1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // True if the Value passed requires ABI mangling as it is a parameter to a 161 // function or a return value from a function which is not an intrinsic. 162 static bool isABIRegCopy(const Value *V) { 163 const bool IsRetInst = V && isa<ReturnInst>(V); 164 const bool IsCallInst = V && isa<CallInst>(V); 165 const bool IsInLineAsm = 166 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 167 const bool IsIndirectFunctionCall = 168 IsCallInst && !IsInLineAsm && 169 !static_cast<const CallInst *>(V)->getCalledFunction(); 170 // It is possible that the call instruction is an inline asm statement or an 171 // indirect function call in which case the return value of 172 // getCalledFunction() would be nullptr. 173 const bool IsInstrinsicCall = 174 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 175 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 176 Intrinsic::not_intrinsic; 177 178 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 179 } 180 181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 182 const SDValue *Parts, unsigned NumParts, 183 MVT PartVT, EVT ValueVT, const Value *V, 184 bool IsABIRegCopy); 185 186 /// getCopyFromParts - Create a value that contains the specified legal parts 187 /// combined into the value they represent. If the parts combine to a type 188 /// larger than ValueVT then AssertOp can be used to specify whether the extra 189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 190 /// (ISD::AssertSext). 191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 192 const SDValue *Parts, unsigned NumParts, 193 MVT PartVT, EVT ValueVT, const Value *V, 194 Optional<ISD::NodeType> AssertOp = None, 195 bool IsABIRegCopy = false) { 196 if (ValueVT.isVector()) 197 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 198 PartVT, ValueVT, V, IsABIRegCopy); 199 200 assert(NumParts > 0 && "No parts to assemble!"); 201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 202 SDValue Val = Parts[0]; 203 204 if (NumParts > 1) { 205 // Assemble the value from multiple parts. 206 if (ValueVT.isInteger()) { 207 unsigned PartBits = PartVT.getSizeInBits(); 208 unsigned ValueBits = ValueVT.getSizeInBits(); 209 210 // Assemble the power of 2 part. 211 unsigned RoundParts = NumParts & (NumParts - 1) ? 212 1 << Log2_32(NumParts) : NumParts; 213 unsigned RoundBits = PartBits * RoundParts; 214 EVT RoundVT = RoundBits == ValueBits ? 215 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 216 SDValue Lo, Hi; 217 218 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 219 220 if (RoundParts > 2) { 221 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 222 PartVT, HalfVT, V); 223 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 224 RoundParts / 2, PartVT, HalfVT, V); 225 } else { 226 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 227 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 228 } 229 230 if (DAG.getDataLayout().isBigEndian()) 231 std::swap(Lo, Hi); 232 233 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 234 235 if (RoundParts < NumParts) { 236 // Assemble the trailing non-power-of-2 part. 237 unsigned OddParts = NumParts - RoundParts; 238 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 239 Hi = getCopyFromParts(DAG, DL, 240 Parts + RoundParts, OddParts, PartVT, OddVT, V); 241 242 // Combine the round and odd parts. 243 Lo = Val; 244 if (DAG.getDataLayout().isBigEndian()) 245 std::swap(Lo, Hi); 246 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 247 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 248 Hi = 249 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 250 DAG.getConstant(Lo.getValueSizeInBits(), DL, 251 TLI.getPointerTy(DAG.getDataLayout()))); 252 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 253 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 254 } 255 } else if (PartVT.isFloatingPoint()) { 256 // FP split into multiple FP parts (for ppcf128) 257 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 258 "Unexpected split"); 259 SDValue Lo, Hi; 260 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 261 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 262 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 263 std::swap(Lo, Hi); 264 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 265 } else { 266 // FP split into integer parts (soft fp) 267 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 268 !PartVT.isVector() && "Unexpected split"); 269 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 271 } 272 } 273 274 // There is now one part, held in Val. Correct it to match ValueVT. 275 // PartEVT is the type of the register class that holds the value. 276 // ValueVT is the type of the inline asm operation. 277 EVT PartEVT = Val.getValueType(); 278 279 if (PartEVT == ValueVT) 280 return Val; 281 282 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 283 ValueVT.bitsLT(PartEVT)) { 284 // For an FP value in an integer part, we need to truncate to the right 285 // width first. 286 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 288 } 289 290 // Handle types that have the same size. 291 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 292 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 293 294 // Handle types with different sizes. 295 if (PartEVT.isInteger() && ValueVT.isInteger()) { 296 if (ValueVT.bitsLT(PartEVT)) { 297 // For a truncate, see if we have any information to 298 // indicate whether the truncated bits will always be 299 // zero or sign-extension. 300 if (AssertOp.hasValue()) 301 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 302 DAG.getValueType(ValueVT)); 303 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 304 } 305 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 306 } 307 308 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 309 // FP_ROUND's are always exact here. 310 if (ValueVT.bitsLT(Val.getValueType())) 311 return DAG.getNode( 312 ISD::FP_ROUND, DL, ValueVT, Val, 313 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 314 315 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 316 } 317 318 llvm_unreachable("Unknown mismatch!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (isa<InlineAsm>(CI->getCalledValue())) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 bool IsABIRegCopy) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 359 RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 380 PartVT, IntermediateVT, V); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 389 PartVT, IntermediateVT, V); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 396 (IntermediateVT.isVector() 397 ? IntermediateVT.getVectorNumElements() * NumParts 398 : NumIntermediates)); 399 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 400 : ISD::BUILD_VECTOR, 401 DL, BuiltVectorTy, Ops); 402 } 403 404 // There is now one part, held in Val. Correct it to match ValueVT. 405 EVT PartEVT = Val.getValueType(); 406 407 if (PartEVT == ValueVT) 408 return Val; 409 410 if (PartEVT.isVector()) { 411 // If the element type of the source/dest vectors are the same, but the 412 // parts vector has more elements than the value vector, then we have a 413 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 414 // elements we want. 415 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 416 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 417 "Cannot narrow, it would be a lossy transformation"); 418 return DAG.getNode( 419 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 420 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 421 } 422 423 // Vector/Vector bitcast. 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 427 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 428 "Cannot handle this kind of promotion"); 429 // Promoted vector extract 430 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 431 432 } 433 434 // Trivial bitcast if the types are the same size and the destination 435 // vector type is legal. 436 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 437 TLI.isTypeLegal(ValueVT)) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 if (ValueVT.getVectorNumElements() != 1) { 441 // Certain ABIs require that vectors are passed as integers. For vectors 442 // are the same size, this is an obvious bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 446 // Bitcast Val back the original type and extract the corresponding 447 // vector we want. 448 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 449 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 450 ValueVT.getVectorElementType(), Elts); 451 Val = DAG.getBitcast(WiderVecType, Val); 452 return DAG.getNode( 453 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 454 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 455 } 456 457 diagnosePossiblyInvalidConstraint( 458 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 459 return DAG.getUNDEF(ValueVT); 460 } 461 462 // Handle cases such as i8 -> <1 x i1> 463 EVT ValueSVT = ValueVT.getVectorElementType(); 464 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 465 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 468 return DAG.getBuildVector(ValueVT, DL, Val); 469 } 470 471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V, bool IsABIRegCopy); 474 475 /// getCopyToParts - Create a series of nodes that contain the specified value 476 /// split into legal parts. If the parts contain more bits than Val, then, for 477 /// integers, ExtendKind can be used to specify how to generate the extra bits. 478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 479 SDValue *Parts, unsigned NumParts, MVT PartVT, 480 const Value *V, 481 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 482 bool IsABIRegCopy = false) { 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 IsABIRegCopy); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getIntPtrConstant(RoundBits, DL)); 567 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 568 569 if (DAG.getDataLayout().isBigEndian()) 570 // The odd parts were reversed by getCopyToParts - unreverse them. 571 std::reverse(Parts + RoundParts, Parts + NumParts); 572 573 NumParts = RoundParts; 574 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 575 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 576 } 577 578 // The number of parts is a power of 2. Repeatedly bisect the value using 579 // EXTRACT_ELEMENT. 580 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 581 EVT::getIntegerVT(*DAG.getContext(), 582 ValueVT.getSizeInBits()), 583 Val); 584 585 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 586 for (unsigned i = 0; i < NumParts; i += StepSize) { 587 unsigned ThisBits = StepSize * PartBits / 2; 588 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 589 SDValue &Part0 = Parts[i]; 590 SDValue &Part1 = Parts[i+StepSize/2]; 591 592 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 594 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 596 597 if (ThisBits == PartBits && ThisVT != PartVT) { 598 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 599 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 600 } 601 } 602 } 603 604 if (DAG.getDataLayout().isBigEndian()) 605 std::reverse(Parts, Parts + OrigNumParts); 606 } 607 608 609 /// getCopyToPartsVector - Create a series of nodes that contain the specified 610 /// value split into legal parts. 611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 612 SDValue Val, SDValue *Parts, unsigned NumParts, 613 MVT PartVT, const Value *V, 614 bool IsABIRegCopy) { 615 EVT ValueVT = Val.getValueType(); 616 assert(ValueVT.isVector() && "Not a vector"); 617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 618 619 if (NumParts == 1) { 620 EVT PartEVT = PartVT; 621 if (PartEVT == ValueVT) { 622 // Nothing to do. 623 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 624 // Bitconvert vector->vector case. 625 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 626 } else if (PartVT.isVector() && 627 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 628 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 634 Ops.push_back(DAG.getNode( 635 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 636 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 637 638 for (unsigned i = ValueVT.getVectorNumElements(), 639 e = PartVT.getVectorNumElements(); i != e; ++i) 640 Ops.push_back(DAG.getUNDEF(ElementVT)); 641 642 Val = DAG.getBuildVector(PartVT, DL, Ops); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 646 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 647 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 648 } else if (PartVT.isVector() && 649 PartEVT.getVectorElementType().bitsGE( 650 ValueVT.getVectorElementType()) && 651 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 652 653 // Promoted vector extract 654 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 655 } else { 656 if (ValueVT.getVectorNumElements() == 1) { 657 Val = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 659 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } else { 661 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 662 "lossy conversion of vector to scalar type"); 663 EVT IntermediateType = 664 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 665 Val = DAG.getBitcast(IntermediateType, Val); 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } 668 } 669 670 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 671 Parts[0] = Val; 672 return; 673 } 674 675 // Handle a multi-element vector. 676 EVT IntermediateVT; 677 MVT RegisterVT; 678 unsigned NumIntermediates; 679 unsigned NumRegs; 680 if (IsABIRegCopy) { 681 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 682 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 683 RegisterVT); 684 } else { 685 NumRegs = 686 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 687 NumIntermediates, RegisterVT); 688 } 689 unsigned NumElements = ValueVT.getVectorNumElements(); 690 691 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 692 NumParts = NumRegs; // Silence a compiler warning. 693 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 694 695 // Convert the vector to the appropiate type if necessary. 696 unsigned DestVectorNoElts = 697 NumIntermediates * 698 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 699 EVT BuiltVectorTy = EVT::getVectorVT( 700 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 701 if (Val.getValueType() != BuiltVectorTy) 702 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 703 704 // Split the vector into intermediate operands. 705 SmallVector<SDValue, 8> Ops(NumIntermediates); 706 for (unsigned i = 0; i != NumIntermediates; ++i) { 707 if (IntermediateVT.isVector()) 708 Ops[i] = 709 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 710 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 712 else 713 Ops[i] = DAG.getNode( 714 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 715 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 716 } 717 718 // Split the intermediate operands into legal parts. 719 if (NumParts == NumIntermediates) { 720 // If the register was not expanded, promote or copy the value, 721 // as appropriate. 722 for (unsigned i = 0; i != NumParts; ++i) 723 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 724 } else if (NumParts > 0) { 725 // If the intermediate type was expanded, split each the value into 726 // legal parts. 727 assert(NumIntermediates != 0 && "division by zero"); 728 assert(NumParts % NumIntermediates == 0 && 729 "Must expand into a divisible number of parts!"); 730 unsigned Factor = NumParts / NumIntermediates; 731 for (unsigned i = 0; i != NumIntermediates; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 733 } 734 } 735 736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 737 EVT valuevt, bool IsABIMangledValue) 738 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 739 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 740 741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 742 const DataLayout &DL, unsigned Reg, Type *Ty, 743 bool IsABIMangledValue) { 744 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 745 746 IsABIMangled = IsABIMangledValue; 747 748 for (EVT ValueVT : ValueVTs) { 749 unsigned NumRegs = IsABIMangledValue 750 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 751 : TLI.getNumRegisters(Context, ValueVT); 752 MVT RegisterVT = IsABIMangledValue 753 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 754 : TLI.getRegisterType(Context, ValueVT); 755 for (unsigned i = 0; i != NumRegs; ++i) 756 Regs.push_back(Reg + i); 757 RegVTs.push_back(RegisterVT); 758 RegCount.push_back(NumRegs); 759 Reg += NumRegs; 760 } 761 } 762 763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 764 FunctionLoweringInfo &FuncInfo, 765 const SDLoc &dl, SDValue &Chain, 766 SDValue *Flag, const Value *V) const { 767 // A Value with type {} or [0 x %t] needs no registers. 768 if (ValueVTs.empty()) 769 return SDValue(); 770 771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 772 773 // Assemble the legal parts into the final values. 774 SmallVector<SDValue, 4> Values(ValueVTs.size()); 775 SmallVector<SDValue, 8> Parts; 776 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 777 // Copy the legal parts from the registers. 778 EVT ValueVT = ValueVTs[Value]; 779 unsigned NumRegs = RegCount[Value]; 780 MVT RegisterVT = IsABIMangled 781 ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value]) 782 : RegVTs[Value]; 783 784 Parts.resize(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue P; 787 if (!Flag) { 788 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 789 } else { 790 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 791 *Flag = P.getValue(2); 792 } 793 794 Chain = P.getValue(1); 795 Parts[i] = P; 796 797 // If the source register was virtual and if we know something about it, 798 // add an assert node. 799 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 800 !RegisterVT.isInteger() || RegisterVT.isVector()) 801 continue; 802 803 const FunctionLoweringInfo::LiveOutInfo *LOI = 804 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 805 if (!LOI) 806 continue; 807 808 unsigned RegSize = RegisterVT.getSizeInBits(); 809 unsigned NumSignBits = LOI->NumSignBits; 810 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 811 812 if (NumZeroBits == RegSize) { 813 // The current value is a zero. 814 // Explicitly express that as it would be easier for 815 // optimizations to kick in. 816 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 817 continue; 818 } 819 820 // FIXME: We capture more information than the dag can represent. For 821 // now, just use the tightest assertzext/assertsext possible. 822 bool isSExt = true; 823 EVT FromVT(MVT::Other); 824 if (NumSignBits == RegSize) { 825 isSExt = true; // ASSERT SEXT 1 826 FromVT = MVT::i1; 827 } else if (NumZeroBits >= RegSize - 1) { 828 isSExt = false; // ASSERT ZEXT 1 829 FromVT = MVT::i1; 830 } else if (NumSignBits > RegSize - 8) { 831 isSExt = true; // ASSERT SEXT 8 832 FromVT = MVT::i8; 833 } else if (NumZeroBits >= RegSize - 8) { 834 isSExt = false; // ASSERT ZEXT 8 835 FromVT = MVT::i8; 836 } else if (NumSignBits > RegSize - 16) { 837 isSExt = true; // ASSERT SEXT 16 838 FromVT = MVT::i16; 839 } else if (NumZeroBits >= RegSize - 16) { 840 isSExt = false; // ASSERT ZEXT 16 841 FromVT = MVT::i16; 842 } else if (NumSignBits > RegSize - 32) { 843 isSExt = true; // ASSERT SEXT 32 844 FromVT = MVT::i32; 845 } else if (NumZeroBits >= RegSize - 32) { 846 isSExt = false; // ASSERT ZEXT 32 847 FromVT = MVT::i32; 848 } else { 849 continue; 850 } 851 // Add an assertion node. 852 assert(FromVT != MVT::Other); 853 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 854 RegisterVT, P, DAG.getValueType(FromVT)); 855 } 856 857 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 858 NumRegs, RegisterVT, ValueVT, V); 859 Part += NumRegs; 860 Parts.clear(); 861 } 862 863 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 864 } 865 866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 867 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 868 const Value *V, 869 ISD::NodeType PreferredExtendType) const { 870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 871 ISD::NodeType ExtendKind = PreferredExtendType; 872 873 // Get the list of the values's legal parts. 874 unsigned NumRegs = Regs.size(); 875 SmallVector<SDValue, 8> Parts(NumRegs); 876 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 877 unsigned NumParts = RegCount[Value]; 878 879 MVT RegisterVT = IsABIMangled 880 ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value]) 881 : RegVTs[Value]; 882 883 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 884 ExtendKind = ISD::ZERO_EXTEND; 885 886 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 887 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 888 Part += NumParts; 889 } 890 891 // Copy the parts into the registers. 892 SmallVector<SDValue, 8> Chains(NumRegs); 893 for (unsigned i = 0; i != NumRegs; ++i) { 894 SDValue Part; 895 if (!Flag) { 896 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 897 } else { 898 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 899 *Flag = Part.getValue(1); 900 } 901 902 Chains[i] = Part.getValue(0); 903 } 904 905 if (NumRegs == 1 || Flag) 906 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 907 // flagged to it. That is the CopyToReg nodes and the user are considered 908 // a single scheduling unit. If we create a TokenFactor and return it as 909 // chain, then the TokenFactor is both a predecessor (operand) of the 910 // user as well as a successor (the TF operands are flagged to the user). 911 // c1, f1 = CopyToReg 912 // c2, f2 = CopyToReg 913 // c3 = TokenFactor c1, c2 914 // ... 915 // = op c3, ..., f2 916 Chain = Chains[NumRegs-1]; 917 else 918 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 919 } 920 921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 922 unsigned MatchingIdx, const SDLoc &dl, 923 SelectionDAG &DAG, 924 std::vector<SDValue> &Ops) const { 925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 926 927 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 928 if (HasMatching) 929 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 930 else if (!Regs.empty() && 931 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 932 // Put the register class of the virtual registers in the flag word. That 933 // way, later passes can recompute register class constraints for inline 934 // assembly as well as normal instructions. 935 // Don't do this for tied operands that can use the regclass information 936 // from the def. 937 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 938 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 939 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 940 } 941 942 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 943 Ops.push_back(Res); 944 945 if (Code == InlineAsm::Kind_Clobber) { 946 // Clobbers should always have a 1:1 mapping with registers, and may 947 // reference registers that have illegal (e.g. vector) types. Hence, we 948 // shouldn't try to apply any sort of splitting logic to them. 949 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 950 "No 1:1 mapping from clobbers to regs?"); 951 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 952 (void)SP; 953 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 954 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 955 assert( 956 (Regs[I] != SP || 957 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 958 "If we clobbered the stack pointer, MFI should know about it."); 959 } 960 return; 961 } 962 963 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 964 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 965 MVT RegisterVT = RegVTs[Value]; 966 for (unsigned i = 0; i != NumRegs; ++i) { 967 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 968 unsigned TheReg = Regs[Reg++]; 969 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 970 } 971 } 972 } 973 974 SmallVector<std::pair<unsigned, unsigned>, 4> 975 RegsForValue::getRegsAndSizes() const { 976 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 977 unsigned I = 0; 978 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 979 unsigned RegCount = std::get<0>(CountAndVT); 980 MVT RegisterVT = std::get<1>(CountAndVT); 981 unsigned RegisterSize = RegisterVT.getSizeInBits(); 982 for (unsigned E = I + RegCount; I != E; ++I) 983 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 984 } 985 return OutVec; 986 } 987 988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 989 const TargetLibraryInfo *li) { 990 AA = aa; 991 GFI = gfi; 992 LibInfo = li; 993 DL = &DAG.getDataLayout(); 994 Context = DAG.getContext(); 995 LPadToCallSiteMap.clear(); 996 } 997 998 void SelectionDAGBuilder::clear() { 999 NodeMap.clear(); 1000 UnusedArgNodeMap.clear(); 1001 PendingLoads.clear(); 1002 PendingExports.clear(); 1003 CurInst = nullptr; 1004 HasTailCall = false; 1005 SDNodeOrder = LowestSDNodeOrder; 1006 StatepointLowering.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1010 DanglingDebugInfoMap.clear(); 1011 } 1012 1013 SDValue SelectionDAGBuilder::getRoot() { 1014 if (PendingLoads.empty()) 1015 return DAG.getRoot(); 1016 1017 if (PendingLoads.size() == 1) { 1018 SDValue Root = PendingLoads[0]; 1019 DAG.setRoot(Root); 1020 PendingLoads.clear(); 1021 return Root; 1022 } 1023 1024 // Otherwise, we have to make a token factor node. 1025 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1026 PendingLoads); 1027 PendingLoads.clear(); 1028 DAG.setRoot(Root); 1029 return Root; 1030 } 1031 1032 SDValue SelectionDAGBuilder::getControlRoot() { 1033 SDValue Root = DAG.getRoot(); 1034 1035 if (PendingExports.empty()) 1036 return Root; 1037 1038 // Turn all of the CopyToReg chains into one factored node. 1039 if (Root.getOpcode() != ISD::EntryToken) { 1040 unsigned i = 0, e = PendingExports.size(); 1041 for (; i != e; ++i) { 1042 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1043 if (PendingExports[i].getNode()->getOperand(0) == Root) 1044 break; // Don't add the root if we already indirectly depend on it. 1045 } 1046 1047 if (i == e) 1048 PendingExports.push_back(Root); 1049 } 1050 1051 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1052 PendingExports); 1053 PendingExports.clear(); 1054 DAG.setRoot(Root); 1055 return Root; 1056 } 1057 1058 void SelectionDAGBuilder::visit(const Instruction &I) { 1059 // Set up outgoing PHI node register values before emitting the terminator. 1060 if (isa<TerminatorInst>(&I)) { 1061 HandlePHINodesInSuccessorBlocks(I.getParent()); 1062 } 1063 1064 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1065 if (!isa<DbgInfoIntrinsic>(I)) 1066 ++SDNodeOrder; 1067 1068 CurInst = &I; 1069 1070 visit(I.getOpcode(), I); 1071 1072 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1073 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1074 // maps to this instruction. 1075 // TODO: We could handle all flags (nsw, etc) here. 1076 // TODO: If an IR instruction maps to >1 node, only the final node will have 1077 // flags set. 1078 if (SDNode *Node = getNodeForIRValue(&I)) { 1079 SDNodeFlags IncomingFlags; 1080 IncomingFlags.copyFMF(*FPMO); 1081 if (!Node->getFlags().isDefined()) 1082 Node->setFlags(IncomingFlags); 1083 else 1084 Node->intersectFlagsWith(IncomingFlags); 1085 } 1086 } 1087 1088 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1089 !isStatepoint(&I)) // statepoints handle their exports internally 1090 CopyToExportRegsIfNeeded(&I); 1091 1092 CurInst = nullptr; 1093 } 1094 1095 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1096 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1097 } 1098 1099 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1100 // Note: this doesn't use InstVisitor, because it has to work with 1101 // ConstantExpr's in addition to instructions. 1102 switch (Opcode) { 1103 default: llvm_unreachable("Unknown instruction type encountered!"); 1104 // Build the switch statement using the Instruction.def file. 1105 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1106 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1107 #include "llvm/IR/Instruction.def" 1108 } 1109 } 1110 1111 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1112 const DIExpression *Expr) { 1113 for (auto &DDIMI : DanglingDebugInfoMap) 1114 for (auto &DDI : DDIMI.second) 1115 if (DDI.getDI()) { 1116 const DbgValueInst *DI = DDI.getDI(); 1117 DIVariable *DanglingVariable = DI->getVariable(); 1118 DIExpression *DanglingExpr = DI->getExpression(); 1119 if (DanglingVariable == Variable && 1120 Expr->fragmentsOverlap(DanglingExpr)) { 1121 LLVM_DEBUG(dbgs() 1122 << "Dropping dangling debug info for " << *DI << "\n"); 1123 DDI = DanglingDebugInfo(); 1124 } 1125 } 1126 } 1127 1128 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1129 // generate the debug data structures now that we've seen its definition. 1130 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1131 SDValue Val) { 1132 DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V]; 1133 for (auto &DDI : DDIV) { 1134 if (!DDI.getDI()) 1135 continue; 1136 const DbgValueInst *DI = DDI.getDI(); 1137 DebugLoc dl = DDI.getdl(); 1138 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1139 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1140 DILocalVariable *Variable = DI->getVariable(); 1141 DIExpression *Expr = DI->getExpression(); 1142 assert(Variable->isValidLocationForIntrinsic(dl) && 1143 "Expected inlined-at fields to agree"); 1144 SDDbgValue *SDV; 1145 if (Val.getNode()) { 1146 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1147 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1148 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1149 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1150 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1151 // inserted after the definition of Val when emitting the instructions 1152 // after ISel. An alternative could be to teach 1153 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1154 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1155 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1156 << ValSDNodeOrder << "\n"); 1157 SDV = getDbgValue(Val, Variable, Expr, dl, 1158 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1159 DAG.AddDbgValue(SDV, Val.getNode(), false); 1160 } else 1161 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1162 << "in EmitFuncArgumentDbgValue\n"); 1163 } else 1164 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1165 } 1166 DanglingDebugInfoMap[V].clear(); 1167 } 1168 1169 /// getCopyFromRegs - If there was virtual register allocated for the value V 1170 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1171 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1172 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1173 SDValue Result; 1174 1175 if (It != FuncInfo.ValueMap.end()) { 1176 unsigned InReg = It->second; 1177 1178 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1179 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1180 SDValue Chain = DAG.getEntryNode(); 1181 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1182 V); 1183 resolveDanglingDebugInfo(V, Result); 1184 } 1185 1186 return Result; 1187 } 1188 1189 /// getValue - Return an SDValue for the given Value. 1190 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1191 // If we already have an SDValue for this value, use it. It's important 1192 // to do this first, so that we don't create a CopyFromReg if we already 1193 // have a regular SDValue. 1194 SDValue &N = NodeMap[V]; 1195 if (N.getNode()) return N; 1196 1197 // If there's a virtual register allocated and initialized for this 1198 // value, use it. 1199 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1200 return copyFromReg; 1201 1202 // Otherwise create a new SDValue and remember it. 1203 SDValue Val = getValueImpl(V); 1204 NodeMap[V] = Val; 1205 resolveDanglingDebugInfo(V, Val); 1206 return Val; 1207 } 1208 1209 // Return true if SDValue exists for the given Value 1210 bool SelectionDAGBuilder::findValue(const Value *V) const { 1211 return (NodeMap.find(V) != NodeMap.end()) || 1212 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1213 } 1214 1215 /// getNonRegisterValue - Return an SDValue for the given Value, but 1216 /// don't look in FuncInfo.ValueMap for a virtual register. 1217 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1218 // If we already have an SDValue for this value, use it. 1219 SDValue &N = NodeMap[V]; 1220 if (N.getNode()) { 1221 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1222 // Remove the debug location from the node as the node is about to be used 1223 // in a location which may differ from the original debug location. This 1224 // is relevant to Constant and ConstantFP nodes because they can appear 1225 // as constant expressions inside PHI nodes. 1226 N->setDebugLoc(DebugLoc()); 1227 } 1228 return N; 1229 } 1230 1231 // Otherwise create a new SDValue and remember it. 1232 SDValue Val = getValueImpl(V); 1233 NodeMap[V] = Val; 1234 resolveDanglingDebugInfo(V, Val); 1235 return Val; 1236 } 1237 1238 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1239 /// Create an SDValue for the given value. 1240 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1242 1243 if (const Constant *C = dyn_cast<Constant>(V)) { 1244 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1245 1246 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1247 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1248 1249 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1250 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1251 1252 if (isa<ConstantPointerNull>(C)) { 1253 unsigned AS = V->getType()->getPointerAddressSpace(); 1254 return DAG.getConstant(0, getCurSDLoc(), 1255 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1256 } 1257 1258 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1259 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1260 1261 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1262 return DAG.getUNDEF(VT); 1263 1264 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1265 visit(CE->getOpcode(), *CE); 1266 SDValue N1 = NodeMap[V]; 1267 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1268 return N1; 1269 } 1270 1271 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1272 SmallVector<SDValue, 4> Constants; 1273 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1274 OI != OE; ++OI) { 1275 SDNode *Val = getValue(*OI).getNode(); 1276 // If the operand is an empty aggregate, there are no values. 1277 if (!Val) continue; 1278 // Add each leaf value from the operand to the Constants list 1279 // to form a flattened list of all the values. 1280 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1281 Constants.push_back(SDValue(Val, i)); 1282 } 1283 1284 return DAG.getMergeValues(Constants, getCurSDLoc()); 1285 } 1286 1287 if (const ConstantDataSequential *CDS = 1288 dyn_cast<ConstantDataSequential>(C)) { 1289 SmallVector<SDValue, 4> Ops; 1290 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1291 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1292 // Add each leaf value from the operand to the Constants list 1293 // to form a flattened list of all the values. 1294 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1295 Ops.push_back(SDValue(Val, i)); 1296 } 1297 1298 if (isa<ArrayType>(CDS->getType())) 1299 return DAG.getMergeValues(Ops, getCurSDLoc()); 1300 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1301 } 1302 1303 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1304 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1305 "Unknown struct or array constant!"); 1306 1307 SmallVector<EVT, 4> ValueVTs; 1308 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1309 unsigned NumElts = ValueVTs.size(); 1310 if (NumElts == 0) 1311 return SDValue(); // empty struct 1312 SmallVector<SDValue, 4> Constants(NumElts); 1313 for (unsigned i = 0; i != NumElts; ++i) { 1314 EVT EltVT = ValueVTs[i]; 1315 if (isa<UndefValue>(C)) 1316 Constants[i] = DAG.getUNDEF(EltVT); 1317 else if (EltVT.isFloatingPoint()) 1318 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1319 else 1320 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1321 } 1322 1323 return DAG.getMergeValues(Constants, getCurSDLoc()); 1324 } 1325 1326 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1327 return DAG.getBlockAddress(BA, VT); 1328 1329 VectorType *VecTy = cast<VectorType>(V->getType()); 1330 unsigned NumElements = VecTy->getNumElements(); 1331 1332 // Now that we know the number and type of the elements, get that number of 1333 // elements into the Ops array based on what kind of constant it is. 1334 SmallVector<SDValue, 16> Ops; 1335 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1336 for (unsigned i = 0; i != NumElements; ++i) 1337 Ops.push_back(getValue(CV->getOperand(i))); 1338 } else { 1339 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1340 EVT EltVT = 1341 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1342 1343 SDValue Op; 1344 if (EltVT.isFloatingPoint()) 1345 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1346 else 1347 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1348 Ops.assign(NumElements, Op); 1349 } 1350 1351 // Create a BUILD_VECTOR node. 1352 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1353 } 1354 1355 // If this is a static alloca, generate it as the frameindex instead of 1356 // computation. 1357 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1358 DenseMap<const AllocaInst*, int>::iterator SI = 1359 FuncInfo.StaticAllocaMap.find(AI); 1360 if (SI != FuncInfo.StaticAllocaMap.end()) 1361 return DAG.getFrameIndex(SI->second, 1362 TLI.getFrameIndexTy(DAG.getDataLayout())); 1363 } 1364 1365 // If this is an instruction which fast-isel has deferred, select it now. 1366 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1367 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1368 1369 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1370 Inst->getType(), isABIRegCopy(V)); 1371 SDValue Chain = DAG.getEntryNode(); 1372 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1373 } 1374 1375 llvm_unreachable("Can't get register for value!"); 1376 } 1377 1378 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1379 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1380 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1381 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1382 bool IsSEH = isAsynchronousEHPersonality(Pers); 1383 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1384 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1385 if (!IsSEH) 1386 CatchPadMBB->setIsEHScopeEntry(); 1387 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1388 if (IsMSVCCXX || IsCoreCLR) 1389 CatchPadMBB->setIsEHFuncletEntry(); 1390 // Wasm does not need catchpads anymore 1391 if (!IsWasmCXX) 1392 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1393 getControlRoot())); 1394 } 1395 1396 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1397 // Update machine-CFG edge. 1398 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1399 FuncInfo.MBB->addSuccessor(TargetMBB); 1400 1401 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1402 bool IsSEH = isAsynchronousEHPersonality(Pers); 1403 if (IsSEH) { 1404 // If this is not a fall-through branch or optimizations are switched off, 1405 // emit the branch. 1406 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1407 TM.getOptLevel() == CodeGenOpt::None) 1408 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1409 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1410 return; 1411 } 1412 1413 // Figure out the funclet membership for the catchret's successor. 1414 // This will be used by the FuncletLayout pass to determine how to order the 1415 // BB's. 1416 // A 'catchret' returns to the outer scope's color. 1417 Value *ParentPad = I.getCatchSwitchParentPad(); 1418 const BasicBlock *SuccessorColor; 1419 if (isa<ConstantTokenNone>(ParentPad)) 1420 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1421 else 1422 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1423 assert(SuccessorColor && "No parent funclet for catchret!"); 1424 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1425 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1426 1427 // Create the terminator node. 1428 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1429 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1430 DAG.getBasicBlock(SuccessorColorMBB)); 1431 DAG.setRoot(Ret); 1432 } 1433 1434 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1435 // Don't emit any special code for the cleanuppad instruction. It just marks 1436 // the start of an EH scope/funclet. 1437 FuncInfo.MBB->setIsEHScopeEntry(); 1438 FuncInfo.MBB->setIsEHFuncletEntry(); 1439 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1440 } 1441 1442 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1443 /// many places it could ultimately go. In the IR, we have a single unwind 1444 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1445 /// This function skips over imaginary basic blocks that hold catchswitch 1446 /// instructions, and finds all the "real" machine 1447 /// basic block destinations. As those destinations may not be successors of 1448 /// EHPadBB, here we also calculate the edge probability to those destinations. 1449 /// The passed-in Prob is the edge probability to EHPadBB. 1450 static void findUnwindDestinations( 1451 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1452 BranchProbability Prob, 1453 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1454 &UnwindDests) { 1455 EHPersonality Personality = 1456 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1457 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1458 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1459 bool IsSEH = isAsynchronousEHPersonality(Personality); 1460 1461 while (EHPadBB) { 1462 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1463 BasicBlock *NewEHPadBB = nullptr; 1464 if (isa<LandingPadInst>(Pad)) { 1465 // Stop on landingpads. They are not funclets. 1466 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1467 break; 1468 } else if (isa<CleanupPadInst>(Pad)) { 1469 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1470 // personalities. 1471 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1472 UnwindDests.back().first->setIsEHScopeEntry(); 1473 UnwindDests.back().first->setIsEHFuncletEntry(); 1474 break; 1475 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1476 // Add the catchpad handlers to the possible destinations. 1477 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1478 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1479 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1480 if (IsMSVCCXX || IsCoreCLR) 1481 UnwindDests.back().first->setIsEHFuncletEntry(); 1482 if (!IsSEH) 1483 UnwindDests.back().first->setIsEHScopeEntry(); 1484 } 1485 NewEHPadBB = CatchSwitch->getUnwindDest(); 1486 } else { 1487 continue; 1488 } 1489 1490 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1491 if (BPI && NewEHPadBB) 1492 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1493 EHPadBB = NewEHPadBB; 1494 } 1495 } 1496 1497 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1498 // Update successor info. 1499 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1500 auto UnwindDest = I.getUnwindDest(); 1501 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1502 BranchProbability UnwindDestProb = 1503 (BPI && UnwindDest) 1504 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1505 : BranchProbability::getZero(); 1506 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1507 for (auto &UnwindDest : UnwindDests) { 1508 UnwindDest.first->setIsEHPad(); 1509 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1510 } 1511 FuncInfo.MBB->normalizeSuccProbs(); 1512 1513 // Create the terminator node. 1514 SDValue Ret = 1515 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1516 DAG.setRoot(Ret); 1517 } 1518 1519 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1520 report_fatal_error("visitCatchSwitch not yet implemented!"); 1521 } 1522 1523 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1525 auto &DL = DAG.getDataLayout(); 1526 SDValue Chain = getControlRoot(); 1527 SmallVector<ISD::OutputArg, 8> Outs; 1528 SmallVector<SDValue, 8> OutVals; 1529 1530 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1531 // lower 1532 // 1533 // %val = call <ty> @llvm.experimental.deoptimize() 1534 // ret <ty> %val 1535 // 1536 // differently. 1537 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1538 LowerDeoptimizingReturn(); 1539 return; 1540 } 1541 1542 if (!FuncInfo.CanLowerReturn) { 1543 unsigned DemoteReg = FuncInfo.DemoteRegister; 1544 const Function *F = I.getParent()->getParent(); 1545 1546 // Emit a store of the return value through the virtual register. 1547 // Leave Outs empty so that LowerReturn won't try to load return 1548 // registers the usual way. 1549 SmallVector<EVT, 1> PtrValueVTs; 1550 ComputeValueVTs(TLI, DL, 1551 F->getReturnType()->getPointerTo( 1552 DAG.getDataLayout().getAllocaAddrSpace()), 1553 PtrValueVTs); 1554 1555 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1556 DemoteReg, PtrValueVTs[0]); 1557 SDValue RetOp = getValue(I.getOperand(0)); 1558 1559 SmallVector<EVT, 4> ValueVTs; 1560 SmallVector<uint64_t, 4> Offsets; 1561 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1562 unsigned NumValues = ValueVTs.size(); 1563 1564 SmallVector<SDValue, 4> Chains(NumValues); 1565 for (unsigned i = 0; i != NumValues; ++i) { 1566 // An aggregate return value cannot wrap around the address space, so 1567 // offsets to its parts don't wrap either. 