1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits, DL)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, DL, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, 524 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasInlineAsmWithSPAdjust()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = DAG.getTarget().getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue Result; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 963 Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, Result); 967 } 968 969 return Result; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // Otherwise create a new SDValue and remember it. 1008 SDValue Val = getValueImpl(V); 1009 NodeMap[V] = Val; 1010 resolveDanglingDebugInfo(V, Val); 1011 return Val; 1012 } 1013 1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1015 /// Create an SDValue for the given value. 1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1018 1019 if (const Constant *C = dyn_cast<Constant>(V)) { 1020 EVT VT = TLI.getValueType(V->getType(), true); 1021 1022 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1023 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1024 1025 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1026 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1027 1028 if (isa<ConstantPointerNull>(C)) { 1029 unsigned AS = V->getType()->getPointerAddressSpace(); 1030 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1031 } 1032 1033 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1034 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1035 1036 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1037 return DAG.getUNDEF(VT); 1038 1039 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1040 visit(CE->getOpcode(), *CE); 1041 SDValue N1 = NodeMap[V]; 1042 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1043 return N1; 1044 } 1045 1046 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1047 SmallVector<SDValue, 4> Constants; 1048 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1049 OI != OE; ++OI) { 1050 SDNode *Val = getValue(*OI).getNode(); 1051 // If the operand is an empty aggregate, there are no values. 1052 if (!Val) continue; 1053 // Add each leaf value from the operand to the Constants list 1054 // to form a flattened list of all the values. 1055 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1056 Constants.push_back(SDValue(Val, i)); 1057 } 1058 1059 return DAG.getMergeValues(Constants, getCurSDLoc()); 1060 } 1061 1062 if (const ConstantDataSequential *CDS = 1063 dyn_cast<ConstantDataSequential>(C)) { 1064 SmallVector<SDValue, 4> Ops; 1065 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1066 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1067 // Add each leaf value from the operand to the Constants list 1068 // to form a flattened list of all the values. 1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1070 Ops.push_back(SDValue(Val, i)); 1071 } 1072 1073 if (isa<ArrayType>(CDS->getType())) 1074 return DAG.getMergeValues(Ops, getCurSDLoc()); 1075 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1076 VT, Ops); 1077 } 1078 1079 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1080 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1081 "Unknown struct or array constant!"); 1082 1083 SmallVector<EVT, 4> ValueVTs; 1084 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1085 unsigned NumElts = ValueVTs.size(); 1086 if (NumElts == 0) 1087 return SDValue(); // empty struct 1088 SmallVector<SDValue, 4> Constants(NumElts); 1089 for (unsigned i = 0; i != NumElts; ++i) { 1090 EVT EltVT = ValueVTs[i]; 1091 if (isa<UndefValue>(C)) 1092 Constants[i] = DAG.getUNDEF(EltVT); 1093 else if (EltVT.isFloatingPoint()) 1094 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1095 else 1096 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1097 } 1098 1099 return DAG.getMergeValues(Constants, getCurSDLoc()); 1100 } 1101 1102 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1103 return DAG.getBlockAddress(BA, VT); 1104 1105 VectorType *VecTy = cast<VectorType>(V->getType()); 1106 unsigned NumElements = VecTy->getNumElements(); 1107 1108 // Now that we know the number and type of the elements, get that number of 1109 // elements into the Ops array based on what kind of constant it is. 1110 SmallVector<SDValue, 16> Ops; 1111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1112 for (unsigned i = 0; i != NumElements; ++i) 1113 Ops.push_back(getValue(CV->getOperand(i))); 1114 } else { 1115 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1116 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1117 1118 SDValue Op; 1119 if (EltVT.isFloatingPoint()) 1120 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1121 else 1122 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1123 Ops.assign(NumElements, Op); 1124 } 1125 1126 // Create a BUILD_VECTOR node. 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1128 } 1129 1130 // If this is a static alloca, generate it as the frameindex instead of 1131 // computation. 1132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1133 DenseMap<const AllocaInst*, int>::iterator SI = 1134 FuncInfo.StaticAllocaMap.find(AI); 1135 if (SI != FuncInfo.StaticAllocaMap.end()) 1136 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1137 } 1138 1139 // If this is an instruction which fast-isel has deferred, select it now. 1140 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1141 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1142 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1143 SDValue Chain = DAG.getEntryNode(); 1144 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1145 } 1146 1147 llvm_unreachable("Can't get register for value!"); 1148 } 1149 1150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1152 SDValue Chain = getControlRoot(); 1153 SmallVector<ISD::OutputArg, 8> Outs; 1154 SmallVector<SDValue, 8> OutVals; 1155 1156 if (!FuncInfo.CanLowerReturn) { 1157 unsigned DemoteReg = FuncInfo.DemoteRegister; 1158 const Function *F = I.getParent()->getParent(); 1159 1160 // Emit a store of the return value through the virtual register. 1161 // Leave Outs empty so that LowerReturn won't try to load return 1162 // registers the usual way. 1163 SmallVector<EVT, 1> PtrValueVTs; 1164 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1165 PtrValueVTs); 1166 1167 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1168 SDValue RetOp = getValue(I.getOperand(0)); 1169 1170 SmallVector<EVT, 4> ValueVTs; 1171 SmallVector<uint64_t, 4> Offsets; 1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1173 unsigned NumValues = ValueVTs.size(); 1174 1175 SmallVector<SDValue, 4> Chains(NumValues); 1176 for (unsigned i = 0; i != NumValues; ++i) { 1177 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1178 RetPtr.getValueType(), RetPtr, 1179 DAG.getIntPtrConstant(Offsets[i], 1180 getCurSDLoc())); 1181 Chains[i] = 1182 DAG.getStore(Chain, getCurSDLoc(), 1183 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1184 // FIXME: better loc info would be nice. 1185 Add, MachinePointerInfo(), false, false, 0); 1186 } 1187 1188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1189 MVT::Other, Chains); 1190 } else if (I.getNumOperands() != 0) { 1191 SmallVector<EVT, 4> ValueVTs; 1192 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1193 unsigned NumValues = ValueVTs.size(); 1194 if (NumValues) { 1195 SDValue RetOp = getValue(I.getOperand(0)); 1196 1197 const Function *F = I.getParent()->getParent(); 1198 1199 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1200 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1201 Attribute::SExt)) 1202 ExtendKind = ISD::SIGN_EXTEND; 1203 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1204 Attribute::ZExt)) 1205 ExtendKind = ISD::ZERO_EXTEND; 1206 1207 LLVMContext &Context = F->getContext(); 1208 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1209 Attribute::InReg); 1210 1211 for (unsigned j = 0; j != NumValues; ++j) { 1212 EVT VT = ValueVTs[j]; 1213 1214 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1215 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1216 1217 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1218 MVT PartVT = TLI.getRegisterType(Context, VT); 1219 SmallVector<SDValue, 4> Parts(NumParts); 1220 getCopyToParts(DAG, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1222 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1223 1224 // 'inreg' on function refers to return value 1225 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1226 if (RetInReg) 1227 Flags.setInReg(); 1228 1229 // Propagate extension type if any 1230 if (ExtendKind == ISD::SIGN_EXTEND) 1231 Flags.setSExt(); 1232 else if (ExtendKind == ISD::ZERO_EXTEND) 1233 Flags.setZExt(); 1234 1235 for (unsigned i = 0; i < NumParts; ++i) { 1236 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1237 VT, /*isfixed=*/true, 0, 0)); 1238 OutVals.push_back(Parts[i]); 1239 } 1240 } 1241 } 1242 } 1243 1244 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1245 CallingConv::ID CallConv = 1246 DAG.getMachineFunction().getFunction()->getCallingConv(); 1247 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1248 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1249 1250 // Verify that the target's LowerReturn behaved as expected. 1251 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1252 "LowerReturn didn't return a valid chain!"); 1253 1254 // Update the DAG with the new chain value resulting from return lowering. 1255 DAG.setRoot(Chain); 1256 } 1257 1258 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1259 /// created for it, emit nodes to copy the value into the virtual 1260 /// registers. 1261 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1262 // Skip empty types 1263 if (V->getType()->isEmptyTy()) 1264 return; 1265 1266 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1267 if (VMI != FuncInfo.ValueMap.end()) { 1268 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1269 CopyValueToVirtualRegister(V, VMI->second); 1270 } 1271 } 1272 1273 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1274 /// the current basic block, add it to ValueMap now so that we'll get a 1275 /// CopyTo/FromReg. 1276 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1277 // No need to export constants. 1278 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1279 1280 // Already exported? 1281 if (FuncInfo.isExportedInst(V)) return; 1282 1283 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1284 CopyValueToVirtualRegister(V, Reg); 1285 } 1286 1287 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1288 const BasicBlock *FromBB) { 1289 // The operands of the setcc have to be in this block. We don't know 1290 // how to export them from some other block. 1291 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1292 // Can export from current BB. 1293 if (VI->getParent() == FromBB) 1294 return true; 1295 1296 // Is already exported, noop. 1297 return FuncInfo.isExportedInst(V); 1298 } 1299 1300 // If this is an argument, we can export it if the BB is the entry block or 1301 // if it is already exported. 1302 if (isa<Argument>(V)) { 1303 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1304 return true; 1305 1306 // Otherwise, can only export this if it is already exported. 1307 return FuncInfo.isExportedInst(V); 1308 } 1309 1310 // Otherwise, constants can always be exported. 1311 return true; 1312 } 1313 1314 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1315 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1316 const MachineBasicBlock *Dst) const { 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 if (!BPI) 1319 return 0; 1320 const BasicBlock *SrcBB = Src->getBasicBlock(); 1321 const BasicBlock *DstBB = Dst->getBasicBlock(); 1322 return BPI->getEdgeWeight(SrcBB, DstBB); 1323 } 1324 1325 void SelectionDAGBuilder:: 1326 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1327 uint32_t Weight /* = 0 */) { 1328 if (!Weight) 1329 Weight = getEdgeWeight(Src, Dst); 1330 Src->addSuccessor(Dst, Weight); 1331 } 1332 1333 1334 static bool InBlock(const Value *V, const BasicBlock *BB) { 1335 if (const Instruction *I = dyn_cast<Instruction>(V)) 1336 return I->getParent() == BB; 1337 return true; 1338 } 1339 1340 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1341 /// This function emits a branch and is used at the leaves of an OR or an 1342 /// AND operator tree. 1343 /// 1344 void 1345 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1346 MachineBasicBlock *TBB, 1347 MachineBasicBlock *FBB, 1348 MachineBasicBlock *CurBB, 1349 MachineBasicBlock *SwitchBB, 1350 uint32_t TWeight, 1351 uint32_t FWeight) { 1352 const BasicBlock *BB = CurBB->getBasicBlock(); 1353 1354 // If the leaf of the tree is a comparison, merge the condition into 1355 // the caseblock. 1356 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1357 // The operands of the cmp have to be in this block. We don't know 1358 // how to export them from some other block. If this is the first block 1359 // of the sequence, no exporting is needed. 1360 if (CurBB == SwitchBB || 1361 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1362 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1363 ISD::CondCode Condition; 1364 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1365 Condition = getICmpCondCode(IC->getPredicate()); 1366 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1367 Condition = getFCmpCondCode(FC->getPredicate()); 1368 if (TM.Options.NoNaNsFPMath) 1369 Condition = getFCmpCodeWithoutNaN(Condition); 1370 } else { 1371 (void)Condition; // silence warning. 1372 llvm_unreachable("Unknown compare instruction"); 1373 } 1374 1375 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1376 TBB, FBB, CurBB, TWeight, FWeight); 1377 SwitchCases.push_back(CB); 1378 return; 1379 } 1380 } 1381 1382 // Create a CaseBlock record representing this branch. 1383 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1384 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1385 SwitchCases.push_back(CB); 1386 } 1387 1388 /// Scale down both weights to fit into uint32_t. 1389 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1390 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1391 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1392 NewTrue = NewTrue / Scale; 1393 NewFalse = NewFalse / Scale; 1394 } 1395 1396 /// FindMergedConditions - If Cond is an expression like 1397 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1398 MachineBasicBlock *TBB, 1399 MachineBasicBlock *FBB, 1400 MachineBasicBlock *CurBB, 1401 MachineBasicBlock *SwitchBB, 1402 unsigned Opc, uint32_t TWeight, 1403 uint32_t FWeight) { 1404 // If this node is not part of the or/and tree, emit it as a branch. 1405 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1406 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1407 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1408 BOp->getParent() != CurBB->getBasicBlock() || 1409 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1410 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1411 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1412 TWeight, FWeight); 1413 return; 1414 } 1415 1416 // Create TmpBB after CurBB. 1417 MachineFunction::iterator BBI = CurBB; 1418 MachineFunction &MF = DAG.getMachineFunction(); 1419 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1420 CurBB->getParent()->insert(++BBI, TmpBB); 1421 1422 if (Opc == Instruction::Or) { 1423 // Codegen X | Y as: 1424 // BB1: 1425 // jmp_if_X TBB 1426 // jmp TmpBB 1427 // TmpBB: 1428 // jmp_if_Y TBB 1429 // jmp FBB 1430 // 1431 1432 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1433 // The requirement is that 1434 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1435 // = TrueProb for orignal BB. 1436 // Assuming the orignal weights are A and B, one choice is to set BB1's 1437 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1438 // assumes that 1439 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1440 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1441 // TmpBB, but the math is more complicated. 