1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (TLI.isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 168 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 169 TLI.getPointerTy())); 170 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 171 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 172 } 173 } else if (PartVT.isFloatingPoint()) { 174 // FP split into multiple FP parts (for ppcf128) 175 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 176 "Unexpected split"); 177 SDValue Lo, Hi; 178 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 179 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 180 if (TLI.hasBigEndianPartOrdering(ValueVT)) 181 std::swap(Lo, Hi); 182 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 183 } else { 184 // FP split into integer parts (soft fp) 185 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 186 !PartVT.isVector() && "Unexpected split"); 187 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 188 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 189 } 190 } 191 192 // There is now one part, held in Val. Correct it to match ValueVT. 193 EVT PartEVT = Val.getValueType(); 194 195 if (PartEVT == ValueVT) 196 return Val; 197 198 if (PartEVT.isInteger() && ValueVT.isInteger()) { 199 if (ValueVT.bitsLT(PartEVT)) { 200 // For a truncate, see if we have any information to 201 // indicate whether the truncated bits will always be 202 // zero or sign-extension. 203 if (AssertOp != ISD::DELETED_NODE) 204 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 205 DAG.getValueType(ValueVT)); 206 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 207 } 208 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 212 // FP_ROUND's are always exact here. 213 if (ValueVT.bitsLT(Val.getValueType())) 214 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 215 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 216 217 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 218 } 219 220 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 221 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 222 223 llvm_unreachable("Unknown mismatch!"); 224 } 225 226 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 227 const Twine &ErrMsg) { 228 const Instruction *I = dyn_cast_or_null<Instruction>(V); 229 if (!V) 230 return Ctx.emitError(ErrMsg); 231 232 const char *AsmError = ", possible invalid constraint for vector type"; 233 if (const CallInst *CI = dyn_cast<CallInst>(I)) 234 if (isa<InlineAsm>(CI->getCalledValue())) 235 return Ctx.emitError(I, ErrMsg + AsmError); 236 237 return Ctx.emitError(I, ErrMsg); 238 } 239 240 /// getCopyFromPartsVector - Create a value that contains the specified legal 241 /// parts combined into the value they represent. If the parts combine to a 242 /// type larger then ValueVT then AssertOp can be used to specify whether the 243 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 244 /// ValueVT (ISD::AssertSext). 245 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 246 const SDValue *Parts, unsigned NumParts, 247 MVT PartVT, EVT ValueVT, const Value *V) { 248 assert(ValueVT.isVector() && "Not a vector value"); 249 assert(NumParts > 0 && "No parts to assemble!"); 250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 251 SDValue Val = Parts[0]; 252 253 // Handle a multi-element vector. 254 if (NumParts > 1) { 255 EVT IntermediateVT; 256 MVT RegisterVT; 257 unsigned NumIntermediates; 258 unsigned NumRegs = 259 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 260 NumIntermediates, RegisterVT); 261 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 262 NumParts = NumRegs; // Silence a compiler warning. 263 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 264 assert(RegisterVT == Parts[0].getSimpleValueType() && 265 "Part type doesn't match part!"); 266 267 // Assemble the parts into intermediate operands. 268 SmallVector<SDValue, 8> Ops(NumIntermediates); 269 if (NumIntermediates == NumParts) { 270 // If the register was not expanded, truncate or copy the value, 271 // as appropriate. 272 for (unsigned i = 0; i != NumParts; ++i) 273 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 274 PartVT, IntermediateVT, V); 275 } else if (NumParts > 0) { 276 // If the intermediate type was expanded, build the intermediate 277 // operands from the parts. 278 assert(NumParts % NumIntermediates == 0 && 279 "Must expand into a divisible number of parts!"); 280 unsigned Factor = NumParts / NumIntermediates; 281 for (unsigned i = 0; i != NumIntermediates; ++i) 282 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 283 PartVT, IntermediateVT, V); 284 } 285 286 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 287 // intermediate operands. 288 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 289 : ISD::BUILD_VECTOR, 290 DL, ValueVT, Ops); 291 } 292 293 // There is now one part, held in Val. Correct it to match ValueVT. 294 EVT PartEVT = Val.getValueType(); 295 296 if (PartEVT == ValueVT) 297 return Val; 298 299 if (PartEVT.isVector()) { 300 // If the element type of the source/dest vectors are the same, but the 301 // parts vector has more elements than the value vector, then we have a 302 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 303 // elements we want. 304 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 305 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 306 "Cannot narrow, it would be a lossy transformation"); 307 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 308 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 309 } 310 311 // Vector/Vector bitcast. 312 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 313 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 314 315 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 316 "Cannot handle this kind of promotion"); 317 // Promoted vector extract 318 bool Smaller = ValueVT.bitsLE(PartEVT); 319 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 320 DL, ValueVT, Val); 321 322 } 323 324 // Trivial bitcast if the types are the same size and the destination 325 // vector type is legal. 326 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 327 TLI.isTypeLegal(ValueVT)) 328 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 329 330 // Handle cases such as i8 -> <1 x i1> 331 if (ValueVT.getVectorNumElements() != 1) { 332 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 333 "non-trivial scalar-to-vector conversion"); 334 return DAG.getUNDEF(ValueVT); 335 } 336 337 if (ValueVT.getVectorNumElements() == 1 && 338 ValueVT.getVectorElementType() != PartEVT) { 339 bool Smaller = ValueVT.bitsLE(PartEVT); 340 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 341 DL, ValueVT.getScalarType(), Val); 342 } 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 365 unsigned PartBits = PartVT.getSizeInBits(); 366 unsigned OrigNumParts = NumParts; 367 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (TLI.isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (TLI.isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 500 ElementVT, Val, DAG.getConstant(i, DL, 501 TLI.getVectorIdxTy()))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 bool Smaller = PartEVT.bitsLE(ValueVT); 520 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 521 DL, PartVT, Val); 522 } else{ 523 // Vector -> scalar conversion. 524 assert(ValueVT.getVectorNumElements() == 1 && 525 "Only trivial vector-to-scalar conversions should get here!"); 526 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 527 PartVT, Val, 528 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 529 530 bool Smaller = ValueVT.bitsLE(PartVT); 531 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 532 DL, PartVT, Val); 533 } 534 535 Parts[0] = Val; 536 return; 537 } 538 539 // Handle a multi-element vector. 540 EVT IntermediateVT; 541 MVT RegisterVT; 542 unsigned NumIntermediates; 543 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 544 IntermediateVT, 545 NumIntermediates, RegisterVT); 546 unsigned NumElements = ValueVT.getVectorNumElements(); 547 548 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 549 NumParts = NumRegs; // Silence a compiler warning. 550 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 551 552 // Split the vector into intermediate operands. 553 SmallVector<SDValue, 8> Ops(NumIntermediates); 554 for (unsigned i = 0; i != NumIntermediates; ++i) { 555 if (IntermediateVT.isVector()) 556 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 559 TLI.getVectorIdxTy())); 560 else 561 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 562 IntermediateVT, Val, 563 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 564 } 565 566 // Split the intermediate operands into legal parts. 567 if (NumParts == NumIntermediates) { 568 // If the register was not expanded, promote or copy the value, 569 // as appropriate. 570 for (unsigned i = 0; i != NumParts; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 572 } else if (NumParts > 0) { 573 // If the intermediate type was expanded, split each the value into 574 // legal parts. 575 assert(NumIntermediates != 0 && "division by zero"); 576 assert(NumParts % NumIntermediates == 0 && 577 "Must expand into a divisible number of parts!"); 578 unsigned Factor = NumParts / NumIntermediates; 579 for (unsigned i = 0; i != NumIntermediates; ++i) 580 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 581 } 582 } 583 584 RegsForValue::RegsForValue() {} 585 586 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 587 EVT valuevt) 588 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 589 590 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 591 unsigned Reg, Type *Ty) { 592 ComputeValueVTs(tli, Ty, ValueVTs); 593 594 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 595 EVT ValueVT = ValueVTs[Value]; 596 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 597 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 598 for (unsigned i = 0; i != NumRegs; ++i) 599 Regs.push_back(Reg + i); 600 RegVTs.push_back(RegisterVT); 601 Reg += NumRegs; 602 } 603 } 604 605 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 606 /// this value and returns the result as a ValueVT value. This uses 607 /// Chain/Flag as the input and updates them for the output Chain/Flag. 608 /// If the Flag pointer is NULL, no flag is used. 609 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 610 FunctionLoweringInfo &FuncInfo, 611 SDLoc dl, 612 SDValue &Chain, SDValue *Flag, 613 const Value *V) const { 614 // A Value with type {} or [0 x %t] needs no registers. 615 if (ValueVTs.empty()) 616 return SDValue(); 617 618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 619 620 // Assemble the legal parts into the final values. 621 SmallVector<SDValue, 4> Values(ValueVTs.size()); 622 SmallVector<SDValue, 8> Parts; 623 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 // Copy the legal parts from the registers. 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 627 MVT RegisterVT = RegVTs[Value]; 628 629 Parts.resize(NumRegs); 630 for (unsigned i = 0; i != NumRegs; ++i) { 631 SDValue P; 632 if (!Flag) { 633 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 634 } else { 635 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 636 *Flag = P.getValue(2); 637 } 638 639 Chain = P.getValue(1); 640 Parts[i] = P; 641 642 // If the source register was virtual and if we know something about it, 643 // add an assert node. 644 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 645 !RegisterVT.isInteger() || RegisterVT.isVector()) 646 continue; 647 648 const FunctionLoweringInfo::LiveOutInfo *LOI = 649 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 650 if (!LOI) 651 continue; 652 653 unsigned RegSize = RegisterVT.getSizeInBits(); 654 unsigned NumSignBits = LOI->NumSignBits; 655 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 656 657 if (NumZeroBits == RegSize) { 658 // The current value is a zero. 659 // Explicitly express that as it would be easier for 660 // optimizations to kick in. 661 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 662 continue; 663 } 664 665 // FIXME: We capture more information than the dag can represent. For 666 // now, just use the tightest assertzext/assertsext possible. 667 bool isSExt = true; 668 EVT FromVT(MVT::Other); 669 if (NumSignBits == RegSize) 670 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 671 else if (NumZeroBits >= RegSize-1) 672 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 673 else if (NumSignBits > RegSize-8) 674 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 675 else if (NumZeroBits >= RegSize-8) 676 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 677 else if (NumSignBits > RegSize-16) 678 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 679 else if (NumZeroBits >= RegSize-16) 680 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 681 else if (NumSignBits > RegSize-32) 682 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 683 else if (NumZeroBits >= RegSize-32) 684 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 685 else 686 continue; 687 688 // Add an assertion node. 689 assert(FromVT != MVT::Other); 690 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 691 RegisterVT, P, DAG.getValueType(FromVT)); 692 } 693 694 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 695 NumRegs, RegisterVT, ValueVT, V); 696 Part += NumRegs; 697 Parts.clear(); 698 } 699 700 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 701 } 702 703 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 704 /// specified value into the registers specified by this object. This uses 705 /// Chain/Flag as the input and updates them for the output Chain/Flag. 706 /// If the Flag pointer is NULL, no flag is used. 707 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 708 SDValue &Chain, SDValue *Flag, const Value *V, 709 ISD::NodeType PreferredExtendType) const { 710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 711 ISD::NodeType ExtendKind = PreferredExtendType; 712 713 // Get the list of the values's legal parts. 714 unsigned NumRegs = Regs.size(); 715 SmallVector<SDValue, 8> Parts(NumRegs); 716 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 717 EVT ValueVT = ValueVTs[Value]; 718 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 719 MVT RegisterVT = RegVTs[Value]; 720 721 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 722 ExtendKind = ISD::ZERO_EXTEND; 723 724 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 725 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 726 Part += NumParts; 727 } 728 729 // Copy the parts into the registers. 730 SmallVector<SDValue, 8> Chains(NumRegs); 731 for (unsigned i = 0; i != NumRegs; ++i) { 732 SDValue Part; 733 if (!Flag) { 734 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 735 } else { 736 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 737 *Flag = Part.getValue(1); 738 } 739 740 Chains[i] = Part.getValue(0); 741 } 742 743 if (NumRegs == 1 || Flag) 744 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 745 // flagged to it. That is the CopyToReg nodes and the user are considered 746 // a single scheduling unit. If we create a TokenFactor and return it as 747 // chain, then the TokenFactor is both a predecessor (operand) of the 748 // user as well as a successor (the TF operands are flagged to the user). 749 // c1, f1 = CopyToReg 750 // c2, f2 = CopyToReg 751 // c3 = TokenFactor c1, c2 752 // ... 753 // = op c3, ..., f2 754 Chain = Chains[NumRegs-1]; 755 else 756 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 757 } 758 759 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 760 /// operand list. This adds the code marker and includes the number of 761 /// values added into it. 762 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 763 unsigned MatchingIdx, SDLoc dl, 764 SelectionDAG &DAG, 765 std::vector<SDValue> &Ops) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 769 if (HasMatching) 770 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 771 else if (!Regs.empty() && 772 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 773 // Put the register class of the virtual registers in the flag word. That 774 // way, later passes can recompute register class constraints for inline 775 // assembly as well as normal instructions. 776 // Don't do this for tied operands that can use the regclass information 777 // from the def. 778 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 779 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 780 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 781 } 782 783 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 784 Ops.push_back(Res); 785 786 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 787 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 788 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 789 MVT RegisterVT = RegVTs[Value]; 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 792 unsigned TheReg = Regs[Reg++]; 793 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 794 795 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 796 // If we clobbered the stack pointer, MFI should know about it. 797 assert(DAG.getMachineFunction().getFrameInfo()-> 798 hasInlineAsmWithSPAdjust()); 799 } 800 } 801 } 802 } 803 804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 805 const TargetLibraryInfo *li) { 806 AA = &aa; 807 GFI = gfi; 808 LibInfo = li; 809 DL = DAG.getTarget().getDataLayout(); 810 Context = DAG.getContext(); 811 LPadToCallSiteMap.clear(); 812 } 813 814 /// clear - Clear out the current SelectionDAG and the associated 815 /// state and prepare this SelectionDAGBuilder object to be used 816 /// for a new block. This doesn't clear out information about 817 /// additional blocks that are needed to complete switch lowering 818 /// or PHI node updating; that information is cleared out as it is 819 /// consumed. 820 void SelectionDAGBuilder::clear() { 821 NodeMap.clear(); 822 UnusedArgNodeMap.clear(); 823 PendingLoads.clear(); 824 PendingExports.clear(); 825 CurInst = nullptr; 826 HasTailCall = false; 827 SDNodeOrder = LowestSDNodeOrder; 828 StatepointLowering.clear(); 829 } 830 831 /// clearDanglingDebugInfo - Clear the dangling debug information 832 /// map. This function is separated from the clear so that debug 833 /// information that is dangling in a basic block can be properly 834 /// resolved in a different basic block. This allows the 835 /// SelectionDAG to resolve dangling debug information attached 836 /// to PHI nodes. 837 void SelectionDAGBuilder::clearDanglingDebugInfo() { 838 DanglingDebugInfoMap.clear(); 839 } 840 841 /// getRoot - Return the current virtual root of the Selection DAG, 842 /// flushing any PendingLoad items. This must be done before emitting 843 /// a store or any other node that may need to be ordered after any 844 /// prior load instructions. 845 /// 846 SDValue SelectionDAGBuilder::getRoot() { 847 if (PendingLoads.empty()) 848 return DAG.getRoot(); 849 850 if (PendingLoads.size() == 1) { 851 SDValue Root = PendingLoads[0]; 852 DAG.setRoot(Root); 853 PendingLoads.clear(); 854 return Root; 855 } 856 857 // Otherwise, we have to make a token factor node. 858 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 859 PendingLoads); 860 PendingLoads.clear(); 861 DAG.setRoot(Root); 862 return Root; 863 } 864 865 /// getControlRoot - Similar to getRoot, but instead of flushing all the 866 /// PendingLoad items, flush all the PendingExports items. It is necessary 867 /// to do this before emitting a terminator instruction. 868 /// 869 SDValue SelectionDAGBuilder::getControlRoot() { 870 SDValue Root = DAG.getRoot(); 871 872 if (PendingExports.empty()) 873 return Root; 874 875 // Turn all of the CopyToReg chains into one factored node. 876 if (Root.getOpcode() != ISD::EntryToken) { 877 unsigned i = 0, e = PendingExports.size(); 878 for (; i != e; ++i) { 879 assert(PendingExports[i].getNode()->getNumOperands() > 1); 880 if (PendingExports[i].getNode()->getOperand(0) == Root) 881 break; // Don't add the root if we already indirectly depend on it. 882 } 883 884 if (i == e) 885 PendingExports.push_back(Root); 886 } 887 888 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 889 PendingExports); 890 PendingExports.clear(); 891 DAG.setRoot(Root); 892 return Root; 893 } 894 895 void SelectionDAGBuilder::visit(const Instruction &I) { 896 // Set up outgoing PHI node register values before emitting the terminator. 897 if (isa<TerminatorInst>(&I)) 898 HandlePHINodesInSuccessorBlocks(I.getParent()); 899 900 ++SDNodeOrder; 901 902 CurInst = &I; 903 904 visit(I.getOpcode(), I); 905 906 if (!isa<TerminatorInst>(&I) && !HasTailCall) 907 CopyToExportRegsIfNeeded(&I); 908 909 CurInst = nullptr; 910 } 911 912 void SelectionDAGBuilder::visitPHI(const PHINode &) { 913 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 914 } 915 916 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 917 // Note: this doesn't use InstVisitor, because it has to work with 918 // ConstantExpr's in addition to instructions. 919 switch (Opcode) { 920 default: llvm_unreachable("Unknown instruction type encountered!"); 921 // Build the switch statement using the Instruction.def file. 922 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 923 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 924 #include "llvm/IR/Instruction.def" 925 } 926 } 927 928 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 929 // generate the debug data structures now that we've seen its definition. 930 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 931 SDValue Val) { 932 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 933 if (DDI.getDI()) { 934 const DbgValueInst *DI = DDI.getDI(); 935 DebugLoc dl = DDI.getdl(); 936 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 937 DILocalVariable *Variable = DI->getVariable(); 938 DIExpression *Expr = DI->getExpression(); 939 assert(Variable->isValidLocationForIntrinsic(dl) && 940 "Expected inlined-at fields to agree"); 941 uint64_t Offset = DI->getOffset(); 942 // A dbg.value for an alloca is always indirect. 943 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 944 SDDbgValue *SDV; 945 if (Val.getNode()) { 946 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 947 Val)) { 948 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 949 IsIndirect, Offset, dl, DbgSDNodeOrder); 950 DAG.AddDbgValue(SDV, Val.getNode(), false); 951 } 952 } else 953 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 954 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 955 } 956 } 957 958 /// getCopyFromRegs - If there was virtual register allocated for the value V 959 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 960 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 961 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 962 SDValue Result; 963 964 if (It != FuncInfo.ValueMap.end()) { 965 unsigned InReg = It->second; 966 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 967 Ty); 968 SDValue Chain = DAG.getEntryNode(); 969 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 970 resolveDanglingDebugInfo(V, Result); 971 } 972 973 return Result; 974 } 975 976 /// getValue - Return an SDValue for the given Value. 977 SDValue SelectionDAGBuilder::getValue(const Value *V) { 978 // If we already have an SDValue for this value, use it. It's important 979 // to do this first, so that we don't create a CopyFromReg if we already 980 // have a regular SDValue. 981 SDValue &N = NodeMap[V]; 982 if (N.getNode()) return N; 983 984 // If there's a virtual register allocated and initialized for this 985 // value, use it. 986 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 987 if (copyFromReg.getNode()) { 988 return copyFromReg; 989 } 990 991 // Otherwise create a new SDValue and remember it. 992 SDValue Val = getValueImpl(V); 993 NodeMap[V] = Val; 994 resolveDanglingDebugInfo(V, Val); 995 return Val; 996 } 997 998 // Return true if SDValue exists for the given Value 999 bool SelectionDAGBuilder::findValue(const Value *V) const { 1000 return (NodeMap.find(V) != NodeMap.end()) || 1001 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1002 } 1003 1004 /// getNonRegisterValue - Return an SDValue for the given Value, but 1005 /// don't look in FuncInfo.ValueMap for a virtual register. 1006 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1007 // If we already have an SDValue for this value, use it. 1008 SDValue &N = NodeMap[V]; 1009 if (N.getNode()) { 1010 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1011 // Remove the debug location from the node as the node is about to be used 1012 // in a location which may differ from the original debug location. This 1013 // is relevant to Constant and ConstantFP nodes because they can appear 1014 // as constant expressions inside PHI nodes. 1015 N->setDebugLoc(DebugLoc()); 1016 } 1017 return N; 1018 } 1019 1020 // Otherwise create a new SDValue and remember it. 1021 SDValue Val = getValueImpl(V); 1022 NodeMap[V] = Val; 1023 resolveDanglingDebugInfo(V, Val); 1024 return Val; 1025 } 1026 1027 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1028 /// Create an SDValue for the given value. 1029 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1031 1032 if (const Constant *C = dyn_cast<Constant>(V)) { 1033 EVT VT = TLI.getValueType(V->getType(), true); 1034 1035 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1036 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1037 1038 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1039 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1040 1041 if (isa<ConstantPointerNull>(C)) { 1042 unsigned AS = V->getType()->getPointerAddressSpace(); 1043 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1044 } 1045 1046 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1047 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1048 1049 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1050 return DAG.getUNDEF(VT); 1051 1052 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1053 visit(CE->getOpcode(), *CE); 1054 SDValue N1 = NodeMap[V]; 1055 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1056 return N1; 1057 } 1058 1059 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1060 SmallVector<SDValue, 4> Constants; 1061 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1062 OI != OE; ++OI) { 1063 SDNode *Val = getValue(*OI).getNode(); 1064 // If the operand is an empty aggregate, there are no values. 1065 if (!Val) continue; 1066 // Add each leaf value from the operand to the Constants list 1067 // to form a flattened list of all the values. 1068 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1069 Constants.push_back(SDValue(Val, i)); 1070 } 1071 1072 return DAG.getMergeValues(Constants, getCurSDLoc()); 1073 } 1074 1075 if (const ConstantDataSequential *CDS = 1076 dyn_cast<ConstantDataSequential>(C)) { 1077 SmallVector<SDValue, 4> Ops; 1078 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1079 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1080 // Add each leaf value from the operand to the Constants list 1081 // to form a flattened list of all the values. 1082 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1083 Ops.push_back(SDValue(Val, i)); 1084 } 1085 1086 if (isa<ArrayType>(CDS->getType())) 1087 return DAG.getMergeValues(Ops, getCurSDLoc()); 1088 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1089 VT, Ops); 1090 } 1091 1092 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1093 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1094 "Unknown struct or array constant!"); 1095 1096 SmallVector<EVT, 4> ValueVTs; 1097 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1098 unsigned NumElts = ValueVTs.size(); 1099 if (NumElts == 0) 1100 return SDValue(); // empty struct 1101 SmallVector<SDValue, 4> Constants(NumElts); 1102 for (unsigned i = 0; i != NumElts; ++i) { 1103 EVT EltVT = ValueVTs[i]; 1104 if (isa<UndefValue>(C)) 1105 Constants[i] = DAG.getUNDEF(EltVT); 1106 else if (EltVT.isFloatingPoint()) 1107 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1108 else 1109 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1110 } 1111 1112 return DAG.getMergeValues(Constants, getCurSDLoc()); 1113 } 1114 1115 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1116 return DAG.getBlockAddress(BA, VT); 1117 1118 VectorType *VecTy = cast<VectorType>(V->getType()); 1119 unsigned NumElements = VecTy->getNumElements(); 1120 1121 // Now that we know the number and type of the elements, get that number of 1122 // elements into the Ops array based on what kind of constant it is. 1123 SmallVector<SDValue, 16> Ops; 1124 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1125 for (unsigned i = 0; i != NumElements; ++i) 1126 Ops.push_back(getValue(CV->getOperand(i))); 1127 } else { 1128 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1129 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1130 1131 SDValue Op; 1132 if (EltVT.isFloatingPoint()) 1133 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1134 else 1135 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1136 Ops.assign(NumElements, Op); 1137 } 1138 1139 // Create a BUILD_VECTOR node. 1140 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1141 } 1142 1143 // If this is a static alloca, generate it as the frameindex instead of 1144 // computation. 1145 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1146 DenseMap<const AllocaInst*, int>::iterator SI = 1147 FuncInfo.StaticAllocaMap.find(AI); 1148 if (SI != FuncInfo.StaticAllocaMap.end()) 1149 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1150 } 1151 1152 // If this is an instruction which fast-isel has deferred, select it now. 1153 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1154 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1155 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1156 SDValue Chain = DAG.getEntryNode(); 1157 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1158 } 1159 1160 llvm_unreachable("Can't get register for value!"); 1161 } 1162 1163 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1165 SDValue Chain = getControlRoot(); 1166 SmallVector<ISD::OutputArg, 8> Outs; 1167 SmallVector<SDValue, 8> OutVals; 1168 1169 if (!FuncInfo.CanLowerReturn) { 1170 unsigned DemoteReg = FuncInfo.DemoteRegister; 1171 const Function *F = I.getParent()->getParent(); 1172 1173 // Emit a store of the return value through the virtual register. 1174 // Leave Outs empty so that LowerReturn won't try to load return 1175 // registers the usual way. 1176 SmallVector<EVT, 1> PtrValueVTs; 1177 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1178 PtrValueVTs); 1179 1180 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1181 SDValue RetOp = getValue(I.getOperand(0)); 1182 1183 SmallVector<EVT, 4> ValueVTs; 1184 SmallVector<uint64_t, 4> Offsets; 1185 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1186 unsigned NumValues = ValueVTs.size(); 1187 1188 SmallVector<SDValue, 4> Chains(NumValues); 1189 for (unsigned i = 0; i != NumValues; ++i) { 1190 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1191 RetPtr.getValueType(), RetPtr, 1192 DAG.getIntPtrConstant(Offsets[i], 1193 getCurSDLoc())); 1194 Chains[i] = 1195 DAG.getStore(Chain, getCurSDLoc(), 1196 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1197 // FIXME: better loc info would be nice. 1198 Add, MachinePointerInfo(), false, false, 0); 1199 } 1200 1201 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1202 MVT::Other, Chains); 1203 } else if (I.getNumOperands() != 0) { 1204 SmallVector<EVT, 4> ValueVTs; 1205 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1206 unsigned NumValues = ValueVTs.size(); 1207 if (NumValues) { 1208 SDValue RetOp = getValue(I.getOperand(0)); 1209 1210 const Function *F = I.getParent()->getParent(); 1211 1212 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1213 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1214 Attribute::SExt)) 1215 ExtendKind = ISD::SIGN_EXTEND; 1216 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1217 Attribute::ZExt)) 1218 ExtendKind = ISD::ZERO_EXTEND; 1219 1220 LLVMContext &Context = F->getContext(); 1221 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1222 Attribute::InReg); 1223 1224 for (unsigned j = 0; j != NumValues; ++j) { 1225 EVT VT = ValueVTs[j]; 1226 1227 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1228 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1229 1230 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1231 MVT PartVT = TLI.getRegisterType(Context, VT); 1232 SmallVector<SDValue, 4> Parts(NumParts); 1233 getCopyToParts(DAG, getCurSDLoc(), 1234 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1235 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1236 1237 // 'inreg' on function refers to return value 1238 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1239 if (RetInReg) 1240 Flags.setInReg(); 1241 1242 // Propagate extension type if any 1243 if (ExtendKind == ISD::SIGN_EXTEND) 1244 Flags.setSExt(); 1245 else if (ExtendKind == ISD::ZERO_EXTEND) 1246 Flags.setZExt(); 1247 1248 for (unsigned i = 0; i < NumParts; ++i) { 1249 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1250 VT, /*isfixed=*/true, 0, 0)); 1251 OutVals.push_back(Parts[i]); 1252 } 1253 } 1254 } 1255 } 1256 1257 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1258 CallingConv::ID CallConv = 1259 DAG.getMachineFunction().getFunction()->getCallingConv(); 1260 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1261 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1262 1263 // Verify that the target's LowerReturn behaved as expected. 1264 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1265 "LowerReturn didn't return a valid chain!"); 1266 1267 // Update the DAG with the new chain value resulting from return lowering. 1268 DAG.setRoot(Chain); 1269 } 1270 1271 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1272 /// created for it, emit nodes to copy the value into the virtual 1273 /// registers. 1274 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1275 // Skip empty types 1276 if (V->getType()->isEmptyTy()) 1277 return; 1278 1279 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1280 if (VMI != FuncInfo.ValueMap.end()) { 1281 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1282 CopyValueToVirtualRegister(V, VMI->second); 1283 } 1284 } 1285 1286 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1287 /// the current basic block, add it to ValueMap now so that we'll get a 1288 /// CopyTo/FromReg. 1289 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1290 // No need to export constants. 1291 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1292 1293 // Already exported? 1294 if (FuncInfo.isExportedInst(V)) return; 1295 1296 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1297 CopyValueToVirtualRegister(V, Reg); 1298 } 1299 1300 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1301 const BasicBlock *FromBB) { 1302 // The operands of the setcc have to be in this block. We don't know 1303 // how to export them from some other block. 1304 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1305 // Can export from current BB. 1306 if (VI->getParent() == FromBB) 1307 return true; 1308 1309 // Is already exported, noop. 1310 return FuncInfo.isExportedInst(V); 1311 } 1312 1313 // If this is an argument, we can export it if the BB is the entry block or 1314 // if it is already exported. 1315 if (isa<Argument>(V)) { 1316 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1317 return true; 1318 1319 // Otherwise, can only export this if it is already exported. 1320 return FuncInfo.isExportedInst(V); 1321 } 1322 1323 // Otherwise, constants can always be exported. 