh_unwind_init: 5958 DAG.getMachineFunction().setCallsUnwindInit(true); 5959 return; 5960 case Intrinsic::eh_dwarf_cfa: 5961 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5962 TLI.getPointerTy(DAG.getDataLayout()), 5963 getValue(I.getArgOperand(0)))); 5964 return; 5965 case Intrinsic::eh_sjlj_callsite: { 5966 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5967 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5968 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5969 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5970 5971 MMI.setCurrentCallSite(CI->getZExtValue()); 5972 return; 5973 } 5974 case Intrinsic::eh_sjlj_functioncontext: { 5975 // Get and store the index of the function context. 5976 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5977 AllocaInst *FnCtx = 5978 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5979 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5980 MFI.setFunctionContextIndex(FI); 5981 return; 5982 } 5983 case Intrinsic::eh_sjlj_setjmp: { 5984 SDValue Ops[2]; 5985 Ops[0] = getRoot(); 5986 Ops[1] = getValue(I.getArgOperand(0)); 5987 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5988 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5989 setValue(&I, Op.getValue(0)); 5990 DAG.setRoot(Op.getValue(1)); 5991 return; 5992 } 5993 case Intrinsic::eh_sjlj_longjmp: 5994 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5995 getRoot(), getValue(I.getArgOperand(0)))); 5996 return; 5997 case Intrinsic::eh_sjlj_setup_dispatch: 5998 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5999 getRoot())); 6000 return; 6001 case Intrinsic::masked_gather: 6002 visitMaskedGather(I); 6003 return; 6004 case Intrinsic::masked_load: 6005 visitMaskedLoad(I); 6006 return; 6007 case Intrinsic::masked_scatter: 6008 visitMaskedScatter(I); 6009 return; 6010 case Intrinsic::masked_store: 6011 visitMaskedStore(I); 6012 return; 6013 case Intrinsic::masked_expandload: 6014 visitMaskedLoad(I, true /* IsExpanding */); 6015 return; 6016 case Intrinsic::masked_compressstore: 6017 visitMaskedStore(I, true /* IsCompressing */); 6018 return; 6019 case Intrinsic::powi: 6020 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6021 getValue(I.getArgOperand(1)), DAG)); 6022 return; 6023 case Intrinsic::log: 6024 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6025 return; 6026 case Intrinsic::log2: 6027 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6028 return; 6029 case Intrinsic::log10: 6030 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6031 return; 6032 case Intrinsic::exp: 6033 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6034 return; 6035 case Intrinsic::exp2: 6036 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6037 return; 6038 case Intrinsic::pow: 6039 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6040 getValue(I.getArgOperand(1)), DAG, TLI)); 6041 return; 6042 case Intrinsic::sqrt: 6043 case Intrinsic::fabs: 6044 case Intrinsic::sin: 6045 case Intrinsic::cos: 6046 case Intrinsic::floor: 6047 case Intrinsic::ceil: 6048 case Intrinsic::trunc: 6049 case Intrinsic::rint: 6050 case Intrinsic::nearbyint: 6051 case Intrinsic::round: 6052 case Intrinsic::canonicalize: { 6053 unsigned Opcode; 6054 switch (Intrinsic) { 6055 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6056 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6057 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6058 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6059 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6060 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6061 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6062 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6063 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6064 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6065 case Intrinsic::round: Opcode = ISD::FROUND; break; 6066 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6067 } 6068 6069 setValue(&I, DAG.getNode(Opcode, sdl, 6070 getValue(I.getArgOperand(0)).getValueType(), 6071 getValue(I.getArgOperand(0)))); 6072 return; 6073 } 6074 case Intrinsic::lround: 6075 case Intrinsic::llround: 6076 case Intrinsic::lrint: 6077 case Intrinsic::llrint: { 6078 unsigned Opcode; 6079 switch (Intrinsic) { 6080 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6081 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6082 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6083 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6084 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6085 } 6086 6087 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6088 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6089 getValue(I.getArgOperand(0)))); 6090 return; 6091 } 6092 case Intrinsic::minnum: 6093 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6094 getValue(I.getArgOperand(0)).getValueType(), 6095 getValue(I.getArgOperand(0)), 6096 getValue(I.getArgOperand(1)))); 6097 return; 6098 case Intrinsic::maxnum: 6099 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6100 getValue(I.getArgOperand(0)).getValueType(), 6101 getValue(I.getArgOperand(0)), 6102 getValue(I.getArgOperand(1)))); 6103 return; 6104 case Intrinsic::minimum: 6105 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6106 getValue(I.getArgOperand(0)).getValueType(), 6107 getValue(I.getArgOperand(0)), 6108 getValue(I.getArgOperand(1)))); 6109 return; 6110 case Intrinsic::maximum: 6111 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6112 getValue(I.getArgOperand(0)).getValueType(), 6113 getValue(I.getArgOperand(0)), 6114 getValue(I.getArgOperand(1)))); 6115 return; 6116 case Intrinsic::copysign: 6117 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6118 getValue(I.getArgOperand(0)).getValueType(), 6119 getValue(I.getArgOperand(0)), 6120 getValue(I.getArgOperand(1)))); 6121 return; 6122 case Intrinsic::fma: 6123 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6124 getValue(I.getArgOperand(0)).getValueType(), 6125 getValue(I.getArgOperand(0)), 6126 getValue(I.getArgOperand(1)), 6127 getValue(I.getArgOperand(2)))); 6128 return; 6129 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6130 case Intrinsic::INTRINSIC: 6131 #include "llvm/IR/ConstrainedOps.def" 6132 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6133 return; 6134 case Intrinsic::fmuladd: { 6135 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6136 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6137 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6138 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6139 getValue(I.getArgOperand(0)).getValueType(), 6140 getValue(I.getArgOperand(0)), 6141 getValue(I.getArgOperand(1)), 6142 getValue(I.getArgOperand(2)))); 6143 } else { 6144 // TODO: Intrinsic calls should have fast-math-flags. 6145 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6146 getValue(I.getArgOperand(0)).getValueType(), 6147 getValue(I.getArgOperand(0)), 6148 getValue(I.getArgOperand(1))); 6149 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6150 getValue(I.getArgOperand(0)).getValueType(), 6151 Mul, 6152 getValue(I.getArgOperand(2))); 6153 setValue(&I, Add); 6154 } 6155 return; 6156 } 6157 case Intrinsic::convert_to_fp16: 6158 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6159 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6160 getValue(I.getArgOperand(0)), 6161 DAG.getTargetConstant(0, sdl, 6162 MVT::i32)))); 6163 return; 6164 case Intrinsic::convert_from_fp16: 6165 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6166 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6167 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6168 getValue(I.getArgOperand(0))))); 6169 return; 6170 case Intrinsic::pcmarker: { 6171 SDValue Tmp = getValue(I.getArgOperand(0)); 6172 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6173 return; 6174 } 6175 case Intrinsic::readcyclecounter: { 6176 SDValue Op = getRoot(); 6177 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6178 DAG.getVTList(MVT::i64, MVT::Other), Op); 6179 setValue(&I, Res); 6180 DAG.setRoot(Res.getValue(1)); 6181 return; 6182 } 6183 case Intrinsic::bitreverse: 6184 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6185 getValue(I.getArgOperand(0)).getValueType(), 6186 getValue(I.getArgOperand(0)))); 6187 return; 6188 case Intrinsic::bswap: 6189 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6190 getValue(I.getArgOperand(0)).getValueType(), 6191 getValue(I.getArgOperand(0)))); 6192 return; 6193 case Intrinsic::cttz: { 6194 SDValue Arg = getValue(I.getArgOperand(0)); 6195 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6196 EVT Ty = Arg.getValueType(); 6197 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6198 sdl, Ty, Arg)); 6199 return; 6200 } 6201 case Intrinsic::ctlz: { 6202 SDValue Arg = getValue(I.getArgOperand(0)); 6203 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6204 EVT Ty = Arg.getValueType(); 6205 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6206 sdl, Ty, Arg)); 6207 return; 6208 } 6209 case Intrinsic::ctpop: { 6210 SDValue Arg = getValue(I.getArgOperand(0)); 6211 EVT Ty = Arg.getValueType(); 6212 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6213 return; 6214 } 6215 case Intrinsic::fshl: 6216 case Intrinsic::fshr: { 6217 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6218 SDValue X = getValue(I.getArgOperand(0)); 6219 SDValue Y = getValue(I.getArgOperand(1)); 6220 SDValue Z = getValue(I.getArgOperand(2)); 6221 EVT VT = X.getValueType(); 6222 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6223 SDValue Zero = DAG.getConstant(0, sdl, VT); 6224 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6225 6226 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6227 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6228 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6229 return; 6230 } 6231 6232 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6233 // avoid the select that is necessary in the general case to filter out 6234 // the 0-shift possibility that leads to UB. 6235 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6236 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6237 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6238 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6239 return; 6240 } 6241 6242 // Some targets only rotate one way. Try the opposite direction. 6243 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6244 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6245 // Negate the shift amount because it is safe to ignore the high bits. 6246 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6247 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6248 return; 6249 } 6250 6251 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6252 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6253 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6254 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6255 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6256 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6257 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6258 return; 6259 } 6260 6261 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6262 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6263 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6264 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6265 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6266 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6267 6268 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6269 // and that is undefined. We must compare and select to avoid UB. 6270 EVT CCVT = MVT::i1; 6271 if (VT.isVector()) 6272 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6273 6274 // For fshl, 0-shift returns the 1st arg (X). 6275 // For fshr, 0-shift returns the 2nd arg (Y). 6276 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6277 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6278 return; 6279 } 6280 case Intrinsic::sadd_sat: { 6281 SDValue Op1 = getValue(I.getArgOperand(0)); 6282 SDValue Op2 = getValue(I.getArgOperand(1)); 6283 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6284 return; 6285 } 6286 case Intrinsic::uadd_sat: { 6287 SDValue Op1 = getValue(I.getArgOperand(0)); 6288 SDValue Op2 = getValue(I.getArgOperand(1)); 6289 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6290 return; 6291 } 6292 case Intrinsic::ssub_sat: { 6293 SDValue Op1 = getValue(I.getArgOperand(0)); 6294 SDValue Op2 = getValue(I.getArgOperand(1)); 6295 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6296 return; 6297 } 6298 case Intrinsic::usub_sat: { 6299 SDValue Op1 = getValue(I.getArgOperand(0)); 6300 SDValue Op2 = getValue(I.getArgOperand(1)); 6301 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6302 return; 6303 } 6304 case Intrinsic::smul_fix: 6305 case Intrinsic::umul_fix: 6306 case Intrinsic::smul_fix_sat: 6307 case Intrinsic::umul_fix_sat: { 6308 SDValue Op1 = getValue(I.getArgOperand(0)); 6309 SDValue Op2 = getValue(I.getArgOperand(1)); 6310 SDValue Op3 = getValue(I.getArgOperand(2)); 6311 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6312 Op1.getValueType(), Op1, Op2, Op3)); 6313 return; 6314 } 6315 case Intrinsic::sdiv_fix: 6316 case Intrinsic::udiv_fix: 6317 case Intrinsic::sdiv_fix_sat: 6318 case Intrinsic::udiv_fix_sat: { 6319 SDValue Op1 = getValue(I.getArgOperand(0)); 6320 SDValue Op2 = getValue(I.getArgOperand(1)); 6321 SDValue Op3 = getValue(I.getArgOperand(2)); 6322 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6323 Op1, Op2, Op3, DAG, TLI)); 6324 return; 6325 } 6326 case Intrinsic::stacksave: { 6327 SDValue Op = getRoot(); 6328 Res = DAG.getNode( 6329 ISD::STACKSAVE, sdl, 6330 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6331 setValue(&I, Res); 6332 DAG.setRoot(Res.getValue(1)); 6333 return; 6334 } 6335 case Intrinsic::stackrestore: 6336 Res = getValue(I.getArgOperand(0)); 6337 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6338 return; 6339 case Intrinsic::get_dynamic_area_offset: { 6340 SDValue Op = getRoot(); 6341 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6342 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6343 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6344 // target. 6345 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6346 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6347 " intrinsic!"); 6348 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6349 Op); 6350 DAG.setRoot(Op); 6351 setValue(&I, Res); 6352 return; 6353 } 6354 case Intrinsic::stackguard: { 6355 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6356 MachineFunction &MF = DAG.getMachineFunction(); 6357 const Module &M = *MF.getFunction().getParent(); 6358 SDValue Chain = getRoot(); 6359 if (TLI.useLoadStackGuardNode()) { 6360 Res = getLoadStackGuard(DAG, sdl, Chain); 6361 } else { 6362 const Value *Global = TLI.getSDagStackGuard(M); 6363 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6364 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6365 MachinePointerInfo(Global, 0), Align, 6366 MachineMemOperand::MOVolatile); 6367 } 6368 if (TLI.useStackGuardXorFP()) 6369 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6370 DAG.setRoot(Chain); 6371 setValue(&I, Res); 6372 return; 6373 } 6374 case Intrinsic::stackprotector: { 6375 // Emit code into the DAG to store the stack guard onto the stack. 6376 MachineFunction &MF = DAG.getMachineFunction(); 6377 MachineFrameInfo &MFI = MF.getFrameInfo(); 6378 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6379 SDValue Src, Chain = getRoot(); 6380 6381 if (TLI.useLoadStackGuardNode()) 6382 Src = getLoadStackGuard(DAG, sdl, Chain); 6383 else 6384 Src = getValue(I.getArgOperand(0)); // The guard's value. 6385 6386 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6387 6388 int FI = FuncInfo.StaticAllocaMap[Slot]; 6389 MFI.setStackProtectorIndex(FI); 6390 6391 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6392 6393 // Store the stack protector onto the stack. 6394 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6395 DAG.getMachineFunction(), FI), 6396 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6397 setValue(&I, Res); 6398 DAG.setRoot(Res); 6399 return; 6400 } 6401 case Intrinsic::objectsize: 6402 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6403 6404 case Intrinsic::is_constant: 6405 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6406 6407 case Intrinsic::annotation: 6408 case Intrinsic::ptr_annotation: 6409 case Intrinsic::launder_invariant_group: 6410 case Intrinsic::strip_invariant_group: 6411 // Drop the intrinsic, but forward the value 6412 setValue(&I, getValue(I.getOperand(0))); 6413 return; 6414 case Intrinsic::assume: 6415 case Intrinsic::var_annotation: 6416 case Intrinsic::sideeffect: 6417 // Discard annotate attributes, assumptions, and artificial side-effects. 6418 return; 6419 6420 case Intrinsic::codeview_annotation: { 6421 // Emit a label associated with this metadata. 6422 MachineFunction &MF = DAG.getMachineFunction(); 6423 MCSymbol *Label = 6424 MF.getMMI().getContext().createTempSymbol("annotation", true); 6425 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6426 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6427 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6428 DAG.setRoot(Res); 6429 return; 6430 } 6431 6432 case Intrinsic::init_trampoline: { 6433 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6434 6435 SDValue Ops[6]; 6436 Ops[0] = getRoot(); 6437 Ops[1] = getValue(I.getArgOperand(0)); 6438 Ops[2] = getValue(I.getArgOperand(1)); 6439 Ops[3] = getValue(I.getArgOperand(2)); 6440 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6441 Ops[5] = DAG.getSrcValue(F); 6442 6443 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6444 6445 DAG.setRoot(Res); 6446 return; 6447 } 6448 case Intrinsic::adjust_trampoline: 6449 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6450 TLI.getPointerTy(DAG.getDataLayout()), 6451 getValue(I.getArgOperand(0)))); 6452 return; 6453 case Intrinsic::gcroot: { 6454 assert(DAG.getMachineFunction().getFunction().hasGC() && 6455 "only valid in functions with gc specified, enforced by Verifier"); 6456 assert(GFI && "implied by previous"); 6457 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6458 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6459 6460 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6461 GFI->addStackRoot(FI->getIndex(), TypeMap); 6462 return; 6463 } 6464 case Intrinsic::gcread: 6465 case Intrinsic::gcwrite: 6466 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6467 case Intrinsic::flt_rounds: 6468 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6469 setValue(&I, Res); 6470 DAG.setRoot(Res.getValue(1)); 6471 return; 6472 6473 case Intrinsic::expect: 6474 // Just replace __builtin_expect(exp, c) with EXP. 6475 setValue(&I, getValue(I.getArgOperand(0))); 6476 return; 6477 6478 case Intrinsic::debugtrap: 6479 case Intrinsic::trap: { 6480 StringRef TrapFuncName = 6481 I.getAttributes() 6482 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6483 .getValueAsString(); 6484 if (TrapFuncName.empty()) { 6485 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6486 ISD::TRAP : ISD::DEBUGTRAP; 6487 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6488 return; 6489 } 6490 TargetLowering::ArgListTy Args; 6491 6492 TargetLowering::CallLoweringInfo CLI(DAG); 6493 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6494 CallingConv::C, I.getType(), 6495 DAG.getExternalSymbol(TrapFuncName.data(), 6496 TLI.getPointerTy(DAG.getDataLayout())), 6497 std::move(Args)); 6498 6499 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6500 DAG.setRoot(Result.second); 6501 return; 6502 } 6503 6504 case Intrinsic::uadd_with_overflow: 6505 case Intrinsic::sadd_with_overflow: 6506 case Intrinsic::usub_with_overflow: 6507 case Intrinsic::ssub_with_overflow: 6508 case Intrinsic::umul_with_overflow: 6509 case Intrinsic::smul_with_overflow: { 6510 ISD::NodeType Op; 6511 switch (Intrinsic) { 6512 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6513 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6514 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6515 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6516 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6517 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6518 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6519 } 6520 SDValue Op1 = getValue(I.getArgOperand(0)); 6521 SDValue Op2 = getValue(I.getArgOperand(1)); 6522 6523 EVT ResultVT = Op1.getValueType(); 6524 EVT OverflowVT = MVT::i1; 6525 if (ResultVT.isVector()) 6526 OverflowVT = EVT::getVectorVT( 6527 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6528 6529 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6530 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6531 return; 6532 } 6533 case Intrinsic::prefetch: { 6534 SDValue Ops[5]; 6535 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6536 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6537 Ops[0] = DAG.getRoot(); 6538 Ops[1] = getValue(I.getArgOperand(0)); 6539 Ops[2] = getValue(I.getArgOperand(1)); 6540 Ops[3] = getValue(I.getArgOperand(2)); 6541 Ops[4] = getValue(I.getArgOperand(3)); 6542 SDValue Result = DAG.getMemIntrinsicNode( 6543 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6544 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6545 /* align */ None, Flags); 6546 6547 // Chain the prefetch in parallell with any pending loads, to stay out of 6548 // the way of later optimizations. 