1442 1443 uint64_t NewTrueWeight = TWeight; 1444 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1445 ScaleWeights(NewTrueWeight, NewFalseWeight); 1446 // Emit the LHS condition. 1447 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1448 NewTrueWeight, NewFalseWeight); 1449 1450 NewTrueWeight = TWeight; 1451 NewFalseWeight = 2 * (uint64_t)FWeight; 1452 ScaleWeights(NewTrueWeight, NewFalseWeight); 1453 // Emit the RHS condition into TmpBB. 1454 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1455 NewTrueWeight, NewFalseWeight); 1456 } else { 1457 assert(Opc == Instruction::And && "Unknown merge op!"); 1458 // Codegen X & Y as: 1459 // BB1: 1460 // jmp_if_X TmpBB 1461 // jmp FBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 // This requires creation of TmpBB after CurBB. 1467 1468 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1469 // The requirement is that 1470 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1471 // = FalseProb for orignal BB. 1472 // Assuming the orignal weights are A and B, one choice is to set BB1's 1473 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1474 // assumes that 1475 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1476 1477 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1478 uint64_t NewFalseWeight = FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = 2 * (uint64_t)TWeight; 1485 NewFalseWeight = FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } 1491 } 1492 1493 /// If the set of cases should be emitted as a series of branches, return true. 1494 /// If we should emit this as a bunch of and/or'd together conditions, return 1495 /// false. 1496 bool 1497 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1498 if (Cases.size() != 2) return true; 1499 1500 // If this is two comparisons of the same values or'd or and'd together, they 1501 // will get folded into a single comparison, so don't emit two blocks. 1502 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1503 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1504 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1505 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1506 return false; 1507 } 1508 1509 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1510 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1511 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1512 Cases[0].CC == Cases[1].CC && 1513 isa<Constant>(Cases[0].CmpRHS) && 1514 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1515 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1516 return false; 1517 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1518 return false; 1519 } 1520 1521 return true; 1522 } 1523 1524 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1525 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1526 1527 // Update machine-CFG edges. 1528 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1529 1530 if (I.isUnconditional()) { 1531 // Update machine-CFG edges. 1532 BrMBB->addSuccessor(Succ0MBB); 1533 1534 // If this is not a fall-through branch or optimizations are switched off, 1535 // emit the branch. 1536 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1537 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1538 MVT::Other, getControlRoot(), 1539 DAG.getBasicBlock(Succ0MBB))); 1540 1541 return; 1542 } 1543 1544 // If this condition is one of the special cases we handle, do special stuff 1545 // now. 1546 const Value *CondVal = I.getCondition(); 1547 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1548 1549 // If this is a series of conditions that are or'd or and'd together, emit 1550 // this as a sequence of branches instead of setcc's with and/or operations. 1551 // As long as jumps are not expensive, this should improve performance. 1552 // For example, instead of something like: 1553 // cmp A, B 1554 // C = seteq 1555 // cmp D, E 1556 // F = setle 1557 // or C, F 1558 // jnz foo 1559 // Emit: 1560 // cmp A, B 1561 // je foo 1562 // cmp D, E 1563 // jle foo 1564 // 1565 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1566 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1567 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1568 BOp->getOpcode() == Instruction::Or)) { 1569 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1570 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1571 getEdgeWeight(BrMBB, Succ1MBB)); 1572 // If the compares in later blocks need to use values not currently 1573 // exported from this block, export them now. This block should always 1574 // be the first entry. 1575 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1576 1577 // Allow some cases to be rejected. 1578 if (ShouldEmitAsBranches(SwitchCases)) { 1579 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1580 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1581 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1582 } 1583 1584 // Emit the branch for this block. 1585 visitSwitchCase(SwitchCases[0], BrMBB); 1586 SwitchCases.erase(SwitchCases.begin()); 1587 return; 1588 } 1589 1590 // Okay, we decided not to do this, remove any inserted MBB's and clear 1591 // SwitchCases. 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1593 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1594 1595 SwitchCases.clear(); 1596 } 1597 } 1598 1599 // Create a CaseBlock record representing this branch. 1600 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1601 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1602 1603 // Use visitSwitchCase to actually insert the fast branch sequence for this 1604 // cond branch. 1605 visitSwitchCase(CB, BrMBB); 1606 } 1607 1608 /// visitSwitchCase - Emits the necessary code to represent a single node in 1609 /// the binary search tree resulting from lowering a switch instruction. 1610 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1611 MachineBasicBlock *SwitchBB) { 1612 SDValue Cond; 1613 SDValue CondLHS = getValue(CB.CmpLHS); 1614 SDLoc dl = getCurSDLoc(); 1615 1616 // Build the setcc now. 1617 if (!CB.CmpMHS) { 1618 // Fold "(X == true)" to X and "(X == false)" to !X to 1619 // handle common cases produced by branch lowering. 1620 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1621 CB.CC == ISD::SETEQ) 1622 Cond = CondLHS; 1623 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1624 CB.CC == ISD::SETEQ) { 1625 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1626 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1627 } else 1628 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1629 } else { 1630 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1631 1632 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1633 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1634 1635 SDValue CmpOp = getValue(CB.CmpMHS); 1636 EVT VT = CmpOp.getValueType(); 1637 1638 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1639 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1640 ISD::SETLE); 1641 } else { 1642 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1643 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1644 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1645 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1646 } 1647 } 1648 1649 // Update successor info 1650 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1651 // TrueBB and FalseBB are always different unless the incoming IR is 1652 // degenerate. This only happens when running llc on weird IR. 1653 if (CB.TrueBB != CB.FalseBB) 1654 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1655 1656 // If the lhs block is the next block, invert the condition so that we can 1657 // fall through to the lhs instead of the rhs block. 1658 if (CB.TrueBB == NextBlock(SwitchBB)) { 1659 std::swap(CB.TrueBB, CB.FalseBB); 1660 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1662 } 1663 1664 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1665 MVT::Other, getControlRoot(), Cond, 1666 DAG.getBasicBlock(CB.TrueBB)); 1667 1668 // Insert the false branch. Do this even if it's a fall through branch, 1669 // this makes it easier to do DAG optimizations which require inverting 1670 // the branch condition. 1671 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1672 DAG.getBasicBlock(CB.FalseBB)); 1673 1674 DAG.setRoot(BrCond); 1675 } 1676 1677 /// visitJumpTable - Emit JumpTable node in the current MBB 1678 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1679 // Emit the code for the jump table 1680 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1681 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1682 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1683 JT.Reg, PTy); 1684 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1685 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1686 MVT::Other, Index.getValue(1), 1687 Table, Index); 1688 DAG.setRoot(BrJumpTable); 1689 } 1690 1691 /// visitJumpTableHeader - This function emits necessary code to produce index 1692 /// in the JumpTable from switch case. 1693 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1694 JumpTableHeader &JTH, 1695 MachineBasicBlock *SwitchBB) { 1696 SDLoc dl = getCurSDLoc(); 1697 1698 // Subtract the lowest switch case value from the value being switched on and 1699 // conditional branch to default mbb if the result is greater than the 1700 // difference between smallest and largest cases. 1701 SDValue SwitchOp = getValue(JTH.SValue); 1702 EVT VT = SwitchOp.getValueType(); 1703 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1704 DAG.getConstant(JTH.First, dl, VT)); 1705 1706 // The SDNode we just created, which holds the value being switched on minus 1707 // the smallest case value, needs to be copied to a virtual register so it 1708 // can be used as an index into the jump table in a subsequent basic block. 1709 // This value may be smaller or larger than the target's pointer type, and 1710 // therefore require extension or truncating. 1711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1712 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1713 1714 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1715 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1716 JumpTableReg, SwitchOp); 1717 JT.Reg = JumpTableReg; 1718 1719 // Emit the range check for the jump table, and branch to the default block 1720 // for the switch statement if the value being switched on exceeds the largest 1721 // case in the switch. 1722 SDValue CMP = 1723 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1724 Sub.getValueType()), 1725 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1726 ISD::SETUGT); 1727 1728 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1729 MVT::Other, CopyTo, CMP, 1730 DAG.getBasicBlock(JT.Default)); 1731 1732 // Avoid emitting unnecessary branches to the next block. 1733 if (JT.MBB != NextBlock(SwitchBB)) 1734 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1735 DAG.getBasicBlock(JT.MBB)); 1736 1737 DAG.setRoot(BrCond); 1738 } 1739 1740 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1741 /// tail spliced into a stack protector check success bb. 1742 /// 1743 /// For a high level explanation of how this fits into the stack protector 1744 /// generation see the comment on the declaration of class 1745 /// StackProtectorDescriptor. 1746 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1747 MachineBasicBlock *ParentBB) { 1748 1749 // First create the loads to the guard/stack slot for the comparison. 1750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1751 EVT PtrTy = TLI.getPointerTy(); 1752 1753 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1754 int FI = MFI->getStackProtectorIndex(); 1755 1756 const Value *IRGuard = SPD.getGuard(); 1757 SDValue GuardPtr = getValue(IRGuard); 1758 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1759 1760 unsigned Align = 1761 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1762 1763 SDValue Guard; 1764 SDLoc dl = getCurSDLoc(); 1765 1766 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1767 // guard value from the virtual register holding the value. Otherwise, emit a 1768 // volatile load to retrieve the stack guard value. 1769 unsigned GuardReg = SPD.getGuardReg(); 1770 1771 if (GuardReg && TLI.useLoadStackGuardNode()) 1772 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1773 PtrTy); 1774 else 1775 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1776 GuardPtr, MachinePointerInfo(IRGuard, 0), 1777 true, false, false, Align); 1778 1779 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1780 StackSlotPtr, 1781 MachinePointerInfo::getFixedStack(FI), 1782 true, false, false, Align); 1783 1784 // Perform the comparison via a subtract/getsetcc. 1785 EVT VT = Guard.getValueType(); 1786 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1787 1788 SDValue Cmp = 1789 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1790 Sub.getValueType()), 1791 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1792 1793 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1794 // branch to failure MBB. 1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1796 MVT::Other, StackSlot.getOperand(0), 1797 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1798 // Otherwise branch to success MBB. 1799 SDValue Br = DAG.getNode(ISD::BR, dl, 1800 MVT::Other, BrCond, 1801 DAG.getBasicBlock(SPD.getSuccessMBB())); 1802 1803 DAG.setRoot(Br); 1804 } 1805 1806 /// Codegen the failure basic block for a stack protector check. 1807 /// 1808 /// A failure stack protector machine basic block consists simply of a call to 1809 /// __stack_chk_fail(). 1810 /// 1811 /// For a high level explanation of how this fits into the stack protector 1812 /// generation see the comment on the declaration of class 1813 /// StackProtectorDescriptor. 1814 void 1815 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1817 SDValue Chain = 1818 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1819 nullptr, 0, false, getCurSDLoc(), false, false).second; 1820 DAG.setRoot(Chain); 1821 } 1822 1823 /// visitBitTestHeader - This function emits necessary code to produce value 1824 /// suitable for "bit tests" 1825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1826 MachineBasicBlock *SwitchBB) { 1827 SDLoc dl = getCurSDLoc(); 1828 1829 // Subtract the minimum value 1830 SDValue SwitchOp = getValue(B.SValue); 1831 EVT VT = SwitchOp.getValueType(); 1832 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1833 DAG.getConstant(B.First, dl, VT)); 1834 1835 // Check range 1836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1837 SDValue RangeCmp = 1838 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1841 1842 // Determine the type of the test operands. 1843 bool UsePtrType = false; 1844 if (!TLI.isTypeLegal(VT)) 1845 UsePtrType = true; 1846 else { 1847 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1848 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1849 // Switch table case range are encoded into series of masks. 1850 // Just use pointer type, it's guaranteed to fit. 1851 UsePtrType = true; 1852 break; 1853 } 1854 } 1855 if (UsePtrType) { 1856 VT = TLI.getPointerTy(); 1857 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1858 } 1859 1860 B.RegVT = VT.getSimpleVT(); 1861 B.Reg = FuncInfo.CreateReg(B.RegVT); 1862 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1863 1864 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1865 1866 addSuccessorWithWeight(SwitchBB, B.Default); 1867 addSuccessorWithWeight(SwitchBB, MBB); 1868 1869 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1870 MVT::Other, CopyTo, RangeCmp, 1871 DAG.getBasicBlock(B.Default)); 1872 1873 // Avoid emitting unnecessary branches to the next block. 1874 if (MBB != NextBlock(SwitchBB)) 1875 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1876 DAG.getBasicBlock(MBB)); 1877 1878 DAG.setRoot(BrRange); 1879 } 1880 1881 /// visitBitTestCase - this function produces one "bit test" 1882 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1883 MachineBasicBlock* NextMBB, 1884 uint32_t BranchWeightToNext, 1885 unsigned Reg, 1886 BitTestCase &B, 1887 MachineBasicBlock *SwitchBB) { 1888 SDLoc dl = getCurSDLoc(); 1889 MVT VT = BB.RegVT; 1890 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1891 SDValue Cmp; 1892 unsigned PopCount = countPopulation(B.Mask); 1893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1894 if (PopCount == 1) { 1895 // Testing for a single bit; just compare the shift count with what it 1896 // would need to be to shift a 1 bit in that position. 