1324 return true; 1325 } 1326 1327 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1328 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1329 const MachineBasicBlock *Dst) const { 1330 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1331 if (!BPI) 1332 return 0; 1333 const BasicBlock *SrcBB = Src->getBasicBlock(); 1334 const BasicBlock *DstBB = Dst->getBasicBlock(); 1335 return BPI->getEdgeWeight(SrcBB, DstBB); 1336 } 1337 1338 void SelectionDAGBuilder:: 1339 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1340 uint32_t Weight /* = 0 */) { 1341 if (!Weight) 1342 Weight = getEdgeWeight(Src, Dst); 1343 Src->addSuccessor(Dst, Weight); 1344 } 1345 1346 1347 static bool InBlock(const Value *V, const BasicBlock *BB) { 1348 if (const Instruction *I = dyn_cast<Instruction>(V)) 1349 return I->getParent() == BB; 1350 return true; 1351 } 1352 1353 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1354 /// This function emits a branch and is used at the leaves of an OR or an 1355 /// AND operator tree. 1356 /// 1357 void 1358 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1359 MachineBasicBlock *TBB, 1360 MachineBasicBlock *FBB, 1361 MachineBasicBlock *CurBB, 1362 MachineBasicBlock *SwitchBB, 1363 uint32_t TWeight, 1364 uint32_t FWeight) { 1365 const BasicBlock *BB = CurBB->getBasicBlock(); 1366 1367 // If the leaf of the tree is a comparison, merge the condition into 1368 // the caseblock. 1369 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1370 // The operands of the cmp have to be in this block. We don't know 1371 // how to export them from some other block. If this is the first block 1372 // of the sequence, no exporting is needed. 1373 if (CurBB == SwitchBB || 1374 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1375 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1376 ISD::CondCode Condition; 1377 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1378 Condition = getICmpCondCode(IC->getPredicate()); 1379 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1380 Condition = getFCmpCondCode(FC->getPredicate()); 1381 if (TM.Options.NoNaNsFPMath) 1382 Condition = getFCmpCodeWithoutNaN(Condition); 1383 } else { 1384 (void)Condition; // silence warning. 1385 llvm_unreachable("Unknown compare instruction"); 1386 } 1387 1388 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1389 TBB, FBB, CurBB, TWeight, FWeight); 1390 SwitchCases.push_back(CB); 1391 return; 1392 } 1393 } 1394 1395 // Create a CaseBlock record representing this branch. 1396 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1397 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1398 SwitchCases.push_back(CB); 1399 } 1400 1401 /// Scale down both weights to fit into uint32_t. 1402 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1403 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1404 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1405 NewTrue = NewTrue / Scale; 1406 NewFalse = NewFalse / Scale; 1407 } 1408 1409 /// FindMergedConditions - If Cond is an expression like 1410 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1411 MachineBasicBlock *TBB, 1412 MachineBasicBlock *FBB, 1413 MachineBasicBlock *CurBB, 1414 MachineBasicBlock *SwitchBB, 1415 unsigned Opc, uint32_t TWeight, 1416 uint32_t FWeight) { 1417 // If this node is not part of the or/and tree, emit it as a branch. 1418 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1419 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1420 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1421 BOp->getParent() != CurBB->getBasicBlock() || 1422 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1423 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1424 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1425 TWeight, FWeight); 1426 return; 1427 } 1428 1429 // Create TmpBB after CurBB. 1430 MachineFunction::iterator BBI = CurBB; 1431 MachineFunction &MF = DAG.getMachineFunction(); 1432 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1433 CurBB->getParent()->insert(++BBI, TmpBB); 1434 1435 if (Opc == Instruction::Or) { 1436 // Codegen X | Y as: 1437 // BB1: 1438 // jmp_if_X TBB 1439 // jmp TmpBB 1440 // TmpBB: 1441 // jmp_if_Y TBB 1442 // jmp FBB 1443 // 1444 1445 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1446 // The requirement is that 1447 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1448 // = TrueProb for original BB. 1449 // Assuming the original weights are A and B, one choice is to set BB1's 1450 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1451 // assumes that 1452 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1453 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1454 // TmpBB, but the math is more complicated. 1455 1456 uint64_t NewTrueWeight = TWeight; 1457 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1458 ScaleWeights(NewTrueWeight, NewFalseWeight); 1459 // Emit the LHS condition. 1460 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1461 NewTrueWeight, NewFalseWeight); 1462 1463 NewTrueWeight = TWeight; 1464 NewFalseWeight = 2 * (uint64_t)FWeight; 1465 ScaleWeights(NewTrueWeight, NewFalseWeight); 1466 // Emit the RHS condition into TmpBB. 1467 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1468 NewTrueWeight, NewFalseWeight); 1469 } else { 1470 assert(Opc == Instruction::And && "Unknown merge op!"); 1471 // Codegen X & Y as: 1472 // BB1: 1473 // jmp_if_X TmpBB 1474 // jmp FBB 1475 // TmpBB: 1476 // jmp_if_Y TBB 1477 // jmp FBB 1478 // 1479 // This requires creation of TmpBB after CurBB. 1480 1481 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1482 // The requirement is that 1483 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1484 // = FalseProb for original BB. 1485 // Assuming the original weights are A and B, one choice is to set BB1's 1486 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1487 // assumes that 1488 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1489 1490 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1491 uint64_t NewFalseWeight = FWeight; 1492 ScaleWeights(NewTrueWeight, NewFalseWeight); 1493 // Emit the LHS condition. 1494 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1495 NewTrueWeight, NewFalseWeight); 1496 1497 NewTrueWeight = 2 * (uint64_t)TWeight; 1498 NewFalseWeight = FWeight; 1499 ScaleWeights(NewTrueWeight, NewFalseWeight); 1500 // Emit the RHS condition into TmpBB. 1501 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1502 NewTrueWeight, NewFalseWeight); 1503 } 1504 } 1505 1506 /// If the set of cases should be emitted as a series of branches, return true. 1507 /// If we should emit this as a bunch of and/or'd together conditions, return 1508 /// false. 1509 bool 1510 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1511 if (Cases.size() != 2) return true; 1512 1513 // If this is two comparisons of the same values or'd or and'd together, they 1514 // will get folded into a single comparison, so don't emit two blocks. 1515 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1516 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1517 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1518 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1519 return false; 1520 } 1521 1522 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1523 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1524 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1525 Cases[0].CC == Cases[1].CC && 1526 isa<Constant>(Cases[0].CmpRHS) && 1527 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1528 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1529 return false; 1530 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1531 return false; 1532 } 1533 1534 return true; 1535 } 1536 1537 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1538 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1539 1540 // Update machine-CFG edges. 1541 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1542 1543 if (I.isUnconditional()) { 1544 // Update machine-CFG edges. 1545 BrMBB->addSuccessor(Succ0MBB); 1546 1547 // If this is not a fall-through branch or optimizations are switched off, 1548 // emit the branch. 1549 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1550 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1551 MVT::Other, getControlRoot(), 1552 DAG.getBasicBlock(Succ0MBB))); 1553 1554 return; 1555 } 1556 1557 // If this condition is one of the special cases we handle, do special stuff 1558 // now. 1559 const Value *CondVal = I.getCondition(); 1560 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1561 1562 // If this is a series of conditions that are or'd or and'd together, emit 1563 // this as a sequence of branches instead of setcc's with and/or operations. 1564 // As long as jumps are not expensive, this should improve performance. 1565 // For example, instead of something like: 1566 // cmp A, B 1567 // C = seteq 1568 // cmp D, E 1569 // F = setle 1570 // or C, F 1571 // jnz foo 1572 // Emit: 1573 // cmp A, B 1574 // je foo 1575 // cmp D, E 1576 // jle foo 1577 // 1578 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1579 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1580 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1581 BOp->getOpcode() == Instruction::Or)) { 1582 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1583 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1584 getEdgeWeight(BrMBB, Succ1MBB)); 1585 // If the compares in later blocks need to use values not currently 1586 // exported from this block, export them now. This block should always 1587 // be the first entry. 1588 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1589 1590 // Allow some cases to be rejected. 1591 if (ShouldEmitAsBranches(SwitchCases)) { 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1593 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1594 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1595 } 1596 1597 // Emit the branch for this block. 1598 visitSwitchCase(SwitchCases[0], BrMBB); 1599 SwitchCases.erase(SwitchCases.begin()); 1600 return; 1601 } 1602 1603 // Okay, we decided not to do this, remove any inserted MBB's and clear 1604 // SwitchCases. 1605 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1606 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1607 1608 SwitchCases.clear(); 1609 } 1610 } 1611 1612 // Create a CaseBlock record representing this branch. 1613 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1614 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1615 1616 // Use visitSwitchCase to actually insert the fast branch sequence for this 1617 // cond branch. 1618 visitSwitchCase(CB, BrMBB); 1619 } 1620 1621 /// visitSwitchCase - Emits the necessary code to represent a single node in 1622 /// the binary search tree resulting from lowering a switch instruction. 1623 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1624 MachineBasicBlock *SwitchBB) { 1625 SDValue Cond; 1626 SDValue CondLHS = getValue(CB.CmpLHS); 1627 SDLoc dl = getCurSDLoc(); 1628 1629 // Build the setcc now. 1630 if (!CB.CmpMHS) { 1631 // Fold "(X == true)" to X and "(X == false)" to !X to 1632 // handle common cases produced by branch lowering. 1633 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1634 CB.CC == ISD::SETEQ) 1635 Cond = CondLHS; 1636 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1637 CB.CC == ISD::SETEQ) { 1638 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1639 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1640 } else 1641 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1642 } else { 1643 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1644 1645 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1646 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1647 1648 SDValue CmpOp = getValue(CB.CmpMHS); 1649 EVT VT = CmpOp.getValueType(); 1650 1651 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1652 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1653 ISD::SETLE); 1654 } else { 1655 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1656 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1657 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1658 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1659 } 1660 } 1661 1662 // Update successor info 1663 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1664 // TrueBB and FalseBB are always different unless the incoming IR is 1665 // degenerate. This only happens when running llc on weird IR. 1666 if (CB.TrueBB != CB.FalseBB) 1667 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1668 1669 // If the lhs block is the next block, invert the condition so that we can 1670 // fall through to the lhs instead of the rhs block. 1671 if (CB.TrueBB == NextBlock(SwitchBB)) { 1672 std::swap(CB.TrueBB, CB.FalseBB); 1673 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1674 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1675 } 1676 1677 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1678 MVT::Other, getControlRoot(), Cond, 1679 DAG.getBasicBlock(CB.TrueBB)); 1680 1681 // Insert the false branch. Do this even if it's a fall through branch, 1682 // this makes it easier to do DAG optimizations which require inverting 1683 // the branch condition. 1684 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1685 DAG.getBasicBlock(CB.FalseBB)); 1686 1687 DAG.setRoot(BrCond); 1688 } 1689 1690 /// visitJumpTable - Emit JumpTable node in the current MBB 1691 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1692 // Emit the code for the jump table 1693 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1694 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1695 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1696 JT.Reg, PTy); 1697 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1698 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1699 MVT::Other, Index.getValue(1), 1700 Table, Index); 1701 DAG.setRoot(BrJumpTable); 1702 } 1703 1704 /// visitJumpTableHeader - This function emits necessary code to produce index 1705 /// in the JumpTable from switch case. 1706 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1707 JumpTableHeader &JTH, 1708 MachineBasicBlock *SwitchBB) { 1709 SDLoc dl = getCurSDLoc(); 1710 1711 // Subtract the lowest switch case value from the value being switched on and 1712 // conditional branch to default mbb if the result is greater than the 1713 // difference between smallest and largest cases. 1714 SDValue SwitchOp = getValue(JTH.SValue); 1715 EVT VT = SwitchOp.getValueType(); 1716 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1717 DAG.getConstant(JTH.First, dl, VT)); 1718 1719 // The SDNode we just created, which holds the value being switched on minus 1720 // the smallest case value, needs to be copied to a virtual register so it 1721 // can be used as an index into the jump table in a subsequent basic block. 1722 // This value may be smaller or larger than the target's pointer type, and 1723 // therefore require extension or truncating. 1724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1725 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1726 1727 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1728 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1729 JumpTableReg, SwitchOp); 1730 JT.Reg = JumpTableReg; 1731 1732 // Emit the range check for the jump table, and branch to the default block 1733 // for the switch statement if the value being switched on exceeds the largest 1734 // case in the switch. 1735 SDValue CMP = 1736 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1737 Sub.getValueType()), 1738 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1739 ISD::SETUGT); 1740 1741 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1742 MVT::Other, CopyTo, CMP, 1743 DAG.getBasicBlock(JT.Default)); 1744 1745 // Avoid emitting unnecessary branches to the next block. 1746 if (JT.MBB != NextBlock(SwitchBB)) 1747 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1748 DAG.getBasicBlock(JT.MBB)); 1749 1750 DAG.setRoot(BrCond); 1751 } 1752 1753 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1754 /// tail spliced into a stack protector check success bb. 1755 /// 1756 /// For a high level explanation of how this fits into the stack protector 1757 /// generation see the comment on the declaration of class 1758 /// StackProtectorDescriptor. 1759 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1760 MachineBasicBlock *ParentBB) { 1761 1762 // First create the loads to the guard/stack slot for the comparison. 1763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1764 EVT PtrTy = TLI.getPointerTy(); 1765 1766 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1767 int FI = MFI->getStackProtectorIndex(); 1768 1769 const Value *IRGuard = SPD.getGuard(); 1770 SDValue GuardPtr = getValue(IRGuard); 1771 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1772 1773 unsigned Align = 1774 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1775 1776 SDValue Guard; 1777 SDLoc dl = getCurSDLoc(); 1778 1779 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1780 // guard value from the virtual register holding the value. Otherwise, emit a 1781 // volatile load to retrieve the stack guard value. 1782 unsigned GuardReg = SPD.getGuardReg(); 1783 1784 if (GuardReg && TLI.useLoadStackGuardNode()) 1785 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1786 PtrTy); 1787 else 1788 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1789 GuardPtr, MachinePointerInfo(IRGuard, 0), 1790 true, false, false, Align); 1791 1792 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1793 StackSlotPtr, 1794 MachinePointerInfo::getFixedStack(FI), 1795 true, false, false, Align); 1796 1797 // Perform the comparison via a subtract/getsetcc. 1798 EVT VT = Guard.getValueType(); 1799 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1800 1801 SDValue Cmp = 1802 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1803 Sub.getValueType()), 1804 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1805 1806 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1807 // branch to failure MBB. 1808 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1809 MVT::Other, StackSlot.getOperand(0), 1810 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1811 // Otherwise branch to success MBB. 1812 SDValue Br = DAG.getNode(ISD::BR, dl, 1813 MVT::Other, BrCond, 1814 DAG.getBasicBlock(SPD.getSuccessMBB())); 1815 1816 DAG.setRoot(Br); 1817 } 1818 1819 /// Codegen the failure basic block for a stack protector check. 1820 /// 1821 /// A failure stack protector machine basic block consists simply of a call to 1822 /// __stack_chk_fail(). 1823 /// 1824 /// For a high level explanation of how this fits into the stack protector 1825 /// generation see the comment on the declaration of class 1826 /// StackProtectorDescriptor. 1827 void 1828 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1830 SDValue Chain = 1831 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1832 nullptr, 0, false, getCurSDLoc(), false, false).second; 1833 DAG.setRoot(Chain); 1834 } 1835 1836 /// visitBitTestHeader - This function emits necessary code to produce value 1837 /// suitable for "bit tests" 1838 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1839 MachineBasicBlock *SwitchBB) { 1840 SDLoc dl = getCurSDLoc(); 1841 1842 // Subtract the minimum value 1843 SDValue SwitchOp = getValue(B.SValue); 1844 EVT VT = SwitchOp.getValueType(); 1845 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1846 DAG.getConstant(B.First, dl, VT)); 1847 1848 // Check range 1849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1850 SDValue RangeCmp = 1851 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1852 Sub.getValueType()), 1853 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1854 1855 // Determine the type of the test operands. 1856 bool UsePtrType = false; 1857 if (!TLI.isTypeLegal(VT)) 1858 UsePtrType = true; 1859 else { 1860 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1861 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1862 // Switch table case range are encoded into series of masks. 1863 // Just use pointer type, it's guaranteed to fit. 1864 UsePtrType = true; 1865 break; 1866 } 1867 } 1868 if (UsePtrType) { 1869 VT = TLI.getPointerTy(); 1870 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1871 } 1872 1873 B.RegVT = VT.getSimpleVT(); 1874 B.Reg = FuncInfo.CreateReg(B.RegVT); 1875 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1876 1877 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1878 1879 addSuccessorWithWeight(SwitchBB, B.Default); 1880 addSuccessorWithWeight(SwitchBB, MBB); 1881 1882 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1883 MVT::Other, CopyTo, RangeCmp, 1884 DAG.getBasicBlock(B.Default)); 1885 1886 // Avoid emitting unnecessary branches to the next block. 1887 if (MBB != NextBlock(SwitchBB)) 1888 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1889 DAG.getBasicBlock(MBB)); 1890 1891 DAG.setRoot(BrRange); 1892 } 1893 1894 /// visitBitTestCase - this function produces one "bit test" 1895 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1896 MachineBasicBlock* NextMBB, 1897 uint32_t BranchWeightToNext, 1898 unsigned Reg, 1899 BitTestCase &B, 1900 MachineBasicBlock *SwitchBB) { 1901 SDLoc dl = getCurSDLoc(); 1902 MVT VT = BB.RegVT; 1903 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1904 SDValue Cmp; 1905 unsigned PopCount = countPopulation(B.Mask); 1906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1907 if (PopCount == 1) { 1908 // Testing for a single bit; just compare the shift count with what it 1909 // would need to be to shift a 1 bit in that position. 1910 Cmp = DAG.getSetCC( 1911 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1912 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1913 } else if (PopCount == BB.Range) { 1914 // There is only one zero bit in the range, test for it directly. 1915 Cmp = DAG.getSetCC( 1916 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1917 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1918 } else { 1919 // Make desired shift 1920 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1921 DAG.getConstant(1, dl, VT), ShiftOp); 1922 1923 // Emit bit tests and jumps 1924 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1925 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1926 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1927 DAG.getConstant(0, dl, VT), ISD::SETNE); 1928 } 1929 1930 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1931 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1932 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1933 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1934 1935 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1936 MVT::Other, getControlRoot(), 1937 Cmp, DAG.getBasicBlock(B.TargetBB)); 1938 1939 // Avoid emitting unnecessary branches to the next block. 1940 if (NextMBB != NextBlock(SwitchBB)) 1941 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1942 DAG.getBasicBlock(NextMBB)); 1943 1944 DAG.setRoot(BrAnd); 1945 } 1946 1947 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1948 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1949 1950 // Retrieve successors. 1951 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1952 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1953 1954 const Value *Callee(I.getCalledValue()); 1955 const Function *Fn = dyn_cast<Function>(Callee); 1956 if (isa<InlineAsm>(Callee)) 1957 visitInlineAsm(&I); 1958 else if (Fn && Fn->isIntrinsic()) { 1959 switch (Fn->getIntrinsicID()) { 1960 default: 1961 llvm_unreachable("Cannot invoke this intrinsic"); 1962 case Intrinsic::donothing: 1963 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1964 break; 1965 case Intrinsic::experimental_patchpoint_void: 1966 case Intrinsic::experimental_patchpoint_i64: 1967 visitPatchpoint(&I, LandingPad); 1968 break; 1969 case Intrinsic::experimental_gc_statepoint: 1970 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1971 break; 1972 } 1973 } else 1974 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1975 1976 // If the value of the invoke is used outside of its defining block, make it 1977 // available as a virtual register. 1978 // We already took care of the exported value for the statepoint instruction 1979 // during call to the LowerStatepoint. 1980 if (!isStatepoint(I)) { 1981 CopyToExportRegsIfNeeded(&I); 1982 } 1983 1984 // Update successor info 1985 addSuccessorWithWeight(InvokeMBB, Return); 1986 addSuccessorWithWeight(InvokeMBB, LandingPad); 1987 1988 // Drop into normal successor. 1989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1990 MVT::Other, getControlRoot(), 1991 DAG.getBasicBlock(Return))); 1992 } 1993 1994 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1995 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1996 } 1997 1998 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1999 assert(FuncInfo.MBB->isLandingPad() && 2000 "Call to landingpad not in landing pad!"); 2001 2002 MachineBasicBlock *MBB = FuncInfo.MBB; 2003 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2004 AddLandingPadInfo(LP, MMI, MBB); 2005 2006 // If there aren't registers to copy the values into (e.g., during SjLj 2007 // exceptions), then don't bother to create these DAG nodes. 2008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2009 if (TLI.getExceptionPointerRegister() == 0 && 2010 TLI.getExceptionSelectorRegister() == 0) 2011 return; 2012 2013 SmallVector<EVT, 2> ValueVTs; 2014 SDLoc dl = getCurSDLoc(); 2015 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2016 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2017 2018 // Get the two live-in registers as SDValues. The physregs have already been 2019 // copied into virtual registers. 2020 SDValue Ops[2]; 2021 if (FuncInfo.ExceptionPointerVirtReg) { 2022 Ops[0] = DAG.getZExtOrTrunc( 2023 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2024 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2025 dl, ValueVTs[0]); 2026 } else { 2027 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2028 } 2029 Ops[1] = DAG.getZExtOrTrunc( 2030 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2031 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2032 dl, ValueVTs[1]); 2033 2034 // Merge into one. 2035 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2036 DAG.getVTList(ValueVTs), Ops); 2037 setValue(&LP, Res); 2038 } 2039 2040 unsigned 2041 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2042 MachineBasicBlock *LPadBB) { 2043 SDValue Chain = getControlRoot(); 2044 SDLoc dl = getCurSDLoc(); 2045 2046 // Get the typeid that we will dispatch on later. 2047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2048 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2049 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2050 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2051 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2052 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2053 2054 // Branch to the main landing pad block. 2055 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2056 ClauseMBB->addSuccessor(LPadBB); 2057 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2058 DAG.getBasicBlock(LPadBB))); 2059 return VReg; 2060 } 2061 2062 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2063 #ifndef NDEBUG 2064 for (const CaseCluster &CC : Clusters) 2065 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2066 #endif 2067 2068 std::sort(Clusters.begin(), Clusters.end(), 2069 [](const CaseCluster &a, const CaseCluster &b) { 2070 return a.Low->getValue().slt(b.Low->getValue()); 2071 }); 2072 2073 // Merge adjacent clusters with the same destination. 2074 const unsigned N = Clusters.size(); 2075 unsigned DstIndex = 0; 2076 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2077 CaseCluster &CC = Clusters[SrcIndex]; 2078 const ConstantInt *CaseVal = CC.Low; 2079 MachineBasicBlock *Succ = CC.MBB; 2080 2081 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2082 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2083 // If this case has the same successor and is a neighbour, merge it into 2084 // the previous cluster. 2085 Clusters[DstIndex - 1].High = CaseVal; 2086 Clusters[DstIndex - 1].Weight += CC.Weight; 2087 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2088 } else { 2089 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2090 sizeof(Clusters[SrcIndex])); 2091 } 2092 } 2093 Clusters.resize(DstIndex); 2094 } 2095 2096 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2097 MachineBasicBlock *Last) { 2098 // Update JTCases. 2099 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2100 if (JTCases[i].first.HeaderBB == First) 2101 JTCases[i].first.HeaderBB = Last; 2102 2103 // Update BitTestCases. 2104 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2105 if (BitTestCases[i].Parent == First) 2106 BitTestCases[i].Parent = Last; 2107 } 2108 2109 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2110 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2111 2112 // Update machine-CFG edges with unique successors. 2113 SmallSet<BasicBlock*, 32> Done; 2114 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2115 BasicBlock *BB = I.getSuccessor(i); 2116 bool Inserted = Done.insert(BB).second; 2117 if (!Inserted) 2118 continue; 2119 2120 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2121 addSuccessorWithWeight(IndirectBrMBB, Succ); 2122 } 2123 2124 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2125 MVT::Other, getControlRoot(), 2126 getValue(I.getAddress()))); 2127 } 2128 2129 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2130 if (DAG.getTarget().Options.TrapUnreachable) 2131 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2132 } 2133 2134 void SelectionDAGBuilder::visitFSub(const User &I) { 2135 // -0.0 - X --> fneg 2136 Type *Ty = I.getType(); 2137 if (isa<Constant>(I.getOperand(0)) && 2138 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2139 SDValue Op2 = getValue(I.getOperand(1)); 2140 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2141 Op2.getValueType(), Op2)); 2142 return; 2143 } 2144 2145 visitBinary(I, ISD::FSUB); 2146 } 2147 2148 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2149 SDValue Op1 = getValue(I.getOperand(0)); 2150 SDValue Op2 = getValue(I.getOperand(1)); 2151 2152 bool nuw = false; 2153 bool nsw = false; 2154 bool exact = false; 2155 FastMathFlags FMF; 2156 2157 if (const OverflowingBinaryOperator *OFBinOp = 2158 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2159 nuw = OFBinOp->hasNoUnsignedWrap(); 2160 nsw = OFBinOp->hasNoSignedWrap(); 2161 } 2162 if (const PossiblyExactOperator *ExactOp = 2163 dyn_cast<const PossiblyExactOperator>(&I)) 2164 exact = ExactOp->isExact(); 2165 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2166 FMF = FPOp->getFastMathFlags(); 2167 2168 SDNodeFlags Flags; 2169 Flags.setExact(exact); 2170 Flags.setNoSignedWrap(nsw); 2171 Flags.setNoUnsignedWrap(nuw); 2172 if (EnableFMFInDAG) { 2173 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2174 Flags.setNoInfs(FMF.noInfs()); 2175 Flags.setNoNaNs(FMF.noNaNs()); 2176 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2177 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2178 } 2179 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2180 Op1, Op2, &Flags); 2181 setValue(&I, BinNodeValue); 2182 } 2183 2184 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2185 SDValue Op1 = getValue(I.getOperand(0)); 2186 SDValue Op2 = getValue(I.getOperand(1)); 2187 2188 EVT ShiftTy = 2189 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2190 2191 // Coerce the shift amount to the right type if we can. 2192 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2193 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2194 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2195 SDLoc DL = getCurSDLoc(); 2196 2197 // If the operand is smaller than the shift count type, promote it. 2198 if (ShiftSize > Op2Size) 2199 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2200 2201 // If the operand is larger than the shift count type but the shift 2202 // count type has enough bits to represent any shift value, truncate 2203 // it now. This is a common case and it exposes the truncate to 2204 // optimization early. 2205 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2206 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2207 // Otherwise we'll need to temporarily settle for some other convenient 2208 // type. Type legalization will make adjustments once the shiftee is split. 