1568 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1569 Chains[i] = DAG.getStore( 1570 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1571 // FIXME: better loc info would be nice. 1572 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1573 } 1574 1575 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1576 MVT::Other, Chains); 1577 } else if (I.getNumOperands() != 0) { 1578 SmallVector<EVT, 4> ValueVTs; 1579 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1580 unsigned NumValues = ValueVTs.size(); 1581 if (NumValues) { 1582 SDValue RetOp = getValue(I.getOperand(0)); 1583 1584 const Function *F = I.getParent()->getParent(); 1585 1586 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1587 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1588 Attribute::SExt)) 1589 ExtendKind = ISD::SIGN_EXTEND; 1590 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1591 Attribute::ZExt)) 1592 ExtendKind = ISD::ZERO_EXTEND; 1593 1594 LLVMContext &Context = F->getContext(); 1595 bool RetInReg = F->getAttributes().hasAttribute( 1596 AttributeList::ReturnIndex, Attribute::InReg); 1597 1598 for (unsigned j = 0; j != NumValues; ++j) { 1599 EVT VT = ValueVTs[j]; 1600 1601 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1602 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1603 1604 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1605 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1606 SmallVector<SDValue, 4> Parts(NumParts); 1607 getCopyToParts(DAG, getCurSDLoc(), 1608 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1609 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1610 1611 // 'inreg' on function refers to return value 1612 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1613 if (RetInReg) 1614 Flags.setInReg(); 1615 1616 // Propagate extension type if any 1617 if (ExtendKind == ISD::SIGN_EXTEND) 1618 Flags.setSExt(); 1619 else if (ExtendKind == ISD::ZERO_EXTEND) 1620 Flags.setZExt(); 1621 1622 for (unsigned i = 0; i < NumParts; ++i) { 1623 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1624 VT, /*isfixed=*/true, 0, 0)); 1625 OutVals.push_back(Parts[i]); 1626 } 1627 } 1628 } 1629 } 1630 1631 // Push in swifterror virtual register as the last element of Outs. This makes 1632 // sure swifterror virtual register will be returned in the swifterror 1633 // physical register. 1634 const Function *F = I.getParent()->getParent(); 1635 if (TLI.supportSwiftError() && 1636 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1637 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1638 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1639 Flags.setSwiftError(); 1640 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1641 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1642 true /*isfixed*/, 1 /*origidx*/, 1643 0 /*partOffs*/)); 1644 // Create SDNode for the swifterror virtual register. 1645 OutVals.push_back( 1646 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1647 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1648 EVT(TLI.getPointerTy(DL)))); 1649 } 1650 1651 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1652 CallingConv::ID CallConv = 1653 DAG.getMachineFunction().getFunction().getCallingConv(); 1654 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1655 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1656 1657 // Verify that the target's LowerReturn behaved as expected. 1658 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1659 "LowerReturn didn't return a valid chain!"); 1660 1661 // Update the DAG with the new chain value resulting from return lowering. 1662 DAG.setRoot(Chain); 1663 } 1664 1665 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1666 /// created for it, emit nodes to copy the value into the virtual 1667 /// registers. 1668 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1669 // Skip empty types 1670 if (V->getType()->isEmptyTy()) 1671 return; 1672 1673 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1674 if (VMI != FuncInfo.ValueMap.end()) { 1675 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1676 CopyValueToVirtualRegister(V, VMI->second); 1677 } 1678 } 1679 1680 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1681 /// the current basic block, add it to ValueMap now so that we'll get a 1682 /// CopyTo/FromReg. 1683 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1684 // No need to export constants. 1685 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1686 1687 // Already exported? 1688 if (FuncInfo.isExportedInst(V)) return; 1689 1690 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1691 CopyValueToVirtualRegister(V, Reg); 1692 } 1693 1694 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1695 const BasicBlock *FromBB) { 1696 // The operands of the setcc have to be in this block. We don't know 1697 // how to export them from some other block. 1698 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1699 // Can export from current BB. 1700 if (VI->getParent() == FromBB) 1701 return true; 1702 1703 // Is already exported, noop. 1704 return FuncInfo.isExportedInst(V); 1705 } 1706 1707 // If this is an argument, we can export it if the BB is the entry block or 1708 // if it is already exported. 1709 if (isa<Argument>(V)) { 1710 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1711 return true; 1712 1713 // Otherwise, can only export this if it is already exported. 1714 return FuncInfo.isExportedInst(V); 1715 } 1716 1717 // Otherwise, constants can always be exported. 1718 return true; 1719 } 1720 1721 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1722 BranchProbability 1723 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1724 const MachineBasicBlock *Dst) const { 1725 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1726 const BasicBlock *SrcBB = Src->getBasicBlock(); 1727 const BasicBlock *DstBB = Dst->getBasicBlock(); 1728 if (!BPI) { 1729 // If BPI is not available, set the default probability as 1 / N, where N is 1730 // the number of successors. 1731 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1732 return BranchProbability(1, SuccSize); 1733 } 1734 return BPI->getEdgeProbability(SrcBB, DstBB); 1735 } 1736 1737 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1738 MachineBasicBlock *Dst, 1739 BranchProbability Prob) { 1740 if (!FuncInfo.BPI) 1741 Src->addSuccessorWithoutProb(Dst); 1742 else { 1743 if (Prob.isUnknown()) 1744 Prob = getEdgeProbability(Src, Dst); 1745 Src->addSuccessor(Dst, Prob); 1746 } 1747 } 1748 1749 static bool InBlock(const Value *V, const BasicBlock *BB) { 1750 if (const Instruction *I = dyn_cast<Instruction>(V)) 1751 return I->getParent() == BB; 1752 return true; 1753 } 1754 1755 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1756 /// This function emits a branch and is used at the leaves of an OR or an 1757 /// AND operator tree. 1758 void 1759 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1760 MachineBasicBlock *TBB, 1761 MachineBasicBlock *FBB, 1762 MachineBasicBlock *CurBB, 1763 MachineBasicBlock *SwitchBB, 1764 BranchProbability TProb, 1765 BranchProbability FProb, 1766 bool InvertCond) { 1767 const BasicBlock *BB = CurBB->getBasicBlock(); 1768 1769 // If the leaf of the tree is a comparison, merge the condition into 1770 // the caseblock. 1771 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1772 // The operands of the cmp have to be in this block. We don't know 1773 // how to export them from some other block. If this is the first block 1774 // of the sequence, no exporting is needed. 1775 if (CurBB == SwitchBB || 1776 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1777 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1778 ISD::CondCode Condition; 1779 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1780 ICmpInst::Predicate Pred = 1781 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1782 Condition = getICmpCondCode(Pred); 1783 } else { 1784 const FCmpInst *FC = cast<FCmpInst>(Cond); 1785 FCmpInst::Predicate Pred = 1786 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1787 Condition = getFCmpCondCode(Pred); 1788 if (TM.Options.NoNaNsFPMath) 1789 Condition = getFCmpCodeWithoutNaN(Condition); 1790 } 1791 1792 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1793 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1794 SwitchCases.push_back(CB); 1795 return; 1796 } 1797 } 1798 1799 // Create a CaseBlock record representing this branch. 1800 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1801 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1802 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1803 SwitchCases.push_back(CB); 1804 } 1805 1806 /// FindMergedConditions - If Cond is an expression like 1807 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1808 MachineBasicBlock *TBB, 1809 MachineBasicBlock *FBB, 1810 MachineBasicBlock *CurBB, 1811 MachineBasicBlock *SwitchBB, 1812 Instruction::BinaryOps Opc, 1813 BranchProbability TProb, 1814 BranchProbability FProb, 1815 bool InvertCond) { 1816 // Skip over not part of the tree and remember to invert op and operands at 1817 // next level. 1818 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1819 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1820 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1821 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1822 !InvertCond); 1823 return; 1824 } 1825 } 1826 1827 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1828 // Compute the effective opcode for Cond, taking into account whether it needs 1829 // to be inverted, e.g. 1830 // and (not (or A, B)), C 1831 // gets lowered as 1832 // and (and (not A, not B), C) 1833 unsigned BOpc = 0; 1834 if (BOp) { 1835 BOpc = BOp->getOpcode(); 1836 if (InvertCond) { 1837 if (BOpc == Instruction::And) 1838 BOpc = Instruction::Or; 1839 else if (BOpc == Instruction::Or) 1840 BOpc = Instruction::And; 1841 } 1842 } 1843 1844 // If this node is not part of the or/and tree, emit it as a branch. 1845 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1846 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1847 BOp->getParent() != CurBB->getBasicBlock() || 1848 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1849 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1850 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1851 TProb, FProb, InvertCond); 1852 return; 1853 } 1854 1855 // Create TmpBB after CurBB. 1856 MachineFunction::iterator BBI(CurBB); 1857 MachineFunction &MF = DAG.getMachineFunction(); 1858 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1859 CurBB->getParent()->insert(++BBI, TmpBB); 1860 1861 if (Opc == Instruction::Or) { 1862 // Codegen X | Y as: 1863 // BB1: 1864 // jmp_if_X TBB 1865 // jmp TmpBB 1866 // TmpBB: 1867 // jmp_if_Y TBB 1868 // jmp FBB 1869 // 1870 1871 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1872 // The requirement is that 1873 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1874 // = TrueProb for original BB. 1875 // Assuming the original probabilities are A and B, one choice is to set 1876 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1877 // A/(1+B) and 2B/(1+B). This choice assumes that 1878 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1879 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1880 // TmpBB, but the math is more complicated. 1881 1882 auto NewTrueProb = TProb / 2; 1883 auto NewFalseProb = TProb / 2 + FProb; 1884 // Emit the LHS condition. 1885 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1886 NewTrueProb, NewFalseProb, InvertCond); 1887 1888 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1889 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1890 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1891 // Emit the RHS condition into TmpBB. 1892 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1893 Probs[0], Probs[1], InvertCond); 1894 } else { 1895 assert(Opc == Instruction::And && "Unknown merge op!"); 1896 // Codegen X & Y as: 1897 // BB1: 1898 // jmp_if_X TmpBB 1899 // jmp FBB 1900 // TmpBB: 1901 // jmp_if_Y TBB 1902 // jmp FBB 1903 // 1904 // This requires creation of TmpBB after CurBB. 1905 1906 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1907 // The requirement is that 1908 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1909 // = FalseProb for original BB. 1910 // Assuming the original probabilities are A and B, one choice is to set 1911 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1912 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1913 // TrueProb for BB1 * FalseProb for TmpBB. 1914 1915 auto NewTrueProb = TProb + FProb / 2; 1916 auto NewFalseProb = FProb / 2; 1917 // Emit the LHS condition. 1918 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1919 NewTrueProb, NewFalseProb, InvertCond); 1920 1921 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1922 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1923 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1924 // Emit the RHS condition into TmpBB. 1925 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1926 Probs[0], Probs[1], InvertCond); 1927 } 1928 } 1929 1930 /// If the set of cases should be emitted as a series of branches, return true. 1931 /// If we should emit this as a bunch of and/or'd together conditions, return 1932 /// false. 1933 bool 1934 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1935 if (Cases.size() != 2) return true; 1936 1937 // If this is two comparisons of the same values or'd or and'd together, they 1938 // will get folded into a single comparison, so don't emit two blocks. 1939 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1940 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1941 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1942 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1943 return false; 1944 } 1945 1946 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1947 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1948 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1949 Cases[0].CC == Cases[1].CC && 1950 isa<Constant>(Cases[0].CmpRHS) && 1951 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1952 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1953 return false; 1954 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1955 return false; 1956 } 1957 1958 return true; 1959 } 1960 1961 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1962 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1963 1964 // Update machine-CFG edges. 1965 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1966 1967 if (I.isUnconditional()) { 1968 // Update machine-CFG edges. 1969 BrMBB->addSuccessor(Succ0MBB); 1970 1971 // If this is not a fall-through branch or optimizations are switched off, 1972 // emit the branch. 1973 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1974 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1975 MVT::Other, getControlRoot(), 1976 DAG.getBasicBlock(Succ0MBB))); 1977 1978 return; 1979 } 1980 1981 // If this condition is one of the special cases we handle, do special stuff 1982 // now. 1983 const Value *CondVal = I.getCondition(); 1984 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1985 1986 // If this is a series of conditions that are or'd or and'd together, emit 1987 // this as a sequence of branches instead of setcc's with and/or operations. 1988 // As long as jumps are not expensive, this should improve performance. 1989 // For example, instead of something like: 1990 // cmp A, B 1991 // C = seteq 1992 // cmp D, E 1993 // F = setle 1994 // or C, F 1995 // jnz foo 1996 // Emit: 1997 // cmp A, B 1998 // je foo 1999 // cmp D, E 2000 // jle foo 2001 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2002 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2003 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2004 !I.getMetadata(LLVMContext::MD_unpredictable) && 2005 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2006 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2007 Opcode, 2008 getEdgeProbability(BrMBB, Succ0MBB), 2009 getEdgeProbability(BrMBB, Succ1MBB), 2010 /*InvertCond=*/false); 2011 // If the compares in later blocks need to use values not currently 2012 // exported from this block, export them now. This block should always 2013 // be the first entry. 2014 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2015 2016 // Allow some cases to be rejected. 2017 if (ShouldEmitAsBranches(SwitchCases)) { 2018 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2019 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2020 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2021 } 2022 2023 // Emit the branch for this block. 2024 visitSwitchCase(SwitchCases[0], BrMBB); 2025 SwitchCases.erase(SwitchCases.begin()); 2026 return; 2027 } 2028 2029 // Okay, we decided not to do this, remove any inserted MBB's and clear 2030 // SwitchCases. 2031 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2032 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2033 2034 SwitchCases.clear(); 2035 } 2036 } 2037 2038 // Create a CaseBlock record representing this branch. 2039 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2040 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2041 2042 // Use visitSwitchCase to actually insert the fast branch sequence for this 2043 // cond branch. 2044 visitSwitchCase(CB, BrMBB); 2045 } 2046 2047 /// visitSwitchCase - Emits the necessary code to represent a single node in 2048 /// the binary search tree resulting from lowering a switch instruction. 2049 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2050 MachineBasicBlock *SwitchBB) { 2051 SDValue Cond; 2052 SDValue CondLHS = getValue(CB.CmpLHS); 2053 SDLoc dl = CB.DL; 2054 2055 // Build the setcc now. 2056 if (!CB.CmpMHS) { 2057 // Fold "(X == true)" to X and "(X == false)" to !X to 2058 // handle common cases produced by branch lowering. 2059 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2060 CB.CC == ISD::SETEQ) 2061 Cond = CondLHS; 2062 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2063 CB.CC == ISD::SETEQ) { 2064 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2065 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2066 } else 2067 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2068 } else { 2069 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2070 2071 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2072 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2073 2074 SDValue CmpOp = getValue(CB.CmpMHS); 2075 EVT VT = CmpOp.getValueType(); 2076 2077 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2078 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2079 ISD::SETLE); 2080 } else { 2081 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2082 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2083 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2084 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2085 } 2086 } 2087 2088 // Update successor info 2089 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2090 // TrueBB and FalseBB are always different unless the incoming IR is 2091 // degenerate. This only happens when running llc on weird IR. 2092 if (CB.TrueBB != CB.FalseBB) 2093 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2094 SwitchBB->normalizeSuccProbs(); 2095 2096 // If the lhs block is the next block, invert the condition so that we can 2097 // fall through to the lhs instead of the rhs block. 2098 if (CB.TrueBB == NextBlock(SwitchBB)) { 2099 std::swap(CB.TrueBB, CB.FalseBB); 2100 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2101 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2102 } 2103 2104 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2105 MVT::Other, getControlRoot(), Cond, 2106 DAG.getBasicBlock(CB.TrueBB)); 2107 2108 // Insert the false branch. Do this even if it's a fall through branch, 2109 // this makes it easier to do DAG optimizations which require inverting 2110 // the branch condition. 2111 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2112 DAG.getBasicBlock(CB.FalseBB)); 2113 2114 DAG.setRoot(BrCond); 2115 } 2116 2117 /// visitJumpTable - Emit JumpTable node in the current MBB 2118 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2119 // Emit the code for the jump table 2120 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2121 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2122 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2123 JT.Reg, PTy); 2124 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2125 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2126 MVT::Other, Index.getValue(1), 2127 Table, Index); 2128 DAG.setRoot(BrJumpTable); 2129 } 2130 2131 /// visitJumpTableHeader - This function emits necessary code to produce index 2132 /// in the JumpTable from switch case. 2133 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2134 JumpTableHeader &JTH, 2135 MachineBasicBlock *SwitchBB) { 2136 SDLoc dl = getCurSDLoc(); 2137 2138 // Subtract the lowest switch case value from the value being switched on and 2139 // conditional branch to default mbb if the result is greater than the 2140 // difference between smallest and largest cases. 2141 SDValue SwitchOp = getValue(JTH.SValue); 2142 EVT VT = SwitchOp.getValueType(); 2143 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2144 DAG.getConstant(JTH.First, dl, VT)); 2145 2146 // The SDNode we just created, which holds the value being switched on minus 2147 // the smallest case value, needs to be copied to a virtual register so it 2148 // can be used as an index into the jump table in a subsequent basic block. 2149 // This value may be smaller or larger than the target's pointer type, and 2150 // therefore require extension or truncating. 2151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2152 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2153 2154 unsigned JumpTableReg = 2155 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2156 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2157 JumpTableReg, SwitchOp); 2158 JT.Reg = JumpTableReg; 2159 2160 // Emit the range check for the jump table, and branch to the default block 2161 // for the switch statement if the value being switched on exceeds the largest 2162 // case in the switch. 2163 SDValue CMP = DAG.getSetCC( 2164 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2165 Sub.getValueType()), 2166 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2167 2168 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2169 MVT::Other, CopyTo, CMP, 2170 DAG.getBasicBlock(JT.Default)); 2171 2172 // Avoid emitting unnecessary branches to the next block. 2173 if (JT.MBB != NextBlock(SwitchBB)) 2174 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2175 DAG.getBasicBlock(JT.MBB)); 2176 2177 DAG.setRoot(BrCond); 2178 } 2179 2180 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2181 /// variable if there exists one. 2182 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2183 SDValue &Chain) { 2184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2185 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2186 MachineFunction &MF = DAG.getMachineFunction(); 2187 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2188 MachineSDNode *Node = 2189 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2190 if (Global) { 2191 MachinePointerInfo MPInfo(Global); 2192 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2193 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2194 MachineMemOperand::MODereferenceable; 2195 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2196 DAG.getEVTAlignment(PtrTy)); 2197 Node->setMemRefs(MemRefs, MemRefs + 1); 2198 } 2199 return SDValue(Node, 0); 2200 } 2201 2202 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2203 /// tail spliced into a stack protector check success bb. 2204 /// 2205 /// For a high level explanation of how this fits into the stack protector 2206 /// generation see the comment on the declaration of class 2207 /// StackProtectorDescriptor. 2208 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2209 MachineBasicBlock *ParentBB) { 2210 2211 // First create the loads to the guard/stack slot for the comparison. 2212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2213 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2214 2215 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2216 int FI = MFI.getStackProtectorIndex(); 2217 2218 SDValue Guard; 2219 SDLoc dl = getCurSDLoc(); 2220 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2221 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2222 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2223 2224 // Generate code to load the content of the guard slot. 2225 SDValue GuardVal = DAG.getLoad( 2226 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2227 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2228 MachineMemOperand::MOVolatile); 2229 2230 if (TLI.useStackGuardXorFP()) 2231 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2232 2233 // Retrieve guard check function, nullptr if instrumentation is inlined. 2234 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2235 // The target provides a guard check function to validate the guard value. 2236 // Generate a call to that function with the content of the guard slot as 2237 // argument. 2238 auto *Fn = cast<Function>(GuardCheck); 2239 FunctionType *FnTy = Fn->getFunctionType(); 2240 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2241 2242 TargetLowering::ArgListTy Args; 2243 TargetLowering::ArgListEntry Entry; 2244 Entry.Node = GuardVal; 2245 Entry.Ty = FnTy->getParamType(0); 2246 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2247 Entry.IsInReg = true; 2248 Args.push_back(Entry); 2249 2250 TargetLowering::CallLoweringInfo CLI(DAG); 2251 CLI.setDebugLoc(getCurSDLoc()) 2252 .setChain(DAG.getEntryNode()) 2253 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2254 getValue(GuardCheck), std::move(Args)); 2255 2256 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2257 DAG.setRoot(Result.second); 2258 return; 2259 } 2260 2261 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2262 // Otherwise, emit a volatile load to retrieve the stack guard value. 2263 SDValue Chain = DAG.getEntryNode(); 2264 if (TLI.useLoadStackGuardNode()) { 2265 Guard = getLoadStackGuard(DAG, dl, Chain); 2266 } else { 2267 const Value *IRGuard = TLI.getSDagStackGuard(M); 2268 SDValue GuardPtr = getValue(IRGuard); 2269 2270 Guard = 2271 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2272 Align, MachineMemOperand::MOVolatile); 2273 } 2274 2275 // Perform the comparison via a subtract/getsetcc. 2276 EVT VT = Guard.getValueType(); 2277 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2278 2279 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2280 *DAG.getContext(), 2281 Sub.getValueType()), 2282 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2283 2284 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2285 // branch to failure MBB. 2286 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2287 MVT::Other, GuardVal.getOperand(0), 2288 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2289 // Otherwise branch to success MBB. 2290 SDValue Br = DAG.getNode(ISD::BR, dl, 2291 MVT::Other, BrCond, 2292 DAG.getBasicBlock(SPD.getSuccessMBB())); 2293 2294 DAG.setRoot(Br); 2295 } 2296 2297 /// Codegen the failure basic block for a stack protector check. 2298 /// 2299 /// A failure stack protector machine basic block consists simply of a call to 2300 /// __stack_chk_fail(). 2301 /// 2302 /// For a high level explanation of how this fits into the stack protector 2303 /// generation see the comment on the declaration of class 2304 /// StackProtectorDescriptor. 2305 void 2306 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2308 SDValue Chain = 2309 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2310 None, false, getCurSDLoc(), false, false).second; 2311 DAG.setRoot(Chain); 2312 } 2313 2314 /// visitBitTestHeader - This function emits necessary code to produce value 2315 /// suitable for "bit tests" 2316 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2317 MachineBasicBlock *SwitchBB) { 2318 SDLoc dl = getCurSDLoc(); 2319 2320 // Subtract the minimum value 2321 SDValue SwitchOp = getValue(B.SValue); 2322 EVT VT = SwitchOp.getValueType(); 2323 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2324 DAG.getConstant(B.First, dl, VT)); 2325 2326 // Check range 2327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2328 SDValue RangeCmp = DAG.getSetCC( 2329 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2330 Sub.getValueType()), 2331 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2332 2333 // Determine the type of the test operands. 2334 bool UsePtrType = false; 2335 if (!TLI.isTypeLegal(VT)) 2336 UsePtrType = true; 2337 else { 2338 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2339 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2340 // Switch table case range are encoded into series of masks. 2341 // Just use pointer type, it's guaranteed to fit. 2342 UsePtrType = true; 2343 break; 2344 } 2345 } 2346 if (UsePtrType) { 2347 VT = TLI.getPointerTy(DAG.getDataLayout()); 2348 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2349 } 2350 2351 B.RegVT = VT.getSimpleVT(); 2352 B.Reg = FuncInfo.CreateReg(B.RegVT); 2353 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2354 2355 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2356 2357 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2358 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2359 SwitchBB->normalizeSuccProbs(); 2360 2361 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2362 MVT::Other, CopyTo, RangeCmp, 2363 DAG.getBasicBlock(B.Default)); 2364 2365 // Avoid emitting unnecessary branches to the next block. 2366 if (MBB != NextBlock(SwitchBB)) 2367 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2368 DAG.getBasicBlock(MBB)); 2369 2370 DAG.setRoot(BrRange); 2371 } 2372 2373 /// visitBitTestCase - this function produces one "bit test" 2374 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2375 MachineBasicBlock* NextMBB, 2376 BranchProbability BranchProbToNext, 2377 unsigned Reg, 2378 BitTestCase &B, 2379 MachineBasicBlock *SwitchBB) { 2380 SDLoc dl = getCurSDLoc(); 2381 MVT VT = BB.RegVT; 2382 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2383 SDValue Cmp; 2384 unsigned PopCount = countPopulation(B.Mask); 2385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2386 if (PopCount == 1) { 2387 // Testing for a single bit; just compare the shift count with what it 2388 // would need to be to shift a 1 bit in that position. 2389 Cmp = DAG.getSetCC( 2390 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2391 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2392 ISD::SETEQ); 2393 } else if (PopCount == BB.Range) { 2394 // There is only one zero bit in the range, test for it directly. 2395 Cmp = DAG.getSetCC( 2396 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2397 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2398 ISD::SETNE); 2399 } else { 2400 // Make desired shift 2401 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2402 DAG.getConstant(1, dl, VT), ShiftOp); 2403 2404 // Emit bit tests and jumps 2405 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2406 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2407 Cmp = DAG.getSetCC( 2408 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2409 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2410 } 2411 2412 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2413 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2414 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2415 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2416 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2417 // one as they are relative probabilities (and thus work more like weights), 2418 // and hence we need to normalize them to let the sum of them become one. 2419 SwitchBB->normalizeSuccProbs(); 2420 2421 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2422 MVT::Other, getControlRoot(), 2423 Cmp, DAG.getBasicBlock(B.TargetBB)); 2424 2425 // Avoid emitting unnecessary branches to the next block. 2426 if (NextMBB != NextBlock(SwitchBB)) 2427 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2428 DAG.getBasicBlock(NextMBB)); 2429 2430 DAG.setRoot(BrAnd); 2431 } 2432 2433 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2434 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2435 2436 // Retrieve successors. Look through artificial IR level blocks like 2437 // catchswitch for successors. 2438 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2439 const BasicBlock *EHPadBB = I.getSuccessor(1); 2440 2441 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2442 // have to do anything here to lower funclet bundles. 2443 assert(!I.hasOperandBundlesOtherThan( 2444 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2445 "Cannot lower invokes with arbitrary operand bundles yet!"); 2446 2447 const Value *Callee(I.getCalledValue()); 2448 const Function *Fn = dyn_cast<Function>(Callee); 2449 if (isa<InlineAsm>(Callee)) 2450 visitInlineAsm(&I); 2451 else if (Fn && Fn->isIntrinsic()) { 2452 switch (Fn->getIntrinsicID()) { 2453 default: 2454 llvm_unreachable("Cannot invoke this intrinsic"); 2455 case Intrinsic::donothing: 2456 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2457 break; 2458 case Intrinsic::experimental_patchpoint_void: 2459 case Intrinsic::experimental_patchpoint_i64: 2460 visitPatchpoint(&I, EHPadBB); 2461 break; 2462 case Intrinsic::experimental_gc_statepoint: 2463 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2464 break; 2465 } 2466 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2467 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2468 // Eventually we will support lowering the @llvm.experimental.deoptimize 2469 // intrinsic, and right now there are no plans to support other intrinsics 2470 // with deopt state. 2471 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2472 } else { 2473 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2474 } 2475 2476 // If the value of the invoke is used outside of its defining block, make it 2477 // available as a virtual register. 2478 // We already took care of the exported value for the statepoint instruction 2479 // during call to the LowerStatepoint. 2480 if (!isStatepoint(I)) { 2481 CopyToExportRegsIfNeeded(&I); 2482 } 2483 2484 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2485 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2486 BranchProbability EHPadBBProb = 2487 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2488 : BranchProbability::getZero(); 2489 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2490 2491 // Update successor info. 2492 addSuccessorWithProb(InvokeMBB, Return); 2493 for (auto &UnwindDest : UnwindDests) { 2494 UnwindDest.first->setIsEHPad(); 2495 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2496 } 2497 InvokeMBB->normalizeSuccProbs(); 2498 2499 // Drop into normal successor. 2500 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2501 MVT::Other, getControlRoot(), 2502 DAG.getBasicBlock(Return))); 2503 } 2504 2505 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2506 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2507 } 2508 2509 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2510 assert(FuncInfo.MBB->isEHPad() && 2511 "Call to landingpad not in landing pad!"); 2512 2513 MachineBasicBlock *MBB = FuncInfo.MBB; 2514 addLandingPadInfo(LP, *MBB); 2515 2516 // If there aren't registers to copy the values into (e.g., during SjLj 2517 // exceptions), then don't bother to create these DAG nodes. 2518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2519 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2520 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2521 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2522 return; 2523 2524 // If landingpad's return type is token type, we don't create DAG nodes 2525 // for its exception pointer and selector value. The extraction of exception 2526 // pointer or selector value from token type landingpads is not currently 2527 // supported. 2528 if (LP.getType()->isTokenTy()) 2529 return; 2530 2531 SmallVector<EVT, 2> ValueVTs; 2532 SDLoc dl = getCurSDLoc(); 2533 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2534 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2535 2536 // Get the two live-in registers as SDValues. The physregs have already been 2537 // copied into virtual registers. 2538 SDValue Ops[2]; 2539 if (FuncInfo.ExceptionPointerVirtReg) { 2540 Ops[0] = DAG.getZExtOrTrunc( 2541 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2542 FuncInfo.ExceptionPointerVirtReg, 2543 TLI.getPointerTy(DAG.getDataLayout())), 2544 dl, ValueVTs[0]); 2545 } else { 2546 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2547 } 2548 Ops[1] = DAG.getZExtOrTrunc( 2549 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2550 FuncInfo.ExceptionSelectorVirtReg, 2551 TLI.getPointerTy(DAG.getDataLayout())), 2552 dl, ValueVTs[1]); 2553 2554 // Merge into one. 2555 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2556 DAG.getVTList(ValueVTs), Ops); 2557 setValue(&LP, Res); 2558 } 2559 2560 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2561 #ifndef NDEBUG 2562 for (const CaseCluster &CC : Clusters) 2563 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2564 #endif 2565 2566 llvm::sort(Clusters.begin(), Clusters.end(), 2567 [](const CaseCluster &a, const CaseCluster &b) { 2568 return a.Low->getValue().slt(b.Low->getValue()); 2569 }); 2570 2571 // Merge adjacent clusters with the same destination. 2572 const unsigned N = Clusters.size(); 2573 unsigned DstIndex = 0; 2574 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2575 CaseCluster &CC = Clusters[SrcIndex]; 2576 const ConstantInt *CaseVal = CC.Low; 2577 MachineBasicBlock *Succ = CC.MBB; 2578 2579 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2580 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2581 // If this case has the same successor and is a neighbour, merge it into 2582 // the previous cluster. 2583 Clusters[DstIndex - 1].High = CaseVal; 2584 Clusters[DstIndex - 1].Prob += CC.Prob; 2585 } else { 2586 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2587 sizeof(Clusters[SrcIndex])); 2588 } 2589 } 2590 Clusters.resize(DstIndex); 2591 } 2592 2593 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2594 MachineBasicBlock *Last) { 2595 // Update JTCases. 2596 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2597 if (JTCases[i].first.HeaderBB == First) 2598 JTCases[i].first.HeaderBB = Last; 2599 2600 // Update BitTestCases. 2601 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2602 if (BitTestCases[i].Parent == First) 2603 BitTestCases[i].Parent = Last; 2604 } 2605 2606 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2607 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2608 2609 // Update machine-CFG edges with unique successors. 2610 SmallSet<BasicBlock*, 32> Done; 2611 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2612 BasicBlock *BB = I.getSuccessor(i); 2613 bool Inserted = Done.insert(BB).second; 2614 if (!Inserted) 2615 continue; 2616 2617 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2618 addSuccessorWithProb(IndirectBrMBB, Succ); 2619 } 2620 IndirectBrMBB->normalizeSuccProbs(); 2621 2622 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2623 MVT::Other, getControlRoot(), 2624 getValue(I.getAddress()))); 2625 } 2626 2627 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2628 if (!DAG.getTarget().Options.TrapUnreachable) 2629 return; 2630 2631 // We may be able to ignore unreachable behind a noreturn call. 2632 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2633 const BasicBlock &BB = *I.getParent(); 2634 if (&I != &BB.front()) { 2635 BasicBlock::const_iterator PredI = 2636 std::prev(BasicBlock::const_iterator(&I)); 2637 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2638 if (Call->doesNotReturn()) 2639 return; 2640 } 2641 } 2642 } 2643 2644 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2645 } 2646 2647 void SelectionDAGBuilder::visitFSub(const User &I) { 2648 // -0.0 - X --> fneg 2649 Type *Ty = I.getType(); 2650 if (isa<Constant>(I.getOperand(0)) && 2651 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2652 SDValue Op2 = getValue(I.getOperand(1)); 2653 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2654 Op2.getValueType(), Op2)); 2655 return; 2656 } 2657 2658 visitBinary(I, ISD::FSUB); 2659 } 2660 2661 /// Checks if the given instruction performs a vector reduction, in which case 2662 /// we have the freedom to alter the elements in the result as long as the 2663 /// reduction of them stays unchanged. 2664 static bool isVectorReductionOp(const User *I) { 2665 const Instruction *Inst = dyn_cast<Instruction>(I); 2666 if (!Inst || !Inst->getType()->isVectorTy()) 2667 return false; 2668 2669 auto OpCode = Inst->getOpcode(); 2670 switch (OpCode) { 2671 case Instruction::Add: 2672 case Instruction::Mul: 2673 case Instruction::And: 2674 case Instruction::Or: 2675 case Instruction::Xor: 2676 break; 2677 case Instruction::FAdd: 2678 case Instruction::FMul: 2679 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2680 if (FPOp->getFastMathFlags().isFast()) 2681 break; 2682 LLVM_FALLTHROUGH; 2683 default: 2684 return false; 2685 } 2686 2687 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2688 unsigned ElemNumToReduce = ElemNum; 2689 2690 // Do DFS search on the def-use chain from the given instruction. We only 2691 // allow four kinds of operations during the search until we reach the 2692 // instruction that extracts the first element from the vector: 2693 // 2694 // 1. The reduction operation of the same opcode as the given instruction. 2695 // 2696 // 2. PHI node. 2697 // 2698 // 3. ShuffleVector instruction together with a reduction operation that 2699 // does a partial reduction. 2700 // 2701 // 4. ExtractElement that extracts the first element from the vector, and we 2702 // stop searching the def-use chain here. 2703 // 2704 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2705 // from 1-3 to the stack to continue the DFS. The given instruction is not 2706 // a reduction operation if we meet any other instructions other than those 2707 // listed above. 2708 2709 SmallVector<const User *, 16> UsersToVisit{Inst}; 2710 SmallPtrSet<const User *, 16> Visited; 2711 bool ReduxExtracted = false; 2712 2713 while (!UsersToVisit.empty()) { 2714 auto User = UsersToVisit.back(); 2715 UsersToVisit.pop_back(); 2716 if (!Visited.insert(User).second) 2717 continue; 2718 2719 for (const auto &U : User->users()) { 2720 auto Inst = dyn_cast<Instruction>(U); 2721 if (!Inst) 2722 return false; 2723 2724 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2725 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2726 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2727 return false; 2728 UsersToVisit.push_back(U); 2729 } else if (const ShuffleVectorInst *ShufInst = 2730 dyn_cast<ShuffleVectorInst>(U)) { 2731 // Detect the following pattern: A ShuffleVector instruction together 2732 // with a reduction that do partial reduction on the first and second 2733 // ElemNumToReduce / 2 elements, and store the result in 2734 // ElemNumToReduce / 2 elements in another vector. 2735 2736 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2737 if (ResultElements < ElemNum) 2738 return false; 2739 2740 if (ElemNumToReduce == 1) 2741 return false; 2742 if (!isa<UndefValue>(U->getOperand(1))) 2743 return false; 2744 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2745 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2746 return false; 2747 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2748 if (ShufInst->getMaskValue(i) != -1) 2749 return false; 2750 2751 // There is only one user of this ShuffleVector instruction, which 2752 // must be a reduction operation. 2753 if (!U->hasOneUse()) 2754 return false; 2755 2756 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2757 if (!U2 || U2->getOpcode() != OpCode) 2758 return false; 2759 2760 // Check operands of the reduction operation. 2761 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2762 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2763 UsersToVisit.push_back(U2); 2764 ElemNumToReduce /= 2; 2765 } else 2766 return false; 2767 } else if (isa<ExtractElementInst>(U)) { 2768 // At this moment we should have reduced all elements in the vector. 