xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 5b202966f5e7dec49055fffd4b6eea005530b0bc)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GCMetadata.h"
28 #include "llvm/CodeGen/GCStrategy.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/StackMaps.h"
37 #include "llvm/CodeGen/WinEHFuncInfo.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/Statepoint.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetFrameLowering.h"
59 #include "llvm/Target/TargetInstrInfo.h"
60 #include "llvm/Target/TargetIntrinsicInfo.h"
61 #include "llvm/Target/TargetLowering.h"
62 #include "llvm/Target/TargetOptions.h"
63 #include "llvm/Target/TargetSelectionDAGInfo.h"
64 #include "llvm/Target/TargetSubtargetInfo.h"
65 #include <algorithm>
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "isel"
69 
70 /// LimitFloatPrecision - Generate low-precision inline sequences for
71 /// some float libcalls (6, 8 or 12 bits).
72 static unsigned LimitFloatPrecision;
73 
74 static cl::opt<unsigned, true>
75 LimitFPPrecision("limit-float-precision",
76                  cl::desc("Generate low-precision inline sequences "
77                           "for some float libcalls"),
78                  cl::location(LimitFloatPrecision),
79                  cl::init(0));
80 
81 // Limit the width of DAG chains. This is important in general to prevent
82 // prevent DAG-based analysis from blowing up. For example, alias analysis and
83 // load clustering may not complete in reasonable time. It is difficult to
84 // recognize and avoid this situation within each individual analysis, and
85 // future analyses are likely to have the same behavior. Limiting DAG width is
86 // the safe approach, and will be especially important with global DAGs.
87 //
88 // MaxParallelChains default is arbitrarily high to avoid affecting
89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
90 // sequence over this should have been converted to llvm.memcpy by the
91 // frontend. It easy to induce this behavior with .ll code such as:
92 // %buffer = alloca [4096 x i8]
93 // %data = load [4096 x i8]* %argPtr
94 // store [4096 x i8] %data, [4096 x i8]* %buffer
95 static const unsigned MaxParallelChains = 64;
96 
97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
98                                       const SDValue *Parts, unsigned NumParts,
99                                       MVT PartVT, EVT ValueVT, const Value *V);
100 
101 /// getCopyFromParts - Create a value that contains the specified legal parts
102 /// combined into the value they represent.  If the parts combine to a type
103 /// larger then ValueVT then AssertOp can be used to specify whether the extra
104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
105 /// (ISD::AssertSext).
106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
107                                 const SDValue *Parts,
108                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
109                                 const Value *V,
110                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
111   if (ValueVT.isVector())
112     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
113                                   PartVT, ValueVT, V);
114 
115   assert(NumParts > 0 && "No parts to assemble!");
116   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
117   SDValue Val = Parts[0];
118 
119   if (NumParts > 1) {
120     // Assemble the value from multiple parts.
121     if (ValueVT.isInteger()) {
122       unsigned PartBits = PartVT.getSizeInBits();
123       unsigned ValueBits = ValueVT.getSizeInBits();
124 
125       // Assemble the power of 2 part.
126       unsigned RoundParts = NumParts & (NumParts - 1) ?
127         1 << Log2_32(NumParts) : NumParts;
128       unsigned RoundBits = PartBits * RoundParts;
129       EVT RoundVT = RoundBits == ValueBits ?
130         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
131       SDValue Lo, Hi;
132 
133       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
134 
135       if (RoundParts > 2) {
136         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
137                               PartVT, HalfVT, V);
138         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
139                               RoundParts / 2, PartVT, HalfVT, V);
140       } else {
141         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
142         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
143       }
144 
145       if (TLI.isBigEndian())
146         std::swap(Lo, Hi);
147 
148       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
149 
150       if (RoundParts < NumParts) {
151         // Assemble the trailing non-power-of-2 part.
152         unsigned OddParts = NumParts - RoundParts;
153         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
154         Hi = getCopyFromParts(DAG, DL,
155                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
156 
157         // Combine the round and odd parts.
158         Lo = Val;
159         if (TLI.isBigEndian())
160           std::swap(Lo, Hi);
161         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
162         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
163         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
164                          DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
165                                          TLI.getPointerTy()));
166         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
167         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
168       }
169     } else if (PartVT.isFloatingPoint()) {
170       // FP split into multiple FP parts (for ppcf128)
171       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
172              "Unexpected split");
173       SDValue Lo, Hi;
174       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
175       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
176       if (TLI.hasBigEndianPartOrdering(ValueVT))
177         std::swap(Lo, Hi);
178       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
179     } else {
180       // FP split into integer parts (soft fp)
181       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
182              !PartVT.isVector() && "Unexpected split");
183       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
184       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
185     }
186   }
187 
188   // There is now one part, held in Val.  Correct it to match ValueVT.
189   EVT PartEVT = Val.getValueType();
190 
191   if (PartEVT == ValueVT)
192     return Val;
193 
194   if (PartEVT.isInteger() && ValueVT.isInteger()) {
195     if (ValueVT.bitsLT(PartEVT)) {
196       // For a truncate, see if we have any information to
197       // indicate whether the truncated bits will always be
198       // zero or sign-extension.
199       if (AssertOp != ISD::DELETED_NODE)
200         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
201                           DAG.getValueType(ValueVT));
202       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
203     }
204     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
205   }
206 
207   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
208     // FP_ROUND's are always exact here.
209     if (ValueVT.bitsLT(Val.getValueType()))
210       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
211                          DAG.getTargetConstant(1, DL, TLI.getPointerTy()));
212 
213     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
214   }
215 
216   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
217     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
218 
219   llvm_unreachable("Unknown mismatch!");
220 }
221 
222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
223                                               const Twine &ErrMsg) {
224   const Instruction *I = dyn_cast_or_null<Instruction>(V);
225   if (!V)
226     return Ctx.emitError(ErrMsg);
227 
228   const char *AsmError = ", possible invalid constraint for vector type";
229   if (const CallInst *CI = dyn_cast<CallInst>(I))
230     if (isa<InlineAsm>(CI->getCalledValue()))
231       return Ctx.emitError(I, ErrMsg + AsmError);
232 
233   return Ctx.emitError(I, ErrMsg);
234 }
235 
236 /// getCopyFromPartsVector - Create a value that contains the specified legal
237 /// parts combined into the value they represent.  If the parts combine to a
238 /// type larger then ValueVT then AssertOp can be used to specify whether the
239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
240 /// ValueVT (ISD::AssertSext).
241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
242                                       const SDValue *Parts, unsigned NumParts,
243                                       MVT PartVT, EVT ValueVT, const Value *V) {
244   assert(ValueVT.isVector() && "Not a vector value");
245   assert(NumParts > 0 && "No parts to assemble!");
246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
247   SDValue Val = Parts[0];
248 
249   // Handle a multi-element vector.
250   if (NumParts > 1) {
251     EVT IntermediateVT;
252     MVT RegisterVT;
253     unsigned NumIntermediates;
254     unsigned NumRegs =
255     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
256                                NumIntermediates, RegisterVT);
257     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
258     NumParts = NumRegs; // Silence a compiler warning.
259     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
260     assert(RegisterVT == Parts[0].getSimpleValueType() &&
261            "Part type doesn't match part!");
262 
263     // Assemble the parts into intermediate operands.
264     SmallVector<SDValue, 8> Ops(NumIntermediates);
265     if (NumIntermediates == NumParts) {
266       // If the register was not expanded, truncate or copy the value,
267       // as appropriate.
268       for (unsigned i = 0; i != NumParts; ++i)
269         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
270                                   PartVT, IntermediateVT, V);
271     } else if (NumParts > 0) {
272       // If the intermediate type was expanded, build the intermediate
273       // operands from the parts.
274       assert(NumParts % NumIntermediates == 0 &&
275              "Must expand into a divisible number of parts!");
276       unsigned Factor = NumParts / NumIntermediates;
277       for (unsigned i = 0; i != NumIntermediates; ++i)
278         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
279                                   PartVT, IntermediateVT, V);
280     }
281 
282     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
283     // intermediate operands.
284     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
285                                                 : ISD::BUILD_VECTOR,
286                       DL, ValueVT, Ops);
287   }
288 
289   // There is now one part, held in Val.  Correct it to match ValueVT.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isVector()) {
296     // If the element type of the source/dest vectors are the same, but the
297     // parts vector has more elements than the value vector, then we have a
298     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
299     // elements we want.
300     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
301       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
302              "Cannot narrow, it would be a lossy transformation");
303       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
304                          DAG.getConstant(0, DL, TLI.getVectorIdxTy()));
305     }
306 
307     // Vector/Vector bitcast.
308     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
309       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
310 
311     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
312       "Cannot handle this kind of promotion");
313     // Promoted vector extract
314     bool Smaller = ValueVT.bitsLE(PartEVT);
315     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
316                        DL, ValueVT, Val);
317 
318   }
319 
320   // Trivial bitcast if the types are the same size and the destination
321   // vector type is legal.
322   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
323       TLI.isTypeLegal(ValueVT))
324     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
325 
326   // Handle cases such as i8 -> <1 x i1>
327   if (ValueVT.getVectorNumElements() != 1) {
328     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
329                                       "non-trivial scalar-to-vector conversion");
330     return DAG.getUNDEF(ValueVT);
331   }
332 
333   if (ValueVT.getVectorNumElements() == 1 &&
334       ValueVT.getVectorElementType() != PartEVT) {
335     bool Smaller = ValueVT.bitsLE(PartEVT);
336     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
337                        DL, ValueVT.getScalarType(), Val);
338   }
339 
340   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
341 }
342 
343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
344                                  SDValue Val, SDValue *Parts, unsigned NumParts,
345                                  MVT PartVT, const Value *V);
346 
347 /// getCopyToParts - Create a series of nodes that contain the specified value
348 /// split into legal parts.  If the parts contain more bits than Val, then, for
349 /// integers, ExtendKind can be used to specify how to generate the extra bits.
350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
351                            SDValue Val, SDValue *Parts, unsigned NumParts,
352                            MVT PartVT, const Value *V,
353                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
354   EVT ValueVT = Val.getValueType();
355 
356   // Handle the vector case separately.
357   if (ValueVT.isVector())
358     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
359 
360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
361   unsigned PartBits = PartVT.getSizeInBits();
362   unsigned OrigNumParts = NumParts;
363   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
364 
365   if (NumParts == 0)
366     return;
367 
368   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
369   EVT PartEVT = PartVT;
370   if (PartEVT == ValueVT) {
371     assert(NumParts == 1 && "No-op copy with multiple parts!");
372     Parts[0] = Val;
373     return;
374   }
375 
376   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
377     // If the parts cover more bits than the value has, promote the value.
378     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
379       assert(NumParts == 1 && "Do not know what to promote to!");
380       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
381     } else {
382       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
383              ValueVT.isInteger() &&
384              "Unknown mismatch!");
385       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
386       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
387       if (PartVT == MVT::x86mmx)
388         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
389     }
390   } else if (PartBits == ValueVT.getSizeInBits()) {
391     // Different types of the same size.
392     assert(NumParts == 1 && PartEVT != ValueVT);
393     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
394   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
395     // If the parts cover less bits than value has, truncate the value.
396     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
397            ValueVT.isInteger() &&
398            "Unknown mismatch!");
399     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
400     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
401     if (PartVT == MVT::x86mmx)
402       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
403   }
404 
405   // The value may have changed - recompute ValueVT.
406   ValueVT = Val.getValueType();
407   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
408          "Failed to tile the value with PartVT!");
409 
410   if (NumParts == 1) {
411     if (PartEVT != ValueVT)
412       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
413                                         "scalar-to-vector conversion failed");
414 
415     Parts[0] = Val;
416     return;
417   }
418 
419   // Expand the value into multiple parts.
420   if (NumParts & (NumParts - 1)) {
421     // The number of parts is not a power of 2.  Split off and copy the tail.
422     assert(PartVT.isInteger() && ValueVT.isInteger() &&
423            "Do not know what to expand to!");
424     unsigned RoundParts = 1 << Log2_32(NumParts);
425     unsigned RoundBits = RoundParts * PartBits;
426     unsigned OddParts = NumParts - RoundParts;
427     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
428                                  DAG.getIntPtrConstant(RoundBits, DL));
429     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
430 
431     if (TLI.isBigEndian())
432       // The odd parts were reversed by getCopyToParts - unreverse them.
433       std::reverse(Parts + RoundParts, Parts + NumParts);
434 
435     NumParts = RoundParts;
436     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
437     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
438   }
439 
440   // The number of parts is a power of 2.  Repeatedly bisect the value using
441   // EXTRACT_ELEMENT.
442   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
443                          EVT::getIntegerVT(*DAG.getContext(),
444                                            ValueVT.getSizeInBits()),
445                          Val);
446 
447   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
448     for (unsigned i = 0; i < NumParts; i += StepSize) {
449       unsigned ThisBits = StepSize * PartBits / 2;
450       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
451       SDValue &Part0 = Parts[i];
452       SDValue &Part1 = Parts[i+StepSize/2];
453 
454       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
455                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
456       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
457                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
458 
459       if (ThisBits == PartBits && ThisVT != PartVT) {
460         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
461         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
462       }
463     }
464   }
465 
466   if (TLI.isBigEndian())
467     std::reverse(Parts, Parts + OrigNumParts);
468 }
469 
470 
471 /// getCopyToPartsVector - Create a series of nodes that contain the specified
472 /// value split into legal parts.
473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
474                                  SDValue Val, SDValue *Parts, unsigned NumParts,
475                                  MVT PartVT, const Value *V) {
476   EVT ValueVT = Val.getValueType();
477   assert(ValueVT.isVector() && "Not a vector");
478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
479 
480   if (NumParts == 1) {
481     EVT PartEVT = PartVT;
482     if (PartEVT == ValueVT) {
483       // Nothing to do.
484     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
485       // Bitconvert vector->vector case.
486       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
487     } else if (PartVT.isVector() &&
488                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
489                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
490       EVT ElementVT = PartVT.getVectorElementType();
491       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
492       // undef elements.
493       SmallVector<SDValue, 16> Ops;
494       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
495         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
496                                   ElementVT, Val, DAG.getConstant(i, DL,
497                                                   TLI.getVectorIdxTy())));
498 
499       for (unsigned i = ValueVT.getVectorNumElements(),
500            e = PartVT.getVectorNumElements(); i != e; ++i)
501         Ops.push_back(DAG.getUNDEF(ElementVT));
502 
503       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
504 
505       // FIXME: Use CONCAT for 2x -> 4x.
506 
507       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
508       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
509     } else if (PartVT.isVector() &&
510                PartEVT.getVectorElementType().bitsGE(
511                  ValueVT.getVectorElementType()) &&
512                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
513 
514       // Promoted vector extract
515       bool Smaller = PartEVT.bitsLE(ValueVT);
516       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
517                         DL, PartVT, Val);
518     } else{
519       // Vector -> scalar conversion.
520       assert(ValueVT.getVectorNumElements() == 1 &&
521              "Only trivial vector-to-scalar conversions should get here!");
522       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
523                         PartVT, Val,
524                         DAG.getConstant(0, DL, TLI.getVectorIdxTy()));
525 
526       bool Smaller = ValueVT.bitsLE(PartVT);
527       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
528                          DL, PartVT, Val);
529     }
530 
531     Parts[0] = Val;
532     return;
533   }
534 
535   // Handle a multi-element vector.
536   EVT IntermediateVT;
537   MVT RegisterVT;
538   unsigned NumIntermediates;
539   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
540                                                 IntermediateVT,
541                                                 NumIntermediates, RegisterVT);
542   unsigned NumElements = ValueVT.getVectorNumElements();
543 
544   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
545   NumParts = NumRegs; // Silence a compiler warning.
546   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
547 
548   // Split the vector into intermediate operands.
549   SmallVector<SDValue, 8> Ops(NumIntermediates);
550   for (unsigned i = 0; i != NumIntermediates; ++i) {
551     if (IntermediateVT.isVector())
552       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
553                            IntermediateVT, Val,
554                    DAG.getConstant(i * (NumElements / NumIntermediates), DL,
555                                    TLI.getVectorIdxTy()));
556     else
557       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
558                            IntermediateVT, Val,
559                            DAG.getConstant(i, DL, TLI.getVectorIdxTy()));
560   }
561 
562   // Split the intermediate operands into legal parts.
563   if (NumParts == NumIntermediates) {
564     // If the register was not expanded, promote or copy the value,
565     // as appropriate.
566     for (unsigned i = 0; i != NumParts; ++i)
567       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
568   } else if (NumParts > 0) {
569     // If the intermediate type was expanded, split each the value into
570     // legal parts.
571     assert(NumIntermediates != 0 && "division by zero");
572     assert(NumParts % NumIntermediates == 0 &&
573            "Must expand into a divisible number of parts!");
574     unsigned Factor = NumParts / NumIntermediates;
575     for (unsigned i = 0; i != NumIntermediates; ++i)
576       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
577   }
578 }
579 
580 RegsForValue::RegsForValue() {}
581 
582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
583                            EVT valuevt)
584     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
585 
586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli,
587                            unsigned Reg, Type *Ty) {
588   ComputeValueVTs(tli, Ty, ValueVTs);
589 
590   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
591     EVT ValueVT = ValueVTs[Value];
592     unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
593     MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
594     for (unsigned i = 0; i != NumRegs; ++i)
595       Regs.push_back(Reg + i);
596     RegVTs.push_back(RegisterVT);
597     Reg += NumRegs;
598   }
599 }
600 
601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
602 /// this value and returns the result as a ValueVT value.  This uses
603 /// Chain/Flag as the input and updates them for the output Chain/Flag.
604 /// If the Flag pointer is NULL, no flag is used.
605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
606                                       FunctionLoweringInfo &FuncInfo,
607                                       SDLoc dl,
608                                       SDValue &Chain, SDValue *Flag,
609                                       const Value *V) const {
610   // A Value with type {} or [0 x %t] needs no registers.
611   if (ValueVTs.empty())
612     return SDValue();
613 
614   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
615 
616   // Assemble the legal parts into the final values.
617   SmallVector<SDValue, 4> Values(ValueVTs.size());
618   SmallVector<SDValue, 8> Parts;
619   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
620     // Copy the legal parts from the registers.
621     EVT ValueVT = ValueVTs[Value];
622     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
623     MVT RegisterVT = RegVTs[Value];
624 
625     Parts.resize(NumRegs);
626     for (unsigned i = 0; i != NumRegs; ++i) {
627       SDValue P;
628       if (!Flag) {
629         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
630       } else {
631         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
632         *Flag = P.getValue(2);
633       }
634 
635       Chain = P.getValue(1);
636       Parts[i] = P;
637 
638       // If the source register was virtual and if we know something about it,
639       // add an assert node.
640       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
641           !RegisterVT.isInteger() || RegisterVT.isVector())
642         continue;
643 
644       const FunctionLoweringInfo::LiveOutInfo *LOI =
645         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
646       if (!LOI)
647         continue;
648 
649       unsigned RegSize = RegisterVT.getSizeInBits();
650       unsigned NumSignBits = LOI->NumSignBits;
651       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
652 
653       if (NumZeroBits == RegSize) {
654         // The current value is a zero.
655         // Explicitly express that as it would be easier for
656         // optimizations to kick in.
657         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
658         continue;
659       }
660 
661       // FIXME: We capture more information than the dag can represent.  For
662       // now, just use the tightest assertzext/assertsext possible.
663       bool isSExt = true;
664       EVT FromVT(MVT::Other);
665       if (NumSignBits == RegSize)
666         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
667       else if (NumZeroBits >= RegSize-1)
668         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
669       else if (NumSignBits > RegSize-8)
670         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
671       else if (NumZeroBits >= RegSize-8)
672         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
673       else if (NumSignBits > RegSize-16)
674         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
675       else if (NumZeroBits >= RegSize-16)
676         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
677       else if (NumSignBits > RegSize-32)
678         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
679       else if (NumZeroBits >= RegSize-32)
680         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
681       else
682         continue;
683 
684       // Add an assertion node.
685       assert(FromVT != MVT::Other);
686       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
687                              RegisterVT, P, DAG.getValueType(FromVT));
688     }
689 
690     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
691                                      NumRegs, RegisterVT, ValueVT, V);
692     Part += NumRegs;
693     Parts.clear();
694   }
695 
696   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
697 }
698 
699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
700 /// specified value into the registers specified by this object.  This uses
701 /// Chain/Flag as the input and updates them for the output Chain/Flag.
702 /// If the Flag pointer is NULL, no flag is used.
703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
704                                  SDValue &Chain, SDValue *Flag, const Value *V,
705                                  ISD::NodeType PreferredExtendType) const {
706   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
707   ISD::NodeType ExtendKind = PreferredExtendType;
708 
709   // Get the list of the values's legal parts.
710   unsigned NumRegs = Regs.size();
711   SmallVector<SDValue, 8> Parts(NumRegs);
712   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
713     EVT ValueVT = ValueVTs[Value];
714     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
715     MVT RegisterVT = RegVTs[Value];
716 
717     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
718       ExtendKind = ISD::ZERO_EXTEND;
719 
720     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
721                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
722     Part += NumParts;
723   }
724 
725   // Copy the parts into the registers.
726   SmallVector<SDValue, 8> Chains(NumRegs);
727   for (unsigned i = 0; i != NumRegs; ++i) {
728     SDValue Part;
729     if (!Flag) {
730       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
731     } else {
732       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
733       *Flag = Part.getValue(1);
734     }
735 
736     Chains[i] = Part.getValue(0);
737   }
738 
739   if (NumRegs == 1 || Flag)
740     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
741     // flagged to it. That is the CopyToReg nodes and the user are considered
742     // a single scheduling unit. If we create a TokenFactor and return it as
743     // chain, then the TokenFactor is both a predecessor (operand) of the
744     // user as well as a successor (the TF operands are flagged to the user).
745     // c1, f1 = CopyToReg
746     // c2, f2 = CopyToReg
747     // c3     = TokenFactor c1, c2
748     // ...
749     //        = op c3, ..., f2
750     Chain = Chains[NumRegs-1];
751   else
752     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
753 }
754 
755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
756 /// operand list.  This adds the code marker and includes the number of
757 /// values added into it.
758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
759                                         unsigned MatchingIdx, SDLoc dl,
760                                         SelectionDAG &DAG,
761                                         std::vector<SDValue> &Ops) const {
762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
763 
764   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
765   if (HasMatching)
766     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
767   else if (!Regs.empty() &&
768            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
769     // Put the register class of the virtual registers in the flag word.  That
770     // way, later passes can recompute register class constraints for inline
771     // assembly as well as normal instructions.
772     // Don't do this for tied operands that can use the regclass information
773     // from the def.
774     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
775     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
776     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
777   }
778 
779   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
780   Ops.push_back(Res);
781 
782   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
783   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
784     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
785     MVT RegisterVT = RegVTs[Value];
786     for (unsigned i = 0; i != NumRegs; ++i) {
787       assert(Reg < Regs.size() && "Mismatch in # registers expected");
788       unsigned TheReg = Regs[Reg++];
789       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
790 
791       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
792         // If we clobbered the stack pointer, MFI should know about it.
793         assert(DAG.getMachineFunction().getFrameInfo()->
794             hasInlineAsmWithSPAdjust());
795       }
796     }
797   }
798 }
799 
800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
801                                const TargetLibraryInfo *li) {
802   AA = &aa;
803   GFI = gfi;
804   LibInfo = li;
805   DL = DAG.getTarget().getDataLayout();
806   Context = DAG.getContext();
807   LPadToCallSiteMap.clear();
808 }
809 
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
816 void SelectionDAGBuilder::clear() {
817   NodeMap.clear();
818   UnusedArgNodeMap.clear();
819   PendingLoads.clear();
820   PendingExports.clear();
821   CurInst = nullptr;
822   HasTailCall = false;
823   SDNodeOrder = LowestSDNodeOrder;
824   StatepointLowering.clear();
825 }
826 
827 /// clearDanglingDebugInfo - Clear the dangling debug information
828 /// map. This function is separated from the clear so that debug
829 /// information that is dangling in a basic block can be properly
830 /// resolved in a different basic block. This allows the
831 /// SelectionDAG to resolve dangling debug information attached
832 /// to PHI nodes.
833 void SelectionDAGBuilder::clearDanglingDebugInfo() {
834   DanglingDebugInfoMap.clear();
835 }
836 
837 /// getRoot - Return the current virtual root of the Selection DAG,
838 /// flushing any PendingLoad items. This must be done before emitting
839 /// a store or any other node that may need to be ordered after any
840 /// prior load instructions.
841 ///
842 SDValue SelectionDAGBuilder::getRoot() {
843   if (PendingLoads.empty())
844     return DAG.getRoot();
845 
846   if (PendingLoads.size() == 1) {
847     SDValue Root = PendingLoads[0];
848     DAG.setRoot(Root);
849     PendingLoads.clear();
850     return Root;
851   }
852 
853   // Otherwise, we have to make a token factor node.
854   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
855                              PendingLoads);
856   PendingLoads.clear();
857   DAG.setRoot(Root);
858   return Root;
859 }
860 
861 /// getControlRoot - Similar to getRoot, but instead of flushing all the
862 /// PendingLoad items, flush all the PendingExports items. It is necessary
863 /// to do this before emitting a terminator instruction.
864 ///
865 SDValue SelectionDAGBuilder::getControlRoot() {
866   SDValue Root = DAG.getRoot();
867 
868   if (PendingExports.empty())
869     return Root;
870 
871   // Turn all of the CopyToReg chains into one factored node.
872   if (Root.getOpcode() != ISD::EntryToken) {
873     unsigned i = 0, e = PendingExports.size();
874     for (; i != e; ++i) {
875       assert(PendingExports[i].getNode()->getNumOperands() > 1);
876       if (PendingExports[i].getNode()->getOperand(0) == Root)
877         break;  // Don't add the root if we already indirectly depend on it.
878     }
879 
880     if (i == e)
881       PendingExports.push_back(Root);
882   }
883 
884   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
885                      PendingExports);
886   PendingExports.clear();
887   DAG.setRoot(Root);
888   return Root;
889 }
890 
891 void SelectionDAGBuilder::visit(const Instruction &I) {
892   // Set up outgoing PHI node register values before emitting the terminator.
893   if (isa<TerminatorInst>(&I))
894     HandlePHINodesInSuccessorBlocks(I.getParent());
895 
896   ++SDNodeOrder;
897 
898   CurInst = &I;
899 
900   visit(I.getOpcode(), I);
901 
902   if (!isa<TerminatorInst>(&I) && !HasTailCall)
903     CopyToExportRegsIfNeeded(&I);
904 
905   CurInst = nullptr;
906 }
907 
908 void SelectionDAGBuilder::visitPHI(const PHINode &) {
909   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
910 }
911 
912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
913   // Note: this doesn't use InstVisitor, because it has to work with
914   // ConstantExpr's in addition to instructions.
915   switch (Opcode) {
916   default: llvm_unreachable("Unknown instruction type encountered!");
917     // Build the switch statement using the Instruction.def file.
918 #define HANDLE_INST(NUM, OPCODE, CLASS) \
919     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
920 #include "llvm/IR/Instruction.def"
921   }
922 }
923 
924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
925 // generate the debug data structures now that we've seen its definition.
926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
927                                                    SDValue Val) {
928   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
929   if (DDI.getDI()) {
930     const DbgValueInst *DI = DDI.getDI();
931     DebugLoc dl = DDI.getdl();
932     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
933     DILocalVariable *Variable = DI->getVariable();
934     DIExpression *Expr = DI->getExpression();
935     assert(Variable->isValidLocationForIntrinsic(dl) &&
936            "Expected inlined-at fields to agree");
937     uint64_t Offset = DI->getOffset();
938     // A dbg.value for an alloca is always indirect.
939     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
940     SDDbgValue *SDV;
941     if (Val.getNode()) {
942       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
943                                     Val)) {
944         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
945                               IsIndirect, Offset, dl, DbgSDNodeOrder);
946         DAG.AddDbgValue(SDV, Val.getNode(), false);
947       }
948     } else
949       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
950     DanglingDebugInfoMap[V] = DanglingDebugInfo();
951   }
952 }
953 
954 /// getCopyFromRegs - If there was virtual register allocated for the value V
955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
957   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
958   SDValue Result;
959 
960   if (It != FuncInfo.ValueMap.end()) {
961     unsigned InReg = It->second;
962     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
963                      Ty);
964     SDValue Chain = DAG.getEntryNode();
965     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
966     resolveDanglingDebugInfo(V, Result);
967   }
968 
969   return Result;
970 }
971 
972 /// getValue - Return an SDValue for the given Value.
973 SDValue SelectionDAGBuilder::getValue(const Value *V) {
974   // If we already have an SDValue for this value, use it. It's important
975   // to do this first, so that we don't create a CopyFromReg if we already
976   // have a regular SDValue.
977   SDValue &N = NodeMap[V];
978   if (N.getNode()) return N;
979 
980   // If there's a virtual register allocated and initialized for this
981   // value, use it.
982   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
983   if (copyFromReg.getNode()) {
984     return copyFromReg;
985   }
986 
987   // Otherwise create a new SDValue and remember it.
988   SDValue Val = getValueImpl(V);
989   NodeMap[V] = Val;
990   resolveDanglingDebugInfo(V, Val);
991   return Val;
992 }
993 
994 // Return true if SDValue exists for the given Value
995 bool SelectionDAGBuilder::findValue(const Value *V) const {
996   return (NodeMap.find(V) != NodeMap.end()) ||
997     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
998 }
999 
1000 /// getNonRegisterValue - Return an SDValue for the given Value, but
1001 /// don't look in FuncInfo.ValueMap for a virtual register.
1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1003   // If we already have an SDValue for this value, use it.
1004   SDValue &N = NodeMap[V];
1005   if (N.getNode()) return N;
1006 
1007   // Otherwise create a new SDValue and remember it.
1008   SDValue Val = getValueImpl(V);
1009   NodeMap[V] = Val;
1010   resolveDanglingDebugInfo(V, Val);
1011   return Val;
1012 }
1013 
1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1015 /// Create an SDValue for the given value.
1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1017   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1018 
1019   if (const Constant *C = dyn_cast<Constant>(V)) {
1020     EVT VT = TLI.getValueType(V->getType(), true);
1021 
1022     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1023       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1024 
1025     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1026       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1027 
1028     if (isa<ConstantPointerNull>(C)) {
1029       unsigned AS = V->getType()->getPointerAddressSpace();
1030       return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS));
1031     }
1032 
1033     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1034       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1035 
1036     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1037       return DAG.getUNDEF(VT);
1038 
1039     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1040       visit(CE->getOpcode(), *CE);
1041       SDValue N1 = NodeMap[V];
1042       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1043       return N1;
1044     }
1045 
1046     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1047       SmallVector<SDValue, 4> Constants;
1048       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1049            OI != OE; ++OI) {
1050         SDNode *Val = getValue(*OI).getNode();
1051         // If the operand is an empty aggregate, there are no values.
1052         if (!Val) continue;
1053         // Add each leaf value from the operand to the Constants list
1054         // to form a flattened list of all the values.
1055         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1056           Constants.push_back(SDValue(Val, i));
1057       }
1058 
1059       return DAG.getMergeValues(Constants, getCurSDLoc());
1060     }
1061 
1062     if (const ConstantDataSequential *CDS =
1063           dyn_cast<ConstantDataSequential>(C)) {
1064       SmallVector<SDValue, 4> Ops;
1065       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1066         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1067         // Add each leaf value from the operand to the Constants list
1068         // to form a flattened list of all the values.