2209 else 2210 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2211 } 2212 2213 bool nuw = false; 2214 bool nsw = false; 2215 bool exact = false; 2216 2217 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2218 2219 if (const OverflowingBinaryOperator *OFBinOp = 2220 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2221 nuw = OFBinOp->hasNoUnsignedWrap(); 2222 nsw = OFBinOp->hasNoSignedWrap(); 2223 } 2224 if (const PossiblyExactOperator *ExactOp = 2225 dyn_cast<const PossiblyExactOperator>(&I)) 2226 exact = ExactOp->isExact(); 2227 } 2228 SDNodeFlags Flags; 2229 Flags.setExact(exact); 2230 Flags.setNoSignedWrap(nsw); 2231 Flags.setNoUnsignedWrap(nuw); 2232 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2233 &Flags); 2234 setValue(&I, Res); 2235 } 2236 2237 void SelectionDAGBuilder::visitSDiv(const User &I) { 2238 SDValue Op1 = getValue(I.getOperand(0)); 2239 SDValue Op2 = getValue(I.getOperand(1)); 2240 2241 SDNodeFlags Flags; 2242 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2243 cast<PossiblyExactOperator>(&I)->isExact()); 2244 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2245 Op2, &Flags)); 2246 } 2247 2248 void SelectionDAGBuilder::visitICmp(const User &I) { 2249 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2250 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2251 predicate = IC->getPredicate(); 2252 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2253 predicate = ICmpInst::Predicate(IC->getPredicate()); 2254 SDValue Op1 = getValue(I.getOperand(0)); 2255 SDValue Op2 = getValue(I.getOperand(1)); 2256 ISD::CondCode Opcode = getICmpCondCode(predicate); 2257 2258 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2259 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2260 } 2261 2262 void SelectionDAGBuilder::visitFCmp(const User &I) { 2263 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2264 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2265 predicate = FC->getPredicate(); 2266 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2267 predicate = FCmpInst::Predicate(FC->getPredicate()); 2268 SDValue Op1 = getValue(I.getOperand(0)); 2269 SDValue Op2 = getValue(I.getOperand(1)); 2270 ISD::CondCode Condition = getFCmpCondCode(predicate); 2271 if (TM.Options.NoNaNsFPMath) 2272 Condition = getFCmpCodeWithoutNaN(Condition); 2273 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2274 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2275 } 2276 2277 void SelectionDAGBuilder::visitSelect(const User &I) { 2278 SmallVector<EVT, 4> ValueVTs; 2279 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2280 unsigned NumValues = ValueVTs.size(); 2281 if (NumValues == 0) return; 2282 2283 SmallVector<SDValue, 4> Values(NumValues); 2284 SDValue Cond = getValue(I.getOperand(0)); 2285 SDValue LHSVal = getValue(I.getOperand(1)); 2286 SDValue RHSVal = getValue(I.getOperand(2)); 2287 auto BaseOps = {Cond}; 2288 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2289 ISD::VSELECT : ISD::SELECT; 2290 2291 // Min/max matching is only viable if all output VTs are the same. 2292 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2293 Value *LHS, *RHS; 2294 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2295 ISD::NodeType Opc = ISD::DELETED_NODE; 2296 switch (SPF) { 2297 case SPF_UMAX: Opc = ISD::UMAX; break; 2298 case SPF_UMIN: Opc = ISD::UMIN; break; 2299 case SPF_SMAX: Opc = ISD::SMAX; break; 2300 case SPF_SMIN: Opc = ISD::SMIN; break; 2301 default: break; 2302 } 2303 2304 EVT VT = ValueVTs[0]; 2305 LLVMContext &Ctx = *DAG.getContext(); 2306 auto &TLI = DAG.getTargetLoweringInfo(); 2307 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2308 VT = TLI.getTypeToTransformTo(Ctx, VT); 2309 2310 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2311 // If the underlying comparison instruction is used by any other instruction, 2312 // the consumed instructions won't be destroyed, so it is not profitable 2313 // to convert to a min/max. 2314 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2315 OpCode = Opc; 2316 LHSVal = getValue(LHS); 2317 RHSVal = getValue(RHS); 2318 BaseOps = {}; 2319 } 2320 } 2321 2322 for (unsigned i = 0; i != NumValues; ++i) { 2323 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2324 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2325 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2326 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2327 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2328 Ops); 2329 } 2330 2331 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2332 DAG.getVTList(ValueVTs), Values)); 2333 } 2334 2335 void SelectionDAGBuilder::visitTrunc(const User &I) { 2336 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2337 SDValue N = getValue(I.getOperand(0)); 2338 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2339 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2340 } 2341 2342 void SelectionDAGBuilder::visitZExt(const User &I) { 2343 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2344 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2345 SDValue N = getValue(I.getOperand(0)); 2346 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2347 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2348 } 2349 2350 void SelectionDAGBuilder::visitSExt(const User &I) { 2351 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2352 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2353 SDValue N = getValue(I.getOperand(0)); 2354 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2355 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2356 } 2357 2358 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2359 // FPTrunc is never a no-op cast, no need to check 2360 SDValue N = getValue(I.getOperand(0)); 2361 SDLoc dl = getCurSDLoc(); 2362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2363 EVT DestVT = TLI.getValueType(I.getType()); 2364 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2365 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2366 } 2367 2368 void SelectionDAGBuilder::visitFPExt(const User &I) { 2369 // FPExt is never a no-op cast, no need to check 2370 SDValue N = getValue(I.getOperand(0)); 2371 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2372 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2373 } 2374 2375 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2376 // FPToUI is never a no-op cast, no need to check 2377 SDValue N = getValue(I.getOperand(0)); 2378 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2379 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2380 } 2381 2382 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2383 // FPToSI is never a no-op cast, no need to check 2384 SDValue N = getValue(I.getOperand(0)); 2385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2386 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2387 } 2388 2389 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2390 // UIToFP is never a no-op cast, no need to check 2391 SDValue N = getValue(I.getOperand(0)); 2392 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2393 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2394 } 2395 2396 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2397 // SIToFP is never a no-op cast, no need to check 2398 SDValue N = getValue(I.getOperand(0)); 2399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2400 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2401 } 2402 2403 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2404 // What to do depends on the size of the integer and the size of the pointer. 2405 // We can either truncate, zero extend, or no-op, accordingly. 2406 SDValue N = getValue(I.getOperand(0)); 2407 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2408 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2409 } 2410 2411 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2412 // What to do depends on the size of the integer and the size of the pointer. 2413 // We can either truncate, zero extend, or no-op, accordingly. 2414 SDValue N = getValue(I.getOperand(0)); 2415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2416 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2417 } 2418 2419 void SelectionDAGBuilder::visitBitCast(const User &I) { 2420 SDValue N = getValue(I.getOperand(0)); 2421 SDLoc dl = getCurSDLoc(); 2422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2423 2424 // BitCast assures us that source and destination are the same size so this is 2425 // either a BITCAST or a no-op. 2426 if (DestVT != N.getValueType()) 2427 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2428 DestVT, N)); // convert types. 2429 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2430 // might fold any kind of constant expression to an integer constant and that 2431 // is not what we are looking for. Only regcognize a bitcast of a genuine 2432 // constant integer as an opaque constant. 2433 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2434 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2435 /*isOpaque*/true)); 2436 else 2437 setValue(&I, N); // noop cast. 2438 } 2439 2440 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2442 const Value *SV = I.getOperand(0); 2443 SDValue N = getValue(SV); 2444 EVT DestVT = TLI.getValueType(I.getType()); 2445 2446 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2447 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2448 2449 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2450 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2451 2452 setValue(&I, N); 2453 } 2454 2455 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2457 SDValue InVec = getValue(I.getOperand(0)); 2458 SDValue InVal = getValue(I.getOperand(1)); 2459 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2460 getCurSDLoc(), TLI.getVectorIdxTy()); 2461 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2462 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2463 } 2464 2465 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2467 SDValue InVec = getValue(I.getOperand(0)); 2468 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2469 getCurSDLoc(), TLI.getVectorIdxTy()); 2470 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2471 TLI.getValueType(I.getType()), InVec, InIdx)); 2472 } 2473 2474 // Utility for visitShuffleVector - Return true if every element in Mask, 2475 // beginning from position Pos and ending in Pos+Size, falls within the 2476 // specified sequential range [L, L+Pos). or is undef. 2477 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2478 unsigned Pos, unsigned Size, int Low) { 2479 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2480 if (Mask[i] >= 0 && Mask[i] != Low) 2481 return false; 2482 return true; 2483 } 2484 2485 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2486 SDValue Src1 = getValue(I.getOperand(0)); 2487 SDValue Src2 = getValue(I.getOperand(1)); 2488 2489 SmallVector<int, 8> Mask; 2490 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2491 unsigned MaskNumElts = Mask.size(); 2492 2493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2494 EVT VT = TLI.getValueType(I.getType()); 2495 EVT SrcVT = Src1.getValueType(); 2496 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2497 2498 if (SrcNumElts == MaskNumElts) { 2499 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2500 &Mask[0])); 2501 return; 2502 } 2503 2504 // Normalize the shuffle vector since mask and vector length don't match. 2505 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2506 // Mask is longer than the source vectors and is a multiple of the source 2507 // vectors. We can use concatenate vector to make the mask and vectors 2508 // lengths match. 2509 if (SrcNumElts*2 == MaskNumElts) { 2510 // First check for Src1 in low and Src2 in high 2511 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2512 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2513 // The shuffle is concatenating two vectors together. 2514 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2515 VT, Src1, Src2)); 2516 return; 2517 } 2518 // Then check for Src2 in low and Src1 in high 2519 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2520 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2521 // The shuffle is concatenating two vectors together. 2522 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2523 VT, Src2, Src1)); 2524 return; 2525 } 2526 } 2527 2528 // Pad both vectors with undefs to make them the same length as the mask. 2529 unsigned NumConcat = MaskNumElts / SrcNumElts; 2530 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2531 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2532 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2533 2534 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2535 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2536 MOps1[0] = Src1; 2537 MOps2[0] = Src2; 2538 2539 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2540 getCurSDLoc(), VT, MOps1); 2541 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2542 getCurSDLoc(), VT, MOps2); 2543 2544 // Readjust mask for new input vector length. 2545 SmallVector<int, 8> MappedOps; 2546 for (unsigned i = 0; i != MaskNumElts; ++i) { 2547 int Idx = Mask[i]; 2548 if (Idx >= (int)SrcNumElts) 2549 Idx -= SrcNumElts - MaskNumElts; 2550 MappedOps.push_back(Idx); 2551 } 2552 2553 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2554 &MappedOps[0])); 2555 return; 2556 } 2557 2558 if (SrcNumElts > MaskNumElts) { 2559 // Analyze the access pattern of the vector to see if we can extract 2560 // two subvectors and do the shuffle. The analysis is done by calculating 2561 // the range of elements the mask access on both vectors. 2562 int MinRange[2] = { static_cast<int>(SrcNumElts), 2563 static_cast<int>(SrcNumElts)}; 2564 int MaxRange[2] = {-1, -1}; 2565 2566 for (unsigned i = 0; i != MaskNumElts; ++i) { 2567 int Idx = Mask[i]; 2568 unsigned Input = 0; 2569 if (Idx < 0) 2570 continue; 2571 2572 if (Idx >= (int)SrcNumElts) { 2573 Input = 1; 2574 Idx -= SrcNumElts; 2575 } 2576 if (Idx > MaxRange[Input]) 2577 MaxRange[Input] = Idx; 2578 if (Idx < MinRange[Input]) 2579 MinRange[Input] = Idx; 2580 } 2581 2582 // Check if the access is smaller than the vector size and can we find 2583 // a reasonable extract index. 2584 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2585 // Extract. 2586 int StartIdx[2]; // StartIdx to extract from 2587 for (unsigned Input = 0; Input < 2; ++Input) { 2588 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2589 RangeUse[Input] = 0; // Unused 2590 StartIdx[Input] = 0; 2591 continue; 2592 } 2593 2594 // Find a good start index that is a multiple of the mask length. Then 2595 // see if the rest of the elements are in range. 2596 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2597 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2598 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2599 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2600 } 2601 2602 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2603 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2604 return; 2605 } 2606 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2607 // Extract appropriate subvector and generate a vector shuffle 2608 for (unsigned Input = 0; Input < 2; ++Input) { 2609 SDValue &Src = Input == 0 ? Src1 : Src2; 2610 if (RangeUse[Input] == 0) 2611 Src = DAG.getUNDEF(VT); 2612 else { 2613 SDLoc dl = getCurSDLoc(); 2614 Src = DAG.getNode( 2615 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2616 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2617 } 2618 } 2619 2620 // Calculate new mask. 2621 SmallVector<int, 8> MappedOps; 2622 for (unsigned i = 0; i != MaskNumElts; ++i) { 2623 int Idx = Mask[i]; 2624 if (Idx >= 0) { 2625 if (Idx < (int)SrcNumElts) 2626 Idx -= StartIdx[0]; 2627 else 2628 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2629 } 2630 MappedOps.push_back(Idx); 2631 } 2632 2633 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2634 &MappedOps[0])); 2635 return; 2636 } 2637 } 2638 2639 // We can't use either concat vectors or extract subvectors so fall back to 2640 // replacing the shuffle with extract and build vector. 2641 // to insert and build vector. 2642 EVT EltVT = VT.getVectorElementType(); 2643 EVT IdxVT = TLI.getVectorIdxTy(); 2644 SDLoc dl = getCurSDLoc(); 2645 SmallVector<SDValue,8> Ops; 2646 for (unsigned i = 0; i != MaskNumElts; ++i) { 2647 int Idx = Mask[i]; 2648 SDValue Res; 2649 2650 if (Idx < 0) { 2651 Res = DAG.getUNDEF(EltVT); 2652 } else { 2653 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2654 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2655 2656 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2657 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2658 } 2659 2660 Ops.push_back(Res); 2661 } 2662 2663 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2664 } 2665 2666 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2667 const Value *Op0 = I.getOperand(0); 2668 const Value *Op1 = I.getOperand(1); 2669 Type *AggTy = I.getType(); 2670 Type *ValTy = Op1->getType(); 2671 bool IntoUndef = isa<UndefValue>(Op0); 2672 bool FromUndef = isa<UndefValue>(Op1); 2673 2674 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2675 2676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2677 SmallVector<EVT, 4> AggValueVTs; 2678 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2679 SmallVector<EVT, 4> ValValueVTs; 2680 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2681 2682 unsigned NumAggValues = AggValueVTs.size(); 2683 unsigned NumValValues = ValValueVTs.size(); 2684 SmallVector<SDValue, 4> Values(NumAggValues); 2685 2686 // Ignore an insertvalue that produces an empty object 2687 if (!NumAggValues) { 2688 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2689 return; 2690 } 2691 2692 SDValue Agg = getValue(Op0); 2693 unsigned i = 0; 2694 // Copy the beginning value(s) from the original aggregate. 2695 for (; i != LinearIndex; ++i) 2696 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2697 SDValue(Agg.getNode(), Agg.getResNo() + i); 2698 // Copy values from the inserted value(s). 2699 if (NumValValues) { 2700 SDValue Val = getValue(Op1); 2701 for (; i != LinearIndex + NumValValues; ++i) 2702 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2703 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2704 } 2705 // Copy remaining value(s) from the original aggregate. 2706 for (; i != NumAggValues; ++i) 2707 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2708 SDValue(Agg.getNode(), Agg.getResNo() + i); 2709 2710 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2711 DAG.getVTList(AggValueVTs), Values)); 2712 } 2713 2714 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2715 const Value *Op0 = I.getOperand(0); 2716 Type *AggTy = Op0->getType(); 2717 Type *ValTy = I.getType(); 2718 bool OutOfUndef = isa<UndefValue>(Op0); 2719 2720 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2721 2722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2723 SmallVector<EVT, 4> ValValueVTs; 2724 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2725 2726 unsigned NumValValues = ValValueVTs.size(); 2727 2728 // Ignore a extractvalue that produces an empty object 2729 if (!NumValValues) { 2730 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2731 return; 2732 } 2733 2734 SmallVector<SDValue, 4> Values(NumValValues); 2735 2736 SDValue Agg = getValue(Op0); 2737 // Copy out the selected value(s). 2738 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2739 Values[i - LinearIndex] = 2740 OutOfUndef ? 2741 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2742 SDValue(Agg.getNode(), Agg.getResNo() + i); 2743 2744 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2745 DAG.getVTList(ValValueVTs), Values)); 2746 } 2747 2748 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2749 Value *Op0 = I.getOperand(0); 2750 // Note that the pointer operand may be a vector of pointers. Take the scalar 2751 // element which holds a pointer. 2752 Type *Ty = Op0->getType()->getScalarType(); 2753 unsigned AS = Ty->getPointerAddressSpace(); 2754 SDValue N = getValue(Op0); 2755 SDLoc dl = getCurSDLoc(); 2756 2757 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2758 OI != E; ++OI) { 2759 const Value *Idx = *OI; 2760 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2761 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2762 if (Field) { 2763 // N = N + Offset 2764 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2765 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2766 DAG.getConstant(Offset, dl, N.getValueType())); 2767 } 2768 2769 Ty = StTy->getElementType(Field); 2770 } else { 2771 Ty = cast<SequentialType>(Ty)->getElementType(); 2772 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2773 unsigned PtrSize = PtrTy.getSizeInBits(); 2774 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2775 2776 // If this is a constant subscript, handle it quickly. 2777 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2778 if (CI->isZero()) 2779 continue; 2780 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2781 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2782 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2783 continue; 2784 } 2785 2786 // N = N + Idx * ElementSize; 2787 SDValue IdxN = getValue(Idx); 2788 2789 // If the index is smaller or larger than intptr_t, truncate or extend 2790 // it. 2791 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2792 2793 // If this is a multiply by a power of two, turn it into a shl 2794 // immediately. This is a very common case. 2795 if (ElementSize != 1) { 2796 if (ElementSize.isPowerOf2()) { 2797 unsigned Amt = ElementSize.logBase2(); 2798 IdxN = DAG.getNode(ISD::SHL, dl, 2799 N.getValueType(), IdxN, 2800 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2801 } else { 2802 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2803 IdxN = DAG.getNode(ISD::MUL, dl, 2804 N.getValueType(), IdxN, Scale); 2805 } 2806 } 2807 2808 N = DAG.getNode(ISD::ADD, dl, 2809 N.getValueType(), N, IdxN); 2810 } 2811 } 2812 2813 setValue(&I, N); 2814 } 2815 2816 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2817 // If this is a fixed sized alloca in the entry block of the function, 2818 // allocate it statically on the stack. 2819 if (FuncInfo.StaticAllocaMap.count(&I)) 2820 return; // getValue will auto-populate this. 2821 2822 SDLoc dl = getCurSDLoc(); 2823 Type *Ty = I.getAllocatedType(); 2824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2825 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2826 unsigned Align = 2827 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2828 I.getAlignment()); 2829 2830 SDValue AllocSize = getValue(I.getArraySize()); 2831 2832 EVT IntPtr = TLI.getPointerTy(); 2833 if (AllocSize.getValueType() != IntPtr) 2834 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2835 2836 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2837 AllocSize, 2838 DAG.getConstant(TySize, dl, IntPtr)); 2839 2840 // Handle alignment. If the requested alignment is less than or equal to 2841 // the stack alignment, ignore it. If the size is greater than or equal to 2842 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2843 unsigned StackAlign = 2844 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2845 if (Align <= StackAlign) 2846 Align = 0; 2847 2848 // Round the size of the allocation up to the stack alignment size 2849 // by add SA-1 to the size. 2850 AllocSize = DAG.getNode(ISD::ADD, dl, 2851 AllocSize.getValueType(), AllocSize, 2852 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2853 2854 // Mask out the low bits for alignment purposes. 2855 AllocSize = DAG.getNode(ISD::AND, dl, 2856 AllocSize.getValueType(), AllocSize, 2857 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2858 dl)); 2859 2860 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2861 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2862 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2863 setValue(&I, DSA); 2864 DAG.setRoot(DSA.getValue(1)); 2865 2866 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2867 } 2868 2869 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2870 if (I.isAtomic()) 2871 return visitAtomicLoad(I); 2872 2873 const Value *SV = I.getOperand(0); 2874 SDValue Ptr = getValue(SV); 2875 2876 Type *Ty = I.getType(); 2877 2878 bool isVolatile = I.isVolatile(); 2879 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2880 2881 // The IR notion of invariant_load only guarantees that all *non-faulting* 2882 // invariant loads result in the same value. The MI notion of invariant load 2883 // guarantees that the load can be legally moved to any location within its 2884 // containing function. The MI notion of invariant_load is stronger than the 2885 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2886 // with a guarantee that the location being loaded from is dereferenceable 2887 // throughout the function's lifetime. 2888 2889 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2890 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2891 unsigned Alignment = I.getAlignment(); 2892 2893 AAMDNodes AAInfo; 2894 I.getAAMetadata(AAInfo); 2895 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2896 2897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2898 SmallVector<EVT, 4> ValueVTs; 2899 SmallVector<uint64_t, 4> Offsets; 2900 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2901 unsigned NumValues = ValueVTs.size(); 2902 if (NumValues == 0) 2903 return; 2904 2905 SDValue Root; 2906 bool ConstantMemory = false; 2907 if (isVolatile || NumValues > MaxParallelChains) 2908 // Serialize volatile loads with other side effects. 2909 Root = getRoot(); 2910 else if (AA->pointsToConstantMemory( 2911 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2912 // Do not serialize (non-volatile) loads of constant memory with anything. 2913 Root = DAG.getEntryNode(); 2914 ConstantMemory = true; 2915 } else { 2916 // Do not serialize non-volatile loads against each other. 2917 Root = DAG.getRoot(); 2918 } 2919 2920 SDLoc dl = getCurSDLoc(); 2921 2922 if (isVolatile) 2923 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2924 2925 SmallVector<SDValue, 4> Values(NumValues); 2926 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2927 EVT PtrVT = Ptr.getValueType(); 2928 unsigned ChainI = 0; 2929 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2930 // Serializing loads here may result in excessive register pressure, and 2931 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2932 // could recover a bit by hoisting nodes upward in the chain by recognizing 2933 // they are side-effect free or do not alias. The optimizer should really 2934 // avoid this case by converting large object/array copies to llvm.memcpy 2935 // (MaxParallelChains should always remain as failsafe). 2936 if (ChainI == MaxParallelChains) { 2937 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2938 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2939 makeArrayRef(Chains.data(), ChainI)); 2940 Root = Chain; 2941 ChainI = 0; 2942 } 2943 SDValue A = DAG.getNode(ISD::ADD, dl, 2944 PtrVT, Ptr, 2945 DAG.getConstant(Offsets[i], dl, PtrVT)); 2946 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2947 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2948 isNonTemporal, isInvariant, Alignment, AAInfo, 2949 Ranges); 2950 2951 Values[i] = L; 2952 Chains[ChainI] = L.getValue(1); 2953 } 2954 2955 if (!ConstantMemory) { 2956 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2957 makeArrayRef(Chains.data(), ChainI)); 2958 if (isVolatile) 2959 DAG.setRoot(Chain); 2960 else 2961 PendingLoads.push_back(Chain); 2962 } 2963 2964 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2965 DAG.getVTList(ValueVTs), Values)); 2966 } 2967 2968 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2969 if (I.isAtomic()) 2970 return visitAtomicStore(I); 2971 2972 const Value *SrcV = I.getOperand(0); 2973 const Value *PtrV = I.getOperand(1); 2974 2975 SmallVector<EVT, 4> ValueVTs; 2976 SmallVector<uint64_t, 4> Offsets; 2977 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2978 ValueVTs, &Offsets); 2979 unsigned NumValues = ValueVTs.size(); 2980 if (NumValues == 0) 2981 return; 2982 2983 // Get the lowered operands. Note that we do this after 2984 // checking if NumResults is zero, because with zero results 2985 // the operands won't have values in the map. 2986 SDValue Src = getValue(SrcV); 2987 SDValue Ptr = getValue(PtrV); 2988 2989 SDValue Root = getRoot(); 2990 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2991 EVT PtrVT = Ptr.getValueType(); 2992 bool isVolatile = I.isVolatile(); 2993 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2994 unsigned Alignment = I.getAlignment(); 2995 SDLoc dl = getCurSDLoc(); 2996 2997 AAMDNodes AAInfo; 2998 I.getAAMetadata(AAInfo); 2999 3000 unsigned ChainI = 0; 3001 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3002 // See visitLoad comments. 3003 if (ChainI == MaxParallelChains) { 3004 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3005 makeArrayRef(Chains.data(), ChainI)); 3006 Root = Chain; 3007 ChainI = 0; 3008 } 3009 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3010 DAG.getConstant(Offsets[i], dl, PtrVT)); 3011 SDValue St = DAG.getStore(Root, dl, 3012 SDValue(Src.getNode(), Src.getResNo() + i), 3013 Add, MachinePointerInfo(PtrV, Offsets[i]), 3014 isVolatile, isNonTemporal, Alignment, AAInfo); 3015 Chains[ChainI] = St; 3016 } 3017 3018 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3019 makeArrayRef(Chains.data(), ChainI)); 3020 DAG.setRoot(StoreNode); 3021 } 3022 3023 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3024 SDLoc sdl = getCurSDLoc(); 3025 3026 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3027 Value *PtrOperand = I.getArgOperand(1); 3028 SDValue Ptr = getValue(PtrOperand); 3029 SDValue Src0 = getValue(I.getArgOperand(0)); 3030 SDValue Mask = getValue(I.getArgOperand(3)); 3031 EVT VT = Src0.getValueType(); 3032 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3033 if (!Alignment) 3034 Alignment = DAG.getEVTAlignment(VT); 3035 3036 AAMDNodes AAInfo; 3037 I.getAAMetadata(AAInfo); 3038 3039 MachineMemOperand *MMO = 3040 DAG.getMachineFunction(). 3041 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3042 MachineMemOperand::MOStore, VT.getStoreSize(), 3043 Alignment, AAInfo); 3044 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3045 MMO, false); 3046 DAG.setRoot(StoreNode); 3047 setValue(&I, StoreNode); 3048 } 3049 3050 // Gather/scatter receive a vector of pointers. 3051 // This vector of pointers may be represented as a base pointer + vector of 3052 // indices, it depends on GEP and instruction preceeding GEP 3053 // that calculates indices 3054 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3055 SelectionDAGBuilder* SDB) { 3056 3057 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3058 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3059 if (!Gep || Gep->getNumOperands() > 2) 3060 return false; 3061 ShuffleVectorInst *ShuffleInst = 3062 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3063 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3064 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3065 Instruction::InsertElement) 3066 return false; 3067 3068 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3069 3070 SelectionDAG& DAG = SDB->DAG; 3071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3072 // Check is the Ptr is inside current basic block 3073 // If not, look for the shuffle instruction 3074 if (SDB->findValue(Ptr)) 3075 Base = SDB->getValue(Ptr); 3076 else if (SDB->findValue(ShuffleInst)) { 3077 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3078 SDLoc sdl = ShuffleNode; 3079 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3080 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3081 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3082 SDB->setValue(Ptr, Base); 3083 } 3084 else 3085 return false; 3086 3087 Value *IndexVal = Gep->getOperand(1); 3088 if (SDB->findValue(IndexVal)) { 3089 Index = SDB->getValue(IndexVal); 3090 3091 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3092 IndexVal = Sext->getOperand(0); 3093 if (SDB->findValue(IndexVal)) 3094 Index = SDB->getValue(IndexVal); 3095 } 3096 return true; 3097 } 3098 return false; 3099 } 3100 3101 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3102 SDLoc sdl = getCurSDLoc(); 3103 3104 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3105 Value *Ptr = I.getArgOperand(1); 3106 SDValue Src0 = getValue(I.getArgOperand(0)); 3107 SDValue Mask = getValue(I.getArgOperand(3)); 3108 EVT VT = Src0.getValueType(); 3109 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3110 if (!Alignment) 3111 Alignment = DAG.getEVTAlignment(VT); 3112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3113 3114 AAMDNodes AAInfo; 3115 I.getAAMetadata(AAInfo); 3116 3117 SDValue Base; 3118 SDValue Index; 3119 Value *BasePtr = Ptr; 3120 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3121 3122 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3123 MachineMemOperand *MMO = DAG.getMachineFunction(). 3124 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3125 MachineMemOperand::MOStore, VT.getStoreSize(), 3126 Alignment, AAInfo); 3127 if (!UniformBase) { 3128 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3129 Index = getValue(Ptr); 3130 } 3131 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3132 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3133 Ops, MMO); 3134 DAG.setRoot(Scatter); 3135 setValue(&I, Scatter); 3136 } 3137 3138 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3139 SDLoc sdl = getCurSDLoc(); 3140 3141 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3142 Value *PtrOperand = I.getArgOperand(0); 3143 SDValue Ptr = getValue(PtrOperand); 3144 SDValue Src0 = getValue(I.getArgOperand(3)); 3145 SDValue Mask = getValue(I.getArgOperand(2)); 3146 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 EVT VT = TLI.getValueType(I.getType()); 3149 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3150 if (!Alignment) 3151 Alignment = DAG.getEVTAlignment(VT); 3152 3153 AAMDNodes AAInfo; 3154 I.getAAMetadata(AAInfo); 3155 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3156 3157 SDValue InChain = DAG.getRoot(); 3158 if (AA->pointsToConstantMemory(MemoryLocation( 3159 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3160 // Do not serialize (non-volatile) loads of constant memory with anything. 3161 InChain = DAG.getEntryNode(); 3162 } 3163 3164 MachineMemOperand *MMO = 3165 DAG.getMachineFunction(). 3166 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3167 MachineMemOperand::MOLoad, VT.getStoreSize(), 3168 Alignment, AAInfo, Ranges); 3169 3170 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3171 ISD::NON_EXTLOAD); 3172 SDValue OutChain = Load.getValue(1); 3173 DAG.setRoot(OutChain); 3174 setValue(&I, Load); 3175 } 3176 3177 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3178 SDLoc sdl = getCurSDLoc(); 3179 3180 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3181 Value *Ptr = I.getArgOperand(0); 3182 SDValue Src0 = getValue(I.getArgOperand(3)); 3183 SDValue Mask = getValue(I.getArgOperand(2)); 3184 3185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3186 EVT VT = TLI.getValueType(I.getType()); 3187 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3188 if (!Alignment) 3189 Alignment = DAG.getEVTAlignment(VT); 3190 3191 AAMDNodes AAInfo; 3192 I.getAAMetadata(AAInfo); 3193 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3194 3195 SDValue Root = DAG.getRoot(); 3196 SDValue Base; 3197 SDValue Index; 3198 Value *BasePtr = Ptr; 3199 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3200 bool ConstantMemory = false; 3201 if (UniformBase && 3202 AA->pointsToConstantMemory( 3203 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3204 // Do not serialize (non-volatile) loads of constant memory with anything. 3205 Root = DAG.getEntryNode(); 3206 ConstantMemory = true; 3207 } 3208 3209 MachineMemOperand *MMO = 3210 DAG.getMachineFunction(). 3211 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3212 MachineMemOperand::MOLoad, VT.getStoreSize(), 3213 Alignment, AAInfo, Ranges); 3214 3215 if (!UniformBase) { 3216 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3217 Index = getValue(Ptr); 3218 } 3219 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3220 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3221 Ops, MMO); 3222 3223 SDValue OutChain = Gather.getValue(1); 3224 if (!ConstantMemory) 3225 PendingLoads.push_back(OutChain); 3226 setValue(&I, Gather); 3227 } 3228 3229 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3230 SDLoc dl = getCurSDLoc(); 3231 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3232 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3233 SynchronizationScope Scope = I.getSynchScope(); 3234 3235 SDValue InChain = getRoot(); 3236 3237 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3238 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3239 SDValue L = DAG.getAtomicCmpSwap( 3240 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3241 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3242 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3243 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3244 3245 SDValue OutChain = L.getValue(2); 3246 3247 setValue(&I, L); 3248 DAG.setRoot(OutChain); 3249 } 3250 3251 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3252 SDLoc dl = getCurSDLoc(); 3253 ISD::NodeType NT; 3254 switch (I.getOperation()) { 3255 default: llvm_unreachable("Unknown atomicrmw operation"); 3256 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3257 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3258 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3259 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3260 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3261 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3262 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3263 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3264 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3265 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3266 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3267 } 3268 AtomicOrdering Order = I.getOrdering(); 3269 SynchronizationScope Scope = I.getSynchScope(); 3270 3271 SDValue InChain = getRoot(); 3272 3273 SDValue L = 3274 DAG.getAtomic(NT, dl, 3275 getValue(I.getValOperand()).getSimpleValueType(), 3276 InChain, 3277 getValue(I.getPointerOperand()), 3278 getValue(I.getValOperand()), 3279 I.getPointerOperand(), 3280 /* Alignment=*/ 0, Order, Scope); 3281 3282 SDValue OutChain = L.getValue(1); 3283 3284 setValue(&I, L); 3285 DAG.setRoot(OutChain); 3286 } 3287 3288 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3289 SDLoc dl = getCurSDLoc(); 3290 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3291 SDValue Ops[3]; 3292 Ops[0] = getRoot(); 3293 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3294 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3295 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3296 } 3297 3298 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3299 SDLoc dl = getCurSDLoc(); 3300 AtomicOrdering Order = I.getOrdering(); 3301 SynchronizationScope Scope = I.getSynchScope(); 3302 3303 SDValue InChain = getRoot(); 3304 3305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3306 EVT VT = TLI.getValueType(I.getType()); 3307 3308 if (I.getAlignment() < VT.getSizeInBits() / 8) 3309 report_fatal_error("Cannot generate unaligned atomic load"); 3310 3311 MachineMemOperand *MMO = 3312 DAG.getMachineFunction(). 