1897 Cmp = DAG.getSetCC( 1898 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1899 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1900 } else if (PopCount == BB.Range) { 1901 // There is only one zero bit in the range, test for it directly. 1902 Cmp = DAG.getSetCC( 1903 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1904 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1905 } else { 1906 // Make desired shift 1907 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1908 DAG.getConstant(1, dl, VT), ShiftOp); 1909 1910 // Emit bit tests and jumps 1911 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1912 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1913 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1914 DAG.getConstant(0, dl, VT), ISD::SETNE); 1915 } 1916 1917 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1918 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1919 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1920 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1921 1922 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1923 MVT::Other, getControlRoot(), 1924 Cmp, DAG.getBasicBlock(B.TargetBB)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (NextMBB != NextBlock(SwitchBB)) 1928 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1929 DAG.getBasicBlock(NextMBB)); 1930 1931 DAG.setRoot(BrAnd); 1932 } 1933 1934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1935 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1936 1937 // Retrieve successors. 1938 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1939 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1940 1941 const Value *Callee(I.getCalledValue()); 1942 const Function *Fn = dyn_cast<Function>(Callee); 1943 if (isa<InlineAsm>(Callee)) 1944 visitInlineAsm(&I); 1945 else if (Fn && Fn->isIntrinsic()) { 1946 switch (Fn->getIntrinsicID()) { 1947 default: 1948 llvm_unreachable("Cannot invoke this intrinsic"); 1949 case Intrinsic::donothing: 1950 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1951 break; 1952 case Intrinsic::experimental_patchpoint_void: 1953 case Intrinsic::experimental_patchpoint_i64: 1954 visitPatchpoint(&I, LandingPad); 1955 break; 1956 case Intrinsic::experimental_gc_statepoint: 1957 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1958 break; 1959 } 1960 } else 1961 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1962 1963 // If the value of the invoke is used outside of its defining block, make it 1964 // available as a virtual register. 1965 // We already took care of the exported value for the statepoint instruction 1966 // during call to the LowerStatepoint. 1967 if (!isStatepoint(I)) { 1968 CopyToExportRegsIfNeeded(&I); 1969 } 1970 1971 // Update successor info 1972 addSuccessorWithWeight(InvokeMBB, Return); 1973 addSuccessorWithWeight(InvokeMBB, LandingPad); 1974 1975 // Drop into normal successor. 1976 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 DAG.getBasicBlock(Return))); 1979 } 1980 1981 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1982 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1983 } 1984 1985 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1986 assert(FuncInfo.MBB->isLandingPad() && 1987 "Call to landingpad not in landing pad!"); 1988 1989 MachineBasicBlock *MBB = FuncInfo.MBB; 1990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1991 AddLandingPadInfo(LP, MMI, MBB); 1992 1993 // If there aren't registers to copy the values into (e.g., during SjLj 1994 // exceptions), then don't bother to create these DAG nodes. 1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1996 if (TLI.getExceptionPointerRegister() == 0 && 1997 TLI.getExceptionSelectorRegister() == 0) 1998 return; 1999 2000 SmallVector<EVT, 2> ValueVTs; 2001 SDLoc dl = getCurSDLoc(); 2002 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2003 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2004 2005 // Get the two live-in registers as SDValues. The physregs have already been 2006 // copied into virtual registers. 2007 SDValue Ops[2]; 2008 if (FuncInfo.ExceptionPointerVirtReg) { 2009 Ops[0] = DAG.getZExtOrTrunc( 2010 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2011 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2012 dl, ValueVTs[0]); 2013 } else { 2014 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2015 } 2016 Ops[1] = DAG.getZExtOrTrunc( 2017 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2018 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2019 dl, ValueVTs[1]); 2020 2021 // Merge into one. 2022 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2023 DAG.getVTList(ValueVTs), Ops); 2024 setValue(&LP, Res); 2025 } 2026 2027 unsigned 2028 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2029 MachineBasicBlock *LPadBB) { 2030 SDValue Chain = getControlRoot(); 2031 SDLoc dl = getCurSDLoc(); 2032 2033 // Get the typeid that we will dispatch on later. 2034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2035 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2036 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2037 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2038 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2039 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2040 2041 // Branch to the main landing pad block. 2042 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2043 ClauseMBB->addSuccessor(LPadBB); 2044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2045 DAG.getBasicBlock(LPadBB))); 2046 return VReg; 2047 } 2048 2049 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2050 #ifndef NDEBUG 2051 for (const CaseCluster &CC : Clusters) 2052 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2053 #endif 2054 2055 std::sort(Clusters.begin(), Clusters.end(), 2056 [](const CaseCluster &a, const CaseCluster &b) { 2057 return a.Low->getValue().slt(b.Low->getValue()); 2058 }); 2059 2060 // Merge adjacent clusters with the same destination. 2061 const unsigned N = Clusters.size(); 2062 unsigned DstIndex = 0; 2063 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2064 CaseCluster &CC = Clusters[SrcIndex]; 2065 const ConstantInt *CaseVal = CC.Low; 2066 MachineBasicBlock *Succ = CC.MBB; 2067 2068 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2069 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2070 // If this case has the same successor and is a neighbour, merge it into 2071 // the previous cluster. 2072 Clusters[DstIndex - 1].High = CaseVal; 2073 Clusters[DstIndex - 1].Weight += CC.Weight; 2074 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2075 } else { 2076 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2077 sizeof(Clusters[SrcIndex])); 2078 } 2079 } 2080 Clusters.resize(DstIndex); 2081 } 2082 2083 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2084 MachineBasicBlock *Last) { 2085 // Update JTCases. 2086 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2087 if (JTCases[i].first.HeaderBB == First) 2088 JTCases[i].first.HeaderBB = Last; 2089 2090 // Update BitTestCases. 2091 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2092 if (BitTestCases[i].Parent == First) 2093 BitTestCases[i].Parent = Last; 2094 } 2095 2096 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2097 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2098 2099 // Update machine-CFG edges with unique successors. 2100 SmallSet<BasicBlock*, 32> Done; 2101 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2102 BasicBlock *BB = I.getSuccessor(i); 2103 bool Inserted = Done.insert(BB).second; 2104 if (!Inserted) 2105 continue; 2106 2107 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2108 addSuccessorWithWeight(IndirectBrMBB, Succ); 2109 } 2110 2111 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2112 MVT::Other, getControlRoot(), 2113 getValue(I.getAddress()))); 2114 } 2115 2116 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2117 if (DAG.getTarget().Options.TrapUnreachable) 2118 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2119 } 2120 2121 void SelectionDAGBuilder::visitFSub(const User &I) { 2122 // -0.0 - X --> fneg 2123 Type *Ty = I.getType(); 2124 if (isa<Constant>(I.getOperand(0)) && 2125 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2126 SDValue Op2 = getValue(I.getOperand(1)); 2127 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2128 Op2.getValueType(), Op2)); 2129 return; 2130 } 2131 2132 visitBinary(I, ISD::FSUB); 2133 } 2134 2135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2136 SDValue Op1 = getValue(I.getOperand(0)); 2137 SDValue Op2 = getValue(I.getOperand(1)); 2138 2139 bool nuw = false; 2140 bool nsw = false; 2141 bool exact = false; 2142 FastMathFlags FMF; 2143 2144 if (const OverflowingBinaryOperator *OFBinOp = 2145 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2146 nuw = OFBinOp->hasNoUnsignedWrap(); 2147 nsw = OFBinOp->hasNoSignedWrap(); 2148 } 2149 if (const PossiblyExactOperator *ExactOp = 2150 dyn_cast<const PossiblyExactOperator>(&I)) 2151 exact = ExactOp->isExact(); 2152 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2153 FMF = FPOp->getFastMathFlags(); 2154 2155 SDNodeFlags Flags; 2156 Flags.setExact(exact); 2157 Flags.setNoSignedWrap(nsw); 2158 Flags.setNoUnsignedWrap(nuw); 2159 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2160 Flags.setNoInfs(FMF.noInfs()); 2161 Flags.setNoNaNs(FMF.noNaNs()); 2162 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2163 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2164 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2165 Op1, Op2, &Flags); 2166 setValue(&I, BinNodeValue); 2167 } 2168 2169 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2170 SDValue Op1 = getValue(I.getOperand(0)); 2171 SDValue Op2 = getValue(I.getOperand(1)); 2172 2173 EVT ShiftTy = 2174 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2175 2176 // Coerce the shift amount to the right type if we can. 2177 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2178 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2179 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2180 SDLoc DL = getCurSDLoc(); 2181 2182 // If the operand is smaller than the shift count type, promote it. 2183 if (ShiftSize > Op2Size) 2184 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2185 2186 // If the operand is larger than the shift count type but the shift 2187 // count type has enough bits to represent any shift value, truncate 2188 // it now. This is a common case and it exposes the truncate to 2189 // optimization early. 2190 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2191 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2192 // Otherwise we'll need to temporarily settle for some other convenient 2193 // type. Type legalization will make adjustments once the shiftee is split. 2194 else 2195 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2196 } 2197 2198 bool nuw = false; 2199 bool nsw = false; 2200 bool exact = false; 2201 2202 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2203 2204 if (const OverflowingBinaryOperator *OFBinOp = 2205 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2206 nuw = OFBinOp->hasNoUnsignedWrap(); 2207 nsw = OFBinOp->hasNoSignedWrap(); 2208 } 2209 if (const PossiblyExactOperator *ExactOp = 2210 dyn_cast<const PossiblyExactOperator>(&I)) 2211 exact = ExactOp->isExact(); 2212 } 2213 SDNodeFlags Flags; 2214 Flags.setExact(exact); 2215 Flags.setNoSignedWrap(nsw); 2216 Flags.setNoUnsignedWrap(nuw); 2217 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2218 &Flags); 2219 setValue(&I, Res); 2220 } 2221 2222 void SelectionDAGBuilder::visitSDiv(const User &I) { 2223 SDValue Op1 = getValue(I.getOperand(0)); 2224 SDValue Op2 = getValue(I.getOperand(1)); 2225 2226 // Turn exact SDivs into multiplications. 2227 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2228 // exact bit. 2229 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2230 !isa<ConstantSDNode>(Op1) && 2231 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2232 setValue(&I, DAG.getTargetLoweringInfo() 2233 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2234 else 2235 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2236 Op1, Op2)); 2237 } 2238 2239 void SelectionDAGBuilder::visitICmp(const User &I) { 2240 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2241 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2242 predicate = IC->getPredicate(); 2243 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2244 predicate = ICmpInst::Predicate(IC->getPredicate()); 2245 SDValue Op1 = getValue(I.getOperand(0)); 2246 SDValue Op2 = getValue(I.getOperand(1)); 2247 ISD::CondCode Opcode = getICmpCondCode(predicate); 2248 2249 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2250 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2251 } 2252 2253 void SelectionDAGBuilder::visitFCmp(const User &I) { 2254 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2255 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2256 predicate = FC->getPredicate(); 2257 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2258 predicate = FCmpInst::Predicate(FC->getPredicate()); 2259 SDValue Op1 = getValue(I.getOperand(0)); 2260 SDValue Op2 = getValue(I.getOperand(1)); 2261 ISD::CondCode Condition = getFCmpCondCode(predicate); 2262 if (TM.Options.NoNaNsFPMath) 2263 Condition = getFCmpCodeWithoutNaN(Condition); 2264 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2265 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2266 } 2267 2268 void SelectionDAGBuilder::visitSelect(const User &I) { 2269 SmallVector<EVT, 4> ValueVTs; 2270 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2271 unsigned NumValues = ValueVTs.size(); 2272 if (NumValues == 0) return; 2273 2274 SmallVector<SDValue, 4> Values(NumValues); 2275 SDValue Cond = getValue(I.getOperand(0)); 2276 SDValue TrueVal = getValue(I.getOperand(1)); 2277 SDValue FalseVal = getValue(I.getOperand(2)); 2278 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2279 ISD::VSELECT : ISD::SELECT; 2280 2281 for (unsigned i = 0; i != NumValues; ++i) 2282 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2283 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2284 Cond, 2285 SDValue(TrueVal.getNode(), 2286 TrueVal.getResNo() + i), 2287 SDValue(FalseVal.getNode(), 2288 FalseVal.getResNo() + i)); 2289 2290 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2291 DAG.getVTList(ValueVTs), Values)); 2292 } 2293 2294 void SelectionDAGBuilder::visitTrunc(const User &I) { 2295 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2296 SDValue N = getValue(I.getOperand(0)); 2297 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2298 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2299 } 2300 2301 void SelectionDAGBuilder::visitZExt(const User &I) { 2302 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2303 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2304 SDValue N = getValue(I.getOperand(0)); 2305 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2306 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2307 } 2308 2309 void SelectionDAGBuilder::visitSExt(const User &I) { 2310 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2311 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2312 SDValue N = getValue(I.getOperand(0)); 2313 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2314 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2315 } 2316 2317 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2318 // FPTrunc is never a no-op cast, no need to check 2319 SDValue N = getValue(I.getOperand(0)); 2320 SDLoc dl = getCurSDLoc(); 2321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2322 EVT DestVT = TLI.getValueType(I.getType()); 2323 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2324 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2325 } 2326 2327 void SelectionDAGBuilder::visitFPExt(const User &I) { 2328 // FPExt is never a no-op cast, no need to check 2329 SDValue N = getValue(I.getOperand(0)); 2330 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2331 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2332 } 2333 2334 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2335 // FPToUI is never a no-op cast, no need to check 2336 SDValue N = getValue(I.getOperand(0)); 2337 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2338 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2339 } 2340 2341 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2342 // FPToSI is never a no-op cast, no need to check 2343 SDValue N = getValue(I.getOperand(0)); 2344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2345 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2346 } 2347 2348 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2349 // UIToFP is never a no-op cast, no need to check 2350 SDValue N = getValue(I.getOperand(0)); 2351 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2352 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2353 } 2354 2355 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2356 // SIToFP is never a no-op cast, no need to check 2357 SDValue N = getValue(I.getOperand(0)); 2358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2359 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2360 } 2361 2362 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2363 // What to do depends on the size of the integer and the size of the pointer. 