2769 if (ElemNumToReduce != 1) 2770 return false; 2771 2772 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2773 if (!Val || Val->getZExtValue() != 0) 2774 return false; 2775 2776 ReduxExtracted = true; 2777 } else 2778 return false; 2779 } 2780 } 2781 return ReduxExtracted; 2782 } 2783 2784 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2785 SDNodeFlags Flags; 2786 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2787 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2788 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2789 } 2790 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2791 Flags.setExact(ExactOp->isExact()); 2792 } 2793 if (isVectorReductionOp(&I)) { 2794 Flags.setVectorReduction(true); 2795 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2796 } 2797 2798 SDValue Op1 = getValue(I.getOperand(0)); 2799 SDValue Op2 = getValue(I.getOperand(1)); 2800 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2801 Op1, Op2, Flags); 2802 setValue(&I, BinNodeValue); 2803 } 2804 2805 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2806 SDValue Op1 = getValue(I.getOperand(0)); 2807 SDValue Op2 = getValue(I.getOperand(1)); 2808 2809 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2810 Op2.getValueType(), DAG.getDataLayout()); 2811 2812 // Coerce the shift amount to the right type if we can. 2813 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2814 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2815 unsigned Op2Size = Op2.getValueSizeInBits(); 2816 SDLoc DL = getCurSDLoc(); 2817 2818 // If the operand is smaller than the shift count type, promote it. 2819 if (ShiftSize > Op2Size) 2820 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2821 2822 // If the operand is larger than the shift count type but the shift 2823 // count type has enough bits to represent any shift value, truncate 2824 // it now. This is a common case and it exposes the truncate to 2825 // optimization early. 2826 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2827 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2828 // Otherwise we'll need to temporarily settle for some other convenient 2829 // type. Type legalization will make adjustments once the shiftee is split. 2830 else 2831 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2832 } 2833 2834 bool nuw = false; 2835 bool nsw = false; 2836 bool exact = false; 2837 2838 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2839 2840 if (const OverflowingBinaryOperator *OFBinOp = 2841 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2842 nuw = OFBinOp->hasNoUnsignedWrap(); 2843 nsw = OFBinOp->hasNoSignedWrap(); 2844 } 2845 if (const PossiblyExactOperator *ExactOp = 2846 dyn_cast<const PossiblyExactOperator>(&I)) 2847 exact = ExactOp->isExact(); 2848 } 2849 SDNodeFlags Flags; 2850 Flags.setExact(exact); 2851 Flags.setNoSignedWrap(nsw); 2852 Flags.setNoUnsignedWrap(nuw); 2853 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2854 Flags); 2855 setValue(&I, Res); 2856 } 2857 2858 void SelectionDAGBuilder::visitSDiv(const User &I) { 2859 SDValue Op1 = getValue(I.getOperand(0)); 2860 SDValue Op2 = getValue(I.getOperand(1)); 2861 2862 SDNodeFlags Flags; 2863 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2864 cast<PossiblyExactOperator>(&I)->isExact()); 2865 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2866 Op2, Flags)); 2867 } 2868 2869 void SelectionDAGBuilder::visitICmp(const User &I) { 2870 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2871 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2872 predicate = IC->getPredicate(); 2873 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2874 predicate = ICmpInst::Predicate(IC->getPredicate()); 2875 SDValue Op1 = getValue(I.getOperand(0)); 2876 SDValue Op2 = getValue(I.getOperand(1)); 2877 ISD::CondCode Opcode = getICmpCondCode(predicate); 2878 2879 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2880 I.getType()); 2881 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2882 } 2883 2884 void SelectionDAGBuilder::visitFCmp(const User &I) { 2885 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2886 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2887 predicate = FC->getPredicate(); 2888 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2889 predicate = FCmpInst::Predicate(FC->getPredicate()); 2890 SDValue Op1 = getValue(I.getOperand(0)); 2891 SDValue Op2 = getValue(I.getOperand(1)); 2892 2893 ISD::CondCode Condition = getFCmpCondCode(predicate); 2894 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2895 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2896 Condition = getFCmpCodeWithoutNaN(Condition); 2897 2898 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2899 I.getType()); 2900 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2901 } 2902 2903 // Check if the condition of the select has one use or two users that are both 2904 // selects with the same condition. 2905 static bool hasOnlySelectUsers(const Value *Cond) { 2906 return llvm::all_of(Cond->users(), [](const Value *V) { 2907 return isa<SelectInst>(V); 2908 }); 2909 } 2910 2911 void SelectionDAGBuilder::visitSelect(const User &I) { 2912 SmallVector<EVT, 4> ValueVTs; 2913 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2914 ValueVTs); 2915 unsigned NumValues = ValueVTs.size(); 2916 if (NumValues == 0) return; 2917 2918 SmallVector<SDValue, 4> Values(NumValues); 2919 SDValue Cond = getValue(I.getOperand(0)); 2920 SDValue LHSVal = getValue(I.getOperand(1)); 2921 SDValue RHSVal = getValue(I.getOperand(2)); 2922 auto BaseOps = {Cond}; 2923 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2924 ISD::VSELECT : ISD::SELECT; 2925 2926 // Min/max matching is only viable if all output VTs are the same. 2927 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2928 EVT VT = ValueVTs[0]; 2929 LLVMContext &Ctx = *DAG.getContext(); 2930 auto &TLI = DAG.getTargetLoweringInfo(); 2931 2932 // We care about the legality of the operation after it has been type 2933 // legalized. 2934 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2935 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2936 VT = TLI.getTypeToTransformTo(Ctx, VT); 2937 2938 // If the vselect is legal, assume we want to leave this as a vector setcc + 2939 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2940 // min/max is legal on the scalar type. 2941 bool UseScalarMinMax = VT.isVector() && 2942 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2943 2944 Value *LHS, *RHS; 2945 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2946 ISD::NodeType Opc = ISD::DELETED_NODE; 2947 switch (SPR.Flavor) { 2948 case SPF_UMAX: Opc = ISD::UMAX; break; 2949 case SPF_UMIN: Opc = ISD::UMIN; break; 2950 case SPF_SMAX: Opc = ISD::SMAX; break; 2951 case SPF_SMIN: Opc = ISD::SMIN; break; 2952 case SPF_FMINNUM: 2953 switch (SPR.NaNBehavior) { 2954 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2955 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2956 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2957 case SPNB_RETURNS_ANY: { 2958 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2959 Opc = ISD::FMINNUM; 2960 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2961 Opc = ISD::FMINNAN; 2962 else if (UseScalarMinMax) 2963 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2964 ISD::FMINNUM : ISD::FMINNAN; 2965 break; 2966 } 2967 } 2968 break; 2969 case SPF_FMAXNUM: 2970 switch (SPR.NaNBehavior) { 2971 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2972 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2973 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2974 case SPNB_RETURNS_ANY: 2975 2976 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2977 Opc = ISD::FMAXNUM; 2978 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2979 Opc = ISD::FMAXNAN; 2980 else if (UseScalarMinMax) 2981 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2982 ISD::FMAXNUM : ISD::FMAXNAN; 2983 break; 2984 } 2985 break; 2986 default: break; 2987 } 2988 2989 if (Opc != ISD::DELETED_NODE && 2990 (TLI.isOperationLegalOrCustom(Opc, VT) || 2991 (UseScalarMinMax && 2992 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2993 // If the underlying comparison instruction is used by any other 2994 // instruction, the consumed instructions won't be destroyed, so it is 2995 // not profitable to convert to a min/max. 2996 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2997 OpCode = Opc; 2998 LHSVal = getValue(LHS); 2999 RHSVal = getValue(RHS); 3000 BaseOps = {}; 3001 } 3002 } 3003 3004 for (unsigned i = 0; i != NumValues; ++i) { 3005 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3006 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3007 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3008 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3009 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3010 Ops); 3011 } 3012 3013 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3014 DAG.getVTList(ValueVTs), Values)); 3015 } 3016 3017 void SelectionDAGBuilder::visitTrunc(const User &I) { 3018 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3021 I.getType()); 3022 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3023 } 3024 3025 void SelectionDAGBuilder::visitZExt(const User &I) { 3026 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3027 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3028 SDValue N = getValue(I.getOperand(0)); 3029 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3030 I.getType()); 3031 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3032 } 3033 3034 void SelectionDAGBuilder::visitSExt(const User &I) { 3035 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3036 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3037 SDValue N = getValue(I.getOperand(0)); 3038 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3039 I.getType()); 3040 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3041 } 3042 3043 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3044 // FPTrunc is never a no-op cast, no need to check 3045 SDValue N = getValue(I.getOperand(0)); 3046 SDLoc dl = getCurSDLoc(); 3047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3048 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3049 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3050 DAG.getTargetConstant( 3051 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3052 } 3053 3054 void SelectionDAGBuilder::visitFPExt(const User &I) { 3055 // FPExt is never a no-op cast, no need to check 3056 SDValue N = getValue(I.getOperand(0)); 3057 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3058 I.getType()); 3059 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3060 } 3061 3062 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3063 // FPToUI is never a no-op cast, no need to check 3064 SDValue N = getValue(I.getOperand(0)); 3065 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3066 I.getType()); 3067 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3068 } 3069 3070 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3071 // FPToSI is never a no-op cast, no need to check 3072 SDValue N = getValue(I.getOperand(0)); 3073 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3074 I.getType()); 3075 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3076 } 3077 3078 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3079 // UIToFP is never a no-op cast, no need to check 3080 SDValue N = getValue(I.getOperand(0)); 3081 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3082 I.getType()); 3083 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3084 } 3085 3086 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3087 // SIToFP is never a no-op cast, no need to check 3088 SDValue N = getValue(I.getOperand(0)); 3089 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3090 I.getType()); 3091 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3092 } 3093 3094 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3095 // What to do depends on the size of the integer and the size of the pointer. 3096 // We can either truncate, zero extend, or no-op, accordingly. 3097 SDValue N = getValue(I.getOperand(0)); 3098 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3099 I.getType()); 3100 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3101 } 3102 3103 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3104 // What to do depends on the size of the integer and the size of the pointer. 3105 // We can either truncate, zero extend, or no-op, accordingly. 3106 SDValue N = getValue(I.getOperand(0)); 3107 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3108 I.getType()); 3109 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3110 } 3111 3112 void SelectionDAGBuilder::visitBitCast(const User &I) { 3113 SDValue N = getValue(I.getOperand(0)); 3114 SDLoc dl = getCurSDLoc(); 3115 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3116 I.getType()); 3117 3118 // BitCast assures us that source and destination are the same size so this is 3119 // either a BITCAST or a no-op. 3120 if (DestVT != N.getValueType()) 3121 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3122 DestVT, N)); // convert types. 3123 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3124 // might fold any kind of constant expression to an integer constant and that 3125 // is not what we are looking for. Only recognize a bitcast of a genuine 3126 // constant integer as an opaque constant. 3127 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3128 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3129 /*isOpaque*/true)); 3130 else 3131 setValue(&I, N); // noop cast. 3132 } 3133 3134 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3135 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3136 const Value *SV = I.getOperand(0); 3137 SDValue N = getValue(SV); 3138 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3139 3140 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3141 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3142 3143 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3144 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3145 3146 setValue(&I, N); 3147 } 3148 3149 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3150 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3151 SDValue InVec = getValue(I.getOperand(0)); 3152 SDValue InVal = getValue(I.getOperand(1)); 3153 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3154 TLI.getVectorIdxTy(DAG.getDataLayout())); 3155 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3156 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3157 InVec, InVal, InIdx)); 3158 } 3159 3160 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3161 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3162 SDValue InVec = getValue(I.getOperand(0)); 3163 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3164 TLI.getVectorIdxTy(DAG.getDataLayout())); 3165 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3166 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3167 InVec, InIdx)); 3168 } 3169 3170 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3171 SDValue Src1 = getValue(I.getOperand(0)); 3172 SDValue Src2 = getValue(I.getOperand(1)); 3173 SDLoc DL = getCurSDLoc(); 3174 3175 SmallVector<int, 8> Mask; 3176 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3177 unsigned MaskNumElts = Mask.size(); 3178 3179 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3180 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3181 EVT SrcVT = Src1.getValueType(); 3182 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3183 3184 if (SrcNumElts == MaskNumElts) { 3185 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3186 return; 3187 } 3188 3189 // Normalize the shuffle vector since mask and vector length don't match. 3190 if (SrcNumElts < MaskNumElts) { 3191 // Mask is longer than the source vectors. We can use concatenate vector to 3192 // make the mask and vectors lengths match. 3193 3194 if (MaskNumElts % SrcNumElts == 0) { 3195 // Mask length is a multiple of the source vector length. 3196 // Check if the shuffle is some kind of concatenation of the input 3197 // vectors. 3198 unsigned NumConcat = MaskNumElts / SrcNumElts; 3199 bool IsConcat = true; 3200 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3201 for (unsigned i = 0; i != MaskNumElts; ++i) { 3202 int Idx = Mask[i]; 3203 if (Idx < 0) 3204 continue; 3205 // Ensure the indices in each SrcVT sized piece are sequential and that 3206 // the same source is used for the whole piece. 3207 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3208 (ConcatSrcs[i / SrcNumElts] >= 0 && 3209 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3210 IsConcat = false; 3211 break; 3212 } 3213 // Remember which source this index came from. 3214 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3215 } 3216 3217 // The shuffle is concatenating multiple vectors together. Just emit 3218 // a CONCAT_VECTORS operation. 3219 if (IsConcat) { 3220 SmallVector<SDValue, 8> ConcatOps; 3221 for (auto Src : ConcatSrcs) { 3222 if (Src < 0) 3223 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3224 else if (Src == 0) 3225 ConcatOps.push_back(Src1); 3226 else 3227 ConcatOps.push_back(Src2); 3228 } 3229 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3230 return; 3231 } 3232 } 3233 3234 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3235 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3236 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3237 PaddedMaskNumElts); 3238 3239 // Pad both vectors with undefs to make them the same length as the mask. 3240 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3241 3242 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3243 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3244 MOps1[0] = Src1; 3245 MOps2[0] = Src2; 3246 3247 Src1 = Src1.isUndef() 3248 ? DAG.getUNDEF(PaddedVT) 3249 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3250 Src2 = Src2.isUndef() 3251 ? DAG.getUNDEF(PaddedVT) 3252 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3253 3254 // Readjust mask for new input vector length. 3255 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3256 for (unsigned i = 0; i != MaskNumElts; ++i) { 3257 int Idx = Mask[i]; 3258 if (Idx >= (int)SrcNumElts) 3259 Idx -= SrcNumElts - PaddedMaskNumElts; 3260 MappedOps[i] = Idx; 3261 } 3262 3263 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3264 3265 // If the concatenated vector was padded, extract a subvector with the 3266 // correct number of elements. 3267 if (MaskNumElts != PaddedMaskNumElts) 3268 Result = DAG.getNode( 3269 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3270 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3271 3272 setValue(&I, Result); 3273 return; 3274 } 3275 3276 if (SrcNumElts > MaskNumElts) { 3277 // Analyze the access pattern of the vector to see if we can extract 3278 // two subvectors and do the shuffle. 3279 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3280 bool CanExtract = true; 3281 for (int Idx : Mask) { 3282 unsigned Input = 0; 3283 if (Idx < 0) 3284 continue; 3285 3286 if (Idx >= (int)SrcNumElts) { 3287 Input = 1; 3288 Idx -= SrcNumElts; 3289 } 3290 3291 // If all the indices come from the same MaskNumElts sized portion of 3292 // the sources we can use extract. Also make sure the extract wouldn't 3293 // extract past the end of the source. 3294 int NewStartIdx = alignDown(Idx, MaskNumElts); 3295 if (NewStartIdx + MaskNumElts > SrcNumElts || 3296 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3297 CanExtract = false; 3298 // Make sure we always update StartIdx as we use it to track if all 3299 // elements are undef. 3300 StartIdx[Input] = NewStartIdx; 3301 } 3302 3303 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3304 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3305 return; 3306 } 3307 if (CanExtract) { 3308 // Extract appropriate subvector and generate a vector shuffle 3309 for (unsigned Input = 0; Input < 2; ++Input) { 3310 SDValue &Src = Input == 0 ? Src1 : Src2; 3311 if (StartIdx[Input] < 0) 3312 Src = DAG.getUNDEF(VT); 3313 else { 3314 Src = DAG.getNode( 3315 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3316 DAG.getConstant(StartIdx[Input], DL, 3317 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3318 } 3319 } 3320 3321 // Calculate new mask. 3322 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3323 for (int &Idx : MappedOps) { 3324 if (Idx >= (int)SrcNumElts) 3325 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3326 else if (Idx >= 0) 3327 Idx -= StartIdx[0]; 3328 } 3329 3330 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3331 return; 3332 } 3333 } 3334 3335 // We can't use either concat vectors or extract subvectors so fall back to 3336 // replacing the shuffle with extract and build vector. 3337 // to insert and build vector. 3338 EVT EltVT = VT.getVectorElementType(); 3339 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3340 SmallVector<SDValue,8> Ops; 3341 for (int Idx : Mask) { 3342 SDValue Res; 3343 3344 if (Idx < 0) { 3345 Res = DAG.getUNDEF(EltVT); 3346 } else { 3347 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3348 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3349 3350 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3351 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3352 } 3353 3354 Ops.push_back(Res); 3355 } 3356 3357 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3358 } 3359 3360 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3361 ArrayRef<unsigned> Indices; 3362 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3363 Indices = IV->getIndices(); 3364 else 3365 Indices = cast<ConstantExpr>(&I)->getIndices(); 3366 3367 const Value *Op0 = I.getOperand(0); 3368 const Value *Op1 = I.getOperand(1); 3369 Type *AggTy = I.getType(); 3370 Type *ValTy = Op1->getType(); 3371 bool IntoUndef = isa<UndefValue>(Op0); 3372 bool FromUndef = isa<UndefValue>(Op1); 3373 3374 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3375 3376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3377 SmallVector<EVT, 4> AggValueVTs; 3378 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3379 SmallVector<EVT, 4> ValValueVTs; 3380 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3381 3382 unsigned NumAggValues = AggValueVTs.size(); 3383 unsigned NumValValues = ValValueVTs.size(); 3384 SmallVector<SDValue, 4> Values(NumAggValues); 3385 3386 // Ignore an insertvalue that produces an empty object 3387 if (!NumAggValues) { 3388 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3389 return; 3390 } 3391 3392 SDValue Agg = getValue(Op0); 3393 unsigned i = 0; 3394 // Copy the beginning value(s) from the original aggregate. 3395 for (; i != LinearIndex; ++i) 3396 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3397 SDValue(Agg.getNode(), Agg.getResNo() + i); 3398 // Copy values from the inserted value(s). 3399 if (NumValValues) { 3400 SDValue Val = getValue(Op1); 3401 for (; i != LinearIndex + NumValValues; ++i) 3402 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3403 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3404 } 3405 // Copy remaining value(s) from the original aggregate. 3406 for (; i != NumAggValues; ++i) 3407 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3408 SDValue(Agg.getNode(), Agg.getResNo() + i); 3409 3410 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3411 DAG.getVTList(AggValueVTs), Values)); 3412 } 3413 3414 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3415 ArrayRef<unsigned> Indices; 3416 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3417 Indices = EV->getIndices(); 3418 else 3419 Indices = cast<ConstantExpr>(&I)->getIndices(); 3420 3421 const Value *Op0 = I.getOperand(0); 3422 Type *AggTy = Op0->getType(); 3423 Type *ValTy = I.getType(); 3424 bool OutOfUndef = isa<UndefValue>(Op0); 3425 3426 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3427 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 SmallVector<EVT, 4> ValValueVTs; 3430 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3431 3432 unsigned NumValValues = ValValueVTs.size(); 3433 3434 // Ignore a extractvalue that produces an empty object 3435 if (!NumValValues) { 3436 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3437 return; 3438 } 3439 3440 SmallVector<SDValue, 4> Values(NumValValues); 3441 3442 SDValue Agg = getValue(Op0); 3443 // Copy out the selected value(s). 3444 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3445 Values[i - LinearIndex] = 3446 OutOfUndef ? 3447 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3448 SDValue(Agg.getNode(), Agg.getResNo() + i); 3449 3450 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3451 DAG.getVTList(ValValueVTs), Values)); 3452 } 3453 3454 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3455 Value *Op0 = I.getOperand(0); 3456 // Note that the pointer operand may be a vector of pointers. Take the scalar 3457 // element which holds a pointer. 3458 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3459 SDValue N = getValue(Op0); 3460 SDLoc dl = getCurSDLoc(); 3461 3462 // Normalize Vector GEP - all scalar operands should be converted to the 3463 // splat vector. 3464 unsigned VectorWidth = I.getType()->isVectorTy() ? 3465 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3466 3467 if (VectorWidth && !N.getValueType().isVector()) { 3468 LLVMContext &Context = *DAG.getContext(); 3469 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3470 N = DAG.getSplatBuildVector(VT, dl, N); 3471 } 3472 3473 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3474 GTI != E; ++GTI) { 3475 const Value *Idx = GTI.getOperand(); 3476 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3477 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3478 if (Field) { 3479 // N = N + Offset 3480 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3481 3482 // In an inbounds GEP with an offset that is nonnegative even when 3483 // interpreted as signed, assume there is no unsigned overflow. 3484 SDNodeFlags Flags; 3485 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3486 Flags.setNoUnsignedWrap(true); 3487 3488 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3489 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3490 } 3491 } else { 3492 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3493 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3494 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3495 3496 // If this is a scalar constant or a splat vector of constants, 3497 // handle it quickly. 3498 const auto *CI = dyn_cast<ConstantInt>(Idx); 3499 if (!CI && isa<ConstantDataVector>(Idx) && 3500 cast<ConstantDataVector>(Idx)->getSplatValue()) 3501 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3502 3503 if (CI) { 3504 if (CI->isZero()) 3505 continue; 3506 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3507 LLVMContext &Context = *DAG.getContext(); 3508 SDValue OffsVal = VectorWidth ? 3509 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3510 DAG.getConstant(Offs, dl, IdxTy); 3511 3512 // In an inbouds GEP with an offset that is nonnegative even when 3513 // interpreted as signed, assume there is no unsigned overflow. 3514 SDNodeFlags Flags; 3515 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3516 Flags.setNoUnsignedWrap(true); 3517 3518 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3519 continue; 3520 } 3521 3522 // N = N + Idx * ElementSize; 3523 SDValue IdxN = getValue(Idx); 3524 3525 if (!IdxN.getValueType().isVector() && VectorWidth) { 3526 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3527 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3528 } 3529 3530 // If the index is smaller or larger than intptr_t, truncate or extend 3531 // it. 3532 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3533 3534 // If this is a multiply by a power of two, turn it into a shl 3535 // immediately. This is a very common case. 3536 if (ElementSize != 1) { 3537 if (ElementSize.isPowerOf2()) { 3538 unsigned Amt = ElementSize.logBase2(); 3539 IdxN = DAG.getNode(ISD::SHL, dl, 3540 N.getValueType(), IdxN, 3541 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3542 } else { 3543 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3544 IdxN = DAG.getNode(ISD::MUL, dl, 3545 N.getValueType(), IdxN, Scale); 3546 } 3547 } 3548 3549 N = DAG.getNode(ISD::ADD, dl, 3550 N.getValueType(), N, IdxN); 3551 } 3552 } 3553 3554 setValue(&I, N); 3555 } 3556 3557 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3558 // If this is a fixed sized alloca in the entry block of the function, 3559 // allocate it statically on the stack. 3560 if (FuncInfo.StaticAllocaMap.count(&I)) 3561 return; // getValue will auto-populate this. 3562 3563 SDLoc dl = getCurSDLoc(); 3564 Type *Ty = I.getAllocatedType(); 3565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3566 auto &DL = DAG.getDataLayout(); 3567 uint64_t TySize = DL.getTypeAllocSize(Ty); 3568 unsigned Align = 3569 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3570 3571 SDValue AllocSize = getValue(I.getArraySize()); 3572 3573 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3574 if (AllocSize.getValueType() != IntPtr) 3575 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3576 3577 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3578 AllocSize, 3579 DAG.getConstant(TySize, dl, IntPtr)); 3580 3581 // Handle alignment. If the requested alignment is less than or equal to 3582 // the stack alignment, ignore it. If the size is greater than or equal to 3583 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3584 unsigned StackAlign = 3585 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3586 if (Align <= StackAlign) 3587 Align = 0; 3588 3589 // Round the size of the allocation up to the stack alignment size 3590 // by add SA-1 to the size. This doesn't overflow because we're computing 3591 // an address inside an alloca. 3592 SDNodeFlags Flags; 3593 Flags.setNoUnsignedWrap(true); 3594 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3595 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3596 3597 // Mask out the low bits for alignment purposes. 3598 AllocSize = 3599 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3600 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3601 3602 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3603 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3604 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3605 setValue(&I, DSA); 3606 DAG.setRoot(DSA.getValue(1)); 3607 3608 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3609 } 3610 3611 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3612 if (I.isAtomic()) 3613 return visitAtomicLoad(I); 3614 3615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3616 const Value *SV = I.getOperand(0); 3617 if (TLI.supportSwiftError()) { 3618 // Swifterror values can come from either a function parameter with 3619 // swifterror attribute or an alloca with swifterror attribute. 3620 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3621 if (Arg->hasSwiftErrorAttr()) 3622 return visitLoadFromSwiftError(I); 3623 } 3624 3625 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3626 if (Alloca->isSwiftError()) 3627 return visitLoadFromSwiftError(I); 3628 } 3629 } 3630 3631 SDValue Ptr = getValue(SV); 3632 3633 Type *Ty = I.getType(); 3634 3635 bool isVolatile = I.isVolatile(); 3636 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3637 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3638 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3639 unsigned Alignment = I.getAlignment(); 3640 3641 AAMDNodes AAInfo; 3642 I.getAAMetadata(AAInfo); 3643 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3644 3645 SmallVector<EVT, 4> ValueVTs; 3646 SmallVector<uint64_t, 4> Offsets; 3647 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3648 unsigned NumValues = ValueVTs.size(); 3649 if (NumValues == 0) 3650 return; 3651 3652 SDValue Root; 3653 bool ConstantMemory = false; 3654 if (isVolatile || NumValues > MaxParallelChains) 3655 // Serialize volatile loads with other side effects. 3656 Root = getRoot(); 3657 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3658 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3659 // Do not serialize (non-volatile) loads of constant memory with anything. 3660 Root = DAG.getEntryNode(); 3661 ConstantMemory = true; 3662 } else { 3663 // Do not serialize non-volatile loads against each other. 3664 Root = DAG.getRoot(); 3665 } 3666 3667 SDLoc dl = getCurSDLoc(); 3668 3669 if (isVolatile) 3670 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3671 3672 // An aggregate load cannot wrap around the address space, so offsets to its 3673 // parts don't wrap either. 3674 SDNodeFlags Flags; 3675 Flags.setNoUnsignedWrap(true); 3676 3677 SmallVector<SDValue, 4> Values(NumValues); 3678 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3679 EVT PtrVT = Ptr.getValueType(); 3680 unsigned ChainI = 0; 3681 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3682 // Serializing loads here may result in excessive register pressure, and 3683 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3684 // could recover a bit by hoisting nodes upward in the chain by recognizing 3685 // they are side-effect free or do not alias. The optimizer should really 3686 // avoid this case by converting large object/array copies to llvm.memcpy 3687 // (MaxParallelChains should always remain as failsafe). 3688 if (ChainI == MaxParallelChains) { 3689 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3690 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3691 makeArrayRef(Chains.data(), ChainI)); 3692 Root = Chain; 3693 ChainI = 0; 3694 } 3695 SDValue A = DAG.getNode(ISD::ADD, dl, 3696 PtrVT, Ptr, 3697 DAG.getConstant(Offsets[i], dl, PtrVT), 3698 Flags); 3699 auto MMOFlags = MachineMemOperand::MONone; 3700 if (isVolatile) 3701 MMOFlags |= MachineMemOperand::MOVolatile; 3702 if (isNonTemporal) 3703 MMOFlags |= MachineMemOperand::MONonTemporal; 3704 if (isInvariant) 3705 MMOFlags |= MachineMemOperand::MOInvariant; 3706 if (isDereferenceable) 3707 MMOFlags |= MachineMemOperand::MODereferenceable; 3708 MMOFlags |= TLI.getMMOFlags(I); 3709 3710 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3711 MachinePointerInfo(SV, Offsets[i]), Alignment, 3712 MMOFlags, AAInfo, Ranges); 3713 3714 Values[i] = L; 3715 Chains[ChainI] = L.getValue(1); 3716 } 3717 3718 if (!ConstantMemory) { 3719 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3720 makeArrayRef(Chains.data(), ChainI)); 3721 if (isVolatile) 3722 DAG.setRoot(Chain); 3723 else 3724 PendingLoads.push_back(Chain); 3725 } 3726 3727 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3728 DAG.getVTList(ValueVTs), Values)); 3729 } 3730 3731 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3732 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3733 "call visitStoreToSwiftError when backend supports swifterror"); 3734 3735 SmallVector<EVT, 4> ValueVTs; 3736 SmallVector<uint64_t, 4> Offsets; 3737 const Value *SrcV = I.getOperand(0); 3738 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3739 SrcV->getType(), ValueVTs, &Offsets); 3740 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3741 "expect a single EVT for swifterror"); 3742 3743 SDValue Src = getValue(SrcV); 3744 // Create a virtual register, then update the virtual register. 3745 unsigned VReg; bool CreatedVReg; 3746 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3747 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3748 // Chain can be getRoot or getControlRoot. 3749 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3750 SDValue(Src.getNode(), Src.getResNo())); 3751 DAG.setRoot(CopyNode); 3752 if (CreatedVReg) 3753 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3754 } 3755 3756 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3757 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3758 "call visitLoadFromSwiftError when backend supports swifterror"); 3759 3760 assert(!I.isVolatile() && 3761 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3762 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3763 "Support volatile, non temporal, invariant for load_from_swift_error"); 3764 3765 const Value *SV = I.getOperand(0); 3766 Type *Ty = I.getType(); 3767 AAMDNodes AAInfo; 3768 I.getAAMetadata(AAInfo); 3769 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3770 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3771 "load_from_swift_error should not be constant memory"); 3772 3773 SmallVector<EVT, 4> ValueVTs; 3774 SmallVector<uint64_t, 4> Offsets; 3775 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3776 ValueVTs, &Offsets); 3777 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3778 "expect a single EVT for swifterror"); 3779 3780 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3781 SDValue L = DAG.getCopyFromReg( 3782 getRoot(), getCurSDLoc(), 3783 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3784 ValueVTs[0]); 3785 3786 setValue(&I, L); 3787 } 3788 3789 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3790 if (I.isAtomic()) 3791 return visitAtomicStore(I); 3792 3793 const Value *SrcV = I.getOperand(0); 3794 const Value *PtrV = I.getOperand(1); 3795 3796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3797 if (TLI.supportSwiftError()) { 3798 // Swifterror values can come from either a function parameter with 3799 // swifterror attribute or an alloca with swifterror attribute. 3800 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3801 if (Arg->hasSwiftErrorAttr()) 3802 return visitStoreToSwiftError(I); 3803 } 3804 3805 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3806 if (Alloca->isSwiftError()) 3807 return visitStoreToSwiftError(I); 3808 } 3809 } 3810 3811 SmallVector<EVT, 4> ValueVTs; 3812 SmallVector<uint64_t, 4> Offsets; 3813 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3814 SrcV->getType(), ValueVTs, &Offsets); 3815 unsigned NumValues = ValueVTs.size(); 3816 if (NumValues == 0) 3817 return; 3818 3819 // Get the lowered operands. Note that we do this after 3820 // checking if NumResults is zero, because with zero results 3821 // the operands won't have values in the map. 3822 SDValue Src = getValue(SrcV); 3823 SDValue Ptr = getValue(PtrV); 3824 3825 SDValue Root = getRoot(); 3826 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3827 SDLoc dl = getCurSDLoc(); 3828 EVT PtrVT = Ptr.getValueType(); 3829 unsigned Alignment = I.getAlignment(); 3830 AAMDNodes AAInfo; 3831 I.getAAMetadata(AAInfo); 3832 3833 auto MMOFlags = MachineMemOperand::MONone; 3834 if (I.isVolatile()) 3835 MMOFlags |= MachineMemOperand::MOVolatile; 3836 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3837 MMOFlags |= MachineMemOperand::MONonTemporal; 3838 MMOFlags |= TLI.getMMOFlags(I); 3839 3840 // An aggregate load cannot wrap around the address space, so offsets to its 3841 // parts don't wrap either. 3842 SDNodeFlags Flags; 3843 Flags.setNoUnsignedWrap(true); 3844 3845 unsigned ChainI = 0; 3846 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3847 // See visitLoad comments. 3848 if (ChainI == MaxParallelChains) { 3849 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3850 makeArrayRef(Chains.data(), ChainI)); 3851 Root = Chain; 3852 ChainI = 0; 3853 } 3854 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3855 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3856 SDValue St = DAG.getStore( 3857 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3858 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3859 Chains[ChainI] = St; 3860 } 3861 3862 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3863 makeArrayRef(Chains.data(), ChainI)); 3864 DAG.setRoot(StoreNode); 3865 } 3866 3867 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3868 bool IsCompressing) { 3869 SDLoc sdl = getCurSDLoc(); 3870 3871 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3872 unsigned& Alignment) { 3873 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3874 Src0 = I.getArgOperand(0); 3875 Ptr = I.getArgOperand(1); 3876 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3877 Mask = I.getArgOperand(3); 3878 }; 3879 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3880 unsigned& Alignment) { 3881 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3882 Src0 = I.getArgOperand(0); 3883 Ptr = I.getArgOperand(1); 3884 Mask = I.getArgOperand(2); 3885 Alignment = 0; 3886 }; 3887 3888 Value *PtrOperand, *MaskOperand, *Src0Operand; 3889 unsigned Alignment; 3890 if (IsCompressing) 3891 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3892 else 3893 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3894 3895 SDValue Ptr = getValue(PtrOperand); 3896 SDValue Src0 = getValue(Src0Operand); 3897 SDValue Mask = getValue(MaskOperand); 3898 3899 EVT VT = Src0.getValueType(); 3900 if (!Alignment) 3901 Alignment = DAG.getEVTAlignment(VT); 3902 3903 AAMDNodes AAInfo; 3904 I.getAAMetadata(AAInfo); 3905 3906 MachineMemOperand *MMO = 3907 DAG.getMachineFunction(). 3908 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3909 MachineMemOperand::MOStore, VT.getStoreSize(), 3910 Alignment, AAInfo); 3911 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3912 MMO, false /* Truncating */, 3913 IsCompressing); 3914 DAG.setRoot(StoreNode); 3915 setValue(&I, StoreNode); 3916 } 3917 3918 // Get a uniform base for the Gather/Scatter intrinsic. 3919 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3920 // We try to represent it as a base pointer + vector of indices. 3921 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3922 // The first operand of the GEP may be a single pointer or a vector of pointers 3923 // Example: 3924 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3925 // or 3926 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3927 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3928 // 3929 // When the first GEP operand is a single pointer - it is the uniform base we 3930 // are looking for. If first operand of the GEP is a splat vector - we 3931 // extract the splat value and use it as a uniform base. 3932 // In all other cases the function returns 'false'. 3933 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3934 SDValue &Scale, SelectionDAGBuilder* SDB) { 3935 SelectionDAG& DAG = SDB->DAG; 3936 LLVMContext &Context = *DAG.getContext(); 3937 3938 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3939 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3940 if (!GEP) 3941 return false; 3942 3943 const Value *GEPPtr = GEP->getPointerOperand(); 3944 if (!GEPPtr->getType()->isVectorTy()) 3945 Ptr = GEPPtr; 3946 else if (!(Ptr = getSplatValue(GEPPtr))) 3947 return false; 3948 3949 unsigned FinalIndex = GEP->getNumOperands() - 1; 3950 Value *IndexVal = GEP->getOperand(FinalIndex); 3951 3952 // Ensure all the other indices are 0. 3953 for (unsigned i = 1; i < FinalIndex; ++i) { 3954 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3955 if (!C || !C->isZero()) 3956 return false; 3957 } 3958 3959 // The operands of the GEP may be defined in another basic block. 3960 // In this case we'll not find nodes for the operands. 3961 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3962 return false; 3963 3964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3965 const DataLayout &DL = DAG.getDataLayout(); 3966 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3967 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3968 Base = SDB->getValue(Ptr); 3969 Index = SDB->getValue(IndexVal); 3970 3971 if (!Index.getValueType().isVector()) { 3972 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3973 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3974 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3975 } 3976 return true; 3977 } 3978 3979 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3980 SDLoc sdl = getCurSDLoc(); 3981 3982 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3983 const Value *Ptr = I.getArgOperand(1); 3984 SDValue Src0 = getValue(I.getArgOperand(0)); 3985 SDValue Mask = getValue(I.getArgOperand(3)); 3986 EVT VT = Src0.getValueType(); 3987 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3988 if (!Alignment) 3989 Alignment = DAG.getEVTAlignment(VT); 3990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3991 3992 AAMDNodes AAInfo; 3993 I.getAAMetadata(AAInfo); 3994 3995 SDValue Base; 3996 SDValue Index; 3997 SDValue Scale; 3998 const Value *BasePtr = Ptr; 3999 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4000 4001 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4002 MachineMemOperand *MMO = DAG.getMachineFunction(). 4003 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4004 MachineMemOperand::MOStore, VT.getStoreSize(), 4005 Alignment, AAInfo); 4006 if (!UniformBase) { 4007 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4008 Index = getValue(Ptr); 4009 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4010 } 4011 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4012 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4013 Ops, MMO); 4014 DAG.setRoot(Scatter); 4015 setValue(&I, Scatter); 4016 } 4017 4018 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4019 SDLoc sdl = getCurSDLoc(); 4020 4021 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4022 unsigned& Alignment) { 4023 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4024 Ptr = I.getArgOperand(0); 4025 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4026 Mask = I.getArgOperand(2); 4027 Src0 = I.getArgOperand(3); 4028 }; 4029 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4030 unsigned& Alignment) { 4031 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4032 Ptr = I.getArgOperand(0); 4033 Alignment = 0; 4034 Mask = I.getArgOperand(1); 4035 Src0 = I.getArgOperand(2); 4036 }; 4037 4038 Value *PtrOperand, *MaskOperand, *Src0Operand; 4039 unsigned Alignment; 4040 if (IsExpanding) 4041 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4042 else 4043 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4044 4045 SDValue Ptr = getValue(PtrOperand); 4046 SDValue Src0 = getValue(Src0Operand); 4047 SDValue Mask = getValue(MaskOperand); 4048 4049 EVT VT = Src0.getValueType(); 4050 if (!Alignment) 4051 Alignment = DAG.getEVTAlignment(VT); 4052 4053 AAMDNodes AAInfo; 4054 I.getAAMetadata(AAInfo); 4055 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4056 4057 // Do not serialize masked loads of constant memory with anything. 4058 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4059 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4060 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4061 4062 MachineMemOperand *MMO = 4063 DAG.getMachineFunction(). 