3313 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3314 MachineMemOperand::MOVolatile | 3315 MachineMemOperand::MOLoad, 3316 VT.getStoreSize(), 3317 I.getAlignment() ? I.getAlignment() : 3318 DAG.getEVTAlignment(VT)); 3319 3320 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3321 SDValue L = 3322 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3323 getValue(I.getPointerOperand()), MMO, 3324 Order, Scope); 3325 3326 SDValue OutChain = L.getValue(1); 3327 3328 setValue(&I, L); 3329 DAG.setRoot(OutChain); 3330 } 3331 3332 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3333 SDLoc dl = getCurSDLoc(); 3334 3335 AtomicOrdering Order = I.getOrdering(); 3336 SynchronizationScope Scope = I.getSynchScope(); 3337 3338 SDValue InChain = getRoot(); 3339 3340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3341 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3342 3343 if (I.getAlignment() < VT.getSizeInBits() / 8) 3344 report_fatal_error("Cannot generate unaligned atomic store"); 3345 3346 SDValue OutChain = 3347 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3348 InChain, 3349 getValue(I.getPointerOperand()), 3350 getValue(I.getValueOperand()), 3351 I.getPointerOperand(), I.getAlignment(), 3352 Order, Scope); 3353 3354 DAG.setRoot(OutChain); 3355 } 3356 3357 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3358 /// node. 3359 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3360 unsigned Intrinsic) { 3361 bool HasChain = !I.doesNotAccessMemory(); 3362 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3363 3364 // Build the operand list. 3365 SmallVector<SDValue, 8> Ops; 3366 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3367 if (OnlyLoad) { 3368 // We don't need to serialize loads against other loads. 3369 Ops.push_back(DAG.getRoot()); 3370 } else { 3371 Ops.push_back(getRoot()); 3372 } 3373 } 3374 3375 // Info is set by getTgtMemInstrinsic 3376 TargetLowering::IntrinsicInfo Info; 3377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3378 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3379 3380 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3381 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3382 Info.opc == ISD::INTRINSIC_W_CHAIN) 3383 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3384 TLI.getPointerTy())); 3385 3386 // Add all operands of the call to the operand list. 3387 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3388 SDValue Op = getValue(I.getArgOperand(i)); 3389 Ops.push_back(Op); 3390 } 3391 3392 SmallVector<EVT, 4> ValueVTs; 3393 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3394 3395 if (HasChain) 3396 ValueVTs.push_back(MVT::Other); 3397 3398 SDVTList VTs = DAG.getVTList(ValueVTs); 3399 3400 // Create the node. 3401 SDValue Result; 3402 if (IsTgtIntrinsic) { 3403 // This is target intrinsic that touches memory 3404 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3405 VTs, Ops, Info.memVT, 3406 MachinePointerInfo(Info.ptrVal, Info.offset), 3407 Info.align, Info.vol, 3408 Info.readMem, Info.writeMem, Info.size); 3409 } else if (!HasChain) { 3410 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3411 } else if (!I.getType()->isVoidTy()) { 3412 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3413 } else { 3414 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3415 } 3416 3417 if (HasChain) { 3418 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3419 if (OnlyLoad) 3420 PendingLoads.push_back(Chain); 3421 else 3422 DAG.setRoot(Chain); 3423 } 3424 3425 if (!I.getType()->isVoidTy()) { 3426 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3427 EVT VT = TLI.getValueType(PTy); 3428 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3429 } 3430 3431 setValue(&I, Result); 3432 } 3433 } 3434 3435 /// GetSignificand - Get the significand and build it into a floating-point 3436 /// number with exponent of 1: 3437 /// 3438 /// Op = (Op & 0x007fffff) | 0x3f800000; 3439 /// 3440 /// where Op is the hexadecimal representation of floating point value. 3441 static SDValue 3442 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3443 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3444 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3445 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3446 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3447 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3448 } 3449 3450 /// GetExponent - Get the exponent: 3451 /// 3452 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3453 /// 3454 /// where Op is the hexadecimal representation of floating point value. 3455 static SDValue 3456 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3457 SDLoc dl) { 3458 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3459 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3460 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3461 DAG.getConstant(23, dl, TLI.getPointerTy())); 3462 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3463 DAG.getConstant(127, dl, MVT::i32)); 3464 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3465 } 3466 3467 /// getF32Constant - Get 32-bit floating point constant. 3468 static SDValue 3469 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3470 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3471 MVT::f32); 3472 } 3473 3474 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3475 SelectionDAG &DAG) { 3476 // IntegerPartOfX = ((int32_t)(t0); 3477 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3478 3479 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3480 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3481 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3482 3483 // IntegerPartOfX <<= 23; 3484 IntegerPartOfX = DAG.getNode( 3485 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3486 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3487 3488 SDValue TwoToFractionalPartOfX; 3489 if (LimitFloatPrecision <= 6) { 3490 // For floating-point precision of 6: 3491 // 3492 // TwoToFractionalPartOfX = 3493 // 0.997535578f + 3494 // (0.735607626f + 0.252464424f * x) * x; 3495 // 3496 // error 0.0144103317, which is 6 bits 3497 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3498 getF32Constant(DAG, 0x3e814304, dl)); 3499 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3500 getF32Constant(DAG, 0x3f3c50c8, dl)); 3501 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3502 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3503 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3504 } else if (LimitFloatPrecision <= 12) { 3505 // For floating-point precision of 12: 3506 // 3507 // TwoToFractionalPartOfX = 3508 // 0.999892986f + 3509 // (0.696457318f + 3510 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3511 // 3512 // error 0.000107046256, which is 13 to 14 bits 3513 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3514 getF32Constant(DAG, 0x3da235e3, dl)); 3515 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3516 getF32Constant(DAG, 0x3e65b8f3, dl)); 3517 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3518 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3519 getF32Constant(DAG, 0x3f324b07, dl)); 3520 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3521 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3522 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3523 } else { // LimitFloatPrecision <= 18 3524 // For floating-point precision of 18: 3525 // 3526 // TwoToFractionalPartOfX = 3527 // 0.999999982f + 3528 // (0.693148872f + 3529 // (0.240227044f + 3530 // (0.554906021e-1f + 3531 // (0.961591928e-2f + 3532 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3533 // error 2.47208000*10^(-7), which is better than 18 bits 3534 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3535 getF32Constant(DAG, 0x3924b03e, dl)); 3536 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3537 getF32Constant(DAG, 0x3ab24b87, dl)); 3538 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3539 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3540 getF32Constant(DAG, 0x3c1d8c17, dl)); 3541 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3542 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3543 getF32Constant(DAG, 0x3d634a1d, dl)); 3544 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3545 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3546 getF32Constant(DAG, 0x3e75fe14, dl)); 3547 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3548 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3549 getF32Constant(DAG, 0x3f317234, dl)); 3550 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3551 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3552 getF32Constant(DAG, 0x3f800000, dl)); 3553 } 3554 3555 // Add the exponent into the result in integer domain. 3556 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3557 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3558 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3559 } 3560 3561 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3562 /// limited-precision mode. 3563 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3564 const TargetLowering &TLI) { 3565 if (Op.getValueType() == MVT::f32 && 3566 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3567 3568 // Put the exponent in the right bit position for later addition to the 3569 // final result: 3570 // 3571 // #define LOG2OFe 1.4426950f 3572 // t0 = Op * LOG2OFe 3573 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3574 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3575 return getLimitedPrecisionExp2(t0, dl, DAG); 3576 } 3577 3578 // No special expansion. 3579 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3580 } 3581 3582 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3583 /// limited-precision mode. 3584 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3585 const TargetLowering &TLI) { 3586 if (Op.getValueType() == MVT::f32 && 3587 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3588 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3589 3590 // Scale the exponent by log(2) [0.69314718f]. 3591 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3592 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3593 getF32Constant(DAG, 0x3f317218, dl)); 3594 3595 // Get the significand and build it into a floating-point number with 3596 // exponent of 1. 3597 SDValue X = GetSignificand(DAG, Op1, dl); 3598 3599 SDValue LogOfMantissa; 3600 if (LimitFloatPrecision <= 6) { 3601 // For floating-point precision of 6: 3602 // 3603 // LogofMantissa = 3604 // -1.1609546f + 3605 // (1.4034025f - 0.23903021f * x) * x; 3606 // 3607 // error 0.0034276066, which is better than 8 bits 3608 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3609 getF32Constant(DAG, 0xbe74c456, dl)); 3610 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3611 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3612 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3613 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3614 getF32Constant(DAG, 0x3f949a29, dl)); 3615 } else if (LimitFloatPrecision <= 12) { 3616 // For floating-point precision of 12: 3617 // 3618 // LogOfMantissa = 3619 // -1.7417939f + 3620 // (2.8212026f + 3621 // (-1.4699568f + 3622 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3623 // 3624 // error 0.000061011436, which is 14 bits 3625 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3626 getF32Constant(DAG, 0xbd67b6d6, dl)); 3627 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3628 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3629 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3630 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3631 getF32Constant(DAG, 0x3fbc278b, dl)); 3632 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3633 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3634 getF32Constant(DAG, 0x40348e95, dl)); 3635 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3636 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3637 getF32Constant(DAG, 0x3fdef31a, dl)); 3638 } else { // LimitFloatPrecision <= 18 3639 // For floating-point precision of 18: 3640 // 3641 // LogOfMantissa = 3642 // -2.1072184f + 3643 // (4.2372794f + 3644 // (-3.7029485f + 3645 // (2.2781945f + 3646 // (-0.87823314f + 3647 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3648 // 3649 // error 0.0000023660568, which is better than 18 bits 3650 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3651 getF32Constant(DAG, 0xbc91e5ac, dl)); 3652 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3653 getF32Constant(DAG, 0x3e4350aa, dl)); 3654 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3655 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3656 getF32Constant(DAG, 0x3f60d3e3, dl)); 3657 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3658 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3659 getF32Constant(DAG, 0x4011cdf0, dl)); 3660 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3661 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3662 getF32Constant(DAG, 0x406cfd1c, dl)); 3663 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3664 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3665 getF32Constant(DAG, 0x408797cb, dl)); 3666 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3667 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3668 getF32Constant(DAG, 0x4006dcab, dl)); 3669 } 3670 3671 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3672 } 3673 3674 // No special expansion. 3675 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3676 } 3677 3678 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3679 /// limited-precision mode. 3680 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3681 const TargetLowering &TLI) { 3682 if (Op.getValueType() == MVT::f32 && 3683 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3684 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3685 3686 // Get the exponent. 3687 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3688 3689 // Get the significand and build it into a floating-point number with 3690 // exponent of 1. 3691 SDValue X = GetSignificand(DAG, Op1, dl); 3692 3693 // Different possible minimax approximations of significand in 3694 // floating-point for various degrees of accuracy over [1,2]. 3695 SDValue Log2ofMantissa; 3696 if (LimitFloatPrecision <= 6) { 3697 // For floating-point precision of 6: 3698 // 3699 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3700 // 3701 // error 0.0049451742, which is more than 7 bits 3702 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3703 getF32Constant(DAG, 0xbeb08fe0, dl)); 3704 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3705 getF32Constant(DAG, 0x40019463, dl)); 3706 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3707 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3708 getF32Constant(DAG, 0x3fd6633d, dl)); 3709 } else if (LimitFloatPrecision <= 12) { 3710 // For floating-point precision of 12: 3711 // 3712 // Log2ofMantissa = 3713 // -2.51285454f + 3714 // (4.07009056f + 3715 // (-2.12067489f + 3716 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3717 // 3718 // error 0.0000876136000, which is better than 13 bits 3719 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3720 getF32Constant(DAG, 0xbda7262e, dl)); 3721 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3722 getF32Constant(DAG, 0x3f25280b, dl)); 3723 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3724 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3725 getF32Constant(DAG, 0x4007b923, dl)); 3726 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3727 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3728 getF32Constant(DAG, 0x40823e2f, dl)); 3729 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3730 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3731 getF32Constant(DAG, 0x4020d29c, dl)); 3732 } else { // LimitFloatPrecision <= 18 3733 // For floating-point precision of 18: 3734 // 3735 // Log2ofMantissa = 3736 // -3.0400495f + 3737 // (6.1129976f + 3738 // (-5.3420409f + 3739 // (3.2865683f + 3740 // (-1.2669343f + 3741 // (0.27515199f - 3742 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3743 // 3744 // error 0.0000018516, which is better than 18 bits 3745 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3746 getF32Constant(DAG, 0xbcd2769e, dl)); 3747 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3748 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3749 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3750 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3751 getF32Constant(DAG, 0x3fa22ae7, dl)); 3752 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3753 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3754 getF32Constant(DAG, 0x40525723, dl)); 3755 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3756 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3757 getF32Constant(DAG, 0x40aaf200, dl)); 3758 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3759 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3760 getF32Constant(DAG, 0x40c39dad, dl)); 3761 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3762 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3763 getF32Constant(DAG, 0x4042902c, dl)); 3764 } 3765 3766 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3767 } 3768 3769 // No special expansion. 3770 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3771 } 3772 3773 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3774 /// limited-precision mode. 3775 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3776 const TargetLowering &TLI) { 3777 if (Op.getValueType() == MVT::f32 && 3778 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3779 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3780 3781 // Scale the exponent by log10(2) [0.30102999f]. 3782 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3783 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3784 getF32Constant(DAG, 0x3e9a209a, dl)); 3785 3786 // Get the significand and build it into a floating-point number with 3787 // exponent of 1. 3788 SDValue X = GetSignificand(DAG, Op1, dl); 3789 3790 SDValue Log10ofMantissa; 3791 if (LimitFloatPrecision <= 6) { 3792 // For floating-point precision of 6: 3793 // 3794 // Log10ofMantissa = 3795 // -0.50419619f + 3796 // (0.60948995f - 0.10380950f * x) * x; 3797 // 3798 // error 0.0014886165, which is 6 bits 3799 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3800 getF32Constant(DAG, 0xbdd49a13, dl)); 3801 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3802 getF32Constant(DAG, 0x3f1c0789, dl)); 3803 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3804 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3805 getF32Constant(DAG, 0x3f011300, dl)); 3806 } else if (LimitFloatPrecision <= 12) { 3807 // For floating-point precision of 12: 3808 // 3809 // Log10ofMantissa = 3810 // -0.64831180f + 3811 // (0.91751397f + 3812 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3813 // 3814 // error 0.00019228036, which is better than 12 bits 3815 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3816 getF32Constant(DAG, 0x3d431f31, dl)); 3817 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3818 getF32Constant(DAG, 0x3ea21fb2, dl)); 3819 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3820 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3821 getF32Constant(DAG, 0x3f6ae232, dl)); 3822 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3823 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3824 getF32Constant(DAG, 0x3f25f7c3, dl)); 3825 } else { // LimitFloatPrecision <= 18 3826 // For floating-point precision of 18: 3827 // 3828 // Log10ofMantissa = 3829 // -0.84299375f + 3830 // (1.5327582f + 3831 // (-1.0688956f + 3832 // (0.49102474f + 3833 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3834 // 3835 // error 0.0000037995730, which is better than 18 bits 3836 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3837 getF32Constant(DAG, 0x3c5d51ce, dl)); 3838 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3839 getF32Constant(DAG, 0x3e00685a, dl)); 3840 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3841 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3842 getF32Constant(DAG, 0x3efb6798, dl)); 3843 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3844 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3845 getF32Constant(DAG, 0x3f88d192, dl)); 3846 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3847 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3848 getF32Constant(DAG, 0x3fc4316c, dl)); 3849 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3850 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3851 getF32Constant(DAG, 0x3f57ce70, dl)); 3852 } 3853 3854 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3855 } 3856 3857 // No special expansion. 3858 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3859 } 3860 3861 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3862 /// limited-precision mode. 3863 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3864 const TargetLowering &TLI) { 3865 if (Op.getValueType() == MVT::f32 && 3866 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3867 return getLimitedPrecisionExp2(Op, dl, DAG); 3868 3869 // No special expansion. 3870 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3871 } 3872 3873 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3874 /// limited-precision mode with x == 10.0f. 3875 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3876 SelectionDAG &DAG, const TargetLowering &TLI) { 3877 bool IsExp10 = false; 3878 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3879 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3880 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3881 APFloat Ten(10.0f); 3882 IsExp10 = LHSC->isExactlyValue(Ten); 3883 } 3884 } 3885 3886 if (IsExp10) { 3887 // Put the exponent in the right bit position for later addition to the 3888 // final result: 3889 // 3890 // #define LOG2OF10 3.3219281f 3891 // t0 = Op * LOG2OF10; 3892 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3893 getF32Constant(DAG, 0x40549a78, dl)); 3894 return getLimitedPrecisionExp2(t0, dl, DAG); 3895 } 3896 3897 // No special expansion. 3898 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3899 } 3900 3901 3902 /// ExpandPowI - Expand a llvm.powi intrinsic. 3903 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3904 SelectionDAG &DAG) { 3905 // If RHS is a constant, we can expand this out to a multiplication tree, 3906 // otherwise we end up lowering to a call to __powidf2 (for example). When 3907 // optimizing for size, we only want to do this if the expansion would produce 3908 // a small number of multiplies, otherwise we do the full expansion. 3909 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3910 // Get the exponent as a positive value. 3911 unsigned Val = RHSC->getSExtValue(); 3912 if ((int)Val < 0) Val = -Val; 3913 3914 // powi(x, 0) -> 1.0 3915 if (Val == 0) 3916 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3917 3918 const Function *F = DAG.getMachineFunction().getFunction(); 3919 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3920 // If optimizing for size, don't insert too many multiplies. This 3921 // inserts up to 5 multiplies. 3922 countPopulation(Val) + Log2_32(Val) < 7) { 3923 // We use the simple binary decomposition method to generate the multiply 3924 // sequence. There are more optimal ways to do this (for example, 3925 // powi(x,15) generates one more multiply than it should), but this has 3926 // the benefit of being both really simple and much better than a libcall. 3927 SDValue Res; // Logically starts equal to 1.0 3928 SDValue CurSquare = LHS; 3929 while (Val) { 3930 if (Val & 1) { 3931 if (Res.getNode()) 3932 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3933 else 3934 Res = CurSquare; // 1.0*CurSquare. 3935 } 3936 3937 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3938 CurSquare, CurSquare); 3939 Val >>= 1; 3940 } 3941 3942 // If the original was negative, invert the result, producing 1/(x*x*x). 3943 if (RHSC->getSExtValue() < 0) 3944 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3945 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3946 return Res; 3947 } 3948 } 3949 3950 // Otherwise, expand to a libcall. 3951 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3952 } 3953 3954 // getTruncatedArgReg - Find underlying register used for an truncated 3955 // argument. 3956 static unsigned getTruncatedArgReg(const SDValue &N) { 3957 if (N.getOpcode() != ISD::TRUNCATE) 3958 return 0; 3959 3960 const SDValue &Ext = N.getOperand(0); 3961 if (Ext.getOpcode() == ISD::AssertZext || 3962 Ext.getOpcode() == ISD::AssertSext) { 3963 const SDValue &CFR = Ext.getOperand(0); 3964 if (CFR.getOpcode() == ISD::CopyFromReg) 3965 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3966 if (CFR.getOpcode() == ISD::TRUNCATE) 3967 return getTruncatedArgReg(CFR); 3968 } 3969 return 0; 3970 } 3971 3972 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3973 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3974 /// At the end of instruction selection, they will be inserted to the entry BB. 3975 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3976 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3977 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3978 const Argument *Arg = dyn_cast<Argument>(V); 3979 if (!Arg) 3980 return false; 3981 3982 MachineFunction &MF = DAG.getMachineFunction(); 3983 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3984 3985 // Ignore inlined function arguments here. 3986 // 3987 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3988 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3989 return false; 3990 3991 Optional<MachineOperand> Op; 3992 // Some arguments' frame index is recorded during argument lowering. 3993 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3994 Op = MachineOperand::CreateFI(FI); 3995 3996 if (!Op && N.getNode()) { 3997 unsigned Reg; 3998 if (N.getOpcode() == ISD::CopyFromReg) 3999 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4000 else 4001 Reg = getTruncatedArgReg(N); 4002 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4003 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4004 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4005 if (PR) 4006 Reg = PR; 4007 } 4008 if (Reg) 4009 Op = MachineOperand::CreateReg(Reg, false); 4010 } 4011 4012 if (!Op) { 4013 // Check if ValueMap has reg number. 4014 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4015 if (VMI != FuncInfo.ValueMap.end()) 4016 Op = MachineOperand::CreateReg(VMI->second, false); 4017 } 4018 4019 if (!Op && N.getNode()) 4020 // Check if frame index is available. 4021 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4022 if (FrameIndexSDNode *FINode = 4023 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4024 Op = MachineOperand::CreateFI(FINode->getIndex()); 4025 4026 if (!Op) 4027 return false; 4028 4029 assert(Variable->isValidLocationForIntrinsic(DL) && 4030 "Expected inlined-at fields to agree"); 4031 if (Op->isReg()) 4032 FuncInfo.ArgDbgValues.push_back( 4033 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4034 Op->getReg(), Offset, Variable, Expr)); 4035 else 4036 FuncInfo.ArgDbgValues.push_back( 4037 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4038 .addOperand(*Op) 4039 .addImm(Offset) 4040 .addMetadata(Variable) 4041 .addMetadata(Expr)); 4042 4043 return true; 4044 } 4045 4046 // VisualStudio defines setjmp as _setjmp 4047 #if defined(_MSC_VER) && defined(setjmp) && \ 4048 !defined(setjmp_undefined_for_msvc) 4049 # pragma push_macro("setjmp") 4050 # undef setjmp 4051 # define setjmp_undefined_for_msvc 4052 #endif 4053 4054 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4055 /// we want to emit this as a call to a named external function, return the name 4056 /// otherwise lower it and return null. 4057 const char * 4058 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4060 SDLoc sdl = getCurSDLoc(); 4061 DebugLoc dl = getCurDebugLoc(); 4062 SDValue Res; 4063 4064 switch (Intrinsic) { 4065 default: 4066 // By default, turn this into a target intrinsic node. 4067 visitTargetIntrinsic(I, Intrinsic); 4068 return nullptr; 4069 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4070 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4071 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4072 case Intrinsic::returnaddress: 4073 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4074 getValue(I.getArgOperand(0)))); 4075 return nullptr; 4076 case Intrinsic::frameaddress: 4077 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4078 getValue(I.getArgOperand(0)))); 4079 return nullptr; 4080 case Intrinsic::read_register: { 4081 Value *Reg = I.getArgOperand(0); 4082 SDValue Chain = getRoot(); 4083 SDValue RegName = 4084 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4085 EVT VT = TLI.getValueType(I.getType()); 4086 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4087 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4088 setValue(&I, Res); 4089 DAG.setRoot(Res.getValue(1)); 4090 return nullptr; 4091 } 4092 case Intrinsic::write_register: { 4093 Value *Reg = I.getArgOperand(0); 4094 Value *RegValue = I.getArgOperand(1); 4095 SDValue Chain = getRoot(); 4096 SDValue RegName = 4097 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4098 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4099 RegName, getValue(RegValue))); 4100 return nullptr; 4101 } 4102 case Intrinsic::setjmp: 4103 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4104 case Intrinsic::longjmp: 4105 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4106 case Intrinsic::memcpy: { 4107 // FIXME: this definition of "user defined address space" is x86-specific 4108 // Assert for address < 256 since we support only user defined address 4109 // spaces. 4110 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4111 < 256 && 4112 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4113 < 256 && 4114 "Unknown address space"); 4115 SDValue Op1 = getValue(I.getArgOperand(0)); 4116 SDValue Op2 = getValue(I.getArgOperand(1)); 4117 SDValue Op3 = getValue(I.getArgOperand(2)); 4118 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4119 if (!Align) 4120 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4121 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4122 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4123 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4124 false, isTC, 4125 MachinePointerInfo(I.getArgOperand(0)), 4126 MachinePointerInfo(I.getArgOperand(1))); 4127 updateDAGForMaybeTailCall(MC); 4128 return nullptr; 4129 } 4130 case Intrinsic::memset: { 4131 // FIXME: this definition of "user defined address space" is x86-specific 4132 // Assert for address < 256 since we support only user defined address 4133 // spaces. 4134 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4135 < 256 && 4136 "Unknown address space"); 4137 SDValue Op1 = getValue(I.getArgOperand(0)); 4138 SDValue Op2 = getValue(I.getArgOperand(1)); 4139 SDValue Op3 = getValue(I.getArgOperand(2)); 4140 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4141 if (!Align) 4142 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4143 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4144 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4145 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4146 isTC, MachinePointerInfo(I.getArgOperand(0))); 4147 updateDAGForMaybeTailCall(MS); 4148 return nullptr; 4149 } 4150 case Intrinsic::memmove: { 4151 // FIXME: this definition of "user defined address space" is x86-specific 4152 // Assert for address < 256 since we support only user defined address 4153 // spaces. 4154 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4155 < 256 && 4156 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4157 < 256 && 4158 "Unknown address space"); 4159 SDValue Op1 = getValue(I.getArgOperand(0)); 4160 SDValue Op2 = getValue(I.getArgOperand(1)); 4161 SDValue Op3 = getValue(I.getArgOperand(2)); 4162 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4163 if (!Align) 4164 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4165 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4166 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4167 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4168 isTC, MachinePointerInfo(I.getArgOperand(0)), 4169 MachinePointerInfo(I.getArgOperand(1))); 4170 updateDAGForMaybeTailCall(MM); 4171 return nullptr; 4172 } 4173 case Intrinsic::dbg_declare: { 4174 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4175 DILocalVariable *Variable = DI.getVariable(); 4176 DIExpression *Expression = DI.getExpression(); 4177 const Value *Address = DI.getAddress(); 4178 assert(Variable && "Missing variable"); 4179 if (!Address) { 4180 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4181 return nullptr; 4182 } 4183 4184 // Check if address has undef value. 4185 if (isa<UndefValue>(Address) || 4186 (Address->use_empty() && !isa<Argument>(Address))) { 4187 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4188 return nullptr; 4189 } 4190 4191 SDValue &N = NodeMap[Address]; 4192 if (!N.getNode() && isa<Argument>(Address)) 4193 // Check unused arguments map. 4194 N = UnusedArgNodeMap[Address]; 4195 SDDbgValue *SDV; 4196 if (N.getNode()) { 4197 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4198 Address = BCI->getOperand(0); 4199 // Parameters are handled specially. 4200 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4201 isa<Argument>(Address); 4202 4203 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4204 4205 if (isParameter && !AI) { 4206 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4207 if (FINode) 4208 // Byval parameter. We have a frame index at this point. 4209 SDV = DAG.getFrameIndexDbgValue( 4210 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4211 else { 4212 // Address is an argument, so try to emit its dbg value using 4213 // virtual register info from the FuncInfo.ValueMap. 4214 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4215 N); 4216 return nullptr; 4217 } 4218 } else if (AI) 4219 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4220 true, 0, dl, SDNodeOrder); 4221 else { 4222 // Can't do anything with other non-AI cases yet. 4223 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4224 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4225 DEBUG(Address->dump()); 4226 return nullptr; 4227 } 4228 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4229 } else { 4230 // If Address is an argument then try to emit its dbg value using 4231 // virtual register info from the FuncInfo.ValueMap. 4232 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4233 N)) { 4234 // If variable is pinned by a alloca in dominating bb then 4235 // use StaticAllocaMap. 4236 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4237 if (AI->getParent() != DI.getParent()) { 4238 DenseMap<const AllocaInst*, int>::iterator SI = 4239 FuncInfo.StaticAllocaMap.find(AI); 4240 if (SI != FuncInfo.StaticAllocaMap.end()) { 4241 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4242 0, dl, SDNodeOrder); 4243 DAG.AddDbgValue(SDV, nullptr, false); 4244 return nullptr; 4245 } 4246 } 4247 } 4248 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4249 } 4250 } 4251 return nullptr; 4252 } 4253 case Intrinsic::dbg_value: { 4254 const DbgValueInst &DI = cast<DbgValueInst>(I); 4255 assert(DI.getVariable() && "Missing variable"); 4256 4257 DILocalVariable *Variable = DI.getVariable(); 4258 DIExpression *Expression = DI.getExpression(); 4259 uint64_t Offset = DI.getOffset(); 4260 const Value *V = DI.getValue(); 4261 if (!V) 4262 return nullptr; 4263 4264 SDDbgValue *SDV; 4265 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4266 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4267 SDNodeOrder); 4268 DAG.AddDbgValue(SDV, nullptr, false); 4269 } else { 4270 // Do not use getValue() in here; we don't want to generate code at 4271 // this point if it hasn't been done yet. 4272 SDValue N = NodeMap[V]; 4273 if (!N.getNode() && isa<Argument>(V)) 4274 // Check unused arguments map. 4275 N = UnusedArgNodeMap[V]; 4276 if (N.getNode()) { 4277 // A dbg.value for an alloca is always indirect. 