1069         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1070           Ops.push_back(SDValue(Val, i));
1071       }
1072 
1073       if (isa<ArrayType>(CDS->getType()))
1074         return DAG.getMergeValues(Ops, getCurSDLoc());
1075       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1076                                       VT, Ops);
1077     }
1078 
1079     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1080       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1081              "Unknown struct or array constant!");
1082 
1083       SmallVector<EVT, 4> ValueVTs;
1084       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1085       unsigned NumElts = ValueVTs.size();
1086       if (NumElts == 0)
1087         return SDValue(); // empty struct
1088       SmallVector<SDValue, 4> Constants(NumElts);
1089       for (unsigned i = 0; i != NumElts; ++i) {
1090         EVT EltVT = ValueVTs[i];
1091         if (isa<UndefValue>(C))
1092           Constants[i] = DAG.getUNDEF(EltVT);
1093         else if (EltVT.isFloatingPoint())
1094           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1095         else
1096           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1097       }
1098 
1099       return DAG.getMergeValues(Constants, getCurSDLoc());
1100     }
1101 
1102     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1103       return DAG.getBlockAddress(BA, VT);
1104 
1105     VectorType *VecTy = cast<VectorType>(V->getType());
1106     unsigned NumElements = VecTy->getNumElements();
1107 
1108     // Now that we know the number and type of the elements, get that number of
1109     // elements into the Ops array based on what kind of constant it is.
1110     SmallVector<SDValue, 16> Ops;
1111     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1112       for (unsigned i = 0; i != NumElements; ++i)
1113         Ops.push_back(getValue(CV->getOperand(i)));
1114     } else {
1115       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1116       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1117 
1118       SDValue Op;
1119       if (EltVT.isFloatingPoint())
1120         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1121       else
1122         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1123       Ops.assign(NumElements, Op);
1124     }
1125 
1126     // Create a BUILD_VECTOR node.
1127     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1128   }
1129 
1130   // If this is a static alloca, generate it as the frameindex instead of
1131   // computation.
1132   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1133     DenseMap<const AllocaInst*, int>::iterator SI =
1134       FuncInfo.StaticAllocaMap.find(AI);
1135     if (SI != FuncInfo.StaticAllocaMap.end())
1136       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1137   }
1138 
1139   // If this is an instruction which fast-isel has deferred, select it now.
1140   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1141     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1142     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1143     SDValue Chain = DAG.getEntryNode();
1144     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1145   }
1146 
1147   llvm_unreachable("Can't get register for value!");
1148 }
1149 
1150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1152   SDValue Chain = getControlRoot();
1153   SmallVector<ISD::OutputArg, 8> Outs;
1154   SmallVector<SDValue, 8> OutVals;
1155 
1156   if (!FuncInfo.CanLowerReturn) {
1157     unsigned DemoteReg = FuncInfo.DemoteRegister;
1158     const Function *F = I.getParent()->getParent();
1159 
1160     // Emit a store of the return value through the virtual register.
1161     // Leave Outs empty so that LowerReturn won't try to load return
1162     // registers the usual way.
1163     SmallVector<EVT, 1> PtrValueVTs;
1164     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1165                     PtrValueVTs);
1166 
1167     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1168     SDValue RetOp = getValue(I.getOperand(0));
1169 
1170     SmallVector<EVT, 4> ValueVTs;
1171     SmallVector<uint64_t, 4> Offsets;
1172     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1173     unsigned NumValues = ValueVTs.size();
1174 
1175     SmallVector<SDValue, 4> Chains(NumValues);
1176     for (unsigned i = 0; i != NumValues; ++i) {
1177       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1178                                 RetPtr.getValueType(), RetPtr,
1179                                 DAG.getIntPtrConstant(Offsets[i],
1180                                                       getCurSDLoc()));
1181       Chains[i] =
1182         DAG.getStore(Chain, getCurSDLoc(),
1183                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1184                      // FIXME: better loc info would be nice.
1185                      Add, MachinePointerInfo(), false, false, 0);
1186     }
1187 
1188     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1189                         MVT::Other, Chains);
1190   } else if (I.getNumOperands() != 0) {
1191     SmallVector<EVT, 4> ValueVTs;
1192     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1193     unsigned NumValues = ValueVTs.size();
1194     if (NumValues) {
1195       SDValue RetOp = getValue(I.getOperand(0));
1196 
1197       const Function *F = I.getParent()->getParent();
1198 
1199       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1200       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1201                                           Attribute::SExt))
1202         ExtendKind = ISD::SIGN_EXTEND;
1203       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1204                                                Attribute::ZExt))
1205         ExtendKind = ISD::ZERO_EXTEND;
1206 
1207       LLVMContext &Context = F->getContext();
1208       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1209                                                       Attribute::InReg);
1210 
1211       for (unsigned j = 0; j != NumValues; ++j) {
1212         EVT VT = ValueVTs[j];
1213 
1214         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1215           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1216 
1217         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1218         MVT PartVT = TLI.getRegisterType(Context, VT);
1219         SmallVector<SDValue, 4> Parts(NumParts);
1220         getCopyToParts(DAG, getCurSDLoc(),
1221                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1222                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1223 
1224         // 'inreg' on function refers to return value
1225         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1226         if (RetInReg)
1227           Flags.setInReg();
1228 
1229         // Propagate extension type if any
1230         if (ExtendKind == ISD::SIGN_EXTEND)
1231           Flags.setSExt();
1232         else if (ExtendKind == ISD::ZERO_EXTEND)
1233           Flags.setZExt();
1234 
1235         for (unsigned i = 0; i < NumParts; ++i) {
1236           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1237                                         VT, /*isfixed=*/true, 0, 0));
1238           OutVals.push_back(Parts[i]);
1239         }
1240       }
1241     }
1242   }
1243 
1244   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1245   CallingConv::ID CallConv =
1246     DAG.getMachineFunction().getFunction()->getCallingConv();
1247   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1248       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1249 
1250   // Verify that the target's LowerReturn behaved as expected.
1251   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1252          "LowerReturn didn't return a valid chain!");
1253 
1254   // Update the DAG with the new chain value resulting from return lowering.
1255   DAG.setRoot(Chain);
1256 }
1257 
1258 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1259 /// created for it, emit nodes to copy the value into the virtual
1260 /// registers.
1261 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1262   // Skip empty types
1263   if (V->getType()->isEmptyTy())
1264     return;
1265 
1266   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1267   if (VMI != FuncInfo.ValueMap.end()) {
1268     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1269     CopyValueToVirtualRegister(V, VMI->second);
1270   }
1271 }
1272 
1273 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1274 /// the current basic block, add it to ValueMap now so that we'll get a
1275 /// CopyTo/FromReg.
1276 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1277   // No need to export constants.
1278   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1279 
1280   // Already exported?
1281   if (FuncInfo.isExportedInst(V)) return;
1282 
1283   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1284   CopyValueToVirtualRegister(V, Reg);
1285 }
1286 
1287 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1288                                                      const BasicBlock *FromBB) {
1289   // The operands of the setcc have to be in this block.  We don't know
1290   // how to export them from some other block.
1291   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1292     // Can export from current BB.
1293     if (VI->getParent() == FromBB)
1294       return true;
1295 
1296     // Is already exported, noop.
1297     return FuncInfo.isExportedInst(V);
1298   }
1299 
1300   // If this is an argument, we can export it if the BB is the entry block or
1301   // if it is already exported.
1302   if (isa<Argument>(V)) {
1303     if (FromBB == &FromBB->getParent()->getEntryBlock())
1304       return true;
1305 
1306     // Otherwise, can only export this if it is already exported.
1307     return FuncInfo.isExportedInst(V);
1308   }
1309 
1310   // Otherwise, constants can always be exported.
1311   return true;
1312 }
1313 
1314 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1315 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1316                                             const MachineBasicBlock *Dst) const {
1317   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1318   if (!BPI)
1319     return 0;
1320   const BasicBlock *SrcBB = Src->getBasicBlock();
1321   const BasicBlock *DstBB = Dst->getBasicBlock();
1322   return BPI->getEdgeWeight(SrcBB, DstBB);
1323 }
1324 
1325 void SelectionDAGBuilder::
1326 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1327                        uint32_t Weight /* = 0 */) {
1328   if (!Weight)
1329     Weight = getEdgeWeight(Src, Dst);
1330   Src->addSuccessor(Dst, Weight);
1331 }
1332 
1333 
1334 static bool InBlock(const Value *V, const BasicBlock *BB) {
1335   if (const Instruction *I = dyn_cast<Instruction>(V))
1336     return I->getParent() == BB;
1337   return true;
1338 }
1339 
1340 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1341 /// This function emits a branch and is used at the leaves of an OR or an
1342 /// AND operator tree.
1343 ///
1344 void
1345 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1346                                                   MachineBasicBlock *TBB,
1347                                                   MachineBasicBlock *FBB,
1348                                                   MachineBasicBlock *CurBB,
1349                                                   MachineBasicBlock *SwitchBB,
1350                                                   uint32_t TWeight,
1351                                                   uint32_t FWeight) {
1352   const BasicBlock *BB = CurBB->getBasicBlock();
1353 
1354   // If the leaf of the tree is a comparison, merge the condition into
1355   // the caseblock.
1356   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1357     // The operands of the cmp have to be in this block.  We don't know
1358     // how to export them from some other block.  If this is the first block
1359     // of the sequence, no exporting is needed.
1360     if (CurBB == SwitchBB ||
1361         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1362          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1363       ISD::CondCode Condition;
1364       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1365         Condition = getICmpCondCode(IC->getPredicate());
1366       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1367         Condition = getFCmpCondCode(FC->getPredicate());
1368         if (TM.Options.NoNaNsFPMath)
1369           Condition = getFCmpCodeWithoutNaN(Condition);
1370       } else {
1371         (void)Condition; // silence warning.
1372         llvm_unreachable("Unknown compare instruction");
1373       }
1374 
1375       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1376                    TBB, FBB, CurBB, TWeight, FWeight);
1377       SwitchCases.push_back(CB);
1378       return;
1379     }
1380   }
1381 
1382   // Create a CaseBlock record representing this branch.
1383   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1384                nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1385   SwitchCases.push_back(CB);
1386 }
1387 
1388 /// Scale down both weights to fit into uint32_t.
1389 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1390   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1391   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1392   NewTrue = NewTrue / Scale;
1393   NewFalse = NewFalse / Scale;
1394 }
1395 
1396 /// FindMergedConditions - If Cond is an expression like
1397 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1398                                                MachineBasicBlock *TBB,
1399                                                MachineBasicBlock *FBB,
1400                                                MachineBasicBlock *CurBB,
1401                                                MachineBasicBlock *SwitchBB,
1402                                                unsigned Opc, uint32_t TWeight,
1403                                                uint32_t FWeight) {
1404   // If this node is not part of the or/and tree, emit it as a branch.
1405   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1406   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1407       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1408       BOp->getParent() != CurBB->getBasicBlock() ||
1409       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1410       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1411     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1412                                  TWeight, FWeight);
1413     return;
1414   }
1415 
1416   //  Create TmpBB after CurBB.
1417   MachineFunction::iterator BBI = CurBB;
1418   MachineFunction &MF = DAG.getMachineFunction();
1419   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1420   CurBB->getParent()->insert(++BBI, TmpBB);
1421 
1422   if (Opc == Instruction::Or) {
1423     // Codegen X | Y as:
1424     // BB1:
1425     //   jmp_if_X TBB
1426     //   jmp TmpBB
1427     // TmpBB:
1428     //   jmp_if_Y TBB
1429     //   jmp FBB
1430     //
1431 
1432     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1433     // The requirement is that
1434     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1435     //     = TrueProb for orignal BB.
1436     // Assuming the orignal weights are A and B, one choice is to set BB1's
1437     // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1438     // assumes that
1439     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1440     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1441     // TmpBB, but the math is more complicated.
1442 
1443     uint64_t NewTrueWeight = TWeight;
1444     uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1445     ScaleWeights(NewTrueWeight, NewFalseWeight);
1446     // Emit the LHS condition.
1447     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1448                          NewTrueWeight, NewFalseWeight);
1449 
1450     NewTrueWeight = TWeight;
1451     NewFalseWeight = 2 * (uint64_t)FWeight;
1452     ScaleWeights(NewTrueWeight, NewFalseWeight);
1453     // Emit the RHS condition into TmpBB.
1454     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1455                          NewTrueWeight, NewFalseWeight);
1456   } else {
1457     assert(Opc == Instruction::And && "Unknown merge op!");
1458     // Codegen X & Y as:
1459     // BB1:
1460     //   jmp_if_X TmpBB
1461     //   jmp FBB
1462     // TmpBB:
1463     //   jmp_if_Y TBB
1464     //   jmp FBB
1465     //
1466     //  This requires creation of TmpBB after CurBB.
1467 
1468     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1469     // The requirement is that
1470     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1471     //     = FalseProb for orignal BB.
1472     // Assuming the orignal weights are A and B, one choice is to set BB1's
1473     // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1474     // assumes that
1475     //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1476 
1477     uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1478     uint64_t NewFalseWeight = FWeight;
1479     ScaleWeights(NewTrueWeight, NewFalseWeight);
1480     // Emit the LHS condition.
1481     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1482                          NewTrueWeight, NewFalseWeight);
1483 
1484     NewTrueWeight = 2 * (uint64_t)TWeight;
1485     NewFalseWeight = FWeight;
1486     ScaleWeights(NewTrueWeight, NewFalseWeight);
1487     // Emit the RHS condition into TmpBB.
1488     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1489                          NewTrueWeight, NewFalseWeight);
1490   }
1491 }
1492 
1493 /// If the set of cases should be emitted as a series of branches, return true.
1494 /// If we should emit this as a bunch of and/or'd together conditions, return
1495 /// false.
1496 bool
1497 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1498   if (Cases.size() != 2) return true;
1499 
1500   // If this is two comparisons of the same values or'd or and'd together, they
1501   // will get folded into a single comparison, so don't emit two blocks.
1502   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1503        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1504       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1505        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1506     return false;
1507   }
1508 
1509   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1510   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1511   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1512       Cases[0].CC == Cases[1].CC &&
1513       isa<Constant>(Cases[0].CmpRHS) &&
1514       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1515     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1516       return false;
1517     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1518       return false;
1519   }
1520 
1521   return true;
1522 }
1523 
1524 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1525   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1526 
1527   // Update machine-CFG edges.
1528   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1529 
1530   if (I.isUnconditional()) {
1531     // Update machine-CFG edges.
1532     BrMBB->addSuccessor(Succ0MBB);
1533 
1534     // If this is not a fall-through branch or optimizations are switched off,
1535     // emit the branch.
1536     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1537       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1538                               MVT::Other, getControlRoot(),
1539                               DAG.getBasicBlock(Succ0MBB)));
1540 
1541     return;
1542   }
1543 
1544   // If this condition is one of the special cases we handle, do special stuff
1545   // now.
1546   const Value *CondVal = I.getCondition();
1547   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1548 
1549   // If this is a series of conditions that are or'd or and'd together, emit
1550   // this as a sequence of branches instead of setcc's with and/or operations.
1551   // As long as jumps are not expensive, this should improve performance.
1552   // For example, instead of something like:
1553   //     cmp A, B
1554   //     C = seteq
1555   //     cmp D, E
1556   //     F = setle
1557   //     or C, F
1558   //     jnz foo
1559   // Emit:
1560   //     cmp A, B
1561   //     je foo
1562   //     cmp D, E
1563   //     jle foo
1564   //
1565   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1566     if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1567         BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1568                              BOp->getOpcode() == Instruction::Or)) {
1569       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1570                            BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1571                            getEdgeWeight(BrMBB, Succ1MBB));
1572       // If the compares in later blocks need to use values not currently
1573       // exported from this block, export them now.  This block should always
1574       // be the first entry.
1575       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1576 
1577       // Allow some cases to be rejected.
1578       if (ShouldEmitAsBranches(SwitchCases)) {
1579         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1580           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1581           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1582         }
1583 
1584         // Emit the branch for this block.
1585         visitSwitchCase(SwitchCases[0], BrMBB);
1586         SwitchCases.erase(SwitchCases.begin());
1587         return;
1588       }
1589 
1590       // Okay, we decided not to do this, remove any inserted MBB's and clear
1591       // SwitchCases.
1592       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1593         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1594 
1595       SwitchCases.clear();
1596     }
1597   }
1598 
1599   // Create a CaseBlock record representing this branch.
1600   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1601                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1602 
1603   // Use visitSwitchCase to actually insert the fast branch sequence for this
1604   // cond branch.
1605   visitSwitchCase(CB, BrMBB);
1606 }
1607 
1608 /// visitSwitchCase - Emits the necessary code to represent a single node in
1609 /// the binary search tree resulting from lowering a switch instruction.
1610 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1611                                           MachineBasicBlock *SwitchBB) {
1612   SDValue Cond;
1613   SDValue CondLHS = getValue(CB.CmpLHS);
1614   SDLoc dl = getCurSDLoc();
1615 
1616   // Build the setcc now.
1617   if (!CB.CmpMHS) {
1618     // Fold "(X == true)" to X and "(X == false)" to !X to
1619     // handle common cases produced by branch lowering.
1620     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1621         CB.CC == ISD::SETEQ)
1622       Cond = CondLHS;
1623     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1624              CB.CC == ISD::SETEQ) {
1625       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1626       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1627     } else
1628       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1629   } else {
1630     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1631 
1632     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1633     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1634 
1635     SDValue CmpOp = getValue(CB.CmpMHS);
1636     EVT VT = CmpOp.getValueType();
1637 
1638     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1639       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1640                           ISD::SETLE);
1641     } else {
1642       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1643                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1644       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1645                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1646     }
1647   }
1648 
1649   // Update successor info
1650   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1651   // TrueBB and FalseBB are always different unless the incoming IR is
1652   // degenerate. This only happens when running llc on weird IR.
1653   if (CB.TrueBB != CB.FalseBB)
1654     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1655 
1656   // If the lhs block is the next block, invert the condition so that we can
1657   // fall through to the lhs instead of the rhs block.
1658   if (CB.TrueBB == NextBlock(SwitchBB)) {
1659     std::swap(CB.TrueBB, CB.FalseBB);
1660     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1661     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1662   }
1663 
1664   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1665                                MVT::Other, getControlRoot(), Cond,
1666                                DAG.getBasicBlock(CB.TrueBB));
1667 
1668   // Insert the false branch. Do this even if it's a fall through branch,
1669   // this makes it easier to do DAG optimizations which require inverting
1670   // the branch condition.
1671   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1672                        DAG.getBasicBlock(CB.FalseBB));
1673 
1674   DAG.setRoot(BrCond);
1675 }
1676 
1677 /// visitJumpTable - Emit JumpTable node in the current MBB
1678 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1679   // Emit the code for the jump table
1680   assert(JT.Reg != -1U && "Should lower JT Header first!");
1681   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
1682   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1683                                      JT.Reg, PTy);
1684   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1685   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1686                                     MVT::Other, Index.getValue(1),
1687                                     Table, Index);
1688   DAG.setRoot(BrJumpTable);
1689 }
1690 
1691 /// visitJumpTableHeader - This function emits necessary code to produce index
1692 /// in the JumpTable from switch case.
1693 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1694                                                JumpTableHeader &JTH,
1695                                                MachineBasicBlock *SwitchBB) {
1696   SDLoc dl = getCurSDLoc();
1697 
1698   // Subtract the lowest switch case value from the value being switched on and
1699   // conditional branch to default mbb if the result is greater than the
1700   // difference between smallest and largest cases.
1701   SDValue SwitchOp = getValue(JTH.SValue);
1702   EVT VT = SwitchOp.getValueType();
1703   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1704                             DAG.getConstant(JTH.First, dl, VT));
1705 
1706   // The SDNode we just created, which holds the value being switched on minus
1707   // the smallest case value, needs to be copied to a virtual register so it
1708   // can be used as an index into the jump table in a subsequent basic block.
1709   // This value may be smaller or larger than the target's pointer type, and
1710   // therefore require extension or truncating.
1711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1712   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy());
1713 
1714   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1715   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1716                                     JumpTableReg, SwitchOp);
1717   JT.Reg = JumpTableReg;
1718 
1719   // Emit the range check for the jump table, and branch to the default block
1720   // for the switch statement if the value being switched on exceeds the largest
1721   // case in the switch.
1722   SDValue CMP =
1723       DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
1724                                               Sub.getValueType()),
1725                    Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT),
1726                    ISD::SETUGT);
1727 
1728   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1729                                MVT::Other, CopyTo, CMP,
1730                                DAG.getBasicBlock(JT.Default));
1731 
1732   // Avoid emitting unnecessary branches to the next block.
1733   if (JT.MBB != NextBlock(SwitchBB))
1734     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1735                          DAG.getBasicBlock(JT.MBB));
1736 
1737   DAG.setRoot(BrCond);
1738 }
1739 
1740 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1741 /// tail spliced into a stack protector check success bb.
1742 ///
1743 /// For a high level explanation of how this fits into the stack protector
1744 /// generation see the comment on the declaration of class
1745 /// StackProtectorDescriptor.
1746 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1747                                                   MachineBasicBlock *ParentBB) {
1748 
1749   // First create the loads to the guard/stack slot for the comparison.
1750   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1751   EVT PtrTy = TLI.getPointerTy();
1752 
1753   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1754   int FI = MFI->getStackProtectorIndex();
1755 
1756   const Value *IRGuard = SPD.getGuard();
1757   SDValue GuardPtr = getValue(IRGuard);
1758   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1759 
1760   unsigned Align =
1761     TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1762 
1763   SDValue Guard;
1764   SDLoc dl = getCurSDLoc();
1765 
1766   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1767   // guard value from the virtual register holding the value. Otherwise, emit a
1768   // volatile load to retrieve the stack guard value.
1769   unsigned GuardReg = SPD.getGuardReg();
1770 
1771   if (GuardReg && TLI.useLoadStackGuardNode())
1772     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1773                                PtrTy);
1774   else
1775     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1776                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1777                         true, false, false, Align);
1778 
1779   SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1780                                   StackSlotPtr,
1781                                   MachinePointerInfo::getFixedStack(FI),
1782                                   true, false, false, Align);
1783 
1784   // Perform the comparison via a subtract/getsetcc.
1785   EVT VT = Guard.getValueType();
1786   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1787 
1788   SDValue Cmp =
1789       DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
1790                                                          Sub.getValueType()),
1791                    Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1792 
1793   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1794   // branch to failure MBB.
1795   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1796                                MVT::Other, StackSlot.getOperand(0),
1797                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1798   // Otherwise branch to success MBB.
1799   SDValue Br = DAG.getNode(ISD::BR, dl,
1800                            MVT::Other, BrCond,
1801                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1802 
1803   DAG.setRoot(Br);
1804 }
1805 
1806 /// Codegen the failure basic block for a stack protector check.
1807 ///
1808 /// A failure stack protector machine basic block consists simply of a call to
1809 /// __stack_chk_fail().
1810 ///
1811 /// For a high level explanation of how this fits into the stack protector
1812 /// generation see the comment on the declaration of class
1813 /// StackProtectorDescriptor.
1814 void
1815 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1816   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1817   SDValue Chain =
1818       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1819                       nullptr, 0, false, getCurSDLoc(), false, false).second;
1820   DAG.setRoot(Chain);
1821 }
1822 
1823 /// visitBitTestHeader - This function emits necessary code to produce value
1824 /// suitable for "bit tests"
1825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1826                                              MachineBasicBlock *SwitchBB) {
1827   SDLoc dl = getCurSDLoc();
1828 
1829   // Subtract the minimum value
1830   SDValue SwitchOp = getValue(B.SValue);
1831   EVT VT = SwitchOp.getValueType();
1832   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1833                             DAG.getConstant(B.First, dl, VT));
1834 
1835   // Check range
1836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1837   SDValue RangeCmp =
1838       DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
1839                                               Sub.getValueType()),
1840                    Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
1841 
1842   // Determine the type of the test operands.
1843   bool UsePtrType = false;
1844   if (!TLI.isTypeLegal(VT))
1845     UsePtrType = true;
1846   else {
1847     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1848       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1849         // Switch table case range are encoded into series of masks.
1850         // Just use pointer type, it's guaranteed to fit.
1851         UsePtrType = true;
1852         break;
1853       }
1854   }
1855   if (UsePtrType) {
1856     VT = TLI.getPointerTy();
1857     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
1858   }
1859 
1860   B.RegVT = VT.getSimpleVT();
1861   B.Reg = FuncInfo.CreateReg(B.RegVT);
1862   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
1863 
1864   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1865 
1866   addSuccessorWithWeight(SwitchBB, B.Default);
1867   addSuccessorWithWeight(SwitchBB, MBB);
1868 
1869   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
1870                                 MVT::Other, CopyTo, RangeCmp,
1871                                 DAG.getBasicBlock(B.Default));
1872 
1873   // Avoid emitting unnecessary branches to the next block.
1874   if (MBB != NextBlock(SwitchBB))
1875     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
1876                           DAG.getBasicBlock(MBB));
1877 
1878   DAG.setRoot(BrRange);
1879 }
1880 
1881 /// visitBitTestCase - this function produces one "bit test"
1882 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1883                                            MachineBasicBlock* NextMBB,
1884                                            uint32_t BranchWeightToNext,
1885                                            unsigned Reg,
1886                                            BitTestCase &B,
1887                                            MachineBasicBlock *SwitchBB) {
1888   SDLoc dl = getCurSDLoc();
1889   MVT VT = BB.RegVT;
1890   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
1891   SDValue Cmp;
1892   unsigned PopCount = countPopulation(B.Mask);
1893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1894   if (PopCount == 1) {
1895     // Testing for a single bit; just compare the shift count with what it
1896     // would need to be to shift a 1 bit in that position.
1897     Cmp = DAG.getSetCC(
1898         dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1899         DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ);
1900   } else if (PopCount == BB.Range) {
1901     // There is only one zero bit in the range, test for it directly.
1902     Cmp = DAG.getSetCC(
1903         dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1904         DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE);
1905   } else {
1906     // Make desired shift
1907     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
1908                                     DAG.getConstant(1, dl, VT), ShiftOp);
1909 
1910     // Emit bit tests and jumps
1911     SDValue AndOp = DAG.getNode(ISD::AND, dl,
1912                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
1913     Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
1914                        DAG.getConstant(0, dl, VT), ISD::SETNE);
1915   }
1916 
1917   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1918   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1919   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1920   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1921 
1922   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
1923                               MVT::Other, getControlRoot(),
1924                               Cmp, DAG.getBasicBlock(B.TargetBB));
1925 
1926   // Avoid emitting unnecessary branches to the next block.
1927   if (NextMBB != NextBlock(SwitchBB))
1928     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
1929                         DAG.getBasicBlock(NextMBB));
1930 
1931   DAG.setRoot(BrAnd);
1932 }
1933 
1934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1935   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1936 
1937   // Retrieve successors.
1938   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1939   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1940 
1941   const Value *Callee(I.getCalledValue());
1942   const Function *Fn = dyn_cast<Function>(Callee);
1943   if (isa<InlineAsm>(Callee))
1944     visitInlineAsm(&I);
1945   else if (Fn && Fn->isIntrinsic()) {
1946     switch (Fn->getIntrinsicID()) {
1947     default:
1948       llvm_unreachable("Cannot invoke this intrinsic");
1949     case Intrinsic::donothing:
1950       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1951       break;
1952     case Intrinsic::experimental_patchpoint_void:
1953     case Intrinsic::experimental_patchpoint_i64:
1954       visitPatchpoint(&I, LandingPad);
1955       break;
1956     case Intrinsic::experimental_gc_statepoint:
1957       LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
1958       break;
1959     }
1960   } else
1961     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1962 
1963   // If the value of the invoke is used outside of its defining block, make it
1964   // available as a virtual register.
1965   // We already took care of the exported value for the statepoint instruction
1966   // during call to the LowerStatepoint.
1967   if (!isStatepoint(I)) {
1968     CopyToExportRegsIfNeeded(&I);
1969   }
1970 
1971   // Update successor info
1972   addSuccessorWithWeight(InvokeMBB, Return);
1973   addSuccessorWithWeight(InvokeMBB, LandingPad);
1974 
1975   // Drop into normal successor.
1976   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1977                           MVT::Other, getControlRoot(),
1978                           DAG.getBasicBlock(Return)));
1979 }
1980 
1981 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1982   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1983 }
1984 
1985 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1986   assert(FuncInfo.MBB->isLandingPad() &&
1987          "Call to landingpad not in landing pad!");
1988 
1989   MachineBasicBlock *MBB = FuncInfo.MBB;
1990   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1991   AddLandingPadInfo(LP, MMI, MBB);
1992 
1993   // If there aren't registers to copy the values into (e.g., during SjLj
1994   // exceptions), then don't bother to create these DAG nodes.
1995   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1996   if (TLI.getExceptionPointerRegister() == 0 &&
1997       TLI.getExceptionSelectorRegister() == 0)
1998     return;
1999 
2000   SmallVector<EVT, 2> ValueVTs;
2001   SDLoc dl = getCurSDLoc();
2002   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
2003   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2004 
2005   // Get the two live-in registers as SDValues. The physregs have already been
2006   // copied into virtual registers.
2007   SDValue Ops[2];
2008   if (FuncInfo.ExceptionPointerVirtReg) {
2009     Ops[0] = DAG.getZExtOrTrunc(
2010         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2011                            FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
2012         dl, ValueVTs[0]);
2013   } else {
2014     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy());
2015   }
2016   Ops[1] = DAG.getZExtOrTrunc(
2017       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2018                          FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
2019       dl, ValueVTs[1]);
2020 
2021   // Merge into one.
2022   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2023                             DAG.getVTList(ValueVTs), Ops);
2024   setValue(&LP, Res);
2025 }
2026 
2027 unsigned
2028 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
2029                                              MachineBasicBlock *LPadBB) {
2030   SDValue Chain = getControlRoot();
2031   SDLoc dl = getCurSDLoc();
2032 
2033   // Get the typeid that we will dispatch on later.
2034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2035   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
2036   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
2037   unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
2038   SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy());
2039   Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel);
2040 
2041   // Branch to the main landing pad block.
2042   MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
2043   ClauseMBB->addSuccessor(LPadBB);
2044   DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain,
2045                           DAG.getBasicBlock(LPadBB)));
2046   return VReg;
2047 }
2048 
2049 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2050 #ifndef NDEBUG
2051   for (const CaseCluster &CC : Clusters)
2052     assert(CC.Low == CC.High && "Input clusters must be single-case");
2053 #endif
2054 
2055   std::sort(Clusters.begin(), Clusters.end(),
2056             [](const CaseCluster &a, const CaseCluster &b) {
2057     return a.Low->getValue().slt(b.Low->getValue());
2058   });
2059 
2060   // Merge adjacent clusters with the same destination.
2061   const unsigned N = Clusters.size();
2062   unsigned DstIndex = 0;
2063   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2064     CaseCluster &CC = Clusters[SrcIndex];
2065     const ConstantInt *CaseVal = CC.Low;
2066     MachineBasicBlock *Succ = CC.MBB;
2067 
2068     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2069         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2070       // If this case has the same successor and is a neighbour, merge it into
2071       // the previous cluster.
2072       Clusters[DstIndex - 1].High = CaseVal;
2073       Clusters[DstIndex - 1].Weight += CC.Weight;
2074       assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!");
2075     } else {
2076       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2077                    sizeof(Clusters[SrcIndex]));
2078     }
2079   }
2080   Clusters.resize(DstIndex);
2081 }
2082 
2083 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2084                                            MachineBasicBlock *Last) {
2085   // Update JTCases.
2086   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2087     if (JTCases[i].first.HeaderBB == First)
2088       JTCases[i].first.HeaderBB = Last;
2089 
2090   // Update BitTestCases.
2091   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2092     if (BitTestCases[i].Parent == First)
2093       BitTestCases[i].Parent = Last;
2094 }
2095 
2096 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2097   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2098 
2099   // Update machine-CFG edges with unique successors.