4064 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4065 MachineMemOperand::MOLoad, VT.getStoreSize(), 4066 Alignment, AAInfo, Ranges); 4067 4068 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4069 ISD::NON_EXTLOAD, IsExpanding); 4070 if (AddToChain) { 4071 SDValue OutChain = Load.getValue(1); 4072 DAG.setRoot(OutChain); 4073 } 4074 setValue(&I, Load); 4075 } 4076 4077 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4078 SDLoc sdl = getCurSDLoc(); 4079 4080 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4081 const Value *Ptr = I.getArgOperand(0); 4082 SDValue Src0 = getValue(I.getArgOperand(3)); 4083 SDValue Mask = getValue(I.getArgOperand(2)); 4084 4085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4086 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4087 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4088 if (!Alignment) 4089 Alignment = DAG.getEVTAlignment(VT); 4090 4091 AAMDNodes AAInfo; 4092 I.getAAMetadata(AAInfo); 4093 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4094 4095 SDValue Root = DAG.getRoot(); 4096 SDValue Base; 4097 SDValue Index; 4098 SDValue Scale; 4099 const Value *BasePtr = Ptr; 4100 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4101 bool ConstantMemory = false; 4102 if (UniformBase && 4103 AA && AA->pointsToConstantMemory(MemoryLocation( 4104 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4105 AAInfo))) { 4106 // Do not serialize (non-volatile) loads of constant memory with anything. 4107 Root = DAG.getEntryNode(); 4108 ConstantMemory = true; 4109 } 4110 4111 MachineMemOperand *MMO = 4112 DAG.getMachineFunction(). 4113 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4114 MachineMemOperand::MOLoad, VT.getStoreSize(), 4115 Alignment, AAInfo, Ranges); 4116 4117 if (!UniformBase) { 4118 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4119 Index = getValue(Ptr); 4120 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4121 } 4122 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4123 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4124 Ops, MMO); 4125 4126 SDValue OutChain = Gather.getValue(1); 4127 if (!ConstantMemory) 4128 PendingLoads.push_back(OutChain); 4129 setValue(&I, Gather); 4130 } 4131 4132 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4133 SDLoc dl = getCurSDLoc(); 4134 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4135 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4136 SyncScope::ID SSID = I.getSyncScopeID(); 4137 4138 SDValue InChain = getRoot(); 4139 4140 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4141 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4142 SDValue L = DAG.getAtomicCmpSwap( 4143 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4144 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4145 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4146 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4147 4148 SDValue OutChain = L.getValue(2); 4149 4150 setValue(&I, L); 4151 DAG.setRoot(OutChain); 4152 } 4153 4154 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4155 SDLoc dl = getCurSDLoc(); 4156 ISD::NodeType NT; 4157 switch (I.getOperation()) { 4158 default: llvm_unreachable("Unknown atomicrmw operation"); 4159 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4160 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4161 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4162 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4163 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4164 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4165 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4166 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4167 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4168 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4169 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4170 } 4171 AtomicOrdering Order = I.getOrdering(); 4172 SyncScope::ID SSID = I.getSyncScopeID(); 4173 4174 SDValue InChain = getRoot(); 4175 4176 SDValue L = 4177 DAG.getAtomic(NT, dl, 4178 getValue(I.getValOperand()).getSimpleValueType(), 4179 InChain, 4180 getValue(I.getPointerOperand()), 4181 getValue(I.getValOperand()), 4182 I.getPointerOperand(), 4183 /* Alignment=*/ 0, Order, SSID); 4184 4185 SDValue OutChain = L.getValue(1); 4186 4187 setValue(&I, L); 4188 DAG.setRoot(OutChain); 4189 } 4190 4191 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4192 SDLoc dl = getCurSDLoc(); 4193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4194 SDValue Ops[3]; 4195 Ops[0] = getRoot(); 4196 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4197 TLI.getFenceOperandTy(DAG.getDataLayout())); 4198 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4199 TLI.getFenceOperandTy(DAG.getDataLayout())); 4200 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4201 } 4202 4203 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4204 SDLoc dl = getCurSDLoc(); 4205 AtomicOrdering Order = I.getOrdering(); 4206 SyncScope::ID SSID = I.getSyncScopeID(); 4207 4208 SDValue InChain = getRoot(); 4209 4210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4211 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4212 4213 if (!TLI.supportsUnalignedAtomics() && 4214 I.getAlignment() < VT.getStoreSize()) 4215 report_fatal_error("Cannot generate unaligned atomic load"); 4216 4217 MachineMemOperand *MMO = 4218 DAG.getMachineFunction(). 4219 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4220 MachineMemOperand::MOVolatile | 4221 MachineMemOperand::MOLoad, 4222 VT.getStoreSize(), 4223 I.getAlignment() ? I.getAlignment() : 4224 DAG.getEVTAlignment(VT), 4225 AAMDNodes(), nullptr, SSID, Order); 4226 4227 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4228 SDValue L = 4229 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4230 getValue(I.getPointerOperand()), MMO); 4231 4232 SDValue OutChain = L.getValue(1); 4233 4234 setValue(&I, L); 4235 DAG.setRoot(OutChain); 4236 } 4237 4238 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4239 SDLoc dl = getCurSDLoc(); 4240 4241 AtomicOrdering Order = I.getOrdering(); 4242 SyncScope::ID SSID = I.getSyncScopeID(); 4243 4244 SDValue InChain = getRoot(); 4245 4246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4247 EVT VT = 4248 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4249 4250 if (I.getAlignment() < VT.getStoreSize()) 4251 report_fatal_error("Cannot generate unaligned atomic store"); 4252 4253 SDValue OutChain = 4254 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4255 InChain, 4256 getValue(I.getPointerOperand()), 4257 getValue(I.getValueOperand()), 4258 I.getPointerOperand(), I.getAlignment(), 4259 Order, SSID); 4260 4261 DAG.setRoot(OutChain); 4262 } 4263 4264 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4265 /// node. 4266 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4267 unsigned Intrinsic) { 4268 // Ignore the callsite's attributes. A specific call site may be marked with 4269 // readnone, but the lowering code will expect the chain based on the 4270 // definition. 4271 const Function *F = I.getCalledFunction(); 4272 bool HasChain = !F->doesNotAccessMemory(); 4273 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4274 4275 // Build the operand list. 4276 SmallVector<SDValue, 8> Ops; 4277 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4278 if (OnlyLoad) { 4279 // We don't need to serialize loads against other loads. 4280 Ops.push_back(DAG.getRoot()); 4281 } else { 4282 Ops.push_back(getRoot()); 4283 } 4284 } 4285 4286 // Info is set by getTgtMemInstrinsic 4287 TargetLowering::IntrinsicInfo Info; 4288 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4289 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4290 DAG.getMachineFunction(), 4291 Intrinsic); 4292 4293 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4294 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4295 Info.opc == ISD::INTRINSIC_W_CHAIN) 4296 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4297 TLI.getPointerTy(DAG.getDataLayout()))); 4298 4299 // Add all operands of the call to the operand list. 4300 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4301 SDValue Op = getValue(I.getArgOperand(i)); 4302 Ops.push_back(Op); 4303 } 4304 4305 SmallVector<EVT, 4> ValueVTs; 4306 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4307 4308 if (HasChain) 4309 ValueVTs.push_back(MVT::Other); 4310 4311 SDVTList VTs = DAG.getVTList(ValueVTs); 4312 4313 // Create the node. 4314 SDValue Result; 4315 if (IsTgtIntrinsic) { 4316 // This is target intrinsic that touches memory 4317 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4318 Ops, Info.memVT, 4319 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4320 Info.flags, Info.size); 4321 } else if (!HasChain) { 4322 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4323 } else if (!I.getType()->isVoidTy()) { 4324 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4325 } else { 4326 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4327 } 4328 4329 if (HasChain) { 4330 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4331 if (OnlyLoad) 4332 PendingLoads.push_back(Chain); 4333 else 4334 DAG.setRoot(Chain); 4335 } 4336 4337 if (!I.getType()->isVoidTy()) { 4338 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4339 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4340 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4341 } else 4342 Result = lowerRangeToAssertZExt(DAG, I, Result); 4343 4344 setValue(&I, Result); 4345 } 4346 } 4347 4348 /// GetSignificand - Get the significand and build it into a floating-point 4349 /// number with exponent of 1: 4350 /// 4351 /// Op = (Op & 0x007fffff) | 0x3f800000; 4352 /// 4353 /// where Op is the hexadecimal representation of floating point value. 4354 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4355 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4356 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4357 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4358 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4359 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4360 } 4361 4362 /// GetExponent - Get the exponent: 4363 /// 4364 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4365 /// 4366 /// where Op is the hexadecimal representation of floating point value. 4367 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4368 const TargetLowering &TLI, const SDLoc &dl) { 4369 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4370 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4371 SDValue t1 = DAG.getNode( 4372 ISD::SRL, dl, MVT::i32, t0, 4373 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4374 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4375 DAG.getConstant(127, dl, MVT::i32)); 4376 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4377 } 4378 4379 /// getF32Constant - Get 32-bit floating point constant. 4380 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4381 const SDLoc &dl) { 4382 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4383 MVT::f32); 4384 } 4385 4386 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4387 SelectionDAG &DAG) { 4388 // TODO: What fast-math-flags should be set on the floating-point nodes? 4389 4390 // IntegerPartOfX = ((int32_t)(t0); 4391 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4392 4393 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4394 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4395 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4396 4397 // IntegerPartOfX <<= 23; 4398 IntegerPartOfX = DAG.getNode( 4399 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4400 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4401 DAG.getDataLayout()))); 4402 4403 SDValue TwoToFractionalPartOfX; 4404 if (LimitFloatPrecision <= 6) { 4405 // For floating-point precision of 6: 4406 // 4407 // TwoToFractionalPartOfX = 4408 // 0.997535578f + 4409 // (0.735607626f + 0.252464424f * x) * x; 4410 // 4411 // error 0.0144103317, which is 6 bits 4412 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4413 getF32Constant(DAG, 0x3e814304, dl)); 4414 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4415 getF32Constant(DAG, 0x3f3c50c8, dl)); 4416 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4417 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4418 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4419 } else if (LimitFloatPrecision <= 12) { 4420 // For floating-point precision of 12: 4421 // 4422 // TwoToFractionalPartOfX = 4423 // 0.999892986f + 4424 // (0.696457318f + 4425 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4426 // 4427 // error 0.000107046256, which is 13 to 14 bits 4428 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4429 getF32Constant(DAG, 0x3da235e3, dl)); 4430 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4431 getF32Constant(DAG, 0x3e65b8f3, dl)); 4432 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4433 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4434 getF32Constant(DAG, 0x3f324b07, dl)); 4435 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4436 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4437 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4438 } else { // LimitFloatPrecision <= 18 4439 // For floating-point precision of 18: 4440 // 4441 // TwoToFractionalPartOfX = 4442 // 0.999999982f + 4443 // (0.693148872f + 4444 // (0.240227044f + 4445 // (0.554906021e-1f + 4446 // (0.961591928e-2f + 4447 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4448 // error 2.47208000*10^(-7), which is better than 18 bits 4449 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4450 getF32Constant(DAG, 0x3924b03e, dl)); 4451 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4452 getF32Constant(DAG, 0x3ab24b87, dl)); 4453 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4454 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4455 getF32Constant(DAG, 0x3c1d8c17, dl)); 4456 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4457 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4458 getF32Constant(DAG, 0x3d634a1d, dl)); 4459 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4460 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4461 getF32Constant(DAG, 0x3e75fe14, dl)); 4462 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4463 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4464 getF32Constant(DAG, 0x3f317234, dl)); 4465 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4466 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4467 getF32Constant(DAG, 0x3f800000, dl)); 4468 } 4469 4470 // Add the exponent into the result in integer domain. 4471 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4472 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4473 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4474 } 4475 4476 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4477 /// limited-precision mode. 4478 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4479 const TargetLowering &TLI) { 4480 if (Op.getValueType() == MVT::f32 && 4481 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4482 4483 // Put the exponent in the right bit position for later addition to the 4484 // final result: 4485 // 4486 // #define LOG2OFe 1.4426950f 4487 // t0 = Op * LOG2OFe 4488 4489 // TODO: What fast-math-flags should be set here? 4490 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4491 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4492 return getLimitedPrecisionExp2(t0, dl, DAG); 4493 } 4494 4495 // No special expansion. 4496 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4497 } 4498 4499 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4500 /// limited-precision mode. 4501 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4502 const TargetLowering &TLI) { 4503 // TODO: What fast-math-flags should be set on the floating-point nodes? 4504 4505 if (Op.getValueType() == MVT::f32 && 4506 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4507 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4508 4509 // Scale the exponent by log(2) [0.69314718f]. 4510 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4511 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4512 getF32Constant(DAG, 0x3f317218, dl)); 4513 4514 // Get the significand and build it into a floating-point number with 4515 // exponent of 1. 4516 SDValue X = GetSignificand(DAG, Op1, dl); 4517 4518 SDValue LogOfMantissa; 4519 if (LimitFloatPrecision <= 6) { 4520 // For floating-point precision of 6: 4521 // 4522 // LogofMantissa = 4523 // -1.1609546f + 4524 // (1.4034025f - 0.23903021f * x) * x; 4525 // 4526 // error 0.0034276066, which is better than 8 bits 4527 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4528 getF32Constant(DAG, 0xbe74c456, dl)); 4529 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4530 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4531 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4532 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4533 getF32Constant(DAG, 0x3f949a29, dl)); 4534 } else if (LimitFloatPrecision <= 12) { 4535 // For floating-point precision of 12: 4536 // 4537 // LogOfMantissa = 4538 // -1.7417939f + 4539 // (2.8212026f + 4540 // (-1.4699568f + 4541 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4542 // 4543 // error 0.000061011436, which is 14 bits 4544 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4545 getF32Constant(DAG, 0xbd67b6d6, dl)); 4546 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4547 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4548 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4549 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4550 getF32Constant(DAG, 0x3fbc278b, dl)); 4551 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4552 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4553 getF32Constant(DAG, 0x40348e95, dl)); 4554 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4555 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4556 getF32Constant(DAG, 0x3fdef31a, dl)); 4557 } else { // LimitFloatPrecision <= 18 4558 // For floating-point precision of 18: 4559 // 4560 // LogOfMantissa = 4561 // -2.1072184f + 4562 // (4.2372794f + 4563 // (-3.7029485f + 4564 // (2.2781945f + 4565 // (-0.87823314f + 4566 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4567 // 4568 // error 0.0000023660568, which is better than 18 bits 4569 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4570 getF32Constant(DAG, 0xbc91e5ac, dl)); 4571 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4572 getF32Constant(DAG, 0x3e4350aa, dl)); 4573 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4574 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4575 getF32Constant(DAG, 0x3f60d3e3, dl)); 4576 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4577 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4578 getF32Constant(DAG, 0x4011cdf0, dl)); 4579 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4580 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4581 getF32Constant(DAG, 0x406cfd1c, dl)); 4582 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4583 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4584 getF32Constant(DAG, 0x408797cb, dl)); 4585 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4586 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4587 getF32Constant(DAG, 0x4006dcab, dl)); 4588 } 4589 4590 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4591 } 4592 4593 // No special expansion. 4594 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4595 } 4596 4597 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4598 /// limited-precision mode. 4599 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4600 const TargetLowering &TLI) { 4601 // TODO: What fast-math-flags should be set on the floating-point nodes? 4602 4603 if (Op.getValueType() == MVT::f32 && 4604 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4605 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4606 4607 // Get the exponent. 4608 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4609 4610 // Get the significand and build it into a floating-point number with 4611 // exponent of 1. 4612 SDValue X = GetSignificand(DAG, Op1, dl); 4613 4614 // Different possible minimax approximations of significand in 4615 // floating-point for various degrees of accuracy over [1,2]. 4616 SDValue Log2ofMantissa; 4617 if (LimitFloatPrecision <= 6) { 4618 // For floating-point precision of 6: 4619 // 4620 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4621 // 4622 // error 0.0049451742, which is more than 7 bits 4623 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4624 getF32Constant(DAG, 0xbeb08fe0, dl)); 4625 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4626 getF32Constant(DAG, 0x40019463, dl)); 4627 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4628 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4629 getF32Constant(DAG, 0x3fd6633d, dl)); 4630 } else if (LimitFloatPrecision <= 12) { 4631 // For floating-point precision of 12: 4632 // 4633 // Log2ofMantissa = 4634 // -2.51285454f + 4635 // (4.07009056f + 4636 // (-2.12067489f + 4637 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4638 // 4639 // error 0.0000876136000, which is better than 13 bits 4640 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4641 getF32Constant(DAG, 0xbda7262e, dl)); 4642 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4643 getF32Constant(DAG, 0x3f25280b, dl)); 4644 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4645 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4646 getF32Constant(DAG, 0x4007b923, dl)); 4647 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4648 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4649 getF32Constant(DAG, 0x40823e2f, dl)); 4650 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4651 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4652 getF32Constant(DAG, 0x4020d29c, dl)); 4653 } else { // LimitFloatPrecision <= 18 4654 // For floating-point precision of 18: 4655 // 4656 // Log2ofMantissa = 4657 // -3.0400495f + 4658 // (6.1129976f + 4659 // (-5.3420409f + 4660 // (3.2865683f + 4661 // (-1.2669343f + 4662 // (0.27515199f - 4663 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4664 // 4665 // error 0.0000018516, which is better than 18 bits 4666 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4667 getF32Constant(DAG, 0xbcd2769e, dl)); 4668 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4669 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4670 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4671 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4672 getF32Constant(DAG, 0x3fa22ae7, dl)); 4673 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4674 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4675 getF32Constant(DAG, 0x40525723, dl)); 4676 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4677 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4678 getF32Constant(DAG, 0x40aaf200, dl)); 4679 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4680 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4681 getF32Constant(DAG, 0x40c39dad, dl)); 4682 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4683 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4684 getF32Constant(DAG, 0x4042902c, dl)); 4685 } 4686 4687 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4688 } 4689 4690 // No special expansion. 4691 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4692 } 4693 4694 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4695 /// limited-precision mode. 4696 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4697 const TargetLowering &TLI) { 4698 // TODO: What fast-math-flags should be set on the floating-point nodes? 4699 4700 if (Op.getValueType() == MVT::f32 && 4701 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4702 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4703 4704 // Scale the exponent by log10(2) [0.30102999f]. 4705 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4706 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4707 getF32Constant(DAG, 0x3e9a209a, dl)); 4708 4709 // Get the significand and build it into a floating-point number with 4710 // exponent of 1. 4711 SDValue X = GetSignificand(DAG, Op1, dl); 4712 4713 SDValue Log10ofMantissa; 4714 if (LimitFloatPrecision <= 6) { 4715 // For floating-point precision of 6: 4716 // 4717 // Log10ofMantissa = 4718 // -0.50419619f + 4719 // (0.60948995f - 0.10380950f * x) * x; 4720 // 4721 // error 0.0014886165, which is 6 bits 4722 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4723 getF32Constant(DAG, 0xbdd49a13, dl)); 4724 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4725 getF32Constant(DAG, 0x3f1c0789, dl)); 4726 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4727 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4728 getF32Constant(DAG, 0x3f011300, dl)); 4729 } else if (LimitFloatPrecision <= 12) { 4730 // For floating-point precision of 12: 4731 // 4732 // Log10ofMantissa = 4733 // -0.64831180f + 4734 // (0.91751397f + 4735 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4736 // 4737 // error 0.00019228036, which is better than 12 bits 4738 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4739 getF32Constant(DAG, 0x3d431f31, dl)); 4740 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4741 getF32Constant(DAG, 0x3ea21fb2, dl)); 4742 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4743 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4744 getF32Constant(DAG, 0x3f6ae232, dl)); 4745 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4746 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4747 getF32Constant(DAG, 0x3f25f7c3, dl)); 4748 } else { // LimitFloatPrecision <= 18 4749 // For floating-point precision of 18: 4750 // 4751 // Log10ofMantissa = 4752 // -0.84299375f + 4753 // (1.5327582f + 4754 // (-1.0688956f + 4755 // (0.49102474f + 4756 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4757 // 4758 // error 0.0000037995730, which is better than 18 bits 4759 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4760 getF32Constant(DAG, 0x3c5d51ce, dl)); 4761 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4762 getF32Constant(DAG, 0x3e00685a, dl)); 4763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4764 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4765 getF32Constant(DAG, 0x3efb6798, dl)); 4766 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4767 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4768 getF32Constant(DAG, 0x3f88d192, dl)); 4769 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4770 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4771 getF32Constant(DAG, 0x3fc4316c, dl)); 4772 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4773 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4774 getF32Constant(DAG, 0x3f57ce70, dl)); 4775 } 4776 4777 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4778 } 4779 4780 // No special expansion. 4781 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4782 } 4783 4784 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4785 /// limited-precision mode. 4786 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4787 const TargetLowering &TLI) { 4788 if (Op.getValueType() == MVT::f32 && 4789 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4790 return getLimitedPrecisionExp2(Op, dl, DAG); 4791 4792 // No special expansion. 4793 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4794 } 4795 4796 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4797 /// limited-precision mode with x == 10.0f. 4798 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4799 SelectionDAG &DAG, const TargetLowering &TLI) { 4800 bool IsExp10 = false; 4801 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4802 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4803 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4804 APFloat Ten(10.0f); 4805 IsExp10 = LHSC->isExactlyValue(Ten); 4806 } 4807 } 4808 4809 // TODO: What fast-math-flags should be set on the FMUL node? 4810 if (IsExp10) { 4811 // Put the exponent in the right bit position for later addition to the 4812 // final result: 4813 // 4814 // #define LOG2OF10 3.3219281f 4815 // t0 = Op * LOG2OF10; 4816 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4817 getF32Constant(DAG, 0x40549a78, dl)); 4818 return getLimitedPrecisionExp2(t0, dl, DAG); 4819 } 4820 4821 // No special expansion. 4822 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4823 } 4824 4825 /// ExpandPowI - Expand a llvm.powi intrinsic. 4826 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4827 SelectionDAG &DAG) { 4828 // If RHS is a constant, we can expand this out to a multiplication tree, 4829 // otherwise we end up lowering to a call to __powidf2 (for example). When 4830 // optimizing for size, we only want to do this if the expansion would produce 4831 // a small number of multiplies, otherwise we do the full expansion. 4832 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4833 // Get the exponent as a positive value. 4834 unsigned Val = RHSC->getSExtValue(); 4835 if ((int)Val < 0) Val = -Val; 4836 4837 // powi(x, 0) -> 1.0 4838 if (Val == 0) 4839 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4840 4841 const Function &F = DAG.getMachineFunction().getFunction(); 4842 if (!F.optForSize() || 4843 // If optimizing for size, don't insert too many multiplies. 4844 // This inserts up to 5 multiplies. 4845 countPopulation(Val) + Log2_32(Val) < 7) { 4846 // We use the simple binary decomposition method to generate the multiply 4847 // sequence. There are more optimal ways to do this (for example, 4848 // powi(x,15) generates one more multiply than it should), but this has 4849 // the benefit of being both really simple and much better than a libcall. 4850 SDValue Res; // Logically starts equal to 1.0 4851 SDValue CurSquare = LHS; 4852 // TODO: Intrinsics should have fast-math-flags that propagate to these 4853 // nodes. 4854 while (Val) { 4855 if (Val & 1) { 4856 if (Res.getNode()) 4857 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4858 else 4859 Res = CurSquare; // 1.0*CurSquare. 4860 } 4861 4862 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4863 CurSquare, CurSquare); 4864 Val >>= 1; 4865 } 4866 4867 // If the original was negative, invert the result, producing 1/(x*x*x). 4868 if (RHSC->getSExtValue() < 0) 4869 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4870 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4871 return Res; 4872 } 4873 } 4874 4875 // Otherwise, expand to a libcall. 4876 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4877 } 4878 4879 // getUnderlyingArgReg - Find underlying register used for a truncated or 4880 // bitcasted argument. 4881 static unsigned getUnderlyingArgReg(const SDValue &N) { 4882 switch (N.getOpcode()) { 4883 case ISD::CopyFromReg: 4884 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4885 case ISD::BITCAST: 4886 case ISD::AssertZext: 4887 case ISD::AssertSext: 4888 case ISD::TRUNCATE: 4889 return getUnderlyingArgReg(N.getOperand(0)); 4890 default: 4891 return 0; 4892 } 4893 } 4894 4895 /// If the DbgValueInst is a dbg_value of a function argument, create the 4896 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4897 /// instruction selection, they will be inserted to the entry BB. 4898 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4899 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4900 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4901 const Argument *Arg = dyn_cast<Argument>(V); 4902 if (!Arg) 4903 return false; 4904 4905 MachineFunction &MF = DAG.getMachineFunction(); 4906 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4907 4908 bool IsIndirect = false; 4909 Optional<MachineOperand> Op; 4910 // Some arguments' frame index is recorded during argument lowering. 4911 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4912 if (FI != std::numeric_limits<int>::max()) 4913 Op = MachineOperand::CreateFI(FI); 4914 4915 if (!Op && N.getNode()) { 4916 unsigned Reg = getUnderlyingArgReg(N); 4917 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4918 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4919 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4920 if (PR) 4921 Reg = PR; 4922 } 4923 if (Reg) { 4924 Op = MachineOperand::CreateReg(Reg, false); 4925 IsIndirect = IsDbgDeclare; 4926 } 4927 } 4928 4929 if (!Op && N.getNode()) 4930 // Check if frame index is available. 4931 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4932 if (FrameIndexSDNode *FINode = 4933 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4934 Op = MachineOperand::CreateFI(FINode->getIndex()); 4935 4936 if (!Op) { 4937 // Check if ValueMap has reg number. 4938 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4939 if (VMI != FuncInfo.ValueMap.end()) { 4940 const auto &TLI = DAG.getTargetLoweringInfo(); 4941 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4942 V->getType(), isABIRegCopy(V)); 4943 if (RFV.occupiesMultipleRegs()) { 4944 unsigned Offset = 0; 4945 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4946 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4947 auto FragmentExpr = DIExpression::createFragmentExpression( 4948 Expr, Offset, RegAndSize.second); 4949 if (!FragmentExpr) 4950 continue; 4951 FuncInfo.ArgDbgValues.push_back( 4952 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4953 Op->getReg(), Variable, *FragmentExpr)); 4954 Offset += RegAndSize.second; 4955 } 4956 return true; 4957 } 4958 Op = MachineOperand::CreateReg(VMI->second, false); 4959 IsIndirect = IsDbgDeclare; 4960 } 4961 } 4962 4963 if (!Op) 4964 return false; 4965 4966 assert(Variable->isValidLocationForIntrinsic(DL) && 4967 "Expected inlined-at fields to agree"); 4968 IsIndirect = (Op->isReg()) ? IsIndirect : true; 4969 FuncInfo.ArgDbgValues.push_back( 4970 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4971 *Op, Variable, Expr)); 4972 4973 return true; 4974 } 4975 4976 /// Return the appropriate SDDbgValue based on N. 4977 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4978 DILocalVariable *Variable, 4979 DIExpression *Expr, 4980 const DebugLoc &dl, 4981 unsigned DbgSDNodeOrder) { 4982 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4983 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4984 // stack slot locations as such instead of as indirectly addressed 4985 // locations. 4986 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4987 DbgSDNodeOrder); 4988 } 4989 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4990 DbgSDNodeOrder); 4991 } 4992 4993 // VisualStudio defines setjmp as _setjmp 4994 #if defined(_MSC_VER) && defined(setjmp) && \ 4995 !defined(setjmp_undefined_for_msvc) 4996 # pragma push_macro("setjmp") 4997 # undef setjmp 4998 # define setjmp_undefined_for_msvc 4999 #endif 5000 5001 /// Lower the call to the specified intrinsic function. If we want to emit this 5002 /// as a call to a named external function, return the name. Otherwise, lower it 5003 /// and return null. 5004 const char * 5005 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5007 SDLoc sdl = getCurSDLoc(); 5008 DebugLoc dl = getCurDebugLoc(); 5009 SDValue Res; 5010 5011 switch (Intrinsic) { 5012 default: 5013 // By default, turn this into a target intrinsic node. 5014 visitTargetIntrinsic(I, Intrinsic); 5015 return nullptr; 5016 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5017 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5018 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5019 case Intrinsic::returnaddress: 5020 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5021 TLI.getPointerTy(DAG.getDataLayout()), 5022 getValue(I.getArgOperand(0)))); 5023 return nullptr; 5024 case Intrinsic::addressofreturnaddress: 5025 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5026 TLI.getPointerTy(DAG.getDataLayout()))); 5027 return nullptr; 5028 case Intrinsic::frameaddress: 5029 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5030 TLI.getPointerTy(DAG.getDataLayout()), 5031 getValue(I.getArgOperand(0)))); 5032 return nullptr; 5033 case Intrinsic::read_register: { 5034 Value *Reg = I.getArgOperand(0); 5035 SDValue Chain = getRoot(); 5036 SDValue RegName = 5037 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5038 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5039 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5040 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5041 setValue(&I, Res); 5042 DAG.setRoot(Res.getValue(1)); 5043 return nullptr; 5044 } 5045 case Intrinsic::write_register: { 5046 Value *Reg = I.getArgOperand(0); 5047 Value *RegValue = I.getArgOperand(1); 5048 SDValue Chain = getRoot(); 5049 SDValue RegName = 5050 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5051 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5052 RegName, getValue(RegValue))); 5053 return nullptr; 5054 } 5055 case Intrinsic::setjmp: 5056 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5057 case Intrinsic::longjmp: 5058 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5059 case Intrinsic::memcpy: { 5060 const auto &MCI = cast<MemCpyInst>(I); 5061 SDValue Op1 = getValue(I.getArgOperand(0)); 5062 SDValue Op2 = getValue(I.getArgOperand(1)); 5063 SDValue Op3 = getValue(I.getArgOperand(2)); 5064 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5065 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5066 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5067 unsigned Align = MinAlign(DstAlign, SrcAlign); 5068 bool isVol = MCI.isVolatile(); 5069 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5070 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5071 // node. 5072 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5073 false, isTC, 5074 MachinePointerInfo(I.getArgOperand(0)), 5075 MachinePointerInfo(I.getArgOperand(1))); 5076 updateDAGForMaybeTailCall(MC); 5077 return nullptr; 5078 } 5079 case Intrinsic::memset: { 5080 const auto &MSI = cast<MemSetInst>(I); 5081 SDValue Op1 = getValue(I.getArgOperand(0)); 5082 SDValue Op2 = getValue(I.getArgOperand(1)); 5083 SDValue Op3 = getValue(I.getArgOperand(2)); 5084 // @llvm.memset defines 0 and 1 to both mean no alignment. 5085 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5086 bool isVol = MSI.isVolatile(); 5087 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5088 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5089 isTC, MachinePointerInfo(I.getArgOperand(0))); 5090 updateDAGForMaybeTailCall(MS); 5091 return nullptr; 5092 } 5093 case Intrinsic::memmove: { 5094 const auto &MMI = cast<MemMoveInst>(I); 5095 SDValue Op1 = getValue(I.getArgOperand(0)); 5096 SDValue Op2 = getValue(I.getArgOperand(1)); 5097 SDValue Op3 = getValue(I.getArgOperand(2)); 5098 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5099 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5100 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5101 unsigned Align = MinAlign(DstAlign, SrcAlign); 5102 bool isVol = MMI.isVolatile(); 5103 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5104 // FIXME: Support passing different dest/src alignments to the memmove DAG 5105 // node. 5106 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5107 isTC, MachinePointerInfo(I.getArgOperand(0)), 5108 MachinePointerInfo(I.getArgOperand(1))); 5109 updateDAGForMaybeTailCall(MM); 5110 return nullptr; 5111 } 5112 case Intrinsic::memcpy_element_unordered_atomic: { 5113 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5114 SDValue Dst = getValue(MI.getRawDest()); 5115 SDValue Src = getValue(MI.getRawSource()); 5116 SDValue Length = getValue(MI.getLength()); 5117 5118 unsigned DstAlign = MI.getDestAlignment(); 5119 unsigned SrcAlign = MI.getSourceAlignment(); 5120 Type *LengthTy = MI.getLength()->getType(); 5121 unsigned ElemSz = MI.getElementSizeInBytes(); 5122 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5123 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5124 SrcAlign, Length, LengthTy, ElemSz, isTC, 5125 MachinePointerInfo(MI.getRawDest()), 5126 MachinePointerInfo(MI.getRawSource())); 5127 updateDAGForMaybeTailCall(MC); 5128 return nullptr; 5129 } 5130 case Intrinsic::memmove_element_unordered_atomic: { 5131 auto &MI = cast<AtomicMemMoveInst>(I); 5132 SDValue Dst = getValue(MI.getRawDest()); 5133 SDValue Src = getValue(MI.getRawSource()); 5134 SDValue Length = getValue(MI.getLength()); 5135 5136 unsigned DstAlign = MI.getDestAlignment(); 5137 unsigned SrcAlign = MI.getSourceAlignment(); 5138 Type *LengthTy = MI.getLength()->getType(); 5139 unsigned ElemSz = MI.getElementSizeInBytes(); 5140 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5141 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5142 SrcAlign, Length, LengthTy, ElemSz, isTC, 5143 MachinePointerInfo(MI.getRawDest()), 5144 MachinePointerInfo(MI.getRawSource())); 5145 updateDAGForMaybeTailCall(MC); 5146 return nullptr; 5147 } 5148 case Intrinsic::memset_element_unordered_atomic: { 5149 auto &MI = cast<AtomicMemSetInst>(I); 5150 SDValue Dst = getValue(MI.getRawDest()); 5151 SDValue Val = getValue(MI.getValue()); 5152 SDValue Length = getValue(MI.getLength()); 5153 5154 unsigned DstAlign = MI.getDestAlignment(); 5155 Type *LengthTy = MI.getLength()->getType(); 5156 unsigned ElemSz = MI.getElementSizeInBytes(); 5157 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5158 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5159 LengthTy, ElemSz, isTC, 5160 MachinePointerInfo(MI.getRawDest())); 5161 updateDAGForMaybeTailCall(MC); 5162 return nullptr; 5163 } 5164 case Intrinsic::dbg_addr: 5165 case Intrinsic::dbg_declare: { 5166 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5167 DILocalVariable *Variable = DI.getVariable(); 5168 DIExpression *Expression = DI.getExpression(); 5169 dropDanglingDebugInfo(Variable, Expression); 5170 assert(Variable && "Missing variable"); 5171 5172 // Check if address has undef value. 5173 const Value *Address = DI.getVariableLocation(); 5174 if (!Address || isa<UndefValue>(Address) || 5175 (Address->use_empty() && !isa<Argument>(Address))) { 5176 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5177 return nullptr; 5178 } 5179 5180 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5181 5182 // Check if this variable can be described by a frame index, typically 5183 // either as a static alloca or a byval parameter. 5184 int FI = std::numeric_limits<int>::max(); 5185 if (const auto *AI = 5186 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5187 if (AI->isStaticAlloca()) { 5188 auto I = FuncInfo.StaticAllocaMap.find(AI); 5189 if (I != FuncInfo.StaticAllocaMap.end()) 5190 FI = I->second; 5191 } 5192 } else if (const auto *Arg = dyn_cast<Argument>( 5193 Address->stripInBoundsConstantOffsets())) { 5194 FI = FuncInfo.getArgumentFrameIndex(Arg); 5195 } 5196 5197 // llvm.dbg.addr is control dependent and always generates indirect 5198 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5199 // the MachineFunction variable table. 5200 if (FI != std::numeric_limits<int>::max()) { 5201 if (Intrinsic == Intrinsic::dbg_addr) { 5202 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5203 FI, dl, SDNodeOrder); 5204 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5205 } 5206 return nullptr; 5207 } 5208 5209 SDValue &N = NodeMap[Address]; 5210 if (!N.getNode() && isa<Argument>(Address)) 5211 // Check unused arguments map. 5212 N = UnusedArgNodeMap[Address]; 5213 SDDbgValue *SDV; 5214 if (N.getNode()) { 5215 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5216 Address = BCI->getOperand(0); 5217 // Parameters are handled specially. 5218 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5219 if (isParameter && FINode) { 5220 // Byval parameter. We have a frame index at this point. 5221 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5222 FINode->getIndex(), dl, SDNodeOrder); 5223 } else if (isa<Argument>(Address)) { 5224 // Address is an argument, so try to emit its dbg value using 5225 // virtual register info from the FuncInfo.ValueMap. 5226 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5227 return nullptr; 5228 } else { 5229 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5230 true, dl, SDNodeOrder); 5231 } 5232 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5233 } else { 5234 // If Address is an argument then try to emit its dbg value using 5235 // virtual register info from the FuncInfo.ValueMap. 5236 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5237 N)) { 5238 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5239 } 5240 } 5241 return nullptr; 5242 } 5243 case Intrinsic::dbg_label: { 5244 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5245 DILabel *Label = DI.getLabel(); 5246 assert(Label && "Missing label"); 5247 5248 SDDbgLabel *SDV; 5249 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5250 DAG.AddDbgLabel(SDV); 5251 return nullptr; 5252 } 5253 case Intrinsic::dbg_value: { 5254 const DbgValueInst &DI = cast<DbgValueInst>(I); 5255 assert(DI.getVariable() && "Missing variable"); 5256 5257 DILocalVariable *Variable = DI.getVariable(); 5258 DIExpression *Expression = DI.getExpression(); 5259 dropDanglingDebugInfo(Variable, Expression); 5260 const Value *V = DI.getValue(); 5261 if (!V) 5262 return nullptr; 5263 5264 SDDbgValue *SDV; 5265 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5266 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5267 DAG.AddDbgValue(SDV, nullptr, false); 5268 return nullptr; 5269 } 5270 5271 // Do not use getValue() in here; we don't want to generate code at 5272 // this point if it hasn't been done yet. 5273 SDValue N = NodeMap[V]; 5274 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5275 N = UnusedArgNodeMap[V]; 5276 if (N.getNode()) { 5277 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5278 return nullptr; 5279 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5280 DAG.AddDbgValue(SDV, N.getNode(), false); 5281 return nullptr; 5282 } 5283 5284 // PHI nodes have already been selected, so we should know which VReg that 5285 // is assigns to already. 