2364 // We can either truncate, zero extend, or no-op, accordingly. 2365 SDValue N = getValue(I.getOperand(0)); 2366 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2367 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2368 } 2369 2370 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2371 // What to do depends on the size of the integer and the size of the pointer. 2372 // We can either truncate, zero extend, or no-op, accordingly. 2373 SDValue N = getValue(I.getOperand(0)); 2374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2375 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2376 } 2377 2378 void SelectionDAGBuilder::visitBitCast(const User &I) { 2379 SDValue N = getValue(I.getOperand(0)); 2380 SDLoc dl = getCurSDLoc(); 2381 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2382 2383 // BitCast assures us that source and destination are the same size so this is 2384 // either a BITCAST or a no-op. 2385 if (DestVT != N.getValueType()) 2386 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2387 DestVT, N)); // convert types. 2388 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2389 // might fold any kind of constant expression to an integer constant and that 2390 // is not what we are looking for. Only regcognize a bitcast of a genuine 2391 // constant integer as an opaque constant. 2392 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2393 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2394 /*isOpaque*/true)); 2395 else 2396 setValue(&I, N); // noop cast. 2397 } 2398 2399 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2401 const Value *SV = I.getOperand(0); 2402 SDValue N = getValue(SV); 2403 EVT DestVT = TLI.getValueType(I.getType()); 2404 2405 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2406 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2407 2408 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2409 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2410 2411 setValue(&I, N); 2412 } 2413 2414 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2416 SDValue InVec = getValue(I.getOperand(0)); 2417 SDValue InVal = getValue(I.getOperand(1)); 2418 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2419 getCurSDLoc(), TLI.getVectorIdxTy()); 2420 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2421 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2422 } 2423 2424 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2426 SDValue InVec = getValue(I.getOperand(0)); 2427 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2428 getCurSDLoc(), TLI.getVectorIdxTy()); 2429 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2430 TLI.getValueType(I.getType()), InVec, InIdx)); 2431 } 2432 2433 // Utility for visitShuffleVector - Return true if every element in Mask, 2434 // beginning from position Pos and ending in Pos+Size, falls within the 2435 // specified sequential range [L, L+Pos). or is undef. 2436 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2437 unsigned Pos, unsigned Size, int Low) { 2438 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2439 if (Mask[i] >= 0 && Mask[i] != Low) 2440 return false; 2441 return true; 2442 } 2443 2444 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2445 SDValue Src1 = getValue(I.getOperand(0)); 2446 SDValue Src2 = getValue(I.getOperand(1)); 2447 2448 SmallVector<int, 8> Mask; 2449 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2450 unsigned MaskNumElts = Mask.size(); 2451 2452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2453 EVT VT = TLI.getValueType(I.getType()); 2454 EVT SrcVT = Src1.getValueType(); 2455 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2456 2457 if (SrcNumElts == MaskNumElts) { 2458 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2459 &Mask[0])); 2460 return; 2461 } 2462 2463 // Normalize the shuffle vector since mask and vector length don't match. 2464 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2465 // Mask is longer than the source vectors and is a multiple of the source 2466 // vectors. We can use concatenate vector to make the mask and vectors 2467 // lengths match. 2468 if (SrcNumElts*2 == MaskNumElts) { 2469 // First check for Src1 in low and Src2 in high 2470 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2471 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2472 // The shuffle is concatenating two vectors together. 2473 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2474 VT, Src1, Src2)); 2475 return; 2476 } 2477 // Then check for Src2 in low and Src1 in high 2478 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2479 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2480 // The shuffle is concatenating two vectors together. 2481 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2482 VT, Src2, Src1)); 2483 return; 2484 } 2485 } 2486 2487 // Pad both vectors with undefs to make them the same length as the mask. 2488 unsigned NumConcat = MaskNumElts / SrcNumElts; 2489 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2490 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2491 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2492 2493 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2494 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2495 MOps1[0] = Src1; 2496 MOps2[0] = Src2; 2497 2498 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2499 getCurSDLoc(), VT, MOps1); 2500 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2501 getCurSDLoc(), VT, MOps2); 2502 2503 // Readjust mask for new input vector length. 2504 SmallVector<int, 8> MappedOps; 2505 for (unsigned i = 0; i != MaskNumElts; ++i) { 2506 int Idx = Mask[i]; 2507 if (Idx >= (int)SrcNumElts) 2508 Idx -= SrcNumElts - MaskNumElts; 2509 MappedOps.push_back(Idx); 2510 } 2511 2512 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2513 &MappedOps[0])); 2514 return; 2515 } 2516 2517 if (SrcNumElts > MaskNumElts) { 2518 // Analyze the access pattern of the vector to see if we can extract 2519 // two subvectors and do the shuffle. The analysis is done by calculating 2520 // the range of elements the mask access on both vectors. 2521 int MinRange[2] = { static_cast<int>(SrcNumElts), 2522 static_cast<int>(SrcNumElts)}; 2523 int MaxRange[2] = {-1, -1}; 2524 2525 for (unsigned i = 0; i != MaskNumElts; ++i) { 2526 int Idx = Mask[i]; 2527 unsigned Input = 0; 2528 if (Idx < 0) 2529 continue; 2530 2531 if (Idx >= (int)SrcNumElts) { 2532 Input = 1; 2533 Idx -= SrcNumElts; 2534 } 2535 if (Idx > MaxRange[Input]) 2536 MaxRange[Input] = Idx; 2537 if (Idx < MinRange[Input]) 2538 MinRange[Input] = Idx; 2539 } 2540 2541 // Check if the access is smaller than the vector size and can we find 2542 // a reasonable extract index. 2543 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2544 // Extract. 2545 int StartIdx[2]; // StartIdx to extract from 2546 for (unsigned Input = 0; Input < 2; ++Input) { 2547 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2548 RangeUse[Input] = 0; // Unused 2549 StartIdx[Input] = 0; 2550 continue; 2551 } 2552 2553 // Find a good start index that is a multiple of the mask length. Then 2554 // see if the rest of the elements are in range. 2555 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2556 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2557 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2558 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2559 } 2560 2561 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2562 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2563 return; 2564 } 2565 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2566 // Extract appropriate subvector and generate a vector shuffle 2567 for (unsigned Input = 0; Input < 2; ++Input) { 2568 SDValue &Src = Input == 0 ? Src1 : Src2; 2569 if (RangeUse[Input] == 0) 2570 Src = DAG.getUNDEF(VT); 2571 else { 2572 SDLoc dl = getCurSDLoc(); 2573 Src = DAG.getNode( 2574 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2575 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2576 } 2577 } 2578 2579 // Calculate new mask. 2580 SmallVector<int, 8> MappedOps; 2581 for (unsigned i = 0; i != MaskNumElts; ++i) { 2582 int Idx = Mask[i]; 2583 if (Idx >= 0) { 2584 if (Idx < (int)SrcNumElts) 2585 Idx -= StartIdx[0]; 2586 else 2587 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2588 } 2589 MappedOps.push_back(Idx); 2590 } 2591 2592 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2593 &MappedOps[0])); 2594 return; 2595 } 2596 } 2597 2598 // We can't use either concat vectors or extract subvectors so fall back to 2599 // replacing the shuffle with extract and build vector. 2600 // to insert and build vector. 2601 EVT EltVT = VT.getVectorElementType(); 2602 EVT IdxVT = TLI.getVectorIdxTy(); 2603 SDLoc dl = getCurSDLoc(); 2604 SmallVector<SDValue,8> Ops; 2605 for (unsigned i = 0; i != MaskNumElts; ++i) { 2606 int Idx = Mask[i]; 2607 SDValue Res; 2608 2609 if (Idx < 0) { 2610 Res = DAG.getUNDEF(EltVT); 2611 } else { 2612 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2613 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2614 2615 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2616 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2617 } 2618 2619 Ops.push_back(Res); 2620 } 2621 2622 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2623 } 2624 2625 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2626 const Value *Op0 = I.getOperand(0); 2627 const Value *Op1 = I.getOperand(1); 2628 Type *AggTy = I.getType(); 2629 Type *ValTy = Op1->getType(); 2630 bool IntoUndef = isa<UndefValue>(Op0); 2631 bool FromUndef = isa<UndefValue>(Op1); 2632 2633 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2634 2635 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2636 SmallVector<EVT, 4> AggValueVTs; 2637 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2638 SmallVector<EVT, 4> ValValueVTs; 2639 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2640 2641 unsigned NumAggValues = AggValueVTs.size(); 2642 unsigned NumValValues = ValValueVTs.size(); 2643 SmallVector<SDValue, 4> Values(NumAggValues); 2644 2645 // Ignore an insertvalue that produces an empty object 2646 if (!NumAggValues) { 2647 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2648 return; 2649 } 2650 2651 SDValue Agg = getValue(Op0); 2652 unsigned i = 0; 2653 // Copy the beginning value(s) from the original aggregate. 2654 for (; i != LinearIndex; ++i) 2655 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2656 SDValue(Agg.getNode(), Agg.getResNo() + i); 2657 // Copy values from the inserted value(s). 2658 if (NumValValues) { 2659 SDValue Val = getValue(Op1); 2660 for (; i != LinearIndex + NumValValues; ++i) 2661 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2662 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2663 } 2664 // Copy remaining value(s) from the original aggregate. 2665 for (; i != NumAggValues; ++i) 2666 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2667 SDValue(Agg.getNode(), Agg.getResNo() + i); 2668 2669 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2670 DAG.getVTList(AggValueVTs), Values)); 2671 } 2672 2673 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2674 const Value *Op0 = I.getOperand(0); 2675 Type *AggTy = Op0->getType(); 2676 Type *ValTy = I.getType(); 2677 bool OutOfUndef = isa<UndefValue>(Op0); 2678 2679 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2680 2681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2682 SmallVector<EVT, 4> ValValueVTs; 2683 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2684 2685 unsigned NumValValues = ValValueVTs.size(); 2686 2687 // Ignore a extractvalue that produces an empty object 2688 if (!NumValValues) { 2689 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2690 return; 2691 } 2692 2693 SmallVector<SDValue, 4> Values(NumValValues); 2694 2695 SDValue Agg = getValue(Op0); 2696 // Copy out the selected value(s). 2697 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2698 Values[i - LinearIndex] = 2699 OutOfUndef ? 2700 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2701 SDValue(Agg.getNode(), Agg.getResNo() + i); 2702 2703 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2704 DAG.getVTList(ValValueVTs), Values)); 2705 } 2706 2707 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2708 Value *Op0 = I.getOperand(0); 2709 // Note that the pointer operand may be a vector of pointers. Take the scalar 2710 // element which holds a pointer. 2711 Type *Ty = Op0->getType()->getScalarType(); 2712 unsigned AS = Ty->getPointerAddressSpace(); 2713 SDValue N = getValue(Op0); 2714 SDLoc dl = getCurSDLoc(); 2715 2716 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2717 OI != E; ++OI) { 2718 const Value *Idx = *OI; 2719 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2720 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2721 if (Field) { 2722 // N = N + Offset 2723 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2724 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2725 DAG.getConstant(Offset, dl, N.getValueType())); 2726 } 2727 2728 Ty = StTy->getElementType(Field); 2729 } else { 2730 Ty = cast<SequentialType>(Ty)->getElementType(); 2731 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2732 unsigned PtrSize = PtrTy.getSizeInBits(); 2733 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2734 2735 // If this is a constant subscript, handle it quickly. 2736 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2737 if (CI->isZero()) 2738 continue; 2739 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2740 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2741 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2742 continue; 2743 } 2744 2745 // N = N + Idx * ElementSize; 2746 SDValue IdxN = getValue(Idx); 2747 2748 // If the index is smaller or larger than intptr_t, truncate or extend 2749 // it. 2750 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2751 2752 // If this is a multiply by a power of two, turn it into a shl 2753 // immediately. This is a very common case. 2754 if (ElementSize != 1) { 2755 if (ElementSize.isPowerOf2()) { 2756 unsigned Amt = ElementSize.logBase2(); 2757 IdxN = DAG.getNode(ISD::SHL, dl, 2758 N.getValueType(), IdxN, 2759 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2760 } else { 2761 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2762 IdxN = DAG.getNode(ISD::MUL, dl, 2763 N.getValueType(), IdxN, Scale); 2764 } 2765 } 2766 2767 N = DAG.getNode(ISD::ADD, dl, 2768 N.getValueType(), N, IdxN); 2769 } 2770 } 2771 2772 setValue(&I, N); 2773 } 2774 2775 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2776 // If this is a fixed sized alloca in the entry block of the function, 2777 // allocate it statically on the stack. 