2100   SmallSet<BasicBlock*, 32> Done;
2101   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2102     BasicBlock *BB = I.getSuccessor(i);
2103     bool Inserted = Done.insert(BB).second;
2104     if (!Inserted)
2105         continue;
2106 
2107     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2108     addSuccessorWithWeight(IndirectBrMBB, Succ);
2109   }
2110 
2111   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2112                           MVT::Other, getControlRoot(),
2113                           getValue(I.getAddress())));
2114 }
2115 
2116 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2117   if (DAG.getTarget().Options.TrapUnreachable)
2118     DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2119 }
2120 
2121 void SelectionDAGBuilder::visitFSub(const User &I) {
2122   // -0.0 - X --> fneg
2123   Type *Ty = I.getType();
2124   if (isa<Constant>(I.getOperand(0)) &&
2125       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2126     SDValue Op2 = getValue(I.getOperand(1));
2127     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2128                              Op2.getValueType(), Op2));
2129     return;
2130   }
2131 
2132   visitBinary(I, ISD::FSUB);
2133 }
2134 
2135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2136   SDValue Op1 = getValue(I.getOperand(0));
2137   SDValue Op2 = getValue(I.getOperand(1));
2138 
2139   bool nuw = false;
2140   bool nsw = false;
2141   bool exact = false;
2142   FastMathFlags FMF;
2143 
2144   if (const OverflowingBinaryOperator *OFBinOp =
2145           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2146     nuw = OFBinOp->hasNoUnsignedWrap();
2147     nsw = OFBinOp->hasNoSignedWrap();
2148   }
2149   if (const PossiblyExactOperator *ExactOp =
2150           dyn_cast<const PossiblyExactOperator>(&I))
2151     exact = ExactOp->isExact();
2152   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2153     FMF = FPOp->getFastMathFlags();
2154 
2155   SDNodeFlags Flags;
2156   Flags.setExact(exact);
2157   Flags.setNoSignedWrap(nsw);
2158   Flags.setNoUnsignedWrap(nuw);
2159   Flags.setAllowReciprocal(FMF.allowReciprocal());
2160   Flags.setNoInfs(FMF.noInfs());
2161   Flags.setNoNaNs(FMF.noNaNs());
2162   Flags.setNoSignedZeros(FMF.noSignedZeros());
2163   Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2164   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2165                                      Op1, Op2, &Flags);
2166   setValue(&I, BinNodeValue);
2167 }
2168 
2169 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2170   SDValue Op1 = getValue(I.getOperand(0));
2171   SDValue Op2 = getValue(I.getOperand(1));
2172 
2173   EVT ShiftTy =
2174       DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
2175 
2176   // Coerce the shift amount to the right type if we can.
2177   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2178     unsigned ShiftSize = ShiftTy.getSizeInBits();
2179     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2180     SDLoc DL = getCurSDLoc();
2181 
2182     // If the operand is smaller than the shift count type, promote it.
2183     if (ShiftSize > Op2Size)
2184       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2185 
2186     // If the operand is larger than the shift count type but the shift
2187     // count type has enough bits to represent any shift value, truncate
2188     // it now. This is a common case and it exposes the truncate to
2189     // optimization early.
2190     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2191       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2192     // Otherwise we'll need to temporarily settle for some other convenient
2193     // type.  Type legalization will make adjustments once the shiftee is split.
2194     else
2195       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2196   }
2197 
2198   bool nuw = false;
2199   bool nsw = false;
2200   bool exact = false;
2201 
2202   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2203 
2204     if (const OverflowingBinaryOperator *OFBinOp =
2205             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2206       nuw = OFBinOp->hasNoUnsignedWrap();
2207       nsw = OFBinOp->hasNoSignedWrap();
2208     }
2209     if (const PossiblyExactOperator *ExactOp =
2210             dyn_cast<const PossiblyExactOperator>(&I))
2211       exact = ExactOp->isExact();
2212   }
2213   SDNodeFlags Flags;
2214   Flags.setExact(exact);
2215   Flags.setNoSignedWrap(nsw);
2216   Flags.setNoUnsignedWrap(nuw);
2217   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2218                             &Flags);
2219   setValue(&I, Res);
2220 }
2221 
2222 void SelectionDAGBuilder::visitSDiv(const User &I) {
2223   SDValue Op1 = getValue(I.getOperand(0));
2224   SDValue Op2 = getValue(I.getOperand(1));
2225 
2226   // Turn exact SDivs into multiplications.
2227   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2228   // exact bit.
2229   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2230       !isa<ConstantSDNode>(Op1) &&
2231       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2232     setValue(&I, DAG.getTargetLoweringInfo()
2233                      .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2234   else
2235     setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2236                              Op1, Op2));
2237 }
2238 
2239 void SelectionDAGBuilder::visitICmp(const User &I) {
2240   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2241   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2242     predicate = IC->getPredicate();
2243   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2244     predicate = ICmpInst::Predicate(IC->getPredicate());
2245   SDValue Op1 = getValue(I.getOperand(0));
2246   SDValue Op2 = getValue(I.getOperand(1));
2247   ISD::CondCode Opcode = getICmpCondCode(predicate);
2248 
2249   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2250   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2251 }
2252 
2253 void SelectionDAGBuilder::visitFCmp(const User &I) {
2254   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2255   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2256     predicate = FC->getPredicate();
2257   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2258     predicate = FCmpInst::Predicate(FC->getPredicate());
2259   SDValue Op1 = getValue(I.getOperand(0));
2260   SDValue Op2 = getValue(I.getOperand(1));
2261   ISD::CondCode Condition = getFCmpCondCode(predicate);
2262   if (TM.Options.NoNaNsFPMath)
2263     Condition = getFCmpCodeWithoutNaN(Condition);
2264   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2265   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2266 }
2267 
2268 void SelectionDAGBuilder::visitSelect(const User &I) {
2269   SmallVector<EVT, 4> ValueVTs;
2270   ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
2271   unsigned NumValues = ValueVTs.size();
2272   if (NumValues == 0) return;
2273 
2274   SmallVector<SDValue, 4> Values(NumValues);
2275   SDValue Cond     = getValue(I.getOperand(0));
2276   SDValue TrueVal  = getValue(I.getOperand(1));
2277   SDValue FalseVal = getValue(I.getOperand(2));
2278   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2279     ISD::VSELECT : ISD::SELECT;
2280 
2281   for (unsigned i = 0; i != NumValues; ++i)
2282     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2283                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2284                             Cond,
2285                             SDValue(TrueVal.getNode(),
2286                                     TrueVal.getResNo() + i),
2287                             SDValue(FalseVal.getNode(),
2288                                     FalseVal.getResNo() + i));
2289 
2290   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2291                            DAG.getVTList(ValueVTs), Values));
2292 }
2293 
2294 void SelectionDAGBuilder::visitTrunc(const User &I) {
2295   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2296   SDValue N = getValue(I.getOperand(0));
2297   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2298   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2299 }
2300 
2301 void SelectionDAGBuilder::visitZExt(const User &I) {
2302   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2303   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2304   SDValue N = getValue(I.getOperand(0));
2305   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2306   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2307 }
2308 
2309 void SelectionDAGBuilder::visitSExt(const User &I) {
2310   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2311   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2312   SDValue N = getValue(I.getOperand(0));
2313   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2314   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2315 }
2316 
2317 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2318   // FPTrunc is never a no-op cast, no need to check
2319   SDValue N = getValue(I.getOperand(0));
2320   SDLoc dl = getCurSDLoc();
2321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2322   EVT DestVT = TLI.getValueType(I.getType());
2323   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2324                            DAG.getTargetConstant(0, dl, TLI.getPointerTy())));
2325 }
2326 
2327 void SelectionDAGBuilder::visitFPExt(const User &I) {
2328   // FPExt is never a no-op cast, no need to check
2329   SDValue N = getValue(I.getOperand(0));
2330   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2331   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2332 }
2333 
2334 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2335   // FPToUI is never a no-op cast, no need to check
2336   SDValue N = getValue(I.getOperand(0));
2337   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2338   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2339 }
2340 
2341 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2342   // FPToSI is never a no-op cast, no need to check
2343   SDValue N = getValue(I.getOperand(0));
2344   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2345   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2346 }
2347 
2348 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2349   // UIToFP is never a no-op cast, no need to check
2350   SDValue N = getValue(I.getOperand(0));
2351   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2352   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2353 }
2354 
2355 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2356   // SIToFP is never a no-op cast, no need to check
2357   SDValue N = getValue(I.getOperand(0));
2358   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2359   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2360 }
2361 
2362 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2363   // What to do depends on the size of the integer and the size of the pointer.
2364   // We can either truncate, zero extend, or no-op, accordingly.
2365   SDValue N = getValue(I.getOperand(0));
2366   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2367   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2368 }
2369 
2370 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2371   // What to do depends on the size of the integer and the size of the pointer.
2372   // We can either truncate, zero extend, or no-op, accordingly.
2373   SDValue N = getValue(I.getOperand(0));
2374   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2375   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2376 }
2377 
2378 void SelectionDAGBuilder::visitBitCast(const User &I) {
2379   SDValue N = getValue(I.getOperand(0));
2380   SDLoc dl = getCurSDLoc();
2381   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2382 
2383   // BitCast assures us that source and destination are the same size so this is
2384   // either a BITCAST or a no-op.
2385   if (DestVT != N.getValueType())
2386     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2387                              DestVT, N)); // convert types.
2388   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2389   // might fold any kind of constant expression to an integer constant and that
2390   // is not what we are looking for. Only regcognize a bitcast of a genuine
2391   // constant integer as an opaque constant.
2392   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2393     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2394                                  /*isOpaque*/true));
2395   else
2396     setValue(&I, N);            // noop cast.
2397 }
2398 
2399 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2400   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2401   const Value *SV = I.getOperand(0);
2402   SDValue N = getValue(SV);
2403   EVT DestVT = TLI.getValueType(I.getType());
2404 
2405   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2406   unsigned DestAS = I.getType()->getPointerAddressSpace();
2407 
2408   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2409     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2410 
2411   setValue(&I, N);
2412 }
2413 
2414 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2416   SDValue InVec = getValue(I.getOperand(0));
2417   SDValue InVal = getValue(I.getOperand(1));
2418   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
2419                                      getCurSDLoc(), TLI.getVectorIdxTy());
2420   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2421                            TLI.getValueType(I.getType()), InVec, InVal, InIdx));
2422 }
2423 
2424 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2425   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2426   SDValue InVec = getValue(I.getOperand(0));
2427   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
2428                                      getCurSDLoc(), TLI.getVectorIdxTy());
2429   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2430                            TLI.getValueType(I.getType()), InVec, InIdx));
2431 }
2432 
2433 // Utility for visitShuffleVector - Return true if every element in Mask,
2434 // beginning from position Pos and ending in Pos+Size, falls within the
2435 // specified sequential range [L, L+Pos). or is undef.
2436 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2437                                 unsigned Pos, unsigned Size, int Low) {
2438   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2439     if (Mask[i] >= 0 && Mask[i] != Low)
2440       return false;
2441   return true;
2442 }
2443 
2444 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2445   SDValue Src1 = getValue(I.getOperand(0));
2446   SDValue Src2 = getValue(I.getOperand(1));
2447 
2448   SmallVector<int, 8> Mask;
2449   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2450   unsigned MaskNumElts = Mask.size();
2451 
2452   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2453   EVT VT = TLI.getValueType(I.getType());
2454   EVT SrcVT = Src1.getValueType();
2455   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2456 
2457   if (SrcNumElts == MaskNumElts) {
2458     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2459                                       &Mask[0]));
2460     return;
2461   }
2462 
2463   // Normalize the shuffle vector since mask and vector length don't match.
2464   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2465     // Mask is longer than the source vectors and is a multiple of the source
2466     // vectors.  We can use concatenate vector to make the mask and vectors
2467     // lengths match.
2468     if (SrcNumElts*2 == MaskNumElts) {
2469       // First check for Src1 in low and Src2 in high
2470       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2471           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2472         // The shuffle is concatenating two vectors together.
2473         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2474                                  VT, Src1, Src2));
2475         return;
2476       }
2477       // Then check for Src2 in low and Src1 in high
2478       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2479           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2480         // The shuffle is concatenating two vectors together.
2481         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2482                                  VT, Src2, Src1));
2483         return;
2484       }
2485     }
2486 
2487     // Pad both vectors with undefs to make them the same length as the mask.
2488     unsigned NumConcat = MaskNumElts / SrcNumElts;
2489     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2490     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2491     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2492 
2493     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2494     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2495     MOps1[0] = Src1;
2496     MOps2[0] = Src2;
2497 
2498     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2499                                                   getCurSDLoc(), VT, MOps1);
2500     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2501                                                   getCurSDLoc(), VT, MOps2);
2502 
2503     // Readjust mask for new input vector length.
2504     SmallVector<int, 8> MappedOps;
2505     for (unsigned i = 0; i != MaskNumElts; ++i) {
2506       int Idx = Mask[i];
2507       if (Idx >= (int)SrcNumElts)
2508         Idx -= SrcNumElts - MaskNumElts;
2509       MappedOps.push_back(Idx);
2510     }
2511 
2512     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2513                                       &MappedOps[0]));
2514     return;
2515   }
2516 
2517   if (SrcNumElts > MaskNumElts) {
2518     // Analyze the access pattern of the vector to see if we can extract
2519     // two subvectors and do the shuffle. The analysis is done by calculating
2520     // the range of elements the mask access on both vectors.
2521     int MinRange[2] = { static_cast<int>(SrcNumElts),
2522                         static_cast<int>(SrcNumElts)};
2523     int MaxRange[2] = {-1, -1};
2524 
2525     for (unsigned i = 0; i != MaskNumElts; ++i) {
2526       int Idx = Mask[i];
2527       unsigned Input = 0;
2528       if (Idx < 0)
2529         continue;
2530 
2531       if (Idx >= (int)SrcNumElts) {
2532         Input = 1;
2533         Idx -= SrcNumElts;
2534       }
2535       if (Idx > MaxRange[Input])
2536         MaxRange[Input] = Idx;
2537       if (Idx < MinRange[Input])
2538         MinRange[Input] = Idx;
2539     }
2540 
2541     // Check if the access is smaller than the vector size and can we find
2542     // a reasonable extract index.
2543     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2544                                    // Extract.
2545     int StartIdx[2];  // StartIdx to extract from
2546     for (unsigned Input = 0; Input < 2; ++Input) {
2547       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2548         RangeUse[Input] = 0; // Unused
2549         StartIdx[Input] = 0;
2550         continue;
2551       }
2552 
2553       // Find a good start index that is a multiple of the mask length. Then
2554       // see if the rest of the elements are in range.
2555       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2556       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2557           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2558         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2559     }
2560 
2561     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2562       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2563       return;
2564     }
2565     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2566       // Extract appropriate subvector and generate a vector shuffle
2567       for (unsigned Input = 0; Input < 2; ++Input) {
2568         SDValue &Src = Input == 0 ? Src1 : Src2;
2569         if (RangeUse[Input] == 0)
2570           Src = DAG.getUNDEF(VT);
2571         else {
2572           SDLoc dl = getCurSDLoc();
2573           Src = DAG.getNode(
2574               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2575               DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy()));
2576         }
2577       }
2578 
2579       // Calculate new mask.
2580       SmallVector<int, 8> MappedOps;
2581       for (unsigned i = 0; i != MaskNumElts; ++i) {
2582         int Idx = Mask[i];
2583         if (Idx >= 0) {
2584           if (Idx < (int)SrcNumElts)
2585             Idx -= StartIdx[0];
2586           else
2587             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2588         }
2589         MappedOps.push_back(Idx);
2590       }
2591 
2592       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2593                                         &MappedOps[0]));
2594       return;
2595     }
2596   }
2597 
2598   // We can't use either concat vectors or extract subvectors so fall back to
2599   // replacing the shuffle with extract and build vector.
2600   // to insert and build vector.
2601   EVT EltVT = VT.getVectorElementType();
2602   EVT IdxVT = TLI.getVectorIdxTy();
2603   SDLoc dl = getCurSDLoc();
2604   SmallVector<SDValue,8> Ops;
2605   for (unsigned i = 0; i != MaskNumElts; ++i) {
2606     int Idx = Mask[i];
2607     SDValue Res;
2608 
2609     if (Idx < 0) {
2610       Res = DAG.getUNDEF(EltVT);
2611     } else {
2612       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2613       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2614 
2615       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2616                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2617     }
2618 
2619     Ops.push_back(Res);
2620   }
2621 
2622   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2623 }
2624 
2625 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2626   const Value *Op0 = I.getOperand(0);
2627   const Value *Op1 = I.getOperand(1);
2628   Type *AggTy = I.getType();
2629   Type *ValTy = Op1->getType();
2630   bool IntoUndef = isa<UndefValue>(Op0);
2631   bool FromUndef = isa<UndefValue>(Op1);
2632 
2633   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2634 
2635   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2636   SmallVector<EVT, 4> AggValueVTs;
2637   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2638   SmallVector<EVT, 4> ValValueVTs;
2639   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2640 
2641   unsigned NumAggValues = AggValueVTs.size();
2642   unsigned NumValValues = ValValueVTs.size();
2643   SmallVector<SDValue, 4> Values(NumAggValues);
2644 
2645   // Ignore an insertvalue that produces an empty object
2646   if (!NumAggValues) {
2647     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2648     return;
2649   }
2650 
2651   SDValue Agg = getValue(Op0);
2652   unsigned i = 0;
2653   // Copy the beginning value(s) from the original aggregate.
2654   for (; i != LinearIndex; ++i)
2655     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2656                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2657   // Copy values from the inserted value(s).
2658   if (NumValValues) {
2659     SDValue Val = getValue(Op1);
2660     for (; i != LinearIndex + NumValValues; ++i)
2661       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2662                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2663   }
2664   // Copy remaining value(s) from the original aggregate.
2665   for (; i != NumAggValues; ++i)
2666     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2667                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2668 
2669   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2670                            DAG.getVTList(AggValueVTs), Values));
2671 }
2672 
2673 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2674   const Value *Op0 = I.getOperand(0);
2675   Type *AggTy = Op0->getType();
2676   Type *ValTy = I.getType();
2677   bool OutOfUndef = isa<UndefValue>(Op0);
2678 
2679   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2680 
2681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2682   SmallVector<EVT, 4> ValValueVTs;
2683   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2684 
2685   unsigned NumValValues = ValValueVTs.size();
2686 
2687   // Ignore a extractvalue that produces an empty object
2688   if (!NumValValues) {
2689     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2690     return;
2691   }
2692 
2693   SmallVector<SDValue, 4> Values(NumValValues);
2694 
2695   SDValue Agg = getValue(Op0);
2696   // Copy out the selected value(s).
2697   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2698     Values[i - LinearIndex] =
2699       OutOfUndef ?
2700         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2701         SDValue(Agg.getNode(), Agg.getResNo() + i);
2702 
2703   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2704                            DAG.getVTList(ValValueVTs), Values));
2705 }
2706 
2707 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2708   Value *Op0 = I.getOperand(0);
2709   // Note that the pointer operand may be a vector of pointers. Take the scalar
2710   // element which holds a pointer.
2711   Type *Ty = Op0->getType()->getScalarType();
2712   unsigned AS = Ty->getPointerAddressSpace();
2713   SDValue N = getValue(Op0);
2714   SDLoc dl = getCurSDLoc();
2715 
2716   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2717        OI != E; ++OI) {
2718     const Value *Idx = *OI;
2719     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2720       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
2721       if (Field) {
2722         // N = N + Offset
2723         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
2724         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
2725                         DAG.getConstant(Offset, dl, N.getValueType()));
2726       }
2727 
2728       Ty = StTy->getElementType(Field);
2729     } else {
2730       Ty = cast<SequentialType>(Ty)->getElementType();
2731       MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS);
2732       unsigned PtrSize = PtrTy.getSizeInBits();
2733       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
2734 
2735       // If this is a constant subscript, handle it quickly.
2736       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
2737         if (CI->isZero())
2738           continue;
2739         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
2740         SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy);
2741         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
2742         continue;
2743       }
2744 
2745       // N = N + Idx * ElementSize;
2746       SDValue IdxN = getValue(Idx);
2747 
2748       // If the index is smaller or larger than intptr_t, truncate or extend
2749       // it.
2750       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
2751 
2752       // If this is a multiply by a power of two, turn it into a shl
2753       // immediately.  This is a very common case.
2754       if (ElementSize != 1) {
2755         if (ElementSize.isPowerOf2()) {
2756           unsigned Amt = ElementSize.logBase2();
2757           IdxN = DAG.getNode(ISD::SHL, dl,
2758                              N.getValueType(), IdxN,
2759                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
2760         } else {
2761           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
2762           IdxN = DAG.getNode(ISD::MUL, dl,
2763                              N.getValueType(), IdxN, Scale);
2764         }
2765       }
2766 
2767       N = DAG.getNode(ISD::ADD, dl,
2768                       N.getValueType(), N, IdxN);
2769     }
2770   }
2771 
2772   setValue(&I, N);
2773 }
2774 
2775 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2776   // If this is a fixed sized alloca in the entry block of the function,
2777   // allocate it statically on the stack.
2778   if (FuncInfo.StaticAllocaMap.count(&I))
2779     return;   // getValue will auto-populate this.
2780 
2781   SDLoc dl = getCurSDLoc();
2782   Type *Ty = I.getAllocatedType();
2783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2784   uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
2785   unsigned Align =
2786       std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
2787                I.getAlignment());
2788 
2789   SDValue AllocSize = getValue(I.getArraySize());
2790 
2791   EVT IntPtr = TLI.getPointerTy();
2792   if (AllocSize.getValueType() != IntPtr)
2793     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
2794 
2795   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
2796                           AllocSize,
2797                           DAG.getConstant(TySize, dl, IntPtr));
2798 
2799   // Handle alignment.  If the requested alignment is less than or equal to
2800   // the stack alignment, ignore it.  If the size is greater than or equal to
2801   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2802   unsigned StackAlign =
2803       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
2804   if (Align <= StackAlign)
2805     Align = 0;
2806 
2807   // Round the size of the allocation up to the stack alignment size
2808   // by add SA-1 to the size.
2809   AllocSize = DAG.getNode(ISD::ADD, dl,
2810                           AllocSize.getValueType(), AllocSize,
2811                           DAG.getIntPtrConstant(StackAlign - 1, dl));
2812 
2813   // Mask out the low bits for alignment purposes.
2814   AllocSize = DAG.getNode(ISD::AND, dl,
2815                           AllocSize.getValueType(), AllocSize,
2816                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
2817                                                 dl));
2818 
2819   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
2820   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2821   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
2822   setValue(&I, DSA);
2823   DAG.setRoot(DSA.getValue(1));
2824 
2825   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
2826 }
2827 
2828 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2829   if (I.isAtomic())
2830     return visitAtomicLoad(I);
2831 
2832   const Value *SV = I.getOperand(0);
2833   SDValue Ptr = getValue(SV);
2834 
2835   Type *Ty = I.getType();
2836 
2837   bool isVolatile = I.isVolatile();
2838   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2839   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2840   unsigned Alignment = I.getAlignment();
2841 
2842   AAMDNodes AAInfo;
2843   I.getAAMetadata(AAInfo);
2844   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
2845 
2846   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2847   SmallVector<EVT, 4> ValueVTs;
2848   SmallVector<uint64_t, 4> Offsets;
2849   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2850   unsigned NumValues = ValueVTs.size();
2851   if (NumValues == 0)
2852     return;
2853 
2854   SDValue Root;
2855   bool ConstantMemory = false;
2856   if (isVolatile || NumValues > MaxParallelChains)
2857     // Serialize volatile loads with other side effects.
2858     Root = getRoot();
2859   else if (AA->pointsToConstantMemory(
2860              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
2861     // Do not serialize (non-volatile) loads of constant memory with anything.
2862     Root = DAG.getEntryNode();
2863     ConstantMemory = true;
2864   } else {
2865     // Do not serialize non-volatile loads against each other.
2866     Root = DAG.getRoot();
2867   }
2868 
2869   SDLoc dl = getCurSDLoc();
2870 
2871   if (isVolatile)
2872     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
2873 
2874   SmallVector<SDValue, 4> Values(NumValues);
2875   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
2876                                           NumValues));
2877   EVT PtrVT = Ptr.getValueType();
2878   unsigned ChainI = 0;
2879   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
2880     // Serializing loads here may result in excessive register pressure, and
2881     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
2882     // could recover a bit by hoisting nodes upward in the chain by recognizing
2883     // they are side-effect free or do not alias. The optimizer should really
2884     // avoid this case by converting large object/array copies to llvm.memcpy
2885     // (MaxParallelChains should always remain as failsafe).
2886     if (ChainI == MaxParallelChains) {
2887       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
2888       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2889                                   makeArrayRef(Chains.data(), ChainI));
2890       Root = Chain;
2891       ChainI = 0;
2892     }
2893     SDValue A = DAG.getNode(ISD::ADD, dl,
2894                             PtrVT, Ptr,
2895                             DAG.getConstant(Offsets[i], dl, PtrVT));
2896     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
2897                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
2898                             isNonTemporal, isInvariant, Alignment, AAInfo,
2899                             Ranges);
2900 
2901     Values[i] = L;
2902     Chains[ChainI] = L.getValue(1);
2903   }
2904 
2905   if (!ConstantMemory) {
2906     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2907                                 makeArrayRef(Chains.data(), ChainI));
2908     if (isVolatile)
2909       DAG.setRoot(Chain);
2910     else
2911       PendingLoads.push_back(Chain);
2912   }
2913 
2914   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
2915                            DAG.getVTList(ValueVTs), Values));
2916 }
2917 
2918 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2919   if (I.isAtomic())
2920     return visitAtomicStore(I);
2921 
2922   const Value *SrcV = I.getOperand(0);
2923   const Value *PtrV = I.getOperand(1);
2924 
2925   SmallVector<EVT, 4> ValueVTs;
2926   SmallVector<uint64_t, 4> Offsets;
2927   ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
2928                   ValueVTs, &Offsets);
2929   unsigned NumValues = ValueVTs.size();
2930   if (NumValues == 0)
2931     return;
2932 
2933   // Get the lowered operands. Note that we do this after
2934   // checking if NumResults is zero, because with zero results
2935   // the operands won't have values in the map.
2936   SDValue Src = getValue(SrcV);
2937   SDValue Ptr = getValue(PtrV);
2938 
2939   SDValue Root = getRoot();
2940   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
2941                                           NumValues));
2942   EVT PtrVT = Ptr.getValueType();
2943   bool isVolatile = I.isVolatile();
2944   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2945   unsigned Alignment = I.getAlignment();
2946   SDLoc dl = getCurSDLoc();
2947 
2948   AAMDNodes AAInfo;
2949   I.getAAMetadata(AAInfo);
2950 
2951   unsigned ChainI = 0;
2952   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
2953     // See visitLoad comments.
2954     if (ChainI == MaxParallelChains) {
2955       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2956                                   makeArrayRef(Chains.data(), ChainI));
2957       Root = Chain;
2958       ChainI = 0;
2959     }
2960     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
2961                               DAG.getConstant(Offsets[i], dl, PtrVT));
2962     SDValue St = DAG.getStore(Root, dl,
2963                               SDValue(Src.getNode(), Src.getResNo() + i),
2964                               Add, MachinePointerInfo(PtrV, Offsets[i]),
2965                               isVolatile, isNonTemporal, Alignment, AAInfo);
2966     Chains[ChainI] = St;
2967   }
2968 
2969   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2970                                   makeArrayRef(Chains.data(), ChainI));
2971   DAG.setRoot(StoreNode);
2972 }
2973 
2974 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
2975   SDLoc sdl = getCurSDLoc();
2976 
2977   // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
2978   Value  *PtrOperand = I.getArgOperand(1);
2979   SDValue Ptr = getValue(PtrOperand);
2980   SDValue Src0 = getValue(I.getArgOperand(0));
2981   SDValue Mask = getValue(I.getArgOperand(3));
2982   EVT VT = Src0.getValueType();
2983   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
2984   if (!Alignment)
2985     Alignment = DAG.getEVTAlignment(VT);
2986 
2987   AAMDNodes AAInfo;
2988   I.getAAMetadata(AAInfo);
2989 
2990   MachineMemOperand *MMO =
2991     DAG.getMachineFunction().
2992     getMachineMemOperand(MachinePointerInfo(PtrOperand),
2993                           MachineMemOperand::MOStore,  VT.getStoreSize(),
2994                           Alignment, AAInfo);
2995   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
2996                                          MMO, false);
2997   DAG.setRoot(StoreNode);
2998   setValue(&I, StoreNode);
2999 }
3000 
3001 // Gather/scatter receive a vector of pointers.
3002 // This vector of pointers may be represented as a base pointer + vector of
3003 // indices, it depends on GEP and instruction preceeding GEP
3004 // that calculates indices
3005 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index,
3006                            SelectionDAGBuilder* SDB) {
3007 
3008   assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3009   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
3010   if (!Gep || Gep->getNumOperands() > 2)
3011     return false;
3012   ShuffleVectorInst *ShuffleInst =
3013     dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand());
3014   if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() ||
3015       cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() !=
3016       Instruction::InsertElement)
3017     return false;
3018 
3019   Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1);
3020 
3021   SelectionDAG& DAG = SDB->DAG;
3022   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3023   // Check is the Ptr is inside current basic block
3024   // If not, look for the shuffle instruction
3025   if (SDB->findValue(Ptr))
3026     Base = SDB->getValue(Ptr);
3027   else if (SDB->findValue(ShuffleInst)) {
3028     SDValue ShuffleNode = SDB->getValue(ShuffleInst);
3029     SDLoc sdl = ShuffleNode;
3030     Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
3031                        ShuffleNode.getValueType().getScalarType(), ShuffleNode,
3032                        DAG.getConstant(0, sdl, TLI.getVectorIdxTy()));
3033     SDB->setValue(Ptr, Base);
3034   }
3035   else
3036     return false;
3037 
3038   Value *IndexVal = Gep->getOperand(1);
3039   if (SDB->findValue(IndexVal)) {
3040     Index = SDB->getValue(IndexVal);
3041 
3042     if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3043       IndexVal = Sext->getOperand(0);
3044       if (SDB->findValue(IndexVal))
3045         Index = SDB->getValue(IndexVal);
3046     }
3047     return true;
3048   }
3049   return false;
3050 }
3051 
3052 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3053   SDLoc sdl = getCurSDLoc();
3054 
3055   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3056   Value  *Ptr = I.getArgOperand(1);
3057   SDValue Src0 = getValue(I.getArgOperand(0));
3058   SDValue Mask = getValue(I.getArgOperand(3));
3059   EVT VT = Src0.getValueType();
3060   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3061   if (!Alignment)
3062     Alignment = DAG.getEVTAlignment(VT);
3063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3064 
3065   AAMDNodes AAInfo;
3066   I.getAAMetadata(AAInfo);
3067 
3068   SDValue Base;
3069   SDValue Index;
3070   Value *BasePtr = Ptr;
3071   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3072 
3073   Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3074   MachineMemOperand *MMO = DAG.getMachineFunction().
3075     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3076                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3077                          Alignment, AAInfo);
3078   if (!UniformBase) {
3079     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy());
3080     Index = getValue(Ptr);
3081   }
3082   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3083   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3084                                          Ops, MMO);
3085   DAG.setRoot(Scatter);
3086   setValue(&I, Scatter);
3087 }
3088 
3089 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3090   SDLoc sdl = getCurSDLoc();
3091 
3092   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3093   Value  *PtrOperand = I.getArgOperand(0);
3094   SDValue Ptr = getValue(PtrOperand);
3095   SDValue Src0 = getValue(I.getArgOperand(3));
3096   SDValue Mask = getValue(I.getArgOperand(2));
3097 
3098   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3099   EVT VT = TLI.getValueType(I.getType());
3100   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3101   if (!Alignment)
3102     Alignment = DAG.getEVTAlignment(VT);
3103 
3104   AAMDNodes AAInfo;
3105   I.getAAMetadata(AAInfo);
3106   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3107 
3108   SDValue InChain = DAG.getRoot();
3109   if (AA->pointsToConstantMemory(
3110       AliasAnalysis::Location(PtrOperand,
3111                               AA->getTypeStoreSize(I.getType()),
3112                               AAInfo))) {
3113     // Do not serialize (non-volatile) loads of constant memory with anything.