5286 if (isa<PHINode>(V)) { 5287 auto VMI = FuncInfo.ValueMap.find(V); 5288 if (VMI != FuncInfo.ValueMap.end()) { 5289 unsigned Reg = VMI->second; 5290 // The PHI node may be split up into several MI PHI nodes (in 5291 // FunctionLoweringInfo::set). 5292 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5293 V->getType(), false); 5294 if (RFV.occupiesMultipleRegs()) { 5295 unsigned Offset = 0; 5296 unsigned BitsToDescribe = 0; 5297 if (auto VarSize = Variable->getSizeInBits()) 5298 BitsToDescribe = *VarSize; 5299 if (auto Fragment = Expression->getFragmentInfo()) 5300 BitsToDescribe = Fragment->SizeInBits; 5301 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5302 unsigned RegisterSize = RegAndSize.second; 5303 // Bail out if all bits are described already. 5304 if (Offset >= BitsToDescribe) 5305 break; 5306 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5307 ? BitsToDescribe - Offset 5308 : RegisterSize; 5309 auto FragmentExpr = DIExpression::createFragmentExpression( 5310 Expression, Offset, FragmentSize); 5311 if (!FragmentExpr) 5312 continue; 5313 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5314 false, dl, SDNodeOrder); 5315 DAG.AddDbgValue(SDV, nullptr, false); 5316 Offset += RegisterSize; 5317 } 5318 } else { 5319 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5320 SDNodeOrder); 5321 DAG.AddDbgValue(SDV, nullptr, false); 5322 } 5323 return nullptr; 5324 } 5325 } 5326 5327 // TODO: When we get here we will either drop the dbg.value completely, or 5328 // we try to move it forward by letting it dangle for awhile. So we should 5329 // probably add an extra DbgValue to the DAG here, with a reference to 5330 // "noreg", to indicate that we have lost the debug location for the 5331 // variable. 5332 5333 if (!V->use_empty() ) { 5334 // Do not call getValue(V) yet, as we don't want to generate code. 5335 // Remember it for later. 5336 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5337 DanglingDebugInfoMap[V].push_back(DDI); 5338 return nullptr; 5339 } 5340 5341 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5342 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5343 return nullptr; 5344 } 5345 5346 case Intrinsic::eh_typeid_for: { 5347 // Find the type id for the given typeinfo. 5348 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5349 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5350 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5351 setValue(&I, Res); 5352 return nullptr; 5353 } 5354 5355 case Intrinsic::eh_return_i32: 5356 case Intrinsic::eh_return_i64: 5357 DAG.getMachineFunction().setCallsEHReturn(true); 5358 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5359 MVT::Other, 5360 getControlRoot(), 5361 getValue(I.getArgOperand(0)), 5362 getValue(I.getArgOperand(1)))); 5363 return nullptr; 5364 case Intrinsic::eh_unwind_init: 5365 DAG.getMachineFunction().setCallsUnwindInit(true); 5366 return nullptr; 5367 case Intrinsic::eh_dwarf_cfa: 5368 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5369 TLI.getPointerTy(DAG.getDataLayout()), 5370 getValue(I.getArgOperand(0)))); 5371 return nullptr; 5372 case Intrinsic::eh_sjlj_callsite: { 5373 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5374 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5375 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5376 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5377 5378 MMI.setCurrentCallSite(CI->getZExtValue()); 5379 return nullptr; 5380 } 5381 case Intrinsic::eh_sjlj_functioncontext: { 5382 // Get and store the index of the function context. 5383 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5384 AllocaInst *FnCtx = 5385 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5386 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5387 MFI.setFunctionContextIndex(FI); 5388 return nullptr; 5389 } 5390 case Intrinsic::eh_sjlj_setjmp: { 5391 SDValue Ops[2]; 5392 Ops[0] = getRoot(); 5393 Ops[1] = getValue(I.getArgOperand(0)); 5394 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5395 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5396 setValue(&I, Op.getValue(0)); 5397 DAG.setRoot(Op.getValue(1)); 5398 return nullptr; 5399 } 5400 case Intrinsic::eh_sjlj_longjmp: 5401 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5402 getRoot(), getValue(I.getArgOperand(0)))); 5403 return nullptr; 5404 case Intrinsic::eh_sjlj_setup_dispatch: 5405 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5406 getRoot())); 5407 return nullptr; 5408 case Intrinsic::masked_gather: 5409 visitMaskedGather(I); 5410 return nullptr; 5411 case Intrinsic::masked_load: 5412 visitMaskedLoad(I); 5413 return nullptr; 5414 case Intrinsic::masked_scatter: 5415 visitMaskedScatter(I); 5416 return nullptr; 5417 case Intrinsic::masked_store: 5418 visitMaskedStore(I); 5419 return nullptr; 5420 case Intrinsic::masked_expandload: 5421 visitMaskedLoad(I, true /* IsExpanding */); 5422 return nullptr; 5423 case Intrinsic::masked_compressstore: 5424 visitMaskedStore(I, true /* IsCompressing */); 5425 return nullptr; 5426 case Intrinsic::x86_mmx_pslli_w: 5427 case Intrinsic::x86_mmx_pslli_d: 5428 case Intrinsic::x86_mmx_pslli_q: 5429 case Intrinsic::x86_mmx_psrli_w: 5430 case Intrinsic::x86_mmx_psrli_d: 5431 case Intrinsic::x86_mmx_psrli_q: 5432 case Intrinsic::x86_mmx_psrai_w: 5433 case Intrinsic::x86_mmx_psrai_d: { 5434 SDValue ShAmt = getValue(I.getArgOperand(1)); 5435 if (isa<ConstantSDNode>(ShAmt)) { 5436 visitTargetIntrinsic(I, Intrinsic); 5437 return nullptr; 5438 } 5439 unsigned NewIntrinsic = 0; 5440 EVT ShAmtVT = MVT::v2i32; 5441 switch (Intrinsic) { 5442 case Intrinsic::x86_mmx_pslli_w: 5443 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5444 break; 5445 case Intrinsic::x86_mmx_pslli_d: 5446 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5447 break; 5448 case Intrinsic::x86_mmx_pslli_q: 5449 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5450 break; 5451 case Intrinsic::x86_mmx_psrli_w: 5452 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5453 break; 5454 case Intrinsic::x86_mmx_psrli_d: 5455 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5456 break; 5457 case Intrinsic::x86_mmx_psrli_q: 5458 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5459 break; 5460 case Intrinsic::x86_mmx_psrai_w: 5461 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5462 break; 5463 case Intrinsic::x86_mmx_psrai_d: 5464 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5465 break; 5466 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5467 } 5468 5469 // The vector shift intrinsics with scalars uses 32b shift amounts but 5470 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5471 // to be zero. 5472 // We must do this early because v2i32 is not a legal type. 5473 SDValue ShOps[2]; 5474 ShOps[0] = ShAmt; 5475 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5476 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5477 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5478 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5479 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5480 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5481 getValue(I.getArgOperand(0)), ShAmt); 5482 setValue(&I, Res); 5483 return nullptr; 5484 } 5485 case Intrinsic::powi: 5486 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5487 getValue(I.getArgOperand(1)), DAG)); 5488 return nullptr; 5489 case Intrinsic::log: 5490 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5491 return nullptr; 5492 case Intrinsic::log2: 5493 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5494 return nullptr; 5495 case Intrinsic::log10: 5496 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5497 return nullptr; 5498 case Intrinsic::exp: 5499 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5500 return nullptr; 5501 case Intrinsic::exp2: 5502 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5503 return nullptr; 5504 case Intrinsic::pow: 5505 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5506 getValue(I.getArgOperand(1)), DAG, TLI)); 5507 return nullptr; 5508 case Intrinsic::sqrt: 5509 case Intrinsic::fabs: 5510 case Intrinsic::sin: 5511 case Intrinsic::cos: 5512 case Intrinsic::floor: 5513 case Intrinsic::ceil: 5514 case Intrinsic::trunc: 5515 case Intrinsic::rint: 5516 case Intrinsic::nearbyint: 5517 case Intrinsic::round: 5518 case Intrinsic::canonicalize: { 5519 unsigned Opcode; 5520 switch (Intrinsic) { 5521 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5522 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5523 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5524 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5525 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5526 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5527 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5528 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5529 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5530 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5531 case Intrinsic::round: Opcode = ISD::FROUND; break; 5532 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5533 } 5534 5535 setValue(&I, DAG.getNode(Opcode, sdl, 5536 getValue(I.getArgOperand(0)).getValueType(), 5537 getValue(I.getArgOperand(0)))); 5538 return nullptr; 5539 } 5540 case Intrinsic::minnum: { 5541 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5542 unsigned Opc = 5543 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5544 ? ISD::FMINNAN 5545 : ISD::FMINNUM; 5546 setValue(&I, DAG.getNode(Opc, sdl, VT, 5547 getValue(I.getArgOperand(0)), 5548 getValue(I.getArgOperand(1)))); 5549 return nullptr; 5550 } 5551 case Intrinsic::maxnum: { 5552 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5553 unsigned Opc = 5554 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5555 ? ISD::FMAXNAN 5556 : ISD::FMAXNUM; 5557 setValue(&I, DAG.getNode(Opc, sdl, VT, 5558 getValue(I.getArgOperand(0)), 5559 getValue(I.getArgOperand(1)))); 5560 return nullptr; 5561 } 5562 case Intrinsic::copysign: 5563 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5564 getValue(I.getArgOperand(0)).getValueType(), 5565 getValue(I.getArgOperand(0)), 5566 getValue(I.getArgOperand(1)))); 5567 return nullptr; 5568 case Intrinsic::fma: 5569 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5570 getValue(I.getArgOperand(0)).getValueType(), 5571 getValue(I.getArgOperand(0)), 5572 getValue(I.getArgOperand(1)), 5573 getValue(I.getArgOperand(2)))); 5574 return nullptr; 5575 case Intrinsic::experimental_constrained_fadd: 5576 case Intrinsic::experimental_constrained_fsub: 5577 case Intrinsic::experimental_constrained_fmul: 5578 case Intrinsic::experimental_constrained_fdiv: 5579 case Intrinsic::experimental_constrained_frem: 5580 case Intrinsic::experimental_constrained_fma: 5581 case Intrinsic::experimental_constrained_sqrt: 5582 case Intrinsic::experimental_constrained_pow: 5583 case Intrinsic::experimental_constrained_powi: 5584 case Intrinsic::experimental_constrained_sin: 5585 case Intrinsic::experimental_constrained_cos: 5586 case Intrinsic::experimental_constrained_exp: 5587 case Intrinsic::experimental_constrained_exp2: 5588 case Intrinsic::experimental_constrained_log: 5589 case Intrinsic::experimental_constrained_log10: 5590 case Intrinsic::experimental_constrained_log2: 5591 case Intrinsic::experimental_constrained_rint: 5592 case Intrinsic::experimental_constrained_nearbyint: 5593 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5594 return nullptr; 5595 case Intrinsic::fmuladd: { 5596 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5597 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5598 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5599 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5600 getValue(I.getArgOperand(0)).getValueType(), 5601 getValue(I.getArgOperand(0)), 5602 getValue(I.getArgOperand(1)), 5603 getValue(I.getArgOperand(2)))); 5604 } else { 5605 // TODO: Intrinsic calls should have fast-math-flags. 5606 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5607 getValue(I.getArgOperand(0)).getValueType(), 5608 getValue(I.getArgOperand(0)), 5609 getValue(I.getArgOperand(1))); 5610 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5611 getValue(I.getArgOperand(0)).getValueType(), 5612 Mul, 5613 getValue(I.getArgOperand(2))); 5614 setValue(&I, Add); 5615 } 5616 return nullptr; 5617 } 5618 case Intrinsic::convert_to_fp16: 5619 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5620 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5621 getValue(I.getArgOperand(0)), 5622 DAG.getTargetConstant(0, sdl, 5623 MVT::i32)))); 5624 return nullptr; 5625 case Intrinsic::convert_from_fp16: 5626 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5627 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5628 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5629 getValue(I.getArgOperand(0))))); 5630 return nullptr; 5631 case Intrinsic::pcmarker: { 5632 SDValue Tmp = getValue(I.getArgOperand(0)); 5633 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5634 return nullptr; 5635 } 5636 case Intrinsic::readcyclecounter: { 5637 SDValue Op = getRoot(); 5638 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5639 DAG.getVTList(MVT::i64, MVT::Other), Op); 5640 setValue(&I, Res); 5641 DAG.setRoot(Res.getValue(1)); 5642 return nullptr; 5643 } 5644 case Intrinsic::bitreverse: 5645 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5646 getValue(I.getArgOperand(0)).getValueType(), 5647 getValue(I.getArgOperand(0)))); 5648 return nullptr; 5649 case Intrinsic::bswap: 5650 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5651 getValue(I.getArgOperand(0)).getValueType(), 5652 getValue(I.getArgOperand(0)))); 5653 return nullptr; 5654 case Intrinsic::cttz: { 5655 SDValue Arg = getValue(I.getArgOperand(0)); 5656 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5657 EVT Ty = Arg.getValueType(); 5658 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5659 sdl, Ty, Arg)); 5660 return nullptr; 5661 } 5662 case Intrinsic::ctlz: { 5663 SDValue Arg = getValue(I.getArgOperand(0)); 5664 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5665 EVT Ty = Arg.getValueType(); 5666 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5667 sdl, Ty, Arg)); 5668 return nullptr; 5669 } 5670 case Intrinsic::ctpop: { 5671 SDValue Arg = getValue(I.getArgOperand(0)); 5672 EVT Ty = Arg.getValueType(); 5673 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5674 return nullptr; 5675 } 5676 case Intrinsic::stacksave: { 5677 SDValue Op = getRoot(); 5678 Res = DAG.getNode( 5679 ISD::STACKSAVE, sdl, 5680 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5681 setValue(&I, Res); 5682 DAG.setRoot(Res.getValue(1)); 5683 return nullptr; 5684 } 5685 case Intrinsic::stackrestore: 5686 Res = getValue(I.getArgOperand(0)); 5687 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5688 return nullptr; 5689 case Intrinsic::get_dynamic_area_offset: { 5690 SDValue Op = getRoot(); 5691 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5692 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5693 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5694 // target. 5695 if (PtrTy != ResTy) 5696 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5697 " intrinsic!"); 5698 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5699 Op); 5700 DAG.setRoot(Op); 5701 setValue(&I, Res); 5702 return nullptr; 5703 } 5704 case Intrinsic::stackguard: { 5705 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5706 MachineFunction &MF = DAG.getMachineFunction(); 5707 const Module &M = *MF.getFunction().getParent(); 5708 SDValue Chain = getRoot(); 5709 if (TLI.useLoadStackGuardNode()) { 5710 Res = getLoadStackGuard(DAG, sdl, Chain); 5711 } else { 5712 const Value *Global = TLI.getSDagStackGuard(M); 5713 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5714 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5715 MachinePointerInfo(Global, 0), Align, 5716 MachineMemOperand::MOVolatile); 5717 } 5718 if (TLI.useStackGuardXorFP()) 5719 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5720 DAG.setRoot(Chain); 5721 setValue(&I, Res); 5722 return nullptr; 5723 } 5724 case Intrinsic::stackprotector: { 5725 // Emit code into the DAG to store the stack guard onto the stack. 5726 MachineFunction &MF = DAG.getMachineFunction(); 5727 MachineFrameInfo &MFI = MF.getFrameInfo(); 5728 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5729 SDValue Src, Chain = getRoot(); 5730 5731 if (TLI.useLoadStackGuardNode()) 5732 Src = getLoadStackGuard(DAG, sdl, Chain); 5733 else 5734 Src = getValue(I.getArgOperand(0)); // The guard's value. 5735 5736 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5737 5738 int FI = FuncInfo.StaticAllocaMap[Slot]; 5739 MFI.setStackProtectorIndex(FI); 5740 5741 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5742 5743 // Store the stack protector onto the stack. 5744 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5745 DAG.getMachineFunction(), FI), 5746 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5747 setValue(&I, Res); 5748 DAG.setRoot(Res); 5749 return nullptr; 5750 } 5751 case Intrinsic::objectsize: { 5752 // If we don't know by now, we're never going to know. 5753 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5754 5755 assert(CI && "Non-constant type in __builtin_object_size?"); 5756 5757 SDValue Arg = getValue(I.getCalledValue()); 5758 EVT Ty = Arg.getValueType(); 5759 5760 if (CI->isZero()) 5761 Res = DAG.getConstant(-1ULL, sdl, Ty); 5762 else 5763 Res = DAG.getConstant(0, sdl, Ty); 5764 5765 setValue(&I, Res); 5766 return nullptr; 5767 } 5768 case Intrinsic::annotation: 5769 case Intrinsic::ptr_annotation: 5770 case Intrinsic::launder_invariant_group: 5771 case Intrinsic::strip_invariant_group: 5772 // Drop the intrinsic, but forward the value 5773 setValue(&I, getValue(I.getOperand(0))); 5774 return nullptr; 5775 case Intrinsic::assume: 5776 case Intrinsic::var_annotation: 5777 case Intrinsic::sideeffect: 5778 // Discard annotate attributes, assumptions, and artificial side-effects. 5779 return nullptr; 5780 5781 case Intrinsic::codeview_annotation: { 5782 // Emit a label associated with this metadata. 5783 MachineFunction &MF = DAG.getMachineFunction(); 5784 MCSymbol *Label = 5785 MF.getMMI().getContext().createTempSymbol("annotation", true); 5786 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5787 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5788 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5789 DAG.setRoot(Res); 5790 return nullptr; 5791 } 5792 5793 case Intrinsic::init_trampoline: { 5794 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5795 5796 SDValue Ops[6]; 5797 Ops[0] = getRoot(); 5798 Ops[1] = getValue(I.getArgOperand(0)); 5799 Ops[2] = getValue(I.getArgOperand(1)); 5800 Ops[3] = getValue(I.getArgOperand(2)); 5801 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5802 Ops[5] = DAG.getSrcValue(F); 5803 5804 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5805 5806 DAG.setRoot(Res); 5807 return nullptr; 5808 } 5809 case Intrinsic::adjust_trampoline: 5810 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5811 TLI.getPointerTy(DAG.getDataLayout()), 5812 getValue(I.getArgOperand(0)))); 5813 return nullptr; 5814 case Intrinsic::gcroot: { 5815 assert(DAG.getMachineFunction().getFunction().hasGC() && 5816 "only valid in functions with gc specified, enforced by Verifier"); 5817 assert(GFI && "implied by previous"); 5818 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5819 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5820 5821 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5822 GFI->addStackRoot(FI->getIndex(), TypeMap); 5823 return nullptr; 5824 } 5825 case Intrinsic::gcread: 5826 case Intrinsic::gcwrite: 5827 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5828 case Intrinsic::flt_rounds: 5829 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5830 return nullptr; 5831 5832 case Intrinsic::expect: 5833 // Just replace __builtin_expect(exp, c) with EXP. 5834 setValue(&I, getValue(I.getArgOperand(0))); 5835 return nullptr; 5836 5837 case Intrinsic::debugtrap: 5838 case Intrinsic::trap: { 5839 StringRef TrapFuncName = 5840 I.getAttributes() 5841 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5842 .getValueAsString(); 5843 if (TrapFuncName.empty()) { 5844 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5845 ISD::TRAP : ISD::DEBUGTRAP; 5846 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5847 return nullptr; 5848 } 5849 TargetLowering::ArgListTy Args; 5850 5851 TargetLowering::CallLoweringInfo CLI(DAG); 5852 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5853 CallingConv::C, I.getType(), 5854 DAG.getExternalSymbol(TrapFuncName.data(), 5855 TLI.getPointerTy(DAG.getDataLayout())), 5856 std::move(Args)); 5857 5858 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5859 DAG.setRoot(Result.second); 5860 return nullptr; 5861 } 5862 5863 case Intrinsic::uadd_with_overflow: 5864 case Intrinsic::sadd_with_overflow: 5865 case Intrinsic::usub_with_overflow: 5866 case Intrinsic::ssub_with_overflow: 5867 case Intrinsic::umul_with_overflow: 5868 case Intrinsic::smul_with_overflow: { 5869 ISD::NodeType Op; 5870 switch (Intrinsic) { 5871 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5872 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5873 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5874 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5875 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5876 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5877 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5878 } 5879 SDValue Op1 = getValue(I.getArgOperand(0)); 5880 SDValue Op2 = getValue(I.getArgOperand(1)); 5881 5882 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5883 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5884 return nullptr; 5885 } 5886 case Intrinsic::prefetch: { 5887 SDValue Ops[5]; 5888 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5889 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5890 Ops[0] = DAG.getRoot(); 5891 Ops[1] = getValue(I.getArgOperand(0)); 5892 Ops[2] = getValue(I.getArgOperand(1)); 5893 Ops[3] = getValue(I.getArgOperand(2)); 5894 Ops[4] = getValue(I.getArgOperand(3)); 5895 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5896 DAG.getVTList(MVT::Other), Ops, 5897 EVT::getIntegerVT(*Context, 8), 5898 MachinePointerInfo(I.getArgOperand(0)), 5899 0, /* align */ 5900 Flags); 5901 5902 // Chain the prefetch in parallell with any pending loads, to stay out of 5903 // the way of later optimizations. 5904 PendingLoads.push_back(Result); 5905 Result = getRoot(); 5906 DAG.setRoot(Result); 5907 return nullptr; 5908 } 5909 case Intrinsic::lifetime_start: 5910 case Intrinsic::lifetime_end: { 5911 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5912 // Stack coloring is not enabled in O0, discard region information. 5913 if (TM.getOptLevel() == CodeGenOpt::None) 5914 return nullptr; 5915 5916 SmallVector<Value *, 4> Allocas; 5917 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5918 5919 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5920 E = Allocas.end(); Object != E; ++Object) { 5921 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5922 5923 // Could not find an Alloca. 5924 if (!LifetimeObject) 5925 continue; 5926 5927 // First check that the Alloca is static, otherwise it won't have a 5928 // valid frame index. 5929 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5930 if (SI == FuncInfo.StaticAllocaMap.end()) 5931 return nullptr; 5932 5933 int FI = SI->second; 5934 5935 SDValue Ops[2]; 5936 Ops[0] = getRoot(); 5937 Ops[1] = 5938 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5939 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5940 5941 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5942 DAG.setRoot(Res); 5943 } 5944 return nullptr; 5945 } 5946 case Intrinsic::invariant_start: 5947 // Discard region information. 5948 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5949 return nullptr; 5950 case Intrinsic::invariant_end: 5951 // Discard region information. 5952 return nullptr; 5953 case Intrinsic::clear_cache: 5954 return TLI.getClearCacheBuiltinName(); 5955 case Intrinsic::donothing: 5956 // ignore 5957 return nullptr; 5958 case Intrinsic::experimental_stackmap: 5959 visitStackmap(I); 5960 return nullptr; 5961 case Intrinsic::experimental_patchpoint_void: 5962 case Intrinsic::experimental_patchpoint_i64: 5963 visitPatchpoint(&I); 5964 return nullptr; 5965 case Intrinsic::experimental_gc_statepoint: 5966 LowerStatepoint(ImmutableStatepoint(&I)); 5967 return nullptr; 5968 case Intrinsic::experimental_gc_result: 5969 visitGCResult(cast<GCResultInst>(I)); 5970 return nullptr; 5971 case Intrinsic::experimental_gc_relocate: 5972 visitGCRelocate(cast<GCRelocateInst>(I)); 5973 return nullptr; 5974 case Intrinsic::instrprof_increment: 5975 llvm_unreachable("instrprof failed to lower an increment"); 5976 case Intrinsic::instrprof_value_profile: 5977 llvm_unreachable("instrprof failed to lower a value profiling call"); 5978 case Intrinsic::localescape: { 5979 MachineFunction &MF = DAG.getMachineFunction(); 5980 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5981 5982 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5983 // is the same on all targets. 5984 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5985 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5986 if (isa<ConstantPointerNull>(Arg)) 5987 continue; // Skip null pointers. They represent a hole in index space. 5988 AllocaInst *Slot = cast<AllocaInst>(Arg); 5989 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5990 "can only escape static allocas"); 5991 int FI = FuncInfo.StaticAllocaMap[Slot]; 5992 MCSymbol *FrameAllocSym = 5993 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5994 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5996 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5997 .addSym(FrameAllocSym) 5998 .addFrameIndex(FI); 5999 } 6000 6001 return nullptr; 6002 } 6003 6004 case Intrinsic::localrecover: { 6005 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6006 MachineFunction &MF = DAG.getMachineFunction(); 6007 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6008 6009 // Get the symbol that defines the frame offset. 6010 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6011 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6012 unsigned IdxVal = 6013 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6014 MCSymbol *FrameAllocSym = 6015 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6016 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6017 6018 // Create a MCSymbol for the label to avoid any target lowering 6019 // that would make this PC relative. 6020 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6021 SDValue OffsetVal = 6022 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6023 6024 // Add the offset to the FP. 6025 Value *FP = I.getArgOperand(1); 6026 SDValue FPVal = getValue(FP); 6027 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6028 setValue(&I, Add); 6029 6030 return nullptr; 6031 } 6032 6033 case Intrinsic::eh_exceptionpointer: 6034 case Intrinsic::eh_exceptioncode: { 6035 // Get the exception pointer vreg, copy from it, and resize it to fit. 6036 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6037 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6038 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6039 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6040 SDValue N = 6041 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6042 if (Intrinsic == Intrinsic::eh_exceptioncode) 6043 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6044 setValue(&I, N); 6045 return nullptr; 6046 } 6047 case Intrinsic::xray_customevent: { 6048 // Here we want to make sure that the intrinsic behaves as if it has a 6049 // specific calling convention, and only for x86_64. 6050 // FIXME: Support other platforms later. 6051 const auto &Triple = DAG.getTarget().getTargetTriple(); 6052 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6053 return nullptr; 6054 6055 SDLoc DL = getCurSDLoc(); 6056 SmallVector<SDValue, 8> Ops; 6057 6058 // We want to say that we always want the arguments in registers. 6059 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6060 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6061 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6062 SDValue Chain = getRoot(); 6063 Ops.push_back(LogEntryVal); 6064 Ops.push_back(StrSizeVal); 6065 Ops.push_back(Chain); 6066 6067 // We need to enforce the calling convention for the callsite, so that 6068 // argument ordering is enforced correctly, and that register allocation can 6069 // see that some registers may be assumed clobbered and have to preserve 6070 // them across calls to the intrinsic. 6071 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6072 DL, NodeTys, Ops); 6073 SDValue patchableNode = SDValue(MN, 0); 6074 DAG.setRoot(patchableNode); 6075 setValue(&I, patchableNode); 6076 return nullptr; 6077 } 6078 case Intrinsic::xray_typedevent: { 6079 // Here we want to make sure that the intrinsic behaves as if it has a 6080 // specific calling convention, and only for x86_64. 6081 // FIXME: Support other platforms later. 6082 const auto &Triple = DAG.getTarget().getTargetTriple(); 6083 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6084 return nullptr; 6085 6086 SDLoc DL = getCurSDLoc(); 6087 SmallVector<SDValue, 8> Ops; 6088 6089 // We want to say that we always want the arguments in registers. 6090 // It's unclear to me how manipulating the selection DAG here forces callers 6091 // to provide arguments in registers instead of on the stack. 6092 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6093 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6094 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6095 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6096 SDValue Chain = getRoot(); 6097 Ops.push_back(LogTypeId); 6098 Ops.push_back(LogEntryVal); 6099 Ops.push_back(StrSizeVal); 6100 Ops.push_back(Chain); 6101 6102 // We need to enforce the calling convention for the callsite, so that 6103 // argument ordering is enforced correctly, and that register allocation can 6104 // see that some registers may be assumed clobbered and have to preserve 6105 // them across calls to the intrinsic. 6106 MachineSDNode *MN = DAG.getMachineNode( 6107 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6108 SDValue patchableNode = SDValue(MN, 0); 6109 DAG.setRoot(patchableNode); 6110 setValue(&I, patchableNode); 6111 return nullptr; 6112 } 6113 case Intrinsic::experimental_deoptimize: 6114 LowerDeoptimizeCall(&I); 6115 return nullptr; 6116 6117 case Intrinsic::experimental_vector_reduce_fadd: 6118 case Intrinsic::experimental_vector_reduce_fmul: 6119 case Intrinsic::experimental_vector_reduce_add: 6120 case Intrinsic::experimental_vector_reduce_mul: 6121 case Intrinsic::experimental_vector_reduce_and: 6122 case Intrinsic::experimental_vector_reduce_or: 6123 case Intrinsic::experimental_vector_reduce_xor: 6124 case Intrinsic::experimental_vector_reduce_smax: 6125 case Intrinsic::experimental_vector_reduce_smin: 6126 case Intrinsic::experimental_vector_reduce_umax: 6127 case Intrinsic::experimental_vector_reduce_umin: 6128 case Intrinsic::experimental_vector_reduce_fmax: 6129 case Intrinsic::experimental_vector_reduce_fmin: 6130 visitVectorReduce(I, Intrinsic); 6131 return nullptr; 6132 6133 case Intrinsic::icall_branch_funnel: { 6134 SmallVector<SDValue, 16> Ops; 6135 Ops.push_back(DAG.getRoot()); 6136 Ops.push_back(getValue(I.getArgOperand(0))); 6137 6138 int64_t Offset; 6139 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6140 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6141 if (!Base) 6142 report_fatal_error( 6143 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6144 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6145 6146 struct BranchFunnelTarget { 6147 int64_t Offset; 6148 SDValue Target; 6149 }; 6150 SmallVector<BranchFunnelTarget, 8> Targets; 6151 6152 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6153 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6154 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6155 if (ElemBase != Base) 6156 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6157 "to the same GlobalValue"); 6158 6159 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6160 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6161 if (!GA) 6162 report_fatal_error( 6163 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6164 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6165 GA->getGlobal(), getCurSDLoc(), 6166 Val.getValueType(), GA->getOffset())}); 6167 } 6168 llvm::sort(Targets.begin(), Targets.end(), 6169 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6170 return T1.Offset < T2.Offset; 6171 }); 6172 6173 for (auto &T : Targets) { 6174 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6175 Ops.push_back(T.Target); 6176 } 6177 6178 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6179 getCurSDLoc(), MVT::Other, Ops), 6180 0); 6181 DAG.setRoot(N); 6182 setValue(&I, N); 6183 HasTailCall = true; 6184 return nullptr; 6185 } 6186 6187 case Intrinsic::wasm_landingpad_index: { 6188 // TODO store landing pad index in a map, which will be used when generating 6189 // LSDA information 6190 return nullptr; 6191 } 6192 } 6193 } 6194 6195 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6196 const ConstrainedFPIntrinsic &FPI) { 6197 SDLoc sdl = getCurSDLoc(); 6198 unsigned Opcode; 6199 switch (FPI.getIntrinsicID()) { 6200 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6201 case Intrinsic::experimental_constrained_fadd: 6202 Opcode = ISD::STRICT_FADD; 6203 break; 6204 case Intrinsic::experimental_constrained_fsub: 6205 Opcode = ISD::STRICT_FSUB; 6206 break; 6207 case Intrinsic::experimental_constrained_fmul: 6208 Opcode = ISD::STRICT_FMUL; 6209 break; 6210 case Intrinsic::experimental_constrained_fdiv: 6211 Opcode = ISD::STRICT_FDIV; 6212 break; 6213 case Intrinsic::experimental_constrained_frem: 6214 Opcode = ISD::STRICT_FREM; 6215 break; 6216 case Intrinsic::experimental_constrained_fma: 6217 Opcode = ISD::STRICT_FMA; 6218 break; 6219 case Intrinsic::experimental_constrained_sqrt: 6220 Opcode = ISD::STRICT_FSQRT; 6221 break; 6222 case Intrinsic::experimental_constrained_pow: 6223 Opcode = ISD::STRICT_FPOW; 6224 break; 6225 case Intrinsic::experimental_constrained_powi: 6226 Opcode = ISD::STRICT_FPOWI; 6227 break; 6228 case Intrinsic::experimental_constrained_sin: 6229 Opcode = ISD::STRICT_FSIN; 6230 break; 6231 case Intrinsic::experimental_constrained_cos: 6232 Opcode = ISD::STRICT_FCOS; 6233 break; 6234 case Intrinsic::experimental_constrained_exp: 6235 Opcode = ISD::STRICT_FEXP; 6236 break; 6237 case Intrinsic::experimental_constrained_exp2: 6238 Opcode = ISD::STRICT_FEXP2; 6239 break; 6240 case Intrinsic::experimental_constrained_log: 6241 Opcode = ISD::STRICT_FLOG; 6242 break; 6243 case Intrinsic::experimental_constrained_log10: 6244 Opcode = ISD::STRICT_FLOG10; 6245 break; 6246 case Intrinsic::experimental_constrained_log2: 6247 Opcode = ISD::STRICT_FLOG2; 6248 break; 6249 case Intrinsic::experimental_constrained_rint: 6250 Opcode = ISD::STRICT_FRINT; 6251 break; 6252 case Intrinsic::experimental_constrained_nearbyint: 6253 Opcode = ISD::STRICT_FNEARBYINT; 6254 break; 6255 } 6256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6257 SDValue Chain = getRoot(); 6258 SmallVector<EVT, 4> ValueVTs; 6259 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6260 ValueVTs.push_back(MVT::Other); // Out chain 6261 6262 SDVTList VTs = DAG.getVTList(ValueVTs); 6263 SDValue Result; 6264 if (FPI.isUnaryOp()) 6265 Result = DAG.getNode(Opcode, sdl, VTs, 6266 { Chain, getValue(FPI.getArgOperand(0)) }); 6267 else if (FPI.isTernaryOp()) 6268 Result = DAG.getNode(Opcode, sdl, VTs, 6269 { Chain, getValue(FPI.getArgOperand(0)), 6270 getValue(FPI.getArgOperand(1)), 6271 getValue(FPI.getArgOperand(2)) }); 6272 else 6273 Result = DAG.getNode(Opcode, sdl, VTs, 6274 { Chain, getValue(FPI.getArgOperand(0)), 6275 getValue(FPI.getArgOperand(1)) }); 6276 6277 assert(Result.getNode()->getNumValues() == 2); 6278 SDValue OutChain = Result.getValue(1); 6279 DAG.setRoot(OutChain); 6280 SDValue FPResult = Result.getValue(0); 6281 setValue(&FPI, FPResult); 6282 } 6283 6284 std::pair<SDValue, SDValue> 6285 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6286 const BasicBlock *EHPadBB) { 6287 MachineFunction &MF = DAG.getMachineFunction(); 6288 MachineModuleInfo &MMI = MF.getMMI(); 6289 MCSymbol *BeginLabel = nullptr; 6290 6291 if (EHPadBB) { 6292 // Insert a label before the invoke call to mark the try range. This can be 6293 // used to detect deletion of the invoke via the MachineModuleInfo. 6294 BeginLabel = MMI.getContext().createTempSymbol(); 6295 6296 // For SjLj, keep track of which landing pads go with which invokes 6297 // so as to maintain the ordering of pads in the LSDA. 6298 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6299 if (CallSiteIndex) { 6300 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6301 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6302 6303 // Now that the call site is handled, stop tracking it. 6304 MMI.setCurrentCallSite(0); 6305 } 6306 6307 // Both PendingLoads and PendingExports must be flushed here; 6308 // this call might not return. 6309 (void)getRoot(); 6310 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6311 6312 CLI.setChain(getRoot()); 6313 } 6314 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6315 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6316 6317 assert((CLI.IsTailCall || Result.second.getNode()) && 6318 "Non-null chain expected with non-tail call!"); 6319 assert((Result.second.getNode() || !Result.first.getNode()) && 6320 "Null value expected with tail call!"); 6321 6322 if (!Result.second.getNode()) { 6323 // As a special case, a null chain means that a tail call has been emitted 6324 // and the DAG root is already updated. 6325 HasTailCall = true; 6326 6327 // Since there's no actual continuation from this block, nothing can be 6328 // relying on us setting vregs for them. 6329 PendingExports.clear(); 6330 } else { 6331 DAG.setRoot(Result.second); 6332 } 6333 6334 if (EHPadBB) { 6335 // Insert a label at the end of the invoke call to mark the try range. This 6336 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6337 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6338 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6339 6340 // Inform MachineModuleInfo of range. 6341 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6342 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6343 // actually use outlined funclets and their LSDA info style. 6344 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6345 assert(CLI.CS); 6346 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6347 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6348 BeginLabel, EndLabel); 6349 } else { 6350 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6351 } 6352 } 6353 6354 return Result; 6355 } 6356 6357 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6358 bool isTailCall, 6359 const BasicBlock *EHPadBB) { 6360 auto &DL = DAG.getDataLayout(); 6361 FunctionType *FTy = CS.getFunctionType(); 6362 Type *RetTy = CS.getType(); 6363 6364 TargetLowering::ArgListTy Args; 6365 Args.reserve(CS.arg_size()); 6366 6367 const Value *SwiftErrorVal = nullptr; 6368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6369 6370 // We can't tail call inside a function with a swifterror argument. Lowering 6371 // does not support this yet. It would have to move into the swifterror 6372 // register before the call. 6373 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6374 if (TLI.supportSwiftError() && 6375 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6376 isTailCall = false; 6377 6378 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6379 i != e; ++i) { 6380 TargetLowering::ArgListEntry Entry; 6381 const Value *V = *i; 6382 6383 // Skip empty types 6384 if (V->getType()->isEmptyTy()) 6385 continue; 6386 6387 SDValue ArgNode = getValue(V); 6388 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6389 6390 Entry.setAttributes(&CS, i - CS.arg_begin()); 6391 6392 // Use swifterror virtual register as input to the call. 6393 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6394 SwiftErrorVal = V; 6395 // We find the virtual register for the actual swifterror argument. 6396 // Instead of using the Value, we use the virtual register instead. 6397 Entry.Node = DAG.getRegister(FuncInfo 6398 .getOrCreateSwiftErrorVRegUseAt( 6399 CS.getInstruction(), FuncInfo.MBB, V) 6400 .first, 6401 EVT(TLI.getPointerTy(DL))); 6402 } 6403 6404 Args.push_back(Entry); 6405 6406 // If we have an explicit sret argument that is an Instruction, (i.e., it 6407 // might point to function-local memory), we can't meaningfully tail-call. 6408 if (Entry.IsSRet && isa<Instruction>(V)) 6409 isTailCall = false; 6410 } 6411 6412 // Check if target-independent constraints permit a tail call here. 6413 // Target-dependent constraints are checked within TLI->LowerCallTo. 6414 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6415 isTailCall = false; 6416 6417 // Disable tail calls if there is an swifterror argument. Targets have not 6418 // been updated to support tail calls. 6419 if (TLI.supportSwiftError() && SwiftErrorVal) 6420 isTailCall = false; 6421 6422 TargetLowering::CallLoweringInfo CLI(DAG); 6423 CLI.setDebugLoc(getCurSDLoc()) 6424 .setChain(getRoot()) 6425 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6426 .setTailCall(isTailCall) 6427 .setConvergent(CS.isConvergent()); 6428 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6429 6430 if (Result.first.getNode()) { 6431 const Instruction *Inst = CS.getInstruction(); 6432 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6433 setValue(Inst, Result.first); 6434 } 6435 6436 // The last element of CLI.InVals has the SDValue for swifterror return. 6437 // Here we copy it to a virtual register and update SwiftErrorMap for 6438 // book-keeping. 6439 if (SwiftErrorVal && TLI.supportSwiftError()) { 6440 // Get the last element of InVals. 6441 SDValue Src = CLI.InVals.back(); 6442 unsigned VReg; bool CreatedVReg; 6443 std::tie(VReg, CreatedVReg) = 6444 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6445 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6446 // We update the virtual register for the actual swifterror argument. 6447 if (CreatedVReg) 6448 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6449 DAG.setRoot(CopyNode); 6450 } 6451 } 6452 6453 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6454 SelectionDAGBuilder &Builder) { 6455 // Check to see if this load can be trivially constant folded, e.g. if the 6456 // input is from a string literal. 6457 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6458 // Cast pointer to the type we really want to load. 6459 Type *LoadTy = 6460 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6461 if (LoadVT.isVector()) 6462 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6463 6464 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6465 PointerType::getUnqual(LoadTy)); 6466 6467 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6468 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6469 return Builder.getValue(LoadCst); 6470 } 6471 6472 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6473 // still constant memory, the input chain can be the entry node. 6474 SDValue Root; 6475 bool ConstantMemory = false; 6476 6477 // Do not serialize (non-volatile) loads of constant memory with anything. 6478 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6479 Root = Builder.DAG.getEntryNode(); 6480 ConstantMemory = true; 6481 } else { 6482 // Do not serialize non-volatile loads against each other. 6483 Root = Builder.DAG.getRoot(); 6484 } 6485 6486 SDValue Ptr = Builder.getValue(PtrVal); 6487 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6488 Ptr, MachinePointerInfo(PtrVal), 6489 /* Alignment = */ 1); 6490 6491 if (!ConstantMemory) 6492 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6493 return LoadVal; 6494 } 6495 6496 /// Record the value for an instruction that produces an integer result, 6497 /// converting the type where necessary. 6498 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6499 SDValue Value, 6500 bool IsSigned) { 6501 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6502 I.getType(), true); 6503 if (IsSigned) 6504 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6505 else 6506 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6507 setValue(&I, Value); 6508 } 6509 6510 /// See if we can lower a memcmp call into an optimized form. If so, return 6511 /// true and lower it. Otherwise return false, and it will be lowered like a 6512 /// normal call. 6513 /// The caller already checked that \p I calls the appropriate LibFunc with a 6514 /// correct prototype. 