4278 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4279 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4280 IsIndirect, N)) { 4281 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4282 IsIndirect, Offset, dl, SDNodeOrder); 4283 DAG.AddDbgValue(SDV, N.getNode(), false); 4284 } 4285 } else if (!V->use_empty() ) { 4286 // Do not call getValue(V) yet, as we don't want to generate code. 4287 // Remember it for later. 4288 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4289 DanglingDebugInfoMap[V] = DDI; 4290 } else { 4291 // We may expand this to cover more cases. One case where we have no 4292 // data available is an unreferenced parameter. 4293 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4294 } 4295 } 4296 4297 // Build a debug info table entry. 4298 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4299 V = BCI->getOperand(0); 4300 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4301 // Don't handle byval struct arguments or VLAs, for example. 4302 if (!AI) { 4303 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4304 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4305 return nullptr; 4306 } 4307 DenseMap<const AllocaInst*, int>::iterator SI = 4308 FuncInfo.StaticAllocaMap.find(AI); 4309 if (SI == FuncInfo.StaticAllocaMap.end()) 4310 return nullptr; // VLAs. 4311 return nullptr; 4312 } 4313 4314 case Intrinsic::eh_typeid_for: { 4315 // Find the type id for the given typeinfo. 4316 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4317 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4318 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4319 setValue(&I, Res); 4320 return nullptr; 4321 } 4322 4323 case Intrinsic::eh_return_i32: 4324 case Intrinsic::eh_return_i64: 4325 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4326 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4327 MVT::Other, 4328 getControlRoot(), 4329 getValue(I.getArgOperand(0)), 4330 getValue(I.getArgOperand(1)))); 4331 return nullptr; 4332 case Intrinsic::eh_unwind_init: 4333 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4334 return nullptr; 4335 case Intrinsic::eh_dwarf_cfa: { 4336 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4337 TLI.getPointerTy()); 4338 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4339 CfaArg.getValueType(), 4340 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4341 CfaArg.getValueType()), 4342 CfaArg); 4343 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4344 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4345 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4346 FA, Offset)); 4347 return nullptr; 4348 } 4349 case Intrinsic::eh_sjlj_callsite: { 4350 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4351 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4352 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4353 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4354 4355 MMI.setCurrentCallSite(CI->getZExtValue()); 4356 return nullptr; 4357 } 4358 case Intrinsic::eh_sjlj_functioncontext: { 4359 // Get and store the index of the function context. 4360 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4361 AllocaInst *FnCtx = 4362 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4363 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4364 MFI->setFunctionContextIndex(FI); 4365 return nullptr; 4366 } 4367 case Intrinsic::eh_sjlj_setjmp: { 4368 SDValue Ops[2]; 4369 Ops[0] = getRoot(); 4370 Ops[1] = getValue(I.getArgOperand(0)); 4371 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4372 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4373 setValue(&I, Op.getValue(0)); 4374 DAG.setRoot(Op.getValue(1)); 4375 return nullptr; 4376 } 4377 case Intrinsic::eh_sjlj_longjmp: { 4378 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4379 getRoot(), getValue(I.getArgOperand(0)))); 4380 return nullptr; 4381 } 4382 4383 case Intrinsic::masked_gather: 4384 visitMaskedGather(I); 4385 return nullptr; 4386 case Intrinsic::masked_load: 4387 visitMaskedLoad(I); 4388 return nullptr; 4389 case Intrinsic::masked_scatter: 4390 visitMaskedScatter(I); 4391 return nullptr; 4392 case Intrinsic::masked_store: 4393 visitMaskedStore(I); 4394 return nullptr; 4395 case Intrinsic::x86_mmx_pslli_w: 4396 case Intrinsic::x86_mmx_pslli_d: 4397 case Intrinsic::x86_mmx_pslli_q: 4398 case Intrinsic::x86_mmx_psrli_w: 4399 case Intrinsic::x86_mmx_psrli_d: 4400 case Intrinsic::x86_mmx_psrli_q: 4401 case Intrinsic::x86_mmx_psrai_w: 4402 case Intrinsic::x86_mmx_psrai_d: { 4403 SDValue ShAmt = getValue(I.getArgOperand(1)); 4404 if (isa<ConstantSDNode>(ShAmt)) { 4405 visitTargetIntrinsic(I, Intrinsic); 4406 return nullptr; 4407 } 4408 unsigned NewIntrinsic = 0; 4409 EVT ShAmtVT = MVT::v2i32; 4410 switch (Intrinsic) { 4411 case Intrinsic::x86_mmx_pslli_w: 4412 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4413 break; 4414 case Intrinsic::x86_mmx_pslli_d: 4415 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4416 break; 4417 case Intrinsic::x86_mmx_pslli_q: 4418 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4419 break; 4420 case Intrinsic::x86_mmx_psrli_w: 4421 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4422 break; 4423 case Intrinsic::x86_mmx_psrli_d: 4424 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4425 break; 4426 case Intrinsic::x86_mmx_psrli_q: 4427 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4428 break; 4429 case Intrinsic::x86_mmx_psrai_w: 4430 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4431 break; 4432 case Intrinsic::x86_mmx_psrai_d: 4433 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4434 break; 4435 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4436 } 4437 4438 // The vector shift intrinsics with scalars uses 32b shift amounts but 4439 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4440 // to be zero. 4441 // We must do this early because v2i32 is not a legal type. 4442 SDValue ShOps[2]; 4443 ShOps[0] = ShAmt; 4444 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4445 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4446 EVT DestVT = TLI.getValueType(I.getType()); 4447 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4448 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4449 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4450 getValue(I.getArgOperand(0)), ShAmt); 4451 setValue(&I, Res); 4452 return nullptr; 4453 } 4454 case Intrinsic::convertff: 4455 case Intrinsic::convertfsi: 4456 case Intrinsic::convertfui: 4457 case Intrinsic::convertsif: 4458 case Intrinsic::convertuif: 4459 case Intrinsic::convertss: 4460 case Intrinsic::convertsu: 4461 case Intrinsic::convertus: 4462 case Intrinsic::convertuu: { 4463 ISD::CvtCode Code = ISD::CVT_INVALID; 4464 switch (Intrinsic) { 4465 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4466 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4467 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4468 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4469 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4470 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4471 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4472 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4473 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4474 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4475 } 4476 EVT DestVT = TLI.getValueType(I.getType()); 4477 const Value *Op1 = I.getArgOperand(0); 4478 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4479 DAG.getValueType(DestVT), 4480 DAG.getValueType(getValue(Op1).getValueType()), 4481 getValue(I.getArgOperand(1)), 4482 getValue(I.getArgOperand(2)), 4483 Code); 4484 setValue(&I, Res); 4485 return nullptr; 4486 } 4487 case Intrinsic::powi: 4488 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4489 getValue(I.getArgOperand(1)), DAG)); 4490 return nullptr; 4491 case Intrinsic::log: 4492 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4493 return nullptr; 4494 case Intrinsic::log2: 4495 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4496 return nullptr; 4497 case Intrinsic::log10: 4498 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4499 return nullptr; 4500 case Intrinsic::exp: 4501 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4502 return nullptr; 4503 case Intrinsic::exp2: 4504 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4505 return nullptr; 4506 case Intrinsic::pow: 4507 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4508 getValue(I.getArgOperand(1)), DAG, TLI)); 4509 return nullptr; 4510 case Intrinsic::sqrt: 4511 case Intrinsic::fabs: 4512 case Intrinsic::sin: 4513 case Intrinsic::cos: 4514 case Intrinsic::floor: 4515 case Intrinsic::ceil: 4516 case Intrinsic::trunc: 4517 case Intrinsic::rint: 4518 case Intrinsic::nearbyint: 4519 case Intrinsic::round: { 4520 unsigned Opcode; 4521 switch (Intrinsic) { 4522 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4523 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4524 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4525 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4526 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4527 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4528 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4529 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4530 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4531 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4532 case Intrinsic::round: Opcode = ISD::FROUND; break; 4533 } 4534 4535 setValue(&I, DAG.getNode(Opcode, sdl, 4536 getValue(I.getArgOperand(0)).getValueType(), 4537 getValue(I.getArgOperand(0)))); 4538 return nullptr; 4539 } 4540 case Intrinsic::minnum: 4541 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4542 getValue(I.getArgOperand(0)).getValueType(), 4543 getValue(I.getArgOperand(0)), 4544 getValue(I.getArgOperand(1)))); 4545 return nullptr; 4546 case Intrinsic::maxnum: 4547 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4548 getValue(I.getArgOperand(0)).getValueType(), 4549 getValue(I.getArgOperand(0)), 4550 getValue(I.getArgOperand(1)))); 4551 return nullptr; 4552 case Intrinsic::copysign: 4553 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4554 getValue(I.getArgOperand(0)).getValueType(), 4555 getValue(I.getArgOperand(0)), 4556 getValue(I.getArgOperand(1)))); 4557 return nullptr; 4558 case Intrinsic::fma: 4559 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4560 getValue(I.getArgOperand(0)).getValueType(), 4561 getValue(I.getArgOperand(0)), 4562 getValue(I.getArgOperand(1)), 4563 getValue(I.getArgOperand(2)))); 4564 return nullptr; 4565 case Intrinsic::fmuladd: { 4566 EVT VT = TLI.getValueType(I.getType()); 4567 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4568 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4569 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4570 getValue(I.getArgOperand(0)).getValueType(), 4571 getValue(I.getArgOperand(0)), 4572 getValue(I.getArgOperand(1)), 4573 getValue(I.getArgOperand(2)))); 4574 } else { 4575 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4576 getValue(I.getArgOperand(0)).getValueType(), 4577 getValue(I.getArgOperand(0)), 4578 getValue(I.getArgOperand(1))); 4579 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4580 getValue(I.getArgOperand(0)).getValueType(), 4581 Mul, 4582 getValue(I.getArgOperand(2))); 4583 setValue(&I, Add); 4584 } 4585 return nullptr; 4586 } 4587 case Intrinsic::convert_to_fp16: 4588 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4589 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4590 getValue(I.getArgOperand(0)), 4591 DAG.getTargetConstant(0, sdl, 4592 MVT::i32)))); 4593 return nullptr; 4594 case Intrinsic::convert_from_fp16: 4595 setValue(&I, 4596 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4597 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4598 getValue(I.getArgOperand(0))))); 4599 return nullptr; 4600 case Intrinsic::pcmarker: { 4601 SDValue Tmp = getValue(I.getArgOperand(0)); 4602 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4603 return nullptr; 4604 } 4605 case Intrinsic::readcyclecounter: { 4606 SDValue Op = getRoot(); 4607 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4608 DAG.getVTList(MVT::i64, MVT::Other), Op); 4609 setValue(&I, Res); 4610 DAG.setRoot(Res.getValue(1)); 4611 return nullptr; 4612 } 4613 case Intrinsic::bswap: 4614 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4615 getValue(I.getArgOperand(0)).getValueType(), 4616 getValue(I.getArgOperand(0)))); 4617 return nullptr; 4618 case Intrinsic::cttz: { 4619 SDValue Arg = getValue(I.getArgOperand(0)); 4620 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4621 EVT Ty = Arg.getValueType(); 4622 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4623 sdl, Ty, Arg)); 4624 return nullptr; 4625 } 4626 case Intrinsic::ctlz: { 4627 SDValue Arg = getValue(I.getArgOperand(0)); 4628 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4629 EVT Ty = Arg.getValueType(); 4630 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4631 sdl, Ty, Arg)); 4632 return nullptr; 4633 } 4634 case Intrinsic::ctpop: { 4635 SDValue Arg = getValue(I.getArgOperand(0)); 4636 EVT Ty = Arg.getValueType(); 4637 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4638 return nullptr; 4639 } 4640 case Intrinsic::stacksave: { 4641 SDValue Op = getRoot(); 4642 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4643 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4644 setValue(&I, Res); 4645 DAG.setRoot(Res.getValue(1)); 4646 return nullptr; 4647 } 4648 case Intrinsic::stackrestore: { 4649 Res = getValue(I.getArgOperand(0)); 4650 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4651 return nullptr; 4652 } 4653 case Intrinsic::stackprotector: { 4654 // Emit code into the DAG to store the stack guard onto the stack. 4655 MachineFunction &MF = DAG.getMachineFunction(); 4656 MachineFrameInfo *MFI = MF.getFrameInfo(); 4657 EVT PtrTy = TLI.getPointerTy(); 4658 SDValue Src, Chain = getRoot(); 4659 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4660 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4661 4662 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4663 // global variable __stack_chk_guard. 4664 if (!GV) 4665 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4666 if (BC->getOpcode() == Instruction::BitCast) 4667 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4668 4669 if (GV && TLI.useLoadStackGuardNode()) { 4670 // Emit a LOAD_STACK_GUARD node. 4671 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4672 sdl, PtrTy, Chain); 4673 MachinePointerInfo MPInfo(GV); 4674 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4675 unsigned Flags = MachineMemOperand::MOLoad | 4676 MachineMemOperand::MOInvariant; 4677 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4678 PtrTy.getSizeInBits() / 8, 4679 DAG.getEVTAlignment(PtrTy)); 4680 Node->setMemRefs(MemRefs, MemRefs + 1); 4681 4682 // Copy the guard value to a virtual register so that it can be 4683 // retrieved in the epilogue. 4684 Src = SDValue(Node, 0); 4685 const TargetRegisterClass *RC = 4686 TLI.getRegClassFor(Src.getSimpleValueType()); 4687 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4688 4689 SPDescriptor.setGuardReg(Reg); 4690 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4691 } else { 4692 Src = getValue(I.getArgOperand(0)); // The guard's value. 4693 } 4694 4695 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4696 4697 int FI = FuncInfo.StaticAllocaMap[Slot]; 4698 MFI->setStackProtectorIndex(FI); 4699 4700 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4701 4702 // Store the stack protector onto the stack. 4703 Res = DAG.getStore(Chain, sdl, Src, FIN, 4704 MachinePointerInfo::getFixedStack(FI), 4705 true, false, 0); 4706 setValue(&I, Res); 4707 DAG.setRoot(Res); 4708 return nullptr; 4709 } 4710 case Intrinsic::objectsize: { 4711 // If we don't know by now, we're never going to know. 4712 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4713 4714 assert(CI && "Non-constant type in __builtin_object_size?"); 4715 4716 SDValue Arg = getValue(I.getCalledValue()); 4717 EVT Ty = Arg.getValueType(); 4718 4719 if (CI->isZero()) 4720 Res = DAG.getConstant(-1ULL, sdl, Ty); 4721 else 4722 Res = DAG.getConstant(0, sdl, Ty); 4723 4724 setValue(&I, Res); 4725 return nullptr; 4726 } 4727 case Intrinsic::annotation: 4728 case Intrinsic::ptr_annotation: 4729 // Drop the intrinsic, but forward the value 4730 setValue(&I, getValue(I.getOperand(0))); 4731 return nullptr; 4732 case Intrinsic::assume: 4733 case Intrinsic::var_annotation: 4734 // Discard annotate attributes and assumptions 4735 return nullptr; 4736 4737 case Intrinsic::init_trampoline: { 4738 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4739 4740 SDValue Ops[6]; 4741 Ops[0] = getRoot(); 4742 Ops[1] = getValue(I.getArgOperand(0)); 4743 Ops[2] = getValue(I.getArgOperand(1)); 4744 Ops[3] = getValue(I.getArgOperand(2)); 4745 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4746 Ops[5] = DAG.getSrcValue(F); 4747 4748 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4749 4750 DAG.setRoot(Res); 4751 return nullptr; 4752 } 4753 case Intrinsic::adjust_trampoline: { 4754 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4755 TLI.getPointerTy(), 4756 getValue(I.getArgOperand(0)))); 4757 return nullptr; 4758 } 4759 case Intrinsic::gcroot: 4760 if (GFI) { 4761 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4762 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4763 4764 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4765 GFI->addStackRoot(FI->getIndex(), TypeMap); 4766 } 4767 return nullptr; 4768 case Intrinsic::gcread: 4769 case Intrinsic::gcwrite: 4770 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4771 case Intrinsic::flt_rounds: 4772 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4773 return nullptr; 4774 4775 case Intrinsic::expect: { 4776 // Just replace __builtin_expect(exp, c) with EXP. 4777 setValue(&I, getValue(I.getArgOperand(0))); 4778 return nullptr; 4779 } 4780 4781 case Intrinsic::debugtrap: 4782 case Intrinsic::trap: { 4783 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4784 if (TrapFuncName.empty()) { 4785 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4786 ISD::TRAP : ISD::DEBUGTRAP; 4787 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4788 return nullptr; 4789 } 4790 TargetLowering::ArgListTy Args; 4791 4792 TargetLowering::CallLoweringInfo CLI(DAG); 4793 CLI.setDebugLoc(sdl).setChain(getRoot()) 4794 .setCallee(CallingConv::C, I.getType(), 4795 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4796 std::move(Args), 0); 4797 4798 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4799 DAG.setRoot(Result.second); 4800 return nullptr; 4801 } 4802 4803 case Intrinsic::uadd_with_overflow: 4804 case Intrinsic::sadd_with_overflow: 4805 case Intrinsic::usub_with_overflow: 4806 case Intrinsic::ssub_with_overflow: 4807 case Intrinsic::umul_with_overflow: 4808 case Intrinsic::smul_with_overflow: { 4809 ISD::NodeType Op; 4810 switch (Intrinsic) { 4811 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4812 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4813 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4814 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4815 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4816 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4817 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4818 } 4819 SDValue Op1 = getValue(I.getArgOperand(0)); 4820 SDValue Op2 = getValue(I.getArgOperand(1)); 4821 4822 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4823 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4824 return nullptr; 4825 } 4826 case Intrinsic::prefetch: { 4827 SDValue Ops[5]; 4828 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4829 Ops[0] = getRoot(); 4830 Ops[1] = getValue(I.getArgOperand(0)); 4831 Ops[2] = getValue(I.getArgOperand(1)); 4832 Ops[3] = getValue(I.getArgOperand(2)); 4833 Ops[4] = getValue(I.getArgOperand(3)); 4834 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4835 DAG.getVTList(MVT::Other), Ops, 4836 EVT::getIntegerVT(*Context, 8), 4837 MachinePointerInfo(I.getArgOperand(0)), 4838 0, /* align */ 4839 false, /* volatile */ 4840 rw==0, /* read */ 4841 rw==1)); /* write */ 4842 return nullptr; 4843 } 4844 case Intrinsic::lifetime_start: 4845 case Intrinsic::lifetime_end: { 4846 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4847 // Stack coloring is not enabled in O0, discard region information. 4848 if (TM.getOptLevel() == CodeGenOpt::None) 4849 return nullptr; 4850 4851 SmallVector<Value *, 4> Allocas; 4852 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4853 4854 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4855 E = Allocas.end(); Object != E; ++Object) { 4856 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4857 4858 // Could not find an Alloca. 4859 if (!LifetimeObject) 4860 continue; 4861 4862 // First check that the Alloca is static, otherwise it won't have a 4863 // valid frame index. 4864 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4865 if (SI == FuncInfo.StaticAllocaMap.end()) 4866 return nullptr; 4867 4868 int FI = SI->second; 4869 4870 SDValue Ops[2]; 4871 Ops[0] = getRoot(); 4872 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4873 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4874 4875 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4876 DAG.setRoot(Res); 4877 } 4878 return nullptr; 4879 } 4880 case Intrinsic::invariant_start: 4881 // Discard region information. 4882 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4883 return nullptr; 4884 case Intrinsic::invariant_end: 4885 // Discard region information. 4886 return nullptr; 4887 case Intrinsic::stackprotectorcheck: { 4888 // Do not actually emit anything for this basic block. Instead we initialize 4889 // the stack protector descriptor and export the guard variable so we can 4890 // access it in FinishBasicBlock. 4891 const BasicBlock *BB = I.getParent(); 4892 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4893 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4894 4895 // Flush our exports since we are going to process a terminator. 4896 (void)getControlRoot(); 4897 return nullptr; 4898 } 4899 case Intrinsic::clear_cache: 4900 return TLI.getClearCacheBuiltinName(); 4901 case Intrinsic::eh_actions: 4902 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4903 return nullptr; 4904 case Intrinsic::donothing: 4905 // ignore 4906 return nullptr; 4907 case Intrinsic::experimental_stackmap: { 4908 visitStackmap(I); 4909 return nullptr; 4910 } 4911 case Intrinsic::experimental_patchpoint_void: 4912 case Intrinsic::experimental_patchpoint_i64: { 4913 visitPatchpoint(&I); 4914 return nullptr; 4915 } 4916 case Intrinsic::experimental_gc_statepoint: { 4917 visitStatepoint(I); 4918 return nullptr; 4919 } 4920 case Intrinsic::experimental_gc_result_int: 4921 case Intrinsic::experimental_gc_result_float: 4922 case Intrinsic::experimental_gc_result_ptr: 4923 case Intrinsic::experimental_gc_result: { 4924 visitGCResult(I); 4925 return nullptr; 4926 } 4927 case Intrinsic::experimental_gc_relocate: { 4928 visitGCRelocate(I); 4929 return nullptr; 4930 } 4931 case Intrinsic::instrprof_increment: 4932 llvm_unreachable("instrprof failed to lower an increment"); 4933 4934 case Intrinsic::frameescape: { 4935 MachineFunction &MF = DAG.getMachineFunction(); 4936 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4937 4938 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4939 // is the same on all targets. 4940 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4941 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4942 if (isa<ConstantPointerNull>(Arg)) 4943 continue; // Skip null pointers. They represent a hole in index space. 4944 AllocaInst *Slot = cast<AllocaInst>(Arg); 4945 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4946 "can only escape static allocas"); 4947 int FI = FuncInfo.StaticAllocaMap[Slot]; 4948 MCSymbol *FrameAllocSym = 4949 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4950 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4952 TII->get(TargetOpcode::FRAME_ALLOC)) 4953 .addSym(FrameAllocSym) 4954 .addFrameIndex(FI); 4955 } 4956 4957 return nullptr; 4958 } 4959 4960 case Intrinsic::framerecover: { 4961 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4962 MachineFunction &MF = DAG.getMachineFunction(); 4963 MVT PtrVT = TLI.getPointerTy(0); 4964 4965 // Get the symbol that defines the frame offset. 4966 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4967 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4968 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4969 MCSymbol *FrameAllocSym = 4970 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4971 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4972 4973 // Create a MCSymbol for the label to avoid any target lowering 4974 // that would make this PC relative. 4975 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 4976 SDValue OffsetVal = 4977 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4978 4979 // Add the offset to the FP. 4980 Value *FP = I.getArgOperand(1); 4981 SDValue FPVal = getValue(FP); 4982 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4983 setValue(&I, Add); 4984 4985 return nullptr; 4986 } 4987 case Intrinsic::eh_begincatch: 4988 case Intrinsic::eh_endcatch: 4989 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4990 case Intrinsic::eh_exceptioncode: { 4991 unsigned Reg = TLI.getExceptionPointerRegister(); 4992 assert(Reg && "cannot get exception code on this platform"); 4993 MVT PtrVT = TLI.getPointerTy(); 4994 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4995 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 4996 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4997 SDValue N = 4998 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4999 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5000 setValue(&I, N); 5001 return nullptr; 5002 } 5003 } 5004 } 5005 5006 std::pair<SDValue, SDValue> 5007 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5008 MachineBasicBlock *LandingPad) { 5009 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5010 MCSymbol *BeginLabel = nullptr; 5011 5012 if (LandingPad) { 5013 // Insert a label before the invoke call to mark the try range. This can be 5014 // used to detect deletion of the invoke via the MachineModuleInfo. 5015 BeginLabel = MMI.getContext().createTempSymbol(); 5016 5017 // For SjLj, keep track of which landing pads go with which invokes 5018 // so as to maintain the ordering of pads in the LSDA. 5019 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5020 if (CallSiteIndex) { 5021 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5022 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5023 5024 // Now that the call site is handled, stop tracking it. 5025 MMI.setCurrentCallSite(0); 5026 } 5027 5028 // Both PendingLoads and PendingExports must be flushed here; 5029 // this call might not return. 5030 (void)getRoot(); 5031 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5032 5033 CLI.setChain(getRoot()); 5034 } 5035 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5036 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5037 5038 assert((CLI.IsTailCall || Result.second.getNode()) && 5039 "Non-null chain expected with non-tail call!"); 5040 assert((Result.second.getNode() || !Result.first.getNode()) && 5041 "Null value expected with tail call!"); 5042 5043 if (!Result.second.getNode()) { 5044 // As a special case, a null chain means that a tail call has been emitted 5045 // and the DAG root is already updated. 5046 HasTailCall = true; 5047 5048 // Since there's no actual continuation from this block, nothing can be 5049 // relying on us setting vregs for them. 5050 PendingExports.clear(); 5051 } else { 5052 DAG.setRoot(Result.second); 5053 } 5054 5055 if (LandingPad) { 5056 // Insert a label at the end of the invoke call to mark the try range. This 5057 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5058 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5059 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5060 5061 // Inform MachineModuleInfo of range. 5062 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5063 } 5064 5065 return Result; 5066 } 5067 5068 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5069 bool isTailCall, 5070 MachineBasicBlock *LandingPad) { 5071 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5072 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5073 Type *RetTy = FTy->getReturnType(); 5074 5075 TargetLowering::ArgListTy Args; 5076 TargetLowering::ArgListEntry Entry; 5077 Args.reserve(CS.arg_size()); 5078 5079 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5080 i != e; ++i) { 5081 const Value *V = *i; 5082 5083 // Skip empty types 5084 if (V->getType()->isEmptyTy()) 5085 continue; 5086 5087 SDValue ArgNode = getValue(V); 5088 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5089 5090 // Skip the first return-type Attribute to get to params. 5091 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5092 Args.push_back(Entry); 5093 5094 // If we have an explicit sret argument that is an Instruction, (i.e., it 5095 // might point to function-local memory), we can't meaningfully tail-call. 5096 if (Entry.isSRet && isa<Instruction>(V)) 5097 isTailCall = false; 5098 } 5099 5100 // Check if target-independent constraints permit a tail call here. 5101 // Target-dependent constraints are checked within TLI->LowerCallTo. 5102 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5103 isTailCall = false; 5104 5105 TargetLowering::CallLoweringInfo CLI(DAG); 5106 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5107 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5108 .setTailCall(isTailCall); 5109 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5110 5111 if (Result.first.getNode()) 5112 setValue(CS.getInstruction(), Result.first); 5113 } 5114 5115 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5116 /// value is equal or not-equal to zero. 5117 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5118 for (const User *U : V->users()) { 5119 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5120 if (IC->isEquality()) 5121 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5122 if (C->isNullValue()) 5123 continue; 5124 // Unknown instruction. 5125 return false; 5126 } 5127 return true; 5128 } 5129 5130 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5131 Type *LoadTy, 5132 SelectionDAGBuilder &Builder) { 5133 5134 // Check to see if this load can be trivially constant folded, e.g. if the 5135 // input is from a string literal. 5136 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5137 // Cast pointer to the type we really want to load. 5138 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5139 PointerType::getUnqual(LoadTy)); 5140 5141 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5142 const_cast<Constant *>(LoadInput), *Builder.DL)) 5143 return Builder.getValue(LoadCst); 5144 } 5145 5146 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5147 // still constant memory, the input chain can be the entry node. 5148 SDValue Root; 5149 bool ConstantMemory = false; 5150 5151 // Do not serialize (non-volatile) loads of constant memory with anything. 5152 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5153 Root = Builder.DAG.getEntryNode(); 5154 ConstantMemory = true; 5155 } else { 5156 // Do not serialize non-volatile loads against each other. 5157 Root = Builder.DAG.getRoot(); 5158 } 5159 5160 SDValue Ptr = Builder.getValue(PtrVal); 5161 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5162 Ptr, MachinePointerInfo(PtrVal), 5163 false /*volatile*/, 5164 false /*nontemporal*/, 5165 false /*isinvariant*/, 1 /* align=1 */); 5166 5167 if (!ConstantMemory) 5168 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5169 return LoadVal; 5170 } 5171 5172 /// processIntegerCallValue - Record the value for an instruction that 5173 /// produces an integer result, converting the type where necessary. 5174 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5175 SDValue Value, 5176 bool IsSigned) { 5177 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5178 if (IsSigned) 5179 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5180 else 5181 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5182 setValue(&I, Value); 5183 } 5184 5185 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5186 /// If so, return true and lower it, otherwise return false and it will be 5187 /// lowered like a normal call. 5188 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5189 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5190 if (I.getNumArgOperands() != 3) 5191 return false; 5192 5193 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5194 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5195 !I.getArgOperand(2)->getType()->isIntegerTy() || 5196 !I.getType()->isIntegerTy()) 5197 return false; 5198 5199 const Value *Size = I.getArgOperand(2); 5200 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5201 if (CSize && CSize->getZExtValue() == 0) { 5202 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5203 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5204 return true; 5205 } 5206 5207 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5208 std::pair<SDValue, SDValue> Res = 5209 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5210 getValue(LHS), getValue(RHS), getValue(Size), 5211 MachinePointerInfo(LHS), 5212 MachinePointerInfo(RHS)); 5213 if (Res.first.getNode()) { 5214 processIntegerCallValue(I, Res.first, true); 5215 PendingLoads.push_back(Res.second); 5216 return true; 5217 } 5218 5219 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5220 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5221 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5222 bool ActuallyDoIt = true; 5223 MVT LoadVT; 5224 Type *LoadTy; 5225 switch (CSize->getZExtValue()) { 5226 default: 5227 LoadVT = MVT::Other; 5228 LoadTy = nullptr; 5229 ActuallyDoIt = false; 5230 break; 5231 case 2: 5232 LoadVT = MVT::i16; 5233 LoadTy = Type::getInt16Ty(CSize->getContext()); 5234 break; 5235 case 4: 5236 LoadVT = MVT::i32; 5237 LoadTy = Type::getInt32Ty(CSize->getContext()); 5238 break; 5239 case 8: 5240 LoadVT = MVT::i64; 5241 LoadTy = Type::getInt64Ty(CSize->getContext()); 5242 break; 5243 /* 5244 case 16: 5245 LoadVT = MVT::v4i32; 5246 LoadTy = Type::getInt32Ty(CSize->getContext()); 5247 LoadTy = VectorType::get(LoadTy, 4); 5248 break; 5249 */ 5250 } 5251 5252 // This turns into unaligned loads. We only do this if the target natively 5253 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5254 // we'll only produce a small number of byte loads. 