2778 if (FuncInfo.StaticAllocaMap.count(&I)) 2779 return; // getValue will auto-populate this. 2780 2781 SDLoc dl = getCurSDLoc(); 2782 Type *Ty = I.getAllocatedType(); 2783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2784 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2785 unsigned Align = 2786 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2787 I.getAlignment()); 2788 2789 SDValue AllocSize = getValue(I.getArraySize()); 2790 2791 EVT IntPtr = TLI.getPointerTy(); 2792 if (AllocSize.getValueType() != IntPtr) 2793 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2794 2795 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2796 AllocSize, 2797 DAG.getConstant(TySize, dl, IntPtr)); 2798 2799 // Handle alignment. If the requested alignment is less than or equal to 2800 // the stack alignment, ignore it. If the size is greater than or equal to 2801 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2802 unsigned StackAlign = 2803 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2804 if (Align <= StackAlign) 2805 Align = 0; 2806 2807 // Round the size of the allocation up to the stack alignment size 2808 // by add SA-1 to the size. 2809 AllocSize = DAG.getNode(ISD::ADD, dl, 2810 AllocSize.getValueType(), AllocSize, 2811 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2812 2813 // Mask out the low bits for alignment purposes. 2814 AllocSize = DAG.getNode(ISD::AND, dl, 2815 AllocSize.getValueType(), AllocSize, 2816 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2817 dl)); 2818 2819 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2820 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2821 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2822 setValue(&I, DSA); 2823 DAG.setRoot(DSA.getValue(1)); 2824 2825 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2826 } 2827 2828 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2829 if (I.isAtomic()) 2830 return visitAtomicLoad(I); 2831 2832 const Value *SV = I.getOperand(0); 2833 SDValue Ptr = getValue(SV); 2834 2835 Type *Ty = I.getType(); 2836 2837 bool isVolatile = I.isVolatile(); 2838 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2839 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2840 unsigned Alignment = I.getAlignment(); 2841 2842 AAMDNodes AAInfo; 2843 I.getAAMetadata(AAInfo); 2844 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2845 2846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2847 SmallVector<EVT, 4> ValueVTs; 2848 SmallVector<uint64_t, 4> Offsets; 2849 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2850 unsigned NumValues = ValueVTs.size(); 2851 if (NumValues == 0) 2852 return; 2853 2854 SDValue Root; 2855 bool ConstantMemory = false; 2856 if (isVolatile || NumValues > MaxParallelChains) 2857 // Serialize volatile loads with other side effects. 2858 Root = getRoot(); 2859 else if (AA->pointsToConstantMemory( 2860 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2861 // Do not serialize (non-volatile) loads of constant memory with anything. 2862 Root = DAG.getEntryNode(); 2863 ConstantMemory = true; 2864 } else { 2865 // Do not serialize non-volatile loads against each other. 2866 Root = DAG.getRoot(); 2867 } 2868 2869 SDLoc dl = getCurSDLoc(); 2870 2871 if (isVolatile) 2872 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2873 2874 SmallVector<SDValue, 4> Values(NumValues); 2875 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2876 NumValues)); 2877 EVT PtrVT = Ptr.getValueType(); 2878 unsigned ChainI = 0; 2879 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2880 // Serializing loads here may result in excessive register pressure, and 2881 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2882 // could recover a bit by hoisting nodes upward in the chain by recognizing 2883 // they are side-effect free or do not alias. The optimizer should really 2884 // avoid this case by converting large object/array copies to llvm.memcpy 2885 // (MaxParallelChains should always remain as failsafe). 2886 if (ChainI == MaxParallelChains) { 2887 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2888 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2889 makeArrayRef(Chains.data(), ChainI)); 2890 Root = Chain; 2891 ChainI = 0; 2892 } 2893 SDValue A = DAG.getNode(ISD::ADD, dl, 2894 PtrVT, Ptr, 2895 DAG.getConstant(Offsets[i], dl, PtrVT)); 2896 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2897 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2898 isNonTemporal, isInvariant, Alignment, AAInfo, 2899 Ranges); 2900 2901 Values[i] = L; 2902 Chains[ChainI] = L.getValue(1); 2903 } 2904 2905 if (!ConstantMemory) { 2906 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2907 makeArrayRef(Chains.data(), ChainI)); 2908 if (isVolatile) 2909 DAG.setRoot(Chain); 2910 else 2911 PendingLoads.push_back(Chain); 2912 } 2913 2914 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2915 DAG.getVTList(ValueVTs), Values)); 2916 } 2917 2918 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2919 if (I.isAtomic()) 2920 return visitAtomicStore(I); 2921 2922 const Value *SrcV = I.getOperand(0); 2923 const Value *PtrV = I.getOperand(1); 2924 2925 SmallVector<EVT, 4> ValueVTs; 2926 SmallVector<uint64_t, 4> Offsets; 2927 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2928 ValueVTs, &Offsets); 2929 unsigned NumValues = ValueVTs.size(); 2930 if (NumValues == 0) 2931 return; 2932 2933 // Get the lowered operands. Note that we do this after 2934 // checking if NumResults is zero, because with zero results 2935 // the operands won't have values in the map. 2936 SDValue Src = getValue(SrcV); 2937 SDValue Ptr = getValue(PtrV); 2938 2939 SDValue Root = getRoot(); 2940 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2941 NumValues)); 2942 EVT PtrVT = Ptr.getValueType(); 2943 bool isVolatile = I.isVolatile(); 2944 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2945 unsigned Alignment = I.getAlignment(); 2946 SDLoc dl = getCurSDLoc(); 2947 2948 AAMDNodes AAInfo; 2949 I.getAAMetadata(AAInfo); 2950 2951 unsigned ChainI = 0; 2952 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2953 // See visitLoad comments. 2954 if (ChainI == MaxParallelChains) { 2955 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2956 makeArrayRef(Chains.data(), ChainI)); 2957 Root = Chain; 2958 ChainI = 0; 2959 } 2960 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 2961 DAG.getConstant(Offsets[i], dl, PtrVT)); 2962 SDValue St = DAG.getStore(Root, dl, 2963 SDValue(Src.getNode(), Src.getResNo() + i), 2964 Add, MachinePointerInfo(PtrV, Offsets[i]), 2965 isVolatile, isNonTemporal, Alignment, AAInfo); 2966 Chains[ChainI] = St; 2967 } 2968 2969 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2970 makeArrayRef(Chains.data(), ChainI)); 2971 DAG.setRoot(StoreNode); 2972 } 2973 2974 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 2975 SDLoc sdl = getCurSDLoc(); 2976 2977 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 2978 Value *PtrOperand = I.getArgOperand(1); 2979 SDValue Ptr = getValue(PtrOperand); 2980 SDValue Src0 = getValue(I.getArgOperand(0)); 2981 SDValue Mask = getValue(I.getArgOperand(3)); 2982 EVT VT = Src0.getValueType(); 2983 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 2984 if (!Alignment) 2985 Alignment = DAG.getEVTAlignment(VT); 2986 2987 AAMDNodes AAInfo; 2988 I.getAAMetadata(AAInfo); 2989 2990 MachineMemOperand *MMO = 2991 DAG.getMachineFunction(). 2992 getMachineMemOperand(MachinePointerInfo(PtrOperand), 2993 MachineMemOperand::MOStore, VT.getStoreSize(), 2994 Alignment, AAInfo); 2995 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 2996 MMO, false); 2997 DAG.setRoot(StoreNode); 2998 setValue(&I, StoreNode); 2999 } 3000 3001 // Gather/scatter receive a vector of pointers. 3002 // This vector of pointers may be represented as a base pointer + vector of 3003 // indices, it depends on GEP and instruction preceeding GEP 3004 // that calculates indices 3005 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3006 SelectionDAGBuilder* SDB) { 3007 3008 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3009 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3010 if (!Gep || Gep->getNumOperands() > 2) 3011 return false; 3012 ShuffleVectorInst *ShuffleInst = 3013 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3014 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3015 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3016 Instruction::InsertElement) 3017 return false; 3018 3019 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3020 3021 SelectionDAG& DAG = SDB->DAG; 3022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3023 // Check is the Ptr is inside current basic block 3024 // If not, look for the shuffle instruction 3025 if (SDB->findValue(Ptr)) 3026 Base = SDB->getValue(Ptr); 3027 else if (SDB->findValue(ShuffleInst)) { 3028 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3029 SDLoc sdl = ShuffleNode; 3030 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3031 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3032 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3033 SDB->setValue(Ptr, Base); 3034 } 3035 else 3036 return false; 3037 3038 Value *IndexVal = Gep->getOperand(1); 3039 if (SDB->findValue(IndexVal)) { 3040 Index = SDB->getValue(IndexVal); 3041 3042 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3043 IndexVal = Sext->getOperand(0); 3044 if (SDB->findValue(IndexVal)) 3045 Index = SDB->getValue(IndexVal); 3046 } 3047 return true; 3048 } 3049 return false; 3050 } 3051 3052 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3053 SDLoc sdl = getCurSDLoc(); 3054 3055 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3056 Value *Ptr = I.getArgOperand(1); 3057 SDValue Src0 = getValue(I.getArgOperand(0)); 3058 SDValue Mask = getValue(I.getArgOperand(3)); 3059 EVT VT = Src0.getValueType(); 3060 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3061 if (!Alignment) 3062 Alignment = DAG.getEVTAlignment(VT); 3063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3064 3065 AAMDNodes AAInfo; 3066 I.getAAMetadata(AAInfo); 3067 3068 SDValue Base; 3069 SDValue Index; 3070 Value *BasePtr = Ptr; 3071 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3072 3073 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3074 MachineMemOperand *MMO = DAG.getMachineFunction(). 3075 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3076 MachineMemOperand::MOStore, VT.getStoreSize(), 3077 Alignment, AAInfo); 3078 if (!UniformBase) { 3079 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3080 Index = getValue(Ptr); 3081 } 3082 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3083 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3084 Ops, MMO); 3085 DAG.setRoot(Scatter); 3086 setValue(&I, Scatter); 3087 } 3088 3089 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3090 SDLoc sdl = getCurSDLoc(); 3091 3092 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3093 Value *PtrOperand = I.getArgOperand(0); 3094 SDValue Ptr = getValue(PtrOperand); 3095 SDValue Src0 = getValue(I.getArgOperand(3)); 3096 SDValue Mask = getValue(I.getArgOperand(2)); 3097 3098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3099 EVT VT = TLI.getValueType(I.getType()); 3100 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3101 if (!Alignment) 3102 Alignment = DAG.getEVTAlignment(VT); 3103 3104 AAMDNodes AAInfo; 3105 I.getAAMetadata(AAInfo); 3106 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3107 3108 SDValue InChain = DAG.getRoot(); 3109 if (AA->pointsToConstantMemory( 3110 AliasAnalysis::Location(PtrOperand, 3111 AA->getTypeStoreSize(I.getType()), 3112 AAInfo))) { 3113 // Do not serialize (non-volatile) loads of constant memory with anything. 3114 InChain = DAG.getEntryNode(); 3115 } 3116 3117 MachineMemOperand *MMO = 3118 DAG.getMachineFunction(). 3119 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3120 MachineMemOperand::MOLoad, VT.getStoreSize(), 3121 Alignment, AAInfo, Ranges); 3122 3123 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3124 ISD::NON_EXTLOAD); 3125 SDValue OutChain = Load.getValue(1); 3126 DAG.setRoot(OutChain); 3127 setValue(&I, Load); 3128 } 3129 3130 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3131 SDLoc sdl = getCurSDLoc(); 3132 3133 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3134 Value *Ptr = I.getArgOperand(0); 3135 SDValue Src0 = getValue(I.getArgOperand(3)); 3136 SDValue Mask = getValue(I.getArgOperand(2)); 3137 3138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3139 EVT VT = TLI.getValueType(I.getType()); 3140 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3141 if (!Alignment) 3142 Alignment = DAG.getEVTAlignment(VT); 3143 3144 AAMDNodes AAInfo; 3145 I.getAAMetadata(AAInfo); 3146 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3147 3148 SDValue Root = DAG.getRoot(); 3149 SDValue Base; 3150 SDValue Index; 3151 Value *BasePtr = Ptr; 3152 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3153 bool ConstantMemory = false; 3154 if (UniformBase && AA->pointsToConstantMemory( 3155 AliasAnalysis::Location(BasePtr, 3156 AA->getTypeStoreSize(I.getType()), 3157 AAInfo))) { 3158 // Do not serialize (non-volatile) loads of constant memory with anything. 3159 Root = DAG.getEntryNode(); 3160 ConstantMemory = true; 3161 } 3162 3163 MachineMemOperand *MMO = 3164 DAG.getMachineFunction(). 3165 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3166 MachineMemOperand::MOLoad, VT.getStoreSize(), 3167 Alignment, AAInfo, Ranges); 3168 3169 if (!UniformBase) { 3170 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3171 Index = getValue(Ptr); 3172 } 3173 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3174 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3175 Ops, MMO); 3176 3177 SDValue OutChain = Gather.getValue(1); 3178 if (!ConstantMemory) 3179 PendingLoads.push_back(OutChain); 3180 setValue(&I, Gather); 3181 } 3182 3183 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3184 SDLoc dl = getCurSDLoc(); 3185 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3186 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3187 SynchronizationScope Scope = I.getSynchScope(); 3188 3189 SDValue InChain = getRoot(); 3190 3191 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3192 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3193 SDValue L = DAG.getAtomicCmpSwap( 3194 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3195 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3196 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3197 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3198 3199 SDValue OutChain = L.getValue(2); 3200 3201 setValue(&I, L); 3202 DAG.setRoot(OutChain); 3203 } 3204 3205 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3206 SDLoc dl = getCurSDLoc(); 3207 ISD::NodeType NT; 3208 switch (I.getOperation()) { 3209 default: llvm_unreachable("Unknown atomicrmw operation"); 3210 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3211 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3212 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3213 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3214 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3215 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3216 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3217 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3218 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3219 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3220 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3221 } 3222 AtomicOrdering Order = I.getOrdering(); 3223 SynchronizationScope Scope = I.getSynchScope(); 3224 3225 SDValue InChain = getRoot(); 3226 3227 SDValue L = 3228 DAG.getAtomic(NT, dl, 3229 getValue(I.getValOperand()).getSimpleValueType(), 3230 InChain, 3231 getValue(I.getPointerOperand()), 3232 getValue(I.getValOperand()), 3233 I.getPointerOperand(), 3234 /* Alignment=*/ 0, Order, Scope); 3235 3236 SDValue OutChain = L.getValue(1); 3237 3238 setValue(&I, L); 3239 DAG.setRoot(OutChain); 3240 } 3241 3242 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3243 SDLoc dl = getCurSDLoc(); 3244 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3245 SDValue Ops[3]; 3246 Ops[0] = getRoot(); 3247 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3248 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3249 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3250 } 3251 3252 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3253 SDLoc dl = getCurSDLoc(); 3254 AtomicOrdering Order = I.getOrdering(); 3255 SynchronizationScope Scope = I.getSynchScope(); 3256 3257 SDValue InChain = getRoot(); 3258 3259 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3260 EVT VT = TLI.getValueType(I.getType()); 3261 3262 if (I.getAlignment() < VT.getSizeInBits() / 8) 3263 report_fatal_error("Cannot generate unaligned atomic load"); 3264 3265 MachineMemOperand *MMO = 3266 DAG.getMachineFunction(). 