6515 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6516 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6517 const Value *Size = I.getArgOperand(2); 6518 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6519 if (CSize && CSize->getZExtValue() == 0) { 6520 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6521 I.getType(), true); 6522 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6523 return true; 6524 } 6525 6526 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6527 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6528 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6529 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6530 if (Res.first.getNode()) { 6531 processIntegerCallValue(I, Res.first, true); 6532 PendingLoads.push_back(Res.second); 6533 return true; 6534 } 6535 6536 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6537 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6538 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6539 return false; 6540 6541 // If the target has a fast compare for the given size, it will return a 6542 // preferred load type for that size. Require that the load VT is legal and 6543 // that the target supports unaligned loads of that type. Otherwise, return 6544 // INVALID. 6545 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6547 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6548 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6549 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6550 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6551 // TODO: Check alignment of src and dest ptrs. 6552 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6553 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6554 if (!TLI.isTypeLegal(LVT) || 6555 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6556 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6557 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6558 } 6559 6560 return LVT; 6561 }; 6562 6563 // This turns into unaligned loads. We only do this if the target natively 6564 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6565 // we'll only produce a small number of byte loads. 6566 MVT LoadVT; 6567 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6568 switch (NumBitsToCompare) { 6569 default: 6570 return false; 6571 case 16: 6572 LoadVT = MVT::i16; 6573 break; 6574 case 32: 6575 LoadVT = MVT::i32; 6576 break; 6577 case 64: 6578 case 128: 6579 case 256: 6580 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6581 break; 6582 } 6583 6584 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6585 return false; 6586 6587 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6588 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6589 6590 // Bitcast to a wide integer type if the loads are vectors. 6591 if (LoadVT.isVector()) { 6592 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6593 LoadL = DAG.getBitcast(CmpVT, LoadL); 6594 LoadR = DAG.getBitcast(CmpVT, LoadR); 6595 } 6596 6597 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6598 processIntegerCallValue(I, Cmp, false); 6599 return true; 6600 } 6601 6602 /// See if we can lower a memchr call into an optimized form. If so, return 6603 /// true and lower it. Otherwise return false, and it will be lowered like a 6604 /// normal call. 6605 /// The caller already checked that \p I calls the appropriate LibFunc with a 6606 /// correct prototype. 6607 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6608 const Value *Src = I.getArgOperand(0); 6609 const Value *Char = I.getArgOperand(1); 6610 const Value *Length = I.getArgOperand(2); 6611 6612 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6613 std::pair<SDValue, SDValue> Res = 6614 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6615 getValue(Src), getValue(Char), getValue(Length), 6616 MachinePointerInfo(Src)); 6617 if (Res.first.getNode()) { 6618 setValue(&I, Res.first); 6619 PendingLoads.push_back(Res.second); 6620 return true; 6621 } 6622 6623 return false; 6624 } 6625 6626 /// See if we can lower a mempcpy call into an optimized form. If so, return 6627 /// true and lower it. Otherwise return false, and it will be lowered like a 6628 /// normal call. 6629 /// The caller already checked that \p I calls the appropriate LibFunc with a 6630 /// correct prototype. 6631 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6632 SDValue Dst = getValue(I.getArgOperand(0)); 6633 SDValue Src = getValue(I.getArgOperand(1)); 6634 SDValue Size = getValue(I.getArgOperand(2)); 6635 6636 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6637 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6638 unsigned Align = std::min(DstAlign, SrcAlign); 6639 if (Align == 0) // Alignment of one or both could not be inferred. 6640 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6641 6642 bool isVol = false; 6643 SDLoc sdl = getCurSDLoc(); 6644 6645 // In the mempcpy context we need to pass in a false value for isTailCall 6646 // because the return pointer needs to be adjusted by the size of 6647 // the copied memory. 6648 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6649 false, /*isTailCall=*/false, 6650 MachinePointerInfo(I.getArgOperand(0)), 6651 MachinePointerInfo(I.getArgOperand(1))); 6652 assert(MC.getNode() != nullptr && 6653 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6654 DAG.setRoot(MC); 6655 6656 // Check if Size needs to be truncated or extended. 6657 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6658 6659 // Adjust return pointer to point just past the last dst byte. 6660 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6661 Dst, Size); 6662 setValue(&I, DstPlusSize); 6663 return true; 6664 } 6665 6666 /// See if we can lower a strcpy call into an optimized form. If so, return 6667 /// true and lower it, otherwise return false and it will be lowered like a 6668 /// normal call. 6669 /// The caller already checked that \p I calls the appropriate LibFunc with a 6670 /// correct prototype. 6671 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6672 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6673 6674 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6675 std::pair<SDValue, SDValue> Res = 6676 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6677 getValue(Arg0), getValue(Arg1), 6678 MachinePointerInfo(Arg0), 6679 MachinePointerInfo(Arg1), isStpcpy); 6680 if (Res.first.getNode()) { 6681 setValue(&I, Res.first); 6682 DAG.setRoot(Res.second); 6683 return true; 6684 } 6685 6686 return false; 6687 } 6688 6689 /// See if we can lower a strcmp call into an optimized form. If so, return 6690 /// true and lower it, otherwise return false and it will be lowered like a 6691 /// normal call. 6692 /// The caller already checked that \p I calls the appropriate LibFunc with a 6693 /// correct prototype. 6694 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6695 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6696 6697 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6698 std::pair<SDValue, SDValue> Res = 6699 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6700 getValue(Arg0), getValue(Arg1), 6701 MachinePointerInfo(Arg0), 6702 MachinePointerInfo(Arg1)); 6703 if (Res.first.getNode()) { 6704 processIntegerCallValue(I, Res.first, true); 6705 PendingLoads.push_back(Res.second); 6706 return true; 6707 } 6708 6709 return false; 6710 } 6711 6712 /// See if we can lower a strlen call into an optimized form. If so, return 6713 /// true and lower it, otherwise return false and it will be lowered like a 6714 /// normal call. 6715 /// The caller already checked that \p I calls the appropriate LibFunc with a 6716 /// correct prototype. 6717 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6718 const Value *Arg0 = I.getArgOperand(0); 6719 6720 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6721 std::pair<SDValue, SDValue> Res = 6722 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6723 getValue(Arg0), MachinePointerInfo(Arg0)); 6724 if (Res.first.getNode()) { 6725 processIntegerCallValue(I, Res.first, false); 6726 PendingLoads.push_back(Res.second); 6727 return true; 6728 } 6729 6730 return false; 6731 } 6732 6733 /// See if we can lower a strnlen call into an optimized form. If so, return 6734 /// true and lower it, otherwise return false and it will be lowered like a 6735 /// normal call. 6736 /// The caller already checked that \p I calls the appropriate LibFunc with a 6737 /// correct prototype. 6738 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6739 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6740 6741 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6742 std::pair<SDValue, SDValue> Res = 6743 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6744 getValue(Arg0), getValue(Arg1), 6745 MachinePointerInfo(Arg0)); 6746 if (Res.first.getNode()) { 6747 processIntegerCallValue(I, Res.first, false); 6748 PendingLoads.push_back(Res.second); 6749 return true; 6750 } 6751 6752 return false; 6753 } 6754 6755 /// See if we can lower a unary floating-point operation into an SDNode with 6756 /// the specified Opcode. If so, return true and lower it, otherwise return 6757 /// false and it will be lowered like a normal call. 6758 /// The caller already checked that \p I calls the appropriate LibFunc with a 6759 /// correct prototype. 6760 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6761 unsigned Opcode) { 6762 // We already checked this call's prototype; verify it doesn't modify errno. 6763 if (!I.onlyReadsMemory()) 6764 return false; 6765 6766 SDValue Tmp = getValue(I.getArgOperand(0)); 6767 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6768 return true; 6769 } 6770 6771 /// See if we can lower a binary floating-point operation into an SDNode with 6772 /// the specified Opcode. If so, return true and lower it. Otherwise return 6773 /// false, and it will be lowered like a normal call. 6774 /// The caller already checked that \p I calls the appropriate LibFunc with a 6775 /// correct prototype. 6776 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6777 unsigned Opcode) { 6778 // We already checked this call's prototype; verify it doesn't modify errno. 6779 if (!I.onlyReadsMemory()) 6780 return false; 6781 6782 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6783 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6784 EVT VT = Tmp0.getValueType(); 6785 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6786 return true; 6787 } 6788 6789 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6790 // Handle inline assembly differently. 6791 if (isa<InlineAsm>(I.getCalledValue())) { 6792 visitInlineAsm(&I); 6793 return; 6794 } 6795 6796 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6797 computeUsesVAFloatArgument(I, MMI); 6798 6799 const char *RenameFn = nullptr; 6800 if (Function *F = I.getCalledFunction()) { 6801 if (F->isDeclaration()) { 6802 // Is this an LLVM intrinsic or a target-specific intrinsic? 6803 unsigned IID = F->getIntrinsicID(); 6804 if (!IID) 6805 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6806 IID = II->getIntrinsicID(F); 6807 6808 if (IID) { 6809 RenameFn = visitIntrinsicCall(I, IID); 6810 if (!RenameFn) 6811 return; 6812 } 6813 } 6814 6815 // Check for well-known libc/libm calls. If the function is internal, it 6816 // can't be a library call. Don't do the check if marked as nobuiltin for 6817 // some reason or the call site requires strict floating point semantics. 6818 LibFunc Func; 6819 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6820 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6821 LibInfo->hasOptimizedCodeGen(Func)) { 6822 switch (Func) { 6823 default: break; 6824 case LibFunc_copysign: 6825 case LibFunc_copysignf: 6826 case LibFunc_copysignl: 6827 // We already checked this call's prototype; verify it doesn't modify 6828 // errno. 6829 if (I.onlyReadsMemory()) { 6830 SDValue LHS = getValue(I.getArgOperand(0)); 6831 SDValue RHS = getValue(I.getArgOperand(1)); 6832 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6833 LHS.getValueType(), LHS, RHS)); 6834 return; 6835 } 6836 break; 6837 case LibFunc_fabs: 6838 case LibFunc_fabsf: 6839 case LibFunc_fabsl: 6840 if (visitUnaryFloatCall(I, ISD::FABS)) 6841 return; 6842 break; 6843 case LibFunc_fmin: 6844 case LibFunc_fminf: 6845 case LibFunc_fminl: 6846 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6847 return; 6848 break; 6849 case LibFunc_fmax: 6850 case LibFunc_fmaxf: 6851 case LibFunc_fmaxl: 6852 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6853 return; 6854 break; 6855 case LibFunc_sin: 6856 case LibFunc_sinf: 6857 case LibFunc_sinl: 6858 if (visitUnaryFloatCall(I, ISD::FSIN)) 6859 return; 6860 break; 6861 case LibFunc_cos: 6862 case LibFunc_cosf: 6863 case LibFunc_cosl: 6864 if (visitUnaryFloatCall(I, ISD::FCOS)) 6865 return; 6866 break; 6867 case LibFunc_sqrt: 6868 case LibFunc_sqrtf: 6869 case LibFunc_sqrtl: 6870 case LibFunc_sqrt_finite: 6871 case LibFunc_sqrtf_finite: 6872 case LibFunc_sqrtl_finite: 6873 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6874 return; 6875 break; 6876 case LibFunc_floor: 6877 case LibFunc_floorf: 6878 case LibFunc_floorl: 6879 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6880 return; 6881 break; 6882 case LibFunc_nearbyint: 6883 case LibFunc_nearbyintf: 6884 case LibFunc_nearbyintl: 6885 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6886 return; 6887 break; 6888 case LibFunc_ceil: 6889 case LibFunc_ceilf: 6890 case LibFunc_ceill: 6891 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6892 return; 6893 break; 6894 case LibFunc_rint: 6895 case LibFunc_rintf: 6896 case LibFunc_rintl: 6897 if (visitUnaryFloatCall(I, ISD::FRINT)) 6898 return; 6899 break; 6900 case LibFunc_round: 6901 case LibFunc_roundf: 6902 case LibFunc_roundl: 6903 if (visitUnaryFloatCall(I, ISD::FROUND)) 6904 return; 6905 break; 6906 case LibFunc_trunc: 6907 case LibFunc_truncf: 6908 case LibFunc_truncl: 6909 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6910 return; 6911 break; 6912 case LibFunc_log2: 6913 case LibFunc_log2f: 6914 case LibFunc_log2l: 6915 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6916 return; 6917 break; 6918 case LibFunc_exp2: 6919 case LibFunc_exp2f: 6920 case LibFunc_exp2l: 6921 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6922 return; 6923 break; 6924 case LibFunc_memcmp: 6925 if (visitMemCmpCall(I)) 6926 return; 6927 break; 6928 case LibFunc_mempcpy: 6929 if (visitMemPCpyCall(I)) 6930 return; 6931 break; 6932 case LibFunc_memchr: 6933 if (visitMemChrCall(I)) 6934 return; 6935 break; 6936 case LibFunc_strcpy: 6937 if (visitStrCpyCall(I, false)) 6938 return; 6939 break; 6940 case LibFunc_stpcpy: 6941 if (visitStrCpyCall(I, true)) 6942 return; 6943 break; 6944 case LibFunc_strcmp: 6945 if (visitStrCmpCall(I)) 6946 return; 6947 break; 6948 case LibFunc_strlen: 6949 if (visitStrLenCall(I)) 6950 return; 6951 break; 6952 case LibFunc_strnlen: 6953 if (visitStrNLenCall(I)) 6954 return; 6955 break; 6956 } 6957 } 6958 } 6959 6960 SDValue Callee; 6961 if (!RenameFn) 6962 Callee = getValue(I.getCalledValue()); 6963 else 6964 Callee = DAG.getExternalSymbol( 6965 RenameFn, 6966 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6967 6968 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6969 // have to do anything here to lower funclet bundles. 6970 assert(!I.hasOperandBundlesOtherThan( 6971 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6972 "Cannot lower calls with arbitrary operand bundles!"); 6973 6974 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6975 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6976 else 6977 // Check if we can potentially perform a tail call. More detailed checking 6978 // is be done within LowerCallTo, after more information about the call is 6979 // known. 6980 LowerCallTo(&I, Callee, I.isTailCall()); 6981 } 6982 6983 namespace { 6984 6985 /// AsmOperandInfo - This contains information for each constraint that we are 6986 /// lowering. 6987 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6988 public: 6989 /// CallOperand - If this is the result output operand or a clobber 6990 /// this is null, otherwise it is the incoming operand to the CallInst. 6991 /// This gets modified as the asm is processed. 6992 SDValue CallOperand; 6993 6994 /// AssignedRegs - If this is a register or register class operand, this 6995 /// contains the set of register corresponding to the operand. 6996 RegsForValue AssignedRegs; 6997 6998 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6999 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7000 } 7001 7002 /// Whether or not this operand accesses memory 7003 bool hasMemory(const TargetLowering &TLI) const { 7004 // Indirect operand accesses access memory. 7005 if (isIndirect) 7006 return true; 7007 7008 for (const auto &Code : Codes) 7009 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7010 return true; 7011 7012 return false; 7013 } 7014 7015 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7016 /// corresponds to. If there is no Value* for this operand, it returns 7017 /// MVT::Other. 7018 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7019 const DataLayout &DL) const { 7020 if (!CallOperandVal) return MVT::Other; 7021 7022 if (isa<BasicBlock>(CallOperandVal)) 7023 return TLI.getPointerTy(DL); 7024 7025 llvm::Type *OpTy = CallOperandVal->getType(); 7026 7027 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7028 // If this is an indirect operand, the operand is a pointer to the 7029 // accessed type. 7030 if (isIndirect) { 7031 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7032 if (!PtrTy) 7033 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7034 OpTy = PtrTy->getElementType(); 7035 } 7036 7037 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7038 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7039 if (STy->getNumElements() == 1) 7040 OpTy = STy->getElementType(0); 7041 7042 // If OpTy is not a single value, it may be a struct/union that we 7043 // can tile with integers. 7044 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7045 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7046 switch (BitSize) { 7047 default: break; 7048 case 1: 7049 case 8: 7050 case 16: 7051 case 32: 7052 case 64: 7053 case 128: 7054 OpTy = IntegerType::get(Context, BitSize); 7055 break; 7056 } 7057 } 7058 7059 return TLI.getValueType(DL, OpTy, true); 7060 } 7061 }; 7062 7063 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7064 7065 } // end anonymous namespace 7066 7067 /// Make sure that the output operand \p OpInfo and its corresponding input 7068 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7069 /// out). 7070 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7071 SDISelAsmOperandInfo &MatchingOpInfo, 7072 SelectionDAG &DAG) { 7073 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7074 return; 7075 7076 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7077 const auto &TLI = DAG.getTargetLoweringInfo(); 7078 7079 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7080 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7081 OpInfo.ConstraintVT); 7082 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7083 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7084 MatchingOpInfo.ConstraintVT); 7085 if ((OpInfo.ConstraintVT.isInteger() != 7086 MatchingOpInfo.ConstraintVT.isInteger()) || 7087 (MatchRC.second != InputRC.second)) { 7088 // FIXME: error out in a more elegant fashion 7089 report_fatal_error("Unsupported asm: input constraint" 7090 " with a matching output constraint of" 7091 " incompatible type!"); 7092 } 7093 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7094 } 7095 7096 /// Get a direct memory input to behave well as an indirect operand. 7097 /// This may introduce stores, hence the need for a \p Chain. 7098 /// \return The (possibly updated) chain. 7099 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7100 SDISelAsmOperandInfo &OpInfo, 7101 SelectionDAG &DAG) { 7102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7103 7104 // If we don't have an indirect input, put it in the constpool if we can, 7105 // otherwise spill it to a stack slot. 7106 // TODO: This isn't quite right. We need to handle these according to 7107 // the addressing mode that the constraint wants. Also, this may take 7108 // an additional register for the computation and we don't want that 7109 // either. 7110 7111 // If the operand is a float, integer, or vector constant, spill to a 7112 // constant pool entry to get its address. 7113 const Value *OpVal = OpInfo.CallOperandVal; 7114 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7115 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7116 OpInfo.CallOperand = DAG.getConstantPool( 7117 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7118 return Chain; 7119 } 7120 7121 // Otherwise, create a stack slot and emit a store to it before the asm. 7122 Type *Ty = OpVal->getType(); 7123 auto &DL = DAG.getDataLayout(); 7124 uint64_t TySize = DL.getTypeAllocSize(Ty); 7125 unsigned Align = DL.getPrefTypeAlignment(Ty); 7126 MachineFunction &MF = DAG.getMachineFunction(); 7127 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7128 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7129 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7130 MachinePointerInfo::getFixedStack(MF, SSFI)); 7131 OpInfo.CallOperand = StackSlot; 7132 7133 return Chain; 7134 } 7135 7136 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7137 /// specified operand. We prefer to assign virtual registers, to allow the 7138 /// register allocator to handle the assignment process. However, if the asm 7139 /// uses features that we can't model on machineinstrs, we have SDISel do the 7140 /// allocation. This produces generally horrible, but correct, code. 7141 /// 7142 /// OpInfo describes the operand. 7143 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7144 const SDLoc &DL, 7145 SDISelAsmOperandInfo &OpInfo) { 7146 LLVMContext &Context = *DAG.getContext(); 7147 7148 MachineFunction &MF = DAG.getMachineFunction(); 7149 SmallVector<unsigned, 4> Regs; 7150 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7151 7152 // If this is a constraint for a single physreg, or a constraint for a 7153 // register class, find it. 7154 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7155 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7156 OpInfo.ConstraintVT); 7157 7158 unsigned NumRegs = 1; 7159 if (OpInfo.ConstraintVT != MVT::Other) { 7160 // If this is a FP input in an integer register (or visa versa) insert a bit 7161 // cast of the input value. More generally, handle any case where the input 7162 // value disagrees with the register class we plan to stick this in. 7163 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7164 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7165 // Try to convert to the first EVT that the reg class contains. If the 7166 // types are identical size, use a bitcast to convert (e.g. two differing 7167 // vector types). 7168 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7169 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7170 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7171 RegVT, OpInfo.CallOperand); 7172 OpInfo.ConstraintVT = RegVT; 7173 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7174 // If the input is a FP value and we want it in FP registers, do a 7175 // bitcast to the corresponding integer type. This turns an f64 value 7176 // into i64, which can be passed with two i32 values on a 32-bit 7177 // machine. 7178 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7179 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7180 RegVT, OpInfo.CallOperand); 7181 OpInfo.ConstraintVT = RegVT; 7182 } 7183 } 7184 7185 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7186 } 7187 7188 MVT RegVT; 7189 EVT ValueVT = OpInfo.ConstraintVT; 7190 7191 // If this is a constraint for a specific physical register, like {r17}, 7192 // assign it now. 7193 if (unsigned AssignedReg = PhysReg.first) { 7194 const TargetRegisterClass *RC = PhysReg.second; 7195 if (OpInfo.ConstraintVT == MVT::Other) 7196 ValueVT = *TRI.legalclasstypes_begin(*RC); 7197 7198 // Get the actual register value type. This is important, because the user 7199 // may have asked for (e.g.) the AX register in i32 type. We need to 7200 // remember that AX is actually i16 to get the right extension. 7201 RegVT = *TRI.legalclasstypes_begin(*RC); 7202 7203 // This is a explicit reference to a physical register. 7204 Regs.push_back(AssignedReg); 7205 7206 // If this is an expanded reference, add the rest of the regs to Regs. 7207 if (NumRegs != 1) { 7208 TargetRegisterClass::iterator I = RC->begin(); 7209 for (; *I != AssignedReg; ++I) 7210 assert(I != RC->end() && "Didn't find reg!"); 7211 7212 // Already added the first reg. 7213 --NumRegs; ++I; 7214 for (; NumRegs; --NumRegs, ++I) { 7215 assert(I != RC->end() && "Ran out of registers to allocate!"); 7216 Regs.push_back(*I); 7217 } 7218 } 7219 7220 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7221 return; 7222 } 7223 7224 // Otherwise, if this was a reference to an LLVM register class, create vregs 7225 // for this reference. 7226 if (const TargetRegisterClass *RC = PhysReg.second) { 7227 RegVT = *TRI.legalclasstypes_begin(*RC); 7228 if (OpInfo.ConstraintVT == MVT::Other) 7229 ValueVT = RegVT; 7230 7231 // Create the appropriate number of virtual registers. 7232 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7233 for (; NumRegs; --NumRegs) 7234 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7235 7236 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7237 return; 7238 } 7239 7240 // Otherwise, we couldn't allocate enough registers for this. 7241 } 7242 7243 static unsigned 7244 findMatchingInlineAsmOperand(unsigned OperandNo, 7245 const std::vector<SDValue> &AsmNodeOperands) { 7246 // Scan until we find the definition we already emitted of this operand. 7247 unsigned CurOp = InlineAsm::Op_FirstOperand; 7248 for (; OperandNo; --OperandNo) { 7249 // Advance to the next operand. 7250 unsigned OpFlag = 7251 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7252 assert((InlineAsm::isRegDefKind(OpFlag) || 7253 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7254 InlineAsm::isMemKind(OpFlag)) && 7255 "Skipped past definitions?"); 7256 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7257 } 7258 return CurOp; 7259 } 7260 7261 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7262 /// \return true if it has succeeded, false otherwise 7263 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7264 MVT RegVT, SelectionDAG &DAG) { 7265 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7266 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7267 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7268 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7269 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7270 else 7271 return false; 7272 } 7273 return true; 7274 } 7275 7276 namespace { 7277 7278 class ExtraFlags { 7279 unsigned Flags = 0; 7280 7281 public: 7282 explicit ExtraFlags(ImmutableCallSite CS) { 7283 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7284 if (IA->hasSideEffects()) 7285 Flags |= InlineAsm::Extra_HasSideEffects; 7286 if (IA->isAlignStack()) 7287 Flags |= InlineAsm::Extra_IsAlignStack; 7288 if (CS.isConvergent()) 7289 Flags |= InlineAsm::Extra_IsConvergent; 7290 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7291 } 7292 7293 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7294 // Ideally, we would only check against memory constraints. However, the 7295 // meaning of an Other constraint can be target-specific and we can't easily 7296 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7297 // for Other constraints as well. 7298 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7299 OpInfo.ConstraintType == TargetLowering::C_Other) { 7300 if (OpInfo.Type == InlineAsm::isInput) 7301 Flags |= InlineAsm::Extra_MayLoad; 7302 else if (OpInfo.Type == InlineAsm::isOutput) 7303 Flags |= InlineAsm::Extra_MayStore; 7304 else if (OpInfo.Type == InlineAsm::isClobber) 7305 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7306 } 7307 } 7308 7309 unsigned get() const { return Flags; } 7310 }; 7311 7312 } // end anonymous namespace 7313 7314 /// visitInlineAsm - Handle a call to an InlineAsm object. 7315 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7316 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7317 7318 /// ConstraintOperands - Information about all of the constraints. 7319 SDISelAsmOperandInfoVector ConstraintOperands; 7320 7321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7322 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7323 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7324 7325 bool hasMemory = false; 7326 7327 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7328 ExtraFlags ExtraInfo(CS); 7329 7330 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7331 unsigned ResNo = 0; // ResNo - The result number of the next output. 7332 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7333 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7334 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7335 7336 MVT OpVT = MVT::Other; 7337 7338 // Compute the value type for each operand. 7339 if (OpInfo.Type == InlineAsm::isInput || 7340 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7341 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7342 7343 // Process the call argument. BasicBlocks are labels, currently appearing 7344 // only in asm's. 7345 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7346 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7347 } else { 7348 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7349 } 7350 7351 OpVT = 7352 OpInfo 7353 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7354 .getSimpleVT(); 7355 } 7356 7357 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7358 // The return value of the call is this value. As such, there is no 7359 // corresponding argument. 7360 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7361 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7362 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7363 STy->getElementType(ResNo)); 7364 } else { 7365 assert(ResNo == 0 && "Asm only has one result!"); 7366 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7367 } 7368 ++ResNo; 7369 } 7370 7371 OpInfo.ConstraintVT = OpVT; 7372 7373 if (!hasMemory) 7374 hasMemory = OpInfo.hasMemory(TLI); 7375 7376 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7377 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7378 auto TargetConstraint = TargetConstraints[i]; 7379 7380 // Compute the constraint code and ConstraintType to use. 7381 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7382 7383 ExtraInfo.update(TargetConstraint); 7384 } 7385 7386 SDValue Chain, Flag; 7387 7388 // We won't need to flush pending loads if this asm doesn't touch 7389 // memory and is nonvolatile. 7390 if (hasMemory || IA->hasSideEffects()) 7391 Chain = getRoot(); 7392 else 7393 Chain = DAG.getRoot(); 7394 7395 // Second pass over the constraints: compute which constraint option to use 7396 // and assign registers to constraints that want a specific physreg. 7397 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7398 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7399 7400 // If this is an output operand with a matching input operand, look up the 7401 // matching input. If their types mismatch, e.g. one is an integer, the 7402 // other is floating point, or their sizes are different, flag it as an 7403 // error. 7404 if (OpInfo.hasMatchingInput()) { 7405 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7406 patchMatchingInput(OpInfo, Input, DAG); 7407 } 7408 7409 // Compute the constraint code and ConstraintType to use. 7410 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7411 7412 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7413 OpInfo.Type == InlineAsm::isClobber) 7414 continue; 7415 7416 // If this is a memory input, and if the operand is not indirect, do what we 7417 // need to provide an address for the memory input. 7418 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7419 !OpInfo.isIndirect) { 7420 assert((OpInfo.isMultipleAlternative || 7421 (OpInfo.Type == InlineAsm::isInput)) && 7422 "Can only indirectify direct input operands!"); 7423 7424 // Memory operands really want the address of the value. 7425 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7426 7427 // There is no longer a Value* corresponding to this operand. 7428 OpInfo.CallOperandVal = nullptr; 7429 7430 // It is now an indirect operand. 7431 OpInfo.isIndirect = true; 7432 } 7433 7434 // If this constraint is for a specific register, allocate it before 7435 // anything else. 7436 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7437 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7438 } 7439 7440 // Third pass - Loop over all of the operands, assigning virtual or physregs 7441 // to register class operands. 7442 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7443 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7444 7445 // C_Register operands have already been allocated, Other/Memory don't need 7446 // to be. 7447 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7448 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7449 } 7450 7451 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7452 std::vector<SDValue> AsmNodeOperands; 7453 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7454 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7455 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7456 7457 // If we have a !srcloc metadata node associated with it, we want to attach 7458 // this to the ultimately generated inline asm machineinstr. To do this, we 7459 // pass in the third operand as this (potentially null) inline asm MDNode. 7460 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7461 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7462 7463 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7464 // bits as operand 3. 7465 AsmNodeOperands.push_back(DAG.getTargetConstant( 7466 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7467 7468 // Loop over all of the inputs, copying the operand values into the 7469 // appropriate registers and processing the output regs. 7470 RegsForValue RetValRegs; 7471 7472 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7473 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7474 7475 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7476 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7477 7478 switch (OpInfo.Type) { 7479 case InlineAsm::isOutput: 7480 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7481 OpInfo.ConstraintType != TargetLowering::C_Register) { 7482 // Memory output, or 'other' output (e.g. 'X' constraint). 7483 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7484 7485 unsigned ConstraintID = 7486 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7487 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7488 "Failed to convert memory constraint code to constraint id."); 7489 7490 // Add information to the INLINEASM node to know about this output. 7491 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7492 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7493 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7494 MVT::i32)); 7495 AsmNodeOperands.push_back(OpInfo.CallOperand); 7496 break; 7497 } 7498 7499 // Otherwise, this is a register or register class output. 7500 7501 // Copy the output from the appropriate register. Find a register that 7502 // we can use. 7503 if (OpInfo.AssignedRegs.Regs.empty()) { 7504 emitInlineAsmError( 7505 CS, "couldn't allocate output register for constraint '" + 7506 Twine(OpInfo.ConstraintCode) + "'"); 7507 return; 7508 } 7509 7510 // If this is an indirect operand, store through the pointer after the 7511 // asm. 7512 if (OpInfo.isIndirect) { 7513 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7514 OpInfo.CallOperandVal)); 7515 } else { 7516 // This is the result value of the call. 7517 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7518 // Concatenate this output onto the outputs list. 7519 RetValRegs.append(OpInfo.AssignedRegs); 7520 } 7521 7522 // Add information to the INLINEASM node to know that this register is 7523 // set. 7524 OpInfo.AssignedRegs 7525 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7526 ? InlineAsm::Kind_RegDefEarlyClobber 7527 : InlineAsm::Kind_RegDef, 7528 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7529 break; 7530 7531 case InlineAsm::isInput: { 7532 SDValue InOperandVal = OpInfo.CallOperand; 7533 7534 if (OpInfo.isMatchingInputConstraint()) { 7535 // If this is required to match an output register we have already set, 7536 // just use its register. 7537 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7538 AsmNodeOperands); 7539 unsigned OpFlag = 7540 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7541 if (InlineAsm::isRegDefKind(OpFlag) || 7542 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7543 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7544 if (OpInfo.isIndirect) { 7545 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7546 emitInlineAsmError(CS, "inline asm not supported yet:" 7547 " don't know how to handle tied " 7548 "indirect register inputs"); 7549 return; 7550 } 7551 7552 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7553 SmallVector<unsigned, 4> Regs; 7554 7555 if (!createVirtualRegs(Regs, 7556 InlineAsm::getNumOperandRegisters(OpFlag), 7557 RegVT, DAG)) { 7558 emitInlineAsmError(CS, "inline asm error: This value type register " 7559 "class is not natively supported!"); 7560 return; 7561 } 7562 7563 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7564 7565 SDLoc dl = getCurSDLoc(); 7566 // Use the produced MatchedRegs object to 7567 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7568 CS.getInstruction()); 7569 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7570 true, OpInfo.getMatchedOperand(), dl, 7571 DAG, AsmNodeOperands); 7572 break; 7573 } 7574 7575 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7576 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7577 "Unexpected number of operands"); 7578 // Add information to the INLINEASM node to know about this input. 7579 // See InlineAsm.h isUseOperandTiedToDef. 7580 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7581 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7582 OpInfo.getMatchedOperand()); 7583 AsmNodeOperands.push_back(DAG.getTargetConstant( 7584 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7585 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7586 break; 7587 } 7588 7589 // Treat indirect 'X' constraint as memory. 7590 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7591 OpInfo.isIndirect) 7592 OpInfo.ConstraintType = TargetLowering::C_Memory; 7593 7594 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7595 std::vector<SDValue> Ops; 7596 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7597 Ops, DAG); 7598 if (Ops.empty()) { 7599 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7600 Twine(OpInfo.ConstraintCode) + "'"); 7601 return; 7602 } 7603 7604 // Add information to the INLINEASM node to know about this input. 7605 unsigned ResOpType = 7606 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7607 AsmNodeOperands.push_back(DAG.getTargetConstant( 7608 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7609 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7610 break; 7611 } 7612 7613 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7614 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7615 assert(InOperandVal.getValueType() == 7616 TLI.getPointerTy(DAG.getDataLayout()) && 7617 "Memory operands expect pointer values"); 7618 7619 unsigned ConstraintID = 7620 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7621 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7622 "Failed to convert memory constraint code to constraint id."); 7623 7624 // Add information to the INLINEASM node to know about this input. 7625 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7626 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7627 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7628 getCurSDLoc(), 7629 MVT::i32)); 7630 AsmNodeOperands.push_back(InOperandVal); 7631 break; 7632 } 7633 7634 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7635 OpInfo.ConstraintType == TargetLowering::C_Register) && 7636 "Unknown constraint type!"); 7637 7638 // TODO: Support this. 7639 if (OpInfo.isIndirect) { 7640 emitInlineAsmError( 7641 CS, "Don't know how to handle indirect register inputs yet " 7642 "for constraint '" + 7643 Twine(OpInfo.ConstraintCode) + "'"); 7644 return; 7645 } 7646 7647 // Copy the input into the appropriate registers. 7648 if (OpInfo.AssignedRegs.Regs.empty()) { 7649 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7650 Twine(OpInfo.ConstraintCode) + "'"); 7651 return; 7652 } 7653 7654 SDLoc dl = getCurSDLoc(); 7655 7656 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7657 Chain, &Flag, CS.getInstruction()); 7658 7659 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7660 dl, DAG, AsmNodeOperands); 7661 break; 7662 } 7663 case InlineAsm::isClobber: 7664 // Add the clobbered value to the operand list, so that the register 7665 // allocator is aware that the physreg got clobbered. 7666 if (!OpInfo.AssignedRegs.Regs.empty()) 7667 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7668 false, 0, getCurSDLoc(), DAG, 7669 AsmNodeOperands); 7670 break; 7671 } 7672 } 7673 7674 // Finish up input operands. Set the input chain and add the flag last. 7675 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7676 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7677 7678 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7679 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7680 Flag = Chain.getValue(1); 7681 7682 // If this asm returns a register value, copy the result from that register 7683 // and set it as the value of the call. 7684 if (!RetValRegs.Regs.empty()) { 7685 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7686 Chain, &Flag, CS.getInstruction()); 7687 7688 // FIXME: Why don't we do this for inline asms with MRVs? 7689 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7690 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7691 7692 // If any of the results of the inline asm is a vector, it may have the 7693 // wrong width/num elts. This can happen for register classes that can 7694 // contain multiple different value types. The preg or vreg allocated may 7695 // not have the same VT as was expected. Convert it to the right type 7696 // with bit_convert. 7697 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7698 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7699 ResultType, Val); 7700 7701 } else if (ResultType != Val.getValueType() && 7702 ResultType.isInteger() && Val.getValueType().isInteger()) { 7703 // If a result value was tied to an input value, the computed result may 7704 // have a wider width than the expected result. Extract the relevant 7705 // portion. 7706 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7707 } 7708 7709 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7710 } 7711 7712 setValue(CS.getInstruction(), Val); 7713 // Don't need to use this as a chain in this case. 7714 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7715 return; 7716 } 7717 7718 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7719 7720 // Process indirect outputs, first output all of the flagged copies out of 7721 // physregs. 7722 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7723 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7724 const Value *Ptr = IndirectStoresToEmit[i].second; 7725 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7726 Chain, &Flag, IA); 7727 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7728 } 7729 7730 // Emit the non-flagged stores from the physregs. 