5255 5256 // Require that we can find a legal MVT, and only do this if the target 5257 // supports unaligned loads of that type. Expanding into byte loads would 5258 // bloat the code. 5259 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5260 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5261 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5262 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5263 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5264 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5265 // TODO: Check alignment of src and dest ptrs. 5266 if (!TLI.isTypeLegal(LoadVT) || 5267 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5268 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5269 ActuallyDoIt = false; 5270 } 5271 5272 if (ActuallyDoIt) { 5273 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5274 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5275 5276 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5277 ISD::SETNE); 5278 processIntegerCallValue(I, Res, false); 5279 return true; 5280 } 5281 } 5282 5283 5284 return false; 5285 } 5286 5287 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5288 /// form. If so, return true and lower it, otherwise return false and it 5289 /// will be lowered like a normal call. 5290 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5291 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5292 if (I.getNumArgOperands() != 3) 5293 return false; 5294 5295 const Value *Src = I.getArgOperand(0); 5296 const Value *Char = I.getArgOperand(1); 5297 const Value *Length = I.getArgOperand(2); 5298 if (!Src->getType()->isPointerTy() || 5299 !Char->getType()->isIntegerTy() || 5300 !Length->getType()->isIntegerTy() || 5301 !I.getType()->isPointerTy()) 5302 return false; 5303 5304 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5305 std::pair<SDValue, SDValue> Res = 5306 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5307 getValue(Src), getValue(Char), getValue(Length), 5308 MachinePointerInfo(Src)); 5309 if (Res.first.getNode()) { 5310 setValue(&I, Res.first); 5311 PendingLoads.push_back(Res.second); 5312 return true; 5313 } 5314 5315 return false; 5316 } 5317 5318 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5319 /// optimized form. If so, return true and lower it, otherwise return false 5320 /// and it will be lowered like a normal call. 5321 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5322 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5323 if (I.getNumArgOperands() != 2) 5324 return false; 5325 5326 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5327 if (!Arg0->getType()->isPointerTy() || 5328 !Arg1->getType()->isPointerTy() || 5329 !I.getType()->isPointerTy()) 5330 return false; 5331 5332 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5333 std::pair<SDValue, SDValue> Res = 5334 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5335 getValue(Arg0), getValue(Arg1), 5336 MachinePointerInfo(Arg0), 5337 MachinePointerInfo(Arg1), isStpcpy); 5338 if (Res.first.getNode()) { 5339 setValue(&I, Res.first); 5340 DAG.setRoot(Res.second); 5341 return true; 5342 } 5343 5344 return false; 5345 } 5346 5347 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5348 /// If so, return true and lower it, otherwise return false and it will be 5349 /// lowered like a normal call. 5350 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5351 // Verify that the prototype makes sense. int strcmp(void*,void*) 5352 if (I.getNumArgOperands() != 2) 5353 return false; 5354 5355 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5356 if (!Arg0->getType()->isPointerTy() || 5357 !Arg1->getType()->isPointerTy() || 5358 !I.getType()->isIntegerTy()) 5359 return false; 5360 5361 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5362 std::pair<SDValue, SDValue> Res = 5363 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5364 getValue(Arg0), getValue(Arg1), 5365 MachinePointerInfo(Arg0), 5366 MachinePointerInfo(Arg1)); 5367 if (Res.first.getNode()) { 5368 processIntegerCallValue(I, Res.first, true); 5369 PendingLoads.push_back(Res.second); 5370 return true; 5371 } 5372 5373 return false; 5374 } 5375 5376 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5377 /// form. If so, return true and lower it, otherwise return false and it 5378 /// will be lowered like a normal call. 5379 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5380 // Verify that the prototype makes sense. size_t strlen(char *) 5381 if (I.getNumArgOperands() != 1) 5382 return false; 5383 5384 const Value *Arg0 = I.getArgOperand(0); 5385 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5386 return false; 5387 5388 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5389 std::pair<SDValue, SDValue> Res = 5390 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5391 getValue(Arg0), MachinePointerInfo(Arg0)); 5392 if (Res.first.getNode()) { 5393 processIntegerCallValue(I, Res.first, false); 5394 PendingLoads.push_back(Res.second); 5395 return true; 5396 } 5397 5398 return false; 5399 } 5400 5401 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5402 /// form. If so, return true and lower it, otherwise return false and it 5403 /// will be lowered like a normal call. 5404 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5405 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5406 if (I.getNumArgOperands() != 2) 5407 return false; 5408 5409 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5410 if (!Arg0->getType()->isPointerTy() || 5411 !Arg1->getType()->isIntegerTy() || 5412 !I.getType()->isIntegerTy()) 5413 return false; 5414 5415 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5416 std::pair<SDValue, SDValue> Res = 5417 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5418 getValue(Arg0), getValue(Arg1), 5419 MachinePointerInfo(Arg0)); 5420 if (Res.first.getNode()) { 5421 processIntegerCallValue(I, Res.first, false); 5422 PendingLoads.push_back(Res.second); 5423 return true; 5424 } 5425 5426 return false; 5427 } 5428 5429 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5430 /// operation (as expected), translate it to an SDNode with the specified opcode 5431 /// and return true. 5432 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5433 unsigned Opcode) { 5434 // Sanity check that it really is a unary floating-point call. 5435 if (I.getNumArgOperands() != 1 || 5436 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5437 I.getType() != I.getArgOperand(0)->getType() || 5438 !I.onlyReadsMemory()) 5439 return false; 5440 5441 SDValue Tmp = getValue(I.getArgOperand(0)); 5442 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5443 return true; 5444 } 5445 5446 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5447 /// operation (as expected), translate it to an SDNode with the specified opcode 5448 /// and return true. 5449 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5450 unsigned Opcode) { 5451 // Sanity check that it really is a binary floating-point call. 5452 if (I.getNumArgOperands() != 2 || 5453 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5454 I.getType() != I.getArgOperand(0)->getType() || 5455 I.getType() != I.getArgOperand(1)->getType() || 5456 !I.onlyReadsMemory()) 5457 return false; 5458 5459 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5460 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5461 EVT VT = Tmp0.getValueType(); 5462 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5463 return true; 5464 } 5465 5466 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5467 // Handle inline assembly differently. 5468 if (isa<InlineAsm>(I.getCalledValue())) { 5469 visitInlineAsm(&I); 5470 return; 5471 } 5472 5473 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5474 ComputeUsesVAFloatArgument(I, &MMI); 5475 5476 const char *RenameFn = nullptr; 5477 if (Function *F = I.getCalledFunction()) { 5478 if (F->isDeclaration()) { 5479 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5480 if (unsigned IID = II->getIntrinsicID(F)) { 5481 RenameFn = visitIntrinsicCall(I, IID); 5482 if (!RenameFn) 5483 return; 5484 } 5485 } 5486 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5487 RenameFn = visitIntrinsicCall(I, IID); 5488 if (!RenameFn) 5489 return; 5490 } 5491 } 5492 5493 // Check for well-known libc/libm calls. If the function is internal, it 5494 // can't be a library call. 5495 LibFunc::Func Func; 5496 if (!F->hasLocalLinkage() && F->hasName() && 5497 LibInfo->getLibFunc(F->getName(), Func) && 5498 LibInfo->hasOptimizedCodeGen(Func)) { 5499 switch (Func) { 5500 default: break; 5501 case LibFunc::copysign: 5502 case LibFunc::copysignf: 5503 case LibFunc::copysignl: 5504 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5505 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5506 I.getType() == I.getArgOperand(0)->getType() && 5507 I.getType() == I.getArgOperand(1)->getType() && 5508 I.onlyReadsMemory()) { 5509 SDValue LHS = getValue(I.getArgOperand(0)); 5510 SDValue RHS = getValue(I.getArgOperand(1)); 5511 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5512 LHS.getValueType(), LHS, RHS)); 5513 return; 5514 } 5515 break; 5516 case LibFunc::fabs: 5517 case LibFunc::fabsf: 5518 case LibFunc::fabsl: 5519 if (visitUnaryFloatCall(I, ISD::FABS)) 5520 return; 5521 break; 5522 case LibFunc::fmin: 5523 case LibFunc::fminf: 5524 case LibFunc::fminl: 5525 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5526 return; 5527 break; 5528 case LibFunc::fmax: 5529 case LibFunc::fmaxf: 5530 case LibFunc::fmaxl: 5531 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5532 return; 5533 break; 5534 case LibFunc::sin: 5535 case LibFunc::sinf: 5536 case LibFunc::sinl: 5537 if (visitUnaryFloatCall(I, ISD::FSIN)) 5538 return; 5539 break; 5540 case LibFunc::cos: 5541 case LibFunc::cosf: 5542 case LibFunc::cosl: 5543 if (visitUnaryFloatCall(I, ISD::FCOS)) 5544 return; 5545 break; 5546 case LibFunc::sqrt: 5547 case LibFunc::sqrtf: 5548 case LibFunc::sqrtl: 5549 case LibFunc::sqrt_finite: 5550 case LibFunc::sqrtf_finite: 5551 case LibFunc::sqrtl_finite: 5552 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5553 return; 5554 break; 5555 case LibFunc::floor: 5556 case LibFunc::floorf: 5557 case LibFunc::floorl: 5558 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5559 return; 5560 break; 5561 case LibFunc::nearbyint: 5562 case LibFunc::nearbyintf: 5563 case LibFunc::nearbyintl: 5564 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5565 return; 5566 break; 5567 case LibFunc::ceil: 5568 case LibFunc::ceilf: 5569 case LibFunc::ceill: 5570 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5571 return; 5572 break; 5573 case LibFunc::rint: 5574 case LibFunc::rintf: 5575 case LibFunc::rintl: 5576 if (visitUnaryFloatCall(I, ISD::FRINT)) 5577 return; 5578 break; 5579 case LibFunc::round: 5580 case LibFunc::roundf: 5581 case LibFunc::roundl: 5582 if (visitUnaryFloatCall(I, ISD::FROUND)) 5583 return; 5584 break; 5585 case LibFunc::trunc: 5586 case LibFunc::truncf: 5587 case LibFunc::truncl: 5588 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5589 return; 5590 break; 5591 case LibFunc::log2: 5592 case LibFunc::log2f: 5593 case LibFunc::log2l: 5594 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5595 return; 5596 break; 5597 case LibFunc::exp2: 5598 case LibFunc::exp2f: 5599 case LibFunc::exp2l: 5600 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5601 return; 5602 break; 5603 case LibFunc::memcmp: 5604 if (visitMemCmpCall(I)) 5605 return; 5606 break; 5607 case LibFunc::memchr: 5608 if (visitMemChrCall(I)) 5609 return; 5610 break; 5611 case LibFunc::strcpy: 5612 if (visitStrCpyCall(I, false)) 5613 return; 5614 break; 5615 case LibFunc::stpcpy: 5616 if (visitStrCpyCall(I, true)) 5617 return; 5618 break; 5619 case LibFunc::strcmp: 5620 if (visitStrCmpCall(I)) 5621 return; 5622 break; 5623 case LibFunc::strlen: 5624 if (visitStrLenCall(I)) 5625 return; 5626 break; 5627 case LibFunc::strnlen: 5628 if (visitStrNLenCall(I)) 5629 return; 5630 break; 5631 } 5632 } 5633 } 5634 5635 SDValue Callee; 5636 if (!RenameFn) 5637 Callee = getValue(I.getCalledValue()); 5638 else 5639 Callee = DAG.getExternalSymbol(RenameFn, 5640 DAG.getTargetLoweringInfo().getPointerTy()); 5641 5642 // Check if we can potentially perform a tail call. More detailed checking is 5643 // be done within LowerCallTo, after more information about the call is known. 5644 LowerCallTo(&I, Callee, I.isTailCall()); 5645 } 5646 5647 namespace { 5648 5649 /// AsmOperandInfo - This contains information for each constraint that we are 5650 /// lowering. 5651 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5652 public: 5653 /// CallOperand - If this is the result output operand or a clobber 5654 /// this is null, otherwise it is the incoming operand to the CallInst. 5655 /// This gets modified as the asm is processed. 5656 SDValue CallOperand; 5657 5658 /// AssignedRegs - If this is a register or register class operand, this 5659 /// contains the set of register corresponding to the operand. 5660 RegsForValue AssignedRegs; 5661 5662 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5663 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5664 } 5665 5666 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5667 /// corresponds to. If there is no Value* for this operand, it returns 5668 /// MVT::Other. 5669 EVT getCallOperandValEVT(LLVMContext &Context, 5670 const TargetLowering &TLI, 5671 const DataLayout *DL) const { 5672 if (!CallOperandVal) return MVT::Other; 5673 5674 if (isa<BasicBlock>(CallOperandVal)) 5675 return TLI.getPointerTy(); 5676 5677 llvm::Type *OpTy = CallOperandVal->getType(); 5678 5679 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5680 // If this is an indirect operand, the operand is a pointer to the 5681 // accessed type. 5682 if (isIndirect) { 5683 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5684 if (!PtrTy) 5685 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5686 OpTy = PtrTy->getElementType(); 5687 } 5688 5689 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5690 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5691 if (STy->getNumElements() == 1) 5692 OpTy = STy->getElementType(0); 5693 5694 // If OpTy is not a single value, it may be a struct/union that we 5695 // can tile with integers. 5696 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5697 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5698 switch (BitSize) { 5699 default: break; 5700 case 1: 5701 case 8: 5702 case 16: 5703 case 32: 5704 case 64: 5705 case 128: 5706 OpTy = IntegerType::get(Context, BitSize); 5707 break; 5708 } 5709 } 5710 5711 return TLI.getValueType(OpTy, true); 5712 } 5713 }; 5714 5715 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5716 5717 } // end anonymous namespace 5718 5719 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5720 /// specified operand. We prefer to assign virtual registers, to allow the 5721 /// register allocator to handle the assignment process. However, if the asm 5722 /// uses features that we can't model on machineinstrs, we have SDISel do the 5723 /// allocation. This produces generally horrible, but correct, code. 5724 /// 5725 /// OpInfo describes the operand. 5726 /// 5727 static void GetRegistersForValue(SelectionDAG &DAG, 5728 const TargetLowering &TLI, 5729 SDLoc DL, 5730 SDISelAsmOperandInfo &OpInfo) { 5731 LLVMContext &Context = *DAG.getContext(); 5732 5733 MachineFunction &MF = DAG.getMachineFunction(); 5734 SmallVector<unsigned, 4> Regs; 5735 5736 // If this is a constraint for a single physreg, or a constraint for a 5737 // register class, find it. 5738 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5739 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5740 OpInfo.ConstraintCode, 5741 OpInfo.ConstraintVT); 5742 5743 unsigned NumRegs = 1; 5744 if (OpInfo.ConstraintVT != MVT::Other) { 5745 // If this is a FP input in an integer register (or visa versa) insert a bit 5746 // cast of the input value. More generally, handle any case where the input 5747 // value disagrees with the register class we plan to stick this in. 5748 if (OpInfo.Type == InlineAsm::isInput && 5749 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5750 // Try to convert to the first EVT that the reg class contains. If the 5751 // types are identical size, use a bitcast to convert (e.g. two differing 5752 // vector types). 5753 MVT RegVT = *PhysReg.second->vt_begin(); 5754 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5755 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5756 RegVT, OpInfo.CallOperand); 5757 OpInfo.ConstraintVT = RegVT; 5758 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5759 // If the input is a FP value and we want it in FP registers, do a 5760 // bitcast to the corresponding integer type. This turns an f64 value 5761 // into i64, which can be passed with two i32 values on a 32-bit 5762 // machine. 5763 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5764 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5765 RegVT, OpInfo.CallOperand); 5766 OpInfo.ConstraintVT = RegVT; 5767 } 5768 } 5769 5770 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5771 } 5772 5773 MVT RegVT; 5774 EVT ValueVT = OpInfo.ConstraintVT; 5775 5776 // If this is a constraint for a specific physical register, like {r17}, 5777 // assign it now. 5778 if (unsigned AssignedReg = PhysReg.first) { 5779 const TargetRegisterClass *RC = PhysReg.second; 5780 if (OpInfo.ConstraintVT == MVT::Other) 5781 ValueVT = *RC->vt_begin(); 5782 5783 // Get the actual register value type. This is important, because the user 5784 // may have asked for (e.g.) the AX register in i32 type. We need to 5785 // remember that AX is actually i16 to get the right extension. 5786 RegVT = *RC->vt_begin(); 5787 5788 // This is a explicit reference to a physical register. 5789 Regs.push_back(AssignedReg); 5790 5791 // If this is an expanded reference, add the rest of the regs to Regs. 5792 if (NumRegs != 1) { 5793 TargetRegisterClass::iterator I = RC->begin(); 5794 for (; *I != AssignedReg; ++I) 5795 assert(I != RC->end() && "Didn't find reg!"); 5796 5797 // Already added the first reg. 5798 --NumRegs; ++I; 5799 for (; NumRegs; --NumRegs, ++I) { 5800 assert(I != RC->end() && "Ran out of registers to allocate!"); 5801 Regs.push_back(*I); 5802 } 5803 } 5804 5805 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5806 return; 5807 } 5808 5809 // Otherwise, if this was a reference to an LLVM register class, create vregs 5810 // for this reference. 5811 if (const TargetRegisterClass *RC = PhysReg.second) { 5812 RegVT = *RC->vt_begin(); 5813 if (OpInfo.ConstraintVT == MVT::Other) 5814 ValueVT = RegVT; 5815 5816 // Create the appropriate number of virtual registers. 5817 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5818 for (; NumRegs; --NumRegs) 5819 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5820 5821 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5822 return; 5823 } 5824 5825 // Otherwise, we couldn't allocate enough registers for this. 5826 } 5827 5828 /// visitInlineAsm - Handle a call to an InlineAsm object. 5829 /// 5830 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5831 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5832 5833 /// ConstraintOperands - Information about all of the constraints. 5834 SDISelAsmOperandInfoVector ConstraintOperands; 5835 5836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5837 TargetLowering::AsmOperandInfoVector TargetConstraints = 5838 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5839 5840 bool hasMemory = false; 5841 5842 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5843 unsigned ResNo = 0; // ResNo - The result number of the next output. 5844 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5845 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5846 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5847 5848 MVT OpVT = MVT::Other; 5849 5850 // Compute the value type for each operand. 5851 switch (OpInfo.Type) { 5852 case InlineAsm::isOutput: 5853 // Indirect outputs just consume an argument. 5854 if (OpInfo.isIndirect) { 5855 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5856 break; 5857 } 5858 5859 // The return value of the call is this value. As such, there is no 5860 // corresponding argument. 5861 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5862 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5863 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5864 } else { 5865 assert(ResNo == 0 && "Asm only has one result!"); 5866 OpVT = TLI.getSimpleValueType(CS.getType()); 5867 } 5868 ++ResNo; 5869 break; 5870 case InlineAsm::isInput: 5871 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5872 break; 5873 case InlineAsm::isClobber: 5874 // Nothing to do. 5875 break; 5876 } 5877 5878 // If this is an input or an indirect output, process the call argument. 5879 // BasicBlocks are labels, currently appearing only in asm's. 5880 if (OpInfo.CallOperandVal) { 5881 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5882 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5883 } else { 5884 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5885 } 5886 5887 OpVT = 5888 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5889 } 5890 5891 OpInfo.ConstraintVT = OpVT; 5892 5893 // Indirect operand accesses access memory. 5894 if (OpInfo.isIndirect) 5895 hasMemory = true; 5896 else { 5897 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5898 TargetLowering::ConstraintType 5899 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5900 if (CType == TargetLowering::C_Memory) { 5901 hasMemory = true; 5902 break; 5903 } 5904 } 5905 } 5906 } 5907 5908 SDValue Chain, Flag; 5909 5910 // We won't need to flush pending loads if this asm doesn't touch 5911 // memory and is nonvolatile. 5912 if (hasMemory || IA->hasSideEffects()) 5913 Chain = getRoot(); 5914 else 5915 Chain = DAG.getRoot(); 5916 5917 // Second pass over the constraints: compute which constraint option to use 5918 // and assign registers to constraints that want a specific physreg. 5919 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5920 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5921 5922 // If this is an output operand with a matching input operand, look up the 5923 // matching input. If their types mismatch, e.g. one is an integer, the 5924 // other is floating point, or their sizes are different, flag it as an 5925 // error. 5926 if (OpInfo.hasMatchingInput()) { 5927 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5928 5929 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5930 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5931 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5932 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5933 OpInfo.ConstraintVT); 5934 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5935 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5936 Input.ConstraintVT); 5937 if ((OpInfo.ConstraintVT.isInteger() != 5938 Input.ConstraintVT.isInteger()) || 5939 (MatchRC.second != InputRC.second)) { 5940 report_fatal_error("Unsupported asm: input constraint" 5941 " with a matching output constraint of" 5942 " incompatible type!"); 5943 } 5944 Input.ConstraintVT = OpInfo.ConstraintVT; 5945 } 5946 } 5947 5948 // Compute the constraint code and ConstraintType to use. 5949 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5950 5951 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5952 OpInfo.Type == InlineAsm::isClobber) 5953 continue; 5954 5955 // If this is a memory input, and if the operand is not indirect, do what we 5956 // need to to provide an address for the memory input. 5957 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5958 !OpInfo.isIndirect) { 5959 assert((OpInfo.isMultipleAlternative || 5960 (OpInfo.Type == InlineAsm::isInput)) && 5961 "Can only indirectify direct input operands!"); 5962 5963 // Memory operands really want the address of the value. If we don't have 5964 // an indirect input, put it in the constpool if we can, otherwise spill 5965 // it to a stack slot. 5966 // TODO: This isn't quite right. We need to handle these according to 5967 // the addressing mode that the constraint wants. Also, this may take 5968 // an additional register for the computation and we don't want that 5969 // either. 5970 5971 // If the operand is a float, integer, or vector constant, spill to a 5972 // constant pool entry to get its address. 5973 const Value *OpVal = OpInfo.CallOperandVal; 5974 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5975 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5976 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5977 TLI.getPointerTy()); 5978 } else { 5979 // Otherwise, create a stack slot and emit a store to it before the 5980 // asm. 5981 Type *Ty = OpVal->getType(); 5982 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5983 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5984 MachineFunction &MF = DAG.getMachineFunction(); 5985 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5986 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5987 Chain = DAG.getStore(Chain, getCurSDLoc(), 5988 OpInfo.CallOperand, StackSlot, 5989 MachinePointerInfo::getFixedStack(SSFI), 5990 false, false, 0); 5991 OpInfo.CallOperand = StackSlot; 5992 } 5993 5994 // There is no longer a Value* corresponding to this operand. 5995 OpInfo.CallOperandVal = nullptr; 5996 5997 // It is now an indirect operand. 5998 OpInfo.isIndirect = true; 5999 } 6000 6001 // If this constraint is for a specific register, allocate it before 6002 // anything else. 6003 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6004 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6005 } 6006 6007 // Second pass - Loop over all of the operands, assigning virtual or physregs 6008 // to register class operands. 6009 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6010 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6011 6012 // C_Register operands have already been allocated, Other/Memory don't need 6013 // to be. 6014 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6015 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6016 } 6017 6018 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6019 std::vector<SDValue> AsmNodeOperands; 6020 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6021 AsmNodeOperands.push_back( 6022 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6023 TLI.getPointerTy())); 6024 6025 // If we have a !srcloc metadata node associated with it, we want to attach 6026 // this to the ultimately generated inline asm machineinstr. To do this, we 6027 // pass in the third operand as this (potentially null) inline asm MDNode. 6028 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6029 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6030 6031 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6032 // bits as operand 3. 6033 unsigned ExtraInfo = 0; 6034 if (IA->hasSideEffects()) 6035 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6036 if (IA->isAlignStack()) 6037 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6038 // Set the asm dialect. 6039 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6040 6041 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6042 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6043 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6044 6045 // Compute the constraint code and ConstraintType to use. 6046 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6047 6048 // Ideally, we would only check against memory constraints. However, the 6049 // meaning of an other constraint can be target-specific and we can't easily 6050 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6051 // for other constriants as well. 6052 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6053 OpInfo.ConstraintType == TargetLowering::C_Other) { 6054 if (OpInfo.Type == InlineAsm::isInput) 6055 ExtraInfo |= InlineAsm::Extra_MayLoad; 6056 else if (OpInfo.Type == InlineAsm::isOutput) 6057 ExtraInfo |= InlineAsm::Extra_MayStore; 6058 else if (OpInfo.Type == InlineAsm::isClobber) 6059 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6060 } 6061 } 6062 6063 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6064 TLI.getPointerTy())); 6065 6066 // Loop over all of the inputs, copying the operand values into the 6067 // appropriate registers and processing the output regs. 6068 RegsForValue RetValRegs; 6069 6070 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6071 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6072 6073 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6074 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6075 6076 switch (OpInfo.Type) { 6077 case InlineAsm::isOutput: { 6078 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6079 OpInfo.ConstraintType != TargetLowering::C_Register) { 6080 // Memory output, or 'other' output (e.g. 'X' constraint). 6081 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6082 6083 unsigned ConstraintID = 6084 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6085 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6086 "Failed to convert memory constraint code to constraint id."); 6087 6088 // Add information to the INLINEASM node to know about this output. 6089 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6090 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6091 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6092 MVT::i32)); 6093 AsmNodeOperands.push_back(OpInfo.CallOperand); 6094 break; 6095 } 6096 6097 // Otherwise, this is a register or register class output. 6098 6099 // Copy the output from the appropriate register. Find a register that 6100 // we can use. 6101 if (OpInfo.AssignedRegs.Regs.empty()) { 6102 LLVMContext &Ctx = *DAG.getContext(); 6103 Ctx.emitError(CS.getInstruction(), 6104 "couldn't allocate output register for constraint '" + 6105 Twine(OpInfo.ConstraintCode) + "'"); 6106 return; 6107 } 6108 6109 // If this is an indirect operand, store through the pointer after the 6110 // asm. 6111 if (OpInfo.isIndirect) { 6112 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6113 OpInfo.CallOperandVal)); 6114 } else { 6115 // This is the result value of the call. 6116 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6117 // Concatenate this output onto the outputs list. 6118 RetValRegs.append(OpInfo.AssignedRegs); 6119 } 6120 6121 // Add information to the INLINEASM node to know that this register is 6122 // set. 6123 OpInfo.AssignedRegs 6124 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6125 ? InlineAsm::Kind_RegDefEarlyClobber 6126 : InlineAsm::Kind_RegDef, 6127 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6128 break; 6129 } 6130 case InlineAsm::isInput: { 6131 SDValue InOperandVal = OpInfo.CallOperand; 6132 6133 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6134 // If this is required to match an output register we have already set, 6135 // just use its register. 6136 unsigned OperandNo = OpInfo.getMatchedOperand(); 6137 6138 // Scan until we find the definition we already emitted of this operand. 6139 // When we find it, create a RegsForValue operand. 6140 unsigned CurOp = InlineAsm::Op_FirstOperand; 6141 for (; OperandNo; --OperandNo) { 6142 // Advance to the next operand. 6143 unsigned OpFlag = 6144 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6145 assert((InlineAsm::isRegDefKind(OpFlag) || 6146 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6147 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6148 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6149 } 6150 6151 unsigned OpFlag = 6152 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6153 if (InlineAsm::isRegDefKind(OpFlag) || 6154 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6155 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6156 if (OpInfo.isIndirect) { 6157 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6158 LLVMContext &Ctx = *DAG.getContext(); 6159 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6160 " don't know how to handle tied " 6161 "indirect register inputs"); 6162 return; 6163 } 6164 6165 RegsForValue MatchedRegs; 6166 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6167 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6168 MatchedRegs.RegVTs.push_back(RegVT); 6169 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6170 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6171 i != e; ++i) { 6172 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6173 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6174 else { 6175 LLVMContext &Ctx = *DAG.getContext(); 6176 Ctx.emitError(CS.getInstruction(), 6177 "inline asm error: This value" 6178 " type register class is not natively supported!"); 6179 return; 6180 } 6181 } 6182 SDLoc dl = getCurSDLoc(); 6183 // Use the produced MatchedRegs object to 6184 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6185 Chain, &Flag, CS.getInstruction()); 6186 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6187 true, OpInfo.getMatchedOperand(), dl, 6188 DAG, AsmNodeOperands); 6189 break; 6190 } 6191 6192 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6193 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6194 "Unexpected number of operands"); 6195 // Add information to the INLINEASM node to know about this input. 6196 // See InlineAsm.h isUseOperandTiedToDef. 6197 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6198 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6199 OpInfo.getMatchedOperand()); 6200 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6201 TLI.getPointerTy())); 6202 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6203 break; 6204 } 6205 6206 // Treat indirect 'X' constraint as memory. 6207 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6208 OpInfo.isIndirect) 6209 OpInfo.ConstraintType = TargetLowering::C_Memory; 6210 6211 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6212 std::vector<SDValue> Ops; 6213 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6214 Ops, DAG); 6215 if (Ops.empty()) { 6216 LLVMContext &Ctx = *DAG.getContext(); 6217 Ctx.emitError(CS.getInstruction(), 6218 "invalid operand for inline asm constraint '" + 6219 Twine(OpInfo.ConstraintCode) + "'"); 6220 return; 6221 } 6222 6223 // Add information to the INLINEASM node to know about this input. 6224 unsigned ResOpType = 6225 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6226 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6227 getCurSDLoc(), 6228 TLI.getPointerTy())); 6229 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6230 break; 6231 } 6232 6233 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6234 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6235 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6236 "Memory operands expect pointer values"); 6237 6238 unsigned ConstraintID = 6239 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6240 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6241 "Failed to convert memory constraint code to constraint id."); 6242 6243 // Add information to the INLINEASM node to know about this input. 6244 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6245 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6246 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6247 getCurSDLoc(), 6248 MVT::i32)); 6249 AsmNodeOperands.push_back(InOperandVal); 6250 break; 6251 } 6252 6253 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6254 OpInfo.ConstraintType == TargetLowering::C_Register) && 6255 "Unknown constraint type!"); 6256 6257 // TODO: Support this. 6258 if (OpInfo.isIndirect) { 6259 LLVMContext &Ctx = *DAG.getContext(); 6260 Ctx.emitError(CS.getInstruction(), 6261 "Don't know how to handle indirect register inputs yet " 6262 "for constraint '" + 6263 Twine(OpInfo.ConstraintCode) + "'"); 6264 return; 6265 } 6266 6267 // Copy the input into the appropriate registers. 6268 if (OpInfo.AssignedRegs.Regs.empty()) { 6269 LLVMContext &Ctx = *DAG.getContext(); 6270 Ctx.emitError(CS.getInstruction(), 6271 "couldn't allocate input reg for constraint '" + 6272 Twine(OpInfo.ConstraintCode) + "'"); 6273 return; 6274 } 6275 6276 SDLoc dl = getCurSDLoc(); 6277 6278 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6279 Chain, &Flag, CS.getInstruction()); 6280 6281 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6282 dl, DAG, AsmNodeOperands); 6283 break; 6284 } 6285 case InlineAsm::isClobber: { 6286 // Add the clobbered value to the operand list, so that the register 6287 // allocator is aware that the physreg got clobbered. 