6549 PendingLoads.push_back(Result); 6550 Result = getRoot(); 6551 DAG.setRoot(Result); 6552 return; 6553 } 6554 case Intrinsic::lifetime_start: 6555 case Intrinsic::lifetime_end: { 6556 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6557 // Stack coloring is not enabled in O0, discard region information. 6558 if (TM.getOptLevel() == CodeGenOpt::None) 6559 return; 6560 6561 const int64_t ObjectSize = 6562 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6563 Value *const ObjectPtr = I.getArgOperand(1); 6564 SmallVector<const Value *, 4> Allocas; 6565 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6566 6567 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6568 E = Allocas.end(); Object != E; ++Object) { 6569 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6570 6571 // Could not find an Alloca. 6572 if (!LifetimeObject) 6573 continue; 6574 6575 // First check that the Alloca is static, otherwise it won't have a 6576 // valid frame index. 6577 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6578 if (SI == FuncInfo.StaticAllocaMap.end()) 6579 return; 6580 6581 const int FrameIndex = SI->second; 6582 int64_t Offset; 6583 if (GetPointerBaseWithConstantOffset( 6584 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6585 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6586 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6587 Offset); 6588 DAG.setRoot(Res); 6589 } 6590 return; 6591 } 6592 case Intrinsic::invariant_start: 6593 // Discard region information. 6594 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6595 return; 6596 case Intrinsic::invariant_end: 6597 // Discard region information. 6598 return; 6599 case Intrinsic::clear_cache: 6600 /// FunctionName may be null. 6601 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6602 lowerCallToExternalSymbol(I, FunctionName); 6603 return; 6604 case Intrinsic::donothing: 6605 // ignore 6606 return; 6607 case Intrinsic::experimental_stackmap: 6608 visitStackmap(I); 6609 return; 6610 case Intrinsic::experimental_patchpoint_void: 6611 case Intrinsic::experimental_patchpoint_i64: 6612 visitPatchpoint(&I); 6613 return; 6614 case Intrinsic::experimental_gc_statepoint: 6615 LowerStatepoint(ImmutableStatepoint(&I)); 6616 return; 6617 case Intrinsic::experimental_gc_result: 6618 visitGCResult(cast<GCResultInst>(I)); 6619 return; 6620 case Intrinsic::experimental_gc_relocate: 6621 visitGCRelocate(cast<GCRelocateInst>(I)); 6622 return; 6623 case Intrinsic::instrprof_increment: 6624 llvm_unreachable("instrprof failed to lower an increment"); 6625 case Intrinsic::instrprof_value_profile: 6626 llvm_unreachable("instrprof failed to lower a value profiling call"); 6627 case Intrinsic::localescape: { 6628 MachineFunction &MF = DAG.getMachineFunction(); 6629 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6630 6631 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6632 // is the same on all targets. 6633 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6634 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6635 if (isa<ConstantPointerNull>(Arg)) 6636 continue; // Skip null pointers. They represent a hole in index space. 6637 AllocaInst *Slot = cast<AllocaInst>(Arg); 6638 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6639 "can only escape static allocas"); 6640 int FI = FuncInfo.StaticAllocaMap[Slot]; 6641 MCSymbol *FrameAllocSym = 6642 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6643 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6645 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6646 .addSym(FrameAllocSym) 6647 .addFrameIndex(FI); 6648 } 6649 6650 return; 6651 } 6652 6653 case Intrinsic::localrecover: { 6654 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6655 MachineFunction &MF = DAG.getMachineFunction(); 6656 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6657 6658 // Get the symbol that defines the frame offset. 6659 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6660 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6661 unsigned IdxVal = 6662 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6663 MCSymbol *FrameAllocSym = 6664 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6665 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6666 6667 // Create a MCSymbol for the label to avoid any target lowering 6668 // that would make this PC relative. 6669 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6670 SDValue OffsetVal = 6671 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6672 6673 // Add the offset to the FP. 6674 Value *FP = I.getArgOperand(1); 6675 SDValue FPVal = getValue(FP); 6676 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6677 setValue(&I, Add); 6678 6679 return; 6680 } 6681 6682 case Intrinsic::eh_exceptionpointer: 6683 case Intrinsic::eh_exceptioncode: { 6684 // Get the exception pointer vreg, copy from it, and resize it to fit. 6685 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6686 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6687 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6688 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6689 SDValue N = 6690 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6691 if (Intrinsic == Intrinsic::eh_exceptioncode) 6692 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6693 setValue(&I, N); 6694 return; 6695 } 6696 case Intrinsic::xray_customevent: { 6697 // Here we want to make sure that the intrinsic behaves as if it has a 6698 // specific calling convention, and only for x86_64. 6699 // FIXME: Support other platforms later. 6700 const auto &Triple = DAG.getTarget().getTargetTriple(); 6701 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6702 return; 6703 6704 SDLoc DL = getCurSDLoc(); 6705 SmallVector<SDValue, 8> Ops; 6706 6707 // We want to say that we always want the arguments in registers. 6708 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6709 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6710 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6711 SDValue Chain = getRoot(); 6712 Ops.push_back(LogEntryVal); 6713 Ops.push_back(StrSizeVal); 6714 Ops.push_back(Chain); 6715 6716 // We need to enforce the calling convention for the callsite, so that 6717 // argument ordering is enforced correctly, and that register allocation can 6718 // see that some registers may be assumed clobbered and have to preserve 6719 // them across calls to the intrinsic. 6720 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6721 DL, NodeTys, Ops); 6722 SDValue patchableNode = SDValue(MN, 0); 6723 DAG.setRoot(patchableNode); 6724 setValue(&I, patchableNode); 6725 return; 6726 } 6727 case Intrinsic::xray_typedevent: { 6728 // Here we want to make sure that the intrinsic behaves as if it has a 6729 // specific calling convention, and only for x86_64. 6730 // FIXME: Support other platforms later. 6731 const auto &Triple = DAG.getTarget().getTargetTriple(); 6732 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6733 return; 6734 6735 SDLoc DL = getCurSDLoc(); 6736 SmallVector<SDValue, 8> Ops; 6737 6738 // We want to say that we always want the arguments in registers. 6739 // It's unclear to me how manipulating the selection DAG here forces callers 6740 // to provide arguments in registers instead of on the stack. 6741 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6742 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6743 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6744 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6745 SDValue Chain = getRoot(); 6746 Ops.push_back(LogTypeId); 6747 Ops.push_back(LogEntryVal); 6748 Ops.push_back(StrSizeVal); 6749 Ops.push_back(Chain); 6750 6751 // We need to enforce the calling convention for the callsite, so that 6752 // argument ordering is enforced correctly, and that register allocation can 6753 // see that some registers may be assumed clobbered and have to preserve 6754 // them across calls to the intrinsic. 6755 MachineSDNode *MN = DAG.getMachineNode( 6756 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6757 SDValue patchableNode = SDValue(MN, 0); 6758 DAG.setRoot(patchableNode); 6759 setValue(&I, patchableNode); 6760 return; 6761 } 6762 case Intrinsic::experimental_deoptimize: 6763 LowerDeoptimizeCall(&I); 6764 return; 6765 6766 case Intrinsic::experimental_vector_reduce_v2_fadd: 6767 case Intrinsic::experimental_vector_reduce_v2_fmul: 6768 case Intrinsic::experimental_vector_reduce_add: 6769 case Intrinsic::experimental_vector_reduce_mul: 6770 case Intrinsic::experimental_vector_reduce_and: 6771 case Intrinsic::experimental_vector_reduce_or: 6772 case Intrinsic::experimental_vector_reduce_xor: 6773 case Intrinsic::experimental_vector_reduce_smax: 6774 case Intrinsic::experimental_vector_reduce_smin: 6775 case Intrinsic::experimental_vector_reduce_umax: 6776 case Intrinsic::experimental_vector_reduce_umin: 6777 case Intrinsic::experimental_vector_reduce_fmax: 6778 case Intrinsic::experimental_vector_reduce_fmin: 6779 visitVectorReduce(I, Intrinsic); 6780 return; 6781 6782 case Intrinsic::icall_branch_funnel: { 6783 SmallVector<SDValue, 16> Ops; 6784 Ops.push_back(getValue(I.getArgOperand(0))); 6785 6786 int64_t Offset; 6787 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6788 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6789 if (!Base) 6790 report_fatal_error( 6791 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6792 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6793 6794 struct BranchFunnelTarget { 6795 int64_t Offset; 6796 SDValue Target; 6797 }; 6798 SmallVector<BranchFunnelTarget, 8> Targets; 6799 6800 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6801 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6802 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6803 if (ElemBase != Base) 6804 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6805 "to the same GlobalValue"); 6806 6807 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6808 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6809 if (!GA) 6810 report_fatal_error( 6811 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6812 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6813 GA->getGlobal(), getCurSDLoc(), 6814 Val.getValueType(), GA->getOffset())}); 6815 } 6816 llvm::sort(Targets, 6817 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6818 return T1.Offset < T2.Offset; 6819 }); 6820 6821 for (auto &T : Targets) { 6822 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6823 Ops.push_back(T.Target); 6824 } 6825 6826 Ops.push_back(DAG.getRoot()); // Chain 6827 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6828 getCurSDLoc(), MVT::Other, Ops), 6829 0); 6830 DAG.setRoot(N); 6831 setValue(&I, N); 6832 HasTailCall = true; 6833 return; 6834 } 6835 6836 case Intrinsic::wasm_landingpad_index: 6837 // Information this intrinsic contained has been transferred to 6838 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6839 // delete it now. 6840 return; 6841 6842 case Intrinsic::aarch64_settag: 6843 case Intrinsic::aarch64_settag_zero: { 6844 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6845 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6846 SDValue Val = TSI.EmitTargetCodeForSetTag( 6847 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6848 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6849 ZeroMemory); 6850 DAG.setRoot(Val); 6851 setValue(&I, Val); 6852 return; 6853 } 6854 case Intrinsic::ptrmask: { 6855 SDValue Ptr = getValue(I.getOperand(0)); 6856 SDValue Const = getValue(I.getOperand(1)); 6857 6858 EVT DestVT = 6859 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6860 6861 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6862 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6863 return; 6864 } 6865 } 6866 } 6867 6868 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6869 const ConstrainedFPIntrinsic &FPI) { 6870 SDLoc sdl = getCurSDLoc(); 6871 6872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6873 SmallVector<EVT, 4> ValueVTs; 6874 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6875 ValueVTs.push_back(MVT::Other); // Out chain 6876 6877 // We do not need to serialize constrained FP intrinsics against 6878 // each other or against (nonvolatile) loads, so they can be 6879 // chained like loads. 6880 SDValue Chain = DAG.getRoot(); 6881 SmallVector<SDValue, 4> Opers; 6882 Opers.push_back(Chain); 6883 if (FPI.isUnaryOp()) { 6884 Opers.push_back(getValue(FPI.getArgOperand(0))); 6885 } else if (FPI.isTernaryOp()) { 6886 Opers.push_back(getValue(FPI.getArgOperand(0))); 6887 Opers.push_back(getValue(FPI.getArgOperand(1))); 6888 Opers.push_back(getValue(FPI.getArgOperand(2))); 6889 } else { 6890 Opers.push_back(getValue(FPI.getArgOperand(0))); 6891 Opers.push_back(getValue(FPI.getArgOperand(1))); 6892 } 6893 6894 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6895 assert(Result.getNode()->getNumValues() == 2); 6896 6897 // Push node to the appropriate list so that future instructions can be 6898 // chained up correctly. 6899 SDValue OutChain = Result.getValue(1); 6900 switch (EB) { 6901 case fp::ExceptionBehavior::ebIgnore: 6902 // The only reason why ebIgnore nodes still need to be chained is that 6903 // they might depend on the current rounding mode, and therefore must 6904 // not be moved across instruction that may change that mode. 6905 LLVM_FALLTHROUGH; 6906 case fp::ExceptionBehavior::ebMayTrap: 6907 // These must not be moved across calls or instructions that may change 6908 // floating-point exception masks. 6909 PendingConstrainedFP.push_back(OutChain); 6910 break; 6911 case fp::ExceptionBehavior::ebStrict: 6912 // These must not be moved across calls or instructions that may change 6913 // floating-point exception masks or read floating-point exception flags. 6914 // In addition, they cannot be optimized out even if unused. 6915 PendingConstrainedFPStrict.push_back(OutChain); 6916 break; 6917 } 6918 }; 6919 6920 SDVTList VTs = DAG.getVTList(ValueVTs); 6921 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6922 6923 SDNodeFlags Flags; 6924 if (EB == fp::ExceptionBehavior::ebIgnore) 6925 Flags.setNoFPExcept(true); 6926 6927 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6928 Flags.copyFMF(*FPOp); 6929 6930 unsigned Opcode; 6931 switch (FPI.getIntrinsicID()) { 6932 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6933 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6934 case Intrinsic::INTRINSIC: \ 6935 Opcode = ISD::STRICT_##DAGN; \ 6936 break; 6937 #include "llvm/IR/ConstrainedOps.def" 6938 case Intrinsic::experimental_constrained_fmuladd: { 6939 Opcode = ISD::STRICT_FMA; 6940 // Break fmuladd into fmul and fadd. 6941 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6942 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6943 ValueVTs[0])) { 6944 Opers.pop_back(); 6945 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6946 pushOutChain(Mul, EB); 6947 Opcode = ISD::STRICT_FADD; 6948 Opers.clear(); 6949 Opers.push_back(Mul.getValue(1)); 6950 Opers.push_back(Mul.getValue(0)); 6951 Opers.push_back(getValue(FPI.getArgOperand(2))); 6952 } 6953 break; 6954 } 6955 } 6956 6957 // A few strict DAG nodes carry additional operands that are not 6958 // set up by the default code above. 6959 switch (Opcode) { 6960 default: break; 6961 case ISD::STRICT_FP_ROUND: 6962 Opers.push_back( 6963 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6964 break; 6965 case ISD::STRICT_FSETCC: 6966 case ISD::STRICT_FSETCCS: { 6967 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6968 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6969 break; 6970 } 6971 } 6972 6973 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6974 pushOutChain(Result, EB); 6975 6976 SDValue FPResult = Result.getValue(0); 6977 setValue(&FPI, FPResult); 6978 } 6979 6980 std::pair<SDValue, SDValue> 6981 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6982 const BasicBlock *EHPadBB) { 6983 MachineFunction &MF = DAG.getMachineFunction(); 6984 MachineModuleInfo &MMI = MF.getMMI(); 6985 MCSymbol *BeginLabel = nullptr; 6986 6987 if (EHPadBB) { 6988 // Insert a label before the invoke call to mark the try range. This can be 6989 // used to detect deletion of the invoke via the MachineModuleInfo. 6990 BeginLabel = MMI.getContext().createTempSymbol(); 6991 6992 // For SjLj, keep track of which landing pads go with which invokes 6993 // so as to maintain the ordering of pads in the LSDA. 6994 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6995 if (CallSiteIndex) { 6996 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6997 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6998 6999 // Now that the call site is handled, stop tracking it. 7000 MMI.setCurrentCallSite(0); 7001 } 7002 7003 // Both PendingLoads and PendingExports must be flushed here; 7004 // this call might not return. 7005 (void)getRoot(); 7006 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7007 7008 CLI.setChain(getRoot()); 7009 } 7010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7011 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7012 7013 assert((CLI.IsTailCall || Result.second.getNode()) && 7014 "Non-null chain expected with non-tail call!"); 7015 assert((Result.second.getNode() || !Result.first.getNode()) && 7016 "Null value expected with tail call!"); 7017 7018 if (!Result.second.getNode()) { 7019 // As a special case, a null chain means that a tail call has been emitted 7020 // and the DAG root is already updated. 7021 HasTailCall = true; 7022 7023 // Since there's no actual continuation from this block, nothing can be 7024 // relying on us setting vregs for them. 7025 PendingExports.clear(); 7026 } else { 7027 DAG.setRoot(Result.second); 7028 } 7029 7030 if (EHPadBB) { 7031 // Insert a label at the end of the invoke call to mark the try range. This 7032 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7033 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7034 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7035 7036 // Inform MachineModuleInfo of range. 7037 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7038 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7039 // actually use outlined funclets and their LSDA info style. 7040 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7041 assert(CLI.CS); 7042 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7043 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7044 BeginLabel, EndLabel); 7045 } else if (!isScopedEHPersonality(Pers)) { 7046 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7047 } 7048 } 7049 7050 return Result; 7051 } 7052 7053 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7054 bool isTailCall, 7055 const BasicBlock *EHPadBB) { 7056 auto &DL = DAG.getDataLayout(); 7057 FunctionType *FTy = CS.getFunctionType(); 7058 Type *RetTy = CS.getType(); 7059 7060 TargetLowering::ArgListTy Args; 7061 Args.reserve(CS.arg_size()); 7062 7063 const Value *SwiftErrorVal = nullptr; 7064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7065 7066 if (isTailCall) { 7067 // Avoid emitting tail calls in functions with the disable-tail-calls 7068 // attribute. 7069 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7070 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7071 "true") 7072 isTailCall = false; 7073 7074 // We can't tail call inside a function with a swifterror argument. Lowering 7075 // does not support this yet. It would have to move into the swifterror 7076 // register before the call. 7077 if (TLI.supportSwiftError() && 7078 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7079 isTailCall = false; 7080 } 7081 7082 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7083 i != e; ++i) { 7084 TargetLowering::ArgListEntry Entry; 7085 const Value *V = *i; 7086 7087 // Skip empty types 7088 if (V->getType()->isEmptyTy()) 7089 continue; 7090 7091 SDValue ArgNode = getValue(V); 7092 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7093 7094 Entry.setAttributes(&CS, i - CS.arg_begin()); 7095 7096 // Use swifterror virtual register as input to the call. 7097 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7098 SwiftErrorVal = V; 7099 // We find the virtual register for the actual swifterror argument. 7100 // Instead of using the Value, we use the virtual register instead. 7101 Entry.Node = DAG.getRegister( 7102 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7103 EVT(TLI.getPointerTy(DL))); 7104 } 7105 7106 Args.push_back(Entry); 7107 7108 // If we have an explicit sret argument that is an Instruction, (i.e., it 7109 // might point to function-local memory), we can't meaningfully tail-call. 7110 if (Entry.IsSRet && isa<Instruction>(V)) 7111 isTailCall = false; 7112 } 7113 7114 // If call site has a cfguardtarget operand bundle, create and add an 7115 // additional ArgListEntry. 7116 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7117 TargetLowering::ArgListEntry Entry; 7118 Value *V = Bundle->Inputs[0]; 7119 SDValue ArgNode = getValue(V); 7120 Entry.Node = ArgNode; 7121 Entry.Ty = V->getType(); 7122 Entry.IsCFGuardTarget = true; 7123 Args.push_back(Entry); 7124 } 7125 7126 // Check if target-independent constraints permit a tail call here. 7127 // Target-dependent constraints are checked within TLI->LowerCallTo. 