3114     InChain = DAG.getEntryNode();
3115   }
3116 
3117   MachineMemOperand *MMO =
3118     DAG.getMachineFunction().
3119     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3120                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3121                           Alignment, AAInfo, Ranges);
3122 
3123   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3124                                    ISD::NON_EXTLOAD);
3125   SDValue OutChain = Load.getValue(1);
3126   DAG.setRoot(OutChain);
3127   setValue(&I, Load);
3128 }
3129 
3130 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3131   SDLoc sdl = getCurSDLoc();
3132 
3133   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3134   Value  *Ptr = I.getArgOperand(0);
3135   SDValue Src0 = getValue(I.getArgOperand(3));
3136   SDValue Mask = getValue(I.getArgOperand(2));
3137 
3138   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3139   EVT VT = TLI.getValueType(I.getType());
3140   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3141   if (!Alignment)
3142     Alignment = DAG.getEVTAlignment(VT);
3143 
3144   AAMDNodes AAInfo;
3145   I.getAAMetadata(AAInfo);
3146   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3147 
3148   SDValue Root = DAG.getRoot();
3149   SDValue Base;
3150   SDValue Index;
3151   Value *BasePtr = Ptr;
3152   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3153   bool ConstantMemory = false;
3154   if (UniformBase && AA->pointsToConstantMemory(
3155       AliasAnalysis::Location(BasePtr,
3156 	                            AA->getTypeStoreSize(I.getType()),
3157                               AAInfo))) {
3158     // Do not serialize (non-volatile) loads of constant memory with anything.
3159     Root = DAG.getEntryNode();
3160     ConstantMemory = true;
3161   }
3162 
3163   MachineMemOperand *MMO =
3164     DAG.getMachineFunction().
3165     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3166                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3167                          Alignment, AAInfo, Ranges);
3168 
3169   if (!UniformBase) {
3170     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy());
3171     Index = getValue(Ptr);
3172   }
3173   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3174   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3175                                        Ops, MMO);
3176 
3177   SDValue OutChain = Gather.getValue(1);
3178   if (!ConstantMemory)
3179     PendingLoads.push_back(OutChain);
3180   setValue(&I, Gather);
3181 }
3182 
3183 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3184   SDLoc dl = getCurSDLoc();
3185   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3186   AtomicOrdering FailureOrder = I.getFailureOrdering();
3187   SynchronizationScope Scope = I.getSynchScope();
3188 
3189   SDValue InChain = getRoot();
3190 
3191   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3192   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3193   SDValue L = DAG.getAtomicCmpSwap(
3194       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3195       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3196       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3197       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3198 
3199   SDValue OutChain = L.getValue(2);
3200 
3201   setValue(&I, L);
3202   DAG.setRoot(OutChain);
3203 }
3204 
3205 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3206   SDLoc dl = getCurSDLoc();
3207   ISD::NodeType NT;
3208   switch (I.getOperation()) {
3209   default: llvm_unreachable("Unknown atomicrmw operation");
3210   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3211   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3212   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3213   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3214   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3215   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3216   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3217   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3218   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3219   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3220   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3221   }
3222   AtomicOrdering Order = I.getOrdering();
3223   SynchronizationScope Scope = I.getSynchScope();
3224 
3225   SDValue InChain = getRoot();
3226 
3227   SDValue L =
3228     DAG.getAtomic(NT, dl,
3229                   getValue(I.getValOperand()).getSimpleValueType(),
3230                   InChain,
3231                   getValue(I.getPointerOperand()),
3232                   getValue(I.getValOperand()),
3233                   I.getPointerOperand(),
3234                   /* Alignment=*/ 0, Order, Scope);
3235 
3236   SDValue OutChain = L.getValue(1);
3237 
3238   setValue(&I, L);
3239   DAG.setRoot(OutChain);
3240 }
3241 
3242 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3243   SDLoc dl = getCurSDLoc();
3244   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3245   SDValue Ops[3];
3246   Ops[0] = getRoot();
3247   Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy());
3248   Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy());
3249   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3250 }
3251 
3252 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3253   SDLoc dl = getCurSDLoc();
3254   AtomicOrdering Order = I.getOrdering();
3255   SynchronizationScope Scope = I.getSynchScope();
3256 
3257   SDValue InChain = getRoot();
3258 
3259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3260   EVT VT = TLI.getValueType(I.getType());
3261 
3262   if (I.getAlignment() < VT.getSizeInBits() / 8)
3263     report_fatal_error("Cannot generate unaligned atomic load");
3264 
3265   MachineMemOperand *MMO =
3266       DAG.getMachineFunction().
3267       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3268                            MachineMemOperand::MOVolatile |
3269                            MachineMemOperand::MOLoad,
3270                            VT.getStoreSize(),
3271                            I.getAlignment() ? I.getAlignment() :
3272                                               DAG.getEVTAlignment(VT));
3273 
3274   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3275   SDValue L =
3276       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3277                     getValue(I.getPointerOperand()), MMO,
3278                     Order, Scope);
3279 
3280   SDValue OutChain = L.getValue(1);
3281 
3282   setValue(&I, L);
3283   DAG.setRoot(OutChain);
3284 }
3285 
3286 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3287   SDLoc dl = getCurSDLoc();
3288 
3289   AtomicOrdering Order = I.getOrdering();
3290   SynchronizationScope Scope = I.getSynchScope();
3291 
3292   SDValue InChain = getRoot();
3293 
3294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3295   EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3296 
3297   if (I.getAlignment() < VT.getSizeInBits() / 8)
3298     report_fatal_error("Cannot generate unaligned atomic store");
3299 
3300   SDValue OutChain =
3301     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3302                   InChain,
3303                   getValue(I.getPointerOperand()),
3304                   getValue(I.getValueOperand()),
3305                   I.getPointerOperand(), I.getAlignment(),
3306                   Order, Scope);
3307 
3308   DAG.setRoot(OutChain);
3309 }
3310 
3311 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3312 /// node.
3313 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3314                                                unsigned Intrinsic) {
3315   bool HasChain = !I.doesNotAccessMemory();
3316   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3317 
3318   // Build the operand list.
3319   SmallVector<SDValue, 8> Ops;
3320   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3321     if (OnlyLoad) {
3322       // We don't need to serialize loads against other loads.
3323       Ops.push_back(DAG.getRoot());
3324     } else {
3325       Ops.push_back(getRoot());
3326     }
3327   }
3328 
3329   // Info is set by getTgtMemInstrinsic
3330   TargetLowering::IntrinsicInfo Info;
3331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3332   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3333 
3334   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3335   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3336       Info.opc == ISD::INTRINSIC_W_CHAIN)
3337     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3338                                         TLI.getPointerTy()));
3339 
3340   // Add all operands of the call to the operand list.
3341   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3342     SDValue Op = getValue(I.getArgOperand(i));
3343     Ops.push_back(Op);
3344   }
3345 
3346   SmallVector<EVT, 4> ValueVTs;
3347   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3348 
3349   if (HasChain)
3350     ValueVTs.push_back(MVT::Other);
3351 
3352   SDVTList VTs = DAG.getVTList(ValueVTs);
3353 
3354   // Create the node.
3355   SDValue Result;
3356   if (IsTgtIntrinsic) {
3357     // This is target intrinsic that touches memory
3358     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3359                                      VTs, Ops, Info.memVT,
3360                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3361                                      Info.align, Info.vol,
3362                                      Info.readMem, Info.writeMem, Info.size);
3363   } else if (!HasChain) {
3364     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3365   } else if (!I.getType()->isVoidTy()) {
3366     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3367   } else {
3368     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3369   }
3370 
3371   if (HasChain) {
3372     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3373     if (OnlyLoad)
3374       PendingLoads.push_back(Chain);
3375     else
3376       DAG.setRoot(Chain);
3377   }
3378 
3379   if (!I.getType()->isVoidTy()) {
3380     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3381       EVT VT = TLI.getValueType(PTy);
3382       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3383     }
3384 
3385     setValue(&I, Result);
3386   }
3387 }
3388 
3389 /// GetSignificand - Get the significand and build it into a floating-point
3390 /// number with exponent of 1:
3391 ///
3392 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3393 ///
3394 /// where Op is the hexadecimal representation of floating point value.
3395 static SDValue
3396 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3397   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3398                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3399   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3400                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3401   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3402 }
3403 
3404 /// GetExponent - Get the exponent:
3405 ///
3406 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3407 ///
3408 /// where Op is the hexadecimal representation of floating point value.
3409 static SDValue
3410 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3411             SDLoc dl) {
3412   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3413                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3414   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3415                            DAG.getConstant(23, dl, TLI.getPointerTy()));
3416   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3417                            DAG.getConstant(127, dl, MVT::i32));
3418   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3419 }
3420 
3421 /// getF32Constant - Get 32-bit floating point constant.
3422 static SDValue
3423 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3424   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3425                            MVT::f32);
3426 }
3427 
3428 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3429                                        SelectionDAG &DAG) {
3430   //   IntegerPartOfX = ((int32_t)(t0);
3431   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3432 
3433   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3434   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3435   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3436 
3437   //   IntegerPartOfX <<= 23;
3438   IntegerPartOfX = DAG.getNode(
3439       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3440       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy()));
3441 
3442   SDValue TwoToFractionalPartOfX;
3443   if (LimitFloatPrecision <= 6) {
3444     // For floating-point precision of 6:
3445     //
3446     //   TwoToFractionalPartOfX =
3447     //     0.997535578f +
3448     //       (0.735607626f + 0.252464424f * x) * x;
3449     //
3450     // error 0.0144103317, which is 6 bits
3451     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3452                              getF32Constant(DAG, 0x3e814304, dl));
3453     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3454                              getF32Constant(DAG, 0x3f3c50c8, dl));
3455     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3456     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3457                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3458   } else if (LimitFloatPrecision <= 12) {
3459     // For floating-point precision of 12:
3460     //
3461     //   TwoToFractionalPartOfX =
3462     //     0.999892986f +
3463     //       (0.696457318f +
3464     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3465     //
3466     // error 0.000107046256, which is 13 to 14 bits
3467     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3468                              getF32Constant(DAG, 0x3da235e3, dl));
3469     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3470                              getF32Constant(DAG, 0x3e65b8f3, dl));
3471     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3472     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3473                              getF32Constant(DAG, 0x3f324b07, dl));
3474     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3475     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3476                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3477   } else { // LimitFloatPrecision <= 18
3478     // For floating-point precision of 18:
3479     //
3480     //   TwoToFractionalPartOfX =
3481     //     0.999999982f +
3482     //       (0.693148872f +
3483     //         (0.240227044f +
3484     //           (0.554906021e-1f +
3485     //             (0.961591928e-2f +
3486     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3487     // error 2.47208000*10^(-7), which is better than 18 bits
3488     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3489                              getF32Constant(DAG, 0x3924b03e, dl));
3490     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3491                              getF32Constant(DAG, 0x3ab24b87, dl));
3492     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3493     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3494                              getF32Constant(DAG, 0x3c1d8c17, dl));
3495     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3496     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3497                              getF32Constant(DAG, 0x3d634a1d, dl));
3498     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3499     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3500                              getF32Constant(DAG, 0x3e75fe14, dl));
3501     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3502     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3503                               getF32Constant(DAG, 0x3f317234, dl));
3504     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3505     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3506                                          getF32Constant(DAG, 0x3f800000, dl));
3507   }
3508 
3509   // Add the exponent into the result in integer domain.
3510   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3511   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3512                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3513 }
3514 
3515 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3516 /// limited-precision mode.
3517 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3518                          const TargetLowering &TLI) {
3519   if (Op.getValueType() == MVT::f32 &&
3520       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3521 
3522     // Put the exponent in the right bit position for later addition to the
3523     // final result:
3524     //
3525     //   #define LOG2OFe 1.4426950f
3526     //   t0 = Op * LOG2OFe
3527     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3528                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3529     return getLimitedPrecisionExp2(t0, dl, DAG);
3530   }
3531 
3532   // No special expansion.
3533   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3534 }
3535 
3536 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3537 /// limited-precision mode.
3538 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3539                          const TargetLowering &TLI) {
3540   if (Op.getValueType() == MVT::f32 &&
3541       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3542     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3543 
3544     // Scale the exponent by log(2) [0.69314718f].
3545     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3546     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3547                                         getF32Constant(DAG, 0x3f317218, dl));
3548 
3549     // Get the significand and build it into a floating-point number with
3550     // exponent of 1.
3551     SDValue X = GetSignificand(DAG, Op1, dl);
3552 
3553     SDValue LogOfMantissa;
3554     if (LimitFloatPrecision <= 6) {
3555       // For floating-point precision of 6:
3556       //
3557       //   LogofMantissa =
3558       //     -1.1609546f +
3559       //       (1.4034025f - 0.23903021f * x) * x;
3560       //
3561       // error 0.0034276066, which is better than 8 bits
3562       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3563                                getF32Constant(DAG, 0xbe74c456, dl));
3564       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3565                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3566       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3567       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3568                                   getF32Constant(DAG, 0x3f949a29, dl));
3569     } else if (LimitFloatPrecision <= 12) {
3570       // For floating-point precision of 12:
3571       //
3572       //   LogOfMantissa =
3573       //     -1.7417939f +
3574       //       (2.8212026f +
3575       //         (-1.4699568f +
3576       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3577       //
3578       // error 0.000061011436, which is 14 bits
3579       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3580                                getF32Constant(DAG, 0xbd67b6d6, dl));
3581       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3582                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3583       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3584       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3585                                getF32Constant(DAG, 0x3fbc278b, dl));
3586       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3587       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3588                                getF32Constant(DAG, 0x40348e95, dl));
3589       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3590       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3591                                   getF32Constant(DAG, 0x3fdef31a, dl));
3592     } else { // LimitFloatPrecision <= 18
3593       // For floating-point precision of 18:
3594       //
3595       //   LogOfMantissa =
3596       //     -2.1072184f +
3597       //       (4.2372794f +
3598       //         (-3.7029485f +
3599       //           (2.2781945f +
3600       //             (-0.87823314f +
3601       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3602       //
3603       // error 0.0000023660568, which is better than 18 bits
3604       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3605                                getF32Constant(DAG, 0xbc91e5ac, dl));
3606       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3607                                getF32Constant(DAG, 0x3e4350aa, dl));
3608       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3609       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3610                                getF32Constant(DAG, 0x3f60d3e3, dl));
3611       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3612       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3613                                getF32Constant(DAG, 0x4011cdf0, dl));
3614       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3615       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3616                                getF32Constant(DAG, 0x406cfd1c, dl));
3617       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3618       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3619                                getF32Constant(DAG, 0x408797cb, dl));
3620       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3621       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3622                                   getF32Constant(DAG, 0x4006dcab, dl));
3623     }
3624 
3625     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3626   }
3627 
3628   // No special expansion.
3629   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3630 }
3631 
3632 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3633 /// limited-precision mode.
3634 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3635                           const TargetLowering &TLI) {
3636   if (Op.getValueType() == MVT::f32 &&
3637       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3638     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3639 
3640     // Get the exponent.
3641     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3642 
3643     // Get the significand and build it into a floating-point number with
3644     // exponent of 1.
3645     SDValue X = GetSignificand(DAG, Op1, dl);
3646 
3647     // Different possible minimax approximations of significand in
3648     // floating-point for various degrees of accuracy over [1,2].
3649     SDValue Log2ofMantissa;
3650     if (LimitFloatPrecision <= 6) {
3651       // For floating-point precision of 6:
3652       //
3653       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3654       //
3655       // error 0.0049451742, which is more than 7 bits
3656       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3657                                getF32Constant(DAG, 0xbeb08fe0, dl));
3658       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3659                                getF32Constant(DAG, 0x40019463, dl));
3660       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3661       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3662                                    getF32Constant(DAG, 0x3fd6633d, dl));
3663     } else if (LimitFloatPrecision <= 12) {
3664       // For floating-point precision of 12:
3665       //
3666       //   Log2ofMantissa =
3667       //     -2.51285454f +
3668       //       (4.07009056f +
3669       //         (-2.12067489f +
3670       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3671       //
3672       // error 0.0000876136000, which is better than 13 bits
3673       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3674                                getF32Constant(DAG, 0xbda7262e, dl));
3675       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3676                                getF32Constant(DAG, 0x3f25280b, dl));
3677       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3678       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3679                                getF32Constant(DAG, 0x4007b923, dl));
3680       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3681       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3682                                getF32Constant(DAG, 0x40823e2f, dl));
3683       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3684       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3685                                    getF32Constant(DAG, 0x4020d29c, dl));
3686     } else { // LimitFloatPrecision <= 18
3687       // For floating-point precision of 18:
3688       //
3689       //   Log2ofMantissa =
3690       //     -3.0400495f +
3691       //       (6.1129976f +
3692       //         (-5.3420409f +
3693       //           (3.2865683f +
3694       //             (-1.2669343f +
3695       //               (0.27515199f -
3696       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3697       //
3698       // error 0.0000018516, which is better than 18 bits
3699       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3700                                getF32Constant(DAG, 0xbcd2769e, dl));
3701       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3702                                getF32Constant(DAG, 0x3e8ce0b9, dl));
3703       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3704       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3705                                getF32Constant(DAG, 0x3fa22ae7, dl));
3706       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3707       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3708                                getF32Constant(DAG, 0x40525723, dl));
3709       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3710       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3711                                getF32Constant(DAG, 0x40aaf200, dl));
3712       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3713       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3714                                getF32Constant(DAG, 0x40c39dad, dl));
3715       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3716       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3717                                    getF32Constant(DAG, 0x4042902c, dl));
3718     }
3719 
3720     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3721   }
3722 
3723   // No special expansion.
3724   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3725 }
3726 
3727 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3728 /// limited-precision mode.
3729 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3730                            const TargetLowering &TLI) {
3731   if (Op.getValueType() == MVT::f32 &&
3732       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3733     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3734 
3735     // Scale the exponent by log10(2) [0.30102999f].
3736     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3737     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3738                                         getF32Constant(DAG, 0x3e9a209a, dl));
3739 
3740     // Get the significand and build it into a floating-point number with
3741     // exponent of 1.
3742     SDValue X = GetSignificand(DAG, Op1, dl);
3743 
3744     SDValue Log10ofMantissa;
3745     if (LimitFloatPrecision <= 6) {
3746       // For floating-point precision of 6:
3747       //
3748       //   Log10ofMantissa =
3749       //     -0.50419619f +
3750       //       (0.60948995f - 0.10380950f * x) * x;
3751       //
3752       // error 0.0014886165, which is 6 bits
3753       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3754                                getF32Constant(DAG, 0xbdd49a13, dl));
3755       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3756                                getF32Constant(DAG, 0x3f1c0789, dl));
3757       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3758       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3759                                     getF32Constant(DAG, 0x3f011300, dl));
3760     } else if (LimitFloatPrecision <= 12) {
3761       // For floating-point precision of 12:
3762       //
3763       //   Log10ofMantissa =
3764       //     -0.64831180f +
3765       //       (0.91751397f +
3766       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3767       //
3768       // error 0.00019228036, which is better than 12 bits
3769       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3770                                getF32Constant(DAG, 0x3d431f31, dl));
3771       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3772                                getF32Constant(DAG, 0x3ea21fb2, dl));
3773       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3774       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3775                                getF32Constant(DAG, 0x3f6ae232, dl));
3776       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3777       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3778                                     getF32Constant(DAG, 0x3f25f7c3, dl));
3779     } else { // LimitFloatPrecision <= 18
3780       // For floating-point precision of 18:
3781       //
3782       //   Log10ofMantissa =
3783       //     -0.84299375f +
3784       //       (1.5327582f +
3785       //         (-1.0688956f +
3786       //           (0.49102474f +
3787       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3788       //
3789       // error 0.0000037995730, which is better than 18 bits
3790       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3791                                getF32Constant(DAG, 0x3c5d51ce, dl));
3792       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3793                                getF32Constant(DAG, 0x3e00685a, dl));
3794       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3795       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3796                                getF32Constant(DAG, 0x3efb6798, dl));
3797       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3798       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3799                                getF32Constant(DAG, 0x3f88d192, dl));
3800       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3801       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3802                                getF32Constant(DAG, 0x3fc4316c, dl));
3803       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3804       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3805                                     getF32Constant(DAG, 0x3f57ce70, dl));
3806     }
3807 
3808     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
3809   }
3810 
3811   // No special expansion.
3812   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
3813 }
3814 
3815 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3816 /// limited-precision mode.
3817 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3818                           const TargetLowering &TLI) {
3819   if (Op.getValueType() == MVT::f32 &&
3820       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
3821     return getLimitedPrecisionExp2(Op, dl, DAG);
3822 
3823   // No special expansion.
3824   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
3825 }
3826 
3827 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3828 /// limited-precision mode with x == 10.0f.
3829 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
3830                          SelectionDAG &DAG, const TargetLowering &TLI) {
3831   bool IsExp10 = false;
3832   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
3833       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3834     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
3835       APFloat Ten(10.0f);
3836       IsExp10 = LHSC->isExactlyValue(Ten);
3837     }
3838   }
3839 
3840   if (IsExp10) {
3841     // Put the exponent in the right bit position for later addition to the
3842     // final result:
3843     //
3844     //   #define LOG2OF10 3.3219281f
3845     //   t0 = Op * LOG2OF10;
3846     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
3847                              getF32Constant(DAG, 0x40549a78, dl));
3848     return getLimitedPrecisionExp2(t0, dl, DAG);
3849   }
3850 
3851   // No special expansion.
3852   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
3853 }
3854 
3855 
3856 /// ExpandPowI - Expand a llvm.powi intrinsic.
3857 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
3858                           SelectionDAG &DAG) {
3859   // If RHS is a constant, we can expand this out to a multiplication tree,
3860   // otherwise we end up lowering to a call to __powidf2 (for example).  When
3861   // optimizing for size, we only want to do this if the expansion would produce
3862   // a small number of multiplies, otherwise we do the full expansion.
3863   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3864     // Get the exponent as a positive value.
3865     unsigned Val = RHSC->getSExtValue();
3866     if ((int)Val < 0) Val = -Val;
3867 
3868     // powi(x, 0) -> 1.0
3869     if (Val == 0)
3870       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
3871 
3872     const Function *F = DAG.getMachineFunction().getFunction();
3873     if (!F->hasFnAttribute(Attribute::OptimizeForSize) ||
3874         // If optimizing for size, don't insert too many multiplies.  This
3875         // inserts up to 5 multiplies.
3876         countPopulation(Val) + Log2_32(Val) < 7) {
3877       // We use the simple binary decomposition method to generate the multiply
3878       // sequence.  There are more optimal ways to do this (for example,
3879       // powi(x,15) generates one more multiply than it should), but this has
3880       // the benefit of being both really simple and much better than a libcall.
3881       SDValue Res;  // Logically starts equal to 1.0
3882       SDValue CurSquare = LHS;
3883       while (Val) {
3884         if (Val & 1) {
3885           if (Res.getNode())
3886             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3887           else
3888             Res = CurSquare;  // 1.0*CurSquare.
3889         }
3890 
3891         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3892                                 CurSquare, CurSquare);
3893         Val >>= 1;
3894       }
3895 
3896       // If the original was negative, invert the result, producing 1/(x*x*x).
3897       if (RHSC->getSExtValue() < 0)
3898         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3899                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
3900       return Res;
3901     }
3902   }
3903 
3904   // Otherwise, expand to a libcall.
3905   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3906 }
3907 
3908 // getTruncatedArgReg - Find underlying register used for an truncated
3909 // argument.
3910 static unsigned getTruncatedArgReg(const SDValue &N) {
3911   if (N.getOpcode() != ISD::TRUNCATE)
3912     return 0;
3913 
3914   const SDValue &Ext = N.getOperand(0);
3915   if (Ext.getOpcode() == ISD::AssertZext ||
3916       Ext.getOpcode() == ISD::AssertSext) {
3917     const SDValue &CFR = Ext.getOperand(0);
3918     if (CFR.getOpcode() == ISD::CopyFromReg)
3919       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
3920     if (CFR.getOpcode() == ISD::TRUNCATE)
3921       return getTruncatedArgReg(CFR);
3922   }
3923   return 0;
3924 }
3925 
3926 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3927 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
3928 /// At the end of instruction selection, they will be inserted to the entry BB.
3929 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
3930     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
3931     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
3932   const Argument *Arg = dyn_cast<Argument>(V);
3933   if (!Arg)
3934     return false;
3935 
3936   MachineFunction &MF = DAG.getMachineFunction();
3937   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
3938 
3939   // Ignore inlined function arguments here.
3940   //
3941   // FIXME: Should we be checking DL->inlinedAt() to determine this?
3942   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
3943     return false;
3944 
3945   Optional<MachineOperand> Op;
3946   // Some arguments' frame index is recorded during argument lowering.
3947   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
3948     Op = MachineOperand::CreateFI(FI);
3949 
3950   if (!Op && N.getNode()) {
3951     unsigned Reg;
3952     if (N.getOpcode() == ISD::CopyFromReg)
3953       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3954     else
3955       Reg = getTruncatedArgReg(N);
3956     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3957       MachineRegisterInfo &RegInfo = MF.getRegInfo();
3958       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3959       if (PR)
3960         Reg = PR;
3961     }
3962     if (Reg)
3963       Op = MachineOperand::CreateReg(Reg, false);
3964   }
3965 
3966   if (!Op) {
3967     // Check if ValueMap has reg number.
3968     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3969     if (VMI != FuncInfo.ValueMap.end())
3970       Op = MachineOperand::CreateReg(VMI->second, false);
3971   }
3972 
3973   if (!Op && N.getNode())
3974     // Check if frame index is available.
3975     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
3976       if (FrameIndexSDNode *FINode =
3977           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
3978         Op = MachineOperand::CreateFI(FINode->getIndex());
3979 
3980   if (!Op)
3981     return false;
3982 
3983   assert(Variable->isValidLocationForIntrinsic(DL) &&
3984          "Expected inlined-at fields to agree");
3985   if (Op->isReg())
3986     FuncInfo.ArgDbgValues.push_back(
3987         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
3988                 Op->getReg(), Offset, Variable, Expr));
3989   else
3990     FuncInfo.ArgDbgValues.push_back(
3991         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
3992             .addOperand(*Op)
3993             .addImm(Offset)
3994             .addMetadata(Variable)
3995             .addMetadata(Expr));
3996 
3997   return true;
3998 }
3999 
4000 // VisualStudio defines setjmp as _setjmp
4001 #if defined(_MSC_VER) && defined(setjmp) && \
4002                          !defined(setjmp_undefined_for_msvc)
4003 #  pragma push_macro("setjmp")
4004 #  undef setjmp
4005 #  define setjmp_undefined_for_msvc
4006 #endif
4007 
4008 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4009 /// we want to emit this as a call to a named external function, return the name
4010 /// otherwise lower it and return null.
4011 const char *
4012 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4014   SDLoc sdl = getCurSDLoc();
4015   DebugLoc dl = getCurDebugLoc();
4016   SDValue Res;
4017 
4018   switch (Intrinsic) {
4019   default:
4020     // By default, turn this into a target intrinsic node.
4021     visitTargetIntrinsic(I, Intrinsic);
4022     return nullptr;
4023   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4024   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4025   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4026   case Intrinsic::returnaddress:
4027     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4028                              getValue(I.getArgOperand(0))));
4029     return nullptr;
4030   case Intrinsic::frameaddress:
4031     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4032                              getValue(I.getArgOperand(0))));
4033     return nullptr;
4034   case Intrinsic::read_register: {
4035     Value *Reg = I.getArgOperand(0);
4036     SDValue RegName =
4037         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4038     EVT VT = TLI.getValueType(I.getType());
4039     setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4040     return nullptr;
4041   }
4042   case Intrinsic::write_register: {
4043     Value *Reg = I.getArgOperand(0);
4044     Value *RegValue = I.getArgOperand(1);
4045     SDValue Chain = getValue(RegValue).getOperand(0);
4046     SDValue RegName =
4047         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4048     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4049                             RegName, getValue(RegValue)));
4050     return nullptr;
4051   }
4052   case Intrinsic::setjmp:
4053     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4054   case Intrinsic::longjmp:
4055     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4056   case Intrinsic::memcpy: {
4057     // FIXME: this definition of "user defined address space" is x86-specific
4058     // Assert for address < 256 since we support only user defined address
4059     // spaces.
4060     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4061            < 256 &&
4062            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4063            < 256 &&
4064            "Unknown address space");
4065     SDValue Op1 = getValue(I.getArgOperand(0));
4066     SDValue Op2 = getValue(I.getArgOperand(1));
4067     SDValue Op3 = getValue(I.getArgOperand(2));
4068     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4069     if (!Align)
4070       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4071     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4072     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4073     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4074                                false, isTC,
4075                                MachinePointerInfo(I.getArgOperand(0)),
4076                                MachinePointerInfo(I.getArgOperand(1)));
4077     updateDAGForMaybeTailCall(MC);
4078     return nullptr;
4079   }
4080   case Intrinsic::memset: {
4081     // FIXME: this definition of "user defined address space" is x86-specific
4082     // Assert for address < 256 since we support only user defined address
4083     // spaces.
4084     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4085            < 256 &&
4086            "Unknown address space");
4087     SDValue Op1 = getValue(I.getArgOperand(0));
4088     SDValue Op2 = getValue(I.getArgOperand(1));
4089     SDValue Op3 = getValue(I.getArgOperand(2));
4090     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4091     if (!Align)
4092       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4093     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4094     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4095     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4096                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4097     updateDAGForMaybeTailCall(MS);
4098     return nullptr;
4099   }
4100   case Intrinsic::memmove: {
4101     // FIXME: this definition of "user defined address space" is x86-specific
4102     // Assert for address < 256 since we support only user defined address
4103     // spaces.
4104     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4105            < 256 &&
4106            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4107            < 256 &&
4108            "Unknown address space");
4109     SDValue Op1 = getValue(I.getArgOperand(0));
4110     SDValue Op2 = getValue(I.getArgOperand(1));
4111     SDValue Op3 = getValue(I.getArgOperand(2));
4112     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4113     if (!Align)
4114       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4115     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4116     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4117     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4118                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4119                                 MachinePointerInfo(I.getArgOperand(1)));
4120     updateDAGForMaybeTailCall(MM);
4121     return nullptr;
4122   }
4123   case Intrinsic::dbg_declare: {
4124     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4125     DILocalVariable *Variable = DI.getVariable();
4126     DIExpression *Expression = DI.getExpression();
4127     const Value *Address = DI.getAddress();
4128     assert(Variable && "Missing variable");
4129     if (!Address) {
4130       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4131       return nullptr;
4132     }
4133 
4134     // Check if address has undef value.
4135     if (isa<UndefValue>(Address) ||
4136         (Address->use_empty() && !isa<Argument>(Address))) {
4137       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4138       return nullptr;
4139     }
4140 
4141     SDValue &N = NodeMap[Address];
4142     if (!N.getNode() && isa<Argument>(Address))
4143       // Check unused arguments map.
4144       N = UnusedArgNodeMap[Address];
4145     SDDbgValue *SDV;
4146     if (N.getNode()) {
4147       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4148         Address = BCI->getOperand(0);
4149       // Parameters are handled specially.
4150       bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable ||
4151                          isa<Argument>(Address);
4152 
4153       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4154 
4155       if (isParameter && !AI) {
4156         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4157         if (FINode)
4158           // Byval parameter.  We have a frame index at this point.
4159           SDV = DAG.getFrameIndexDbgValue(
4160               Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
4161         else {
4162           // Address is an argument, so try to emit its dbg value using
4163           // virtual register info from the FuncInfo.ValueMap.
4164           EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4165                                    N);
4166           return nullptr;
4167         }
4168       } else if (AI)
4169         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4170                               true, 0, dl, SDNodeOrder);
4171       else {
4172         // Can't do anything with other non-AI cases yet.
4173         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4174         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4175         DEBUG(Address->dump());
4176         return nullptr;
4177       }
4178       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4179     } else {
4180       // If Address is an argument then try to emit its dbg value using
4181       // virtual register info from the FuncInfo.ValueMap.
4182       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4183                                     N)) {
4184         // If variable is pinned by a alloca in dominating bb then
4185         // use StaticAllocaMap.