6288 if (!OpInfo.AssignedRegs.Regs.empty()) 6289 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6290 false, 0, getCurSDLoc(), DAG, 6291 AsmNodeOperands); 6292 break; 6293 } 6294 } 6295 } 6296 6297 // Finish up input operands. Set the input chain and add the flag last. 6298 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6299 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6300 6301 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6302 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6303 Flag = Chain.getValue(1); 6304 6305 // If this asm returns a register value, copy the result from that register 6306 // and set it as the value of the call. 6307 if (!RetValRegs.Regs.empty()) { 6308 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6309 Chain, &Flag, CS.getInstruction()); 6310 6311 // FIXME: Why don't we do this for inline asms with MRVs? 6312 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6313 EVT ResultType = TLI.getValueType(CS.getType()); 6314 6315 // If any of the results of the inline asm is a vector, it may have the 6316 // wrong width/num elts. This can happen for register classes that can 6317 // contain multiple different value types. The preg or vreg allocated may 6318 // not have the same VT as was expected. Convert it to the right type 6319 // with bit_convert. 6320 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6321 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6322 ResultType, Val); 6323 6324 } else if (ResultType != Val.getValueType() && 6325 ResultType.isInteger() && Val.getValueType().isInteger()) { 6326 // If a result value was tied to an input value, the computed result may 6327 // have a wider width than the expected result. Extract the relevant 6328 // portion. 6329 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6330 } 6331 6332 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6333 } 6334 6335 setValue(CS.getInstruction(), Val); 6336 // Don't need to use this as a chain in this case. 6337 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6338 return; 6339 } 6340 6341 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6342 6343 // Process indirect outputs, first output all of the flagged copies out of 6344 // physregs. 6345 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6346 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6347 const Value *Ptr = IndirectStoresToEmit[i].second; 6348 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6349 Chain, &Flag, IA); 6350 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6351 } 6352 6353 // Emit the non-flagged stores from the physregs. 6354 SmallVector<SDValue, 8> OutChains; 6355 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6356 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6357 StoresToEmit[i].first, 6358 getValue(StoresToEmit[i].second), 6359 MachinePointerInfo(StoresToEmit[i].second), 6360 false, false, 0); 6361 OutChains.push_back(Val); 6362 } 6363 6364 if (!OutChains.empty()) 6365 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6366 6367 DAG.setRoot(Chain); 6368 } 6369 6370 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6371 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6372 MVT::Other, getRoot(), 6373 getValue(I.getArgOperand(0)), 6374 DAG.getSrcValue(I.getArgOperand(0)))); 6375 } 6376 6377 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6379 const DataLayout &DL = *TLI.getDataLayout(); 6380 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6381 getRoot(), getValue(I.getOperand(0)), 6382 DAG.getSrcValue(I.getOperand(0)), 6383 DL.getABITypeAlignment(I.getType())); 6384 setValue(&I, V); 6385 DAG.setRoot(V.getValue(1)); 6386 } 6387 6388 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6389 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6390 MVT::Other, getRoot(), 6391 getValue(I.getArgOperand(0)), 6392 DAG.getSrcValue(I.getArgOperand(0)))); 6393 } 6394 6395 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6396 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6397 MVT::Other, getRoot(), 6398 getValue(I.getArgOperand(0)), 6399 getValue(I.getArgOperand(1)), 6400 DAG.getSrcValue(I.getArgOperand(0)), 6401 DAG.getSrcValue(I.getArgOperand(1)))); 6402 } 6403 6404 /// \brief Lower an argument list according to the target calling convention. 6405 /// 6406 /// \return A tuple of <return-value, token-chain> 6407 /// 6408 /// This is a helper for lowering intrinsics that follow a target calling 6409 /// convention or require stack pointer adjustment. Only a subset of the 6410 /// intrinsic's operands need to participate in the calling convention. 6411 std::pair<SDValue, SDValue> 6412 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6413 unsigned NumArgs, SDValue Callee, 6414 Type *ReturnTy, 6415 MachineBasicBlock *LandingPad, 6416 bool IsPatchPoint) { 6417 TargetLowering::ArgListTy Args; 6418 Args.reserve(NumArgs); 6419 6420 // Populate the argument list. 6421 // Attributes for args start at offset 1, after the return attribute. 6422 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6423 ArgI != ArgE; ++ArgI) { 6424 const Value *V = CS->getOperand(ArgI); 6425 6426 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6427 6428 TargetLowering::ArgListEntry Entry; 6429 Entry.Node = getValue(V); 6430 Entry.Ty = V->getType(); 6431 Entry.setAttributes(&CS, AttrI); 6432 Args.push_back(Entry); 6433 } 6434 6435 TargetLowering::CallLoweringInfo CLI(DAG); 6436 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6437 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6438 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6439 6440 return lowerInvokable(CLI, LandingPad); 6441 } 6442 6443 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6444 /// or patchpoint target node's operand list. 6445 /// 6446 /// Constants are converted to TargetConstants purely as an optimization to 6447 /// avoid constant materialization and register allocation. 6448 /// 6449 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6450 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6451 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6452 /// address materialization and register allocation, but may also be required 6453 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6454 /// alloca in the entry block, then the runtime may assume that the alloca's 6455 /// StackMap location can be read immediately after compilation and that the 6456 /// location is valid at any point during execution (this is similar to the 6457 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6458 /// only available in a register, then the runtime would need to trap when 6459 /// execution reaches the StackMap in order to read the alloca's location. 6460 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6461 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6462 SelectionDAGBuilder &Builder) { 6463 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6464 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6465 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6466 Ops.push_back( 6467 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6468 Ops.push_back( 6469 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6470 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6471 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6472 Ops.push_back( 6473 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6474 } else 6475 Ops.push_back(OpVal); 6476 } 6477 } 6478 6479 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6480 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6481 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6482 // [live variables...]) 6483 6484 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6485 6486 SDValue Chain, InFlag, Callee, NullPtr; 6487 SmallVector<SDValue, 32> Ops; 6488 6489 SDLoc DL = getCurSDLoc(); 6490 Callee = getValue(CI.getCalledValue()); 6491 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6492 6493 // The stackmap intrinsic only records the live variables (the arguemnts 6494 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6495 // intrinsic, this won't be lowered to a function call. This means we don't 6496 // have to worry about calling conventions and target specific lowering code. 6497 // Instead we perform the call lowering right here. 6498 // 6499 // chain, flag = CALLSEQ_START(chain, 0) 6500 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6501 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6502 // 6503 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6504 InFlag = Chain.getValue(1); 6505 6506 // Add the <id> and <numBytes> constants. 6507 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6508 Ops.push_back(DAG.getTargetConstant( 6509 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6510 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6511 Ops.push_back(DAG.getTargetConstant( 6512 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6513 MVT::i32)); 6514 6515 // Push live variables for the stack map. 6516 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6517 6518 // We are not pushing any register mask info here on the operands list, 6519 // because the stackmap doesn't clobber anything. 6520 6521 // Push the chain and the glue flag. 6522 Ops.push_back(Chain); 6523 Ops.push_back(InFlag); 6524 6525 // Create the STACKMAP node. 6526 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6527 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6528 Chain = SDValue(SM, 0); 6529 InFlag = Chain.getValue(1); 6530 6531 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6532 6533 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6534 6535 // Set the root to the target-lowered call chain. 6536 DAG.setRoot(Chain); 6537 6538 // Inform the Frame Information that we have a stackmap in this function. 6539 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6540 } 6541 6542 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6543 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6544 MachineBasicBlock *LandingPad) { 6545 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6546 // i32 <numBytes>, 6547 // i8* <target>, 6548 // i32 <numArgs>, 6549 // [Args...], 6550 // [live variables...]) 6551 6552 CallingConv::ID CC = CS.getCallingConv(); 6553 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6554 bool HasDef = !CS->getType()->isVoidTy(); 6555 SDLoc dl = getCurSDLoc(); 6556 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6557 6558 // Handle immediate and symbolic callees. 6559 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6560 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6561 /*isTarget=*/true); 6562 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6563 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6564 SDLoc(SymbolicCallee), 6565 SymbolicCallee->getValueType(0)); 6566 6567 // Get the real number of arguments participating in the call <numArgs> 6568 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6569 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6570 6571 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6572 // Intrinsics include all meta-operands up to but not including CC. 6573 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6574 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6575 "Not enough arguments provided to the patchpoint intrinsic"); 6576 6577 // For AnyRegCC the arguments are lowered later on manually. 6578 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6579 Type *ReturnTy = 6580 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6581 std::pair<SDValue, SDValue> Result = 6582 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6583 LandingPad, true); 6584 6585 SDNode *CallEnd = Result.second.getNode(); 6586 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6587 CallEnd = CallEnd->getOperand(0).getNode(); 6588 6589 /// Get a call instruction from the call sequence chain. 6590 /// Tail calls are not allowed. 6591 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6592 "Expected a callseq node."); 6593 SDNode *Call = CallEnd->getOperand(0).getNode(); 6594 bool HasGlue = Call->getGluedNode(); 6595 6596 // Replace the target specific call node with the patchable intrinsic. 6597 SmallVector<SDValue, 8> Ops; 6598 6599 // Add the <id> and <numBytes> constants. 6600 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6601 Ops.push_back(DAG.getTargetConstant( 6602 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6603 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6604 Ops.push_back(DAG.getTargetConstant( 6605 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6606 MVT::i32)); 6607 6608 // Add the callee. 6609 Ops.push_back(Callee); 6610 6611 // Adjust <numArgs> to account for any arguments that have been passed on the 6612 // stack instead. 6613 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6614 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6615 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6616 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6617 6618 // Add the calling convention 6619 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6620 6621 // Add the arguments we omitted previously. The register allocator should 6622 // place these in any free register. 6623 if (IsAnyRegCC) 6624 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6625 Ops.push_back(getValue(CS.getArgument(i))); 6626 6627 // Push the arguments from the call instruction up to the register mask. 6628 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6629 Ops.append(Call->op_begin() + 2, e); 6630 6631 // Push live variables for the stack map. 6632 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6633 6634 // Push the register mask info. 6635 if (HasGlue) 6636 Ops.push_back(*(Call->op_end()-2)); 6637 else 6638 Ops.push_back(*(Call->op_end()-1)); 6639 6640 // Push the chain (this is originally the first operand of the call, but 6641 // becomes now the last or second to last operand). 6642 Ops.push_back(*(Call->op_begin())); 6643 6644 // Push the glue flag (last operand). 6645 if (HasGlue) 6646 Ops.push_back(*(Call->op_end()-1)); 6647 6648 SDVTList NodeTys; 6649 if (IsAnyRegCC && HasDef) { 6650 // Create the return types based on the intrinsic definition 6651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6652 SmallVector<EVT, 3> ValueVTs; 6653 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6654 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6655 6656 // There is always a chain and a glue type at the end 6657 ValueVTs.push_back(MVT::Other); 6658 ValueVTs.push_back(MVT::Glue); 6659 NodeTys = DAG.getVTList(ValueVTs); 6660 } else 6661 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6662 6663 // Replace the target specific call node with a PATCHPOINT node. 6664 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6665 dl, NodeTys, Ops); 6666 6667 // Update the NodeMap. 6668 if (HasDef) { 6669 if (IsAnyRegCC) 6670 setValue(CS.getInstruction(), SDValue(MN, 0)); 6671 else 6672 setValue(CS.getInstruction(), Result.first); 6673 } 6674 6675 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6676 // call sequence. Furthermore the location of the chain and glue can change 6677 // when the AnyReg calling convention is used and the intrinsic returns a 6678 // value. 6679 if (IsAnyRegCC && HasDef) { 6680 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6681 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6682 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6683 } else 6684 DAG.ReplaceAllUsesWith(Call, MN); 6685 DAG.DeleteNode(Call); 6686 6687 // Inform the Frame Information that we have a patchpoint in this function. 6688 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6689 } 6690 6691 /// Returns an AttributeSet representing the attributes applied to the return 6692 /// value of the given call. 6693 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6694 SmallVector<Attribute::AttrKind, 2> Attrs; 6695 if (CLI.RetSExt) 6696 Attrs.push_back(Attribute::SExt); 6697 if (CLI.RetZExt) 6698 Attrs.push_back(Attribute::ZExt); 6699 if (CLI.IsInReg) 6700 Attrs.push_back(Attribute::InReg); 6701 6702 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6703 Attrs); 6704 } 6705 6706 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6707 /// implementation, which just calls LowerCall. 6708 /// FIXME: When all targets are 6709 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6710 std::pair<SDValue, SDValue> 6711 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6712 // Handle the incoming return values from the call. 6713 CLI.Ins.clear(); 6714 Type *OrigRetTy = CLI.RetTy; 6715 SmallVector<EVT, 4> RetTys; 6716 SmallVector<uint64_t, 4> Offsets; 6717 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6718 6719 SmallVector<ISD::OutputArg, 4> Outs; 6720 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6721 6722 bool CanLowerReturn = 6723 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6724 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6725 6726 SDValue DemoteStackSlot; 6727 int DemoteStackIdx = -100; 6728 if (!CanLowerReturn) { 6729 // FIXME: equivalent assert? 6730 // assert(!CS.hasInAllocaArgument() && 6731 // "sret demotion is incompatible with inalloca"); 6732 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6733 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6734 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6735 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6736 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6737 6738 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6739 ArgListEntry Entry; 6740 Entry.Node = DemoteStackSlot; 6741 Entry.Ty = StackSlotPtrType; 6742 Entry.isSExt = false; 6743 Entry.isZExt = false; 6744 Entry.isInReg = false; 6745 Entry.isSRet = true; 6746 Entry.isNest = false; 6747 Entry.isByVal = false; 6748 Entry.isReturned = false; 6749 Entry.Alignment = Align; 6750 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6751 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6752 6753 // sret demotion isn't compatible with tail-calls, since the sret argument 6754 // points into the callers stack frame. 6755 CLI.IsTailCall = false; 6756 } else { 6757 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6758 EVT VT = RetTys[I]; 6759 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6760 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6761 for (unsigned i = 0; i != NumRegs; ++i) { 6762 ISD::InputArg MyFlags; 6763 MyFlags.VT = RegisterVT; 6764 MyFlags.ArgVT = VT; 6765 MyFlags.Used = CLI.IsReturnValueUsed; 6766 if (CLI.RetSExt) 6767 MyFlags.Flags.setSExt(); 6768 if (CLI.RetZExt) 6769 MyFlags.Flags.setZExt(); 6770 if (CLI.IsInReg) 6771 MyFlags.Flags.setInReg(); 6772 CLI.Ins.push_back(MyFlags); 6773 } 6774 } 6775 } 6776 6777 // Handle all of the outgoing arguments. 6778 CLI.Outs.clear(); 6779 CLI.OutVals.clear(); 6780 ArgListTy &Args = CLI.getArgs(); 6781 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6782 SmallVector<EVT, 4> ValueVTs; 6783 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6784 Type *FinalType = Args[i].Ty; 6785 if (Args[i].isByVal) 6786 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6787 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6788 FinalType, CLI.CallConv, CLI.IsVarArg); 6789 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6790 ++Value) { 6791 EVT VT = ValueVTs[Value]; 6792 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6793 SDValue Op = SDValue(Args[i].Node.getNode(), 6794 Args[i].Node.getResNo() + Value); 6795 ISD::ArgFlagsTy Flags; 6796 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6797 6798 if (Args[i].isZExt) 6799 Flags.setZExt(); 6800 if (Args[i].isSExt) 6801 Flags.setSExt(); 6802 if (Args[i].isInReg) 6803 Flags.setInReg(); 6804 if (Args[i].isSRet) 6805 Flags.setSRet(); 6806 if (Args[i].isByVal) 6807 Flags.setByVal(); 6808 if (Args[i].isInAlloca) { 6809 Flags.setInAlloca(); 6810 // Set the byval flag for CCAssignFn callbacks that don't know about 6811 // inalloca. This way we can know how many bytes we should've allocated 6812 // and how many bytes a callee cleanup function will pop. If we port 6813 // inalloca to more targets, we'll have to add custom inalloca handling 6814 // in the various CC lowering callbacks. 6815 Flags.setByVal(); 6816 } 6817 if (Args[i].isByVal || Args[i].isInAlloca) { 6818 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6819 Type *ElementTy = Ty->getElementType(); 6820 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6821 // For ByVal, alignment should come from FE. BE will guess if this 6822 // info is not there but there are cases it cannot get right. 6823 unsigned FrameAlign; 6824 if (Args[i].Alignment) 6825 FrameAlign = Args[i].Alignment; 6826 else 6827 FrameAlign = getByValTypeAlignment(ElementTy); 6828 Flags.setByValAlign(FrameAlign); 6829 } 6830 if (Args[i].isNest) 6831 Flags.setNest(); 6832 if (NeedsRegBlock) 6833 Flags.setInConsecutiveRegs(); 6834 Flags.setOrigAlign(OriginalAlignment); 6835 6836 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6837 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6838 SmallVector<SDValue, 4> Parts(NumParts); 6839 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6840 6841 if (Args[i].isSExt) 6842 ExtendKind = ISD::SIGN_EXTEND; 6843 else if (Args[i].isZExt) 6844 ExtendKind = ISD::ZERO_EXTEND; 6845 6846 // Conservatively only handle 'returned' on non-vectors for now 6847 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6848 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6849 "unexpected use of 'returned'"); 6850 // Before passing 'returned' to the target lowering code, ensure that 6851 // either the register MVT and the actual EVT are the same size or that 6852 // the return value and argument are extended in the same way; in these 6853 // cases it's safe to pass the argument register value unchanged as the 6854 // return register value (although it's at the target's option whether 6855 // to do so) 6856 // TODO: allow code generation to take advantage of partially preserved 6857 // registers rather than clobbering the entire register when the 6858 // parameter extension method is not compatible with the return 6859 // extension method 6860 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6861 (ExtendKind != ISD::ANY_EXTEND && 6862 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6863 Flags.setReturned(); 6864 } 6865 6866 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6867 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6868 6869 for (unsigned j = 0; j != NumParts; ++j) { 6870 // if it isn't first piece, alignment must be 1 6871 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6872 i < CLI.NumFixedArgs, 6873 i, j*Parts[j].getValueType().getStoreSize()); 6874 if (NumParts > 1 && j == 0) 6875 MyFlags.Flags.setSplit(); 6876 else if (j != 0) 6877 MyFlags.Flags.setOrigAlign(1); 6878 6879 CLI.Outs.push_back(MyFlags); 6880 CLI.OutVals.push_back(Parts[j]); 6881 } 6882 6883 if (NeedsRegBlock && Value == NumValues - 1) 6884 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6885 } 6886 } 6887 6888 SmallVector<SDValue, 4> InVals; 6889 CLI.Chain = LowerCall(CLI, InVals); 6890 6891 // Verify that the target's LowerCall behaved as expected. 6892 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6893 "LowerCall didn't return a valid chain!"); 6894 assert((!CLI.IsTailCall || InVals.empty()) && 6895 "LowerCall emitted a return value for a tail call!"); 6896 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6897 "LowerCall didn't emit the correct number of values!"); 6898 6899 // For a tail call, the return value is merely live-out and there aren't 6900 // any nodes in the DAG representing it. Return a special value to 6901 // indicate that a tail call has been emitted and no more Instructions 6902 // should be processed in the current block. 6903 if (CLI.IsTailCall) { 6904 CLI.DAG.setRoot(CLI.Chain); 6905 return std::make_pair(SDValue(), SDValue()); 6906 } 6907 6908 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6909 assert(InVals[i].getNode() && 6910 "LowerCall emitted a null value!"); 6911 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6912 "LowerCall emitted a value with the wrong type!"); 6913 }); 6914 6915 SmallVector<SDValue, 4> ReturnValues; 6916 if (!CanLowerReturn) { 6917 // The instruction result is the result of loading from the 6918 // hidden sret parameter. 6919 SmallVector<EVT, 1> PVTs; 6920 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6921 6922 ComputeValueVTs(*this, PtrRetTy, PVTs); 6923 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6924 EVT PtrVT = PVTs[0]; 6925 6926 unsigned NumValues = RetTys.size(); 6927 ReturnValues.resize(NumValues); 6928 SmallVector<SDValue, 4> Chains(NumValues); 6929 6930 for (unsigned i = 0; i < NumValues; ++i) { 6931 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6932 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6933 PtrVT)); 6934 SDValue L = CLI.DAG.getLoad( 6935 RetTys[i], CLI.DL, CLI.Chain, Add, 6936 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6937 false, false, 1); 6938 ReturnValues[i] = L; 6939 Chains[i] = L.getValue(1); 6940 } 6941 6942 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6943 } else { 6944 // Collect the legal value parts into potentially illegal values 6945 // that correspond to the original function's return values. 6946 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6947 if (CLI.RetSExt) 6948 AssertOp = ISD::AssertSext; 6949 else if (CLI.RetZExt) 6950 AssertOp = ISD::AssertZext; 6951 unsigned CurReg = 0; 6952 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6953 EVT VT = RetTys[I]; 6954 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6955 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6956 6957 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6958 NumRegs, RegisterVT, VT, nullptr, 6959 AssertOp)); 6960 CurReg += NumRegs; 6961 } 6962 6963 // For a function returning void, there is no return value. We can't create 6964 // such a node, so we just return a null return value in that case. In 6965 // that case, nothing will actually look at the value. 6966 if (ReturnValues.empty()) 6967 return std::make_pair(SDValue(), CLI.Chain); 6968 } 6969 6970 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6971 CLI.DAG.getVTList(RetTys), ReturnValues); 6972 return std::make_pair(Res, CLI.Chain); 6973 } 6974 6975 void TargetLowering::LowerOperationWrapper(SDNode *N, 6976 SmallVectorImpl<SDValue> &Results, 6977 SelectionDAG &DAG) const { 6978 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6979 if (Res.getNode()) 6980 Results.push_back(Res); 6981 } 6982 6983 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6984 llvm_unreachable("LowerOperation not implemented for this target!"); 6985 } 6986 6987 void 6988 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6989 SDValue Op = getNonRegisterValue(V); 6990 assert((Op.getOpcode() != ISD::CopyFromReg || 6991 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6992 "Copy from a reg to the same reg!"); 6993 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6994 6995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6996 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6997 SDValue Chain = DAG.getEntryNode(); 6998 6999 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7000 FuncInfo.PreferredExtendType.end()) 7001 ? ISD::ANY_EXTEND 7002 : FuncInfo.PreferredExtendType[V]; 7003 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7004 PendingExports.push_back(Chain); 7005 } 7006 7007 #include "llvm/CodeGen/SelectionDAGISel.h" 7008 7009 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7010 /// entry block, return true. This includes arguments used by switches, since 7011 /// the switch may expand into multiple basic blocks. 7012 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7013 // With FastISel active, we may be splitting blocks, so force creation 7014 // of virtual registers for all non-dead arguments. 7015 if (FastISel) 7016 return A->use_empty(); 7017 7018 const BasicBlock *Entry = A->getParent()->begin(); 7019 for (const User *U : A->users()) 7020 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7021 return false; // Use not in entry block. 7022 7023 return true; 7024 } 7025 7026 void SelectionDAGISel::LowerArguments(const Function &F) { 7027 SelectionDAG &DAG = SDB->DAG; 7028 SDLoc dl = SDB->getCurSDLoc(); 7029 const DataLayout *DL = TLI->getDataLayout(); 7030 SmallVector<ISD::InputArg, 16> Ins; 7031 7032 if (!FuncInfo->CanLowerReturn) { 7033 // Put in an sret pointer parameter before all the other parameters. 7034 SmallVector<EVT, 1> ValueVTs; 7035 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7036 7037 // NOTE: Assuming that a pointer will never break down to more than one VT 7038 // or one register. 7039 ISD::ArgFlagsTy Flags; 7040 Flags.setSRet(); 7041 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7042 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7043 ISD::InputArg::NoArgIndex, 0); 7044 Ins.push_back(RetArg); 7045 } 7046 7047 // Set up the incoming argument description vector. 7048 unsigned Idx = 1; 7049 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7050 I != E; ++I, ++Idx) { 7051 SmallVector<EVT, 4> ValueVTs; 7052 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7053 bool isArgValueUsed = !I->use_empty(); 7054 unsigned PartBase = 0; 7055 Type *FinalType = I->getType(); 7056 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7057 FinalType = cast<PointerType>(FinalType)->getElementType(); 7058 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7059 FinalType, F.getCallingConv(), F.isVarArg()); 7060 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7061 Value != NumValues; ++Value) { 7062 EVT VT = ValueVTs[Value]; 7063 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7064 ISD::ArgFlagsTy Flags; 7065 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7066 7067 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7068 Flags.setZExt(); 7069 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7070 Flags.setSExt(); 7071 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7072 Flags.setInReg(); 7073 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7074 Flags.setSRet(); 7075 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7076 Flags.setByVal(); 7077 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7078 Flags.setInAlloca(); 7079 // Set the byval flag for CCAssignFn callbacks that don't know about 7080 // inalloca. This way we can know how many bytes we should've allocated 7081 // and how many bytes a callee cleanup function will pop. If we port 7082 // inalloca to more targets, we'll have to add custom inalloca handling 7083 // in the various CC lowering callbacks. 7084 Flags.setByVal(); 7085 } 7086 if (Flags.isByVal() || Flags.isInAlloca()) { 7087 PointerType *Ty = cast<PointerType>(I->getType()); 7088 Type *ElementTy = Ty->getElementType(); 7089 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7090 // For ByVal, alignment should be passed from FE. BE will guess if 7091 // this info is not there but there are cases it cannot get right. 7092 unsigned FrameAlign; 7093 if (F.getParamAlignment(Idx)) 7094 FrameAlign = F.getParamAlignment(Idx); 7095 else 7096 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7097 Flags.setByValAlign(FrameAlign); 7098 } 7099 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7100 Flags.setNest(); 7101 if (NeedsRegBlock) 7102 Flags.setInConsecutiveRegs(); 7103 Flags.setOrigAlign(OriginalAlignment); 7104 7105 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7106 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7107 for (unsigned i = 0; i != NumRegs; ++i) { 7108 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7109 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7110 if (NumRegs > 1 && i == 0) 7111 MyFlags.Flags.setSplit(); 7112 // if it isn't first piece, alignment must be 1 7113 else if (i > 0) 7114 MyFlags.Flags.setOrigAlign(1); 7115 Ins.push_back(MyFlags); 7116 } 7117 if (NeedsRegBlock && Value == NumValues - 1) 7118 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7119 PartBase += VT.getStoreSize(); 7120 } 7121 } 7122 7123 // Call the target to set up the argument values. 7124 SmallVector<SDValue, 8> InVals; 7125 SDValue NewRoot = TLI->LowerFormalArguments( 7126 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7127 7128 // Verify that the target's LowerFormalArguments behaved as expected. 7129 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7130 "LowerFormalArguments didn't return a valid chain!"); 7131 assert(InVals.size() == Ins.size() && 7132 "LowerFormalArguments didn't emit the correct number of values!"); 7133 DEBUG({ 7134 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7135 assert(InVals[i].getNode() && 7136 "LowerFormalArguments emitted a null value!"); 7137 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7138 "LowerFormalArguments emitted a value with the wrong type!"); 7139 } 7140 }); 7141 7142 // Update the DAG with the new chain value resulting from argument lowering. 7143 DAG.setRoot(NewRoot); 7144 7145 // Set up the argument values. 7146 unsigned i = 0; 7147 Idx = 1; 7148 if (!FuncInfo->CanLowerReturn) { 7149 // Create a virtual register for the sret pointer, and put in a copy 7150 // from the sret argument into it. 7151 SmallVector<EVT, 1> ValueVTs; 7152 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7153 MVT VT = ValueVTs[0].getSimpleVT(); 7154 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7155 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7156 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7157 RegVT, VT, nullptr, AssertOp); 7158 7159 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7160 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7161 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7162 FuncInfo->DemoteRegister = SRetReg; 7163 NewRoot = 7164 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7165 DAG.setRoot(NewRoot); 7166 7167 // i indexes lowered arguments. Bump it past the hidden sret argument. 7168 // Idx indexes LLVM arguments. Don't touch it. 7169 ++i; 7170 } 7171 7172 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7173 ++I, ++Idx) { 7174 SmallVector<SDValue, 4> ArgValues; 7175 SmallVector<EVT, 4> ValueVTs; 7176 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7177 unsigned NumValues = ValueVTs.size(); 7178 7179 // If this argument is unused then remember its value. It is used to generate 7180 // debugging information. 7181 if (I->use_empty() && NumValues) { 7182 SDB->setUnusedArgValue(I, InVals[i]); 7183 7184 // Also remember any frame index for use in FastISel. 7185 if (FrameIndexSDNode *FI = 7186 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7187 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7188 } 7189 7190 for (unsigned Val = 0; Val != NumValues; ++Val) { 7191 EVT VT = ValueVTs[Val]; 7192 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7193 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7194 7195 if (!I->use_empty()) { 7196 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7197 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7198 AssertOp = ISD::AssertSext; 7199 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7200 AssertOp = ISD::AssertZext; 7201 7202 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7203 NumParts, PartVT, VT, 7204 nullptr, AssertOp)); 7205 } 7206 7207 i += NumParts; 7208 } 7209 7210 // We don't need to do anything else for unused arguments. 7211 if (ArgValues.empty()) 7212 continue; 7213 7214 // Note down frame index. 7215 if (FrameIndexSDNode *FI = 7216 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7217 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7218 7219 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7220 SDB->getCurSDLoc()); 7221 7222 SDB->setValue(I, Res); 7223 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7224 if (LoadSDNode *LNode = 7225 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7226 if (FrameIndexSDNode *FI = 7227 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7228 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7229 } 7230 7231 // If this argument is live outside of the entry block, insert a copy from 7232 // wherever we got it to the vreg that other BB's will reference it as. 7233 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7234 // If we can, though, try to skip creating an unnecessary vreg. 7235 // FIXME: This isn't very clean... it would be nice to make this more 7236 // general. It's also subtly incompatible with the hacks FastISel 7237 // uses with vregs. 