7128 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7129 isTailCall = false; 7130 7131 // Disable tail calls if there is an swifterror argument. Targets have not 7132 // been updated to support tail calls. 7133 if (TLI.supportSwiftError() && SwiftErrorVal) 7134 isTailCall = false; 7135 7136 TargetLowering::CallLoweringInfo CLI(DAG); 7137 CLI.setDebugLoc(getCurSDLoc()) 7138 .setChain(getRoot()) 7139 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7140 .setTailCall(isTailCall) 7141 .setConvergent(CS.isConvergent()); 7142 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7143 7144 if (Result.first.getNode()) { 7145 const Instruction *Inst = CS.getInstruction(); 7146 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7147 setValue(Inst, Result.first); 7148 } 7149 7150 // The last element of CLI.InVals has the SDValue for swifterror return. 7151 // Here we copy it to a virtual register and update SwiftErrorMap for 7152 // book-keeping. 7153 if (SwiftErrorVal && TLI.supportSwiftError()) { 7154 // Get the last element of InVals. 7155 SDValue Src = CLI.InVals.back(); 7156 Register VReg = SwiftError.getOrCreateVRegDefAt( 7157 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7158 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7159 DAG.setRoot(CopyNode); 7160 } 7161 } 7162 7163 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7164 SelectionDAGBuilder &Builder) { 7165 // Check to see if this load can be trivially constant folded, e.g. if the 7166 // input is from a string literal. 7167 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7168 // Cast pointer to the type we really want to load. 7169 Type *LoadTy = 7170 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7171 if (LoadVT.isVector()) 7172 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7173 7174 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7175 PointerType::getUnqual(LoadTy)); 7176 7177 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7178 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7179 return Builder.getValue(LoadCst); 7180 } 7181 7182 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7183 // still constant memory, the input chain can be the entry node. 7184 SDValue Root; 7185 bool ConstantMemory = false; 7186 7187 // Do not serialize (non-volatile) loads of constant memory with anything. 7188 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7189 Root = Builder.DAG.getEntryNode(); 7190 ConstantMemory = true; 7191 } else { 7192 // Do not serialize non-volatile loads against each other. 7193 Root = Builder.DAG.getRoot(); 7194 } 7195 7196 SDValue Ptr = Builder.getValue(PtrVal); 7197 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7198 Ptr, MachinePointerInfo(PtrVal), 7199 /* Alignment = */ 1); 7200 7201 if (!ConstantMemory) 7202 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7203 return LoadVal; 7204 } 7205 7206 /// Record the value for an instruction that produces an integer result, 7207 /// converting the type where necessary. 7208 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7209 SDValue Value, 7210 bool IsSigned) { 7211 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7212 I.getType(), true); 7213 if (IsSigned) 7214 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7215 else 7216 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7217 setValue(&I, Value); 7218 } 7219 7220 /// See if we can lower a memcmp call into an optimized form. If so, return 7221 /// true and lower it. Otherwise return false, and it will be lowered like a 7222 /// normal call. 7223 /// The caller already checked that \p I calls the appropriate LibFunc with a 7224 /// correct prototype. 7225 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7226 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7227 const Value *Size = I.getArgOperand(2); 7228 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7229 if (CSize && CSize->getZExtValue() == 0) { 7230 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7231 I.getType(), true); 7232 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7233 return true; 7234 } 7235 7236 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7237 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7238 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7239 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7240 if (Res.first.getNode()) { 7241 processIntegerCallValue(I, Res.first, true); 7242 PendingLoads.push_back(Res.second); 7243 return true; 7244 } 7245 7246 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7247 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7248 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7249 return false; 7250 7251 // If the target has a fast compare for the given size, it will return a 7252 // preferred load type for that size. Require that the load VT is legal and 7253 // that the target supports unaligned loads of that type. Otherwise, return 7254 // INVALID. 7255 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7257 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7258 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7259 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7260 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7261 // TODO: Check alignment of src and dest ptrs. 7262 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7263 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7264 if (!TLI.isTypeLegal(LVT) || 7265 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7266 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7267 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7268 } 7269 7270 return LVT; 7271 }; 7272 7273 // This turns into unaligned loads. We only do this if the target natively 7274 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7275 // we'll only produce a small number of byte loads. 7276 MVT LoadVT; 7277 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7278 switch (NumBitsToCompare) { 7279 default: 7280 return false; 7281 case 16: 7282 LoadVT = MVT::i16; 7283 break; 7284 case 32: 7285 LoadVT = MVT::i32; 7286 break; 7287 case 64: 7288 case 128: 7289 case 256: 7290 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7291 break; 7292 } 7293 7294 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7295 return false; 7296 7297 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7298 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7299 7300 // Bitcast to a wide integer type if the loads are vectors. 7301 if (LoadVT.isVector()) { 7302 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7303 LoadL = DAG.getBitcast(CmpVT, LoadL); 7304 LoadR = DAG.getBitcast(CmpVT, LoadR); 7305 } 7306 7307 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7308 processIntegerCallValue(I, Cmp, false); 7309 return true; 7310 } 7311 7312 /// See if we can lower a memchr call into an optimized form. If so, return 7313 /// true and lower it. Otherwise return false, and it will be lowered like a 7314 /// normal call. 7315 /// The caller already checked that \p I calls the appropriate LibFunc with a 7316 /// correct prototype. 7317 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7318 const Value *Src = I.getArgOperand(0); 7319 const Value *Char = I.getArgOperand(1); 7320 const Value *Length = I.getArgOperand(2); 7321 7322 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7323 std::pair<SDValue, SDValue> Res = 7324 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7325 getValue(Src), getValue(Char), getValue(Length), 7326 MachinePointerInfo(Src)); 7327 if (Res.first.getNode()) { 7328 setValue(&I, Res.first); 7329 PendingLoads.push_back(Res.second); 7330 return true; 7331 } 7332 7333 return false; 7334 } 7335 7336 /// See if we can lower a mempcpy call into an optimized form. If so, return 7337 /// true and lower it. Otherwise return false, and it will be lowered like a 7338 /// normal call. 7339 /// The caller already checked that \p I calls the appropriate LibFunc with a 7340 /// correct prototype. 7341 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7342 SDValue Dst = getValue(I.getArgOperand(0)); 7343 SDValue Src = getValue(I.getArgOperand(1)); 7344 SDValue Size = getValue(I.getArgOperand(2)); 7345 7346 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7347 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7348 // DAG::getMemcpy needs Alignment to be defined. 7349 Align Alignment = std::min(DstAlign, SrcAlign); 7350 7351 bool isVol = false; 7352 SDLoc sdl = getCurSDLoc(); 7353 7354 // In the mempcpy context we need to pass in a false value for isTailCall 7355 // because the return pointer needs to be adjusted by the size of 7356 // the copied memory. 7357 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7358 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7359 /*isTailCall=*/false, 7360 MachinePointerInfo(I.getArgOperand(0)), 7361 MachinePointerInfo(I.getArgOperand(1))); 7362 assert(MC.getNode() != nullptr && 7363 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7364 DAG.setRoot(MC); 7365 7366 // Check if Size needs to be truncated or extended. 7367 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7368 7369 // Adjust return pointer to point just past the last dst byte. 7370 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7371 Dst, Size); 7372 setValue(&I, DstPlusSize); 7373 return true; 7374 } 7375 7376 /// See if we can lower a strcpy call into an optimized form. If so, return 7377 /// true and lower it, otherwise return false and it will be lowered like a 7378 /// normal call. 7379 /// The caller already checked that \p I calls the appropriate LibFunc with a 7380 /// correct prototype. 7381 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7382 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7383 7384 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7385 std::pair<SDValue, SDValue> Res = 7386 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7387 getValue(Arg0), getValue(Arg1), 7388 MachinePointerInfo(Arg0), 7389 MachinePointerInfo(Arg1), isStpcpy); 7390 if (Res.first.getNode()) { 7391 setValue(&I, Res.first); 7392 DAG.setRoot(Res.second); 7393 return true; 7394 } 7395 7396 return false; 7397 } 7398 7399 /// See if we can lower a strcmp call into an optimized form. If so, return 7400 /// true and lower it, otherwise return false and it will be lowered like a 7401 /// normal call. 7402 /// The caller already checked that \p I calls the appropriate LibFunc with a 7403 /// correct prototype. 7404 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7405 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7406 7407 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7408 std::pair<SDValue, SDValue> Res = 7409 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7410 getValue(Arg0), getValue(Arg1), 7411 MachinePointerInfo(Arg0), 7412 MachinePointerInfo(Arg1)); 7413 if (Res.first.getNode()) { 7414 processIntegerCallValue(I, Res.first, true); 7415 PendingLoads.push_back(Res.second); 7416 return true; 7417 } 7418 7419 return false; 7420 } 7421 7422 /// See if we can lower a strlen call into an optimized form. If so, return 7423 /// true and lower it, otherwise return false and it will be lowered like a 7424 /// normal call. 7425 /// The caller already checked that \p I calls the appropriate LibFunc with a 7426 /// correct prototype. 7427 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7428 const Value *Arg0 = I.getArgOperand(0); 7429 7430 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7431 std::pair<SDValue, SDValue> Res = 7432 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7433 getValue(Arg0), MachinePointerInfo(Arg0)); 7434 if (Res.first.getNode()) { 7435 processIntegerCallValue(I, Res.first, false); 7436 PendingLoads.push_back(Res.second); 7437 return true; 7438 } 7439 7440 return false; 7441 } 7442 7443 /// See if we can lower a strnlen call into an optimized form. If so, return 7444 /// true and lower it, otherwise return false and it will be lowered like a 7445 /// normal call. 7446 /// The caller already checked that \p I calls the appropriate LibFunc with a 7447 /// correct prototype. 7448 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7449 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7450 7451 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7452 std::pair<SDValue, SDValue> Res = 7453 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7454 getValue(Arg0), getValue(Arg1), 7455 MachinePointerInfo(Arg0)); 7456 if (Res.first.getNode()) { 7457 processIntegerCallValue(I, Res.first, false); 7458 PendingLoads.push_back(Res.second); 7459 return true; 7460 } 7461 7462 return false; 7463 } 7464 7465 /// See if we can lower a unary floating-point operation into an SDNode with 7466 /// the specified Opcode. If so, return true and lower it, otherwise return 7467 /// false and it will be lowered like a normal call. 7468 /// The caller already checked that \p I calls the appropriate LibFunc with a 7469 /// correct prototype. 7470 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7471 unsigned Opcode) { 7472 // We already checked this call's prototype; verify it doesn't modify errno. 7473 if (!I.onlyReadsMemory()) 7474 return false; 7475 7476 SDValue Tmp = getValue(I.getArgOperand(0)); 7477 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7478 return true; 7479 } 7480 7481 /// See if we can lower a binary floating-point operation into an SDNode with 7482 /// the specified Opcode. If so, return true and lower it. Otherwise return 7483 /// false, and it will be lowered like a normal call. 7484 /// The caller already checked that \p I calls the appropriate LibFunc with a 7485 /// correct prototype. 7486 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7487 unsigned Opcode) { 7488 // We already checked this call's prototype; verify it doesn't modify errno. 7489 if (!I.onlyReadsMemory()) 7490 return false; 7491 7492 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7493 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7494 EVT VT = Tmp0.getValueType(); 7495 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7496 return true; 7497 } 7498 7499 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7500 // Handle inline assembly differently. 7501 if (isa<InlineAsm>(I.getCalledValue())) { 7502 visitInlineAsm(&I); 7503 return; 7504 } 7505 7506 if (Function *F = I.getCalledFunction()) { 7507 if (F->isDeclaration()) { 7508 // Is this an LLVM intrinsic or a target-specific intrinsic? 7509 unsigned IID = F->getIntrinsicID(); 7510 if (!IID) 7511 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7512 IID = II->getIntrinsicID(F); 7513 7514 if (IID) { 7515 visitIntrinsicCall(I, IID); 7516 return; 7517 } 7518 } 7519 7520 // Check for well-known libc/libm calls. If the function is internal, it 7521 // can't be a library call. Don't do the check if marked as nobuiltin for 7522 // some reason or the call site requires strict floating point semantics. 7523 LibFunc Func; 7524 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7525 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7526 LibInfo->hasOptimizedCodeGen(Func)) { 7527 switch (Func) { 7528 default: break; 7529 case LibFunc_copysign: 7530 case LibFunc_copysignf: 7531 case LibFunc_copysignl: 7532 // We already checked this call's prototype; verify it doesn't modify 7533 // errno. 7534 if (I.onlyReadsMemory()) { 7535 SDValue LHS = getValue(I.getArgOperand(0)); 7536 SDValue RHS = getValue(I.getArgOperand(1)); 7537 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7538 LHS.getValueType(), LHS, RHS)); 7539 return; 7540 } 7541 break; 7542 case LibFunc_fabs: 7543 case LibFunc_fabsf: 7544 case LibFunc_fabsl: 7545 if (visitUnaryFloatCall(I, ISD::FABS)) 7546 return; 7547 break; 7548 case LibFunc_fmin: 7549 case LibFunc_fminf: 7550 case LibFunc_fminl: 7551 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7552 return; 7553 break; 7554 case LibFunc_fmax: 7555 case LibFunc_fmaxf: 7556 case LibFunc_fmaxl: 7557 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7558 return; 7559 break; 7560 case LibFunc_sin: 7561 case LibFunc_sinf: 7562 case LibFunc_sinl: 7563 if (visitUnaryFloatCall(I, ISD::FSIN)) 7564 return; 7565 break; 7566 case LibFunc_cos: 7567 case LibFunc_cosf: 7568 case LibFunc_cosl: 7569 if (visitUnaryFloatCall(I, ISD::FCOS)) 7570 return; 7571 break; 7572 case LibFunc_sqrt: 7573 case LibFunc_sqrtf: 7574 case LibFunc_sqrtl: 7575 case LibFunc_sqrt_finite: 7576 case LibFunc_sqrtf_finite: 7577 case LibFunc_sqrtl_finite: 7578 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7579 return; 7580 break; 7581 case LibFunc_floor: 7582 case LibFunc_floorf: 7583 case LibFunc_floorl: 7584 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7585 return; 7586 break; 7587 case LibFunc_nearbyint: 7588 case LibFunc_nearbyintf: 7589 case LibFunc_nearbyintl: 7590 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7591 return; 7592 break; 7593 case LibFunc_ceil: 7594 case LibFunc_ceilf: 7595 case LibFunc_ceill: 7596 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7597 return; 7598 break; 7599 case LibFunc_rint: 7600 case LibFunc_rintf: 7601 case LibFunc_rintl: 7602 if (visitUnaryFloatCall(I, ISD::FRINT)) 7603 return; 7604 break; 7605 case LibFunc_round: 7606 case LibFunc_roundf: 7607 case LibFunc_roundl: 7608 if (visitUnaryFloatCall(I, ISD::FROUND)) 7609 return; 7610 break; 7611 case LibFunc_trunc: 7612 case LibFunc_truncf: 7613 case LibFunc_truncl: 7614 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7615 return; 7616 break; 7617 case LibFunc_log2: 7618 case LibFunc_log2f: 7619 case LibFunc_log2l: 7620 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7621 return; 7622 break; 7623 case LibFunc_exp2: 7624 case LibFunc_exp2f: 7625 case LibFunc_exp2l: 7626 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7627 return; 7628 break; 7629 case LibFunc_memcmp: 7630 if (visitMemCmpCall(I)) 7631 return; 7632 break; 7633 case LibFunc_mempcpy: 7634 if (visitMemPCpyCall(I)) 7635 return; 7636 break; 7637 case LibFunc_memchr: 7638 if (visitMemChrCall(I)) 7639 return; 7640 break; 7641 case LibFunc_strcpy: 7642 if (visitStrCpyCall(I, false)) 7643 return; 7644 break; 7645 case LibFunc_stpcpy: 7646 if (visitStrCpyCall(I, true)) 7647 return; 7648 break; 7649 case LibFunc_strcmp: 7650 if (visitStrCmpCall(I)) 7651 return; 7652 break; 7653 case LibFunc_strlen: 7654 if (visitStrLenCall(I)) 7655 return; 7656 break; 7657 case LibFunc_strnlen: 7658 if (visitStrNLenCall(I)) 7659 return; 7660 break; 7661 } 7662 } 7663 } 7664 7665 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7666 // have to do anything here to lower funclet bundles. 7667 // CFGuardTarget bundles are lowered in LowerCallTo. 7668 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7669 LLVMContext::OB_funclet, 7670 LLVMContext::OB_cfguardtarget}) && 7671 "Cannot lower calls with arbitrary operand bundles!"); 7672 7673 SDValue Callee = getValue(I.getCalledValue()); 7674 7675 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7676 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7677 else 7678 // Check if we can potentially perform a tail call. More detailed checking 7679 // is be done within LowerCallTo, after more information about the call is 7680 // known. 7681 LowerCallTo(&I, Callee, I.isTailCall()); 7682 } 7683 7684 namespace { 7685 7686 /// AsmOperandInfo - This contains information for each constraint that we are 7687 /// lowering. 7688 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7689 public: 7690 /// CallOperand - If this is the result output operand or a clobber 7691 /// this is null, otherwise it is the incoming operand to the CallInst. 7692 /// This gets modified as the asm is processed. 7693 SDValue CallOperand; 7694 7695 /// AssignedRegs - If this is a register or register class operand, this 7696 /// contains the set of register corresponding to the operand. 7697 RegsForValue AssignedRegs; 7698 7699 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7700 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7701 } 7702 7703 /// Whether or not this operand accesses memory 7704 bool hasMemory(const TargetLowering &TLI) const { 7705 // Indirect operand accesses access memory. 7706 if (isIndirect) 7707 return true; 7708 7709 for (const auto &Code : Codes) 7710 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7711 return true; 7712 7713 return false; 7714 } 7715 7716 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7717 /// corresponds to. If there is no Value* for this operand, it returns 7718 /// MVT::Other. 7719 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7720 const DataLayout &DL) const { 7721 if (!CallOperandVal) return MVT::Other; 7722 7723 if (isa<BasicBlock>(CallOperandVal)) 7724 return TLI.getPointerTy(DL); 7725 7726 llvm::Type *OpTy = CallOperandVal->getType(); 7727 7728 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7729 // If this is an indirect operand, the operand is a pointer to the 7730 // accessed type. 7731 if (isIndirect) { 7732 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7733 if (!PtrTy) 7734 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7735 OpTy = PtrTy->getElementType(); 7736 } 7737 7738 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7739 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7740 if (STy->getNumElements() == 1) 7741 OpTy = STy->getElementType(0); 7742 7743 // If OpTy is not a single value, it may be a struct/union that we 7744 // can tile with integers. 