7731 SmallVector<SDValue, 8> OutChains; 7732 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7733 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7734 getValue(StoresToEmit[i].second), 7735 MachinePointerInfo(StoresToEmit[i].second)); 7736 OutChains.push_back(Val); 7737 } 7738 7739 if (!OutChains.empty()) 7740 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7741 7742 DAG.setRoot(Chain); 7743 } 7744 7745 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7746 const Twine &Message) { 7747 LLVMContext &Ctx = *DAG.getContext(); 7748 Ctx.emitError(CS.getInstruction(), Message); 7749 7750 // Make sure we leave the DAG in a valid state 7751 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7752 SmallVector<EVT, 1> ValueVTs; 7753 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7754 7755 if (ValueVTs.empty()) 7756 return; 7757 7758 SmallVector<SDValue, 1> Ops; 7759 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7760 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7761 7762 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7763 } 7764 7765 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7766 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7767 MVT::Other, getRoot(), 7768 getValue(I.getArgOperand(0)), 7769 DAG.getSrcValue(I.getArgOperand(0)))); 7770 } 7771 7772 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7774 const DataLayout &DL = DAG.getDataLayout(); 7775 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7776 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7777 DAG.getSrcValue(I.getOperand(0)), 7778 DL.getABITypeAlignment(I.getType())); 7779 setValue(&I, V); 7780 DAG.setRoot(V.getValue(1)); 7781 } 7782 7783 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7784 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7785 MVT::Other, getRoot(), 7786 getValue(I.getArgOperand(0)), 7787 DAG.getSrcValue(I.getArgOperand(0)))); 7788 } 7789 7790 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7791 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7792 MVT::Other, getRoot(), 7793 getValue(I.getArgOperand(0)), 7794 getValue(I.getArgOperand(1)), 7795 DAG.getSrcValue(I.getArgOperand(0)), 7796 DAG.getSrcValue(I.getArgOperand(1)))); 7797 } 7798 7799 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7800 const Instruction &I, 7801 SDValue Op) { 7802 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7803 if (!Range) 7804 return Op; 7805 7806 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7807 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7808 return Op; 7809 7810 APInt Lo = CR.getUnsignedMin(); 7811 if (!Lo.isMinValue()) 7812 return Op; 7813 7814 APInt Hi = CR.getUnsignedMax(); 7815 unsigned Bits = Hi.getActiveBits(); 7816 7817 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7818 7819 SDLoc SL = getCurSDLoc(); 7820 7821 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7822 DAG.getValueType(SmallVT)); 7823 unsigned NumVals = Op.getNode()->getNumValues(); 7824 if (NumVals == 1) 7825 return ZExt; 7826 7827 SmallVector<SDValue, 4> Ops; 7828 7829 Ops.push_back(ZExt); 7830 for (unsigned I = 1; I != NumVals; ++I) 7831 Ops.push_back(Op.getValue(I)); 7832 7833 return DAG.getMergeValues(Ops, SL); 7834 } 7835 7836 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7837 /// the call being lowered. 7838 /// 7839 /// This is a helper for lowering intrinsics that follow a target calling 7840 /// convention or require stack pointer adjustment. Only a subset of the 7841 /// intrinsic's operands need to participate in the calling convention. 7842 void SelectionDAGBuilder::populateCallLoweringInfo( 7843 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7844 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7845 bool IsPatchPoint) { 7846 TargetLowering::ArgListTy Args; 7847 Args.reserve(NumArgs); 7848 7849 // Populate the argument list. 7850 // Attributes for args start at offset 1, after the return attribute. 7851 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7852 ArgI != ArgE; ++ArgI) { 7853 const Value *V = CS->getOperand(ArgI); 7854 7855 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7856 7857 TargetLowering::ArgListEntry Entry; 7858 Entry.Node = getValue(V); 7859 Entry.Ty = V->getType(); 7860 Entry.setAttributes(&CS, ArgI); 7861 Args.push_back(Entry); 7862 } 7863 7864 CLI.setDebugLoc(getCurSDLoc()) 7865 .setChain(getRoot()) 7866 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7867 .setDiscardResult(CS->use_empty()) 7868 .setIsPatchPoint(IsPatchPoint); 7869 } 7870 7871 /// Add a stack map intrinsic call's live variable operands to a stackmap 7872 /// or patchpoint target node's operand list. 7873 /// 7874 /// Constants are converted to TargetConstants purely as an optimization to 7875 /// avoid constant materialization and register allocation. 7876 /// 7877 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7878 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7879 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7880 /// address materialization and register allocation, but may also be required 7881 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7882 /// alloca in the entry block, then the runtime may assume that the alloca's 7883 /// StackMap location can be read immediately after compilation and that the 7884 /// location is valid at any point during execution (this is similar to the 7885 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7886 /// only available in a register, then the runtime would need to trap when 7887 /// execution reaches the StackMap in order to read the alloca's location. 7888 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7889 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7890 SelectionDAGBuilder &Builder) { 7891 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7892 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7893 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7894 Ops.push_back( 7895 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7896 Ops.push_back( 7897 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7898 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7899 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7900 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7901 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7902 } else 7903 Ops.push_back(OpVal); 7904 } 7905 } 7906 7907 /// Lower llvm.experimental.stackmap directly to its target opcode. 7908 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7909 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7910 // [live variables...]) 7911 7912 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7913 7914 SDValue Chain, InFlag, Callee, NullPtr; 7915 SmallVector<SDValue, 32> Ops; 7916 7917 SDLoc DL = getCurSDLoc(); 7918 Callee = getValue(CI.getCalledValue()); 7919 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7920 7921 // The stackmap intrinsic only records the live variables (the arguemnts 7922 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7923 // intrinsic, this won't be lowered to a function call. This means we don't 7924 // have to worry about calling conventions and target specific lowering code. 7925 // Instead we perform the call lowering right here. 7926 // 7927 // chain, flag = CALLSEQ_START(chain, 0, 0) 7928 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7929 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7930 // 7931 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7932 InFlag = Chain.getValue(1); 7933 7934 // Add the <id> and <numBytes> constants. 7935 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7936 Ops.push_back(DAG.getTargetConstant( 7937 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7938 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7939 Ops.push_back(DAG.getTargetConstant( 7940 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7941 MVT::i32)); 7942 7943 // Push live variables for the stack map. 7944 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7945 7946 // We are not pushing any register mask info here on the operands list, 7947 // because the stackmap doesn't clobber anything. 7948 7949 // Push the chain and the glue flag. 7950 Ops.push_back(Chain); 7951 Ops.push_back(InFlag); 7952 7953 // Create the STACKMAP node. 7954 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7955 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7956 Chain = SDValue(SM, 0); 7957 InFlag = Chain.getValue(1); 7958 7959 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7960 7961 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7962 7963 // Set the root to the target-lowered call chain. 7964 DAG.setRoot(Chain); 7965 7966 // Inform the Frame Information that we have a stackmap in this function. 7967 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7968 } 7969 7970 /// Lower llvm.experimental.patchpoint directly to its target opcode. 7971 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7972 const BasicBlock *EHPadBB) { 7973 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7974 // i32 <numBytes>, 7975 // i8* <target>, 7976 // i32 <numArgs>, 7977 // [Args...], 7978 // [live variables...]) 7979 7980 CallingConv::ID CC = CS.getCallingConv(); 7981 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7982 bool HasDef = !CS->getType()->isVoidTy(); 7983 SDLoc dl = getCurSDLoc(); 7984 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7985 7986 // Handle immediate and symbolic callees. 7987 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7988 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7989 /*isTarget=*/true); 7990 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7991 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7992 SDLoc(SymbolicCallee), 7993 SymbolicCallee->getValueType(0)); 7994 7995 // Get the real number of arguments participating in the call <numArgs> 7996 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7997 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7998 7999 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8000 // Intrinsics include all meta-operands up to but not including CC. 8001 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8002 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8003 "Not enough arguments provided to the patchpoint intrinsic"); 8004 8005 // For AnyRegCC the arguments are lowered later on manually. 8006 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8007 Type *ReturnTy = 8008 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8009 8010 TargetLowering::CallLoweringInfo CLI(DAG); 8011 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8012 true); 8013 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8014 8015 SDNode *CallEnd = Result.second.getNode(); 8016 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8017 CallEnd = CallEnd->getOperand(0).getNode(); 8018 8019 /// Get a call instruction from the call sequence chain. 8020 /// Tail calls are not allowed. 8021 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8022 "Expected a callseq node."); 8023 SDNode *Call = CallEnd->getOperand(0).getNode(); 8024 bool HasGlue = Call->getGluedNode(); 8025 8026 // Replace the target specific call node with the patchable intrinsic. 8027 SmallVector<SDValue, 8> Ops; 8028 8029 // Add the <id> and <numBytes> constants. 8030 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8031 Ops.push_back(DAG.getTargetConstant( 8032 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8033 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8034 Ops.push_back(DAG.getTargetConstant( 8035 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8036 MVT::i32)); 8037 8038 // Add the callee. 8039 Ops.push_back(Callee); 8040 8041 // Adjust <numArgs> to account for any arguments that have been passed on the 8042 // stack instead. 8043 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8044 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8045 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8046 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8047 8048 // Add the calling convention 8049 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8050 8051 // Add the arguments we omitted previously. The register allocator should 8052 // place these in any free register. 8053 if (IsAnyRegCC) 8054 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8055 Ops.push_back(getValue(CS.getArgument(i))); 8056 8057 // Push the arguments from the call instruction up to the register mask. 8058 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8059 Ops.append(Call->op_begin() + 2, e); 8060 8061 // Push live variables for the stack map. 8062 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8063 8064 // Push the register mask info. 8065 if (HasGlue) 8066 Ops.push_back(*(Call->op_end()-2)); 8067 else 8068 Ops.push_back(*(Call->op_end()-1)); 8069 8070 // Push the chain (this is originally the first operand of the call, but 8071 // becomes now the last or second to last operand). 8072 Ops.push_back(*(Call->op_begin())); 8073 8074 // Push the glue flag (last operand). 8075 if (HasGlue) 8076 Ops.push_back(*(Call->op_end()-1)); 8077 8078 SDVTList NodeTys; 8079 if (IsAnyRegCC && HasDef) { 8080 // Create the return types based on the intrinsic definition 8081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8082 SmallVector<EVT, 3> ValueVTs; 8083 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8084 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8085 8086 // There is always a chain and a glue type at the end 8087 ValueVTs.push_back(MVT::Other); 8088 ValueVTs.push_back(MVT::Glue); 8089 NodeTys = DAG.getVTList(ValueVTs); 8090 } else 8091 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8092 8093 // Replace the target specific call node with a PATCHPOINT node. 8094 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8095 dl, NodeTys, Ops); 8096 8097 // Update the NodeMap. 8098 if (HasDef) { 8099 if (IsAnyRegCC) 8100 setValue(CS.getInstruction(), SDValue(MN, 0)); 8101 else 8102 setValue(CS.getInstruction(), Result.first); 8103 } 8104 8105 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8106 // call sequence. Furthermore the location of the chain and glue can change 8107 // when the AnyReg calling convention is used and the intrinsic returns a 8108 // value. 8109 if (IsAnyRegCC && HasDef) { 8110 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8111 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8112 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8113 } else 8114 DAG.ReplaceAllUsesWith(Call, MN); 8115 DAG.DeleteNode(Call); 8116 8117 // Inform the Frame Information that we have a patchpoint in this function. 8118 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8119 } 8120 8121 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8122 unsigned Intrinsic) { 8123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8124 SDValue Op1 = getValue(I.getArgOperand(0)); 8125 SDValue Op2; 8126 if (I.getNumArgOperands() > 1) 8127 Op2 = getValue(I.getArgOperand(1)); 8128 SDLoc dl = getCurSDLoc(); 8129 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8130 SDValue Res; 8131 FastMathFlags FMF; 8132 if (isa<FPMathOperator>(I)) 8133 FMF = I.getFastMathFlags(); 8134 8135 switch (Intrinsic) { 8136 case Intrinsic::experimental_vector_reduce_fadd: 8137 if (FMF.isFast()) 8138 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8139 else 8140 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8141 break; 8142 case Intrinsic::experimental_vector_reduce_fmul: 8143 if (FMF.isFast()) 8144 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8145 else 8146 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8147 break; 8148 case Intrinsic::experimental_vector_reduce_add: 8149 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8150 break; 8151 case Intrinsic::experimental_vector_reduce_mul: 8152 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8153 break; 8154 case Intrinsic::experimental_vector_reduce_and: 8155 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8156 break; 8157 case Intrinsic::experimental_vector_reduce_or: 8158 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8159 break; 8160 case Intrinsic::experimental_vector_reduce_xor: 8161 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8162 break; 8163 case Intrinsic::experimental_vector_reduce_smax: 8164 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8165 break; 8166 case Intrinsic::experimental_vector_reduce_smin: 8167 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8168 break; 8169 case Intrinsic::experimental_vector_reduce_umax: 8170 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8171 break; 8172 case Intrinsic::experimental_vector_reduce_umin: 8173 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8174 break; 8175 case Intrinsic::experimental_vector_reduce_fmax: 8176 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8177 break; 8178 case Intrinsic::experimental_vector_reduce_fmin: 8179 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8180 break; 8181 default: 8182 llvm_unreachable("Unhandled vector reduce intrinsic"); 8183 } 8184 setValue(&I, Res); 8185 } 8186 8187 /// Returns an AttributeList representing the attributes applied to the return 8188 /// value of the given call. 8189 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8190 SmallVector<Attribute::AttrKind, 2> Attrs; 8191 if (CLI.RetSExt) 8192 Attrs.push_back(Attribute::SExt); 8193 if (CLI.RetZExt) 8194 Attrs.push_back(Attribute::ZExt); 8195 if (CLI.IsInReg) 8196 Attrs.push_back(Attribute::InReg); 8197 8198 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8199 Attrs); 8200 } 8201 8202 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8203 /// implementation, which just calls LowerCall. 8204 /// FIXME: When all targets are 8205 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8206 std::pair<SDValue, SDValue> 8207 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8208 // Handle the incoming return values from the call. 8209 CLI.Ins.clear(); 8210 Type *OrigRetTy = CLI.RetTy; 8211 SmallVector<EVT, 4> RetTys; 8212 SmallVector<uint64_t, 4> Offsets; 8213 auto &DL = CLI.DAG.getDataLayout(); 8214 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8215 8216 if (CLI.IsPostTypeLegalization) { 8217 // If we are lowering a libcall after legalization, split the return type. 8218 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8219 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8220 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8221 EVT RetVT = OldRetTys[i]; 8222 uint64_t Offset = OldOffsets[i]; 8223 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8224 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8225 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8226 RetTys.append(NumRegs, RegisterVT); 8227 for (unsigned j = 0; j != NumRegs; ++j) 8228 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8229 } 8230 } 8231 8232 SmallVector<ISD::OutputArg, 4> Outs; 8233 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8234 8235 bool CanLowerReturn = 8236 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8237 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8238 8239 SDValue DemoteStackSlot; 8240 int DemoteStackIdx = -100; 8241 if (!CanLowerReturn) { 8242 // FIXME: equivalent assert? 8243 // assert(!CS.hasInAllocaArgument() && 8244 // "sret demotion is incompatible with inalloca"); 8245 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8246 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8247 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8248 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8249 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8250 8251 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8252 ArgListEntry Entry; 8253 Entry.Node = DemoteStackSlot; 8254 Entry.Ty = StackSlotPtrType; 8255 Entry.IsSExt = false; 8256 Entry.IsZExt = false; 8257 Entry.IsInReg = false; 8258 Entry.IsSRet = true; 8259 Entry.IsNest = false; 8260 Entry.IsByVal = false; 8261 Entry.IsReturned = false; 8262 Entry.IsSwiftSelf = false; 8263 Entry.IsSwiftError = false; 8264 Entry.Alignment = Align; 8265 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8266 CLI.NumFixedArgs += 1; 8267 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8268 8269 // sret demotion isn't compatible with tail-calls, since the sret argument 8270 // points into the callers stack frame. 8271 CLI.IsTailCall = false; 8272 } else { 8273 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8274 EVT VT = RetTys[I]; 8275 MVT RegisterVT = 8276 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8277 unsigned NumRegs = 8278 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8279 for (unsigned i = 0; i != NumRegs; ++i) { 8280 ISD::InputArg MyFlags; 8281 MyFlags.VT = RegisterVT; 8282 MyFlags.ArgVT = VT; 8283 MyFlags.Used = CLI.IsReturnValueUsed; 8284 if (CLI.RetSExt) 8285 MyFlags.Flags.setSExt(); 8286 if (CLI.RetZExt) 8287 MyFlags.Flags.setZExt(); 8288 if (CLI.IsInReg) 8289 MyFlags.Flags.setInReg(); 8290 CLI.Ins.push_back(MyFlags); 8291 } 8292 } 8293 } 8294 8295 // We push in swifterror return as the last element of CLI.Ins. 8296 ArgListTy &Args = CLI.getArgs(); 8297 if (supportSwiftError()) { 8298 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8299 if (Args[i].IsSwiftError) { 8300 ISD::InputArg MyFlags; 8301 MyFlags.VT = getPointerTy(DL); 8302 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8303 MyFlags.Flags.setSwiftError(); 8304 CLI.Ins.push_back(MyFlags); 8305 } 8306 } 8307 } 8308 8309 // Handle all of the outgoing arguments. 8310 CLI.Outs.clear(); 8311 CLI.OutVals.clear(); 8312 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8313 SmallVector<EVT, 4> ValueVTs; 8314 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8315 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8316 Type *FinalType = Args[i].Ty; 8317 if (Args[i].IsByVal) 8318 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8319 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8320 FinalType, CLI.CallConv, CLI.IsVarArg); 8321 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8322 ++Value) { 8323 EVT VT = ValueVTs[Value]; 8324 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8325 SDValue Op = SDValue(Args[i].Node.getNode(), 8326 Args[i].Node.getResNo() + Value); 8327 ISD::ArgFlagsTy Flags; 8328 8329 // Certain targets (such as MIPS), may have a different ABI alignment 8330 // for a type depending on the context. Give the target a chance to 8331 // specify the alignment it wants. 8332 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8333 8334 if (Args[i].IsZExt) 8335 Flags.setZExt(); 8336 if (Args[i].IsSExt) 8337 Flags.setSExt(); 8338 if (Args[i].IsInReg) { 8339 // If we are using vectorcall calling convention, a structure that is 8340 // passed InReg - is surely an HVA 8341 if (CLI.CallConv == CallingConv::X86_VectorCall && 8342 isa<StructType>(FinalType)) { 8343 // The first value of a structure is marked 8344 if (0 == Value) 8345 Flags.setHvaStart(); 8346 Flags.setHva(); 8347 } 8348 // Set InReg Flag 8349 Flags.setInReg(); 8350 } 8351 if (Args[i].IsSRet) 8352 Flags.setSRet(); 8353 if (Args[i].IsSwiftSelf) 8354 Flags.setSwiftSelf(); 8355 if (Args[i].IsSwiftError) 8356 Flags.setSwiftError(); 8357 if (Args[i].IsByVal) 8358 Flags.setByVal(); 8359 if (Args[i].IsInAlloca) { 8360 Flags.setInAlloca(); 8361 // Set the byval flag for CCAssignFn callbacks that don't know about 8362 // inalloca. This way we can know how many bytes we should've allocated 8363 // and how many bytes a callee cleanup function will pop. If we port 8364 // inalloca to more targets, we'll have to add custom inalloca handling 8365 // in the various CC lowering callbacks. 8366 Flags.setByVal(); 8367 } 8368 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8369 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8370 Type *ElementTy = Ty->getElementType(); 8371 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8372 // For ByVal, alignment should come from FE. BE will guess if this 8373 // info is not there but there are cases it cannot get right. 8374 unsigned FrameAlign; 8375 if (Args[i].Alignment) 8376 FrameAlign = Args[i].Alignment; 8377 else 8378 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8379 Flags.setByValAlign(FrameAlign); 8380 } 8381 if (Args[i].IsNest) 8382 Flags.setNest(); 8383 if (NeedsRegBlock) 8384 Flags.setInConsecutiveRegs(); 8385 Flags.setOrigAlign(OriginalAlignment); 8386 8387 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8388 unsigned NumParts = 8389 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8390 SmallVector<SDValue, 4> Parts(NumParts); 8391 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8392 8393 if (Args[i].IsSExt) 8394 ExtendKind = ISD::SIGN_EXTEND; 8395 else if (Args[i].IsZExt) 8396 ExtendKind = ISD::ZERO_EXTEND; 8397 8398 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8399 // for now. 8400 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8401 CanLowerReturn) { 8402 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8403 "unexpected use of 'returned'"); 8404 // Before passing 'returned' to the target lowering code, ensure that 8405 // either the register MVT and the actual EVT are the same size or that 8406 // the return value and argument are extended in the same way; in these 8407 // cases it's safe to pass the argument register value unchanged as the 8408 // return register value (although it's at the target's option whether 8409 // to do so) 8410 // TODO: allow code generation to take advantage of partially preserved 8411 // registers rather than clobbering the entire register when the 8412 // parameter extension method is not compatible with the return 8413 // extension method 8414 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8415 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8416 CLI.RetZExt == Args[i].IsZExt)) 8417 Flags.setReturned(); 8418 } 8419 8420 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8421 CLI.CS.getInstruction(), ExtendKind, true); 8422 8423 for (unsigned j = 0; j != NumParts; ++j) { 8424 // if it isn't first piece, alignment must be 1 8425 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8426 i < CLI.NumFixedArgs, 8427 i, j*Parts[j].getValueType().getStoreSize()); 8428 if (NumParts > 1 && j == 0) 8429 MyFlags.Flags.setSplit(); 8430 else if (j != 0) { 8431 MyFlags.Flags.setOrigAlign(1); 8432 if (j == NumParts - 1) 8433 MyFlags.Flags.setSplitEnd(); 8434 } 8435 8436 CLI.Outs.push_back(MyFlags); 8437 CLI.OutVals.push_back(Parts[j]); 8438 } 8439 8440 if (NeedsRegBlock && Value == NumValues - 1) 8441 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8442 } 8443 } 8444 8445 SmallVector<SDValue, 4> InVals; 8446 CLI.Chain = LowerCall(CLI, InVals); 8447 8448 // Update CLI.InVals to use outside of this function. 8449 CLI.InVals = InVals; 8450 8451 // Verify that the target's LowerCall behaved as expected. 8452 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8453 "LowerCall didn't return a valid chain!"); 8454 assert((!CLI.IsTailCall || InVals.empty()) && 8455 "LowerCall emitted a return value for a tail call!"); 8456 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8457 "LowerCall didn't emit the correct number of values!"); 8458 8459 // For a tail call, the return value is merely live-out and there aren't 8460 // any nodes in the DAG representing it. Return a special value to 8461 // indicate that a tail call has been emitted and no more Instructions 8462 // should be processed in the current block. 8463 if (CLI.IsTailCall) { 8464 CLI.DAG.setRoot(CLI.Chain); 8465 return std::make_pair(SDValue(), SDValue()); 8466 } 8467 8468 #ifndef NDEBUG 8469 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8470 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8471 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8472 "LowerCall emitted a value with the wrong type!"); 8473 } 8474 #endif 8475 8476 SmallVector<SDValue, 4> ReturnValues; 8477 if (!CanLowerReturn) { 8478 // The instruction result is the result of loading from the 8479 // hidden sret parameter. 8480 SmallVector<EVT, 1> PVTs; 8481 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8482 8483 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8484 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8485 EVT PtrVT = PVTs[0]; 8486 8487 unsigned NumValues = RetTys.size(); 8488 ReturnValues.resize(NumValues); 8489 SmallVector<SDValue, 4> Chains(NumValues); 8490 8491 // An aggregate return value cannot wrap around the address space, so 8492 // offsets to its parts don't wrap either. 8493 SDNodeFlags Flags; 8494 Flags.setNoUnsignedWrap(true); 8495 8496 for (unsigned i = 0; i < NumValues; ++i) { 8497 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8498 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8499 PtrVT), Flags); 8500 SDValue L = CLI.DAG.getLoad( 8501 RetTys[i], CLI.DL, CLI.Chain, Add, 8502 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8503 DemoteStackIdx, Offsets[i]), 8504 /* Alignment = */ 1); 8505 ReturnValues[i] = L; 8506 Chains[i] = L.getValue(1); 8507 } 8508 8509 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8510 } else { 8511 // Collect the legal value parts into potentially illegal values 8512 // that correspond to the original function's return values. 8513 Optional<ISD::NodeType> AssertOp; 8514 if (CLI.RetSExt) 8515 AssertOp = ISD::AssertSext; 8516 else if (CLI.RetZExt) 8517 AssertOp = ISD::AssertZext; 8518 unsigned CurReg = 0; 8519 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8520 EVT VT = RetTys[I]; 8521 MVT RegisterVT = 8522 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8523 unsigned NumRegs = 8524 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8525 8526 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8527 NumRegs, RegisterVT, VT, nullptr, 8528 AssertOp, true)); 8529 CurReg += NumRegs; 8530 } 8531 8532 // For a function returning void, there is no return value. We can't create 8533 // such a node, so we just return a null return value in that case. In 8534 // that case, nothing will actually look at the value. 8535 if (ReturnValues.empty()) 8536 return std::make_pair(SDValue(), CLI.Chain); 8537 } 8538 8539 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8540 CLI.DAG.getVTList(RetTys), ReturnValues); 8541 return std::make_pair(Res, CLI.Chain); 8542 } 8543 8544 void TargetLowering::LowerOperationWrapper(SDNode *N, 8545 SmallVectorImpl<SDValue> &Results, 8546 SelectionDAG &DAG) const { 8547 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8548 Results.push_back(Res); 8549 } 8550 8551 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8552 llvm_unreachable("LowerOperation not implemented for this target!"); 8553 } 8554 8555 void 8556 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8557 SDValue Op = getNonRegisterValue(V); 8558 assert((Op.getOpcode() != ISD::CopyFromReg || 8559 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8560 "Copy from a reg to the same reg!"); 8561 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8562 8563 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8564 // If this is an InlineAsm we have to match the registers required, not the 8565 // notional registers required by the type. 8566 8567 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8568 V->getType(), isABIRegCopy(V)); 8569 SDValue Chain = DAG.getEntryNode(); 8570 8571 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8572 FuncInfo.PreferredExtendType.end()) 8573 ? ISD::ANY_EXTEND 8574 : FuncInfo.PreferredExtendType[V]; 8575 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8576 PendingExports.push_back(Chain); 8577 } 8578 8579 #include "llvm/CodeGen/SelectionDAGISel.h" 8580 8581 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8582 /// entry block, return true. This includes arguments used by switches, since 8583 /// the switch may expand into multiple basic blocks. 8584 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8585 // With FastISel active, we may be splitting blocks, so force creation 8586 // of virtual registers for all non-dead arguments. 8587 if (FastISel) 8588 return A->use_empty(); 8589 8590 const BasicBlock &Entry = A->getParent()->front(); 8591 for (const User *U : A->users()) 8592 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8593 return false; // Use not in entry block. 8594 8595 return true; 8596 } 8597 8598 using ArgCopyElisionMapTy = 8599 DenseMap<const Argument *, 8600 std::pair<const AllocaInst *, const StoreInst *>>; 8601 8602 /// Scan the entry block of the function in FuncInfo for arguments that look 8603 /// like copies into a local alloca. Record any copied arguments in 8604 /// ArgCopyElisionCandidates. 8605 static void 8606 findArgumentCopyElisionCandidates(const DataLayout &DL, 8607 FunctionLoweringInfo *FuncInfo, 8608 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8609 // Record the state of every static alloca used in the entry block. Argument 8610 // allocas are all used in the entry block, so we need approximately as many 8611 // entries as we have arguments. 8612 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8613 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8614 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8615 StaticAllocas.reserve(NumArgs * 2); 8616 8617 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8618 if (!V) 8619 return nullptr; 8620 V = V->stripPointerCasts(); 8621 const auto *AI = dyn_cast<AllocaInst>(V); 8622 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8623 return nullptr; 8624 auto Iter = StaticAllocas.insert({AI, Unknown}); 8625 return &Iter.first->second; 8626 }; 8627 8628 // Look for stores of arguments to static allocas. Look through bitcasts and 8629 // GEPs to handle type coercions, as long as the alloca is fully initialized 8630 // by the store. Any non-store use of an alloca escapes it and any subsequent 8631 // unanalyzed store might write it. 8632 // FIXME: Handle structs initialized with multiple stores. 8633 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8634 // Look for stores, and handle non-store uses conservatively. 8635 const auto *SI = dyn_cast<StoreInst>(&I); 8636 if (!SI) { 8637 // We will look through cast uses, so ignore them completely. 8638 if (I.isCast()) 8639 continue; 8640 // Ignore debug info intrinsics, they don't escape or store to allocas. 8641 if (isa<DbgInfoIntrinsic>(I)) 8642 continue; 8643 // This is an unknown instruction. Assume it escapes or writes to all 8644 // static alloca operands. 8645 for (const Use &U : I.operands()) { 8646 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8647 *Info = StaticAllocaInfo::Clobbered; 8648 } 8649 continue; 8650 } 8651 8652 // If the stored value is a static alloca, mark it as escaped. 8653 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8654 *Info = StaticAllocaInfo::Clobbered; 8655 8656 // Check if the destination is a static alloca. 8657 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8658 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8659 if (!Info) 8660 continue; 8661 const AllocaInst *AI = cast<AllocaInst>(Dst); 8662 8663 // Skip allocas that have been initialized or clobbered. 8664 if (*Info != StaticAllocaInfo::Unknown) 8665 continue; 8666 8667 // Check if the stored value is an argument, and that this store fully 8668 // initializes the alloca. Don't elide copies from the same argument twice. 8669 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8670 const auto *Arg = dyn_cast<Argument>(Val); 8671 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8672 Arg->getType()->isEmptyTy() || 8673 DL.getTypeStoreSize(Arg->getType()) != 8674 DL.getTypeAllocSize(AI->getAllocatedType()) || 8675 ArgCopyElisionCandidates.count(Arg)) { 8676 *Info = StaticAllocaInfo::Clobbered; 8677 continue; 8678 } 8679 8680 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8681 << '\n'); 8682 8683 // Mark this alloca and store for argument copy elision. 8684 *Info = StaticAllocaInfo::Elidable; 8685 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8686 8687 // Stop scanning if we've seen all arguments. This will happen early in -O0 8688 // builds, which is useful, because -O0 builds have large entry blocks and 8689 // many allocas. 8690 if (ArgCopyElisionCandidates.size() == NumArgs) 8691 break; 8692 } 8693 } 8694 8695 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8696 /// ArgVal is a load from a suitable fixed stack object. 8697 static void tryToElideArgumentCopy( 8698 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8699 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8700 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8701 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8702 SDValue ArgVal, bool &ArgHasUses) { 8703 // Check if this is a load from a fixed stack object. 8704 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8705 if (!LNode) 8706 return; 8707 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8708 if (!FINode) 8709 return; 8710 8711 // Check that the fixed stack object is the right size and alignment. 8712 // Look at the alignment that the user wrote on the alloca instead of looking 8713 // at the stack object. 8714 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8715 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8716 const AllocaInst *AI = ArgCopyIter->second.first; 8717 int FixedIndex = FINode->getIndex(); 8718 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8719 int OldIndex = AllocaIndex; 8720 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8721 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8722 LLVM_DEBUG( 8723 dbgs() << " argument copy elision failed due to bad fixed stack " 8724 "object size\n"); 8725 return; 8726 } 8727 unsigned RequiredAlignment = AI->getAlignment(); 8728 if (!RequiredAlignment) { 8729 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8730 AI->getAllocatedType()); 8731 } 8732 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8733 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8734 "greater than stack argument alignment (" 8735 << RequiredAlignment << " vs " 8736 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8737 return; 8738 } 8739 8740 // Perform the elision. Delete the old stack object and replace its only use 8741 // in the variable info map. Mark the stack object as mutable. 8742 LLVM_DEBUG({ 8743 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8744 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8745 << '\n'; 8746 }); 8747 MFI.RemoveStackObject(OldIndex); 8748 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8749 AllocaIndex = FixedIndex; 8750 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8751 Chains.push_back(ArgVal.getValue(1)); 8752 8753 // Avoid emitting code for the store implementing the copy. 8754 const StoreInst *SI = ArgCopyIter->second.second; 8755 ElidedArgCopyInstrs.insert(SI); 8756 8757 // Check for uses of the argument again so that we can avoid exporting ArgVal 8758 // if it is't used by anything other than the store. 8759 for (const Value *U : Arg.users()) { 8760 if (U != SI) { 8761 ArgHasUses = true; 8762 break; 8763 } 8764 } 8765 } 8766 8767 void SelectionDAGISel::LowerArguments(const Function &F) { 8768 SelectionDAG &DAG = SDB->DAG; 8769 SDLoc dl = SDB->getCurSDLoc(); 8770 const DataLayout &DL = DAG.getDataLayout(); 8771 SmallVector<ISD::InputArg, 16> Ins; 8772 8773 if (!FuncInfo->CanLowerReturn) { 8774 // Put in an sret pointer parameter before all the other parameters. 8775 SmallVector<EVT, 1> ValueVTs; 8776 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8777 F.getReturnType()->getPointerTo( 8778 DAG.getDataLayout().getAllocaAddrSpace()), 8779 ValueVTs); 8780 8781 // NOTE: Assuming that a pointer will never break down to more than one VT 8782 // or one register. 8783 ISD::ArgFlagsTy Flags; 8784 Flags.setSRet(); 8785 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8786 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8787 ISD::InputArg::NoArgIndex, 0); 8788 Ins.push_back(RetArg); 8789 } 8790 8791 // Look for stores of arguments to static allocas. Mark such arguments with a 8792 // flag to ask the target to give us the memory location of that argument if 8793 // available. 8794 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8795 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8796 8797 // Set up the incoming argument description vector. 8798 for (const Argument &Arg : F.args()) { 8799 unsigned ArgNo = Arg.getArgNo(); 8800 SmallVector<EVT, 4> ValueVTs; 8801 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8802 bool isArgValueUsed = !Arg.use_empty(); 8803 unsigned PartBase = 0; 8804 Type *FinalType = Arg.getType(); 8805 if (Arg.hasAttribute(Attribute::ByVal)) 8806 FinalType = cast<PointerType>(FinalType)->getElementType(); 8807 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8808 FinalType, F.getCallingConv(), F.isVarArg()); 8809 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8810 Value != NumValues; ++Value) { 8811 EVT VT = ValueVTs[Value]; 8812 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8813 ISD::ArgFlagsTy Flags; 8814 8815 // Certain targets (such as MIPS), may have a different ABI alignment 8816 // for a type depending on the context. Give the target a chance to 8817 // specify the alignment it wants. 8818 unsigned OriginalAlignment = 8819 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8820 8821 if (Arg.hasAttribute(Attribute::ZExt)) 8822 Flags.setZExt(); 8823 if (Arg.hasAttribute(Attribute::SExt)) 8824 Flags.setSExt(); 8825 if (Arg.hasAttribute(Attribute::InReg)) { 8826 // If we are using vectorcall calling convention, a structure that is 8827 // passed InReg - is surely an HVA 8828 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8829 isa<StructType>(Arg.getType())) { 8830 // The first value of a structure is marked 8831 if (0 == Value) 8832 Flags.setHvaStart(); 8833 Flags.setHva(); 8834 } 8835 // Set InReg Flag 8836 Flags.setInReg(); 8837 } 8838 if (Arg.hasAttribute(Attribute::StructRet)) 8839 Flags.setSRet(); 8840 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8841 Flags.setSwiftSelf(); 8842 if (Arg.hasAttribute(Attribute::SwiftError)) 8843 Flags.setSwiftError(); 8844 if (Arg.hasAttribute(Attribute::ByVal)) 8845 Flags.setByVal(); 8846 if (Arg.hasAttribute(Attribute::InAlloca)) { 8847 Flags.setInAlloca(); 8848 // Set the byval flag for CCAssignFn callbacks that don't know about 8849 // inalloca. This way we can know how many bytes we should've allocated 8850 // and how many bytes a callee cleanup function will pop. If we port 8851 // inalloca to more targets, we'll have to add custom inalloca handling 8852 // in the various CC lowering callbacks. 8853 Flags.setByVal(); 8854 } 8855 if (F.getCallingConv() == CallingConv::X86_INTR) { 8856 // IA Interrupt passes frame (1st parameter) by value in the stack. 8857 if (ArgNo == 0) 8858 Flags.setByVal(); 8859 } 8860 if (Flags.isByVal() || Flags.isInAlloca()) { 8861 PointerType *Ty = cast<PointerType>(Arg.getType()); 8862 Type *ElementTy = Ty->getElementType(); 8863 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8864 // For ByVal, alignment should be passed from FE. BE will guess if 8865 // this info is not there but there are cases it cannot get right. 8866 unsigned FrameAlign; 8867 if (Arg.getParamAlignment()) 8868 FrameAlign = Arg.getParamAlignment(); 8869 else 8870 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8871 Flags.setByValAlign(FrameAlign); 8872 } 8873 if (Arg.hasAttribute(Attribute::Nest)) 8874 Flags.setNest(); 8875 if (NeedsRegBlock) 8876 Flags.setInConsecutiveRegs(); 8877 Flags.setOrigAlign(OriginalAlignment); 8878 if (ArgCopyElisionCandidates.count(&Arg)) 8879 Flags.setCopyElisionCandidate(); 8880 8881 MVT RegisterVT = 8882 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8883 unsigned NumRegs = 8884 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8885 for (unsigned i = 0; i != NumRegs; ++i) { 8886 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8887 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8888 if (NumRegs > 1 && i == 0) 8889 MyFlags.Flags.setSplit(); 8890 // if it isn't first piece, alignment must be 1 8891 else if (i > 0) { 8892 MyFlags.Flags.setOrigAlign(1); 8893 if (i == NumRegs - 1) 8894 MyFlags.Flags.setSplitEnd(); 8895 } 8896 Ins.push_back(MyFlags); 8897 } 8898 if (NeedsRegBlock && Value == NumValues - 1) 8899 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8900 PartBase += VT.getStoreSize(); 8901 } 8902 } 8903 8904 // Call the target to set up the argument values. 8905 SmallVector<SDValue, 8> InVals; 8906 SDValue NewRoot = TLI->LowerFormalArguments( 8907 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8908 8909 // Verify that the target's LowerFormalArguments behaved as expected. 8910 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8911 "LowerFormalArguments didn't return a valid chain!"); 8912 assert(InVals.size() == Ins.size() && 8913 "LowerFormalArguments didn't emit the correct number of values!"); 8914 LLVM_DEBUG({ 8915 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8916 assert(InVals[i].getNode() && 8917 "LowerFormalArguments emitted a null value!"); 8918 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8919 "LowerFormalArguments emitted a value with the wrong type!"); 8920 } 8921 }); 8922 8923 // Update the DAG with the new chain value resulting from argument lowering. 8924 DAG.setRoot(NewRoot); 8925 8926 // Set up the argument values. 8927 unsigned i = 0; 8928 if (!FuncInfo->CanLowerReturn) { 8929 // Create a virtual register for the sret pointer, and put in a copy 8930 // from the sret argument into it. 8931 SmallVector<EVT, 1> ValueVTs; 8932 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8933 F.getReturnType()->getPointerTo( 8934 DAG.getDataLayout().getAllocaAddrSpace()), 8935 ValueVTs); 8936 MVT VT = ValueVTs[0].getSimpleVT(); 8937 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8938 Optional<ISD::NodeType> AssertOp = None; 8939 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8940 RegVT, VT, nullptr, AssertOp); 8941 8942 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8943 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8944 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8945 FuncInfo->DemoteRegister = SRetReg; 8946 NewRoot = 8947 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8948 DAG.setRoot(NewRoot); 8949 8950 // i indexes lowered arguments. Bump it past the hidden sret argument. 8951 ++i; 8952 } 8953 8954 SmallVector<SDValue, 4> Chains; 8955 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8956 for (const Argument &Arg : F.args()) { 8957 SmallVector<SDValue, 4> ArgValues; 8958 SmallVector<EVT, 4> ValueVTs; 8959 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8960 unsigned NumValues = ValueVTs.size(); 8961 if (NumValues == 0) 8962 continue; 8963 8964 bool ArgHasUses = !Arg.use_empty(); 8965 8966 // Elide the copying store if the target loaded this argument from a 8967 // suitable fixed stack object. 