7238 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7239 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7240 FuncInfo->ValueMap[I] = Reg; 7241 continue; 7242 } 7243 } 7244 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7245 FuncInfo->InitializeRegForValue(I); 7246 SDB->CopyToExportRegsIfNeeded(I); 7247 } 7248 } 7249 7250 assert(i == InVals.size() && "Argument register count mismatch!"); 7251 7252 // Finally, if the target has anything special to do, allow it to do so. 7253 EmitFunctionEntryCode(); 7254 } 7255 7256 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7257 /// ensure constants are generated when needed. Remember the virtual registers 7258 /// that need to be added to the Machine PHI nodes as input. We cannot just 7259 /// directly add them, because expansion might result in multiple MBB's for one 7260 /// BB. As such, the start of the BB might correspond to a different MBB than 7261 /// the end. 7262 /// 7263 void 7264 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7265 const TerminatorInst *TI = LLVMBB->getTerminator(); 7266 7267 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7268 7269 // Check PHI nodes in successors that expect a value to be available from this 7270 // block. 7271 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7272 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7273 if (!isa<PHINode>(SuccBB->begin())) continue; 7274 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7275 7276 // If this terminator has multiple identical successors (common for 7277 // switches), only handle each succ once. 7278 if (!SuccsHandled.insert(SuccMBB).second) 7279 continue; 7280 7281 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7282 7283 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7284 // nodes and Machine PHI nodes, but the incoming operands have not been 7285 // emitted yet. 7286 for (BasicBlock::const_iterator I = SuccBB->begin(); 7287 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7288 // Ignore dead phi's. 7289 if (PN->use_empty()) continue; 7290 7291 // Skip empty types 7292 if (PN->getType()->isEmptyTy()) 7293 continue; 7294 7295 unsigned Reg; 7296 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7297 7298 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7299 unsigned &RegOut = ConstantsOut[C]; 7300 if (RegOut == 0) { 7301 RegOut = FuncInfo.CreateRegs(C->getType()); 7302 CopyValueToVirtualRegister(C, RegOut); 7303 } 7304 Reg = RegOut; 7305 } else { 7306 DenseMap<const Value *, unsigned>::iterator I = 7307 FuncInfo.ValueMap.find(PHIOp); 7308 if (I != FuncInfo.ValueMap.end()) 7309 Reg = I->second; 7310 else { 7311 assert(isa<AllocaInst>(PHIOp) && 7312 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7313 "Didn't codegen value into a register!??"); 7314 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7315 CopyValueToVirtualRegister(PHIOp, Reg); 7316 } 7317 } 7318 7319 // Remember that this register needs to added to the machine PHI node as 7320 // the input for this MBB. 7321 SmallVector<EVT, 4> ValueVTs; 7322 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7323 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7324 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7325 EVT VT = ValueVTs[vti]; 7326 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7327 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7328 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7329 Reg += NumRegisters; 7330 } 7331 } 7332 } 7333 7334 ConstantsOut.clear(); 7335 } 7336 7337 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7338 /// is 0. 7339 MachineBasicBlock * 7340 SelectionDAGBuilder::StackProtectorDescriptor:: 7341 AddSuccessorMBB(const BasicBlock *BB, 7342 MachineBasicBlock *ParentMBB, 7343 bool IsLikely, 7344 MachineBasicBlock *SuccMBB) { 7345 // If SuccBB has not been created yet, create it. 7346 if (!SuccMBB) { 7347 MachineFunction *MF = ParentMBB->getParent(); 7348 MachineFunction::iterator BBI = ParentMBB; 7349 SuccMBB = MF->CreateMachineBasicBlock(BB); 7350 MF->insert(++BBI, SuccMBB); 7351 } 7352 // Add it as a successor of ParentMBB. 7353 ParentMBB->addSuccessor( 7354 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7355 return SuccMBB; 7356 } 7357 7358 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7359 MachineFunction::iterator I = MBB; 7360 if (++I == FuncInfo.MF->end()) 7361 return nullptr; 7362 return I; 7363 } 7364 7365 /// During lowering new call nodes can be created (such as memset, etc.). 7366 /// Those will become new roots of the current DAG, but complications arise 7367 /// when they are tail calls. In such cases, the call lowering will update 7368 /// the root, but the builder still needs to know that a tail call has been 7369 /// lowered in order to avoid generating an additional return. 7370 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7371 // If the node is null, we do have a tail call. 7372 if (MaybeTC.getNode() != nullptr) 7373 DAG.setRoot(MaybeTC); 7374 else 7375 HasTailCall = true; 7376 } 7377 7378 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7379 unsigned *TotalCases, unsigned First, 7380 unsigned Last) { 7381 assert(Last >= First); 7382 assert(TotalCases[Last] >= TotalCases[First]); 7383 7384 APInt LowCase = Clusters[First].Low->getValue(); 7385 APInt HighCase = Clusters[Last].High->getValue(); 7386 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7387 7388 // FIXME: A range of consecutive cases has 100% density, but only requires one 7389 // comparison to lower. We should discriminate against such consecutive ranges 7390 // in jump tables. 7391 7392 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7393 uint64_t Range = Diff + 1; 7394 7395 uint64_t NumCases = 7396 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7397 7398 assert(NumCases < UINT64_MAX / 100); 7399 assert(Range >= NumCases); 7400 7401 return NumCases * 100 >= Range * MinJumpTableDensity; 7402 } 7403 7404 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7405 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7406 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7407 } 7408 7409 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7410 unsigned First, unsigned Last, 7411 const SwitchInst *SI, 7412 MachineBasicBlock *DefaultMBB, 7413 CaseCluster &JTCluster) { 7414 assert(First <= Last); 7415 7416 uint32_t Weight = 0; 7417 unsigned NumCmps = 0; 7418 std::vector<MachineBasicBlock*> Table; 7419 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7420 for (unsigned I = First; I <= Last; ++I) { 7421 assert(Clusters[I].Kind == CC_Range); 7422 Weight += Clusters[I].Weight; 7423 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7424 APInt Low = Clusters[I].Low->getValue(); 7425 APInt High = Clusters[I].High->getValue(); 7426 NumCmps += (Low == High) ? 1 : 2; 7427 if (I != First) { 7428 // Fill the gap between this and the previous cluster. 7429 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7430 assert(PreviousHigh.slt(Low)); 7431 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7432 for (uint64_t J = 0; J < Gap; J++) 7433 Table.push_back(DefaultMBB); 7434 } 7435 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7436 for (uint64_t J = 0; J < ClusterSize; ++J) 7437 Table.push_back(Clusters[I].MBB); 7438 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7439 } 7440 7441 unsigned NumDests = JTWeights.size(); 7442 if (isSuitableForBitTests(NumDests, NumCmps, 7443 Clusters[First].Low->getValue(), 7444 Clusters[Last].High->getValue())) { 7445 // Clusters[First..Last] should be lowered as bit tests instead. 7446 return false; 7447 } 7448 7449 // Create the MBB that will load from and jump through the table. 7450 // Note: We create it here, but it's not inserted into the function yet. 7451 MachineFunction *CurMF = FuncInfo.MF; 7452 MachineBasicBlock *JumpTableMBB = 7453 CurMF->CreateMachineBasicBlock(SI->getParent()); 7454 7455 // Add successors. Note: use table order for determinism. 7456 SmallPtrSet<MachineBasicBlock *, 8> Done; 7457 for (MachineBasicBlock *Succ : Table) { 7458 if (Done.count(Succ)) 7459 continue; 7460 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7461 Done.insert(Succ); 7462 } 7463 7464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7465 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7466 ->createJumpTableIndex(Table); 7467 7468 // Set up the jump table info. 7469 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7470 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7471 Clusters[Last].High->getValue(), SI->getCondition(), 7472 nullptr, false); 7473 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7474 7475 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7476 JTCases.size() - 1, Weight); 7477 return true; 7478 } 7479 7480 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7481 const SwitchInst *SI, 7482 MachineBasicBlock *DefaultMBB) { 7483 #ifndef NDEBUG 7484 // Clusters must be non-empty, sorted, and only contain Range clusters. 7485 assert(!Clusters.empty()); 7486 for (CaseCluster &C : Clusters) 7487 assert(C.Kind == CC_Range); 7488 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7489 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7490 #endif 7491 7492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7493 if (!areJTsAllowed(TLI)) 7494 return; 7495 7496 const int64_t N = Clusters.size(); 7497 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7498 7499 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7500 SmallVector<unsigned, 8> TotalCases(N); 7501 7502 for (unsigned i = 0; i < N; ++i) { 7503 APInt Hi = Clusters[i].High->getValue(); 7504 APInt Lo = Clusters[i].Low->getValue(); 7505 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7506 if (i != 0) 7507 TotalCases[i] += TotalCases[i - 1]; 7508 } 7509 7510 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7511 // Cheap case: the whole range might be suitable for jump table. 7512 CaseCluster JTCluster; 7513 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7514 Clusters[0] = JTCluster; 7515 Clusters.resize(1); 7516 return; 7517 } 7518 } 7519 7520 // The algorithm below is not suitable for -O0. 7521 if (TM.getOptLevel() == CodeGenOpt::None) 7522 return; 7523 7524 // Split Clusters into minimum number of dense partitions. The algorithm uses 7525 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7526 // for the Case Statement'" (1994), but builds the MinPartitions array in 7527 // reverse order to make it easier to reconstruct the partitions in ascending 7528 // order. In the choice between two optimal partitionings, it picks the one 7529 // which yields more jump tables. 7530 7531 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7532 SmallVector<unsigned, 8> MinPartitions(N); 7533 // LastElement[i] is the last element of the partition starting at i. 7534 SmallVector<unsigned, 8> LastElement(N); 7535 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7536 SmallVector<unsigned, 8> NumTables(N); 7537 7538 // Base case: There is only one way to partition Clusters[N-1]. 7539 MinPartitions[N - 1] = 1; 7540 LastElement[N - 1] = N - 1; 7541 assert(MinJumpTableSize > 1); 7542 NumTables[N - 1] = 0; 7543 7544 // Note: loop indexes are signed to avoid underflow. 7545 for (int64_t i = N - 2; i >= 0; i--) { 7546 // Find optimal partitioning of Clusters[i..N-1]. 7547 // Baseline: Put Clusters[i] into a partition on its own. 7548 MinPartitions[i] = MinPartitions[i + 1] + 1; 7549 LastElement[i] = i; 7550 NumTables[i] = NumTables[i + 1]; 7551 7552 // Search for a solution that results in fewer partitions. 7553 for (int64_t j = N - 1; j > i; j--) { 7554 // Try building a partition from Clusters[i..j]. 7555 if (isDense(Clusters, &TotalCases[0], i, j)) { 7556 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7557 bool IsTable = j - i + 1 >= MinJumpTableSize; 7558 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7559 7560 // If this j leads to fewer partitions, or same number of partitions 7561 // with more lookup tables, it is a better partitioning. 7562 if (NumPartitions < MinPartitions[i] || 7563 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7564 MinPartitions[i] = NumPartitions; 7565 LastElement[i] = j; 7566 NumTables[i] = Tables; 7567 } 7568 } 7569 } 7570 } 7571 7572 // Iterate over the partitions, replacing some with jump tables in-place. 7573 unsigned DstIndex = 0; 7574 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7575 Last = LastElement[First]; 7576 assert(Last >= First); 7577 assert(DstIndex <= First); 7578 unsigned NumClusters = Last - First + 1; 7579 7580 CaseCluster JTCluster; 7581 if (NumClusters >= MinJumpTableSize && 7582 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7583 Clusters[DstIndex++] = JTCluster; 7584 } else { 7585 for (unsigned I = First; I <= Last; ++I) 7586 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7587 } 7588 } 7589 Clusters.resize(DstIndex); 7590 } 7591 7592 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7593 // FIXME: Using the pointer type doesn't seem ideal. 7594 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7595 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7596 return Range <= BW; 7597 } 7598 7599 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7600 unsigned NumCmps, 7601 const APInt &Low, 7602 const APInt &High) { 7603 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7604 // range of cases both require only one branch to lower. Just looking at the 7605 // number of clusters and destinations should be enough to decide whether to 7606 // build bit tests. 7607 7608 // To lower a range with bit tests, the range must fit the bitwidth of a 7609 // machine word. 7610 if (!rangeFitsInWord(Low, High)) 7611 return false; 7612 7613 // Decide whether it's profitable to lower this range with bit tests. Each 7614 // destination requires a bit test and branch, and there is an overall range 7615 // check branch. For a small number of clusters, separate comparisons might be 7616 // cheaper, and for many destinations, splitting the range might be better. 7617 return (NumDests == 1 && NumCmps >= 3) || 7618 (NumDests == 2 && NumCmps >= 5) || 7619 (NumDests == 3 && NumCmps >= 6); 7620 } 7621 7622 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7623 unsigned First, unsigned Last, 7624 const SwitchInst *SI, 7625 CaseCluster &BTCluster) { 7626 assert(First <= Last); 7627 if (First == Last) 7628 return false; 7629 7630 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7631 unsigned NumCmps = 0; 7632 for (int64_t I = First; I <= Last; ++I) { 7633 assert(Clusters[I].Kind == CC_Range); 7634 Dests.set(Clusters[I].MBB->getNumber()); 7635 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7636 } 7637 unsigned NumDests = Dests.count(); 7638 7639 APInt Low = Clusters[First].Low->getValue(); 7640 APInt High = Clusters[Last].High->getValue(); 7641 assert(Low.slt(High)); 7642 7643 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7644 return false; 7645 7646 APInt LowBound; 7647 APInt CmpRange; 7648 7649 const int BitWidth = 7650 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7651 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7652 7653 if (Low.isNonNegative() && High.slt(BitWidth)) { 7654 // Optimize the case where all the case values fit in a 7655 // word without having to subtract minValue. In this case, 7656 // we can optimize away the subtraction. 7657 LowBound = APInt::getNullValue(Low.getBitWidth()); 7658 CmpRange = High; 7659 } else { 7660 LowBound = Low; 7661 CmpRange = High - Low; 7662 } 7663 7664 CaseBitsVector CBV; 7665 uint32_t TotalWeight = 0; 7666 for (unsigned i = First; i <= Last; ++i) { 7667 // Find the CaseBits for this destination. 7668 unsigned j; 7669 for (j = 0; j < CBV.size(); ++j) 7670 if (CBV[j].BB == Clusters[i].MBB) 7671 break; 7672 if (j == CBV.size()) 7673 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7674 CaseBits *CB = &CBV[j]; 7675 7676 // Update Mask, Bits and ExtraWeight. 7677 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7678 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7679 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7680 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7681 CB->Bits += Hi - Lo + 1; 7682 CB->ExtraWeight += Clusters[i].Weight; 7683 TotalWeight += Clusters[i].Weight; 7684 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7685 } 7686 7687 BitTestInfo BTI; 7688 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7689 // Sort by weight first, number of bits second. 7690 if (a.ExtraWeight != b.ExtraWeight) 7691 return a.ExtraWeight > b.ExtraWeight; 7692 return a.Bits > b.Bits; 7693 }); 7694 7695 for (auto &CB : CBV) { 7696 MachineBasicBlock *BitTestBB = 7697 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7698 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7699 } 7700 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7701 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7702 nullptr, std::move(BTI)); 7703 7704 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7705 BitTestCases.size() - 1, TotalWeight); 7706 return true; 7707 } 7708 7709 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7710 const SwitchInst *SI) { 7711 // Partition Clusters into as few subsets as possible, where each subset has a 7712 // range that fits in a machine word and has <= 3 unique destinations. 7713 7714 #ifndef NDEBUG 7715 // Clusters must be sorted and contain Range or JumpTable clusters. 7716 assert(!Clusters.empty()); 7717 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7718 for (const CaseCluster &C : Clusters) 7719 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7720 for (unsigned i = 1; i < Clusters.size(); ++i) 7721 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7722 #endif 7723 7724 // The algorithm below is not suitable for -O0. 7725 if (TM.getOptLevel() == CodeGenOpt::None) 7726 return; 7727 7728 // If target does not have legal shift left, do not emit bit tests at all. 7729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7730 EVT PTy = TLI.getPointerTy(); 7731 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7732 return; 7733 7734 int BitWidth = PTy.getSizeInBits(); 7735 const int64_t N = Clusters.size(); 7736 7737 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7738 SmallVector<unsigned, 8> MinPartitions(N); 7739 // LastElement[i] is the last element of the partition starting at i. 7740 SmallVector<unsigned, 8> LastElement(N); 7741 7742 // FIXME: This might not be the best algorithm for finding bit test clusters. 7743 7744 // Base case: There is only one way to partition Clusters[N-1]. 7745 MinPartitions[N - 1] = 1; 7746 LastElement[N - 1] = N - 1; 7747 7748 // Note: loop indexes are signed to avoid underflow. 7749 for (int64_t i = N - 2; i >= 0; --i) { 7750 // Find optimal partitioning of Clusters[i..N-1]. 7751 // Baseline: Put Clusters[i] into a partition on its own. 7752 MinPartitions[i] = MinPartitions[i + 1] + 1; 7753 LastElement[i] = i; 7754 7755 // Search for a solution that results in fewer partitions. 7756 // Note: the search is limited by BitWidth, reducing time complexity. 7757 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7758 // Try building a partition from Clusters[i..j]. 7759 7760 // Check the range. 7761 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7762 Clusters[j].High->getValue())) 7763 continue; 7764 7765 // Check nbr of destinations and cluster types. 7766 // FIXME: This works, but doesn't seem very efficient. 7767 bool RangesOnly = true; 7768 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7769 for (int64_t k = i; k <= j; k++) { 7770 if (Clusters[k].Kind != CC_Range) { 7771 RangesOnly = false; 7772 break; 7773 } 7774 Dests.set(Clusters[k].MBB->getNumber()); 7775 } 7776 if (!RangesOnly || Dests.count() > 3) 7777 break; 7778 7779 // Check if it's a better partition. 7780 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7781 if (NumPartitions < MinPartitions[i]) { 7782 // Found a better partition. 7783 MinPartitions[i] = NumPartitions; 7784 LastElement[i] = j; 7785 } 7786 } 7787 } 7788 7789 // Iterate over the partitions, replacing with bit-test clusters in-place. 7790 unsigned DstIndex = 0; 7791 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7792 Last = LastElement[First]; 7793 assert(First <= Last); 7794 assert(DstIndex <= First); 7795 7796 CaseCluster BitTestCluster; 7797 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7798 Clusters[DstIndex++] = BitTestCluster; 7799 } else { 7800 size_t NumClusters = Last - First + 1; 7801 std::memmove(&Clusters[DstIndex], &Clusters[First], 7802 sizeof(Clusters[0]) * NumClusters); 7803 DstIndex += NumClusters; 7804 } 7805 } 7806 Clusters.resize(DstIndex); 7807 } 7808 7809 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7810 MachineBasicBlock *SwitchMBB, 7811 MachineBasicBlock *DefaultMBB) { 7812 MachineFunction *CurMF = FuncInfo.MF; 7813 MachineBasicBlock *NextMBB = nullptr; 7814 MachineFunction::iterator BBI = W.MBB; 7815 if (++BBI != FuncInfo.MF->end()) 7816 NextMBB = BBI; 7817 7818 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7819 7820 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7821 7822 if (Size == 2 && W.MBB == SwitchMBB) { 7823 // If any two of the cases has the same destination, and if one value 7824 // is the same as the other, but has one bit unset that the other has set, 7825 // use bit manipulation to do two compares at once. For example: 7826 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7827 // TODO: This could be extended to merge any 2 cases in switches with 3 7828 // cases. 7829 // TODO: Handle cases where W.CaseBB != SwitchBB. 7830 CaseCluster &Small = *W.FirstCluster; 7831 CaseCluster &Big = *W.LastCluster; 7832 7833 if (Small.Low == Small.High && Big.Low == Big.High && 7834 Small.MBB == Big.MBB) { 7835 const APInt &SmallValue = Small.Low->getValue(); 7836 const APInt &BigValue = Big.Low->getValue(); 7837 7838 // Check that there is only one bit different. 7839 APInt CommonBit = BigValue ^ SmallValue; 7840 if (CommonBit.isPowerOf2()) { 7841 SDValue CondLHS = getValue(Cond); 7842 EVT VT = CondLHS.getValueType(); 7843 SDLoc DL = getCurSDLoc(); 7844 7845 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7846 DAG.getConstant(CommonBit, DL, VT)); 7847 SDValue Cond = DAG.getSetCC( 7848 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7849 ISD::SETEQ); 7850 7851 // Update successor info. 7852 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7853 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7854 addSuccessorWithWeight( 7855 SwitchMBB, DefaultMBB, 7856 // The default destination is the first successor in IR. 7857 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7858 : 0); 7859 7860 // Insert the true branch. 7861 SDValue BrCond = 7862 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7863 DAG.getBasicBlock(Small.MBB)); 7864 // Insert the false branch. 7865 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7866 DAG.getBasicBlock(DefaultMBB)); 7867 7868 DAG.setRoot(BrCond); 7869 return; 7870 } 7871 } 7872 } 7873 7874 if (TM.getOptLevel() != CodeGenOpt::None) { 7875 // Order cases by weight so the most likely case will be checked first. 7876 std::sort(W.FirstCluster, W.LastCluster + 1, 7877 [](const CaseCluster &a, const CaseCluster &b) { 7878 return a.Weight > b.Weight; 7879 }); 7880 7881 // Rearrange the case blocks so that the last one falls through if possible 7882 // without without changing the order of weights. 7883 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7884 --I; 7885 if (I->Weight > W.LastCluster->Weight) 7886 break; 7887 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7888 std::swap(*I, *W.LastCluster); 7889 break; 7890 } 7891 } 7892 } 7893 7894 // Compute total weight. 7895 uint32_t UnhandledWeights = 0; 7896 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7897 UnhandledWeights += I->Weight; 7898 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7899 } 7900 7901 MachineBasicBlock *CurMBB = W.MBB; 7902 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7903 MachineBasicBlock *Fallthrough; 7904 if (I == W.LastCluster) { 7905 // For the last cluster, fall through to the default destination. 7906 Fallthrough = DefaultMBB; 7907 } else { 7908 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7909 CurMF->insert(BBI, Fallthrough); 7910 // Put Cond in a virtual register to make it available from the new blocks. 7911 ExportFromCurrentBlock(Cond); 7912 } 7913 7914 switch (I->Kind) { 7915 case CC_JumpTable: { 7916 // FIXME: Optimize away range check based on pivot comparisons. 7917 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7918 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7919 7920 // The jump block hasn't been inserted yet; insert it here. 7921 MachineBasicBlock *JumpMBB = JT->MBB; 7922 CurMF->insert(BBI, JumpMBB); 7923 addSuccessorWithWeight(CurMBB, Fallthrough); 7924 addSuccessorWithWeight(CurMBB, JumpMBB); 7925 7926 // The jump table header will be inserted in our current block, do the 7927 // range check, and fall through to our fallthrough block. 7928 JTH->HeaderBB = CurMBB; 7929 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7930 7931 // If we're in the right place, emit the jump table header right now. 7932 if (CurMBB == SwitchMBB) { 7933 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7934 JTH->Emitted = true; 7935 } 7936 break; 7937 } 7938 case CC_BitTests: { 7939 // FIXME: Optimize away range check based on pivot comparisons. 7940 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7941 7942 // The bit test blocks haven't been inserted yet; insert them here. 7943 for (BitTestCase &BTC : BTB->Cases) 7944 CurMF->insert(BBI, BTC.ThisBB); 7945 7946 // Fill in fields of the BitTestBlock. 7947 BTB->Parent = CurMBB; 7948 BTB->Default = Fallthrough; 7949 7950 // If we're in the right place, emit the bit test header header right now. 7951 if (CurMBB ==SwitchMBB) { 7952 visitBitTestHeader(*BTB, SwitchMBB); 7953 BTB->Emitted = true; 7954 } 7955 break; 7956 } 7957 case CC_Range: { 7958 const Value *RHS, *LHS, *MHS; 7959 ISD::CondCode CC; 7960 if (I->Low == I->High) { 7961 // Check Cond == I->Low. 7962 CC = ISD::SETEQ; 7963 LHS = Cond; 7964 RHS=I->Low; 7965 MHS = nullptr; 7966 } else { 7967 // Check I->Low <= Cond <= I->High. 7968 CC = ISD::SETLE; 7969 LHS = I->Low; 7970 MHS = Cond; 7971 RHS = I->High; 7972 } 7973 7974 // The false weight is the sum of all unhandled cases. 7975 UnhandledWeights -= I->Weight; 7976 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7977 UnhandledWeights); 7978 7979 if (CurMBB == SwitchMBB) 7980 visitSwitchCase(CB, SwitchMBB); 7981 else 7982 SwitchCases.push_back(CB); 7983 7984 break; 7985 } 7986 } 7987 CurMBB = Fallthrough; 7988 } 7989 } 7990 7991 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 7992 CaseClusterIt First, 7993 CaseClusterIt Last) { 7994 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 7995 if (X.Weight != CC.Weight) 7996 return X.Weight > CC.Weight; 7997 7998 // Ties are broken by comparing the case value. 7999 return X.Low->getValue().slt(CC.Low->getValue()); 8000 }); 8001 } 8002 8003 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8004 const SwitchWorkListItem &W, 8005 Value *Cond, 8006 MachineBasicBlock *SwitchMBB) { 8007 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8008 "Clusters not sorted?"); 8009 8010 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8011 8012 // Balance the tree based on branch weights to create a near-optimal (in terms 8013 // of search time given key frequency) binary search tree. See e.g. Kurt 8014 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8015 CaseClusterIt LastLeft = W.FirstCluster; 8016 CaseClusterIt FirstRight = W.LastCluster; 8017 uint32_t LeftWeight = LastLeft->Weight; 8018 uint32_t RightWeight = FirstRight->Weight; 8019 8020 // Move LastLeft and FirstRight towards each other from opposite directions to 8021 // find a partitioning of the clusters which balances the weight on both 8022 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8023 // taken to ensure 0-weight nodes are distributed evenly. 8024 unsigned I = 0; 8025 while (LastLeft + 1 < FirstRight) { 8026 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8027 LeftWeight += (++LastLeft)->Weight; 8028 else 8029 RightWeight += (--FirstRight)->Weight; 8030 I++; 8031 } 8032 8033 for (;;) { 8034 // Our binary search tree differs from a typical BST in that ours can have up 8035 // to three values in each leaf. The pivot selection above doesn't take that 8036 // into account, which means the tree might require more nodes and be less 8037 // efficient. We compensate for this here. 8038 8039 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8040 unsigned NumRight = W.LastCluster - FirstRight + 1; 8041 8042 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8043 // If one side has less than 3 clusters, and the other has more than 3, 8044 // consider taking a cluster from the other side. 8045 8046 if (NumLeft < NumRight) { 8047 // Consider moving the first cluster on the right to the left side. 8048 CaseCluster &CC = *FirstRight; 8049 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8050 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8051 if (LeftSideRank <= RightSideRank) { 8052 // Moving the cluster to the left does not demote it. 8053 ++LastLeft; 8054 ++FirstRight; 8055 continue; 8056 } 8057 } else { 8058 assert(NumRight < NumLeft); 8059 // Consider moving the last element on the left to the right side. 8060 CaseCluster &CC = *LastLeft; 8061 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8062 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8063 if (RightSideRank <= LeftSideRank) { 8064 // Moving the cluster to the right does not demot it. 8065 --LastLeft; 8066 --FirstRight; 8067 continue; 8068 } 8069 } 8070 } 8071 break; 8072 } 8073 8074 assert(LastLeft + 1 == FirstRight); 8075 assert(LastLeft >= W.FirstCluster); 8076 assert(FirstRight <= W.LastCluster); 8077 8078 // Use the first element on the right as pivot since we will make less-than 8079 // comparisons against it. 8080 CaseClusterIt PivotCluster = FirstRight; 8081 assert(PivotCluster > W.FirstCluster); 8082 assert(PivotCluster <= W.LastCluster); 8083 8084 CaseClusterIt FirstLeft = W.FirstCluster; 8085 CaseClusterIt LastRight = W.LastCluster; 8086 8087 const ConstantInt *Pivot = PivotCluster->Low; 8088 8089 // New blocks will be inserted immediately after the current one. 8090 MachineFunction::iterator BBI = W.MBB; 8091 ++BBI; 8092 8093 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8094 // we can branch to its destination directly if it's squeezed exactly in 8095 // between the known lower bound and Pivot - 1. 8096 MachineBasicBlock *LeftMBB; 8097 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8098 FirstLeft->Low == W.GE && 8099 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8100 LeftMBB = FirstLeft->MBB; 8101 } else { 8102 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8103 FuncInfo.MF->insert(BBI, LeftMBB); 8104 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8105 // Put Cond in a virtual register to make it available from the new blocks. 8106 ExportFromCurrentBlock(Cond); 8107 } 8108 8109 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8110 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8111 // directly if RHS.High equals the current upper bound. 8112 MachineBasicBlock *RightMBB; 8113 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8114 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8115 RightMBB = FirstRight->MBB; 8116 } else { 8117 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8118 FuncInfo.MF->insert(BBI, RightMBB); 8119 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8120 // Put Cond in a virtual register to make it available from the new blocks. 8121 ExportFromCurrentBlock(Cond); 8122 } 8123 8124 // Create the CaseBlock record that will be used to lower the branch. 8125 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8126 LeftWeight, RightWeight); 8127 8128 if (W.MBB == SwitchMBB) 8129 visitSwitchCase(CB, SwitchMBB); 8130 else 8131 SwitchCases.push_back(CB); 8132 } 8133 8134 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8135 // Extract cases from the switch. 8136 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8137 CaseClusterVector Clusters; 8138 Clusters.reserve(SI.getNumCases()); 8139 for (auto I : SI.cases()) { 8140 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8141 const ConstantInt *CaseVal = I.getCaseValue(); 8142 uint32_t Weight = 8143 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8144 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8145 } 8146 8147 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8148 8149 // Cluster adjacent cases with the same destination. We do this at all 8150 // optimization levels because it's cheap to do and will make codegen faster 8151 // if there are many clusters. 8152 sortAndRangeify(Clusters); 8153 8154 if (TM.getOptLevel() != CodeGenOpt::None) { 8155 // Replace an unreachable default with the most popular destination. 8156 // FIXME: Exploit unreachable default more aggressively. 8157 bool UnreachableDefault = 8158 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8159 if (UnreachableDefault && !Clusters.empty()) { 8160 DenseMap<const BasicBlock *, unsigned> Popularity; 8161 unsigned MaxPop = 0; 8162 const BasicBlock *MaxBB = nullptr; 8163 for (auto I : SI.cases()) { 8164 const BasicBlock *BB = I.getCaseSuccessor(); 8165 if (++Popularity[BB] > MaxPop) { 8166 MaxPop = Popularity[BB]; 8167 MaxBB = BB; 8168 } 8169 } 8170 // Set new default. 8171 assert(MaxPop > 0 && MaxBB); 8172 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8173 8174 // Remove cases that were pointing to the destination that is now the 8175 // default. 8176 CaseClusterVector New; 8177 New.reserve(Clusters.size()); 8178 for (CaseCluster &CC : Clusters) { 8179 if (CC.MBB != DefaultMBB) 8180 New.push_back(CC); 8181 } 8182 Clusters = std::move(New); 8183 } 8184 } 8185 8186 // If there is only the default destination, jump there directly. 8187 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8188 if (Clusters.empty()) { 8189 SwitchMBB->addSuccessor(DefaultMBB); 8190 if (DefaultMBB != NextBlock(SwitchMBB)) { 8191 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8192 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8193 } 8194 return; 8195 } 8196 8197 findJumpTables(Clusters, &SI, DefaultMBB); 8198 findBitTestClusters(Clusters, &SI); 8199 8200 DEBUG({ 8201 dbgs() << "Case clusters: "; 8202 for (const CaseCluster &C : Clusters) { 8203 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8204 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8205 8206 C.Low->getValue().print(dbgs(), true); 8207 if (C.Low != C.High) { 8208 dbgs() << '-'; 8209 C.High->getValue().print(dbgs(), true); 8210 } 8211 dbgs() << ' '; 8212 } 8213 dbgs() << '\n'; 8214 }); 8215 8216 assert(!Clusters.empty()); 8217 SwitchWorkList WorkList; 8218 CaseClusterIt First = Clusters.begin(); 8219 CaseClusterIt Last = Clusters.end() - 1; 8220 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8221 8222 while (!WorkList.empty()) { 8223 SwitchWorkListItem W = WorkList.back(); 8224 WorkList.pop_back(); 8225 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8226 8227 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8228 // For optimized builds, lower large range as a balanced binary tree. 8229 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8230 continue; 8231 } 8232 8233 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8234 } 8235 } 8236