7745 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7746 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7747 switch (BitSize) { 7748 default: break; 7749 case 1: 7750 case 8: 7751 case 16: 7752 case 32: 7753 case 64: 7754 case 128: 7755 OpTy = IntegerType::get(Context, BitSize); 7756 break; 7757 } 7758 } 7759 7760 return TLI.getValueType(DL, OpTy, true); 7761 } 7762 }; 7763 7764 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7765 7766 } // end anonymous namespace 7767 7768 /// Make sure that the output operand \p OpInfo and its corresponding input 7769 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7770 /// out). 7771 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7772 SDISelAsmOperandInfo &MatchingOpInfo, 7773 SelectionDAG &DAG) { 7774 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7775 return; 7776 7777 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7778 const auto &TLI = DAG.getTargetLoweringInfo(); 7779 7780 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7781 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7782 OpInfo.ConstraintVT); 7783 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7784 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7785 MatchingOpInfo.ConstraintVT); 7786 if ((OpInfo.ConstraintVT.isInteger() != 7787 MatchingOpInfo.ConstraintVT.isInteger()) || 7788 (MatchRC.second != InputRC.second)) { 7789 // FIXME: error out in a more elegant fashion 7790 report_fatal_error("Unsupported asm: input constraint" 7791 " with a matching output constraint of" 7792 " incompatible type!"); 7793 } 7794 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7795 } 7796 7797 /// Get a direct memory input to behave well as an indirect operand. 7798 /// This may introduce stores, hence the need for a \p Chain. 7799 /// \return The (possibly updated) chain. 7800 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7801 SDISelAsmOperandInfo &OpInfo, 7802 SelectionDAG &DAG) { 7803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7804 7805 // If we don't have an indirect input, put it in the constpool if we can, 7806 // otherwise spill it to a stack slot. 7807 // TODO: This isn't quite right. We need to handle these according to 7808 // the addressing mode that the constraint wants. Also, this may take 7809 // an additional register for the computation and we don't want that 7810 // either. 7811 7812 // If the operand is a float, integer, or vector constant, spill to a 7813 // constant pool entry to get its address. 7814 const Value *OpVal = OpInfo.CallOperandVal; 7815 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7816 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7817 OpInfo.CallOperand = DAG.getConstantPool( 7818 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7819 return Chain; 7820 } 7821 7822 // Otherwise, create a stack slot and emit a store to it before the asm. 7823 Type *Ty = OpVal->getType(); 7824 auto &DL = DAG.getDataLayout(); 7825 uint64_t TySize = DL.getTypeAllocSize(Ty); 7826 unsigned Align = DL.getPrefTypeAlignment(Ty); 7827 MachineFunction &MF = DAG.getMachineFunction(); 7828 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7829 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7830 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7831 MachinePointerInfo::getFixedStack(MF, SSFI), 7832 TLI.getMemValueType(DL, Ty)); 7833 OpInfo.CallOperand = StackSlot; 7834 7835 return Chain; 7836 } 7837 7838 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7839 /// specified operand. We prefer to assign virtual registers, to allow the 7840 /// register allocator to handle the assignment process. However, if the asm 7841 /// uses features that we can't model on machineinstrs, we have SDISel do the 7842 /// allocation. This produces generally horrible, but correct, code. 7843 /// 7844 /// OpInfo describes the operand 7845 /// RefOpInfo describes the matching operand if any, the operand otherwise 7846 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7847 SDISelAsmOperandInfo &OpInfo, 7848 SDISelAsmOperandInfo &RefOpInfo) { 7849 LLVMContext &Context = *DAG.getContext(); 7850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7851 7852 MachineFunction &MF = DAG.getMachineFunction(); 7853 SmallVector<unsigned, 4> Regs; 7854 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7855 7856 // No work to do for memory operations. 7857 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7858 return; 7859 7860 // If this is a constraint for a single physreg, or a constraint for a 7861 // register class, find it. 7862 unsigned AssignedReg; 7863 const TargetRegisterClass *RC; 7864 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7865 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7866 // RC is unset only on failure. Return immediately. 7867 if (!RC) 7868 return; 7869 7870 // Get the actual register value type. This is important, because the user 7871 // may have asked for (e.g.) the AX register in i32 type. We need to 7872 // remember that AX is actually i16 to get the right extension. 7873 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7874 7875 if (OpInfo.ConstraintVT != MVT::Other) { 7876 // If this is an FP operand in an integer register (or visa versa), or more 7877 // generally if the operand value disagrees with the register class we plan 7878 // to stick it in, fix the operand type. 7879 // 7880 // If this is an input value, the bitcast to the new type is done now. 7881 // Bitcast for output value is done at the end of visitInlineAsm(). 7882 if ((OpInfo.Type == InlineAsm::isOutput || 7883 OpInfo.Type == InlineAsm::isInput) && 7884 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7885 // Try to convert to the first EVT that the reg class contains. If the 7886 // types are identical size, use a bitcast to convert (e.g. two differing 7887 // vector types). Note: output bitcast is done at the end of 7888 // visitInlineAsm(). 7889 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7890 // Exclude indirect inputs while they are unsupported because the code 7891 // to perform the load is missing and thus OpInfo.CallOperand still 7892 // refers to the input address rather than the pointed-to value. 7893 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7894 OpInfo.CallOperand = 7895 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7896 OpInfo.ConstraintVT = RegVT; 7897 // If the operand is an FP value and we want it in integer registers, 7898 // use the corresponding integer type. This turns an f64 value into 7899 // i64, which can be passed with two i32 values on a 32-bit machine. 7900 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7901 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7902 if (OpInfo.Type == InlineAsm::isInput) 7903 OpInfo.CallOperand = 7904 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7905 OpInfo.ConstraintVT = VT; 7906 } 7907 } 7908 } 7909 7910 // No need to allocate a matching input constraint since the constraint it's 7911 // matching to has already been allocated. 7912 if (OpInfo.isMatchingInputConstraint()) 7913 return; 7914 7915 EVT ValueVT = OpInfo.ConstraintVT; 7916 if (OpInfo.ConstraintVT == MVT::Other) 7917 ValueVT = RegVT; 7918 7919 // Initialize NumRegs. 7920 unsigned NumRegs = 1; 7921 if (OpInfo.ConstraintVT != MVT::Other) 7922 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7923 7924 // If this is a constraint for a specific physical register, like {r17}, 7925 // assign it now. 7926 7927 // If this associated to a specific register, initialize iterator to correct 7928 // place. If virtual, make sure we have enough registers 7929 7930 // Initialize iterator if necessary 7931 TargetRegisterClass::iterator I = RC->begin(); 7932 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7933 7934 // Do not check for single registers. 7935 if (AssignedReg) { 7936 for (; *I != AssignedReg; ++I) 7937 assert(I != RC->end() && "AssignedReg should be member of RC"); 7938 } 7939 7940 for (; NumRegs; --NumRegs, ++I) { 7941 assert(I != RC->end() && "Ran out of registers to allocate!"); 7942 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7943 Regs.push_back(R); 7944 } 7945 7946 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7947 } 7948 7949 static unsigned 7950 findMatchingInlineAsmOperand(unsigned OperandNo, 7951 const std::vector<SDValue> &AsmNodeOperands) { 7952 // Scan until we find the definition we already emitted of this operand. 7953 unsigned CurOp = InlineAsm::Op_FirstOperand; 7954 for (; OperandNo; --OperandNo) { 7955 // Advance to the next operand. 7956 unsigned OpFlag = 7957 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7958 assert((InlineAsm::isRegDefKind(OpFlag) || 7959 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7960 InlineAsm::isMemKind(OpFlag)) && 7961 "Skipped past definitions?"); 7962 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7963 } 7964 return CurOp; 7965 } 7966 7967 namespace { 7968 7969 class ExtraFlags { 7970 unsigned Flags = 0; 7971 7972 public: 7973 explicit ExtraFlags(ImmutableCallSite CS) { 7974 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7975 if (IA->hasSideEffects()) 7976 Flags |= InlineAsm::Extra_HasSideEffects; 7977 if (IA->isAlignStack()) 7978 Flags |= InlineAsm::Extra_IsAlignStack; 7979 if (CS.isConvergent()) 7980 Flags |= InlineAsm::Extra_IsConvergent; 7981 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7982 } 7983 7984 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7985 // Ideally, we would only check against memory constraints. However, the 7986 // meaning of an Other constraint can be target-specific and we can't easily 7987 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7988 // for Other constraints as well. 7989 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7990 OpInfo.ConstraintType == TargetLowering::C_Other) { 7991 if (OpInfo.Type == InlineAsm::isInput) 7992 Flags |= InlineAsm::Extra_MayLoad; 7993 else if (OpInfo.Type == InlineAsm::isOutput) 7994 Flags |= InlineAsm::Extra_MayStore; 7995 else if (OpInfo.Type == InlineAsm::isClobber) 7996 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7997 } 7998 } 7999 8000 unsigned get() const { return Flags; } 8001 }; 8002 8003 } // end anonymous namespace 8004 8005 /// visitInlineAsm - Handle a call to an InlineAsm object. 8006 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8007 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8008 8009 /// ConstraintOperands - Information about all of the constraints. 8010 SDISelAsmOperandInfoVector ConstraintOperands; 8011 8012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8013 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8014 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8015 8016 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8017 // AsmDialect, MayLoad, MayStore). 8018 bool HasSideEffect = IA->hasSideEffects(); 8019 ExtraFlags ExtraInfo(CS); 8020 8021 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8022 unsigned ResNo = 0; // ResNo - The result number of the next output. 8023 unsigned NumMatchingOps = 0; 8024 for (auto &T : TargetConstraints) { 8025 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8026 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8027 8028 // Compute the value type for each operand. 8029 if (OpInfo.Type == InlineAsm::isInput || 8030 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8031 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8032 8033 // Process the call argument. BasicBlocks are labels, currently appearing 8034 // only in asm's. 8035 const Instruction *I = CS.getInstruction(); 8036 if (isa<CallBrInst>(I) && 8037 ArgNo - 1 >= (cast<CallBrInst>(I)->getNumArgOperands() - 8038 cast<CallBrInst>(I)->getNumIndirectDests() - 8039 NumMatchingOps) && 8040 (NumMatchingOps == 0 || 8041 ArgNo - 1 < (cast<CallBrInst>(I)->getNumArgOperands() - 8042 NumMatchingOps))) { 8043 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8044 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8045 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8046 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8047 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8048 } else { 8049 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8050 } 8051 8052 OpInfo.ConstraintVT = 8053 OpInfo 8054 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8055 .getSimpleVT(); 8056 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8057 // The return value of the call is this value. As such, there is no 8058 // corresponding argument. 8059 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8060 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8061 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8062 DAG.getDataLayout(), STy->getElementType(ResNo)); 8063 } else { 8064 assert(ResNo == 0 && "Asm only has one result!"); 8065 OpInfo.ConstraintVT = 8066 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8067 } 8068 ++ResNo; 8069 } else { 8070 OpInfo.ConstraintVT = MVT::Other; 8071 } 8072 8073 if (OpInfo.hasMatchingInput()) 8074 ++NumMatchingOps; 8075 8076 if (!HasSideEffect) 8077 HasSideEffect = OpInfo.hasMemory(TLI); 8078 8079 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8080 // FIXME: Could we compute this on OpInfo rather than T? 8081 8082 // Compute the constraint code and ConstraintType to use. 8083 TLI.ComputeConstraintToUse(T, SDValue()); 8084 8085 if (T.ConstraintType == TargetLowering::C_Immediate && 8086 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8087 // We've delayed emitting a diagnostic like the "n" constraint because 8088 // inlining could cause an integer showing up. 8089 return emitInlineAsmError( 8090 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8091 "integer constant expression"); 8092 8093 ExtraInfo.update(T); 8094 } 8095 8096 8097 // We won't need to flush pending loads if this asm doesn't touch 8098 // memory and is nonvolatile. 8099 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8100 8101 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8102 if (IsCallBr) { 8103 // If this is a callbr we need to flush pending exports since inlineasm_br 8104 // is a terminator. We need to do this before nodes are glued to 8105 // the inlineasm_br node. 8106 Chain = getControlRoot(); 8107 } 8108 8109 // Second pass over the constraints: compute which constraint option to use. 8110 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8111 // If this is an output operand with a matching input operand, look up the 8112 // matching input. If their types mismatch, e.g. one is an integer, the 8113 // other is floating point, or their sizes are different, flag it as an 8114 // error. 8115 if (OpInfo.hasMatchingInput()) { 8116 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8117 patchMatchingInput(OpInfo, Input, DAG); 8118 } 8119 8120 // Compute the constraint code and ConstraintType to use. 8121 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8122 8123 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8124 OpInfo.Type == InlineAsm::isClobber) 8125 continue; 8126 8127 // If this is a memory input, and if the operand is not indirect, do what we 8128 // need to provide an address for the memory input. 8129 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8130 !OpInfo.isIndirect) { 8131 assert((OpInfo.isMultipleAlternative || 8132 (OpInfo.Type == InlineAsm::isInput)) && 8133 "Can only indirectify direct input operands!"); 8134 8135 // Memory operands really want the address of the value. 8136 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8137 8138 // There is no longer a Value* corresponding to this operand. 8139 OpInfo.CallOperandVal = nullptr; 8140 8141 // It is now an indirect operand. 8142 OpInfo.isIndirect = true; 8143 } 8144 8145 } 8146 8147 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8148 std::vector<SDValue> AsmNodeOperands; 8149 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8150 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8151 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8152 8153 // If we have a !srcloc metadata node associated with it, we want to attach 8154 // this to the ultimately generated inline asm machineinstr. To do this, we 8155 // pass in the third operand as this (potentially null) inline asm MDNode. 8156 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8157 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8158 8159 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8160 // bits as operand 3. 8161 AsmNodeOperands.push_back(DAG.getTargetConstant( 8162 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8163 8164 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8165 // this, assign virtual and physical registers for inputs and otput. 8166 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8167 // Assign Registers. 8168 SDISelAsmOperandInfo &RefOpInfo = 8169 OpInfo.isMatchingInputConstraint() 8170 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8171 : OpInfo; 8172 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8173 8174 switch (OpInfo.Type) { 8175 case InlineAsm::isOutput: 8176 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8177 unsigned ConstraintID = 8178 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8179 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8180 "Failed to convert memory constraint code to constraint id."); 8181 8182 // Add information to the INLINEASM node to know about this output. 8183 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8184 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8185 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8186 MVT::i32)); 8187 AsmNodeOperands.push_back(OpInfo.CallOperand); 8188 } else { 8189 // Otherwise, this outputs to a register (directly for C_Register / 8190 // C_RegisterClass, and a target-defined fashion for 8191 // C_Immediate/C_Other). Find a register that we can use. 8192 if (OpInfo.AssignedRegs.Regs.empty()) { 8193 emitInlineAsmError( 8194 CS, "couldn't allocate output register for constraint '" + 8195 Twine(OpInfo.ConstraintCode) + "'"); 8196 return; 8197 } 8198 8199 // Add information to the INLINEASM node to know that this register is 8200 // set. 8201 OpInfo.AssignedRegs.AddInlineAsmOperands( 8202 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8203 : InlineAsm::Kind_RegDef, 8204 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8205 } 8206 break; 8207 8208 case InlineAsm::isInput: { 8209 SDValue InOperandVal = OpInfo.CallOperand; 8210 8211 if (OpInfo.isMatchingInputConstraint()) { 8212 // If this is required to match an output register we have already set, 8213 // just use its register. 8214 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8215 AsmNodeOperands); 8216 unsigned OpFlag = 8217 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8218 if (InlineAsm::isRegDefKind(OpFlag) || 8219 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8220 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8221 if (OpInfo.isIndirect) { 8222 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8223 emitInlineAsmError(CS, "inline asm not supported yet:" 8224 " don't know how to handle tied " 8225 "indirect register inputs"); 8226 return; 8227 } 8228 8229 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8230 SmallVector<unsigned, 4> Regs; 8231 8232 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8233 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8234 MachineRegisterInfo &RegInfo = 8235 DAG.getMachineFunction().getRegInfo(); 8236 for (unsigned i = 0; i != NumRegs; ++i) 8237 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8238 } else { 8239 emitInlineAsmError(CS, "inline asm error: This value type register " 8240 "class is not natively supported!"); 8241 return; 8242 } 8243 8244 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8245 8246 SDLoc dl = getCurSDLoc(); 8247 // Use the produced MatchedRegs object to 8248 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8249 CS.getInstruction()); 8250 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8251 true, OpInfo.getMatchedOperand(), dl, 8252 DAG, AsmNodeOperands); 8253 break; 8254 } 8255 8256 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8257 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8258 "Unexpected number of operands"); 8259 // Add information to the INLINEASM node to know about this input. 8260 // See InlineAsm.h isUseOperandTiedToDef. 8261 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8262 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8263 OpInfo.getMatchedOperand()); 8264 AsmNodeOperands.push_back(DAG.getTargetConstant( 8265 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8266 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8267 break; 8268 } 8269 8270 // Treat indirect 'X' constraint as memory. 8271 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8272 OpInfo.isIndirect) 8273 OpInfo.ConstraintType = TargetLowering::C_Memory; 8274 8275 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8276 OpInfo.ConstraintType == TargetLowering::C_Other) { 8277 std::vector<SDValue> Ops; 8278 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8279 Ops, DAG); 8280 if (Ops.empty()) { 8281 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8282 if (isa<ConstantSDNode>(InOperandVal)) { 8283 emitInlineAsmError(CS, "value out of range for constraint '" + 8284 Twine(OpInfo.ConstraintCode) + "'"); 8285 return; 8286 } 8287 8288 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8289 Twine(OpInfo.ConstraintCode) + "'"); 8290 return; 8291 } 8292 8293 // Add information to the INLINEASM node to know about this input. 