4186         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4187           if (AI->getParent() != DI.getParent()) {
4188             DenseMap<const AllocaInst*, int>::iterator SI =
4189               FuncInfo.StaticAllocaMap.find(AI);
4190             if (SI != FuncInfo.StaticAllocaMap.end()) {
4191               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4192                                               0, dl, SDNodeOrder);
4193               DAG.AddDbgValue(SDV, nullptr, false);
4194               return nullptr;
4195             }
4196           }
4197         }
4198         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4199       }
4200     }
4201     return nullptr;
4202   }
4203   case Intrinsic::dbg_value: {
4204     const DbgValueInst &DI = cast<DbgValueInst>(I);
4205     assert(DI.getVariable() && "Missing variable");
4206 
4207     DILocalVariable *Variable = DI.getVariable();
4208     DIExpression *Expression = DI.getExpression();
4209     uint64_t Offset = DI.getOffset();
4210     const Value *V = DI.getValue();
4211     if (!V)
4212       return nullptr;
4213 
4214     SDDbgValue *SDV;
4215     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4216       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4217                                     SDNodeOrder);
4218       DAG.AddDbgValue(SDV, nullptr, false);
4219     } else {
4220       // Do not use getValue() in here; we don't want to generate code at
4221       // this point if it hasn't been done yet.
4222       SDValue N = NodeMap[V];
4223       if (!N.getNode() && isa<Argument>(V))
4224         // Check unused arguments map.
4225         N = UnusedArgNodeMap[V];
4226       if (N.getNode()) {
4227         // A dbg.value for an alloca is always indirect.
4228         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4229         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4230                                       IsIndirect, N)) {
4231           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4232                                 IsIndirect, Offset, dl, SDNodeOrder);
4233           DAG.AddDbgValue(SDV, N.getNode(), false);
4234         }
4235       } else if (!V->use_empty() ) {
4236         // Do not call getValue(V) yet, as we don't want to generate code.
4237         // Remember it for later.
4238         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4239         DanglingDebugInfoMap[V] = DDI;
4240       } else {
4241         // We may expand this to cover more cases.  One case where we have no
4242         // data available is an unreferenced parameter.
4243         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4244       }
4245     }
4246 
4247     // Build a debug info table entry.
4248     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4249       V = BCI->getOperand(0);
4250     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4251     // Don't handle byval struct arguments or VLAs, for example.
4252     if (!AI) {
4253       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4254       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4255       return nullptr;
4256     }
4257     DenseMap<const AllocaInst*, int>::iterator SI =
4258       FuncInfo.StaticAllocaMap.find(AI);
4259     if (SI == FuncInfo.StaticAllocaMap.end())
4260       return nullptr; // VLAs.
4261     return nullptr;
4262   }
4263 
4264   case Intrinsic::eh_typeid_for: {
4265     // Find the type id for the given typeinfo.
4266     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4267     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4268     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4269     setValue(&I, Res);
4270     return nullptr;
4271   }
4272 
4273   case Intrinsic::eh_return_i32:
4274   case Intrinsic::eh_return_i64:
4275     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4276     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4277                             MVT::Other,
4278                             getControlRoot(),
4279                             getValue(I.getArgOperand(0)),
4280                             getValue(I.getArgOperand(1))));
4281     return nullptr;
4282   case Intrinsic::eh_unwind_init:
4283     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4284     return nullptr;
4285   case Intrinsic::eh_dwarf_cfa: {
4286     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4287                                         TLI.getPointerTy());
4288     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4289                                  CfaArg.getValueType(),
4290                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4291                                              CfaArg.getValueType()),
4292                                  CfaArg);
4293     SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4294                              DAG.getConstant(0, sdl, TLI.getPointerTy()));
4295     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4296                              FA, Offset));
4297     return nullptr;
4298   }
4299   case Intrinsic::eh_sjlj_callsite: {
4300     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4301     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4302     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4303     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4304 
4305     MMI.setCurrentCallSite(CI->getZExtValue());
4306     return nullptr;
4307   }
4308   case Intrinsic::eh_sjlj_functioncontext: {
4309     // Get and store the index of the function context.
4310     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4311     AllocaInst *FnCtx =
4312       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4313     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4314     MFI->setFunctionContextIndex(FI);
4315     return nullptr;
4316   }
4317   case Intrinsic::eh_sjlj_setjmp: {
4318     SDValue Ops[2];
4319     Ops[0] = getRoot();
4320     Ops[1] = getValue(I.getArgOperand(0));
4321     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4322                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4323     setValue(&I, Op.getValue(0));
4324     DAG.setRoot(Op.getValue(1));
4325     return nullptr;
4326   }
4327   case Intrinsic::eh_sjlj_longjmp: {
4328     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4329                             getRoot(), getValue(I.getArgOperand(0))));
4330     return nullptr;
4331   }
4332 
4333   case Intrinsic::masked_gather:
4334     visitMaskedGather(I);
4335     return nullptr;
4336   case Intrinsic::masked_load:
4337     visitMaskedLoad(I);
4338     return nullptr;
4339   case Intrinsic::masked_scatter:
4340     visitMaskedScatter(I);
4341     return nullptr;
4342   case Intrinsic::masked_store:
4343     visitMaskedStore(I);
4344     return nullptr;
4345   case Intrinsic::x86_mmx_pslli_w:
4346   case Intrinsic::x86_mmx_pslli_d:
4347   case Intrinsic::x86_mmx_pslli_q:
4348   case Intrinsic::x86_mmx_psrli_w:
4349   case Intrinsic::x86_mmx_psrli_d:
4350   case Intrinsic::x86_mmx_psrli_q:
4351   case Intrinsic::x86_mmx_psrai_w:
4352   case Intrinsic::x86_mmx_psrai_d: {
4353     SDValue ShAmt = getValue(I.getArgOperand(1));
4354     if (isa<ConstantSDNode>(ShAmt)) {
4355       visitTargetIntrinsic(I, Intrinsic);
4356       return nullptr;
4357     }
4358     unsigned NewIntrinsic = 0;
4359     EVT ShAmtVT = MVT::v2i32;
4360     switch (Intrinsic) {
4361     case Intrinsic::x86_mmx_pslli_w:
4362       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4363       break;
4364     case Intrinsic::x86_mmx_pslli_d:
4365       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4366       break;
4367     case Intrinsic::x86_mmx_pslli_q:
4368       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4369       break;
4370     case Intrinsic::x86_mmx_psrli_w:
4371       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4372       break;
4373     case Intrinsic::x86_mmx_psrli_d:
4374       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4375       break;
4376     case Intrinsic::x86_mmx_psrli_q:
4377       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4378       break;
4379     case Intrinsic::x86_mmx_psrai_w:
4380       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4381       break;
4382     case Intrinsic::x86_mmx_psrai_d:
4383       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4384       break;
4385     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4386     }
4387 
4388     // The vector shift intrinsics with scalars uses 32b shift amounts but
4389     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4390     // to be zero.
4391     // We must do this early because v2i32 is not a legal type.
4392     SDValue ShOps[2];
4393     ShOps[0] = ShAmt;
4394     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4395     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4396     EVT DestVT = TLI.getValueType(I.getType());
4397     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4398     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4399                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4400                        getValue(I.getArgOperand(0)), ShAmt);
4401     setValue(&I, Res);
4402     return nullptr;
4403   }
4404   case Intrinsic::convertff:
4405   case Intrinsic::convertfsi:
4406   case Intrinsic::convertfui:
4407   case Intrinsic::convertsif:
4408   case Intrinsic::convertuif:
4409   case Intrinsic::convertss:
4410   case Intrinsic::convertsu:
4411   case Intrinsic::convertus:
4412   case Intrinsic::convertuu: {
4413     ISD::CvtCode Code = ISD::CVT_INVALID;
4414     switch (Intrinsic) {
4415     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4416     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4417     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4418     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4419     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4420     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4421     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4422     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4423     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4424     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4425     }
4426     EVT DestVT = TLI.getValueType(I.getType());
4427     const Value *Op1 = I.getArgOperand(0);
4428     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4429                                DAG.getValueType(DestVT),
4430                                DAG.getValueType(getValue(Op1).getValueType()),
4431                                getValue(I.getArgOperand(1)),
4432                                getValue(I.getArgOperand(2)),
4433                                Code);
4434     setValue(&I, Res);
4435     return nullptr;
4436   }
4437   case Intrinsic::powi:
4438     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4439                             getValue(I.getArgOperand(1)), DAG));
4440     return nullptr;
4441   case Intrinsic::log:
4442     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4443     return nullptr;
4444   case Intrinsic::log2:
4445     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4446     return nullptr;
4447   case Intrinsic::log10:
4448     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4449     return nullptr;
4450   case Intrinsic::exp:
4451     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4452     return nullptr;
4453   case Intrinsic::exp2:
4454     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4455     return nullptr;
4456   case Intrinsic::pow:
4457     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4458                            getValue(I.getArgOperand(1)), DAG, TLI));
4459     return nullptr;
4460   case Intrinsic::sqrt:
4461   case Intrinsic::fabs:
4462   case Intrinsic::sin:
4463   case Intrinsic::cos:
4464   case Intrinsic::floor:
4465   case Intrinsic::ceil:
4466   case Intrinsic::trunc:
4467   case Intrinsic::rint:
4468   case Intrinsic::nearbyint:
4469   case Intrinsic::round: {
4470     unsigned Opcode;
4471     switch (Intrinsic) {
4472     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4473     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4474     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4475     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4476     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4477     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4478     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4479     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4480     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4481     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4482     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4483     }
4484 
4485     setValue(&I, DAG.getNode(Opcode, sdl,
4486                              getValue(I.getArgOperand(0)).getValueType(),
4487                              getValue(I.getArgOperand(0))));
4488     return nullptr;
4489   }
4490   case Intrinsic::minnum:
4491     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4492                              getValue(I.getArgOperand(0)).getValueType(),
4493                              getValue(I.getArgOperand(0)),
4494                              getValue(I.getArgOperand(1))));
4495     return nullptr;
4496   case Intrinsic::maxnum:
4497     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4498                              getValue(I.getArgOperand(0)).getValueType(),
4499                              getValue(I.getArgOperand(0)),
4500                              getValue(I.getArgOperand(1))));
4501     return nullptr;
4502   case Intrinsic::copysign:
4503     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4504                              getValue(I.getArgOperand(0)).getValueType(),
4505                              getValue(I.getArgOperand(0)),
4506                              getValue(I.getArgOperand(1))));
4507     return nullptr;
4508   case Intrinsic::fma:
4509     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4510                              getValue(I.getArgOperand(0)).getValueType(),
4511                              getValue(I.getArgOperand(0)),
4512                              getValue(I.getArgOperand(1)),
4513                              getValue(I.getArgOperand(2))));
4514     return nullptr;
4515   case Intrinsic::fmuladd: {
4516     EVT VT = TLI.getValueType(I.getType());
4517     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4518         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4519       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4520                                getValue(I.getArgOperand(0)).getValueType(),
4521                                getValue(I.getArgOperand(0)),
4522                                getValue(I.getArgOperand(1)),
4523                                getValue(I.getArgOperand(2))));
4524     } else {
4525       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4526                                 getValue(I.getArgOperand(0)).getValueType(),
4527                                 getValue(I.getArgOperand(0)),
4528                                 getValue(I.getArgOperand(1)));
4529       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4530                                 getValue(I.getArgOperand(0)).getValueType(),
4531                                 Mul,
4532                                 getValue(I.getArgOperand(2)));
4533       setValue(&I, Add);
4534     }
4535     return nullptr;
4536   }
4537   case Intrinsic::convert_to_fp16:
4538     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4539                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4540                                          getValue(I.getArgOperand(0)),
4541                                          DAG.getTargetConstant(0, sdl,
4542                                                                MVT::i32))));
4543     return nullptr;
4544   case Intrinsic::convert_from_fp16:
4545     setValue(&I,
4546              DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()),
4547                          DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4548                                      getValue(I.getArgOperand(0)))));
4549     return nullptr;
4550   case Intrinsic::pcmarker: {
4551     SDValue Tmp = getValue(I.getArgOperand(0));
4552     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4553     return nullptr;
4554   }
4555   case Intrinsic::readcyclecounter: {
4556     SDValue Op = getRoot();
4557     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4558                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4559     setValue(&I, Res);
4560     DAG.setRoot(Res.getValue(1));
4561     return nullptr;
4562   }
4563   case Intrinsic::bswap:
4564     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4565                              getValue(I.getArgOperand(0)).getValueType(),
4566                              getValue(I.getArgOperand(0))));
4567     return nullptr;
4568   case Intrinsic::cttz: {
4569     SDValue Arg = getValue(I.getArgOperand(0));
4570     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4571     EVT Ty = Arg.getValueType();
4572     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4573                              sdl, Ty, Arg));
4574     return nullptr;
4575   }
4576   case Intrinsic::ctlz: {
4577     SDValue Arg = getValue(I.getArgOperand(0));
4578     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4579     EVT Ty = Arg.getValueType();
4580     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4581                              sdl, Ty, Arg));
4582     return nullptr;
4583   }
4584   case Intrinsic::ctpop: {
4585     SDValue Arg = getValue(I.getArgOperand(0));
4586     EVT Ty = Arg.getValueType();
4587     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4588     return nullptr;
4589   }
4590   case Intrinsic::stacksave: {
4591     SDValue Op = getRoot();
4592     Res = DAG.getNode(ISD::STACKSAVE, sdl,
4593                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op);
4594     setValue(&I, Res);
4595     DAG.setRoot(Res.getValue(1));
4596     return nullptr;
4597   }
4598   case Intrinsic::stackrestore: {
4599     Res = getValue(I.getArgOperand(0));
4600     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4601     return nullptr;
4602   }
4603   case Intrinsic::stackprotector: {
4604     // Emit code into the DAG to store the stack guard onto the stack.
4605     MachineFunction &MF = DAG.getMachineFunction();
4606     MachineFrameInfo *MFI = MF.getFrameInfo();
4607     EVT PtrTy = TLI.getPointerTy();
4608     SDValue Src, Chain = getRoot();
4609     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4610     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4611 
4612     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4613     // global variable __stack_chk_guard.
4614     if (!GV)
4615       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4616         if (BC->getOpcode() == Instruction::BitCast)
4617           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4618 
4619     if (GV && TLI.useLoadStackGuardNode()) {
4620       // Emit a LOAD_STACK_GUARD node.
4621       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4622                                                sdl, PtrTy, Chain);
4623       MachinePointerInfo MPInfo(GV);
4624       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4625       unsigned Flags = MachineMemOperand::MOLoad |
4626                        MachineMemOperand::MOInvariant;
4627       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4628                                          PtrTy.getSizeInBits() / 8,
4629                                          DAG.getEVTAlignment(PtrTy));
4630       Node->setMemRefs(MemRefs, MemRefs + 1);
4631 
4632       // Copy the guard value to a virtual register so that it can be
4633       // retrieved in the epilogue.
4634       Src = SDValue(Node, 0);
4635       const TargetRegisterClass *RC =
4636           TLI.getRegClassFor(Src.getSimpleValueType());
4637       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4638 
4639       SPDescriptor.setGuardReg(Reg);
4640       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4641     } else {
4642       Src = getValue(I.getArgOperand(0));   // The guard's value.
4643     }
4644 
4645     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4646 
4647     int FI = FuncInfo.StaticAllocaMap[Slot];
4648     MFI->setStackProtectorIndex(FI);
4649 
4650     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4651 
4652     // Store the stack protector onto the stack.
4653     Res = DAG.getStore(Chain, sdl, Src, FIN,
4654                        MachinePointerInfo::getFixedStack(FI),
4655                        true, false, 0);
4656     setValue(&I, Res);
4657     DAG.setRoot(Res);
4658     return nullptr;
4659   }
4660   case Intrinsic::objectsize: {
4661     // If we don't know by now, we're never going to know.
4662     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4663 
4664     assert(CI && "Non-constant type in __builtin_object_size?");
4665 
4666     SDValue Arg = getValue(I.getCalledValue());
4667     EVT Ty = Arg.getValueType();
4668 
4669     if (CI->isZero())
4670       Res = DAG.getConstant(-1ULL, sdl, Ty);
4671     else
4672       Res = DAG.getConstant(0, sdl, Ty);
4673 
4674     setValue(&I, Res);
4675     return nullptr;
4676   }
4677   case Intrinsic::annotation:
4678   case Intrinsic::ptr_annotation:
4679     // Drop the intrinsic, but forward the value
4680     setValue(&I, getValue(I.getOperand(0)));
4681     return nullptr;
4682   case Intrinsic::assume:
4683   case Intrinsic::var_annotation:
4684     // Discard annotate attributes and assumptions
4685     return nullptr;
4686 
4687   case Intrinsic::init_trampoline: {
4688     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4689 
4690     SDValue Ops[6];
4691     Ops[0] = getRoot();
4692     Ops[1] = getValue(I.getArgOperand(0));
4693     Ops[2] = getValue(I.getArgOperand(1));
4694     Ops[3] = getValue(I.getArgOperand(2));
4695     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4696     Ops[5] = DAG.getSrcValue(F);
4697 
4698     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
4699 
4700     DAG.setRoot(Res);
4701     return nullptr;
4702   }
4703   case Intrinsic::adjust_trampoline: {
4704     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
4705                              TLI.getPointerTy(),
4706                              getValue(I.getArgOperand(0))));
4707     return nullptr;
4708   }
4709   case Intrinsic::gcroot:
4710     if (GFI) {
4711       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
4712       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4713 
4714       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4715       GFI->addStackRoot(FI->getIndex(), TypeMap);
4716     }
4717     return nullptr;
4718   case Intrinsic::gcread:
4719   case Intrinsic::gcwrite:
4720     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4721   case Intrinsic::flt_rounds:
4722     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
4723     return nullptr;
4724 
4725   case Intrinsic::expect: {
4726     // Just replace __builtin_expect(exp, c) with EXP.
4727     setValue(&I, getValue(I.getArgOperand(0)));
4728     return nullptr;
4729   }
4730 
4731   case Intrinsic::debugtrap:
4732   case Intrinsic::trap: {
4733     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
4734     if (TrapFuncName.empty()) {
4735       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
4736         ISD::TRAP : ISD::DEBUGTRAP;
4737       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
4738       return nullptr;
4739     }
4740     TargetLowering::ArgListTy Args;
4741 
4742     TargetLowering::CallLoweringInfo CLI(DAG);
4743     CLI.setDebugLoc(sdl).setChain(getRoot())
4744       .setCallee(CallingConv::C, I.getType(),
4745                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4746                  std::move(Args), 0);
4747 
4748     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
4749     DAG.setRoot(Result.second);
4750     return nullptr;
4751   }
4752 
4753   case Intrinsic::uadd_with_overflow:
4754   case Intrinsic::sadd_with_overflow:
4755   case Intrinsic::usub_with_overflow:
4756   case Intrinsic::ssub_with_overflow:
4757   case Intrinsic::umul_with_overflow:
4758   case Intrinsic::smul_with_overflow: {
4759     ISD::NodeType Op;
4760     switch (Intrinsic) {
4761     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4762     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
4763     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
4764     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
4765     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
4766     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
4767     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
4768     }
4769     SDValue Op1 = getValue(I.getArgOperand(0));
4770     SDValue Op2 = getValue(I.getArgOperand(1));
4771 
4772     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
4773     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
4774     return nullptr;
4775   }
4776   case Intrinsic::prefetch: {
4777     SDValue Ops[5];
4778     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4779     Ops[0] = getRoot();
4780     Ops[1] = getValue(I.getArgOperand(0));
4781     Ops[2] = getValue(I.getArgOperand(1));
4782     Ops[3] = getValue(I.getArgOperand(2));
4783     Ops[4] = getValue(I.getArgOperand(3));
4784     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
4785                                         DAG.getVTList(MVT::Other), Ops,
4786                                         EVT::getIntegerVT(*Context, 8),
4787                                         MachinePointerInfo(I.getArgOperand(0)),
4788                                         0, /* align */
4789                                         false, /* volatile */
4790                                         rw==0, /* read */
4791                                         rw==1)); /* write */
4792     return nullptr;
4793   }
4794   case Intrinsic::lifetime_start:
4795   case Intrinsic::lifetime_end: {
4796     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
4797     // Stack coloring is not enabled in O0, discard region information.
4798     if (TM.getOptLevel() == CodeGenOpt::None)
4799       return nullptr;
4800 
4801     SmallVector<Value *, 4> Allocas;
4802     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
4803 
4804     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
4805            E = Allocas.end(); Object != E; ++Object) {
4806       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
4807 
4808       // Could not find an Alloca.
4809       if (!LifetimeObject)
4810         continue;
4811 
4812       // First check that the Alloca is static, otherwise it won't have a
4813       // valid frame index.
4814       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
4815       if (SI == FuncInfo.StaticAllocaMap.end())
4816         return nullptr;
4817 
4818       int FI = SI->second;
4819 
4820       SDValue Ops[2];
4821       Ops[0] = getRoot();
4822       Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
4823       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
4824 
4825       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
4826       DAG.setRoot(Res);
4827     }
4828     return nullptr;
4829   }
4830   case Intrinsic::invariant_start:
4831     // Discard region information.
4832     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4833     return nullptr;
4834   case Intrinsic::invariant_end:
4835     // Discard region information.
4836     return nullptr;
4837   case Intrinsic::stackprotectorcheck: {
4838     // Do not actually emit anything for this basic block. Instead we initialize
4839     // the stack protector descriptor and export the guard variable so we can
4840     // access it in FinishBasicBlock.
4841     const BasicBlock *BB = I.getParent();
4842     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
4843     ExportFromCurrentBlock(SPDescriptor.getGuard());
4844 
4845     // Flush our exports since we are going to process a terminator.
4846     (void)getControlRoot();
4847     return nullptr;
4848   }
4849   case Intrinsic::clear_cache:
4850     return TLI.getClearCacheBuiltinName();
4851   case Intrinsic::eh_actions:
4852     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4853     return nullptr;
4854   case Intrinsic::donothing:
4855     // ignore
4856     return nullptr;
4857   case Intrinsic::experimental_stackmap: {
4858     visitStackmap(I);
4859     return nullptr;
4860   }
4861   case Intrinsic::experimental_patchpoint_void:
4862   case Intrinsic::experimental_patchpoint_i64: {
4863     visitPatchpoint(&I);
4864     return nullptr;
4865   }
4866   case Intrinsic::experimental_gc_statepoint: {
4867     visitStatepoint(I);
4868     return nullptr;
4869   }
4870   case Intrinsic::experimental_gc_result_int:
4871   case Intrinsic::experimental_gc_result_float:
4872   case Intrinsic::experimental_gc_result_ptr:
4873   case Intrinsic::experimental_gc_result: {
4874     visitGCResult(I);
4875     return nullptr;
4876   }
4877   case Intrinsic::experimental_gc_relocate: {
4878     visitGCRelocate(I);
4879     return nullptr;
4880   }
4881   case Intrinsic::instrprof_increment:
4882     llvm_unreachable("instrprof failed to lower an increment");
4883 
4884   case Intrinsic::frameescape: {
4885     MachineFunction &MF = DAG.getMachineFunction();
4886     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4887 
4888     // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission
4889     // is the same on all targets.
4890     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
4891       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
4892       if (isa<ConstantPointerNull>(Arg))
4893         continue; // Skip null pointers. They represent a hole in index space.
4894       AllocaInst *Slot = cast<AllocaInst>(Arg);
4895       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
4896              "can only escape static allocas");
4897       int FI = FuncInfo.StaticAllocaMap[Slot];
4898       MCSymbol *FrameAllocSym =
4899           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
4900               GlobalValue::getRealLinkageName(MF.getName()), Idx);
4901       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
4902               TII->get(TargetOpcode::FRAME_ALLOC))
4903           .addSym(FrameAllocSym)
4904           .addFrameIndex(FI);
4905     }
4906 
4907     return nullptr;
4908   }
4909 
4910   case Intrinsic::framerecover: {
4911     // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx)
4912     MachineFunction &MF = DAG.getMachineFunction();
4913     MVT PtrVT = TLI.getPointerTy(0);
4914 
4915     // Get the symbol that defines the frame offset.
4916     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
4917     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
4918     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
4919     MCSymbol *FrameAllocSym =
4920         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
4921             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
4922 
4923     // Create a TargetExternalSymbol for the label to avoid any target lowering
4924     // that would make this PC relative.
4925     StringRef Name = FrameAllocSym->getName();
4926     assert(Name.data()[Name.size()] == '\0' && "not null terminated");
4927     SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT);
4928     SDValue OffsetVal =
4929         DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym);
4930 
4931     // Add the offset to the FP.
4932     Value *FP = I.getArgOperand(1);
4933     SDValue FPVal = getValue(FP);
4934     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
4935     setValue(&I, Add);
4936 
4937     return nullptr;
4938   }
4939   case Intrinsic::eh_begincatch:
4940   case Intrinsic::eh_endcatch:
4941     llvm_unreachable("begin/end catch intrinsics not lowered in codegen");
4942   case Intrinsic::eh_exceptioncode: {
4943     unsigned Reg = TLI.getExceptionPointerRegister();
4944     assert(Reg && "cannot get exception code on this platform");
4945     MVT PtrVT = TLI.getPointerTy();
4946     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
4947     unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC);
4948     SDValue N =
4949         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
4950     N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
4951     setValue(&I, N);
4952     return nullptr;
4953   }
4954   }
4955 }
4956 
4957 std::pair<SDValue, SDValue>
4958 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
4959                                     MachineBasicBlock *LandingPad) {
4960   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4961   MCSymbol *BeginLabel = nullptr;
4962 
4963   if (LandingPad) {
4964     // Insert a label before the invoke call to mark the try range.  This can be
4965     // used to detect deletion of the invoke via the MachineModuleInfo.
4966     BeginLabel = MMI.getContext().CreateTempSymbol();
4967 
4968     // For SjLj, keep track of which landing pads go with which invokes
4969     // so as to maintain the ordering of pads in the LSDA.
4970     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4971     if (CallSiteIndex) {
4972       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4973       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
4974 
4975       // Now that the call site is handled, stop tracking it.
4976       MMI.setCurrentCallSite(0);
4977     }
4978 
4979     // Both PendingLoads and PendingExports must be flushed here;
4980     // this call might not return.
4981     (void)getRoot();
4982     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
4983 
4984     CLI.setChain(getRoot());
4985   }
4986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4987   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
4988 
4989   assert((CLI.IsTailCall || Result.second.getNode()) &&
4990          "Non-null chain expected with non-tail call!");
4991   assert((Result.second.getNode() || !Result.first.getNode()) &&
4992          "Null value expected with tail call!");
4993 
4994   if (!Result.second.getNode()) {
4995     // As a special case, a null chain means that a tail call has been emitted
4996     // and the DAG root is already updated.
4997     HasTailCall = true;
4998 
4999     // Since there's no actual continuation from this block, nothing can be
5000     // relying on us setting vregs for them.
5001     PendingExports.clear();
5002   } else {
5003     DAG.setRoot(Result.second);
5004   }
5005 
5006   if (LandingPad) {
5007     // Insert a label at the end of the invoke call to mark the try range.  This
5008     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5009     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5010     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5011 
5012     // Inform MachineModuleInfo of range.
5013     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5014   }
5015 
5016   return Result;
5017 }
5018 
5019 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5020                                       bool isTailCall,
5021                                       MachineBasicBlock *LandingPad) {
5022   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5023   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5024   Type *RetTy = FTy->getReturnType();
5025 
5026   TargetLowering::ArgListTy Args;
5027   TargetLowering::ArgListEntry Entry;
5028   Args.reserve(CS.arg_size());
5029 
5030   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5031        i != e; ++i) {
5032     const Value *V = *i;
5033 
5034     // Skip empty types
5035     if (V->getType()->isEmptyTy())
5036       continue;
5037 
5038     SDValue ArgNode = getValue(V);
5039     Entry.Node = ArgNode; Entry.Ty = V->getType();
5040 
5041     // Skip the first return-type Attribute to get to params.
5042     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5043     Args.push_back(Entry);
5044 
5045     // If we have an explicit sret argument that is an Instruction, (i.e., it
5046     // might point to function-local memory), we can't meaningfully tail-call.
5047     if (Entry.isSRet && isa<Instruction>(V))
5048       isTailCall = false;
5049   }
5050 
5051   // Check if target-independent constraints permit a tail call here.
5052   // Target-dependent constraints are checked within TLI->LowerCallTo.
5053   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5054     isTailCall = false;
5055 
5056   TargetLowering::CallLoweringInfo CLI(DAG);
5057   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5058     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5059     .setTailCall(isTailCall);
5060   std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
5061 
5062   if (Result.first.getNode())
5063     setValue(CS.getInstruction(), Result.first);
5064 }
5065 
5066 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5067 /// value is equal or not-equal to zero.
5068 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5069   for (const User *U : V->users()) {
5070     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5071       if (IC->isEquality())
5072         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5073           if (C->isNullValue())
5074             continue;
5075     // Unknown instruction.
5076     return false;
5077   }
5078   return true;
5079 }
5080 
5081 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5082                              Type *LoadTy,
5083                              SelectionDAGBuilder &Builder) {
5084 
5085   // Check to see if this load can be trivially constant folded, e.g. if the
5086   // input is from a string literal.
5087   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5088     // Cast pointer to the type we really want to load.
5089     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5090                                          PointerType::getUnqual(LoadTy));
5091 
5092     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5093             const_cast<Constant *>(LoadInput), *Builder.DL))
5094       return Builder.getValue(LoadCst);
5095   }
5096 
5097   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5098   // still constant memory, the input chain can be the entry node.
5099   SDValue Root;
5100   bool ConstantMemory = false;
5101 
5102   // Do not serialize (non-volatile) loads of constant memory with anything.
5103   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5104     Root = Builder.DAG.getEntryNode();
5105     ConstantMemory = true;
5106   } else {
5107     // Do not serialize non-volatile loads against each other.
5108     Root = Builder.DAG.getRoot();
5109   }
5110 
5111   SDValue Ptr = Builder.getValue(PtrVal);
5112   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5113                                         Ptr, MachinePointerInfo(PtrVal),
5114                                         false /*volatile*/,
5115                                         false /*nontemporal*/,
5116                                         false /*isinvariant*/, 1 /* align=1 */);
5117 
5118   if (!ConstantMemory)
5119     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5120   return LoadVal;
5121 }
5122 
5123 /// processIntegerCallValue - Record the value for an instruction that
5124 /// produces an integer result, converting the type where necessary.
5125 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5126                                                   SDValue Value,
5127                                                   bool IsSigned) {
5128   EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5129   if (IsSigned)
5130     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5131   else
5132     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5133   setValue(&I, Value);
5134 }
5135 
5136 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5137 /// If so, return true and lower it, otherwise return false and it will be
5138 /// lowered like a normal call.
5139 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5140   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5141   if (I.getNumArgOperands() != 3)
5142     return false;
5143 
5144   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5145   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5146       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5147       !I.getType()->isIntegerTy())
5148     return false;
5149 
5150   const Value *Size = I.getArgOperand(2);
5151   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5152   if (CSize && CSize->getZExtValue() == 0) {
5153     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5154     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5155     return true;
5156   }
5157 
5158   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5159   std::pair<SDValue, SDValue> Res =
5160     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5161                                 getValue(LHS), getValue(RHS), getValue(Size),
5162                                 MachinePointerInfo(LHS),
5163                                 MachinePointerInfo(RHS));
5164   if (Res.first.getNode()) {
5165     processIntegerCallValue(I, Res.first, true);
5166     PendingLoads.push_back(Res.second);
5167     return true;
5168   }
5169 
5170   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5171   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5172   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5173     bool ActuallyDoIt = true;
5174     MVT LoadVT;
5175     Type *LoadTy;
5176     switch (CSize->getZExtValue()) {
5177     default:
5178       LoadVT = MVT::Other;
5179       LoadTy = nullptr;
5180       ActuallyDoIt = false;
5181       break;
5182     case 2:
5183       LoadVT = MVT::i16;
5184       LoadTy = Type::getInt16Ty(CSize->getContext());
5185       break;
5186     case 4:
5187       LoadVT = MVT::i32;
5188       LoadTy = Type::getInt32Ty(CSize->getContext());
5189       break;
5190     case 8:
5191       LoadVT = MVT::i64;
5192       LoadTy = Type::getInt64Ty(CSize->getContext());
5193       break;
5194         /*
5195     case 16:
5196       LoadVT = MVT::v4i32;
5197       LoadTy = Type::getInt32Ty(CSize->getContext());
5198       LoadTy = VectorType::get(LoadTy, 4);
5199       break;
5200          */
5201     }
5202 
5203     // This turns into unaligned loads.  We only do this if the target natively
5204     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5205     // we'll only produce a small number of byte loads.