8968 if (Ins[i].Flags.isCopyElisionCandidate()) { 8969 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8970 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8971 InVals[i], ArgHasUses); 8972 } 8973 8974 // If this argument is unused then remember its value. It is used to generate 8975 // debugging information. 8976 bool isSwiftErrorArg = 8977 TLI->supportSwiftError() && 8978 Arg.hasAttribute(Attribute::SwiftError); 8979 if (!ArgHasUses && !isSwiftErrorArg) { 8980 SDB->setUnusedArgValue(&Arg, InVals[i]); 8981 8982 // Also remember any frame index for use in FastISel. 8983 if (FrameIndexSDNode *FI = 8984 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8985 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8986 } 8987 8988 for (unsigned Val = 0; Val != NumValues; ++Val) { 8989 EVT VT = ValueVTs[Val]; 8990 MVT PartVT = 8991 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8992 unsigned NumParts = 8993 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8994 8995 // Even an apparant 'unused' swifterror argument needs to be returned. So 8996 // we do generate a copy for it that can be used on return from the 8997 // function. 8998 if (ArgHasUses || isSwiftErrorArg) { 8999 Optional<ISD::NodeType> AssertOp; 9000 if (Arg.hasAttribute(Attribute::SExt)) 9001 AssertOp = ISD::AssertSext; 9002 else if (Arg.hasAttribute(Attribute::ZExt)) 9003 AssertOp = ISD::AssertZext; 9004 9005 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9006 PartVT, VT, nullptr, AssertOp, 9007 true)); 9008 } 9009 9010 i += NumParts; 9011 } 9012 9013 // We don't need to do anything else for unused arguments. 9014 if (ArgValues.empty()) 9015 continue; 9016 9017 // Note down frame index. 9018 if (FrameIndexSDNode *FI = 9019 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9020 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9021 9022 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9023 SDB->getCurSDLoc()); 9024 9025 SDB->setValue(&Arg, Res); 9026 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9027 // We want to associate the argument with the frame index, among 9028 // involved operands, that correspond to the lowest address. The 9029 // getCopyFromParts function, called earlier, is swapping the order of 9030 // the operands to BUILD_PAIR depending on endianness. The result of 9031 // that swapping is that the least significant bits of the argument will 9032 // be in the first operand of the BUILD_PAIR node, and the most 9033 // significant bits will be in the second operand. 9034 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9035 if (LoadSDNode *LNode = 9036 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9037 if (FrameIndexSDNode *FI = 9038 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9039 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9040 } 9041 9042 // Update the SwiftErrorVRegDefMap. 9043 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9044 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9045 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9046 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9047 FuncInfo->SwiftErrorArg, Reg); 9048 } 9049 9050 // If this argument is live outside of the entry block, insert a copy from 9051 // wherever we got it to the vreg that other BB's will reference it as. 9052 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9053 // If we can, though, try to skip creating an unnecessary vreg. 9054 // FIXME: This isn't very clean... it would be nice to make this more 9055 // general. It's also subtly incompatible with the hacks FastISel 9056 // uses with vregs. 9057 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9058 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9059 FuncInfo->ValueMap[&Arg] = Reg; 9060 continue; 9061 } 9062 } 9063 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9064 FuncInfo->InitializeRegForValue(&Arg); 9065 SDB->CopyToExportRegsIfNeeded(&Arg); 9066 } 9067 } 9068 9069 if (!Chains.empty()) { 9070 Chains.push_back(NewRoot); 9071 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9072 } 9073 9074 DAG.setRoot(NewRoot); 9075 9076 assert(i == InVals.size() && "Argument register count mismatch!"); 9077 9078 // If any argument copy elisions occurred and we have debug info, update the 9079 // stale frame indices used in the dbg.declare variable info table. 9080 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9081 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9082 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9083 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9084 if (I != ArgCopyElisionFrameIndexMap.end()) 9085 VI.Slot = I->second; 9086 } 9087 } 9088 9089 // Finally, if the target has anything special to do, allow it to do so. 9090 EmitFunctionEntryCode(); 9091 } 9092 9093 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9094 /// ensure constants are generated when needed. Remember the virtual registers 9095 /// that need to be added to the Machine PHI nodes as input. We cannot just 9096 /// directly add them, because expansion might result in multiple MBB's for one 9097 /// BB. As such, the start of the BB might correspond to a different MBB than 9098 /// the end. 9099 void 9100 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9101 const TerminatorInst *TI = LLVMBB->getTerminator(); 9102 9103 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9104 9105 // Check PHI nodes in successors that expect a value to be available from this 9106 // block. 9107 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9108 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9109 if (!isa<PHINode>(SuccBB->begin())) continue; 9110 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9111 9112 // If this terminator has multiple identical successors (common for 9113 // switches), only handle each succ once. 9114 if (!SuccsHandled.insert(SuccMBB).second) 9115 continue; 9116 9117 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9118 9119 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9120 // nodes and Machine PHI nodes, but the incoming operands have not been 9121 // emitted yet. 9122 for (const PHINode &PN : SuccBB->phis()) { 9123 // Ignore dead phi's. 9124 if (PN.use_empty()) 9125 continue; 9126 9127 // Skip empty types 9128 if (PN.getType()->isEmptyTy()) 9129 continue; 9130 9131 unsigned Reg; 9132 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9133 9134 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9135 unsigned &RegOut = ConstantsOut[C]; 9136 if (RegOut == 0) { 9137 RegOut = FuncInfo.CreateRegs(C->getType()); 9138 CopyValueToVirtualRegister(C, RegOut); 9139 } 9140 Reg = RegOut; 9141 } else { 9142 DenseMap<const Value *, unsigned>::iterator I = 9143 FuncInfo.ValueMap.find(PHIOp); 9144 if (I != FuncInfo.ValueMap.end()) 9145 Reg = I->second; 9146 else { 9147 assert(isa<AllocaInst>(PHIOp) && 9148 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9149 "Didn't codegen value into a register!??"); 9150 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9151 CopyValueToVirtualRegister(PHIOp, Reg); 9152 } 9153 } 9154 9155 // Remember that this register needs to added to the machine PHI node as 9156 // the input for this MBB. 9157 SmallVector<EVT, 4> ValueVTs; 9158 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9159 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9160 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9161 EVT VT = ValueVTs[vti]; 9162 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9163 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9164 FuncInfo.PHINodesToUpdate.push_back( 9165 std::make_pair(&*MBBI++, Reg + i)); 9166 Reg += NumRegisters; 9167 } 9168 } 9169 } 9170 9171 ConstantsOut.clear(); 9172 } 9173 9174 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9175 /// is 0. 9176 MachineBasicBlock * 9177 SelectionDAGBuilder::StackProtectorDescriptor:: 9178 AddSuccessorMBB(const BasicBlock *BB, 9179 MachineBasicBlock *ParentMBB, 9180 bool IsLikely, 9181 MachineBasicBlock *SuccMBB) { 9182 // If SuccBB has not been created yet, create it. 9183 if (!SuccMBB) { 9184 MachineFunction *MF = ParentMBB->getParent(); 9185 MachineFunction::iterator BBI(ParentMBB); 9186 SuccMBB = MF->CreateMachineBasicBlock(BB); 9187 MF->insert(++BBI, SuccMBB); 9188 } 9189 // Add it as a successor of ParentMBB. 9190 ParentMBB->addSuccessor( 9191 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9192 return SuccMBB; 9193 } 9194 9195 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9196 MachineFunction::iterator I(MBB); 9197 if (++I == FuncInfo.MF->end()) 9198 return nullptr; 9199 return &*I; 9200 } 9201 9202 /// During lowering new call nodes can be created (such as memset, etc.). 9203 /// Those will become new roots of the current DAG, but complications arise 9204 /// when they are tail calls. In such cases, the call lowering will update 9205 /// the root, but the builder still needs to know that a tail call has been 9206 /// lowered in order to avoid generating an additional return. 9207 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9208 // If the node is null, we do have a tail call. 9209 if (MaybeTC.getNode() != nullptr) 9210 DAG.setRoot(MaybeTC); 9211 else 9212 HasTailCall = true; 9213 } 9214 9215 uint64_t 9216 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9217 unsigned First, unsigned Last) const { 9218 assert(Last >= First); 9219 const APInt &LowCase = Clusters[First].Low->getValue(); 9220 const APInt &HighCase = Clusters[Last].High->getValue(); 9221 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9222 9223 // FIXME: A range of consecutive cases has 100% density, but only requires one 9224 // comparison to lower. We should discriminate against such consecutive ranges 9225 // in jump tables. 9226 9227 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9228 } 9229 9230 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9231 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9232 unsigned Last) const { 9233 assert(Last >= First); 9234 assert(TotalCases[Last] >= TotalCases[First]); 9235 uint64_t NumCases = 9236 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9237 return NumCases; 9238 } 9239 9240 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9241 unsigned First, unsigned Last, 9242 const SwitchInst *SI, 9243 MachineBasicBlock *DefaultMBB, 9244 CaseCluster &JTCluster) { 9245 assert(First <= Last); 9246 9247 auto Prob = BranchProbability::getZero(); 9248 unsigned NumCmps = 0; 9249 std::vector<MachineBasicBlock*> Table; 9250 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9251 9252 // Initialize probabilities in JTProbs. 9253 for (unsigned I = First; I <= Last; ++I) 9254 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9255 9256 for (unsigned I = First; I <= Last; ++I) { 9257 assert(Clusters[I].Kind == CC_Range); 9258 Prob += Clusters[I].Prob; 9259 const APInt &Low = Clusters[I].Low->getValue(); 9260 const APInt &High = Clusters[I].High->getValue(); 9261 NumCmps += (Low == High) ? 1 : 2; 9262 if (I != First) { 9263 // Fill the gap between this and the previous cluster. 9264 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9265 assert(PreviousHigh.slt(Low)); 9266 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9267 for (uint64_t J = 0; J < Gap; J++) 9268 Table.push_back(DefaultMBB); 9269 } 9270 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9271 for (uint64_t J = 0; J < ClusterSize; ++J) 9272 Table.push_back(Clusters[I].MBB); 9273 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9274 } 9275 9276 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9277 unsigned NumDests = JTProbs.size(); 9278 if (TLI.isSuitableForBitTests( 9279 NumDests, NumCmps, Clusters[First].Low->getValue(), 9280 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9281 // Clusters[First..Last] should be lowered as bit tests instead. 9282 return false; 9283 } 9284 9285 // Create the MBB that will load from and jump through the table. 9286 // Note: We create it here, but it's not inserted into the function yet. 9287 MachineFunction *CurMF = FuncInfo.MF; 9288 MachineBasicBlock *JumpTableMBB = 9289 CurMF->CreateMachineBasicBlock(SI->getParent()); 9290 9291 // Add successors. Note: use table order for determinism. 9292 SmallPtrSet<MachineBasicBlock *, 8> Done; 9293 for (MachineBasicBlock *Succ : Table) { 9294 if (Done.count(Succ)) 9295 continue; 9296 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9297 Done.insert(Succ); 9298 } 9299 JumpTableMBB->normalizeSuccProbs(); 9300 9301 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9302 ->createJumpTableIndex(Table); 9303 9304 // Set up the jump table info. 9305 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9306 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9307 Clusters[Last].High->getValue(), SI->getCondition(), 9308 nullptr, false); 9309 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9310 9311 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9312 JTCases.size() - 1, Prob); 9313 return true; 9314 } 9315 9316 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9317 const SwitchInst *SI, 9318 MachineBasicBlock *DefaultMBB) { 9319 #ifndef NDEBUG 9320 // Clusters must be non-empty, sorted, and only contain Range clusters. 9321 assert(!Clusters.empty()); 9322 for (CaseCluster &C : Clusters) 9323 assert(C.Kind == CC_Range); 9324 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9325 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9326 #endif 9327 9328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9329 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9330 return; 9331 9332 const int64_t N = Clusters.size(); 9333 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9334 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9335 9336 if (N < 2 || N < MinJumpTableEntries) 9337 return; 9338 9339 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9340 SmallVector<unsigned, 8> TotalCases(N); 9341 for (unsigned i = 0; i < N; ++i) { 9342 const APInt &Hi = Clusters[i].High->getValue(); 9343 const APInt &Lo = Clusters[i].Low->getValue(); 9344 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9345 if (i != 0) 9346 TotalCases[i] += TotalCases[i - 1]; 9347 } 9348 9349 // Cheap case: the whole range may be suitable for jump table. 9350 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9351 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9352 assert(NumCases < UINT64_MAX / 100); 9353 assert(Range >= NumCases); 9354 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9355 CaseCluster JTCluster; 9356 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9357 Clusters[0] = JTCluster; 9358 Clusters.resize(1); 9359 return; 9360 } 9361 } 9362 9363 // The algorithm below is not suitable for -O0. 9364 if (TM.getOptLevel() == CodeGenOpt::None) 9365 return; 9366 9367 // Split Clusters into minimum number of dense partitions. The algorithm uses 9368 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9369 // for the Case Statement'" (1994), but builds the MinPartitions array in 9370 // reverse order to make it easier to reconstruct the partitions in ascending 9371 // order. In the choice between two optimal partitionings, it picks the one 9372 // which yields more jump tables. 9373 9374 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9375 SmallVector<unsigned, 8> MinPartitions(N); 9376 // LastElement[i] is the last element of the partition starting at i. 9377 SmallVector<unsigned, 8> LastElement(N); 9378 // PartitionsScore[i] is used to break ties when choosing between two 9379 // partitionings resulting in the same number of partitions. 9380 SmallVector<unsigned, 8> PartitionsScore(N); 9381 // For PartitionsScore, a small number of comparisons is considered as good as 9382 // a jump table and a single comparison is considered better than a jump 9383 // table. 9384 enum PartitionScores : unsigned { 9385 NoTable = 0, 9386 Table = 1, 9387 FewCases = 1, 9388 SingleCase = 2 9389 }; 9390 9391 // Base case: There is only one way to partition Clusters[N-1]. 9392 MinPartitions[N - 1] = 1; 9393 LastElement[N - 1] = N - 1; 9394 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9395 9396 // Note: loop indexes are signed to avoid underflow. 9397 for (int64_t i = N - 2; i >= 0; i--) { 9398 // Find optimal partitioning of Clusters[i..N-1]. 9399 // Baseline: Put Clusters[i] into a partition on its own. 9400 MinPartitions[i] = MinPartitions[i + 1] + 1; 9401 LastElement[i] = i; 9402 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9403 9404 // Search for a solution that results in fewer partitions. 9405 for (int64_t j = N - 1; j > i; j--) { 9406 // Try building a partition from Clusters[i..j]. 9407 uint64_t Range = getJumpTableRange(Clusters, i, j); 9408 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9409 assert(NumCases < UINT64_MAX / 100); 9410 assert(Range >= NumCases); 9411 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9412 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9413 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9414 int64_t NumEntries = j - i + 1; 9415 9416 if (NumEntries == 1) 9417 Score += PartitionScores::SingleCase; 9418 else if (NumEntries <= SmallNumberOfEntries) 9419 Score += PartitionScores::FewCases; 9420 else if (NumEntries >= MinJumpTableEntries) 9421 Score += PartitionScores::Table; 9422 9423 // If this leads to fewer partitions, or to the same number of 9424 // partitions with better score, it is a better partitioning. 9425 if (NumPartitions < MinPartitions[i] || 9426 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9427 MinPartitions[i] = NumPartitions; 9428 LastElement[i] = j; 9429 PartitionsScore[i] = Score; 9430 } 9431 } 9432 } 9433 } 9434 9435 // Iterate over the partitions, replacing some with jump tables in-place. 9436 unsigned DstIndex = 0; 9437 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9438 Last = LastElement[First]; 9439 assert(Last >= First); 9440 assert(DstIndex <= First); 9441 unsigned NumClusters = Last - First + 1; 9442 9443 CaseCluster JTCluster; 9444 if (NumClusters >= MinJumpTableEntries && 9445 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9446 Clusters[DstIndex++] = JTCluster; 9447 } else { 9448 for (unsigned I = First; I <= Last; ++I) 9449 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9450 } 9451 } 9452 Clusters.resize(DstIndex); 9453 } 9454 9455 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9456 unsigned First, unsigned Last, 9457 const SwitchInst *SI, 9458 CaseCluster &BTCluster) { 9459 assert(First <= Last); 9460 if (First == Last) 9461 return false; 9462 9463 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9464 unsigned NumCmps = 0; 9465 for (int64_t I = First; I <= Last; ++I) { 9466 assert(Clusters[I].Kind == CC_Range); 9467 Dests.set(Clusters[I].MBB->getNumber()); 9468 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9469 } 9470 unsigned NumDests = Dests.count(); 9471 9472 APInt Low = Clusters[First].Low->getValue(); 9473 APInt High = Clusters[Last].High->getValue(); 9474 assert(Low.slt(High)); 9475 9476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9477 const DataLayout &DL = DAG.getDataLayout(); 9478 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9479 return false; 9480 9481 APInt LowBound; 9482 APInt CmpRange; 9483 9484 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9485 assert(TLI.rangeFitsInWord(Low, High, DL) && 9486 "Case range must fit in bit mask!"); 9487 9488 // Check if the clusters cover a contiguous range such that no value in the 9489 // range will jump to the default statement. 9490 bool ContiguousRange = true; 9491 for (int64_t I = First + 1; I <= Last; ++I) { 9492 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9493 ContiguousRange = false; 9494 break; 9495 } 9496 } 9497 9498 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9499 // Optimize the case where all the case values fit in a word without having 9500 // to subtract minValue. In this case, we can optimize away the subtraction. 9501 LowBound = APInt::getNullValue(Low.getBitWidth()); 9502 CmpRange = High; 9503 ContiguousRange = false; 9504 } else { 9505 LowBound = Low; 9506 CmpRange = High - Low; 9507 } 9508 9509 CaseBitsVector CBV; 9510 auto TotalProb = BranchProbability::getZero(); 9511 for (unsigned i = First; i <= Last; ++i) { 9512 // Find the CaseBits for this destination. 9513 unsigned j; 9514 for (j = 0; j < CBV.size(); ++j) 9515 if (CBV[j].BB == Clusters[i].MBB) 9516 break; 9517 if (j == CBV.size()) 9518 CBV.push_back( 9519 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9520 CaseBits *CB = &CBV[j]; 9521 9522 // Update Mask, Bits and ExtraProb. 9523 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9524 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9525 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9526 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9527 CB->Bits += Hi - Lo + 1; 9528 CB->ExtraProb += Clusters[i].Prob; 9529 TotalProb += Clusters[i].Prob; 9530 } 9531 9532 BitTestInfo BTI; 9533 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9534 // Sort by probability first, number of bits second, bit mask third. 9535 if (a.ExtraProb != b.ExtraProb) 9536 return a.ExtraProb > b.ExtraProb; 9537 if (a.Bits != b.Bits) 9538 return a.Bits > b.Bits; 9539 return a.Mask < b.Mask; 9540 }); 9541 9542 for (auto &CB : CBV) { 9543 MachineBasicBlock *BitTestBB = 9544 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9545 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9546 } 9547 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9548 SI->getCondition(), -1U, MVT::Other, false, 9549 ContiguousRange, nullptr, nullptr, std::move(BTI), 9550 TotalProb); 9551 9552 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9553 BitTestCases.size() - 1, TotalProb); 9554 return true; 9555 } 9556 9557 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9558 const SwitchInst *SI) { 9559 // Partition Clusters into as few subsets as possible, where each subset has a 9560 // range that fits in a machine word and has <= 3 unique destinations. 9561 9562 #ifndef NDEBUG 9563 // Clusters must be sorted and contain Range or JumpTable clusters. 9564 assert(!Clusters.empty()); 9565 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9566 for (const CaseCluster &C : Clusters) 9567 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9568 for (unsigned i = 1; i < Clusters.size(); ++i) 9569 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9570 #endif 9571 9572 // The algorithm below is not suitable for -O0. 9573 if (TM.getOptLevel() == CodeGenOpt::None) 9574 return; 9575 9576 // If target does not have legal shift left, do not emit bit tests at all. 9577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9578 const DataLayout &DL = DAG.getDataLayout(); 9579 9580 EVT PTy = TLI.getPointerTy(DL); 9581 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9582 return; 9583 9584 int BitWidth = PTy.getSizeInBits(); 9585 const int64_t N = Clusters.size(); 9586 9587 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9588 SmallVector<unsigned, 8> MinPartitions(N); 9589 // LastElement[i] is the last element of the partition starting at i. 9590 SmallVector<unsigned, 8> LastElement(N); 9591 9592 // FIXME: This might not be the best algorithm for finding bit test clusters. 9593 9594 // Base case: There is only one way to partition Clusters[N-1]. 9595 MinPartitions[N - 1] = 1; 9596 LastElement[N - 1] = N - 1; 9597 9598 // Note: loop indexes are signed to avoid underflow. 9599 for (int64_t i = N - 2; i >= 0; --i) { 9600 // Find optimal partitioning of Clusters[i..N-1]. 9601 // Baseline: Put Clusters[i] into a partition on its own. 9602 MinPartitions[i] = MinPartitions[i + 1] + 1; 9603 LastElement[i] = i; 9604 9605 // Search for a solution that results in fewer partitions. 9606 // Note: the search is limited by BitWidth, reducing time complexity. 9607 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9608 // Try building a partition from Clusters[i..j]. 9609 9610 // Check the range. 9611 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9612 Clusters[j].High->getValue(), DL)) 9613 continue; 9614 9615 // Check nbr of destinations and cluster types. 9616 // FIXME: This works, but doesn't seem very efficient. 9617 bool RangesOnly = true; 9618 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9619 for (int64_t k = i; k <= j; k++) { 9620 if (Clusters[k].Kind != CC_Range) { 9621 RangesOnly = false; 9622 break; 9623 } 9624 Dests.set(Clusters[k].MBB->getNumber()); 9625 } 9626 if (!RangesOnly || Dests.count() > 3) 9627 break; 9628 9629 // Check if it's a better partition. 9630 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9631 if (NumPartitions < MinPartitions[i]) { 9632 // Found a better partition. 9633 MinPartitions[i] = NumPartitions; 9634 LastElement[i] = j; 9635 } 9636 } 9637 } 9638 9639 // Iterate over the partitions, replacing with bit-test clusters in-place. 9640 unsigned DstIndex = 0; 9641 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9642 Last = LastElement[First]; 9643 assert(First <= Last); 9644 assert(DstIndex <= First); 9645 9646 CaseCluster BitTestCluster; 9647 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9648 Clusters[DstIndex++] = BitTestCluster; 9649 } else { 9650 size_t NumClusters = Last - First + 1; 9651 std::memmove(&Clusters[DstIndex], &Clusters[First], 9652 sizeof(Clusters[0]) * NumClusters); 9653 DstIndex += NumClusters; 9654 } 9655 } 9656 Clusters.resize(DstIndex); 9657 } 9658 9659 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9660 MachineBasicBlock *SwitchMBB, 9661 MachineBasicBlock *DefaultMBB) { 9662 MachineFunction *CurMF = FuncInfo.MF; 9663 MachineBasicBlock *NextMBB = nullptr; 9664 MachineFunction::iterator BBI(W.MBB); 9665 if (++BBI != FuncInfo.MF->end()) 9666 NextMBB = &*BBI; 9667 9668 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9669 9670 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9671 9672 if (Size == 2 && W.MBB == SwitchMBB) { 9673 // If any two of the cases has the same destination, and if one value 9674 // is the same as the other, but has one bit unset that the other has set, 9675 // use bit manipulation to do two compares at once. For example: 9676 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9677 // TODO: This could be extended to merge any 2 cases in switches with 3 9678 // cases. 9679 // TODO: Handle cases where W.CaseBB != SwitchBB. 9680 CaseCluster &Small = *W.FirstCluster; 9681 CaseCluster &Big = *W.LastCluster; 9682 9683 if (Small.Low == Small.High && Big.Low == Big.High && 9684 Small.MBB == Big.MBB) { 9685 const APInt &SmallValue = Small.Low->getValue(); 9686 const APInt &BigValue = Big.Low->getValue(); 9687 9688 // Check that there is only one bit different. 9689 APInt CommonBit = BigValue ^ SmallValue; 9690 if (CommonBit.isPowerOf2()) { 9691 SDValue CondLHS = getValue(Cond); 9692 EVT VT = CondLHS.getValueType(); 9693 SDLoc DL = getCurSDLoc(); 9694 9695 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9696 DAG.getConstant(CommonBit, DL, VT)); 9697 SDValue Cond = DAG.getSetCC( 9698 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9699 ISD::SETEQ); 9700 9701 // Update successor info. 9702 // Both Small and Big will jump to Small.BB, so we sum up the 9703 // probabilities. 9704 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9705 if (BPI) 9706 addSuccessorWithProb( 9707 SwitchMBB, DefaultMBB, 9708 // The default destination is the first successor in IR. 9709 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9710 else 9711 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9712 9713 // Insert the true branch. 9714 SDValue BrCond = 9715 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9716 DAG.getBasicBlock(Small.MBB)); 9717 // Insert the false branch. 9718 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9719 DAG.getBasicBlock(DefaultMBB)); 9720 9721 DAG.setRoot(BrCond); 9722 return; 9723 } 9724 } 9725 } 9726 9727 if (TM.getOptLevel() != CodeGenOpt::None) { 9728 // Here, we order cases by probability so the most likely case will be 9729 // checked first. However, two clusters can have the same probability in 9730 // which case their relative ordering is non-deterministic. So we use Low 9731 // as a tie-breaker as clusters are guaranteed to never overlap. 9732 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9733 [](const CaseCluster &a, const CaseCluster &b) { 9734 return a.Prob != b.Prob ? 9735 a.Prob > b.Prob : 9736 a.Low->getValue().slt(b.Low->getValue()); 9737 }); 9738 9739 // Rearrange the case blocks so that the last one falls through if possible 9740 // without changing the order of probabilities. 9741 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9742 --I; 9743 if (I->Prob > W.LastCluster->Prob) 9744 break; 9745 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9746 std::swap(*I, *W.LastCluster); 9747 break; 9748 } 9749 } 9750 } 9751 9752 // Compute total probability. 9753 BranchProbability DefaultProb = W.DefaultProb; 9754 BranchProbability UnhandledProbs = DefaultProb; 9755 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9756 UnhandledProbs += I->Prob; 9757 9758 MachineBasicBlock *CurMBB = W.MBB; 9759 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9760 MachineBasicBlock *Fallthrough; 9761 if (I == W.LastCluster) { 9762 // For the last cluster, fall through to the default destination. 9763 Fallthrough = DefaultMBB; 9764 } else { 9765 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9766 CurMF->insert(BBI, Fallthrough); 9767 // Put Cond in a virtual register to make it available from the new blocks. 9768 ExportFromCurrentBlock(Cond); 9769 } 9770 UnhandledProbs -= I->Prob; 9771 9772 switch (I->Kind) { 9773 case CC_JumpTable: { 9774 // FIXME: Optimize away range check based on pivot comparisons. 9775 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9776 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9777 9778 // The jump block hasn't been inserted yet; insert it here. 9779 MachineBasicBlock *JumpMBB = JT->MBB; 9780 CurMF->insert(BBI, JumpMBB); 9781 9782 auto JumpProb = I->Prob; 9783 auto FallthroughProb = UnhandledProbs; 9784 9785 // If the default statement is a target of the jump table, we evenly 9786 // distribute the default probability to successors of CurMBB. Also 9787 // update the probability on the edge from JumpMBB to Fallthrough. 9788 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9789 SE = JumpMBB->succ_end(); 9790 SI != SE; ++SI) { 9791 if (*SI == DefaultMBB) { 9792 JumpProb += DefaultProb / 2; 9793 FallthroughProb -= DefaultProb / 2; 9794 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9795 JumpMBB->normalizeSuccProbs(); 9796 break; 9797 } 9798 } 9799 9800 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9801 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9802 CurMBB->normalizeSuccProbs(); 9803 9804 // The jump table header will be inserted in our current block, do the 9805 // range check, and fall through to our fallthrough block. 9806 JTH->HeaderBB = CurMBB; 9807 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9808 9809 // If we're in the right place, emit the jump table header right now. 9810 if (CurMBB == SwitchMBB) { 9811 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9812 JTH->Emitted = true; 9813 } 9814 break; 9815 } 9816 case CC_BitTests: { 9817 // FIXME: Optimize away range check based on pivot comparisons. 9818 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9819 9820 // The bit test blocks haven't been inserted yet; insert them here. 9821 for (BitTestCase &BTC : BTB->Cases) 9822 CurMF->insert(BBI, BTC.ThisBB); 9823 9824 // Fill in fields of the BitTestBlock. 9825 BTB->Parent = CurMBB; 9826 BTB->Default = Fallthrough; 9827 9828 BTB->DefaultProb = UnhandledProbs; 9829 // If the cases in bit test don't form a contiguous range, we evenly 9830 // distribute the probability on the edge to Fallthrough to two 9831 // successors of CurMBB. 9832 if (!BTB->ContiguousRange) { 9833 BTB->Prob += DefaultProb / 2; 9834 BTB->DefaultProb -= DefaultProb / 2; 9835 } 9836 9837 // If we're in the right place, emit the bit test header right now. 9838 if (CurMBB == SwitchMBB) { 9839 visitBitTestHeader(*BTB, SwitchMBB); 9840 BTB->Emitted = true; 9841 } 9842 break; 9843 } 9844 case CC_Range: { 9845 const Value *RHS, *LHS, *MHS; 9846 ISD::CondCode CC; 9847 if (I->Low == I->High) { 9848 // Check Cond == I->Low. 9849 CC = ISD::SETEQ; 9850 LHS = Cond; 9851 RHS=I->Low; 9852 MHS = nullptr; 9853 } else { 9854 // Check I->Low <= Cond <= I->High. 9855 CC = ISD::SETLE; 9856 LHS = I->Low; 9857 MHS = Cond; 9858 RHS = I->High; 9859 } 9860 9861 // The false probability is the sum of all unhandled cases. 9862 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9863 getCurSDLoc(), I->Prob, UnhandledProbs); 9864 9865 if (CurMBB == SwitchMBB) 9866 visitSwitchCase(CB, SwitchMBB); 9867 else 9868 SwitchCases.push_back(CB); 9869 9870 break; 9871 } 9872 } 9873 CurMBB = Fallthrough; 9874 } 9875 } 9876 9877 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9878 CaseClusterIt First, 9879 CaseClusterIt Last) { 9880 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9881 if (X.Prob != CC.Prob) 9882 return X.Prob > CC.Prob; 9883 9884 // Ties are broken by comparing the case value. 9885 return X.Low->getValue().slt(CC.Low->getValue()); 9886 }); 9887 } 9888 9889 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9890 const SwitchWorkListItem &W, 9891 Value *Cond, 9892 MachineBasicBlock *SwitchMBB) { 9893 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9894 "Clusters not sorted?"); 9895 9896 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9897 9898 // Balance the tree based on branch probabilities to create a near-optimal (in 9899 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9900 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9901 CaseClusterIt LastLeft = W.FirstCluster; 9902 CaseClusterIt FirstRight = W.LastCluster; 9903 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9904 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9905 9906 // Move LastLeft and FirstRight towards each other from opposite directions to 9907 // find a partitioning of the clusters which balances the probability on both 9908 // sides. If LeftProb and RightProb are equal, alternate which side is 9909 // taken to ensure 0-probability nodes are distributed evenly. 9910 unsigned I = 0; 9911 while (LastLeft + 1 < FirstRight) { 9912 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9913 LeftProb += (++LastLeft)->Prob; 9914 else 9915 RightProb += (--FirstRight)->Prob; 9916 I++; 9917 } 9918 9919 while (true) { 9920 // Our binary search tree differs from a typical BST in that ours can have up 9921 // to three values in each leaf. The pivot selection above doesn't take that 9922 // into account, which means the tree might require more nodes and be less 9923 // efficient. We compensate for this here. 9924 9925 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9926 unsigned NumRight = W.LastCluster - FirstRight + 1; 9927 9928 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9929 // If one side has less than 3 clusters, and the other has more than 3, 9930 // consider taking a cluster from the other side. 9931 9932 if (NumLeft < NumRight) { 9933 // Consider moving the first cluster on the right to the left side. 9934 CaseCluster &CC = *FirstRight; 9935 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9936 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9937 if (LeftSideRank <= RightSideRank) { 9938 // Moving the cluster to the left does not demote it. 9939 ++LastLeft; 9940 ++FirstRight; 9941 continue; 9942 } 9943 } else { 9944 assert(NumRight < NumLeft); 9945 // Consider moving the last element on the left to the right side. 9946 CaseCluster &CC = *LastLeft; 9947 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9948 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9949 if (RightSideRank <= LeftSideRank) { 9950 // Moving the cluster to the right does not demot it. 9951 --LastLeft; 9952 --FirstRight; 9953 continue; 9954 } 9955 } 9956 } 9957 break; 9958 } 9959 9960 assert(LastLeft + 1 == FirstRight); 9961 assert(LastLeft >= W.FirstCluster); 9962 assert(FirstRight <= W.LastCluster); 9963 9964 // Use the first element on the right as pivot since we will make less-than 9965 // comparisons against it. 9966 CaseClusterIt PivotCluster = FirstRight; 9967 assert(PivotCluster > W.FirstCluster); 9968 assert(PivotCluster <= W.LastCluster); 9969 9970 CaseClusterIt FirstLeft = W.FirstCluster; 9971 CaseClusterIt LastRight = W.LastCluster; 9972 9973 const ConstantInt *Pivot = PivotCluster->Low; 9974 9975 // New blocks will be inserted immediately after the current one. 9976 MachineFunction::iterator BBI(W.MBB); 9977 ++BBI; 9978 9979 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9980 // we can branch to its destination directly if it's squeezed exactly in 9981 // between the known lower bound and Pivot - 1. 9982 MachineBasicBlock *LeftMBB; 9983 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9984 FirstLeft->Low == W.GE && 9985 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9986 LeftMBB = FirstLeft->MBB; 9987 } else { 9988 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9989 FuncInfo.MF->insert(BBI, LeftMBB); 9990 WorkList.push_back( 9991 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9992 // Put Cond in a virtual register to make it available from the new blocks. 9993 ExportFromCurrentBlock(Cond); 9994 } 9995 9996 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9997 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9998 // directly if RHS.High equals the current upper bound. 9999 MachineBasicBlock *RightMBB; 10000 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10001 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10002 RightMBB = FirstRight->MBB; 10003 } else { 10004 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10005 FuncInfo.MF->insert(BBI, RightMBB); 10006 WorkList.push_back( 10007 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10008 // Put Cond in a virtual register to make it available from the new blocks. 10009 ExportFromCurrentBlock(Cond); 10010 } 10011 10012 // Create the CaseBlock record that will be used to lower the branch. 10013 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10014 getCurSDLoc(), LeftProb, RightProb); 10015 10016 if (W.MBB == SwitchMBB) 10017 visitSwitchCase(CB, SwitchMBB); 10018 else 10019 SwitchCases.push_back(CB); 10020 } 10021 10022 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10023 // from the swith statement. 10024 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10025 BranchProbability PeeledCaseProb) { 10026 if (PeeledCaseProb == BranchProbability::getOne()) 10027 return BranchProbability::getZero(); 10028 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10029 10030 uint32_t Numerator = CaseProb.getNumerator(); 10031 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10032 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10033 } 10034 10035 // Try to peel the top probability case if it exceeds the threshold. 10036 // Return current MachineBasicBlock for the switch statement if the peeling 10037 // does not occur. 10038 // If the peeling is performed, return the newly created MachineBasicBlock 10039 // for the peeled switch statement. Also update Clusters to remove the peeled 10040 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10041 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10042 const SwitchInst &SI, CaseClusterVector &Clusters, 10043 BranchProbability &PeeledCaseProb) { 10044 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10045 // Don't perform if there is only one cluster or optimizing for size. 10046 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10047 TM.getOptLevel() == CodeGenOpt::None || 10048 SwitchMBB->getParent()->getFunction().optForMinSize()) 10049 return SwitchMBB; 10050 10051 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10052 unsigned PeeledCaseIndex = 0; 10053 bool SwitchPeeled = false; 10054 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10055 CaseCluster &CC = Clusters[Index]; 10056 if (CC.Prob < TopCaseProb) 10057 continue; 10058 TopCaseProb = CC.Prob; 10059 PeeledCaseIndex = Index; 10060 SwitchPeeled = true; 10061 } 10062 if (!SwitchPeeled) 10063 return SwitchMBB; 10064 10065 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10066 << TopCaseProb << "\n"); 10067 10068 // Record the MBB for the peeled switch statement. 10069 MachineFunction::iterator BBI(SwitchMBB); 10070 ++BBI; 10071 MachineBasicBlock *PeeledSwitchMBB = 10072 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10073 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10074 10075 ExportFromCurrentBlock(SI.getCondition()); 10076 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10077 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10078 nullptr, nullptr, TopCaseProb.getCompl()}; 10079 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10080 10081 Clusters.erase(PeeledCaseIt); 10082 for (CaseCluster &CC : Clusters) { 10083 LLVM_DEBUG( 10084 dbgs() << "Scale the probablity for one cluster, before scaling: " 10085 << CC.Prob << "\n"); 10086 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10087 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10088 } 10089 PeeledCaseProb = TopCaseProb; 10090 return PeeledSwitchMBB; 10091 } 10092 10093 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10094 // Extract cases from the switch. 10095 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10096 CaseClusterVector Clusters; 10097 Clusters.reserve(SI.getNumCases()); 10098 for (auto I : SI.cases()) { 10099 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10100 const ConstantInt *CaseVal = I.getCaseValue(); 10101 BranchProbability Prob = 10102 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10103 : BranchProbability(1, SI.getNumCases() + 1); 10104 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10105 } 10106 10107 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10108 10109 // Cluster adjacent cases with the same destination. We do this at all 10110 // optimization levels because it's cheap to do and will make codegen faster 10111 // if there are many clusters. 10112 sortAndRangeify(Clusters); 10113 10114 if (TM.getOptLevel() != CodeGenOpt::None) { 10115 // Replace an unreachable default with the most popular destination. 10116 // FIXME: Exploit unreachable default more aggressively. 10117 bool UnreachableDefault = 10118 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10119 if (UnreachableDefault && !Clusters.empty()) { 10120 DenseMap<const BasicBlock *, unsigned> Popularity; 10121 unsigned MaxPop = 0; 10122 const BasicBlock *MaxBB = nullptr; 10123 for (auto I : SI.cases()) { 10124 const BasicBlock *BB = I.getCaseSuccessor(); 10125 if (++Popularity[BB] > MaxPop) { 10126 MaxPop = Popularity[BB]; 10127 MaxBB = BB; 10128 } 10129 } 10130 // Set new default. 10131 assert(MaxPop > 0 && MaxBB); 10132 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10133 10134 // Remove cases that were pointing to the destination that is now the 10135 // default. 10136 CaseClusterVector New; 10137 New.reserve(Clusters.size()); 10138 for (CaseCluster &CC : Clusters) { 10139 if (CC.MBB != DefaultMBB) 10140 New.push_back(CC); 10141 } 10142 Clusters = std::move(New); 10143 } 10144 } 10145 10146 // The branch probablity of the peeled case. 10147 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10148 MachineBasicBlock *PeeledSwitchMBB = 10149 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10150 10151 // If there is only the default destination, jump there directly. 10152 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10153 if (Clusters.empty()) { 10154 assert(PeeledSwitchMBB == SwitchMBB); 10155 SwitchMBB->addSuccessor(DefaultMBB); 10156 if (DefaultMBB != NextBlock(SwitchMBB)) { 10157 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10158 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10159 } 10160 return; 10161 } 10162 10163 findJumpTables(Clusters, &SI, DefaultMBB); 10164 findBitTestClusters(Clusters, &SI); 10165 10166 LLVM_DEBUG({ 10167 dbgs() << "Case clusters: "; 10168 for (const CaseCluster &C : Clusters) { 10169 if (C.Kind == CC_JumpTable) 10170 dbgs() << "JT:"; 10171 if (C.Kind == CC_BitTests) 10172 dbgs() << "BT:"; 10173 10174 C.Low->getValue().print(dbgs(), true); 10175 if (C.Low != C.High) { 10176 dbgs() << '-'; 10177 C.High->getValue().print(dbgs(), true); 10178 } 10179 dbgs() << ' '; 10180 } 10181 dbgs() << '\n'; 10182 }); 10183 10184 assert(!Clusters.empty()); 10185 SwitchWorkList WorkList; 10186 CaseClusterIt First = Clusters.begin(); 10187 CaseClusterIt Last = Clusters.end() - 1; 10188 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10189 // Scale the branchprobability for DefaultMBB if the peel occurs and 10190 // DefaultMBB is not replaced. 10191 if (PeeledCaseProb != BranchProbability::getZero() && 10192 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10193 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10194 WorkList.push_back( 10195 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10196 10197 while (!WorkList.empty()) { 10198 SwitchWorkListItem W = WorkList.back(); 10199 WorkList.pop_back(); 10200 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10201 10202 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10203 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10204 // For optimized builds, lower large range as a balanced binary tree. 10205 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10206 continue; 10207 } 10208 10209 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10210 } 10211 } 10212