8294 unsigned ResOpType = 8295 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8296 AsmNodeOperands.push_back(DAG.getTargetConstant( 8297 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8298 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8299 break; 8300 } 8301 8302 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8303 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8304 assert(InOperandVal.getValueType() == 8305 TLI.getPointerTy(DAG.getDataLayout()) && 8306 "Memory operands expect pointer values"); 8307 8308 unsigned ConstraintID = 8309 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8310 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8311 "Failed to convert memory constraint code to constraint id."); 8312 8313 // Add information to the INLINEASM node to know about this input. 8314 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8315 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8316 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8317 getCurSDLoc(), 8318 MVT::i32)); 8319 AsmNodeOperands.push_back(InOperandVal); 8320 break; 8321 } 8322 8323 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8324 OpInfo.ConstraintType == TargetLowering::C_Register) && 8325 "Unknown constraint type!"); 8326 8327 // TODO: Support this. 8328 if (OpInfo.isIndirect) { 8329 emitInlineAsmError( 8330 CS, "Don't know how to handle indirect register inputs yet " 8331 "for constraint '" + 8332 Twine(OpInfo.ConstraintCode) + "'"); 8333 return; 8334 } 8335 8336 // Copy the input into the appropriate registers. 8337 if (OpInfo.AssignedRegs.Regs.empty()) { 8338 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8339 Twine(OpInfo.ConstraintCode) + "'"); 8340 return; 8341 } 8342 8343 SDLoc dl = getCurSDLoc(); 8344 8345 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8346 Chain, &Flag, CS.getInstruction()); 8347 8348 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8349 dl, DAG, AsmNodeOperands); 8350 break; 8351 } 8352 case InlineAsm::isClobber: 8353 // Add the clobbered value to the operand list, so that the register 8354 // allocator is aware that the physreg got clobbered. 8355 if (!OpInfo.AssignedRegs.Regs.empty()) 8356 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8357 false, 0, getCurSDLoc(), DAG, 8358 AsmNodeOperands); 8359 break; 8360 } 8361 } 8362 8363 // Finish up input operands. Set the input chain and add the flag last. 8364 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8365 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8366 8367 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8368 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8369 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8370 Flag = Chain.getValue(1); 8371 8372 // Do additional work to generate outputs. 8373 8374 SmallVector<EVT, 1> ResultVTs; 8375 SmallVector<SDValue, 1> ResultValues; 8376 SmallVector<SDValue, 8> OutChains; 8377 8378 llvm::Type *CSResultType = CS.getType(); 8379 ArrayRef<Type *> ResultTypes; 8380 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8381 ResultTypes = StructResult->elements(); 8382 else if (!CSResultType->isVoidTy()) 8383 ResultTypes = makeArrayRef(CSResultType); 8384 8385 auto CurResultType = ResultTypes.begin(); 8386 auto handleRegAssign = [&](SDValue V) { 8387 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8388 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8389 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8390 ++CurResultType; 8391 // If the type of the inline asm call site return value is different but has 8392 // same size as the type of the asm output bitcast it. One example of this 8393 // is for vectors with different width / number of elements. This can 8394 // happen for register classes that can contain multiple different value 8395 // types. The preg or vreg allocated may not have the same VT as was 8396 // expected. 8397 // 8398 // This can also happen for a return value that disagrees with the register 8399 // class it is put in, eg. a double in a general-purpose register on a 8400 // 32-bit machine. 8401 if (ResultVT != V.getValueType() && 8402 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8403 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8404 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8405 V.getValueType().isInteger()) { 8406 // If a result value was tied to an input value, the computed result 8407 // may have a wider width than the expected result. Extract the 8408 // relevant portion. 8409 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8410 } 8411 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8412 ResultVTs.push_back(ResultVT); 8413 ResultValues.push_back(V); 8414 }; 8415 8416 // Deal with output operands. 8417 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8418 if (OpInfo.Type == InlineAsm::isOutput) { 8419 SDValue Val; 8420 // Skip trivial output operands. 8421 if (OpInfo.AssignedRegs.Regs.empty()) 8422 continue; 8423 8424 switch (OpInfo.ConstraintType) { 8425 case TargetLowering::C_Register: 8426 case TargetLowering::C_RegisterClass: 8427 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8428 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8429 break; 8430 case TargetLowering::C_Immediate: 8431 case TargetLowering::C_Other: 8432 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8433 OpInfo, DAG); 8434 break; 8435 case TargetLowering::C_Memory: 8436 break; // Already handled. 8437 case TargetLowering::C_Unknown: 8438 assert(false && "Unexpected unknown constraint"); 8439 } 8440 8441 // Indirect output manifest as stores. Record output chains. 8442 if (OpInfo.isIndirect) { 8443 const Value *Ptr = OpInfo.CallOperandVal; 8444 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8445 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8446 MachinePointerInfo(Ptr)); 8447 OutChains.push_back(Store); 8448 } else { 8449 // generate CopyFromRegs to associated registers. 8450 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8451 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8452 for (const SDValue &V : Val->op_values()) 8453 handleRegAssign(V); 8454 } else 8455 handleRegAssign(Val); 8456 } 8457 } 8458 } 8459 8460 // Set results. 8461 if (!ResultValues.empty()) { 8462 assert(CurResultType == ResultTypes.end() && 8463 "Mismatch in number of ResultTypes"); 8464 assert(ResultValues.size() == ResultTypes.size() && 8465 "Mismatch in number of output operands in asm result"); 8466 8467 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8468 DAG.getVTList(ResultVTs), ResultValues); 8469 setValue(CS.getInstruction(), V); 8470 } 8471 8472 // Collect store chains. 8473 if (!OutChains.empty()) 8474 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8475 8476 // Only Update Root if inline assembly has a memory effect. 8477 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8478 DAG.setRoot(Chain); 8479 } 8480 8481 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8482 const Twine &Message) { 8483 LLVMContext &Ctx = *DAG.getContext(); 8484 Ctx.emitError(CS.getInstruction(), Message); 8485 8486 // Make sure we leave the DAG in a valid state 8487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8488 SmallVector<EVT, 1> ValueVTs; 8489 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8490 8491 if (ValueVTs.empty()) 8492 return; 8493 8494 SmallVector<SDValue, 1> Ops; 8495 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8496 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8497 8498 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8499 } 8500 8501 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8502 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8503 MVT::Other, getRoot(), 8504 getValue(I.getArgOperand(0)), 8505 DAG.getSrcValue(I.getArgOperand(0)))); 8506 } 8507 8508 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8510 const DataLayout &DL = DAG.getDataLayout(); 8511 SDValue V = DAG.getVAArg( 8512 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8513 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8514 DL.getABITypeAlignment(I.getType())); 8515 DAG.setRoot(V.getValue(1)); 8516 8517 if (I.getType()->isPointerTy()) 8518 V = DAG.getPtrExtOrTrunc( 8519 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8520 setValue(&I, V); 8521 } 8522 8523 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8524 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8525 MVT::Other, getRoot(), 8526 getValue(I.getArgOperand(0)), 8527 DAG.getSrcValue(I.getArgOperand(0)))); 8528 } 8529 8530 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8531 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8532 MVT::Other, getRoot(), 8533 getValue(I.getArgOperand(0)), 8534 getValue(I.getArgOperand(1)), 8535 DAG.getSrcValue(I.getArgOperand(0)), 8536 DAG.getSrcValue(I.getArgOperand(1)))); 8537 } 8538 8539 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8540 const Instruction &I, 8541 SDValue Op) { 8542 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8543 if (!Range) 8544 return Op; 8545 8546 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8547 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8548 return Op; 8549 8550 APInt Lo = CR.getUnsignedMin(); 8551 if (!Lo.isMinValue()) 8552 return Op; 8553 8554 APInt Hi = CR.getUnsignedMax(); 8555 unsigned Bits = std::max(Hi.getActiveBits(), 8556 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8557 8558 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8559 8560 SDLoc SL = getCurSDLoc(); 8561 8562 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8563 DAG.getValueType(SmallVT)); 8564 unsigned NumVals = Op.getNode()->getNumValues(); 8565 if (NumVals == 1) 8566 return ZExt; 8567 8568 SmallVector<SDValue, 4> Ops; 8569 8570 Ops.push_back(ZExt); 8571 for (unsigned I = 1; I != NumVals; ++I) 8572 Ops.push_back(Op.getValue(I)); 8573 8574 return DAG.getMergeValues(Ops, SL); 8575 } 8576 8577 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8578 /// the call being lowered. 8579 /// 8580 /// This is a helper for lowering intrinsics that follow a target calling 8581 /// convention or require stack pointer adjustment. Only a subset of the 8582 /// intrinsic's operands need to participate in the calling convention. 8583 void SelectionDAGBuilder::populateCallLoweringInfo( 8584 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8585 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8586 bool IsPatchPoint) { 8587 TargetLowering::ArgListTy Args; 8588 Args.reserve(NumArgs); 8589 8590 // Populate the argument list. 8591 // Attributes for args start at offset 1, after the return attribute. 8592 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8593 ArgI != ArgE; ++ArgI) { 8594 const Value *V = Call->getOperand(ArgI); 8595 8596 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8597 8598 TargetLowering::ArgListEntry Entry; 8599 Entry.Node = getValue(V); 8600 Entry.Ty = V->getType(); 8601 Entry.setAttributes(Call, ArgI); 8602 Args.push_back(Entry); 8603 } 8604 8605 CLI.setDebugLoc(getCurSDLoc()) 8606 .setChain(getRoot()) 8607 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8608 .setDiscardResult(Call->use_empty()) 8609 .setIsPatchPoint(IsPatchPoint); 8610 } 8611 8612 /// Add a stack map intrinsic call's live variable operands to a stackmap 8613 /// or patchpoint target node's operand list. 8614 /// 8615 /// Constants are converted to TargetConstants purely as an optimization to 8616 /// avoid constant materialization and register allocation. 8617 /// 8618 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8619 /// generate addess computation nodes, and so FinalizeISel can convert the 8620 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8621 /// address materialization and register allocation, but may also be required 8622 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8623 /// alloca in the entry block, then the runtime may assume that the alloca's 8624 /// StackMap location can be read immediately after compilation and that the 8625 /// location is valid at any point during execution (this is similar to the 8626 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8627 /// only available in a register, then the runtime would need to trap when 8628 /// execution reaches the StackMap in order to read the alloca's location. 8629 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8630 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8631 SelectionDAGBuilder &Builder) { 8632 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8633 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8634 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8635 Ops.push_back( 8636 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8637 Ops.push_back( 8638 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8639 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8640 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8641 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8642 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8643 } else 8644 Ops.push_back(OpVal); 8645 } 8646 } 8647 8648 /// Lower llvm.experimental.stackmap directly to its target opcode. 8649 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8650 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8651 // [live variables...]) 8652 8653 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8654 8655 SDValue Chain, InFlag, Callee, NullPtr; 8656 SmallVector<SDValue, 32> Ops; 8657 8658 SDLoc DL = getCurSDLoc(); 8659 Callee = getValue(CI.getCalledValue()); 8660 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8661 8662 // The stackmap intrinsic only records the live variables (the arguments 8663 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8664 // intrinsic, this won't be lowered to a function call. This means we don't 8665 // have to worry about calling conventions and target specific lowering code. 8666 // Instead we perform the call lowering right here. 8667 // 8668 // chain, flag = CALLSEQ_START(chain, 0, 0) 8669 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8670 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8671 // 8672 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8673 InFlag = Chain.getValue(1); 8674 8675 // Add the <id> and <numBytes> constants. 8676 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8677 Ops.push_back(DAG.getTargetConstant( 8678 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8679 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8680 Ops.push_back(DAG.getTargetConstant( 8681 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8682 MVT::i32)); 8683 8684 // Push live variables for the stack map. 8685 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8686 8687 // We are not pushing any register mask info here on the operands list, 8688 // because the stackmap doesn't clobber anything. 8689 8690 // Push the chain and the glue flag. 8691 Ops.push_back(Chain); 8692 Ops.push_back(InFlag); 8693 8694 // Create the STACKMAP node. 8695 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8696 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8697 Chain = SDValue(SM, 0); 8698 InFlag = Chain.getValue(1); 8699 8700 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8701 8702 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8703 8704 // Set the root to the target-lowered call chain. 8705 DAG.setRoot(Chain); 8706 8707 // Inform the Frame Information that we have a stackmap in this function. 8708 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8709 } 8710 8711 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8712 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8713 const BasicBlock *EHPadBB) { 8714 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8715 // i32 <numBytes>, 8716 // i8* <target>, 8717 // i32 <numArgs>, 8718 // [Args...], 8719 // [live variables...]) 8720 8721 CallingConv::ID CC = CS.getCallingConv(); 8722 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8723 bool HasDef = !CS->getType()->isVoidTy(); 8724 SDLoc dl = getCurSDLoc(); 8725 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8726 8727 // Handle immediate and symbolic callees. 8728 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8729 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8730 /*isTarget=*/true); 8731 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8732 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8733 SDLoc(SymbolicCallee), 8734 SymbolicCallee->getValueType(0)); 8735 8736 // Get the real number of arguments participating in the call <numArgs> 8737 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8738 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8739 8740 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8741 // Intrinsics include all meta-operands up to but not including CC. 8742 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8743 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8744 "Not enough arguments provided to the patchpoint intrinsic"); 8745 8746 // For AnyRegCC the arguments are lowered later on manually. 8747 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8748 Type *ReturnTy = 8749 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8750 8751 TargetLowering::CallLoweringInfo CLI(DAG); 8752 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8753 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8754 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8755 8756 SDNode *CallEnd = Result.second.getNode(); 8757 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8758 CallEnd = CallEnd->getOperand(0).getNode(); 8759 8760 /// Get a call instruction from the call sequence chain. 8761 /// Tail calls are not allowed. 8762 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8763 "Expected a callseq node."); 8764 SDNode *Call = CallEnd->getOperand(0).getNode(); 8765 bool HasGlue = Call->getGluedNode(); 8766 8767 // Replace the target specific call node with the patchable intrinsic. 8768 SmallVector<SDValue, 8> Ops; 8769 8770 // Add the <id> and <numBytes> constants. 8771 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8772 Ops.push_back(DAG.getTargetConstant( 8773 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8774 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8775 Ops.push_back(DAG.getTargetConstant( 8776 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8777 MVT::i32)); 8778 8779 // Add the callee. 8780 Ops.push_back(Callee); 8781 8782 // Adjust <numArgs> to account for any arguments that have been passed on the 8783 // stack instead. 8784 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8785 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8786 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8787 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8788 8789 // Add the calling convention 8790 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8791 8792 // Add the arguments we omitted previously. The register allocator should 8793 // place these in any free register. 8794 if (IsAnyRegCC) 8795 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8796 Ops.push_back(getValue(CS.getArgument(i))); 8797 8798 // Push the arguments from the call instruction up to the register mask. 8799 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8800 Ops.append(Call->op_begin() + 2, e); 8801 8802 // Push live variables for the stack map. 8803 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8804 8805 // Push the register mask info. 8806 if (HasGlue) 8807 Ops.push_back(*(Call->op_end()-2)); 8808 else 8809 Ops.push_back(*(Call->op_end()-1)); 8810 8811 // Push the chain (this is originally the first operand of the call, but 8812 // becomes now the last or second to last operand). 8813 Ops.push_back(*(Call->op_begin())); 8814 8815 // Push the glue flag (last operand). 8816 if (HasGlue) 8817 Ops.push_back(*(Call->op_end()-1)); 8818 8819 SDVTList NodeTys; 8820 if (IsAnyRegCC && HasDef) { 8821 // Create the return types based on the intrinsic definition 8822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8823 SmallVector<EVT, 3> ValueVTs; 8824 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8825 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8826 8827 // There is always a chain and a glue type at the end 8828 ValueVTs.push_back(MVT::Other); 8829 ValueVTs.push_back(MVT::Glue); 8830 NodeTys = DAG.getVTList(ValueVTs); 8831 } else 8832 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8833 8834 // Replace the target specific call node with a PATCHPOINT node. 8835 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8836 dl, NodeTys, Ops); 8837 8838 // Update the NodeMap. 8839 if (HasDef) { 8840 if (IsAnyRegCC) 8841 setValue(CS.getInstruction(), SDValue(MN, 0)); 8842 else 8843 setValue(CS.getInstruction(), Result.first); 8844 } 8845 8846 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8847 // call sequence. Furthermore the location of the chain and glue can change 8848 // when the AnyReg calling convention is used and the intrinsic returns a 8849 // value. 8850 if (IsAnyRegCC && HasDef) { 8851 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8852 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8853 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8854 } else 8855 DAG.ReplaceAllUsesWith(Call, MN); 8856 DAG.DeleteNode(Call); 8857 8858 // Inform the Frame Information that we have a patchpoint in this function. 