5206 
5207     // Require that we can find a legal MVT, and only do this if the target
5208     // supports unaligned loads of that type.  Expanding into byte loads would
5209     // bloat the code.
5210     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5211     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5212       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5213       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5214       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5215       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5216       // TODO: Check alignment of src and dest ptrs.
5217       if (!TLI.isTypeLegal(LoadVT) ||
5218           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5219           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5220         ActuallyDoIt = false;
5221     }
5222 
5223     if (ActuallyDoIt) {
5224       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5225       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5226 
5227       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5228                                  ISD::SETNE);
5229       processIntegerCallValue(I, Res, false);
5230       return true;
5231     }
5232   }
5233 
5234 
5235   return false;
5236 }
5237 
5238 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5239 /// form.  If so, return true and lower it, otherwise return false and it
5240 /// will be lowered like a normal call.
5241 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5242   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5243   if (I.getNumArgOperands() != 3)
5244     return false;
5245 
5246   const Value *Src = I.getArgOperand(0);
5247   const Value *Char = I.getArgOperand(1);
5248   const Value *Length = I.getArgOperand(2);
5249   if (!Src->getType()->isPointerTy() ||
5250       !Char->getType()->isIntegerTy() ||
5251       !Length->getType()->isIntegerTy() ||
5252       !I.getType()->isPointerTy())
5253     return false;
5254 
5255   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5256   std::pair<SDValue, SDValue> Res =
5257     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5258                                 getValue(Src), getValue(Char), getValue(Length),
5259                                 MachinePointerInfo(Src));
5260   if (Res.first.getNode()) {
5261     setValue(&I, Res.first);
5262     PendingLoads.push_back(Res.second);
5263     return true;
5264   }
5265 
5266   return false;
5267 }
5268 
5269 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5270 /// optimized form.  If so, return true and lower it, otherwise return false
5271 /// and it will be lowered like a normal call.
5272 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5273   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5274   if (I.getNumArgOperands() != 2)
5275     return false;
5276 
5277   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5278   if (!Arg0->getType()->isPointerTy() ||
5279       !Arg1->getType()->isPointerTy() ||
5280       !I.getType()->isPointerTy())
5281     return false;
5282 
5283   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5284   std::pair<SDValue, SDValue> Res =
5285     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5286                                 getValue(Arg0), getValue(Arg1),
5287                                 MachinePointerInfo(Arg0),
5288                                 MachinePointerInfo(Arg1), isStpcpy);
5289   if (Res.first.getNode()) {
5290     setValue(&I, Res.first);
5291     DAG.setRoot(Res.second);
5292     return true;
5293   }
5294 
5295   return false;
5296 }
5297 
5298 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5299 /// If so, return true and lower it, otherwise return false and it will be
5300 /// lowered like a normal call.
5301 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5302   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5303   if (I.getNumArgOperands() != 2)
5304     return false;
5305 
5306   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5307   if (!Arg0->getType()->isPointerTy() ||
5308       !Arg1->getType()->isPointerTy() ||
5309       !I.getType()->isIntegerTy())
5310     return false;
5311 
5312   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5313   std::pair<SDValue, SDValue> Res =
5314     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5315                                 getValue(Arg0), getValue(Arg1),
5316                                 MachinePointerInfo(Arg0),
5317                                 MachinePointerInfo(Arg1));
5318   if (Res.first.getNode()) {
5319     processIntegerCallValue(I, Res.first, true);
5320     PendingLoads.push_back(Res.second);
5321     return true;
5322   }
5323 
5324   return false;
5325 }
5326 
5327 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5328 /// form.  If so, return true and lower it, otherwise return false and it
5329 /// will be lowered like a normal call.
5330 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5331   // Verify that the prototype makes sense.  size_t strlen(char *)
5332   if (I.getNumArgOperands() != 1)
5333     return false;
5334 
5335   const Value *Arg0 = I.getArgOperand(0);
5336   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5337     return false;
5338 
5339   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5340   std::pair<SDValue, SDValue> Res =
5341     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5342                                 getValue(Arg0), MachinePointerInfo(Arg0));
5343   if (Res.first.getNode()) {
5344     processIntegerCallValue(I, Res.first, false);
5345     PendingLoads.push_back(Res.second);
5346     return true;
5347   }
5348 
5349   return false;
5350 }
5351 
5352 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5353 /// form.  If so, return true and lower it, otherwise return false and it
5354 /// will be lowered like a normal call.
5355 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5356   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5357   if (I.getNumArgOperands() != 2)
5358     return false;
5359 
5360   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5361   if (!Arg0->getType()->isPointerTy() ||
5362       !Arg1->getType()->isIntegerTy() ||
5363       !I.getType()->isIntegerTy())
5364     return false;
5365 
5366   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5367   std::pair<SDValue, SDValue> Res =
5368     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5369                                  getValue(Arg0), getValue(Arg1),
5370                                  MachinePointerInfo(Arg0));
5371   if (Res.first.getNode()) {
5372     processIntegerCallValue(I, Res.first, false);
5373     PendingLoads.push_back(Res.second);
5374     return true;
5375   }
5376 
5377   return false;
5378 }
5379 
5380 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5381 /// operation (as expected), translate it to an SDNode with the specified opcode
5382 /// and return true.
5383 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5384                                               unsigned Opcode) {
5385   // Sanity check that it really is a unary floating-point call.
5386   if (I.getNumArgOperands() != 1 ||
5387       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5388       I.getType() != I.getArgOperand(0)->getType() ||
5389       !I.onlyReadsMemory())
5390     return false;
5391 
5392   SDValue Tmp = getValue(I.getArgOperand(0));
5393   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5394   return true;
5395 }
5396 
5397 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5398 /// operation (as expected), translate it to an SDNode with the specified opcode
5399 /// and return true.
5400 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5401                                                unsigned Opcode) {
5402   // Sanity check that it really is a binary floating-point call.
5403   if (I.getNumArgOperands() != 2 ||
5404       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5405       I.getType() != I.getArgOperand(0)->getType() ||
5406       I.getType() != I.getArgOperand(1)->getType() ||
5407       !I.onlyReadsMemory())
5408     return false;
5409 
5410   SDValue Tmp0 = getValue(I.getArgOperand(0));
5411   SDValue Tmp1 = getValue(I.getArgOperand(1));
5412   EVT VT = Tmp0.getValueType();
5413   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5414   return true;
5415 }
5416 
5417 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5418   // Handle inline assembly differently.
5419   if (isa<InlineAsm>(I.getCalledValue())) {
5420     visitInlineAsm(&I);
5421     return;
5422   }
5423 
5424   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5425   ComputeUsesVAFloatArgument(I, &MMI);
5426 
5427   const char *RenameFn = nullptr;
5428   if (Function *F = I.getCalledFunction()) {
5429     if (F->isDeclaration()) {
5430       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5431         if (unsigned IID = II->getIntrinsicID(F)) {
5432           RenameFn = visitIntrinsicCall(I, IID);
5433           if (!RenameFn)
5434             return;
5435         }
5436       }
5437       if (unsigned IID = F->getIntrinsicID()) {
5438         RenameFn = visitIntrinsicCall(I, IID);
5439         if (!RenameFn)
5440           return;
5441       }
5442     }
5443 
5444     // Check for well-known libc/libm calls.  If the function is internal, it
5445     // can't be a library call.
5446     LibFunc::Func Func;
5447     if (!F->hasLocalLinkage() && F->hasName() &&
5448         LibInfo->getLibFunc(F->getName(), Func) &&
5449         LibInfo->hasOptimizedCodeGen(Func)) {
5450       switch (Func) {
5451       default: break;
5452       case LibFunc::copysign:
5453       case LibFunc::copysignf:
5454       case LibFunc::copysignl:
5455         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5456             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5457             I.getType() == I.getArgOperand(0)->getType() &&
5458             I.getType() == I.getArgOperand(1)->getType() &&
5459             I.onlyReadsMemory()) {
5460           SDValue LHS = getValue(I.getArgOperand(0));
5461           SDValue RHS = getValue(I.getArgOperand(1));
5462           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5463                                    LHS.getValueType(), LHS, RHS));
5464           return;
5465         }
5466         break;
5467       case LibFunc::fabs:
5468       case LibFunc::fabsf:
5469       case LibFunc::fabsl:
5470         if (visitUnaryFloatCall(I, ISD::FABS))
5471           return;
5472         break;
5473       case LibFunc::fmin:
5474       case LibFunc::fminf:
5475       case LibFunc::fminl:
5476         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5477           return;
5478         break;
5479       case LibFunc::fmax:
5480       case LibFunc::fmaxf:
5481       case LibFunc::fmaxl:
5482         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5483           return;
5484         break;
5485       case LibFunc::sin:
5486       case LibFunc::sinf:
5487       case LibFunc::sinl:
5488         if (visitUnaryFloatCall(I, ISD::FSIN))
5489           return;
5490         break;
5491       case LibFunc::cos:
5492       case LibFunc::cosf:
5493       case LibFunc::cosl:
5494         if (visitUnaryFloatCall(I, ISD::FCOS))
5495           return;
5496         break;
5497       case LibFunc::sqrt:
5498       case LibFunc::sqrtf:
5499       case LibFunc::sqrtl:
5500       case LibFunc::sqrt_finite:
5501       case LibFunc::sqrtf_finite:
5502       case LibFunc::sqrtl_finite:
5503         if (visitUnaryFloatCall(I, ISD::FSQRT))
5504           return;
5505         break;
5506       case LibFunc::floor:
5507       case LibFunc::floorf:
5508       case LibFunc::floorl:
5509         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5510           return;
5511         break;
5512       case LibFunc::nearbyint:
5513       case LibFunc::nearbyintf:
5514       case LibFunc::nearbyintl:
5515         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5516           return;
5517         break;
5518       case LibFunc::ceil:
5519       case LibFunc::ceilf:
5520       case LibFunc::ceill:
5521         if (visitUnaryFloatCall(I, ISD::FCEIL))
5522           return;
5523         break;
5524       case LibFunc::rint:
5525       case LibFunc::rintf:
5526       case LibFunc::rintl:
5527         if (visitUnaryFloatCall(I, ISD::FRINT))
5528           return;
5529         break;
5530       case LibFunc::round:
5531       case LibFunc::roundf:
5532       case LibFunc::roundl:
5533         if (visitUnaryFloatCall(I, ISD::FROUND))
5534           return;
5535         break;
5536       case LibFunc::trunc:
5537       case LibFunc::truncf:
5538       case LibFunc::truncl:
5539         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5540           return;
5541         break;
5542       case LibFunc::log2:
5543       case LibFunc::log2f:
5544       case LibFunc::log2l:
5545         if (visitUnaryFloatCall(I, ISD::FLOG2))
5546           return;
5547         break;
5548       case LibFunc::exp2:
5549       case LibFunc::exp2f:
5550       case LibFunc::exp2l:
5551         if (visitUnaryFloatCall(I, ISD::FEXP2))
5552           return;
5553         break;
5554       case LibFunc::memcmp:
5555         if (visitMemCmpCall(I))
5556           return;
5557         break;
5558       case LibFunc::memchr:
5559         if (visitMemChrCall(I))
5560           return;
5561         break;
5562       case LibFunc::strcpy:
5563         if (visitStrCpyCall(I, false))
5564           return;
5565         break;
5566       case LibFunc::stpcpy:
5567         if (visitStrCpyCall(I, true))
5568           return;
5569         break;
5570       case LibFunc::strcmp:
5571         if (visitStrCmpCall(I))
5572           return;
5573         break;
5574       case LibFunc::strlen:
5575         if (visitStrLenCall(I))
5576           return;
5577         break;
5578       case LibFunc::strnlen:
5579         if (visitStrNLenCall(I))
5580           return;
5581         break;
5582       }
5583     }
5584   }
5585 
5586   SDValue Callee;
5587   if (!RenameFn)
5588     Callee = getValue(I.getCalledValue());
5589   else
5590     Callee = DAG.getExternalSymbol(RenameFn,
5591                                    DAG.getTargetLoweringInfo().getPointerTy());
5592 
5593   // Check if we can potentially perform a tail call. More detailed checking is
5594   // be done within LowerCallTo, after more information about the call is known.
5595   LowerCallTo(&I, Callee, I.isTailCall());
5596 }
5597 
5598 namespace {
5599 
5600 /// AsmOperandInfo - This contains information for each constraint that we are
5601 /// lowering.
5602 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5603 public:
5604   /// CallOperand - If this is the result output operand or a clobber
5605   /// this is null, otherwise it is the incoming operand to the CallInst.
5606   /// This gets modified as the asm is processed.
5607   SDValue CallOperand;
5608 
5609   /// AssignedRegs - If this is a register or register class operand, this
5610   /// contains the set of register corresponding to the operand.
5611   RegsForValue AssignedRegs;
5612 
5613   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5614     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5615   }
5616 
5617   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5618   /// corresponds to.  If there is no Value* for this operand, it returns
5619   /// MVT::Other.
5620   EVT getCallOperandValEVT(LLVMContext &Context,
5621                            const TargetLowering &TLI,
5622                            const DataLayout *DL) const {
5623     if (!CallOperandVal) return MVT::Other;
5624 
5625     if (isa<BasicBlock>(CallOperandVal))
5626       return TLI.getPointerTy();
5627 
5628     llvm::Type *OpTy = CallOperandVal->getType();
5629 
5630     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5631     // If this is an indirect operand, the operand is a pointer to the
5632     // accessed type.
5633     if (isIndirect) {
5634       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5635       if (!PtrTy)
5636         report_fatal_error("Indirect operand for inline asm not a pointer!");
5637       OpTy = PtrTy->getElementType();
5638     }
5639 
5640     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5641     if (StructType *STy = dyn_cast<StructType>(OpTy))
5642       if (STy->getNumElements() == 1)
5643         OpTy = STy->getElementType(0);
5644 
5645     // If OpTy is not a single value, it may be a struct/union that we
5646     // can tile with integers.
5647     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5648       unsigned BitSize = DL->getTypeSizeInBits(OpTy);
5649       switch (BitSize) {
5650       default: break;
5651       case 1:
5652       case 8:
5653       case 16:
5654       case 32:
5655       case 64:
5656       case 128:
5657         OpTy = IntegerType::get(Context, BitSize);
5658         break;
5659       }
5660     }
5661 
5662     return TLI.getValueType(OpTy, true);
5663   }
5664 };
5665 
5666 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5667 
5668 } // end anonymous namespace
5669 
5670 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5671 /// specified operand.  We prefer to assign virtual registers, to allow the
5672 /// register allocator to handle the assignment process.  However, if the asm
5673 /// uses features that we can't model on machineinstrs, we have SDISel do the
5674 /// allocation.  This produces generally horrible, but correct, code.
5675 ///
5676 ///   OpInfo describes the operand.
5677 ///
5678 static void GetRegistersForValue(SelectionDAG &DAG,
5679                                  const TargetLowering &TLI,
5680                                  SDLoc DL,
5681                                  SDISelAsmOperandInfo &OpInfo) {
5682   LLVMContext &Context = *DAG.getContext();
5683 
5684   MachineFunction &MF = DAG.getMachineFunction();
5685   SmallVector<unsigned, 4> Regs;
5686 
5687   // If this is a constraint for a single physreg, or a constraint for a
5688   // register class, find it.
5689   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
5690       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
5691                                        OpInfo.ConstraintCode,
5692                                        OpInfo.ConstraintVT);
5693 
5694   unsigned NumRegs = 1;
5695   if (OpInfo.ConstraintVT != MVT::Other) {
5696     // If this is a FP input in an integer register (or visa versa) insert a bit
5697     // cast of the input value.  More generally, handle any case where the input
5698     // value disagrees with the register class we plan to stick this in.
5699     if (OpInfo.Type == InlineAsm::isInput &&
5700         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5701       // Try to convert to the first EVT that the reg class contains.  If the
5702       // types are identical size, use a bitcast to convert (e.g. two differing
5703       // vector types).
5704       MVT RegVT = *PhysReg.second->vt_begin();
5705       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
5706         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5707                                          RegVT, OpInfo.CallOperand);
5708         OpInfo.ConstraintVT = RegVT;
5709       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5710         // If the input is a FP value and we want it in FP registers, do a
5711         // bitcast to the corresponding integer type.  This turns an f64 value
5712         // into i64, which can be passed with two i32 values on a 32-bit
5713         // machine.
5714         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5715         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5716                                          RegVT, OpInfo.CallOperand);
5717         OpInfo.ConstraintVT = RegVT;
5718       }
5719     }
5720 
5721     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5722   }
5723 
5724   MVT RegVT;
5725   EVT ValueVT = OpInfo.ConstraintVT;
5726 
5727   // If this is a constraint for a specific physical register, like {r17},
5728   // assign it now.
5729   if (unsigned AssignedReg = PhysReg.first) {
5730     const TargetRegisterClass *RC = PhysReg.second;
5731     if (OpInfo.ConstraintVT == MVT::Other)
5732       ValueVT = *RC->vt_begin();
5733 
5734     // Get the actual register value type.  This is important, because the user
5735     // may have asked for (e.g.) the AX register in i32 type.  We need to
5736     // remember that AX is actually i16 to get the right extension.
5737     RegVT = *RC->vt_begin();
5738 
5739     // This is a explicit reference to a physical register.
5740     Regs.push_back(AssignedReg);
5741 
5742     // If this is an expanded reference, add the rest of the regs to Regs.
5743     if (NumRegs != 1) {
5744       TargetRegisterClass::iterator I = RC->begin();
5745       for (; *I != AssignedReg; ++I)
5746         assert(I != RC->end() && "Didn't find reg!");
5747 
5748       // Already added the first reg.
5749       --NumRegs; ++I;
5750       for (; NumRegs; --NumRegs, ++I) {
5751         assert(I != RC->end() && "Ran out of registers to allocate!");
5752         Regs.push_back(*I);
5753       }
5754     }
5755 
5756     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5757     return;
5758   }
5759 
5760   // Otherwise, if this was a reference to an LLVM register class, create vregs
5761   // for this reference.
5762   if (const TargetRegisterClass *RC = PhysReg.second) {
5763     RegVT = *RC->vt_begin();
5764     if (OpInfo.ConstraintVT == MVT::Other)
5765       ValueVT = RegVT;
5766 
5767     // Create the appropriate number of virtual registers.
5768     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5769     for (; NumRegs; --NumRegs)
5770       Regs.push_back(RegInfo.createVirtualRegister(RC));
5771 
5772     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5773     return;
5774   }
5775 
5776   // Otherwise, we couldn't allocate enough registers for this.
5777 }
5778 
5779 /// visitInlineAsm - Handle a call to an InlineAsm object.
5780 ///
5781 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5782   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5783 
5784   /// ConstraintOperands - Information about all of the constraints.
5785   SDISelAsmOperandInfoVector ConstraintOperands;
5786 
5787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5788   TargetLowering::AsmOperandInfoVector TargetConstraints =
5789       TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS);
5790 
5791   bool hasMemory = false;
5792 
5793   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5794   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5795   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5796     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5797     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5798 
5799     MVT OpVT = MVT::Other;
5800 
5801     // Compute the value type for each operand.
5802     switch (OpInfo.Type) {
5803     case InlineAsm::isOutput:
5804       // Indirect outputs just consume an argument.
5805       if (OpInfo.isIndirect) {
5806         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5807         break;
5808       }
5809 
5810       // The return value of the call is this value.  As such, there is no
5811       // corresponding argument.
5812       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5813       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5814         OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5815       } else {
5816         assert(ResNo == 0 && "Asm only has one result!");
5817         OpVT = TLI.getSimpleValueType(CS.getType());
5818       }
5819       ++ResNo;
5820       break;
5821     case InlineAsm::isInput:
5822       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5823       break;
5824     case InlineAsm::isClobber:
5825       // Nothing to do.
5826       break;
5827     }
5828 
5829     // If this is an input or an indirect output, process the call argument.
5830     // BasicBlocks are labels, currently appearing only in asm's.
5831     if (OpInfo.CallOperandVal) {
5832       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5833         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5834       } else {
5835         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5836       }
5837 
5838       OpVT =
5839           OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT();
5840     }
5841 
5842     OpInfo.ConstraintVT = OpVT;
5843 
5844     // Indirect operand accesses access memory.
5845     if (OpInfo.isIndirect)
5846       hasMemory = true;
5847     else {
5848       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5849         TargetLowering::ConstraintType
5850           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5851         if (CType == TargetLowering::C_Memory) {
5852           hasMemory = true;
5853           break;
5854         }
5855       }
5856     }
5857   }
5858 
5859   SDValue Chain, Flag;
5860 
5861   // We won't need to flush pending loads if this asm doesn't touch
5862   // memory and is nonvolatile.
5863   if (hasMemory || IA->hasSideEffects())
5864     Chain = getRoot();
5865   else
5866     Chain = DAG.getRoot();
5867 
5868   // Second pass over the constraints: compute which constraint option to use
5869   // and assign registers to constraints that want a specific physreg.
5870   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5871     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5872 
5873     // If this is an output operand with a matching input operand, look up the
5874     // matching input. If their types mismatch, e.g. one is an integer, the
5875     // other is floating point, or their sizes are different, flag it as an
5876     // error.
5877     if (OpInfo.hasMatchingInput()) {
5878       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5879 
5880       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5881 	const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
5882         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5883             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5884                                              OpInfo.ConstraintVT);
5885         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5886             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5887                                              Input.ConstraintVT);
5888         if ((OpInfo.ConstraintVT.isInteger() !=
5889              Input.ConstraintVT.isInteger()) ||
5890             (MatchRC.second != InputRC.second)) {
5891           report_fatal_error("Unsupported asm: input constraint"
5892                              " with a matching output constraint of"
5893                              " incompatible type!");
5894         }
5895         Input.ConstraintVT = OpInfo.ConstraintVT;
5896       }
5897     }
5898 
5899     // Compute the constraint code and ConstraintType to use.
5900     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5901 
5902     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5903         OpInfo.Type == InlineAsm::isClobber)
5904       continue;
5905 
5906     // If this is a memory input, and if the operand is not indirect, do what we
5907     // need to to provide an address for the memory input.
5908     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5909         !OpInfo.isIndirect) {
5910       assert((OpInfo.isMultipleAlternative ||
5911               (OpInfo.Type == InlineAsm::isInput)) &&
5912              "Can only indirectify direct input operands!");
5913 
5914       // Memory operands really want the address of the value.  If we don't have
5915       // an indirect input, put it in the constpool if we can, otherwise spill
5916       // it to a stack slot.
5917       // TODO: This isn't quite right. We need to handle these according to
5918       // the addressing mode that the constraint wants. Also, this may take
5919       // an additional register for the computation and we don't want that
5920       // either.
5921 
5922       // If the operand is a float, integer, or vector constant, spill to a
5923       // constant pool entry to get its address.
5924       const Value *OpVal = OpInfo.CallOperandVal;
5925       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5926           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5927         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5928                                                  TLI.getPointerTy());
5929       } else {
5930         // Otherwise, create a stack slot and emit a store to it before the
5931         // asm.
5932         Type *Ty = OpVal->getType();
5933         uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5934         unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5935         MachineFunction &MF = DAG.getMachineFunction();
5936         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5937         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5938         Chain = DAG.getStore(Chain, getCurSDLoc(),
5939                              OpInfo.CallOperand, StackSlot,
5940                              MachinePointerInfo::getFixedStack(SSFI),
5941                              false, false, 0);
5942         OpInfo.CallOperand = StackSlot;
5943       }
5944 
5945       // There is no longer a Value* corresponding to this operand.
5946       OpInfo.CallOperandVal = nullptr;
5947 
5948       // It is now an indirect operand.
5949       OpInfo.isIndirect = true;
5950     }
5951 
5952     // If this constraint is for a specific register, allocate it before
5953     // anything else.
5954     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5955       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
5956   }
5957 
5958   // Second pass - Loop over all of the operands, assigning virtual or physregs
5959   // to register class operands.
5960   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5961     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5962 
5963     // C_Register operands have already been allocated, Other/Memory don't need
5964     // to be.
5965     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5966       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
5967   }
5968 
5969   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5970   std::vector<SDValue> AsmNodeOperands;
5971   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5972   AsmNodeOperands.push_back(
5973           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5974                                       TLI.getPointerTy()));
5975 
5976   // If we have a !srcloc metadata node associated with it, we want to attach
5977   // this to the ultimately generated inline asm machineinstr.  To do this, we
5978   // pass in the third operand as this (potentially null) inline asm MDNode.
5979   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5980   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5981 
5982   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
5983   // bits as operand 3.
5984   unsigned ExtraInfo = 0;
5985   if (IA->hasSideEffects())
5986     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5987   if (IA->isAlignStack())
5988     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5989   // Set the asm dialect.
5990   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
5991 
5992   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
5993   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5994     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5995 
5996     // Compute the constraint code and ConstraintType to use.
5997     TLI.ComputeConstraintToUse(OpInfo, SDValue());
5998 
5999     // Ideally, we would only check against memory constraints.  However, the
6000     // meaning of an other constraint can be target-specific and we can't easily
6001     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6002     // for other constriants as well.
6003     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6004         OpInfo.ConstraintType == TargetLowering::C_Other) {
6005       if (OpInfo.Type == InlineAsm::isInput)
6006         ExtraInfo |= InlineAsm::Extra_MayLoad;
6007       else if (OpInfo.Type == InlineAsm::isOutput)
6008         ExtraInfo |= InlineAsm::Extra_MayStore;
6009       else if (OpInfo.Type == InlineAsm::isClobber)
6010         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6011     }
6012   }
6013 
6014   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(),
6015                                                   TLI.getPointerTy()));
6016 
6017   // Loop over all of the inputs, copying the operand values into the
6018   // appropriate registers and processing the output regs.
6019   RegsForValue RetValRegs;
6020 
6021   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6022   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6023 
6024   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6025     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6026 
6027     switch (OpInfo.Type) {
6028     case InlineAsm::isOutput: {
6029       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6030           OpInfo.ConstraintType != TargetLowering::C_Register) {
6031         // Memory output, or 'other' output (e.g. 'X' constraint).
6032         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6033 
6034         unsigned ConstraintID =
6035             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6036         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6037                "Failed to convert memory constraint code to constraint id.");
6038 
6039         // Add information to the INLINEASM node to know about this output.
6040         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6041         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6042         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6043                                                         MVT::i32));
6044         AsmNodeOperands.push_back(OpInfo.CallOperand);
6045         break;
6046       }
6047 
6048       // Otherwise, this is a register or register class output.
6049 
6050       // Copy the output from the appropriate register.  Find a register that
6051       // we can use.
6052       if (OpInfo.AssignedRegs.Regs.empty()) {
6053         LLVMContext &Ctx = *DAG.getContext();
6054         Ctx.emitError(CS.getInstruction(),
6055                       "couldn't allocate output register for constraint '" +
6056                           Twine(OpInfo.ConstraintCode) + "'");
6057         return;
6058       }
6059 
6060       // If this is an indirect operand, store through the pointer after the
6061       // asm.
6062       if (OpInfo.isIndirect) {
6063         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6064                                                       OpInfo.CallOperandVal));
6065       } else {
6066         // This is the result value of the call.
6067         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6068         // Concatenate this output onto the outputs list.
6069         RetValRegs.append(OpInfo.AssignedRegs);
6070       }
6071 
6072       // Add information to the INLINEASM node to know that this register is
6073       // set.
6074       OpInfo.AssignedRegs
6075           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6076                                     ? InlineAsm::Kind_RegDefEarlyClobber
6077                                     : InlineAsm::Kind_RegDef,
6078                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6079       break;
6080     }
6081     case InlineAsm::isInput: {
6082       SDValue InOperandVal = OpInfo.CallOperand;
6083 
6084       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6085         // If this is required to match an output register we have already set,
6086         // just use its register.
6087         unsigned OperandNo = OpInfo.getMatchedOperand();
6088 
6089         // Scan until we find the definition we already emitted of this operand.
6090         // When we find it, create a RegsForValue operand.
6091         unsigned CurOp = InlineAsm::Op_FirstOperand;
6092         for (; OperandNo; --OperandNo) {
6093           // Advance to the next operand.
6094           unsigned OpFlag =
6095             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6096           assert((InlineAsm::isRegDefKind(OpFlag) ||
6097                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6098                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6099           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6100         }
6101 
6102         unsigned OpFlag =
6103           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6104         if (InlineAsm::isRegDefKind(OpFlag) ||
6105             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6106           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6107           if (OpInfo.isIndirect) {
6108             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6109             LLVMContext &Ctx = *DAG.getContext();
6110             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6111                                                " don't know how to handle tied "
6112                                                "indirect register inputs");
6113             return;
6114           }
6115 
6116           RegsForValue MatchedRegs;
6117           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6118           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6119           MatchedRegs.RegVTs.push_back(RegVT);
6120           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6121           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6122                i != e; ++i) {
6123             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6124               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6125             else {
6126               LLVMContext &Ctx = *DAG.getContext();
6127               Ctx.emitError(CS.getInstruction(),
6128                             "inline asm error: This value"
6129                             " type register class is not natively supported!");
6130               return;
6131             }
6132           }
6133           SDLoc dl = getCurSDLoc();
6134           // Use the produced MatchedRegs object to
6135           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6136                                     Chain, &Flag, CS.getInstruction());
6137           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6138                                            true, OpInfo.getMatchedOperand(), dl,
6139                                            DAG, AsmNodeOperands);
6140           break;
6141         }
6142 
6143         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6144         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6145                "Unexpected number of operands");
6146         // Add information to the INLINEASM node to know about this input.
6147         // See InlineAsm.h isUseOperandTiedToDef.
6148         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6149         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6150                                                     OpInfo.getMatchedOperand());
6151         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(),
6152                                                         TLI.getPointerTy()));
6153         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6154         break;
6155       }
6156 
6157       // Treat indirect 'X' constraint as memory.
6158       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6159           OpInfo.isIndirect)
6160         OpInfo.ConstraintType = TargetLowering::C_Memory;
6161 
6162       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6163         std::vector<SDValue> Ops;
6164         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6165                                           Ops, DAG);
6166         if (Ops.empty()) {
6167           LLVMContext &Ctx = *DAG.getContext();
6168           Ctx.emitError(CS.getInstruction(),
6169                         "invalid operand for inline asm constraint '" +
6170                             Twine(OpInfo.ConstraintCode) + "'");
6171           return;
6172         }
6173 
6174         // Add information to the INLINEASM node to know about this input.
6175         unsigned ResOpType =
6176           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6177         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6178                                                         getCurSDLoc(),
6179                                                         TLI.getPointerTy()));
6180         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6181         break;
6182       }
6183 
6184       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6185         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6186         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6187                "Memory operands expect pointer values");
6188 
6189         unsigned ConstraintID =
6190             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6191         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6192                "Failed to convert memory constraint code to constraint id.");
6193 
6194         // Add information to the INLINEASM node to know about this input.
6195         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6196         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6197         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6198                                                         getCurSDLoc(),
6199                                                         MVT::i32));
6200         AsmNodeOperands.push_back(InOperandVal);
6201         break;
6202       }
6203 
6204       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6205               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6206              "Unknown constraint type!");
6207 
6208       // TODO: Support this.