3267 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3268 MachineMemOperand::MOVolatile | 3269 MachineMemOperand::MOLoad, 3270 VT.getStoreSize(), 3271 I.getAlignment() ? I.getAlignment() : 3272 DAG.getEVTAlignment(VT)); 3273 3274 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3275 SDValue L = 3276 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3277 getValue(I.getPointerOperand()), MMO, 3278 Order, Scope); 3279 3280 SDValue OutChain = L.getValue(1); 3281 3282 setValue(&I, L); 3283 DAG.setRoot(OutChain); 3284 } 3285 3286 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3287 SDLoc dl = getCurSDLoc(); 3288 3289 AtomicOrdering Order = I.getOrdering(); 3290 SynchronizationScope Scope = I.getSynchScope(); 3291 3292 SDValue InChain = getRoot(); 3293 3294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3295 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3296 3297 if (I.getAlignment() < VT.getSizeInBits() / 8) 3298 report_fatal_error("Cannot generate unaligned atomic store"); 3299 3300 SDValue OutChain = 3301 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3302 InChain, 3303 getValue(I.getPointerOperand()), 3304 getValue(I.getValueOperand()), 3305 I.getPointerOperand(), I.getAlignment(), 3306 Order, Scope); 3307 3308 DAG.setRoot(OutChain); 3309 } 3310 3311 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3312 /// node. 3313 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3314 unsigned Intrinsic) { 3315 bool HasChain = !I.doesNotAccessMemory(); 3316 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3317 3318 // Build the operand list. 3319 SmallVector<SDValue, 8> Ops; 3320 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3321 if (OnlyLoad) { 3322 // We don't need to serialize loads against other loads. 3323 Ops.push_back(DAG.getRoot()); 3324 } else { 3325 Ops.push_back(getRoot()); 3326 } 3327 } 3328 3329 // Info is set by getTgtMemInstrinsic 3330 TargetLowering::IntrinsicInfo Info; 3331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3332 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3333 3334 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3335 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3336 Info.opc == ISD::INTRINSIC_W_CHAIN) 3337 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3338 TLI.getPointerTy())); 3339 3340 // Add all operands of the call to the operand list. 3341 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3342 SDValue Op = getValue(I.getArgOperand(i)); 3343 Ops.push_back(Op); 3344 } 3345 3346 SmallVector<EVT, 4> ValueVTs; 3347 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3348 3349 if (HasChain) 3350 ValueVTs.push_back(MVT::Other); 3351 3352 SDVTList VTs = DAG.getVTList(ValueVTs); 3353 3354 // Create the node. 3355 SDValue Result; 3356 if (IsTgtIntrinsic) { 3357 // This is target intrinsic that touches memory 3358 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3359 VTs, Ops, Info.memVT, 3360 MachinePointerInfo(Info.ptrVal, Info.offset), 3361 Info.align, Info.vol, 3362 Info.readMem, Info.writeMem, Info.size); 3363 } else if (!HasChain) { 3364 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3365 } else if (!I.getType()->isVoidTy()) { 3366 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3367 } else { 3368 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3369 } 3370 3371 if (HasChain) { 3372 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3373 if (OnlyLoad) 3374 PendingLoads.push_back(Chain); 3375 else 3376 DAG.setRoot(Chain); 3377 } 3378 3379 if (!I.getType()->isVoidTy()) { 3380 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3381 EVT VT = TLI.getValueType(PTy); 3382 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3383 } 3384 3385 setValue(&I, Result); 3386 } 3387 } 3388 3389 /// GetSignificand - Get the significand and build it into a floating-point 3390 /// number with exponent of 1: 3391 /// 3392 /// Op = (Op & 0x007fffff) | 0x3f800000; 3393 /// 3394 /// where Op is the hexadecimal representation of floating point value. 3395 static SDValue 3396 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3397 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3398 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3399 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3400 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3401 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3402 } 3403 3404 /// GetExponent - Get the exponent: 3405 /// 3406 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3407 /// 3408 /// where Op is the hexadecimal representation of floating point value. 3409 static SDValue 3410 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3411 SDLoc dl) { 3412 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3413 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3414 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3415 DAG.getConstant(23, dl, TLI.getPointerTy())); 3416 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3417 DAG.getConstant(127, dl, MVT::i32)); 3418 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3419 } 3420 3421 /// getF32Constant - Get 32-bit floating point constant. 3422 static SDValue 3423 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3424 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3425 MVT::f32); 3426 } 3427 3428 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3429 SelectionDAG &DAG) { 3430 // IntegerPartOfX = ((int32_t)(t0); 3431 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3432 3433 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3434 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3435 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3436 3437 // IntegerPartOfX <<= 23; 3438 IntegerPartOfX = DAG.getNode( 3439 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3440 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3441 3442 SDValue TwoToFractionalPartOfX; 3443 if (LimitFloatPrecision <= 6) { 3444 // For floating-point precision of 6: 3445 // 3446 // TwoToFractionalPartOfX = 3447 // 0.997535578f + 3448 // (0.735607626f + 0.252464424f * x) * x; 3449 // 3450 // error 0.0144103317, which is 6 bits 3451 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3452 getF32Constant(DAG, 0x3e814304, dl)); 3453 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3454 getF32Constant(DAG, 0x3f3c50c8, dl)); 3455 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3456 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3457 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3458 } else if (LimitFloatPrecision <= 12) { 3459 // For floating-point precision of 12: 3460 // 3461 // TwoToFractionalPartOfX = 3462 // 0.999892986f + 3463 // (0.696457318f + 3464 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3465 // 3466 // error 0.000107046256, which is 13 to 14 bits 3467 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3468 getF32Constant(DAG, 0x3da235e3, dl)); 3469 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3470 getF32Constant(DAG, 0x3e65b8f3, dl)); 3471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3473 getF32Constant(DAG, 0x3f324b07, dl)); 3474 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3475 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3476 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3477 } else { // LimitFloatPrecision <= 18 3478 // For floating-point precision of 18: 3479 // 3480 // TwoToFractionalPartOfX = 3481 // 0.999999982f + 3482 // (0.693148872f + 3483 // (0.240227044f + 3484 // (0.554906021e-1f + 3485 // (0.961591928e-2f + 3486 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3487 // error 2.47208000*10^(-7), which is better than 18 bits 3488 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3489 getF32Constant(DAG, 0x3924b03e, dl)); 3490 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3491 getF32Constant(DAG, 0x3ab24b87, dl)); 3492 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3493 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3494 getF32Constant(DAG, 0x3c1d8c17, dl)); 3495 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3496 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3497 getF32Constant(DAG, 0x3d634a1d, dl)); 3498 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3499 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3500 getF32Constant(DAG, 0x3e75fe14, dl)); 3501 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3502 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3503 getF32Constant(DAG, 0x3f317234, dl)); 3504 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3505 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3506 getF32Constant(DAG, 0x3f800000, dl)); 3507 } 3508 3509 // Add the exponent into the result in integer domain. 3510 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3511 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3512 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3513 } 3514 3515 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3516 /// limited-precision mode. 3517 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3518 const TargetLowering &TLI) { 3519 if (Op.getValueType() == MVT::f32 && 3520 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3521 3522 // Put the exponent in the right bit position for later addition to the 3523 // final result: 3524 // 3525 // #define LOG2OFe 1.4426950f 3526 // t0 = Op * LOG2OFe 3527 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3528 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3529 return getLimitedPrecisionExp2(t0, dl, DAG); 3530 } 3531 3532 // No special expansion. 3533 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3534 } 3535 3536 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3537 /// limited-precision mode. 3538 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3539 const TargetLowering &TLI) { 3540 if (Op.getValueType() == MVT::f32 && 3541 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3542 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3543 3544 // Scale the exponent by log(2) [0.69314718f]. 3545 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3546 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3547 getF32Constant(DAG, 0x3f317218, dl)); 3548 3549 // Get the significand and build it into a floating-point number with 3550 // exponent of 1. 3551 SDValue X = GetSignificand(DAG, Op1, dl); 3552 3553 SDValue LogOfMantissa; 3554 if (LimitFloatPrecision <= 6) { 3555 // For floating-point precision of 6: 3556 // 3557 // LogofMantissa = 3558 // -1.1609546f + 3559 // (1.4034025f - 0.23903021f * x) * x; 3560 // 3561 // error 0.0034276066, which is better than 8 bits 3562 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3563 getF32Constant(DAG, 0xbe74c456, dl)); 3564 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3565 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3566 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3567 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3568 getF32Constant(DAG, 0x3f949a29, dl)); 3569 } else if (LimitFloatPrecision <= 12) { 3570 // For floating-point precision of 12: 3571 // 3572 // LogOfMantissa = 3573 // -1.7417939f + 3574 // (2.8212026f + 3575 // (-1.4699568f + 3576 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3577 // 3578 // error 0.000061011436, which is 14 bits 3579 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3580 getF32Constant(DAG, 0xbd67b6d6, dl)); 3581 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3582 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3583 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3584 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3585 getF32Constant(DAG, 0x3fbc278b, dl)); 3586 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3587 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3588 getF32Constant(DAG, 0x40348e95, dl)); 3589 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3590 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3591 getF32Constant(DAG, 0x3fdef31a, dl)); 3592 } else { // LimitFloatPrecision <= 18 3593 // For floating-point precision of 18: 3594 // 3595 // LogOfMantissa = 3596 // -2.1072184f + 3597 // (4.2372794f + 3598 // (-3.7029485f + 3599 // (2.2781945f + 3600 // (-0.87823314f + 3601 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3602 // 3603 // error 0.0000023660568, which is better than 18 bits 3604 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3605 getF32Constant(DAG, 0xbc91e5ac, dl)); 3606 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3607 getF32Constant(DAG, 0x3e4350aa, dl)); 3608 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3609 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3610 getF32Constant(DAG, 0x3f60d3e3, dl)); 3611 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3612 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3613 getF32Constant(DAG, 0x4011cdf0, dl)); 3614 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3615 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3616 getF32Constant(DAG, 0x406cfd1c, dl)); 3617 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3618 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3619 getF32Constant(DAG, 0x408797cb, dl)); 3620 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3621 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3622 getF32Constant(DAG, 0x4006dcab, dl)); 3623 } 3624 3625 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3626 } 3627 3628 // No special expansion. 3629 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3630 } 3631 3632 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3633 /// limited-precision mode. 3634 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3635 const TargetLowering &TLI) { 3636 if (Op.getValueType() == MVT::f32 && 3637 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3638 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3639 3640 // Get the exponent. 3641 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3642 3643 // Get the significand and build it into a floating-point number with 3644 // exponent of 1. 3645 SDValue X = GetSignificand(DAG, Op1, dl); 3646 3647 // Different possible minimax approximations of significand in 3648 // floating-point for various degrees of accuracy over [1,2]. 