8859 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8860 } 8861 8862 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8863 unsigned Intrinsic) { 8864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8865 SDValue Op1 = getValue(I.getArgOperand(0)); 8866 SDValue Op2; 8867 if (I.getNumArgOperands() > 1) 8868 Op2 = getValue(I.getArgOperand(1)); 8869 SDLoc dl = getCurSDLoc(); 8870 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8871 SDValue Res; 8872 FastMathFlags FMF; 8873 if (isa<FPMathOperator>(I)) 8874 FMF = I.getFastMathFlags(); 8875 8876 switch (Intrinsic) { 8877 case Intrinsic::experimental_vector_reduce_v2_fadd: 8878 if (FMF.allowReassoc()) 8879 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8880 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8881 else 8882 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8883 break; 8884 case Intrinsic::experimental_vector_reduce_v2_fmul: 8885 if (FMF.allowReassoc()) 8886 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8887 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8888 else 8889 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8890 break; 8891 case Intrinsic::experimental_vector_reduce_add: 8892 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8893 break; 8894 case Intrinsic::experimental_vector_reduce_mul: 8895 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8896 break; 8897 case Intrinsic::experimental_vector_reduce_and: 8898 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8899 break; 8900 case Intrinsic::experimental_vector_reduce_or: 8901 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8902 break; 8903 case Intrinsic::experimental_vector_reduce_xor: 8904 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8905 break; 8906 case Intrinsic::experimental_vector_reduce_smax: 8907 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8908 break; 8909 case Intrinsic::experimental_vector_reduce_smin: 8910 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8911 break; 8912 case Intrinsic::experimental_vector_reduce_umax: 8913 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8914 break; 8915 case Intrinsic::experimental_vector_reduce_umin: 8916 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8917 break; 8918 case Intrinsic::experimental_vector_reduce_fmax: 8919 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8920 break; 8921 case Intrinsic::experimental_vector_reduce_fmin: 8922 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8923 break; 8924 default: 8925 llvm_unreachable("Unhandled vector reduce intrinsic"); 8926 } 8927 setValue(&I, Res); 8928 } 8929 8930 /// Returns an AttributeList representing the attributes applied to the return 8931 /// value of the given call. 8932 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8933 SmallVector<Attribute::AttrKind, 2> Attrs; 8934 if (CLI.RetSExt) 8935 Attrs.push_back(Attribute::SExt); 8936 if (CLI.RetZExt) 8937 Attrs.push_back(Attribute::ZExt); 8938 if (CLI.IsInReg) 8939 Attrs.push_back(Attribute::InReg); 8940 8941 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8942 Attrs); 8943 } 8944 8945 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8946 /// implementation, which just calls LowerCall. 8947 /// FIXME: When all targets are 8948 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8949 std::pair<SDValue, SDValue> 8950 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8951 // Handle the incoming return values from the call. 8952 CLI.Ins.clear(); 8953 Type *OrigRetTy = CLI.RetTy; 8954 SmallVector<EVT, 4> RetTys; 8955 SmallVector<uint64_t, 4> Offsets; 8956 auto &DL = CLI.DAG.getDataLayout(); 8957 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8958 8959 if (CLI.IsPostTypeLegalization) { 8960 // If we are lowering a libcall after legalization, split the return type. 8961 SmallVector<EVT, 4> OldRetTys; 8962 SmallVector<uint64_t, 4> OldOffsets; 8963 RetTys.swap(OldRetTys); 8964 Offsets.swap(OldOffsets); 8965 8966 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8967 EVT RetVT = OldRetTys[i]; 8968 uint64_t Offset = OldOffsets[i]; 8969 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8970 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8971 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8972 RetTys.append(NumRegs, RegisterVT); 8973 for (unsigned j = 0; j != NumRegs; ++j) 8974 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8975 } 8976 } 8977 8978 SmallVector<ISD::OutputArg, 4> Outs; 8979 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8980 8981 bool CanLowerReturn = 8982 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8983 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8984 8985 SDValue DemoteStackSlot; 8986 int DemoteStackIdx = -100; 8987 if (!CanLowerReturn) { 8988 // FIXME: equivalent assert? 8989 // assert(!CS.hasInAllocaArgument() && 8990 // "sret demotion is incompatible with inalloca"); 8991 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8992 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 8993 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8994 DemoteStackIdx = 8995 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 8996 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8997 DL.getAllocaAddrSpace()); 8998 8999 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9000 ArgListEntry Entry; 9001 Entry.Node = DemoteStackSlot; 9002 Entry.Ty = StackSlotPtrType; 9003 Entry.IsSExt = false; 9004 Entry.IsZExt = false; 9005 Entry.IsInReg = false; 9006 Entry.IsSRet = true; 9007 Entry.IsNest = false; 9008 Entry.IsByVal = false; 9009 Entry.IsReturned = false; 9010 Entry.IsSwiftSelf = false; 9011 Entry.IsSwiftError = false; 9012 Entry.IsCFGuardTarget = false; 9013 Entry.Alignment = Alignment; 9014 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9015 CLI.NumFixedArgs += 1; 9016 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9017 9018 // sret demotion isn't compatible with tail-calls, since the sret argument 9019 // points into the callers stack frame. 9020 CLI.IsTailCall = false; 9021 } else { 9022 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9023 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9024 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9025 ISD::ArgFlagsTy Flags; 9026 if (NeedsRegBlock) { 9027 Flags.setInConsecutiveRegs(); 9028 if (I == RetTys.size() - 1) 9029 Flags.setInConsecutiveRegsLast(); 9030 } 9031 EVT VT = RetTys[I]; 9032 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9033 CLI.CallConv, VT); 9034 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9035 CLI.CallConv, VT); 9036 for (unsigned i = 0; i != NumRegs; ++i) { 9037 ISD::InputArg MyFlags; 9038 MyFlags.Flags = Flags; 9039 MyFlags.VT = RegisterVT; 9040 MyFlags.ArgVT = VT; 9041 MyFlags.Used = CLI.IsReturnValueUsed; 9042 if (CLI.RetTy->isPointerTy()) { 9043 MyFlags.Flags.setPointer(); 9044 MyFlags.Flags.setPointerAddrSpace( 9045 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9046 } 9047 if (CLI.RetSExt) 9048 MyFlags.Flags.setSExt(); 9049 if (CLI.RetZExt) 9050 MyFlags.Flags.setZExt(); 9051 if (CLI.IsInReg) 9052 MyFlags.Flags.setInReg(); 9053 CLI.Ins.push_back(MyFlags); 9054 } 9055 } 9056 } 9057 9058 // We push in swifterror return as the last element of CLI.Ins. 9059 ArgListTy &Args = CLI.getArgs(); 9060 if (supportSwiftError()) { 9061 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9062 if (Args[i].IsSwiftError) { 9063 ISD::InputArg MyFlags; 9064 MyFlags.VT = getPointerTy(DL); 9065 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9066 MyFlags.Flags.setSwiftError(); 9067 CLI.Ins.push_back(MyFlags); 9068 } 9069 } 9070 } 9071 9072 // Handle all of the outgoing arguments. 9073 CLI.Outs.clear(); 9074 CLI.OutVals.clear(); 9075 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9076 SmallVector<EVT, 4> ValueVTs; 9077 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9078 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9079 Type *FinalType = Args[i].Ty; 9080 if (Args[i].IsByVal) 9081 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9082 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9083 FinalType, CLI.CallConv, CLI.IsVarArg); 9084 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9085 ++Value) { 9086 EVT VT = ValueVTs[Value]; 9087 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9088 SDValue Op = SDValue(Args[i].Node.getNode(), 9089 Args[i].Node.getResNo() + Value); 9090 ISD::ArgFlagsTy Flags; 9091 9092 // Certain targets (such as MIPS), may have a different ABI alignment 9093 // for a type depending on the context. Give the target a chance to 9094 // specify the alignment it wants. 9095 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9096 9097 if (Args[i].Ty->isPointerTy()) { 9098 Flags.setPointer(); 9099 Flags.setPointerAddrSpace( 9100 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9101 } 9102 if (Args[i].IsZExt) 9103 Flags.setZExt(); 9104 if (Args[i].IsSExt) 9105 Flags.setSExt(); 9106 if (Args[i].IsInReg) { 9107 // If we are using vectorcall calling convention, a structure that is 9108 // passed InReg - is surely an HVA 9109 if (CLI.CallConv == CallingConv::X86_VectorCall && 9110 isa<StructType>(FinalType)) { 9111 // The first value of a structure is marked 9112 if (0 == Value) 9113 Flags.setHvaStart(); 9114 Flags.setHva(); 9115 } 9116 // Set InReg Flag 9117 Flags.setInReg(); 9118 } 9119 if (Args[i].IsSRet) 9120 Flags.setSRet(); 9121 if (Args[i].IsSwiftSelf) 9122 Flags.setSwiftSelf(); 9123 if (Args[i].IsSwiftError) 9124 Flags.setSwiftError(); 9125 if (Args[i].IsCFGuardTarget) 9126 Flags.setCFGuardTarget(); 9127 if (Args[i].IsByVal) 9128 Flags.setByVal(); 9129 if (Args[i].IsInAlloca) { 9130 Flags.setInAlloca(); 9131 // Set the byval flag for CCAssignFn callbacks that don't know about 9132 // inalloca. This way we can know how many bytes we should've allocated 9133 // and how many bytes a callee cleanup function will pop. If we port 9134 // inalloca to more targets, we'll have to add custom inalloca handling 9135 // in the various CC lowering callbacks. 9136 Flags.setByVal(); 9137 } 9138 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9139 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9140 Type *ElementTy = Ty->getElementType(); 9141 9142 unsigned FrameSize = DL.getTypeAllocSize( 9143 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9144 Flags.setByValSize(FrameSize); 9145 9146 // info is not there but there are cases it cannot get right. 9147 Align FrameAlign; 9148 if (auto MA = Args[i].Alignment) 9149 FrameAlign = *MA; 9150 else 9151 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9152 Flags.setByValAlign(FrameAlign); 9153 } 9154 if (Args[i].IsNest) 9155 Flags.setNest(); 9156 if (NeedsRegBlock) 9157 Flags.setInConsecutiveRegs(); 9158 Flags.setOrigAlign(OriginalAlignment); 9159 9160 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9161 CLI.CallConv, VT); 9162 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9163 CLI.CallConv, VT); 9164 SmallVector<SDValue, 4> Parts(NumParts); 9165 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9166 9167 if (Args[i].IsSExt) 9168 ExtendKind = ISD::SIGN_EXTEND; 9169 else if (Args[i].IsZExt) 9170 ExtendKind = ISD::ZERO_EXTEND; 9171 9172 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9173 // for now. 9174 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9175 CanLowerReturn) { 9176 assert((CLI.RetTy == Args[i].Ty || 9177 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9178 CLI.RetTy->getPointerAddressSpace() == 9179 Args[i].Ty->getPointerAddressSpace())) && 9180 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9181 // Before passing 'returned' to the target lowering code, ensure that 9182 // either the register MVT and the actual EVT are the same size or that 9183 // the return value and argument are extended in the same way; in these 9184 // cases it's safe to pass the argument register value unchanged as the 9185 // return register value (although it's at the target's option whether 9186 // to do so) 9187 // TODO: allow code generation to take advantage of partially preserved 9188 // registers rather than clobbering the entire register when the 9189 // parameter extension method is not compatible with the return 9190 // extension method 9191 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9192 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9193 CLI.RetZExt == Args[i].IsZExt)) 9194 Flags.setReturned(); 9195 } 9196 9197 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9198 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9199 9200 for (unsigned j = 0; j != NumParts; ++j) { 9201 // if it isn't first piece, alignment must be 1 9202 // For scalable vectors the scalable part is currently handled 9203 // by individual targets, so we just use the known minimum size here. 9204 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9205 i < CLI.NumFixedArgs, i, 9206 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9207 if (NumParts > 1 && j == 0) 9208 MyFlags.Flags.setSplit(); 9209 else if (j != 0) { 9210 MyFlags.Flags.setOrigAlign(Align(1)); 9211 if (j == NumParts - 1) 9212 MyFlags.Flags.setSplitEnd(); 9213 } 9214 9215 CLI.Outs.push_back(MyFlags); 9216 CLI.OutVals.push_back(Parts[j]); 9217 } 9218 9219 if (NeedsRegBlock && Value == NumValues - 1) 9220 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9221 } 9222 } 9223 9224 SmallVector<SDValue, 4> InVals; 9225 CLI.Chain = LowerCall(CLI, InVals); 9226 9227 // Update CLI.InVals to use outside of this function. 9228 CLI.InVals = InVals; 9229 9230 // Verify that the target's LowerCall behaved as expected. 9231 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9232 "LowerCall didn't return a valid chain!"); 9233 assert((!CLI.IsTailCall || InVals.empty()) && 9234 "LowerCall emitted a return value for a tail call!"); 9235 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9236 "LowerCall didn't emit the correct number of values!"); 9237 9238 // For a tail call, the return value is merely live-out and there aren't 9239 // any nodes in the DAG representing it. Return a special value to 9240 // indicate that a tail call has been emitted and no more Instructions 9241 // should be processed in the current block. 9242 if (CLI.IsTailCall) { 9243 CLI.DAG.setRoot(CLI.Chain); 9244 return std::make_pair(SDValue(), SDValue()); 9245 } 9246 9247 #ifndef NDEBUG 9248 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9249 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9250 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9251 "LowerCall emitted a value with the wrong type!"); 9252 } 9253 #endif 9254 9255 SmallVector<SDValue, 4> ReturnValues; 9256 if (!CanLowerReturn) { 9257 // The instruction result is the result of loading from the 9258 // hidden sret parameter. 9259 SmallVector<EVT, 1> PVTs; 9260 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9261 9262 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9263 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9264 EVT PtrVT = PVTs[0]; 9265 9266 unsigned NumValues = RetTys.size(); 9267 ReturnValues.resize(NumValues); 9268 SmallVector<SDValue, 4> Chains(NumValues); 9269 9270 // An aggregate return value cannot wrap around the address space, so 9271 // offsets to its parts don't wrap either. 9272 SDNodeFlags Flags; 9273 Flags.setNoUnsignedWrap(true); 9274 9275 for (unsigned i = 0; i < NumValues; ++i) { 9276 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9277 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9278 PtrVT), Flags); 9279 SDValue L = CLI.DAG.getLoad( 9280 RetTys[i], CLI.DL, CLI.Chain, Add, 9281 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9282 DemoteStackIdx, Offsets[i]), 9283 /* Alignment = */ 1); 9284 ReturnValues[i] = L; 9285 Chains[i] = L.getValue(1); 9286 } 9287 9288 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9289 } else { 9290 // Collect the legal value parts into potentially illegal values 9291 // that correspond to the original function's return values. 9292 Optional<ISD::NodeType> AssertOp; 9293 if (CLI.RetSExt) 9294 AssertOp = ISD::AssertSext; 9295 else if (CLI.RetZExt) 9296 AssertOp = ISD::AssertZext; 9297 unsigned CurReg = 0; 9298 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9299 EVT VT = RetTys[I]; 9300 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9301 CLI.CallConv, VT); 9302 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9303 CLI.CallConv, VT); 9304 9305 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9306 NumRegs, RegisterVT, VT, nullptr, 9307 CLI.CallConv, AssertOp)); 9308 CurReg += NumRegs; 9309 } 9310 9311 // For a function returning void, there is no return value. We can't create 9312 // such a node, so we just return a null return value in that case. In 9313 // that case, nothing will actually look at the value. 9314 if (ReturnValues.empty()) 9315 return std::make_pair(SDValue(), CLI.Chain); 9316 } 9317 9318 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9319 CLI.DAG.getVTList(RetTys), ReturnValues); 9320 return std::make_pair(Res, CLI.Chain); 9321 } 9322 9323 void TargetLowering::LowerOperationWrapper(SDNode *N, 9324 SmallVectorImpl<SDValue> &Results, 9325 SelectionDAG &DAG) const { 9326 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9327 Results.push_back(Res); 9328 } 9329 9330 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9331 llvm_unreachable("LowerOperation not implemented for this target!"); 9332 } 9333 9334 void 9335 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9336 SDValue Op = getNonRegisterValue(V); 9337 assert((Op.getOpcode() != ISD::CopyFromReg || 9338 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9339 "Copy from a reg to the same reg!"); 9340 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9341 9342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9343 // If this is an InlineAsm we have to match the registers required, not the 9344 // notional registers required by the type. 9345 9346 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9347 None); // This is not an ABI copy. 9348 SDValue Chain = DAG.getEntryNode(); 9349 9350 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9351 FuncInfo.PreferredExtendType.end()) 9352 ? ISD::ANY_EXTEND 9353 : FuncInfo.PreferredExtendType[V]; 9354 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9355 PendingExports.push_back(Chain); 9356 } 9357 9358 #include "llvm/CodeGen/SelectionDAGISel.h" 9359 9360 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9361 /// entry block, return true. This includes arguments used by switches, since 9362 /// the switch may expand into multiple basic blocks. 9363 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9364 // With FastISel active, we may be splitting blocks, so force creation 9365 // of virtual registers for all non-dead arguments. 9366 if (FastISel) 9367 return A->use_empty(); 9368 9369 const BasicBlock &Entry = A->getParent()->front(); 9370 for (const User *U : A->users()) 9371 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9372 return false; // Use not in entry block. 9373 9374 return true; 9375 } 9376 9377 using ArgCopyElisionMapTy = 9378 DenseMap<const Argument *, 9379 std::pair<const AllocaInst *, const StoreInst *>>; 9380 9381 /// Scan the entry block of the function in FuncInfo for arguments that look 9382 /// like copies into a local alloca. Record any copied arguments in 9383 /// ArgCopyElisionCandidates. 9384 static void 9385 findArgumentCopyElisionCandidates(const DataLayout &DL, 9386 FunctionLoweringInfo *FuncInfo, 9387 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9388 // Record the state of every static alloca used in the entry block. Argument 9389 // allocas are all used in the entry block, so we need approximately as many 9390 // entries as we have arguments. 9391 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9392 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9393 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9394 StaticAllocas.reserve(NumArgs * 2); 9395 9396 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9397 if (!V) 9398 return nullptr; 9399 V = V->stripPointerCasts(); 9400 const auto *AI = dyn_cast<AllocaInst>(V); 9401 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9402 return nullptr; 9403 auto Iter = StaticAllocas.insert({AI, Unknown}); 9404 return &Iter.first->second; 9405 }; 9406 9407 // Look for stores of arguments to static allocas. Look through bitcasts and 9408 // GEPs to handle type coercions, as long as the alloca is fully initialized 9409 // by the store. Any non-store use of an alloca escapes it and any subsequent 9410 // unanalyzed store might write it. 9411 // FIXME: Handle structs initialized with multiple stores. 9412 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9413 // Look for stores, and handle non-store uses conservatively. 9414 const auto *SI = dyn_cast<StoreInst>(&I); 9415 if (!SI) { 9416 // We will look through cast uses, so ignore them completely. 9417 if (I.isCast()) 9418 continue; 9419 // Ignore debug info intrinsics, they don't escape or store to allocas. 9420 if (isa<DbgInfoIntrinsic>(I)) 9421 continue; 9422 // This is an unknown instruction. Assume it escapes or writes to all 9423 // static alloca operands. 9424 for (const Use &U : I.operands()) { 9425 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9426 *Info = StaticAllocaInfo::Clobbered; 9427 } 9428 continue; 9429 } 9430 9431 // If the stored value is a static alloca, mark it as escaped. 