6209       if (OpInfo.isIndirect) {
6210         LLVMContext &Ctx = *DAG.getContext();
6211         Ctx.emitError(CS.getInstruction(),
6212                       "Don't know how to handle indirect register inputs yet "
6213                       "for constraint '" +
6214                           Twine(OpInfo.ConstraintCode) + "'");
6215         return;
6216       }
6217 
6218       // Copy the input into the appropriate registers.
6219       if (OpInfo.AssignedRegs.Regs.empty()) {
6220         LLVMContext &Ctx = *DAG.getContext();
6221         Ctx.emitError(CS.getInstruction(),
6222                       "couldn't allocate input reg for constraint '" +
6223                           Twine(OpInfo.ConstraintCode) + "'");
6224         return;
6225       }
6226 
6227       SDLoc dl = getCurSDLoc();
6228 
6229       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6230                                         Chain, &Flag, CS.getInstruction());
6231 
6232       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6233                                                dl, DAG, AsmNodeOperands);
6234       break;
6235     }
6236     case InlineAsm::isClobber: {
6237       // Add the clobbered value to the operand list, so that the register
6238       // allocator is aware that the physreg got clobbered.
6239       if (!OpInfo.AssignedRegs.Regs.empty())
6240         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6241                                                  false, 0, getCurSDLoc(), DAG,
6242                                                  AsmNodeOperands);
6243       break;
6244     }
6245     }
6246   }
6247 
6248   // Finish up input operands.  Set the input chain and add the flag last.
6249   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6250   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6251 
6252   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6253                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6254   Flag = Chain.getValue(1);
6255 
6256   // If this asm returns a register value, copy the result from that register
6257   // and set it as the value of the call.
6258   if (!RetValRegs.Regs.empty()) {
6259     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6260                                              Chain, &Flag, CS.getInstruction());
6261 
6262     // FIXME: Why don't we do this for inline asms with MRVs?
6263     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6264       EVT ResultType = TLI.getValueType(CS.getType());
6265 
6266       // If any of the results of the inline asm is a vector, it may have the
6267       // wrong width/num elts.  This can happen for register classes that can
6268       // contain multiple different value types.  The preg or vreg allocated may
6269       // not have the same VT as was expected.  Convert it to the right type
6270       // with bit_convert.
6271       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6272         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6273                           ResultType, Val);
6274 
6275       } else if (ResultType != Val.getValueType() &&
6276                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6277         // If a result value was tied to an input value, the computed result may
6278         // have a wider width than the expected result.  Extract the relevant
6279         // portion.
6280         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6281       }
6282 
6283       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6284     }
6285 
6286     setValue(CS.getInstruction(), Val);
6287     // Don't need to use this as a chain in this case.
6288     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6289       return;
6290   }
6291 
6292   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6293 
6294   // Process indirect outputs, first output all of the flagged copies out of
6295   // physregs.
6296   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6297     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6298     const Value *Ptr = IndirectStoresToEmit[i].second;
6299     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6300                                              Chain, &Flag, IA);
6301     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6302   }
6303 
6304   // Emit the non-flagged stores from the physregs.
6305   SmallVector<SDValue, 8> OutChains;
6306   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6307     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6308                                StoresToEmit[i].first,
6309                                getValue(StoresToEmit[i].second),
6310                                MachinePointerInfo(StoresToEmit[i].second),
6311                                false, false, 0);
6312     OutChains.push_back(Val);
6313   }
6314 
6315   if (!OutChains.empty())
6316     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6317 
6318   DAG.setRoot(Chain);
6319 }
6320 
6321 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6322   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6323                           MVT::Other, getRoot(),
6324                           getValue(I.getArgOperand(0)),
6325                           DAG.getSrcValue(I.getArgOperand(0))));
6326 }
6327 
6328 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6330   const DataLayout &DL = *TLI.getDataLayout();
6331   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6332                            getRoot(), getValue(I.getOperand(0)),
6333                            DAG.getSrcValue(I.getOperand(0)),
6334                            DL.getABITypeAlignment(I.getType()));
6335   setValue(&I, V);
6336   DAG.setRoot(V.getValue(1));
6337 }
6338 
6339 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6340   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6341                           MVT::Other, getRoot(),
6342                           getValue(I.getArgOperand(0)),
6343                           DAG.getSrcValue(I.getArgOperand(0))));
6344 }
6345 
6346 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6347   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6348                           MVT::Other, getRoot(),
6349                           getValue(I.getArgOperand(0)),
6350                           getValue(I.getArgOperand(1)),
6351                           DAG.getSrcValue(I.getArgOperand(0)),
6352                           DAG.getSrcValue(I.getArgOperand(1))));
6353 }
6354 
6355 /// \brief Lower an argument list according to the target calling convention.
6356 ///
6357 /// \return A tuple of <return-value, token-chain>
6358 ///
6359 /// This is a helper for lowering intrinsics that follow a target calling
6360 /// convention or require stack pointer adjustment. Only a subset of the
6361 /// intrinsic's operands need to participate in the calling convention.
6362 std::pair<SDValue, SDValue>
6363 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
6364                                        unsigned NumArgs, SDValue Callee,
6365                                        Type *ReturnTy,
6366                                        MachineBasicBlock *LandingPad,
6367                                        bool IsPatchPoint) {
6368   TargetLowering::ArgListTy Args;
6369   Args.reserve(NumArgs);
6370 
6371   // Populate the argument list.
6372   // Attributes for args start at offset 1, after the return attribute.
6373   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6374        ArgI != ArgE; ++ArgI) {
6375     const Value *V = CS->getOperand(ArgI);
6376 
6377     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6378 
6379     TargetLowering::ArgListEntry Entry;
6380     Entry.Node = getValue(V);
6381     Entry.Ty = V->getType();
6382     Entry.setAttributes(&CS, AttrI);
6383     Args.push_back(Entry);
6384   }
6385 
6386   TargetLowering::CallLoweringInfo CLI(DAG);
6387   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6388     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6389     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6390 
6391   return lowerInvokable(CLI, LandingPad);
6392 }
6393 
6394 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6395 /// or patchpoint target node's operand list.
6396 ///
6397 /// Constants are converted to TargetConstants purely as an optimization to
6398 /// avoid constant materialization and register allocation.
6399 ///
6400 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6401 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6402 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6403 /// address materialization and register allocation, but may also be required
6404 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6405 /// alloca in the entry block, then the runtime may assume that the alloca's
6406 /// StackMap location can be read immediately after compilation and that the
6407 /// location is valid at any point during execution (this is similar to the
6408 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6409 /// only available in a register, then the runtime would need to trap when
6410 /// execution reaches the StackMap in order to read the alloca's location.
6411 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6412                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6413                                 SelectionDAGBuilder &Builder) {
6414   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6415     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6416     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6417       Ops.push_back(
6418         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6419       Ops.push_back(
6420         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6421     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6422       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6423       Ops.push_back(
6424         Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6425     } else
6426       Ops.push_back(OpVal);
6427   }
6428 }
6429 
6430 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6431 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6432   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6433   //                                  [live variables...])
6434 
6435   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6436 
6437   SDValue Chain, InFlag, Callee, NullPtr;
6438   SmallVector<SDValue, 32> Ops;
6439 
6440   SDLoc DL = getCurSDLoc();
6441   Callee = getValue(CI.getCalledValue());
6442   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6443 
6444   // The stackmap intrinsic only records the live variables (the arguemnts
6445   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6446   // intrinsic, this won't be lowered to a function call. This means we don't
6447   // have to worry about calling conventions and target specific lowering code.
6448   // Instead we perform the call lowering right here.
6449   //
6450   // chain, flag = CALLSEQ_START(chain, 0)
6451   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6452   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6453   //
6454   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6455   InFlag = Chain.getValue(1);
6456 
6457   // Add the <id> and <numBytes> constants.
6458   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6459   Ops.push_back(DAG.getTargetConstant(
6460                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6461   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6462   Ops.push_back(DAG.getTargetConstant(
6463                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6464                   MVT::i32));
6465 
6466   // Push live variables for the stack map.
6467   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6468 
6469   // We are not pushing any register mask info here on the operands list,
6470   // because the stackmap doesn't clobber anything.
6471 
6472   // Push the chain and the glue flag.
6473   Ops.push_back(Chain);
6474   Ops.push_back(InFlag);
6475 
6476   // Create the STACKMAP node.
6477   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6478   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6479   Chain = SDValue(SM, 0);
6480   InFlag = Chain.getValue(1);
6481 
6482   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6483 
6484   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6485 
6486   // Set the root to the target-lowered call chain.
6487   DAG.setRoot(Chain);
6488 
6489   // Inform the Frame Information that we have a stackmap in this function.
6490   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6491 }
6492 
6493 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6494 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6495                                           MachineBasicBlock *LandingPad) {
6496   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6497   //                                                 i32 <numBytes>,
6498   //                                                 i8* <target>,
6499   //                                                 i32 <numArgs>,
6500   //                                                 [Args...],
6501   //                                                 [live variables...])
6502 
6503   CallingConv::ID CC = CS.getCallingConv();
6504   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6505   bool HasDef = !CS->getType()->isVoidTy();
6506   SDLoc dl = getCurSDLoc();
6507   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6508 
6509   // Handle immediate and symbolic callees.
6510   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6511     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6512                                    /*isTarget=*/true);
6513   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6514     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6515                                          SDLoc(SymbolicCallee),
6516                                          SymbolicCallee->getValueType(0));
6517 
6518   // Get the real number of arguments participating in the call <numArgs>
6519   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6520   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6521 
6522   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6523   // Intrinsics include all meta-operands up to but not including CC.
6524   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6525   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6526          "Not enough arguments provided to the patchpoint intrinsic");
6527 
6528   // For AnyRegCC the arguments are lowered later on manually.
6529   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6530   Type *ReturnTy =
6531     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6532   std::pair<SDValue, SDValue> Result =
6533     lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
6534                       LandingPad, true);
6535 
6536   SDNode *CallEnd = Result.second.getNode();
6537   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6538     CallEnd = CallEnd->getOperand(0).getNode();
6539 
6540   /// Get a call instruction from the call sequence chain.
6541   /// Tail calls are not allowed.
6542   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6543          "Expected a callseq node.");
6544   SDNode *Call = CallEnd->getOperand(0).getNode();
6545   bool HasGlue = Call->getGluedNode();
6546 
6547   // Replace the target specific call node with the patchable intrinsic.
6548   SmallVector<SDValue, 8> Ops;
6549 
6550   // Add the <id> and <numBytes> constants.
6551   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6552   Ops.push_back(DAG.getTargetConstant(
6553                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6554   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6555   Ops.push_back(DAG.getTargetConstant(
6556                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6557                   MVT::i32));
6558 
6559   // Add the callee.
6560   Ops.push_back(Callee);
6561 
6562   // Adjust <numArgs> to account for any arguments that have been passed on the
6563   // stack instead.
6564   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6565   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6566   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6567   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6568 
6569   // Add the calling convention
6570   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6571 
6572   // Add the arguments we omitted previously. The register allocator should
6573   // place these in any free register.
6574   if (IsAnyRegCC)
6575     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6576       Ops.push_back(getValue(CS.getArgument(i)));
6577 
6578   // Push the arguments from the call instruction up to the register mask.
6579   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6580   Ops.append(Call->op_begin() + 2, e);
6581 
6582   // Push live variables for the stack map.
6583   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6584 
6585   // Push the register mask info.
6586   if (HasGlue)
6587     Ops.push_back(*(Call->op_end()-2));
6588   else
6589     Ops.push_back(*(Call->op_end()-1));
6590 
6591   // Push the chain (this is originally the first operand of the call, but
6592   // becomes now the last or second to last operand).
6593   Ops.push_back(*(Call->op_begin()));
6594 
6595   // Push the glue flag (last operand).
6596   if (HasGlue)
6597     Ops.push_back(*(Call->op_end()-1));
6598 
6599   SDVTList NodeTys;
6600   if (IsAnyRegCC && HasDef) {
6601     // Create the return types based on the intrinsic definition
6602     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6603     SmallVector<EVT, 3> ValueVTs;
6604     ComputeValueVTs(TLI, CS->getType(), ValueVTs);
6605     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6606 
6607     // There is always a chain and a glue type at the end
6608     ValueVTs.push_back(MVT::Other);
6609     ValueVTs.push_back(MVT::Glue);
6610     NodeTys = DAG.getVTList(ValueVTs);
6611   } else
6612     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6613 
6614   // Replace the target specific call node with a PATCHPOINT node.
6615   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6616                                          dl, NodeTys, Ops);
6617 
6618   // Update the NodeMap.
6619   if (HasDef) {
6620     if (IsAnyRegCC)
6621       setValue(CS.getInstruction(), SDValue(MN, 0));
6622     else
6623       setValue(CS.getInstruction(), Result.first);
6624   }
6625 
6626   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6627   // call sequence. Furthermore the location of the chain and glue can change
6628   // when the AnyReg calling convention is used and the intrinsic returns a
6629   // value.
6630   if (IsAnyRegCC && HasDef) {
6631     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6632     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6633     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6634   } else
6635     DAG.ReplaceAllUsesWith(Call, MN);
6636   DAG.DeleteNode(Call);
6637 
6638   // Inform the Frame Information that we have a patchpoint in this function.
6639   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
6640 }
6641 
6642 /// Returns an AttributeSet representing the attributes applied to the return
6643 /// value of the given call.
6644 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
6645   SmallVector<Attribute::AttrKind, 2> Attrs;
6646   if (CLI.RetSExt)
6647     Attrs.push_back(Attribute::SExt);
6648   if (CLI.RetZExt)
6649     Attrs.push_back(Attribute::ZExt);
6650   if (CLI.IsInReg)
6651     Attrs.push_back(Attribute::InReg);
6652 
6653   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
6654                            Attrs);
6655 }
6656 
6657 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6658 /// implementation, which just calls LowerCall.
6659 /// FIXME: When all targets are
6660 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6661 std::pair<SDValue, SDValue>
6662 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6663   // Handle the incoming return values from the call.
6664   CLI.Ins.clear();
6665   Type *OrigRetTy = CLI.RetTy;
6666   SmallVector<EVT, 4> RetTys;
6667   SmallVector<uint64_t, 4> Offsets;
6668   ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
6669 
6670   SmallVector<ISD::OutputArg, 4> Outs;
6671   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
6672 
6673   bool CanLowerReturn =
6674       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
6675                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
6676 
6677   SDValue DemoteStackSlot;
6678   int DemoteStackIdx = -100;
6679   if (!CanLowerReturn) {
6680     // FIXME: equivalent assert?
6681     // assert(!CS.hasInAllocaArgument() &&
6682     //        "sret demotion is incompatible with inalloca");
6683     uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
6684     unsigned Align  = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
6685     MachineFunction &MF = CLI.DAG.getMachineFunction();
6686     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6687     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
6688 
6689     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
6690     ArgListEntry Entry;
6691     Entry.Node = DemoteStackSlot;
6692     Entry.Ty = StackSlotPtrType;
6693     Entry.isSExt = false;
6694     Entry.isZExt = false;
6695     Entry.isInReg = false;
6696     Entry.isSRet = true;
6697     Entry.isNest = false;
6698     Entry.isByVal = false;
6699     Entry.isReturned = false;
6700     Entry.Alignment = Align;
6701     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
6702     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
6703 
6704     // sret demotion isn't compatible with tail-calls, since the sret argument
6705     // points into the callers stack frame.
6706     CLI.IsTailCall = false;
6707   } else {
6708     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6709       EVT VT = RetTys[I];
6710       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6711       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6712       for (unsigned i = 0; i != NumRegs; ++i) {
6713         ISD::InputArg MyFlags;
6714         MyFlags.VT = RegisterVT;
6715         MyFlags.ArgVT = VT;
6716         MyFlags.Used = CLI.IsReturnValueUsed;
6717         if (CLI.RetSExt)
6718           MyFlags.Flags.setSExt();
6719         if (CLI.RetZExt)
6720           MyFlags.Flags.setZExt();
6721         if (CLI.IsInReg)
6722           MyFlags.Flags.setInReg();
6723         CLI.Ins.push_back(MyFlags);
6724       }
6725     }
6726   }
6727 
6728   // Handle all of the outgoing arguments.
6729   CLI.Outs.clear();
6730   CLI.OutVals.clear();
6731   ArgListTy &Args = CLI.getArgs();
6732   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6733     SmallVector<EVT, 4> ValueVTs;
6734     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6735     Type *FinalType = Args[i].Ty;
6736     if (Args[i].isByVal)
6737       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
6738     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
6739         FinalType, CLI.CallConv, CLI.IsVarArg);
6740     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
6741          ++Value) {
6742       EVT VT = ValueVTs[Value];
6743       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6744       SDValue Op = SDValue(Args[i].Node.getNode(),
6745                            Args[i].Node.getResNo() + Value);
6746       ISD::ArgFlagsTy Flags;
6747       unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
6748 
6749       if (Args[i].isZExt)
6750         Flags.setZExt();
6751       if (Args[i].isSExt)
6752         Flags.setSExt();
6753       if (Args[i].isInReg)
6754         Flags.setInReg();
6755       if (Args[i].isSRet)
6756         Flags.setSRet();
6757       if (Args[i].isByVal)
6758         Flags.setByVal();
6759       if (Args[i].isInAlloca) {
6760         Flags.setInAlloca();
6761         // Set the byval flag for CCAssignFn callbacks that don't know about
6762         // inalloca.  This way we can know how many bytes we should've allocated
6763         // and how many bytes a callee cleanup function will pop.  If we port
6764         // inalloca to more targets, we'll have to add custom inalloca handling
6765         // in the various CC lowering callbacks.
6766         Flags.setByVal();
6767       }
6768       if (Args[i].isByVal || Args[i].isInAlloca) {
6769         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6770         Type *ElementTy = Ty->getElementType();
6771         Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6772         // For ByVal, alignment should come from FE.  BE will guess if this
6773         // info is not there but there are cases it cannot get right.
6774         unsigned FrameAlign;
6775         if (Args[i].Alignment)
6776           FrameAlign = Args[i].Alignment;
6777         else
6778           FrameAlign = getByValTypeAlignment(ElementTy);
6779         Flags.setByValAlign(FrameAlign);
6780       }
6781       if (Args[i].isNest)
6782         Flags.setNest();
6783       if (NeedsRegBlock)
6784         Flags.setInConsecutiveRegs();
6785       Flags.setOrigAlign(OriginalAlignment);
6786 
6787       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6788       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6789       SmallVector<SDValue, 4> Parts(NumParts);
6790       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6791 
6792       if (Args[i].isSExt)
6793         ExtendKind = ISD::SIGN_EXTEND;
6794       else if (Args[i].isZExt)
6795         ExtendKind = ISD::ZERO_EXTEND;
6796 
6797       // Conservatively only handle 'returned' on non-vectors for now
6798       if (Args[i].isReturned && !Op.getValueType().isVector()) {
6799         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6800                "unexpected use of 'returned'");
6801         // Before passing 'returned' to the target lowering code, ensure that
6802         // either the register MVT and the actual EVT are the same size or that
6803         // the return value and argument are extended in the same way; in these
6804         // cases it's safe to pass the argument register value unchanged as the
6805         // return register value (although it's at the target's option whether
6806         // to do so)
6807         // TODO: allow code generation to take advantage of partially preserved
6808         // registers rather than clobbering the entire register when the
6809         // parameter extension method is not compatible with the return
6810         // extension method
6811         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6812             (ExtendKind != ISD::ANY_EXTEND &&
6813              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6814         Flags.setReturned();
6815       }
6816 
6817       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
6818                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
6819 
6820       for (unsigned j = 0; j != NumParts; ++j) {
6821         // if it isn't first piece, alignment must be 1
6822         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
6823                                i < CLI.NumFixedArgs,
6824                                i, j*Parts[j].getValueType().getStoreSize());
6825         if (NumParts > 1 && j == 0)
6826           MyFlags.Flags.setSplit();
6827         else if (j != 0)
6828           MyFlags.Flags.setOrigAlign(1);
6829 
6830         CLI.Outs.push_back(MyFlags);
6831         CLI.OutVals.push_back(Parts[j]);
6832       }
6833 
6834       if (NeedsRegBlock && Value == NumValues - 1)
6835         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
6836     }
6837   }
6838 
6839   SmallVector<SDValue, 4> InVals;
6840   CLI.Chain = LowerCall(CLI, InVals);
6841 
6842   // Verify that the target's LowerCall behaved as expected.
6843   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6844          "LowerCall didn't return a valid chain!");
6845   assert((!CLI.IsTailCall || InVals.empty()) &&
6846          "LowerCall emitted a return value for a tail call!");
6847   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6848          "LowerCall didn't emit the correct number of values!");
6849 
6850   // For a tail call, the return value is merely live-out and there aren't
6851   // any nodes in the DAG representing it. Return a special value to
6852   // indicate that a tail call has been emitted and no more Instructions
6853   // should be processed in the current block.
6854   if (CLI.IsTailCall) {
6855     CLI.DAG.setRoot(CLI.Chain);
6856     return std::make_pair(SDValue(), SDValue());
6857   }
6858 
6859   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6860           assert(InVals[i].getNode() &&
6861                  "LowerCall emitted a null value!");
6862           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6863                  "LowerCall emitted a value with the wrong type!");
6864         });
6865 
6866   SmallVector<SDValue, 4> ReturnValues;
6867   if (!CanLowerReturn) {
6868     // The instruction result is the result of loading from the
6869     // hidden sret parameter.
6870     SmallVector<EVT, 1> PVTs;
6871     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
6872 
6873     ComputeValueVTs(*this, PtrRetTy, PVTs);
6874     assert(PVTs.size() == 1 && "Pointers should fit in one register");
6875     EVT PtrVT = PVTs[0];
6876 
6877     unsigned NumValues = RetTys.size();
6878     ReturnValues.resize(NumValues);
6879     SmallVector<SDValue, 4> Chains(NumValues);
6880 
6881     for (unsigned i = 0; i < NumValues; ++i) {
6882       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
6883                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
6884                                                         PtrVT));
6885       SDValue L = CLI.DAG.getLoad(
6886           RetTys[i], CLI.DL, CLI.Chain, Add,
6887           MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
6888           false, false, 1);
6889       ReturnValues[i] = L;
6890       Chains[i] = L.getValue(1);
6891     }
6892 
6893     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
6894   } else {
6895     // Collect the legal value parts into potentially illegal values
6896     // that correspond to the original function's return values.
6897     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6898     if (CLI.RetSExt)
6899       AssertOp = ISD::AssertSext;
6900     else if (CLI.RetZExt)
6901       AssertOp = ISD::AssertZext;
6902     unsigned CurReg = 0;
6903     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6904       EVT VT = RetTys[I];
6905       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6906       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6907 
6908       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6909                                               NumRegs, RegisterVT, VT, nullptr,
6910                                               AssertOp));
6911       CurReg += NumRegs;
6912     }
6913 
6914     // For a function returning void, there is no return value. We can't create
6915     // such a node, so we just return a null return value in that case. In
6916     // that case, nothing will actually look at the value.
6917     if (ReturnValues.empty())
6918       return std::make_pair(SDValue(), CLI.Chain);
6919   }
6920 
6921   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6922                                 CLI.DAG.getVTList(RetTys), ReturnValues);
6923   return std::make_pair(Res, CLI.Chain);
6924 }
6925 
6926 void TargetLowering::LowerOperationWrapper(SDNode *N,
6927                                            SmallVectorImpl<SDValue> &Results,
6928                                            SelectionDAG &DAG) const {
6929   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6930   if (Res.getNode())
6931     Results.push_back(Res);
6932 }
6933 
6934 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6935   llvm_unreachable("LowerOperation not implemented for this target!");
6936 }
6937 
6938 void
6939 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6940   SDValue Op = getNonRegisterValue(V);
6941   assert((Op.getOpcode() != ISD::CopyFromReg ||
6942           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6943          "Copy from a reg to the same reg!");
6944   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6945 
6946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6947   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6948   SDValue Chain = DAG.getEntryNode();
6949 
6950   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
6951                               FuncInfo.PreferredExtendType.end())
6952                                  ? ISD::ANY_EXTEND
6953                                  : FuncInfo.PreferredExtendType[V];
6954   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
6955   PendingExports.push_back(Chain);
6956 }
6957 
6958 #include "llvm/CodeGen/SelectionDAGISel.h"
6959 
6960 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6961 /// entry block, return true.  This includes arguments used by switches, since
6962 /// the switch may expand into multiple basic blocks.
6963 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6964   // With FastISel active, we may be splitting blocks, so force creation
6965   // of virtual registers for all non-dead arguments.
6966   if (FastISel)
6967     return A->use_empty();
6968 
6969   const BasicBlock *Entry = A->getParent()->begin();
6970   for (const User *U : A->users())
6971     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6972       return false;  // Use not in entry block.
6973 
6974   return true;
6975 }
6976 
6977 void SelectionDAGISel::LowerArguments(const Function &F) {
6978   SelectionDAG &DAG = SDB->DAG;
6979   SDLoc dl = SDB->getCurSDLoc();
6980   const DataLayout *DL = TLI->getDataLayout();
6981   SmallVector<ISD::InputArg, 16> Ins;
6982 
6983   if (!FuncInfo->CanLowerReturn) {
6984     // Put in an sret pointer parameter before all the other parameters.
6985     SmallVector<EVT, 1> ValueVTs;
6986     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6987 
6988     // NOTE: Assuming that a pointer will never break down to more than one VT
6989     // or one register.
6990     ISD::ArgFlagsTy Flags;
6991     Flags.setSRet();
6992     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
6993     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
6994                          ISD::InputArg::NoArgIndex, 0);
6995     Ins.push_back(RetArg);
6996   }
6997 
6998   // Set up the incoming argument description vector.
6999   unsigned Idx = 1;
7000   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7001        I != E; ++I, ++Idx) {
7002     SmallVector<EVT, 4> ValueVTs;
7003     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7004     bool isArgValueUsed = !I->use_empty();
7005     unsigned PartBase = 0;
7006     Type *FinalType = I->getType();
7007     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7008       FinalType = cast<PointerType>(FinalType)->getElementType();
7009     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7010         FinalType, F.getCallingConv(), F.isVarArg());
7011     for (unsigned Value = 0, NumValues = ValueVTs.size();
7012          Value != NumValues; ++Value) {
7013       EVT VT = ValueVTs[Value];
7014       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7015       ISD::ArgFlagsTy Flags;
7016       unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7017 
7018       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7019         Flags.setZExt();
7020       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7021         Flags.setSExt();
7022       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7023         Flags.setInReg();
7024       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7025         Flags.setSRet();
7026       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7027         Flags.setByVal();
7028       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7029         Flags.setInAlloca();
7030         // Set the byval flag for CCAssignFn callbacks that don't know about
7031         // inalloca.  This way we can know how many bytes we should've allocated
7032         // and how many bytes a callee cleanup function will pop.  If we port
7033         // inalloca to more targets, we'll have to add custom inalloca handling
7034         // in the various CC lowering callbacks.
7035         Flags.setByVal();
7036       }
7037       if (Flags.isByVal() || Flags.isInAlloca()) {
7038         PointerType *Ty = cast<PointerType>(I->getType());
7039         Type *ElementTy = Ty->getElementType();
7040         Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7041         // For ByVal, alignment should be passed from FE.  BE will guess if
7042         // this info is not there but there are cases it cannot get right.
7043         unsigned FrameAlign;
7044         if (F.getParamAlignment(Idx))
7045           FrameAlign = F.getParamAlignment(Idx);
7046         else
7047           FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7048         Flags.setByValAlign(FrameAlign);
7049       }
7050       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7051         Flags.setNest();
7052       if (NeedsRegBlock)
7053         Flags.setInConsecutiveRegs();
7054       Flags.setOrigAlign(OriginalAlignment);
7055 
7056       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7057       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7058       for (unsigned i = 0; i != NumRegs; ++i) {
7059         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7060                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7061         if (NumRegs > 1 && i == 0)
7062           MyFlags.Flags.setSplit();
7063         // if it isn't first piece, alignment must be 1
7064         else if (i > 0)
7065           MyFlags.Flags.setOrigAlign(1);
7066         Ins.push_back(MyFlags);
7067       }
7068       if (NeedsRegBlock && Value == NumValues - 1)
7069         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7070       PartBase += VT.getStoreSize();
7071     }
7072   }
7073 
7074   // Call the target to set up the argument values.
7075   SmallVector<SDValue, 8> InVals;
7076   SDValue NewRoot = TLI->LowerFormalArguments(
7077       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7078 
7079   // Verify that the target's LowerFormalArguments behaved as expected.
7080   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7081          "LowerFormalArguments didn't return a valid chain!");
7082   assert(InVals.size() == Ins.size() &&
7083          "LowerFormalArguments didn't emit the correct number of values!");
7084   DEBUG({
7085       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7086         assert(InVals[i].getNode() &&
7087                "LowerFormalArguments emitted a null value!");
7088         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7089                "LowerFormalArguments emitted a value with the wrong type!");
7090       }
7091     });
7092 
7093   // Update the DAG with the new chain value resulting from argument lowering.
7094   DAG.setRoot(NewRoot);
7095 
7096   // Set up the argument values.
7097   unsigned i = 0;
7098   Idx = 1;
7099   if (!FuncInfo->CanLowerReturn) {
7100     // Create a virtual register for the sret pointer, and put in a copy
7101     // from the sret argument into it.
7102     SmallVector<EVT, 1> ValueVTs;
7103     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7104     MVT VT = ValueVTs[0].getSimpleVT();
7105     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7106     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7107     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7108                                         RegVT, VT, nullptr, AssertOp);
7109 
7110     MachineFunction& MF = SDB->DAG.getMachineFunction();
7111     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7112     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7113     FuncInfo->DemoteRegister = SRetReg;
7114     NewRoot =
7115         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7116     DAG.setRoot(NewRoot);
7117 
7118     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7119     // Idx indexes LLVM arguments.  Don't touch it.
7120     ++i;
7121   }
7122 
7123   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7124       ++I, ++Idx) {
7125     SmallVector<SDValue, 4> ArgValues;
7126     SmallVector<EVT, 4> ValueVTs;
7127     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7128     unsigned NumValues = ValueVTs.size();
7129 
7130     // If this argument is unused then remember its value. It is used to generate
7131     // debugging information.
7132     if (I->use_empty() && NumValues) {
7133       SDB->setUnusedArgValue(I, InVals[i]);
7134 
7135       // Also remember any frame index for use in FastISel.
7136       if (FrameIndexSDNode *FI =
7137           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7138         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7139     }
7140 
7141     for (unsigned Val = 0; Val != NumValues; ++Val) {
7142       EVT VT = ValueVTs[Val];
7143       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7144       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7145 
7146       if (!I->use_empty()) {
7147         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7148         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7149           AssertOp = ISD::AssertSext;
7150         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7151           AssertOp = ISD::AssertZext;
7152 
7153         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7154                                              NumParts, PartVT, VT,
7155                                              nullptr, AssertOp));
7156       }
7157 
7158       i += NumParts;
7159     }
7160 
7161     // We don't need to do anything else for unused arguments.
7162     if (ArgValues.empty())
7163       continue;
7164 
7165     // Note down frame index.
7166     if (FrameIndexSDNode *FI =
7167         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7168       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7169 
7170     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7171                                      SDB->getCurSDLoc());
7172 
7173     SDB->setValue(I, Res);
7174     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7175       if (LoadSDNode *LNode =
7176           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7177         if (FrameIndexSDNode *FI =
7178             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7179         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7180     }
7181 
7182     // If this argument is live outside of the entry block, insert a copy from
7183     // wherever we got it to the vreg that other BB's will reference it as.
7184     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7185       // If we can, though, try to skip creating an unnecessary vreg.
7186       // FIXME: This isn't very clean... it would be nice to make this more
7187       // general.  It's also subtly incompatible with the hacks FastISel
7188       // uses with vregs.