3649 SDValue Log2ofMantissa; 3650 if (LimitFloatPrecision <= 6) { 3651 // For floating-point precision of 6: 3652 // 3653 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3654 // 3655 // error 0.0049451742, which is more than 7 bits 3656 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3657 getF32Constant(DAG, 0xbeb08fe0, dl)); 3658 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3659 getF32Constant(DAG, 0x40019463, dl)); 3660 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3661 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3662 getF32Constant(DAG, 0x3fd6633d, dl)); 3663 } else if (LimitFloatPrecision <= 12) { 3664 // For floating-point precision of 12: 3665 // 3666 // Log2ofMantissa = 3667 // -2.51285454f + 3668 // (4.07009056f + 3669 // (-2.12067489f + 3670 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3671 // 3672 // error 0.0000876136000, which is better than 13 bits 3673 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3674 getF32Constant(DAG, 0xbda7262e, dl)); 3675 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3676 getF32Constant(DAG, 0x3f25280b, dl)); 3677 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3678 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3679 getF32Constant(DAG, 0x4007b923, dl)); 3680 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3681 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3682 getF32Constant(DAG, 0x40823e2f, dl)); 3683 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3684 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3685 getF32Constant(DAG, 0x4020d29c, dl)); 3686 } else { // LimitFloatPrecision <= 18 3687 // For floating-point precision of 18: 3688 // 3689 // Log2ofMantissa = 3690 // -3.0400495f + 3691 // (6.1129976f + 3692 // (-5.3420409f + 3693 // (3.2865683f + 3694 // (-1.2669343f + 3695 // (0.27515199f - 3696 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3697 // 3698 // error 0.0000018516, which is better than 18 bits 3699 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3700 getF32Constant(DAG, 0xbcd2769e, dl)); 3701 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3702 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3703 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3704 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3705 getF32Constant(DAG, 0x3fa22ae7, dl)); 3706 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3707 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3708 getF32Constant(DAG, 0x40525723, dl)); 3709 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3710 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3711 getF32Constant(DAG, 0x40aaf200, dl)); 3712 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3713 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3714 getF32Constant(DAG, 0x40c39dad, dl)); 3715 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3716 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3717 getF32Constant(DAG, 0x4042902c, dl)); 3718 } 3719 3720 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3721 } 3722 3723 // No special expansion. 3724 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3725 } 3726 3727 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3728 /// limited-precision mode. 3729 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3730 const TargetLowering &TLI) { 3731 if (Op.getValueType() == MVT::f32 && 3732 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3733 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3734 3735 // Scale the exponent by log10(2) [0.30102999f]. 3736 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3737 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3738 getF32Constant(DAG, 0x3e9a209a, dl)); 3739 3740 // Get the significand and build it into a floating-point number with 3741 // exponent of 1. 3742 SDValue X = GetSignificand(DAG, Op1, dl); 3743 3744 SDValue Log10ofMantissa; 3745 if (LimitFloatPrecision <= 6) { 3746 // For floating-point precision of 6: 3747 // 3748 // Log10ofMantissa = 3749 // -0.50419619f + 3750 // (0.60948995f - 0.10380950f * x) * x; 3751 // 3752 // error 0.0014886165, which is 6 bits 3753 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3754 getF32Constant(DAG, 0xbdd49a13, dl)); 3755 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3756 getF32Constant(DAG, 0x3f1c0789, dl)); 3757 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3758 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3759 getF32Constant(DAG, 0x3f011300, dl)); 3760 } else if (LimitFloatPrecision <= 12) { 3761 // For floating-point precision of 12: 3762 // 3763 // Log10ofMantissa = 3764 // -0.64831180f + 3765 // (0.91751397f + 3766 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3767 // 3768 // error 0.00019228036, which is better than 12 bits 3769 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3770 getF32Constant(DAG, 0x3d431f31, dl)); 3771 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3772 getF32Constant(DAG, 0x3ea21fb2, dl)); 3773 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3774 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3775 getF32Constant(DAG, 0x3f6ae232, dl)); 3776 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3777 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3778 getF32Constant(DAG, 0x3f25f7c3, dl)); 3779 } else { // LimitFloatPrecision <= 18 3780 // For floating-point precision of 18: 3781 // 3782 // Log10ofMantissa = 3783 // -0.84299375f + 3784 // (1.5327582f + 3785 // (-1.0688956f + 3786 // (0.49102474f + 3787 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3788 // 3789 // error 0.0000037995730, which is better than 18 bits 3790 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3791 getF32Constant(DAG, 0x3c5d51ce, dl)); 3792 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3793 getF32Constant(DAG, 0x3e00685a, dl)); 3794 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3795 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3796 getF32Constant(DAG, 0x3efb6798, dl)); 3797 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3798 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3799 getF32Constant(DAG, 0x3f88d192, dl)); 3800 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3801 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3802 getF32Constant(DAG, 0x3fc4316c, dl)); 3803 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3804 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3805 getF32Constant(DAG, 0x3f57ce70, dl)); 3806 } 3807 3808 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3809 } 3810 3811 // No special expansion. 3812 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3813 } 3814 3815 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3816 /// limited-precision mode. 3817 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3818 const TargetLowering &TLI) { 3819 if (Op.getValueType() == MVT::f32 && 3820 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3821 return getLimitedPrecisionExp2(Op, dl, DAG); 3822 3823 // No special expansion. 3824 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3825 } 3826 3827 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3828 /// limited-precision mode with x == 10.0f. 3829 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3830 SelectionDAG &DAG, const TargetLowering &TLI) { 3831 bool IsExp10 = false; 3832 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3833 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3834 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3835 APFloat Ten(10.0f); 3836 IsExp10 = LHSC->isExactlyValue(Ten); 3837 } 3838 } 3839 3840 if (IsExp10) { 3841 // Put the exponent in the right bit position for later addition to the 3842 // final result: 3843 // 3844 // #define LOG2OF10 3.3219281f 3845 // t0 = Op * LOG2OF10; 3846 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3847 getF32Constant(DAG, 0x40549a78, dl)); 3848 return getLimitedPrecisionExp2(t0, dl, DAG); 3849 } 3850 3851 // No special expansion. 3852 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3853 } 3854 3855 3856 /// ExpandPowI - Expand a llvm.powi intrinsic. 3857 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3858 SelectionDAG &DAG) { 3859 // If RHS is a constant, we can expand this out to a multiplication tree, 3860 // otherwise we end up lowering to a call to __powidf2 (for example). When 3861 // optimizing for size, we only want to do this if the expansion would produce 3862 // a small number of multiplies, otherwise we do the full expansion. 3863 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3864 // Get the exponent as a positive value. 3865 unsigned Val = RHSC->getSExtValue(); 3866 if ((int)Val < 0) Val = -Val; 3867 3868 // powi(x, 0) -> 1.0 3869 if (Val == 0) 3870 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3871 3872 const Function *F = DAG.getMachineFunction().getFunction(); 3873 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3874 // If optimizing for size, don't insert too many multiplies. This 3875 // inserts up to 5 multiplies. 3876 countPopulation(Val) + Log2_32(Val) < 7) { 3877 // We use the simple binary decomposition method to generate the multiply 3878 // sequence. There are more optimal ways to do this (for example, 3879 // powi(x,15) generates one more multiply than it should), but this has 3880 // the benefit of being both really simple and much better than a libcall. 3881 SDValue Res; // Logically starts equal to 1.0 3882 SDValue CurSquare = LHS; 3883 while (Val) { 3884 if (Val & 1) { 3885 if (Res.getNode()) 3886 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3887 else 3888 Res = CurSquare; // 1.0*CurSquare. 3889 } 3890 3891 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3892 CurSquare, CurSquare); 3893 Val >>= 1; 3894 } 3895 3896 // If the original was negative, invert the result, producing 1/(x*x*x). 3897 if (RHSC->getSExtValue() < 0) 3898 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3899 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3900 return Res; 3901 } 3902 } 3903 3904 // Otherwise, expand to a libcall. 3905 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3906 } 3907 3908 // getTruncatedArgReg - Find underlying register used for an truncated 3909 // argument. 3910 static unsigned getTruncatedArgReg(const SDValue &N) { 3911 if (N.getOpcode() != ISD::TRUNCATE) 3912 return 0; 3913 3914 const SDValue &Ext = N.getOperand(0); 3915 if (Ext.getOpcode() == ISD::AssertZext || 3916 Ext.getOpcode() == ISD::AssertSext) { 3917 const SDValue &CFR = Ext.getOperand(0); 3918 if (CFR.getOpcode() == ISD::CopyFromReg) 3919 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3920 if (CFR.getOpcode() == ISD::TRUNCATE) 3921 return getTruncatedArgReg(CFR); 3922 } 3923 return 0; 3924 } 3925 3926 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3927 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3928 /// At the end of instruction selection, they will be inserted to the entry BB. 3929 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3930 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3931 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3932 const Argument *Arg = dyn_cast<Argument>(V); 3933 if (!Arg) 3934 return false; 3935 3936 MachineFunction &MF = DAG.getMachineFunction(); 3937 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3938 3939 // Ignore inlined function arguments here. 3940 // 3941 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3942 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3943 return false; 3944 3945 Optional<MachineOperand> Op; 3946 // Some arguments' frame index is recorded during argument lowering. 3947 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3948 Op = MachineOperand::CreateFI(FI); 3949 3950 if (!Op && N.getNode()) { 3951 unsigned Reg; 3952 if (N.getOpcode() == ISD::CopyFromReg) 3953 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3954 else 3955 Reg = getTruncatedArgReg(N); 3956 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3957 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3958 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3959 if (PR) 3960 Reg = PR; 3961 } 3962 if (Reg) 3963 Op = MachineOperand::CreateReg(Reg, false); 3964 } 3965 3966 if (!Op) { 3967 // Check if ValueMap has reg number. 3968 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3969 if (VMI != FuncInfo.ValueMap.end()) 3970 Op = MachineOperand::CreateReg(VMI->second, false); 3971 } 3972 3973 if (!Op && N.getNode()) 3974 // Check if frame index is available. 3975 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 3976 if (FrameIndexSDNode *FINode = 3977 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 3978 Op = MachineOperand::CreateFI(FINode->getIndex()); 3979 3980 if (!Op) 3981 return false; 3982 3983 assert(Variable->isValidLocationForIntrinsic(DL) && 3984 "Expected inlined-at fields to agree"); 3985 if (Op->isReg()) 3986 FuncInfo.ArgDbgValues.push_back( 3987 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 3988 Op->getReg(), Offset, Variable, Expr)); 3989 else 3990 FuncInfo.ArgDbgValues.push_back( 3991 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 3992 .addOperand(*Op) 3993 .addImm(Offset) 3994 .addMetadata(Variable) 3995 .addMetadata(Expr)); 3996 3997 return true; 3998 } 3999 4000 // VisualStudio defines setjmp as _setjmp 4001 #if defined(_MSC_VER) && defined(setjmp) && \ 4002 !defined(setjmp_undefined_for_msvc) 4003 # pragma push_macro("setjmp") 4004 # undef setjmp 4005 # define setjmp_undefined_for_msvc 4006 #endif 4007 4008 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4009 /// we want to emit this as a call to a named external function, return the name 4010 /// otherwise lower it and return null. 4011 const char * 4012 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4014 SDLoc sdl = getCurSDLoc(); 4015 DebugLoc dl = getCurDebugLoc(); 4016 SDValue Res; 4017 4018 switch (Intrinsic) { 4019 default: 4020 // By default, turn this into a target intrinsic node. 4021 visitTargetIntrinsic(I, Intrinsic); 4022 return nullptr; 4023 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4024 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4025 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4026 case Intrinsic::returnaddress: 4027 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4028 getValue(I.getArgOperand(0)))); 4029 return nullptr; 4030 case Intrinsic::frameaddress: 4031 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4032 getValue(I.getArgOperand(0)))); 4033 return nullptr; 4034 case Intrinsic::read_register: { 4035 Value *Reg = I.getArgOperand(0); 4036 SDValue RegName = 4037 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4038 EVT VT = TLI.getValueType(I.getType()); 4039 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4040 return nullptr; 4041 } 4042 case Intrinsic::write_register: { 4043 Value *Reg = I.getArgOperand(0); 4044 Value *RegValue = I.getArgOperand(1); 4045 SDValue Chain = getValue(RegValue).getOperand(0); 4046 SDValue RegName = 4047 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4048 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4049 RegName, getValue(RegValue))); 4050 return nullptr; 4051 } 4052 case Intrinsic::setjmp: 4053 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4054 case Intrinsic::longjmp: 4055 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4056 case Intrinsic::memcpy: { 4057 // FIXME: this definition of "user defined address space" is x86-specific 4058 // Assert for address < 256 since we support only user defined address 4059 // spaces. 4060 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4061 < 256 && 4062 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4063 < 256 && 4064 "Unknown address space"); 4065 SDValue Op1 = getValue(I.getArgOperand(0)); 4066 SDValue Op2 = getValue(I.getArgOperand(1)); 4067 SDValue Op3 = getValue(I.getArgOperand(2)); 4068 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4069 if (!Align) 4070 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4071 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4072 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4073 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4074 false, isTC, 4075 MachinePointerInfo(I.getArgOperand(0)), 4076 MachinePointerInfo(I.getArgOperand(1))); 4077 updateDAGForMaybeTailCall(MC); 4078 return nullptr; 4079 } 4080 case Intrinsic::memset: { 4081 // FIXME: this definition of "user defined address space" is x86-specific 4082 // Assert for address < 256 since we support only user defined address 4083 // spaces. 