9432 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9433 *Info = StaticAllocaInfo::Clobbered; 9434 9435 // Check if the destination is a static alloca. 9436 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9437 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9438 if (!Info) 9439 continue; 9440 const AllocaInst *AI = cast<AllocaInst>(Dst); 9441 9442 // Skip allocas that have been initialized or clobbered. 9443 if (*Info != StaticAllocaInfo::Unknown) 9444 continue; 9445 9446 // Check if the stored value is an argument, and that this store fully 9447 // initializes the alloca. Don't elide copies from the same argument twice. 9448 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9449 const auto *Arg = dyn_cast<Argument>(Val); 9450 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9451 Arg->getType()->isEmptyTy() || 9452 DL.getTypeStoreSize(Arg->getType()) != 9453 DL.getTypeAllocSize(AI->getAllocatedType()) || 9454 ArgCopyElisionCandidates.count(Arg)) { 9455 *Info = StaticAllocaInfo::Clobbered; 9456 continue; 9457 } 9458 9459 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9460 << '\n'); 9461 9462 // Mark this alloca and store for argument copy elision. 9463 *Info = StaticAllocaInfo::Elidable; 9464 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9465 9466 // Stop scanning if we've seen all arguments. This will happen early in -O0 9467 // builds, which is useful, because -O0 builds have large entry blocks and 9468 // many allocas. 9469 if (ArgCopyElisionCandidates.size() == NumArgs) 9470 break; 9471 } 9472 } 9473 9474 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9475 /// ArgVal is a load from a suitable fixed stack object. 9476 static void tryToElideArgumentCopy( 9477 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9478 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9479 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9480 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9481 SDValue ArgVal, bool &ArgHasUses) { 9482 // Check if this is a load from a fixed stack object. 9483 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9484 if (!LNode) 9485 return; 9486 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9487 if (!FINode) 9488 return; 9489 9490 // Check that the fixed stack object is the right size and alignment. 9491 // Look at the alignment that the user wrote on the alloca instead of looking 9492 // at the stack object. 9493 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9494 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9495 const AllocaInst *AI = ArgCopyIter->second.first; 9496 int FixedIndex = FINode->getIndex(); 9497 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9498 int OldIndex = AllocaIndex; 9499 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9500 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9501 LLVM_DEBUG( 9502 dbgs() << " argument copy elision failed due to bad fixed stack " 9503 "object size\n"); 9504 return; 9505 } 9506 Align RequiredAlignment = AI->getAlign().getValueOr( 9507 FuncInfo.MF->getDataLayout().getABITypeAlign(AI->getAllocatedType())); 9508 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9509 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9510 "greater than stack argument alignment (" 9511 << DebugStr(RequiredAlignment) << " vs " 9512 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9513 return; 9514 } 9515 9516 // Perform the elision. Delete the old stack object and replace its only use 9517 // in the variable info map. Mark the stack object as mutable. 9518 LLVM_DEBUG({ 9519 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9520 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9521 << '\n'; 9522 }); 9523 MFI.RemoveStackObject(OldIndex); 9524 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9525 AllocaIndex = FixedIndex; 9526 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9527 Chains.push_back(ArgVal.getValue(1)); 9528 9529 // Avoid emitting code for the store implementing the copy. 9530 const StoreInst *SI = ArgCopyIter->second.second; 9531 ElidedArgCopyInstrs.insert(SI); 9532 9533 // Check for uses of the argument again so that we can avoid exporting ArgVal 9534 // if it is't used by anything other than the store. 9535 for (const Value *U : Arg.users()) { 9536 if (U != SI) { 9537 ArgHasUses = true; 9538 break; 9539 } 9540 } 9541 } 9542 9543 void SelectionDAGISel::LowerArguments(const Function &F) { 9544 SelectionDAG &DAG = SDB->DAG; 9545 SDLoc dl = SDB->getCurSDLoc(); 9546 const DataLayout &DL = DAG.getDataLayout(); 9547 SmallVector<ISD::InputArg, 16> Ins; 9548 9549 if (!FuncInfo->CanLowerReturn) { 9550 // Put in an sret pointer parameter before all the other parameters. 9551 SmallVector<EVT, 1> ValueVTs; 9552 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9553 F.getReturnType()->getPointerTo( 9554 DAG.getDataLayout().getAllocaAddrSpace()), 9555 ValueVTs); 9556 9557 // NOTE: Assuming that a pointer will never break down to more than one VT 9558 // or one register. 9559 ISD::ArgFlagsTy Flags; 9560 Flags.setSRet(); 9561 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9562 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9563 ISD::InputArg::NoArgIndex, 0); 9564 Ins.push_back(RetArg); 9565 } 9566 9567 // Look for stores of arguments to static allocas. Mark such arguments with a 9568 // flag to ask the target to give us the memory location of that argument if 9569 // available. 9570 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9571 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9572 ArgCopyElisionCandidates); 9573 9574 // Set up the incoming argument description vector. 9575 for (const Argument &Arg : F.args()) { 9576 unsigned ArgNo = Arg.getArgNo(); 9577 SmallVector<EVT, 4> ValueVTs; 9578 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9579 bool isArgValueUsed = !Arg.use_empty(); 9580 unsigned PartBase = 0; 9581 Type *FinalType = Arg.getType(); 9582 if (Arg.hasAttribute(Attribute::ByVal)) 9583 FinalType = Arg.getParamByValType(); 9584 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9585 FinalType, F.getCallingConv(), F.isVarArg()); 9586 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9587 Value != NumValues; ++Value) { 9588 EVT VT = ValueVTs[Value]; 9589 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9590 ISD::ArgFlagsTy Flags; 9591 9592 // Certain targets (such as MIPS), may have a different ABI alignment 9593 // for a type depending on the context. Give the target a chance to 9594 // specify the alignment it wants. 9595 const Align OriginalAlignment( 9596 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9597 9598 if (Arg.getType()->isPointerTy()) { 9599 Flags.setPointer(); 9600 Flags.setPointerAddrSpace( 9601 cast<PointerType>(Arg.getType())->getAddressSpace()); 9602 } 9603 if (Arg.hasAttribute(Attribute::ZExt)) 9604 Flags.setZExt(); 9605 if (Arg.hasAttribute(Attribute::SExt)) 9606 Flags.setSExt(); 9607 if (Arg.hasAttribute(Attribute::InReg)) { 9608 // If we are using vectorcall calling convention, a structure that is 9609 // passed InReg - is surely an HVA 9610 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9611 isa<StructType>(Arg.getType())) { 9612 // The first value of a structure is marked 9613 if (0 == Value) 9614 Flags.setHvaStart(); 9615 Flags.setHva(); 9616 } 9617 // Set InReg Flag 9618 Flags.setInReg(); 9619 } 9620 if (Arg.hasAttribute(Attribute::StructRet)) 9621 Flags.setSRet(); 9622 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9623 Flags.setSwiftSelf(); 9624 if (Arg.hasAttribute(Attribute::SwiftError)) 9625 Flags.setSwiftError(); 9626 if (Arg.hasAttribute(Attribute::ByVal)) 9627 Flags.setByVal(); 9628 if (Arg.hasAttribute(Attribute::InAlloca)) { 9629 Flags.setInAlloca(); 9630 // Set the byval flag for CCAssignFn callbacks that don't know about 9631 // inalloca. This way we can know how many bytes we should've allocated 9632 // and how many bytes a callee cleanup function will pop. If we port 9633 // inalloca to more targets, we'll have to add custom inalloca handling 9634 // in the various CC lowering callbacks. 9635 Flags.setByVal(); 9636 } 9637 if (F.getCallingConv() == CallingConv::X86_INTR) { 9638 // IA Interrupt passes frame (1st parameter) by value in the stack. 9639 if (ArgNo == 0) 9640 Flags.setByVal(); 9641 } 9642 if (Flags.isByVal() || Flags.isInAlloca()) { 9643 Type *ElementTy = Arg.getParamByValType(); 9644 9645 // For ByVal, size and alignment should be passed from FE. BE will 9646 // guess if this info is not there but there are cases it cannot get 9647 // right. 9648 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9649 Flags.setByValSize(FrameSize); 9650 9651 unsigned FrameAlign; 9652 if (Arg.getParamAlignment()) 9653 FrameAlign = Arg.getParamAlignment(); 9654 else 9655 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9656 Flags.setByValAlign(Align(FrameAlign)); 9657 } 9658 if (Arg.hasAttribute(Attribute::Nest)) 9659 Flags.setNest(); 9660 if (NeedsRegBlock) 9661 Flags.setInConsecutiveRegs(); 9662 Flags.setOrigAlign(OriginalAlignment); 9663 if (ArgCopyElisionCandidates.count(&Arg)) 9664 Flags.setCopyElisionCandidate(); 9665 if (Arg.hasAttribute(Attribute::Returned)) 9666 Flags.setReturned(); 9667 9668 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9669 *CurDAG->getContext(), F.getCallingConv(), VT); 9670 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9671 *CurDAG->getContext(), F.getCallingConv(), VT); 9672 for (unsigned i = 0; i != NumRegs; ++i) { 9673 // For scalable vectors, use the minimum size; individual targets 9674 // are responsible for handling scalable vector arguments and 9675 // return values. 9676 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9677 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9678 if (NumRegs > 1 && i == 0) 9679 MyFlags.Flags.setSplit(); 9680 // if it isn't first piece, alignment must be 1 9681 else if (i > 0) { 9682 MyFlags.Flags.setOrigAlign(Align(1)); 9683 if (i == NumRegs - 1) 9684 MyFlags.Flags.setSplitEnd(); 9685 } 9686 Ins.push_back(MyFlags); 9687 } 9688 if (NeedsRegBlock && Value == NumValues - 1) 9689 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9690 PartBase += VT.getStoreSize().getKnownMinSize(); 9691 } 9692 } 9693 9694 // Call the target to set up the argument values. 9695 SmallVector<SDValue, 8> InVals; 9696 SDValue NewRoot = TLI->LowerFormalArguments( 9697 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9698 9699 // Verify that the target's LowerFormalArguments behaved as expected. 9700 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9701 "LowerFormalArguments didn't return a valid chain!"); 9702 assert(InVals.size() == Ins.size() && 9703 "LowerFormalArguments didn't emit the correct number of values!"); 9704 LLVM_DEBUG({ 9705 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9706 assert(InVals[i].getNode() && 9707 "LowerFormalArguments emitted a null value!"); 9708 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9709 "LowerFormalArguments emitted a value with the wrong type!"); 9710 } 9711 }); 9712 9713 // Update the DAG with the new chain value resulting from argument lowering. 9714 DAG.setRoot(NewRoot); 9715 9716 // Set up the argument values. 9717 unsigned i = 0; 9718 if (!FuncInfo->CanLowerReturn) { 9719 // Create a virtual register for the sret pointer, and put in a copy 9720 // from the sret argument into it. 9721 SmallVector<EVT, 1> ValueVTs; 9722 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9723 F.getReturnType()->getPointerTo( 9724 DAG.getDataLayout().getAllocaAddrSpace()), 9725 ValueVTs); 9726 MVT VT = ValueVTs[0].getSimpleVT(); 9727 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9728 Optional<ISD::NodeType> AssertOp = None; 9729 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9730 nullptr, F.getCallingConv(), AssertOp); 9731 9732 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9733 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9734 Register SRetReg = 9735 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9736 FuncInfo->DemoteRegister = SRetReg; 9737 NewRoot = 9738 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9739 DAG.setRoot(NewRoot); 9740 9741 // i indexes lowered arguments. Bump it past the hidden sret argument. 9742 ++i; 9743 } 9744 9745 SmallVector<SDValue, 4> Chains; 9746 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9747 for (const Argument &Arg : F.args()) { 9748 SmallVector<SDValue, 4> ArgValues; 9749 SmallVector<EVT, 4> ValueVTs; 9750 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9751 unsigned NumValues = ValueVTs.size(); 9752 if (NumValues == 0) 9753 continue; 9754 9755 bool ArgHasUses = !Arg.use_empty(); 9756 9757 // Elide the copying store if the target loaded this argument from a 9758 // suitable fixed stack object. 9759 if (Ins[i].Flags.isCopyElisionCandidate()) { 9760 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9761 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9762 InVals[i], ArgHasUses); 9763 } 9764 9765 // If this argument is unused then remember its value. It is used to generate 9766 // debugging information. 9767 bool isSwiftErrorArg = 9768 TLI->supportSwiftError() && 9769 Arg.hasAttribute(Attribute::SwiftError); 9770 if (!ArgHasUses && !isSwiftErrorArg) { 9771 SDB->setUnusedArgValue(&Arg, InVals[i]); 9772 9773 // Also remember any frame index for use in FastISel. 9774 if (FrameIndexSDNode *FI = 9775 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9776 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9777 } 9778 9779 for (unsigned Val = 0; Val != NumValues; ++Val) { 9780 EVT VT = ValueVTs[Val]; 9781 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9782 F.getCallingConv(), VT); 9783 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9784 *CurDAG->getContext(), F.getCallingConv(), VT); 9785 9786 // Even an apparent 'unused' swifterror argument needs to be returned. So 9787 // we do generate a copy for it that can be used on return from the 9788 // function. 9789 if (ArgHasUses || isSwiftErrorArg) { 9790 Optional<ISD::NodeType> AssertOp; 9791 if (Arg.hasAttribute(Attribute::SExt)) 9792 AssertOp = ISD::AssertSext; 9793 else if (Arg.hasAttribute(Attribute::ZExt)) 9794 AssertOp = ISD::AssertZext; 9795 9796 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9797 PartVT, VT, nullptr, 9798 F.getCallingConv(), AssertOp)); 9799 } 9800 9801 i += NumParts; 9802 } 9803 9804 // We don't need to do anything else for unused arguments. 9805 if (ArgValues.empty()) 9806 continue; 9807 9808 // Note down frame index. 9809 if (FrameIndexSDNode *FI = 9810 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9811 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9812 9813 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9814 SDB->getCurSDLoc()); 9815 9816 SDB->setValue(&Arg, Res); 9817 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9818 // We want to associate the argument with the frame index, among 9819 // involved operands, that correspond to the lowest address. The 9820 // getCopyFromParts function, called earlier, is swapping the order of 9821 // the operands to BUILD_PAIR depending on endianness. The result of 9822 // that swapping is that the least significant bits of the argument will 9823 // be in the first operand of the BUILD_PAIR node, and the most 9824 // significant bits will be in the second operand. 9825 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9826 if (LoadSDNode *LNode = 9827 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9828 if (FrameIndexSDNode *FI = 9829 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9830 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9831 } 9832 9833 // Analyses past this point are naive and don't expect an assertion. 9834 if (Res.getOpcode() == ISD::AssertZext) 9835 Res = Res.getOperand(0); 9836 9837 // Update the SwiftErrorVRegDefMap. 9838 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9839 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9840 if (Register::isVirtualRegister(Reg)) 9841 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9842 Reg); 9843 } 9844 9845 // If this argument is live outside of the entry block, insert a copy from 9846 // wherever we got it to the vreg that other BB's will reference it as. 9847 if (Res.getOpcode() == ISD::CopyFromReg) { 9848 // If we can, though, try to skip creating an unnecessary vreg. 9849 // FIXME: This isn't very clean... it would be nice to make this more 9850 // general. 9851 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9852 if (Register::isVirtualRegister(Reg)) { 9853 FuncInfo->ValueMap[&Arg] = Reg; 9854 continue; 9855 } 9856 } 9857 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9858 FuncInfo->InitializeRegForValue(&Arg); 9859 SDB->CopyToExportRegsIfNeeded(&Arg); 9860 } 9861 } 9862 9863 if (!Chains.empty()) { 9864 Chains.push_back(NewRoot); 9865 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9866 } 9867 9868 DAG.setRoot(NewRoot); 9869 9870 assert(i == InVals.size() && "Argument register count mismatch!"); 9871 9872 // If any argument copy elisions occurred and we have debug info, update the 9873 // stale frame indices used in the dbg.declare variable info table. 9874 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9875 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9876 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9877 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9878 if (I != ArgCopyElisionFrameIndexMap.end()) 9879 VI.Slot = I->second; 9880 } 9881 } 9882 9883 // Finally, if the target has anything special to do, allow it to do so. 9884 emitFunctionEntryCode(); 9885 } 9886 9887 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9888 /// ensure constants are generated when needed. Remember the virtual registers 9889 /// that need to be added to the Machine PHI nodes as input. We cannot just 9890 /// directly add them, because expansion might result in multiple MBB's for one 9891 /// BB. As such, the start of the BB might correspond to a different MBB than 9892 /// the end. 9893 void 9894 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9895 const Instruction *TI = LLVMBB->getTerminator(); 9896 9897 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9898 9899 // Check PHI nodes in successors that expect a value to be available from this 9900 // block. 9901 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9902 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9903 if (!isa<PHINode>(SuccBB->begin())) continue; 9904 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9905 9906 // If this terminator has multiple identical successors (common for 9907 // switches), only handle each succ once. 9908 if (!SuccsHandled.insert(SuccMBB).second) 9909 continue; 9910 9911 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9912 9913 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9914 // nodes and Machine PHI nodes, but the incoming operands have not been 9915 // emitted yet. 9916 for (const PHINode &PN : SuccBB->phis()) { 9917 // Ignore dead phi's. 9918 if (PN.use_empty()) 9919 continue; 9920 9921 // Skip empty types 9922 if (PN.getType()->isEmptyTy()) 9923 continue; 9924 9925 unsigned Reg; 9926 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9927 9928 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9929 unsigned &RegOut = ConstantsOut[C]; 9930 if (RegOut == 0) { 9931 RegOut = FuncInfo.CreateRegs(C); 9932 CopyValueToVirtualRegister(C, RegOut); 9933 } 9934 Reg = RegOut; 9935 } else { 9936 DenseMap<const Value *, unsigned>::iterator I = 9937 FuncInfo.ValueMap.find(PHIOp); 9938 if (I != FuncInfo.ValueMap.end()) 9939 Reg = I->second; 9940 else { 9941 assert(isa<AllocaInst>(PHIOp) && 9942 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9943 "Didn't codegen value into a register!??"); 9944 Reg = FuncInfo.CreateRegs(PHIOp); 9945 CopyValueToVirtualRegister(PHIOp, Reg); 9946 } 9947 } 9948 9949 // Remember that this register needs to added to the machine PHI node as 9950 // the input for this MBB. 9951 SmallVector<EVT, 4> ValueVTs; 9952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9953 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9954 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9955 EVT VT = ValueVTs[vti]; 9956 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9957 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9958 FuncInfo.PHINodesToUpdate.push_back( 9959 std::make_pair(&*MBBI++, Reg + i)); 9960 Reg += NumRegisters; 9961 } 9962 } 9963 } 9964 9965 ConstantsOut.clear(); 9966 } 9967 9968 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9969 /// is 0. 9970 MachineBasicBlock * 9971 SelectionDAGBuilder::StackProtectorDescriptor:: 9972 AddSuccessorMBB(const BasicBlock *BB, 9973 MachineBasicBlock *ParentMBB, 9974 bool IsLikely, 9975 MachineBasicBlock *SuccMBB) { 9976 // If SuccBB has not been created yet, create it. 9977 if (!SuccMBB) { 9978 MachineFunction *MF = ParentMBB->getParent(); 9979 MachineFunction::iterator BBI(ParentMBB); 9980 SuccMBB = MF->CreateMachineBasicBlock(BB); 9981 MF->insert(++BBI, SuccMBB); 9982 } 9983 // Add it as a successor of ParentMBB. 9984 ParentMBB->addSuccessor( 9985 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9986 return SuccMBB; 9987 } 9988 9989 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9990 MachineFunction::iterator I(MBB); 9991 if (++I == FuncInfo.MF->end()) 9992 return nullptr; 9993 return &*I; 9994 } 9995 9996 /// During lowering new call nodes can be created (such as memset, etc.). 