7189       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7190       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7191         FuncInfo->ValueMap[I] = Reg;
7192         continue;
7193       }
7194     }
7195     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7196       FuncInfo->InitializeRegForValue(I);
7197       SDB->CopyToExportRegsIfNeeded(I);
7198     }
7199   }
7200 
7201   assert(i == InVals.size() && "Argument register count mismatch!");
7202 
7203   // Finally, if the target has anything special to do, allow it to do so.
7204   EmitFunctionEntryCode();
7205 }
7206 
7207 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7208 /// ensure constants are generated when needed.  Remember the virtual registers
7209 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7210 /// directly add them, because expansion might result in multiple MBB's for one
7211 /// BB.  As such, the start of the BB might correspond to a different MBB than
7212 /// the end.
7213 ///
7214 void
7215 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7216   const TerminatorInst *TI = LLVMBB->getTerminator();
7217 
7218   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7219 
7220   // Check PHI nodes in successors that expect a value to be available from this
7221   // block.
7222   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7223     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7224     if (!isa<PHINode>(SuccBB->begin())) continue;
7225     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7226 
7227     // If this terminator has multiple identical successors (common for
7228     // switches), only handle each succ once.
7229     if (!SuccsHandled.insert(SuccMBB).second)
7230       continue;
7231 
7232     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7233 
7234     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7235     // nodes and Machine PHI nodes, but the incoming operands have not been
7236     // emitted yet.
7237     for (BasicBlock::const_iterator I = SuccBB->begin();
7238          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7239       // Ignore dead phi's.
7240       if (PN->use_empty()) continue;
7241 
7242       // Skip empty types
7243       if (PN->getType()->isEmptyTy())
7244         continue;
7245 
7246       unsigned Reg;
7247       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7248 
7249       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7250         unsigned &RegOut = ConstantsOut[C];
7251         if (RegOut == 0) {
7252           RegOut = FuncInfo.CreateRegs(C->getType());
7253           CopyValueToVirtualRegister(C, RegOut);
7254         }
7255         Reg = RegOut;
7256       } else {
7257         DenseMap<const Value *, unsigned>::iterator I =
7258           FuncInfo.ValueMap.find(PHIOp);
7259         if (I != FuncInfo.ValueMap.end())
7260           Reg = I->second;
7261         else {
7262           assert(isa<AllocaInst>(PHIOp) &&
7263                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7264                  "Didn't codegen value into a register!??");
7265           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7266           CopyValueToVirtualRegister(PHIOp, Reg);
7267         }
7268       }
7269 
7270       // Remember that this register needs to added to the machine PHI node as
7271       // the input for this MBB.
7272       SmallVector<EVT, 4> ValueVTs;
7273       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7274       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
7275       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7276         EVT VT = ValueVTs[vti];
7277         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7278         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7279           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7280         Reg += NumRegisters;
7281       }
7282     }
7283   }
7284 
7285   ConstantsOut.clear();
7286 }
7287 
7288 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7289 /// is 0.
7290 MachineBasicBlock *
7291 SelectionDAGBuilder::StackProtectorDescriptor::
7292 AddSuccessorMBB(const BasicBlock *BB,
7293                 MachineBasicBlock *ParentMBB,
7294                 bool IsLikely,
7295                 MachineBasicBlock *SuccMBB) {
7296   // If SuccBB has not been created yet, create it.
7297   if (!SuccMBB) {
7298     MachineFunction *MF = ParentMBB->getParent();
7299     MachineFunction::iterator BBI = ParentMBB;
7300     SuccMBB = MF->CreateMachineBasicBlock(BB);
7301     MF->insert(++BBI, SuccMBB);
7302   }
7303   // Add it as a successor of ParentMBB.
7304   ParentMBB->addSuccessor(
7305       SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
7306   return SuccMBB;
7307 }
7308 
7309 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7310   MachineFunction::iterator I = MBB;
7311   if (++I == FuncInfo.MF->end())
7312     return nullptr;
7313   return I;
7314 }
7315 
7316 /// During lowering new call nodes can be created (such as memset, etc.).
7317 /// Those will become new roots of the current DAG, but complications arise
7318 /// when they are tail calls. In such cases, the call lowering will update
7319 /// the root, but the builder still needs to know that a tail call has been
7320 /// lowered in order to avoid generating an additional return.
7321 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7322   // If the node is null, we do have a tail call.
7323   if (MaybeTC.getNode() != nullptr)
7324     DAG.setRoot(MaybeTC);
7325   else
7326     HasTailCall = true;
7327 }
7328 
7329 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7330                                   unsigned *TotalCases, unsigned First,
7331                                   unsigned Last) {
7332   assert(Last >= First);
7333   assert(TotalCases[Last] >= TotalCases[First]);
7334 
7335   APInt LowCase = Clusters[First].Low->getValue();
7336   APInt HighCase = Clusters[Last].High->getValue();
7337   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7338 
7339   // FIXME: A range of consecutive cases has 100% density, but only requires one
7340   // comparison to lower. We should discriminate against such consecutive ranges
7341   // in jump tables.
7342 
7343   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7344   uint64_t Range = Diff + 1;
7345 
7346   uint64_t NumCases =
7347       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7348 
7349   assert(NumCases < UINT64_MAX / 100);
7350   assert(Range >= NumCases);
7351 
7352   return NumCases * 100 >= Range * MinJumpTableDensity;
7353 }
7354 
7355 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7356   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7357          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7358 }
7359 
7360 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7361                                          unsigned First, unsigned Last,
7362                                          const SwitchInst *SI,
7363                                          MachineBasicBlock *DefaultMBB,
7364                                          CaseCluster &JTCluster) {
7365   assert(First <= Last);
7366 
7367   uint32_t Weight = 0;
7368   unsigned NumCmps = 0;
7369   std::vector<MachineBasicBlock*> Table;
7370   DenseMap<MachineBasicBlock*, uint32_t> JTWeights;
7371   for (unsigned I = First; I <= Last; ++I) {
7372     assert(Clusters[I].Kind == CC_Range);
7373     Weight += Clusters[I].Weight;
7374     assert(Weight >= Clusters[I].Weight && "Weight overflow!");
7375     APInt Low = Clusters[I].Low->getValue();
7376     APInt High = Clusters[I].High->getValue();
7377     NumCmps += (Low == High) ? 1 : 2;
7378     if (I != First) {
7379       // Fill the gap between this and the previous cluster.
7380       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7381       assert(PreviousHigh.slt(Low));
7382       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7383       for (uint64_t J = 0; J < Gap; J++)
7384         Table.push_back(DefaultMBB);
7385     }
7386     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7387     for (uint64_t J = 0; J < ClusterSize; ++J)
7388       Table.push_back(Clusters[I].MBB);
7389     JTWeights[Clusters[I].MBB] += Clusters[I].Weight;
7390   }
7391 
7392   unsigned NumDests = JTWeights.size();
7393   if (isSuitableForBitTests(NumDests, NumCmps,
7394                             Clusters[First].Low->getValue(),
7395                             Clusters[Last].High->getValue())) {
7396     // Clusters[First..Last] should be lowered as bit tests instead.
7397     return false;
7398   }
7399 
7400   // Create the MBB that will load from and jump through the table.
7401   // Note: We create it here, but it's not inserted into the function yet.
7402   MachineFunction *CurMF = FuncInfo.MF;
7403   MachineBasicBlock *JumpTableMBB =
7404       CurMF->CreateMachineBasicBlock(SI->getParent());
7405 
7406   // Add successors. Note: use table order for determinism.
7407   SmallPtrSet<MachineBasicBlock *, 8> Done;
7408   for (MachineBasicBlock *Succ : Table) {
7409     if (Done.count(Succ))
7410       continue;
7411     addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]);
7412     Done.insert(Succ);
7413   }
7414 
7415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7416   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7417                      ->createJumpTableIndex(Table);
7418 
7419   // Set up the jump table info.
7420   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7421   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7422                       Clusters[Last].High->getValue(), SI->getCondition(),
7423                       nullptr, false);
7424   JTCases.push_back(JumpTableBlock(JTH, JT));
7425 
7426   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7427                                      JTCases.size() - 1, Weight);
7428   return true;
7429 }
7430 
7431 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7432                                          const SwitchInst *SI,
7433                                          MachineBasicBlock *DefaultMBB) {
7434 #ifndef NDEBUG
7435   // Clusters must be non-empty, sorted, and only contain Range clusters.
7436   assert(!Clusters.empty());
7437   for (CaseCluster &C : Clusters)
7438     assert(C.Kind == CC_Range);
7439   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7440     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7441 #endif
7442 
7443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7444   if (!areJTsAllowed(TLI))
7445     return;
7446 
7447   const int64_t N = Clusters.size();
7448   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7449 
7450   // Split Clusters into minimum number of dense partitions. The algorithm uses
7451   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7452   // for the Case Statement'" (1994), but builds the MinPartitions array in
7453   // reverse order to make it easier to reconstruct the partitions in ascending
7454   // order. In the choice between two optimal partitionings, it picks the one
7455   // which yields more jump tables.
7456 
7457   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7458   SmallVector<unsigned, 8> MinPartitions(N);
7459   // LastElement[i] is the last element of the partition starting at i.
7460   SmallVector<unsigned, 8> LastElement(N);
7461   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7462   SmallVector<unsigned, 8> NumTables(N);
7463   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7464   SmallVector<unsigned, 8> TotalCases(N);
7465 
7466   for (unsigned i = 0; i < N; ++i) {
7467     APInt Hi = Clusters[i].High->getValue();
7468     APInt Lo = Clusters[i].Low->getValue();
7469     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7470     if (i != 0)
7471       TotalCases[i] += TotalCases[i - 1];
7472   }
7473 
7474   // Base case: There is only one way to partition Clusters[N-1].
7475   MinPartitions[N - 1] = 1;
7476   LastElement[N - 1] = N - 1;
7477   assert(MinJumpTableSize > 1);
7478   NumTables[N - 1] = 0;
7479 
7480   // Note: loop indexes are signed to avoid underflow.
7481   for (int64_t i = N - 2; i >= 0; i--) {
7482     // Find optimal partitioning of Clusters[i..N-1].
7483     // Baseline: Put Clusters[i] into a partition on its own.
7484     MinPartitions[i] = MinPartitions[i + 1] + 1;
7485     LastElement[i] = i;
7486     NumTables[i] = NumTables[i + 1];
7487 
7488     // Search for a solution that results in fewer partitions.
7489     for (int64_t j = N - 1; j > i; j--) {
7490       // Try building a partition from Clusters[i..j].
7491       if (isDense(Clusters, &TotalCases[0], i, j)) {
7492         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7493         bool IsTable = j - i + 1 >= MinJumpTableSize;
7494         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7495 
7496         // If this j leads to fewer partitions, or same number of partitions
7497         // with more lookup tables, it is a better partitioning.
7498         if (NumPartitions < MinPartitions[i] ||
7499             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7500           MinPartitions[i] = NumPartitions;
7501           LastElement[i] = j;
7502           NumTables[i] = Tables;
7503         }
7504       }
7505     }
7506   }
7507 
7508   // Iterate over the partitions, replacing some with jump tables in-place.
7509   unsigned DstIndex = 0;
7510   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7511     Last = LastElement[First];
7512     assert(Last >= First);
7513     assert(DstIndex <= First);
7514     unsigned NumClusters = Last - First + 1;
7515 
7516     CaseCluster JTCluster;
7517     if (NumClusters >= MinJumpTableSize &&
7518         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7519       Clusters[DstIndex++] = JTCluster;
7520     } else {
7521       for (unsigned I = First; I <= Last; ++I)
7522         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7523     }
7524   }
7525   Clusters.resize(DstIndex);
7526 }
7527 
7528 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7529   // FIXME: Using the pointer type doesn't seem ideal.
7530   uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits();
7531   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7532   return Range <= BW;
7533 }
7534 
7535 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7536                                                 unsigned NumCmps,
7537                                                 const APInt &Low,
7538                                                 const APInt &High) {
7539   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7540   // range of cases both require only one branch to lower. Just looking at the
7541   // number of clusters and destinations should be enough to decide whether to
7542   // build bit tests.
7543 
7544   // To lower a range with bit tests, the range must fit the bitwidth of a
7545   // machine word.
7546   if (!rangeFitsInWord(Low, High))
7547     return false;
7548 
7549   // Decide whether it's profitable to lower this range with bit tests. Each
7550   // destination requires a bit test and branch, and there is an overall range
7551   // check branch. For a small number of clusters, separate comparisons might be
7552   // cheaper, and for many destinations, splitting the range might be better.
7553   return (NumDests == 1 && NumCmps >= 3) ||
7554          (NumDests == 2 && NumCmps >= 5) ||
7555          (NumDests == 3 && NumCmps >= 6);
7556 }
7557 
7558 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7559                                         unsigned First, unsigned Last,
7560                                         const SwitchInst *SI,
7561                                         CaseCluster &BTCluster) {
7562   assert(First <= Last);
7563   if (First == Last)
7564     return false;
7565 
7566   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7567   unsigned NumCmps = 0;
7568   for (int64_t I = First; I <= Last; ++I) {
7569     assert(Clusters[I].Kind == CC_Range);
7570     Dests.set(Clusters[I].MBB->getNumber());
7571     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
7572   }
7573   unsigned NumDests = Dests.count();
7574 
7575   APInt Low = Clusters[First].Low->getValue();
7576   APInt High = Clusters[Last].High->getValue();
7577   assert(Low.slt(High));
7578 
7579   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
7580     return false;
7581 
7582   APInt LowBound;
7583   APInt CmpRange;
7584 
7585   const int BitWidth =
7586       DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits();
7587   assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!");
7588 
7589   if (Low.isNonNegative() && High.slt(BitWidth)) {
7590     // Optimize the case where all the case values fit in a
7591     // word without having to subtract minValue. In this case,
7592     // we can optimize away the subtraction.
7593     LowBound = APInt::getNullValue(Low.getBitWidth());
7594     CmpRange = High;
7595   } else {
7596     LowBound = Low;
7597     CmpRange = High - Low;
7598   }
7599 
7600   CaseBitsVector CBV;
7601   uint32_t TotalWeight = 0;
7602   for (unsigned i = First; i <= Last; ++i) {
7603     // Find the CaseBits for this destination.
7604     unsigned j;
7605     for (j = 0; j < CBV.size(); ++j)
7606       if (CBV[j].BB == Clusters[i].MBB)
7607         break;
7608     if (j == CBV.size())
7609       CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0));
7610     CaseBits *CB = &CBV[j];
7611 
7612     // Update Mask, Bits and ExtraWeight.
7613     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
7614     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
7615     for (uint64_t j = Lo; j <= Hi; ++j) {
7616       CB->Mask |= 1ULL << j;
7617       CB->Bits++;
7618     }
7619     CB->ExtraWeight += Clusters[i].Weight;
7620     TotalWeight += Clusters[i].Weight;
7621     assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!");
7622   }
7623 
7624   BitTestInfo BTI;
7625   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
7626     // Sort by weight first, number of bits second.
7627     if (a.ExtraWeight != b.ExtraWeight)
7628       return a.ExtraWeight > b.ExtraWeight;
7629     return a.Bits > b.Bits;
7630   });
7631 
7632   for (auto &CB : CBV) {
7633     MachineBasicBlock *BitTestBB =
7634         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
7635     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight));
7636   }
7637   BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(),
7638                                       -1U, MVT::Other, false, nullptr,
7639                                       nullptr, std::move(BTI)));
7640 
7641   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
7642                                     BitTestCases.size() - 1, TotalWeight);
7643   return true;
7644 }
7645 
7646 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
7647                                               const SwitchInst *SI) {
7648 // Partition Clusters into as few subsets as possible, where each subset has a
7649 // range that fits in a machine word and has <= 3 unique destinations.
7650 
7651 #ifndef NDEBUG
7652   // Clusters must be sorted and contain Range or JumpTable clusters.
7653   assert(!Clusters.empty());
7654   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
7655   for (const CaseCluster &C : Clusters)
7656     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
7657   for (unsigned i = 1; i < Clusters.size(); ++i)
7658     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
7659 #endif
7660 
7661   // If target does not have legal shift left, do not emit bit tests at all.
7662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7663   EVT PTy = TLI.getPointerTy();
7664   if (!TLI.isOperationLegal(ISD::SHL, PTy))
7665     return;
7666 
7667   int BitWidth = PTy.getSizeInBits();
7668   const int64_t N = Clusters.size();
7669 
7670   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7671   SmallVector<unsigned, 8> MinPartitions(N);
7672   // LastElement[i] is the last element of the partition starting at i.
7673   SmallVector<unsigned, 8> LastElement(N);
7674 
7675   // FIXME: This might not be the best algorithm for finding bit test clusters.
7676 
7677   // Base case: There is only one way to partition Clusters[N-1].
7678   MinPartitions[N - 1] = 1;
7679   LastElement[N - 1] = N - 1;
7680 
7681   // Note: loop indexes are signed to avoid underflow.
7682   for (int64_t i = N - 2; i >= 0; --i) {
7683     // Find optimal partitioning of Clusters[i..N-1].
7684     // Baseline: Put Clusters[i] into a partition on its own.
7685     MinPartitions[i] = MinPartitions[i + 1] + 1;
7686     LastElement[i] = i;
7687 
7688     // Search for a solution that results in fewer partitions.
7689     // Note: the search is limited by BitWidth, reducing time complexity.
7690     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
7691       // Try building a partition from Clusters[i..j].
7692 
7693       // Check the range.
7694       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
7695                            Clusters[j].High->getValue()))
7696         continue;
7697 
7698       // Check nbr of destinations and cluster types.
7699       // FIXME: This works, but doesn't seem very efficient.
7700       bool RangesOnly = true;
7701       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7702       for (int64_t k = i; k <= j; k++) {
7703         if (Clusters[k].Kind != CC_Range) {
7704           RangesOnly = false;
7705           break;
7706         }
7707         Dests.set(Clusters[k].MBB->getNumber());
7708       }
7709       if (!RangesOnly || Dests.count() > 3)
7710         break;
7711 
7712       // Check if it's a better partition.
7713       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7714       if (NumPartitions < MinPartitions[i]) {
7715         // Found a better partition.
7716         MinPartitions[i] = NumPartitions;
7717         LastElement[i] = j;
7718       }
7719     }
7720   }
7721 
7722   // Iterate over the partitions, replacing with bit-test clusters in-place.
7723   unsigned DstIndex = 0;
7724   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7725     Last = LastElement[First];
7726     assert(First <= Last);
7727     assert(DstIndex <= First);
7728 
7729     CaseCluster BitTestCluster;
7730     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
7731       Clusters[DstIndex++] = BitTestCluster;
7732     } else {
7733       for (unsigned I = First; I <= Last; ++I)
7734         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7735     }
7736   }
7737   Clusters.resize(DstIndex);
7738 }
7739 
7740 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
7741                                         MachineBasicBlock *SwitchMBB,
7742                                         MachineBasicBlock *DefaultMBB) {
7743   MachineFunction *CurMF = FuncInfo.MF;
7744   MachineBasicBlock *NextMBB = nullptr;
7745   MachineFunction::iterator BBI = W.MBB;
7746   if (++BBI != FuncInfo.MF->end())
7747     NextMBB = BBI;
7748 
7749   unsigned Size = W.LastCluster - W.FirstCluster + 1;
7750 
7751   BranchProbabilityInfo *BPI = FuncInfo.BPI;
7752 
7753   if (Size == 2 && W.MBB == SwitchMBB) {
7754     // If any two of the cases has the same destination, and if one value
7755     // is the same as the other, but has one bit unset that the other has set,
7756     // use bit manipulation to do two compares at once.  For example:
7757     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
7758     // TODO: This could be extended to merge any 2 cases in switches with 3
7759     // cases.
7760     // TODO: Handle cases where W.CaseBB != SwitchBB.
7761     CaseCluster &Small = *W.FirstCluster;
7762     CaseCluster &Big = *W.LastCluster;
7763 
7764     if (Small.Low == Small.High && Big.Low == Big.High &&
7765         Small.MBB == Big.MBB) {
7766       const APInt &SmallValue = Small.Low->getValue();
7767       const APInt &BigValue = Big.Low->getValue();
7768 
7769       // Check that there is only one bit different.
7770       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
7771           (SmallValue | BigValue) == BigValue) {
7772         // Isolate the common bit.
7773         APInt CommonBit = BigValue & ~SmallValue;
7774         assert((SmallValue | CommonBit) == BigValue &&
7775                CommonBit.countPopulation() == 1 && "Not a common bit?");
7776 
7777         SDValue CondLHS = getValue(Cond);
7778         EVT VT = CondLHS.getValueType();
7779         SDLoc DL = getCurSDLoc();
7780 
7781         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
7782                                  DAG.getConstant(CommonBit, DL, VT));
7783         SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or,
7784                                     DAG.getConstant(BigValue, DL, VT),
7785                                     ISD::SETEQ);
7786 
7787         // Update successor info.
7788         // Both Small and Big will jump to Small.BB, so we sum up the weights.
7789         addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight);
7790         addSuccessorWithWeight(
7791             SwitchMBB, DefaultMBB,
7792             // The default destination is the first successor in IR.
7793             BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0)
7794                 : 0);
7795 
7796         // Insert the true branch.
7797         SDValue BrCond =
7798             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
7799                         DAG.getBasicBlock(Small.MBB));
7800         // Insert the false branch.
7801         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
7802                              DAG.getBasicBlock(DefaultMBB));
7803 
7804         DAG.setRoot(BrCond);
7805         return;
7806       }
7807     }
7808   }
7809 
7810   if (TM.getOptLevel() != CodeGenOpt::None) {
7811     // Order cases by weight so the most likely case will be checked first.
7812     std::sort(W.FirstCluster, W.LastCluster + 1,
7813               [](const CaseCluster &a, const CaseCluster &b) {
7814       return a.Weight > b.Weight;
7815     });
7816 
7817     // Rearrange the case blocks so that the last one falls through if possible
7818     // without without changing the order of weights.
7819     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
7820       --I;
7821       if (I->Weight > W.LastCluster->Weight)
7822         break;
7823       if (I->Kind == CC_Range && I->MBB == NextMBB) {
7824         std::swap(*I, *W.LastCluster);
7825         break;
7826       }
7827     }
7828   }
7829 
7830   // Compute total weight.
7831   uint32_t UnhandledWeights = 0;
7832   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) {
7833     UnhandledWeights += I->Weight;
7834     assert(UnhandledWeights >= I->Weight && "Weight overflow!");
7835   }
7836 
7837   MachineBasicBlock *CurMBB = W.MBB;
7838   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
7839     MachineBasicBlock *Fallthrough;
7840     if (I == W.LastCluster) {
7841       // For the last cluster, fall through to the default destination.
7842       Fallthrough = DefaultMBB;
7843     } else {
7844       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
7845       CurMF->insert(BBI, Fallthrough);
7846       // Put Cond in a virtual register to make it available from the new blocks.
7847       ExportFromCurrentBlock(Cond);
7848     }
7849 
7850     switch (I->Kind) {
7851       case CC_JumpTable: {
7852         // FIXME: Optimize away range check based on pivot comparisons.
7853         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
7854         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
7855 
7856         // The jump block hasn't been inserted yet; insert it here.
7857         MachineBasicBlock *JumpMBB = JT->MBB;
7858         CurMF->insert(BBI, JumpMBB);
7859         addSuccessorWithWeight(CurMBB, Fallthrough);
7860         addSuccessorWithWeight(CurMBB, JumpMBB);
7861 
7862         // The jump table header will be inserted in our current block, do the
7863         // range check, and fall through to our fallthrough block.
7864         JTH->HeaderBB = CurMBB;
7865         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
7866 
7867         // If we're in the right place, emit the jump table header right now.
7868         if (CurMBB == SwitchMBB) {
7869           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
7870           JTH->Emitted = true;
7871         }
7872         break;
7873       }
7874       case CC_BitTests: {
7875         // FIXME: Optimize away range check based on pivot comparisons.
7876         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
7877 
7878         // The bit test blocks haven't been inserted yet; insert them here.
7879         for (BitTestCase &BTC : BTB->Cases)
7880           CurMF->insert(BBI, BTC.ThisBB);
7881 
7882         // Fill in fields of the BitTestBlock.
7883         BTB->Parent = CurMBB;
7884         BTB->Default = Fallthrough;
7885 
7886         // If we're in the right place, emit the bit test header header right now.
7887         if (CurMBB ==SwitchMBB) {
7888           visitBitTestHeader(*BTB, SwitchMBB);
7889           BTB->Emitted = true;
7890         }
7891         break;
7892       }
7893       case CC_Range: {
7894         const Value *RHS, *LHS, *MHS;
7895         ISD::CondCode CC;
7896         if (I->Low == I->High) {
7897           // Check Cond == I->Low.
7898           CC = ISD::SETEQ;
7899           LHS = Cond;
7900           RHS=I->Low;
7901           MHS = nullptr;
7902         } else {
7903           // Check I->Low <= Cond <= I->High.
7904           CC = ISD::SETLE;
7905           LHS = I->Low;
7906           MHS = Cond;
7907           RHS = I->High;
7908         }
7909 
7910         // The false weight is the sum of all unhandled cases.
7911         UnhandledWeights -= I->Weight;
7912         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight,
7913                      UnhandledWeights);
7914 
7915         if (CurMBB == SwitchMBB)
7916           visitSwitchCase(CB, SwitchMBB);
7917         else
7918           SwitchCases.push_back(CB);
7919 
7920         break;
7921       }
7922     }
7923     CurMBB = Fallthrough;
7924   }
7925 }
7926 
7927 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
7928                                         const SwitchWorkListItem &W,
7929                                         Value *Cond,
7930                                         MachineBasicBlock *SwitchMBB) {
7931   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
7932          "Clusters not sorted?");
7933 
7934   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
7935 
7936   // Balance the tree based on branch weights to create a near-optimal (in terms
7937   // of search time given key frequency) binary search tree. See e.g. Kurt
7938   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
7939   CaseClusterIt LastLeft = W.FirstCluster;
7940   CaseClusterIt FirstRight = W.LastCluster;
7941   uint32_t LeftWeight = LastLeft->Weight;
7942   uint32_t RightWeight = FirstRight->Weight;
7943 
7944   // Move LastLeft and FirstRight towards each other from opposite directions to
7945   // find a partitioning of the clusters which balances the weight on both
7946   // sides. If LeftWeight and RightWeight are equal, alternate which side is
7947   // taken to ensure 0-weight nodes are distributed evenly.
7948   unsigned I = 0;
7949   while (LastLeft + 1 < FirstRight) {
7950     if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1)))
7951       LeftWeight += (++LastLeft)->Weight;
7952     else
7953       RightWeight += (--FirstRight)->Weight;
7954     I++;
7955   }
7956   assert(LastLeft + 1 == FirstRight);
7957   assert(LastLeft >= W.FirstCluster);
7958   assert(FirstRight <= W.LastCluster);
7959 
7960   // Use the first element on the right as pivot since we will make less-than
7961   // comparisons against it.
7962   CaseClusterIt PivotCluster = FirstRight;
7963   assert(PivotCluster > W.FirstCluster);
7964   assert(PivotCluster <= W.LastCluster);
7965 
7966   CaseClusterIt FirstLeft = W.FirstCluster;
7967   CaseClusterIt LastRight = W.LastCluster;
7968 
7969   const ConstantInt *Pivot = PivotCluster->Low;
7970 
7971   // New blocks will be inserted immediately after the current one.
7972   MachineFunction::iterator BBI = W.MBB;
7973   ++BBI;
7974 
7975   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
7976   // we can branch to its destination directly if it's squeezed exactly in
7977   // between the known lower bound and Pivot - 1.
7978   MachineBasicBlock *LeftMBB;
7979   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
7980       FirstLeft->Low == W.GE &&
7981       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
7982     LeftMBB = FirstLeft->MBB;
7983   } else {
7984     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
7985     FuncInfo.MF->insert(BBI, LeftMBB);
7986     WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot});
7987     // Put Cond in a virtual register to make it available from the new blocks.
7988     ExportFromCurrentBlock(Cond);
7989   }
7990 
7991   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
7992   // single cluster, RHS.Low == Pivot, and we can branch to its destination
7993   // directly if RHS.High equals the current upper bound.
7994   MachineBasicBlock *RightMBB;
7995   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
7996       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
7997     RightMBB = FirstRight->MBB;
7998   } else {
7999     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8000     FuncInfo.MF->insert(BBI, RightMBB);
8001     WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT});
8002     // Put Cond in a virtual register to make it available from the new blocks.
8003     ExportFromCurrentBlock(Cond);
8004   }
8005 
8006   // Create the CaseBlock record that will be used to lower the branch.
8007   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8008                LeftWeight, RightWeight);
8009 
8010   if (W.MBB == SwitchMBB)
8011     visitSwitchCase(CB, SwitchMBB);
8012   else
8013     SwitchCases.push_back(CB);
8014 }
8015 
8016 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8017   // Extract cases from the switch.
8018   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8019   CaseClusterVector Clusters;
8020   Clusters.reserve(SI.getNumCases());
8021   for (auto I : SI.cases()) {
8022     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8023     const ConstantInt *CaseVal = I.getCaseValue();
8024     uint32_t Weight =
8025         BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0;
8026     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight));
8027   }
8028 
8029   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8030 
8031   // Cluster adjacent cases with the same destination. We do this at all
8032   // optimization levels because it's cheap to do and will make codegen faster
8033   // if there are many clusters.
8034   sortAndRangeify(Clusters);
8035 
8036   if (TM.getOptLevel() != CodeGenOpt::None) {
8037     // Replace an unreachable default with the most popular destination.
8038     // FIXME: Exploit unreachable default more aggressively.
8039     bool UnreachableDefault =
8040         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8041     if (UnreachableDefault && !Clusters.empty()) {
8042       DenseMap<const BasicBlock *, unsigned> Popularity;
8043       unsigned MaxPop = 0;
8044       const BasicBlock *MaxBB = nullptr;
8045       for (auto I : SI.cases()) {
8046         const BasicBlock *BB = I.getCaseSuccessor();
8047         if (++Popularity[BB] > MaxPop) {
8048           MaxPop = Popularity[BB];
8049           MaxBB = BB;
8050         }
8051       }
8052       // Set new default.
8053       assert(MaxPop > 0 && MaxBB);
8054       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8055 
8056       // Remove cases that were pointing to the destination that is now the
8057       // default.
8058       CaseClusterVector New;
8059       New.reserve(Clusters.size());
8060       for (CaseCluster &CC : Clusters) {
8061         if (CC.MBB != DefaultMBB)
8062           New.push_back(CC);
8063       }
8064       Clusters = std::move(New);
8065     }
8066   }
8067 
8068   // If there is only the default destination, jump there directly.
8069   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8070   if (Clusters.empty()) {
8071     SwitchMBB->addSuccessor(DefaultMBB);
8072     if (DefaultMBB != NextBlock(SwitchMBB)) {
8073       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8074                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8075     }
8076     return;
8077   }
8078 
8079   if (TM.getOptLevel() != CodeGenOpt::None) {
8080     findJumpTables(Clusters, &SI, DefaultMBB);
8081     findBitTestClusters(Clusters, &SI);
8082   }
8083 
8084 
8085   DEBUG({
8086     dbgs() << "Case clusters: ";
8087     for (const CaseCluster &C : Clusters) {
8088       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8089       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8090 
8091       C.Low->getValue().print(dbgs(), true);
8092       if (C.Low != C.High) {
8093         dbgs() << '-';
8094         C.High->getValue().print(dbgs(), true);
8095       }
8096       dbgs() << ' ';
8097     }
8098     dbgs() << '\n';
8099   });
8100 
8101   assert(!Clusters.empty());
8102   SwitchWorkList WorkList;
8103   CaseClusterIt First = Clusters.begin();
8104   CaseClusterIt Last = Clusters.end() - 1;
8105   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr});
8106 
8107   while (!WorkList.empty()) {
8108     SwitchWorkListItem W = WorkList.back();
8109     WorkList.pop_back();
8110     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8111 
8112     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8113       // For optimized builds, lower large range as a balanced binary tree.
8114       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8115       continue;
8116     }
8117 
8118     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8119   }
8120 }
8121