9997 /// Those will become new roots of the current DAG, but complications arise 9998 /// when they are tail calls. In such cases, the call lowering will update 9999 /// the root, but the builder still needs to know that a tail call has been 10000 /// lowered in order to avoid generating an additional return. 10001 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10002 // If the node is null, we do have a tail call. 10003 if (MaybeTC.getNode() != nullptr) 10004 DAG.setRoot(MaybeTC); 10005 else 10006 HasTailCall = true; 10007 } 10008 10009 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10010 MachineBasicBlock *SwitchMBB, 10011 MachineBasicBlock *DefaultMBB) { 10012 MachineFunction *CurMF = FuncInfo.MF; 10013 MachineBasicBlock *NextMBB = nullptr; 10014 MachineFunction::iterator BBI(W.MBB); 10015 if (++BBI != FuncInfo.MF->end()) 10016 NextMBB = &*BBI; 10017 10018 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10019 10020 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10021 10022 if (Size == 2 && W.MBB == SwitchMBB) { 10023 // If any two of the cases has the same destination, and if one value 10024 // is the same as the other, but has one bit unset that the other has set, 10025 // use bit manipulation to do two compares at once. For example: 10026 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10027 // TODO: This could be extended to merge any 2 cases in switches with 3 10028 // cases. 10029 // TODO: Handle cases where W.CaseBB != SwitchBB. 10030 CaseCluster &Small = *W.FirstCluster; 10031 CaseCluster &Big = *W.LastCluster; 10032 10033 if (Small.Low == Small.High && Big.Low == Big.High && 10034 Small.MBB == Big.MBB) { 10035 const APInt &SmallValue = Small.Low->getValue(); 10036 const APInt &BigValue = Big.Low->getValue(); 10037 10038 // Check that there is only one bit different. 10039 APInt CommonBit = BigValue ^ SmallValue; 10040 if (CommonBit.isPowerOf2()) { 10041 SDValue CondLHS = getValue(Cond); 10042 EVT VT = CondLHS.getValueType(); 10043 SDLoc DL = getCurSDLoc(); 10044 10045 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10046 DAG.getConstant(CommonBit, DL, VT)); 10047 SDValue Cond = DAG.getSetCC( 10048 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10049 ISD::SETEQ); 10050 10051 // Update successor info. 10052 // Both Small and Big will jump to Small.BB, so we sum up the 10053 // probabilities. 10054 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10055 if (BPI) 10056 addSuccessorWithProb( 10057 SwitchMBB, DefaultMBB, 10058 // The default destination is the first successor in IR. 10059 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10060 else 10061 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10062 10063 // Insert the true branch. 10064 SDValue BrCond = 10065 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10066 DAG.getBasicBlock(Small.MBB)); 10067 // Insert the false branch. 10068 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10069 DAG.getBasicBlock(DefaultMBB)); 10070 10071 DAG.setRoot(BrCond); 10072 return; 10073 } 10074 } 10075 } 10076 10077 if (TM.getOptLevel() != CodeGenOpt::None) { 10078 // Here, we order cases by probability so the most likely case will be 10079 // checked first. However, two clusters can have the same probability in 10080 // which case their relative ordering is non-deterministic. So we use Low 10081 // as a tie-breaker as clusters are guaranteed to never overlap. 10082 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10083 [](const CaseCluster &a, const CaseCluster &b) { 10084 return a.Prob != b.Prob ? 10085 a.Prob > b.Prob : 10086 a.Low->getValue().slt(b.Low->getValue()); 10087 }); 10088 10089 // Rearrange the case blocks so that the last one falls through if possible 10090 // without changing the order of probabilities. 10091 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10092 --I; 10093 if (I->Prob > W.LastCluster->Prob) 10094 break; 10095 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10096 std::swap(*I, *W.LastCluster); 10097 break; 10098 } 10099 } 10100 } 10101 10102 // Compute total probability. 10103 BranchProbability DefaultProb = W.DefaultProb; 10104 BranchProbability UnhandledProbs = DefaultProb; 10105 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10106 UnhandledProbs += I->Prob; 10107 10108 MachineBasicBlock *CurMBB = W.MBB; 10109 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10110 bool FallthroughUnreachable = false; 10111 MachineBasicBlock *Fallthrough; 10112 if (I == W.LastCluster) { 10113 // For the last cluster, fall through to the default destination. 10114 Fallthrough = DefaultMBB; 10115 FallthroughUnreachable = isa<UnreachableInst>( 10116 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10117 } else { 10118 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10119 CurMF->insert(BBI, Fallthrough); 10120 // Put Cond in a virtual register to make it available from the new blocks. 10121 ExportFromCurrentBlock(Cond); 10122 } 10123 UnhandledProbs -= I->Prob; 10124 10125 switch (I->Kind) { 10126 case CC_JumpTable: { 10127 // FIXME: Optimize away range check based on pivot comparisons. 10128 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10129 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10130 10131 // The jump block hasn't been inserted yet; insert it here. 10132 MachineBasicBlock *JumpMBB = JT->MBB; 10133 CurMF->insert(BBI, JumpMBB); 10134 10135 auto JumpProb = I->Prob; 10136 auto FallthroughProb = UnhandledProbs; 10137 10138 // If the default statement is a target of the jump table, we evenly 10139 // distribute the default probability to successors of CurMBB. Also 10140 // update the probability on the edge from JumpMBB to Fallthrough. 10141 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10142 SE = JumpMBB->succ_end(); 10143 SI != SE; ++SI) { 10144 if (*SI == DefaultMBB) { 10145 JumpProb += DefaultProb / 2; 10146 FallthroughProb -= DefaultProb / 2; 10147 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10148 JumpMBB->normalizeSuccProbs(); 10149 break; 10150 } 10151 } 10152 10153 if (FallthroughUnreachable) { 10154 // Skip the range check if the fallthrough block is unreachable. 10155 JTH->OmitRangeCheck = true; 10156 } 10157 10158 if (!JTH->OmitRangeCheck) 10159 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10160 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10161 CurMBB->normalizeSuccProbs(); 10162 10163 // The jump table header will be inserted in our current block, do the 10164 // range check, and fall through to our fallthrough block. 10165 JTH->HeaderBB = CurMBB; 10166 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10167 10168 // If we're in the right place, emit the jump table header right now. 10169 if (CurMBB == SwitchMBB) { 10170 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10171 JTH->Emitted = true; 10172 } 10173 break; 10174 } 10175 case CC_BitTests: { 10176 // FIXME: Optimize away range check based on pivot comparisons. 10177 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10178 10179 // The bit test blocks haven't been inserted yet; insert them here. 10180 for (BitTestCase &BTC : BTB->Cases) 10181 CurMF->insert(BBI, BTC.ThisBB); 10182 10183 // Fill in fields of the BitTestBlock. 10184 BTB->Parent = CurMBB; 10185 BTB->Default = Fallthrough; 10186 10187 BTB->DefaultProb = UnhandledProbs; 10188 // If the cases in bit test don't form a contiguous range, we evenly 10189 // distribute the probability on the edge to Fallthrough to two 10190 // successors of CurMBB. 10191 if (!BTB->ContiguousRange) { 10192 BTB->Prob += DefaultProb / 2; 10193 BTB->DefaultProb -= DefaultProb / 2; 10194 } 10195 10196 if (FallthroughUnreachable) { 10197 // Skip the range check if the fallthrough block is unreachable. 10198 BTB->OmitRangeCheck = true; 10199 } 10200 10201 // If we're in the right place, emit the bit test header right now. 10202 if (CurMBB == SwitchMBB) { 10203 visitBitTestHeader(*BTB, SwitchMBB); 10204 BTB->Emitted = true; 10205 } 10206 break; 10207 } 10208 case CC_Range: { 10209 const Value *RHS, *LHS, *MHS; 10210 ISD::CondCode CC; 10211 if (I->Low == I->High) { 10212 // Check Cond == I->Low. 10213 CC = ISD::SETEQ; 10214 LHS = Cond; 10215 RHS=I->Low; 10216 MHS = nullptr; 10217 } else { 10218 // Check I->Low <= Cond <= I->High. 10219 CC = ISD::SETLE; 10220 LHS = I->Low; 10221 MHS = Cond; 10222 RHS = I->High; 10223 } 10224 10225 // If Fallthrough is unreachable, fold away the comparison. 10226 if (FallthroughUnreachable) 10227 CC = ISD::SETTRUE; 10228 10229 // The false probability is the sum of all unhandled cases. 10230 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10231 getCurSDLoc(), I->Prob, UnhandledProbs); 10232 10233 if (CurMBB == SwitchMBB) 10234 visitSwitchCase(CB, SwitchMBB); 10235 else 10236 SL->SwitchCases.push_back(CB); 10237 10238 break; 10239 } 10240 } 10241 CurMBB = Fallthrough; 10242 } 10243 } 10244 10245 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10246 CaseClusterIt First, 10247 CaseClusterIt Last) { 10248 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10249 if (X.Prob != CC.Prob) 10250 return X.Prob > CC.Prob; 10251 10252 // Ties are broken by comparing the case value. 10253 return X.Low->getValue().slt(CC.Low->getValue()); 10254 }); 10255 } 10256 10257 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10258 const SwitchWorkListItem &W, 10259 Value *Cond, 10260 MachineBasicBlock *SwitchMBB) { 10261 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10262 "Clusters not sorted?"); 10263 10264 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10265 10266 // Balance the tree based on branch probabilities to create a near-optimal (in 10267 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10268 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10269 CaseClusterIt LastLeft = W.FirstCluster; 10270 CaseClusterIt FirstRight = W.LastCluster; 10271 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10272 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10273 10274 // Move LastLeft and FirstRight towards each other from opposite directions to 10275 // find a partitioning of the clusters which balances the probability on both 10276 // sides. If LeftProb and RightProb are equal, alternate which side is 10277 // taken to ensure 0-probability nodes are distributed evenly. 10278 unsigned I = 0; 10279 while (LastLeft + 1 < FirstRight) { 10280 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10281 LeftProb += (++LastLeft)->Prob; 10282 else 10283 RightProb += (--FirstRight)->Prob; 10284 I++; 10285 } 10286 10287 while (true) { 10288 // Our binary search tree differs from a typical BST in that ours can have up 10289 // to three values in each leaf. The pivot selection above doesn't take that 10290 // into account, which means the tree might require more nodes and be less 10291 // efficient. We compensate for this here. 10292 10293 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10294 unsigned NumRight = W.LastCluster - FirstRight + 1; 10295 10296 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10297 // If one side has less than 3 clusters, and the other has more than 3, 10298 // consider taking a cluster from the other side. 10299 10300 if (NumLeft < NumRight) { 10301 // Consider moving the first cluster on the right to the left side. 10302 CaseCluster &CC = *FirstRight; 10303 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10304 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10305 if (LeftSideRank <= RightSideRank) { 10306 // Moving the cluster to the left does not demote it. 10307 ++LastLeft; 10308 ++FirstRight; 10309 continue; 10310 } 10311 } else { 10312 assert(NumRight < NumLeft); 10313 // Consider moving the last element on the left to the right side. 10314 CaseCluster &CC = *LastLeft; 10315 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10316 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10317 if (RightSideRank <= LeftSideRank) { 10318 // Moving the cluster to the right does not demot it. 10319 --LastLeft; 10320 --FirstRight; 10321 continue; 10322 } 10323 } 10324 } 10325 break; 10326 } 10327 10328 assert(LastLeft + 1 == FirstRight); 10329 assert(LastLeft >= W.FirstCluster); 10330 assert(FirstRight <= W.LastCluster); 10331 10332 // Use the first element on the right as pivot since we will make less-than 10333 // comparisons against it. 10334 CaseClusterIt PivotCluster = FirstRight; 10335 assert(PivotCluster > W.FirstCluster); 10336 assert(PivotCluster <= W.LastCluster); 10337 10338 CaseClusterIt FirstLeft = W.FirstCluster; 10339 CaseClusterIt LastRight = W.LastCluster; 10340 10341 const ConstantInt *Pivot = PivotCluster->Low; 10342 10343 // New blocks will be inserted immediately after the current one. 10344 MachineFunction::iterator BBI(W.MBB); 10345 ++BBI; 10346 10347 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10348 // we can branch to its destination directly if it's squeezed exactly in 10349 // between the known lower bound and Pivot - 1. 10350 MachineBasicBlock *LeftMBB; 10351 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10352 FirstLeft->Low == W.GE && 10353 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10354 LeftMBB = FirstLeft->MBB; 10355 } else { 10356 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10357 FuncInfo.MF->insert(BBI, LeftMBB); 10358 WorkList.push_back( 10359 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10360 // Put Cond in a virtual register to make it available from the new blocks. 10361 ExportFromCurrentBlock(Cond); 10362 } 10363 10364 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10365 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10366 // directly if RHS.High equals the current upper bound. 10367 MachineBasicBlock *RightMBB; 10368 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10369 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10370 RightMBB = FirstRight->MBB; 10371 } else { 10372 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10373 FuncInfo.MF->insert(BBI, RightMBB); 10374 WorkList.push_back( 10375 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10376 // Put Cond in a virtual register to make it available from the new blocks. 10377 ExportFromCurrentBlock(Cond); 10378 } 10379 10380 // Create the CaseBlock record that will be used to lower the branch. 10381 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10382 getCurSDLoc(), LeftProb, RightProb); 10383 10384 if (W.MBB == SwitchMBB) 10385 visitSwitchCase(CB, SwitchMBB); 10386 else 10387 SL->SwitchCases.push_back(CB); 10388 } 10389 10390 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10391 // from the swith statement. 10392 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10393 BranchProbability PeeledCaseProb) { 10394 if (PeeledCaseProb == BranchProbability::getOne()) 10395 return BranchProbability::getZero(); 10396 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10397 10398 uint32_t Numerator = CaseProb.getNumerator(); 10399 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10400 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10401 } 10402 10403 // Try to peel the top probability case if it exceeds the threshold. 10404 // Return current MachineBasicBlock for the switch statement if the peeling 10405 // does not occur. 10406 // If the peeling is performed, return the newly created MachineBasicBlock 10407 // for the peeled switch statement. Also update Clusters to remove the peeled 10408 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10409 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10410 const SwitchInst &SI, CaseClusterVector &Clusters, 10411 BranchProbability &PeeledCaseProb) { 10412 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10413 // Don't perform if there is only one cluster or optimizing for size. 10414 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10415 TM.getOptLevel() == CodeGenOpt::None || 10416 SwitchMBB->getParent()->getFunction().hasMinSize()) 10417 return SwitchMBB; 10418 10419 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10420 unsigned PeeledCaseIndex = 0; 10421 bool SwitchPeeled = false; 10422 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10423 CaseCluster &CC = Clusters[Index]; 10424 if (CC.Prob < TopCaseProb) 10425 continue; 10426 TopCaseProb = CC.Prob; 10427 PeeledCaseIndex = Index; 10428 SwitchPeeled = true; 10429 } 10430 if (!SwitchPeeled) 10431 return SwitchMBB; 10432 10433 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10434 << TopCaseProb << "\n"); 10435 10436 // Record the MBB for the peeled switch statement. 10437 MachineFunction::iterator BBI(SwitchMBB); 10438 ++BBI; 10439 MachineBasicBlock *PeeledSwitchMBB = 10440 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10441 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10442 10443 ExportFromCurrentBlock(SI.getCondition()); 10444 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10445 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10446 nullptr, nullptr, TopCaseProb.getCompl()}; 10447 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10448 10449 Clusters.erase(PeeledCaseIt); 10450 for (CaseCluster &CC : Clusters) { 10451 LLVM_DEBUG( 10452 dbgs() << "Scale the probablity for one cluster, before scaling: " 10453 << CC.Prob << "\n"); 10454 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10455 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10456 } 10457 PeeledCaseProb = TopCaseProb; 10458 return PeeledSwitchMBB; 10459 } 10460 10461 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10462 // Extract cases from the switch. 10463 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10464 CaseClusterVector Clusters; 10465 Clusters.reserve(SI.getNumCases()); 10466 for (auto I : SI.cases()) { 10467 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10468 const ConstantInt *CaseVal = I.getCaseValue(); 10469 BranchProbability Prob = 10470 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10471 : BranchProbability(1, SI.getNumCases() + 1); 10472 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10473 } 10474 10475 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10476 10477 // Cluster adjacent cases with the same destination. We do this at all 10478 // optimization levels because it's cheap to do and will make codegen faster 10479 // if there are many clusters. 10480 sortAndRangeify(Clusters); 10481 10482 // The branch probablity of the peeled case. 10483 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10484 MachineBasicBlock *PeeledSwitchMBB = 10485 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10486 10487 // If there is only the default destination, jump there directly. 10488 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10489 if (Clusters.empty()) { 10490 assert(PeeledSwitchMBB == SwitchMBB); 10491 SwitchMBB->addSuccessor(DefaultMBB); 10492 if (DefaultMBB != NextBlock(SwitchMBB)) { 10493 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10494 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10495 } 10496 return; 10497 } 10498 10499 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10500 SL->findBitTestClusters(Clusters, &SI); 10501 10502 LLVM_DEBUG({ 10503 dbgs() << "Case clusters: "; 10504 for (const CaseCluster &C : Clusters) { 10505 if (C.Kind == CC_JumpTable) 10506 dbgs() << "JT:"; 10507 if (C.Kind == CC_BitTests) 10508 dbgs() << "BT:"; 10509 10510 C.Low->getValue().print(dbgs(), true); 10511 if (C.Low != C.High) { 10512 dbgs() << '-'; 10513 C.High->getValue().print(dbgs(), true); 10514 } 10515 dbgs() << ' '; 10516 } 10517 dbgs() << '\n'; 10518 }); 10519 10520 assert(!Clusters.empty()); 10521 SwitchWorkList WorkList; 10522 CaseClusterIt First = Clusters.begin(); 10523 CaseClusterIt Last = Clusters.end() - 1; 10524 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10525 // Scale the branchprobability for DefaultMBB if the peel occurs and 10526 // DefaultMBB is not replaced. 10527 if (PeeledCaseProb != BranchProbability::getZero() && 10528 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10529 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10530 WorkList.push_back( 10531 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10532 10533 while (!WorkList.empty()) { 10534 SwitchWorkListItem W = WorkList.back(); 10535 WorkList.pop_back(); 10536 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10537 10538 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10539 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10540 // For optimized builds, lower large range as a balanced binary tree. 10541 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10542 continue; 10543 } 10544 10545 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10546 } 10547 } 10548 10549 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10550 SmallVector<EVT, 4> ValueVTs; 10551 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10552 ValueVTs); 10553 unsigned NumValues = ValueVTs.size(); 10554 if (NumValues == 0) return; 10555 10556 SmallVector<SDValue, 4> Values(NumValues); 10557 SDValue Op = getValue(I.getOperand(0)); 10558 10559 for (unsigned i = 0; i != NumValues; ++i) 10560 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10561 SDValue(Op.getNode(), Op.getResNo() + i)); 10562 10563 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10564 DAG.getVTList(ValueVTs), Values)); 10565 } 10566