4084 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4085 < 256 && 4086 "Unknown address space"); 4087 SDValue Op1 = getValue(I.getArgOperand(0)); 4088 SDValue Op2 = getValue(I.getArgOperand(1)); 4089 SDValue Op3 = getValue(I.getArgOperand(2)); 4090 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4091 if (!Align) 4092 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4093 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4094 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4095 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4096 isTC, MachinePointerInfo(I.getArgOperand(0))); 4097 updateDAGForMaybeTailCall(MS); 4098 return nullptr; 4099 } 4100 case Intrinsic::memmove: { 4101 // FIXME: this definition of "user defined address space" is x86-specific 4102 // Assert for address < 256 since we support only user defined address 4103 // spaces. 4104 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4105 < 256 && 4106 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4107 < 256 && 4108 "Unknown address space"); 4109 SDValue Op1 = getValue(I.getArgOperand(0)); 4110 SDValue Op2 = getValue(I.getArgOperand(1)); 4111 SDValue Op3 = getValue(I.getArgOperand(2)); 4112 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4113 if (!Align) 4114 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4115 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4116 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4117 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4118 isTC, MachinePointerInfo(I.getArgOperand(0)), 4119 MachinePointerInfo(I.getArgOperand(1))); 4120 updateDAGForMaybeTailCall(MM); 4121 return nullptr; 4122 } 4123 case Intrinsic::dbg_declare: { 4124 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4125 DILocalVariable *Variable = DI.getVariable(); 4126 DIExpression *Expression = DI.getExpression(); 4127 const Value *Address = DI.getAddress(); 4128 assert(Variable && "Missing variable"); 4129 if (!Address) { 4130 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4131 return nullptr; 4132 } 4133 4134 // Check if address has undef value. 4135 if (isa<UndefValue>(Address) || 4136 (Address->use_empty() && !isa<Argument>(Address))) { 4137 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4138 return nullptr; 4139 } 4140 4141 SDValue &N = NodeMap[Address]; 4142 if (!N.getNode() && isa<Argument>(Address)) 4143 // Check unused arguments map. 4144 N = UnusedArgNodeMap[Address]; 4145 SDDbgValue *SDV; 4146 if (N.getNode()) { 4147 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4148 Address = BCI->getOperand(0); 4149 // Parameters are handled specially. 4150 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4151 isa<Argument>(Address); 4152 4153 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4154 4155 if (isParameter && !AI) { 4156 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4157 if (FINode) 4158 // Byval parameter. We have a frame index at this point. 4159 SDV = DAG.getFrameIndexDbgValue( 4160 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4161 else { 4162 // Address is an argument, so try to emit its dbg value using 4163 // virtual register info from the FuncInfo.ValueMap. 4164 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4165 N); 4166 return nullptr; 4167 } 4168 } else if (AI) 4169 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4170 true, 0, dl, SDNodeOrder); 4171 else { 4172 // Can't do anything with other non-AI cases yet. 4173 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4174 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4175 DEBUG(Address->dump()); 4176 return nullptr; 4177 } 4178 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4179 } else { 4180 // If Address is an argument then try to emit its dbg value using 4181 // virtual register info from the FuncInfo.ValueMap. 4182 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4183 N)) { 4184 // If variable is pinned by a alloca in dominating bb then 4185 // use StaticAllocaMap. 4186 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4187 if (AI->getParent() != DI.getParent()) { 4188 DenseMap<const AllocaInst*, int>::iterator SI = 4189 FuncInfo.StaticAllocaMap.find(AI); 4190 if (SI != FuncInfo.StaticAllocaMap.end()) { 4191 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4192 0, dl, SDNodeOrder); 4193 DAG.AddDbgValue(SDV, nullptr, false); 4194 return nullptr; 4195 } 4196 } 4197 } 4198 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4199 } 4200 } 4201 return nullptr; 4202 } 4203 case Intrinsic::dbg_value: { 4204 const DbgValueInst &DI = cast<DbgValueInst>(I); 4205 assert(DI.getVariable() && "Missing variable"); 4206 4207 DILocalVariable *Variable = DI.getVariable(); 4208 DIExpression *Expression = DI.getExpression(); 4209 uint64_t Offset = DI.getOffset(); 4210 const Value *V = DI.getValue(); 4211 if (!V) 4212 return nullptr; 4213 4214 SDDbgValue *SDV; 4215 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4216 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4217 SDNodeOrder); 4218 DAG.AddDbgValue(SDV, nullptr, false); 4219 } else { 4220 // Do not use getValue() in here; we don't want to generate code at 4221 // this point if it hasn't been done yet. 4222 SDValue N = NodeMap[V]; 4223 if (!N.getNode() && isa<Argument>(V)) 4224 // Check unused arguments map. 4225 N = UnusedArgNodeMap[V]; 4226 if (N.getNode()) { 4227 // A dbg.value for an alloca is always indirect. 4228 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4229 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4230 IsIndirect, N)) { 4231 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4232 IsIndirect, Offset, dl, SDNodeOrder); 4233 DAG.AddDbgValue(SDV, N.getNode(), false); 4234 } 4235 } else if (!V->use_empty() ) { 4236 // Do not call getValue(V) yet, as we don't want to generate code. 4237 // Remember it for later. 4238 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4239 DanglingDebugInfoMap[V] = DDI; 4240 } else { 4241 // We may expand this to cover more cases. One case where we have no 4242 // data available is an unreferenced parameter. 4243 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4244 } 4245 } 4246 4247 // Build a debug info table entry. 4248 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4249 V = BCI->getOperand(0); 4250 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4251 // Don't handle byval struct arguments or VLAs, for example. 4252 if (!AI) { 4253 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4254 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4255 return nullptr; 4256 } 4257 DenseMap<const AllocaInst*, int>::iterator SI = 4258 FuncInfo.StaticAllocaMap.find(AI); 4259 if (SI == FuncInfo.StaticAllocaMap.end()) 4260 return nullptr; // VLAs. 4261 return nullptr; 4262 } 4263 4264 case Intrinsic::eh_typeid_for: { 4265 // Find the type id for the given typeinfo. 4266 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4267 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4268 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4269 setValue(&I, Res); 4270 return nullptr; 4271 } 4272 4273 case Intrinsic::eh_return_i32: 4274 case Intrinsic::eh_return_i64: 4275 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4276 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4277 MVT::Other, 4278 getControlRoot(), 4279 getValue(I.getArgOperand(0)), 4280 getValue(I.getArgOperand(1)))); 4281 return nullptr; 4282 case Intrinsic::eh_unwind_init: 4283 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4284 return nullptr; 4285 case Intrinsic::eh_dwarf_cfa: { 4286 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4287 TLI.getPointerTy()); 4288 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4289 CfaArg.getValueType(), 4290 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4291 CfaArg.getValueType()), 4292 CfaArg); 4293 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4294 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4295 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4296 FA, Offset)); 4297 return nullptr; 4298 } 4299 case Intrinsic::eh_sjlj_callsite: { 4300 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4301 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4302 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4303 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4304 4305 MMI.setCurrentCallSite(CI->getZExtValue()); 4306 return nullptr; 4307 } 4308 case Intrinsic::eh_sjlj_functioncontext: { 4309 // Get and store the index of the function context. 4310 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4311 AllocaInst *FnCtx = 4312 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4313 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4314 MFI->setFunctionContextIndex(FI); 4315 return nullptr; 4316 } 4317 case Intrinsic::eh_sjlj_setjmp: { 4318 SDValue Ops[2]; 4319 Ops[0] = getRoot(); 4320 Ops[1] = getValue(I.getArgOperand(0)); 4321 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4322 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4323 setValue(&I, Op.getValue(0)); 4324 DAG.setRoot(Op.getValue(1)); 4325 return nullptr; 4326 } 4327 case Intrinsic::eh_sjlj_longjmp: { 4328 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4329 getRoot(), getValue(I.getArgOperand(0)))); 4330 return nullptr; 4331 } 4332 4333 case Intrinsic::masked_gather: 4334 visitMaskedGather(I); 4335 return nullptr; 4336 case Intrinsic::masked_load: 4337 visitMaskedLoad(I); 4338 return nullptr; 4339 case Intrinsic::masked_scatter: 4340 visitMaskedScatter(I); 4341 return nullptr; 4342 case Intrinsic::masked_store: 4343 visitMaskedStore(I); 4344 return nullptr; 4345 case Intrinsic::x86_mmx_pslli_w: 4346 case Intrinsic::x86_mmx_pslli_d: 4347 case Intrinsic::x86_mmx_pslli_q: 4348 case Intrinsic::x86_mmx_psrli_w: 4349 case Intrinsic::x86_mmx_psrli_d: 4350 case Intrinsic::x86_mmx_psrli_q: 4351 case Intrinsic::x86_mmx_psrai_w: 4352 case Intrinsic::x86_mmx_psrai_d: { 4353 SDValue ShAmt = getValue(I.getArgOperand(1)); 4354 if (isa<ConstantSDNode>(ShAmt)) { 4355 visitTargetIntrinsic(I, Intrinsic); 4356 return nullptr; 4357 } 4358 unsigned NewIntrinsic = 0; 4359 EVT ShAmtVT = MVT::v2i32; 4360 switch (Intrinsic) { 4361 case Intrinsic::x86_mmx_pslli_w: 4362 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4363 break; 4364 case Intrinsic::x86_mmx_pslli_d: 4365 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4366 break; 4367 case Intrinsic::x86_mmx_pslli_q: 4368 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4369 break; 4370 case Intrinsic::x86_mmx_psrli_w: 4371 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4372 break; 4373 case Intrinsic::x86_mmx_psrli_d: 4374 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4375 break; 4376 case Intrinsic::x86_mmx_psrli_q: 4377 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4378 break; 4379 case Intrinsic::x86_mmx_psrai_w: 4380 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4381 break; 4382 case Intrinsic::x86_mmx_psrai_d: 4383 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4384 break; 4385 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4386 } 4387 4388 // The vector shift intrinsics with scalars uses 32b shift amounts but 4389 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4390 // to be zero. 4391 // We must do this early because v2i32 is not a legal type. 4392 SDValue ShOps[2]; 4393 ShOps[0] = ShAmt; 4394 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4395 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4396 EVT DestVT = TLI.getValueType(I.getType()); 4397 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4398 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4399 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4400 getValue(I.getArgOperand(0)), ShAmt); 4401 setValue(&I, Res); 4402 return nullptr; 4403 } 4404 case Intrinsic::convertff: 4405 case Intrinsic::convertfsi: 4406 case Intrinsic::convertfui: 4407 case Intrinsic::convertsif: 4408 case Intrinsic::convertuif: 4409 case Intrinsic::convertss: 4410 case Intrinsic::convertsu: 4411 case Intrinsic::convertus: 4412 case Intrinsic::convertuu: { 4413 ISD::CvtCode Code = ISD::CVT_INVALID; 4414 switch (Intrinsic) { 4415 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4416 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4417 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4418 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4419 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4420 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4421 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4422 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4423 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4424 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4425 } 4426 EVT DestVT = TLI.getValueType(I.getType()); 4427 const Value *Op1 = I.getArgOperand(0); 4428 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4429 DAG.getValueType(DestVT), 4430 DAG.getValueType(getValue(Op1).getValueType()), 4431 getValue(I.getArgOperand(1)), 4432 getValue(I.getArgOperand(2)), 4433 Code); 4434 setValue(&I, Res); 4435 return nullptr; 4436 } 4437 case Intrinsic::powi: 4438 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4439 getValue(I.getArgOperand(1)), DAG)); 4440 return nullptr; 4441 case Intrinsic::log: 4442 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4443 return nullptr; 4444 case Intrinsic::log2: 4445 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4446 return nullptr; 4447 case Intrinsic::log10: 4448 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4449 return nullptr; 4450 case Intrinsic::exp: 4451 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4452 return nullptr; 4453 case Intrinsic::exp2: 4454 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4455 return nullptr; 4456 case Intrinsic::pow: 4457 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4458 getValue(I.getArgOperand(1)), DAG, TLI)); 4459 return nullptr; 4460 case Intrinsic::sqrt: 4461 case Intrinsic::fabs: 4462 case Intrinsic::sin: 4463 case Intrinsic::cos: 4464 case Intrinsic::floor: 4465 case Intrinsic::ceil: 4466 case Intrinsic::trunc: 4467 case Intrinsic::rint: 4468 case Intrinsic::nearbyint: 4469 case Intrinsic::round: { 4470 unsigned Opcode; 4471 switch (Intrinsic) { 4472 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4473 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4474 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4475 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4476 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4477 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4478 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4479 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4480 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4481 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4482 case Intrinsic::round: Opcode = ISD::FROUND; break; 4483 } 4484 4485 setValue(&I, DAG.getNode(Opcode, sdl, 4486 getValue(I.getArgOperand(0)).getValueType(), 4487 getValue(I.getArgOperand(0)))); 4488 return nullptr; 4489 } 4490 case Intrinsic::minnum: 4491 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4492 getValue(I.getArgOperand(0)).getValueType(), 4493 getValue(I.getArgOperand(0)), 4494 getValue(I.getArgOperand(1)))); 4495 return nullptr; 4496 case Intrinsic::maxnum: 4497 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4498 getValue(I.getArgOperand(0)).getValueType(), 4499 getValue(I.getArgOperand(0)), 4500 getValue(I.getArgOperand(1)))); 4501 return nullptr; 4502 case Intrinsic::copysign: 4503 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4504 getValue(I.getArgOperand(0)).getValueType(), 4505 getValue(I.getArgOperand(0)), 4506 getValue(I.getArgOperand(1)))); 4507 return nullptr; 4508 case Intrinsic::fma: 4509 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4510 getValue(I.getArgOperand(0)).getValueType(), 4511 getValue(I.getArgOperand(0)), 4512 getValue(I.getArgOperand(1)), 4513 getValue(I.getArgOperand(2)))); 4514 return nullptr; 4515 case Intrinsic::fmuladd: { 4516 EVT VT = TLI.getValueType(I.getType()); 4517 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4518 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4519 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4520 getValue(I.getArgOperand(0)).getValueType(), 4521 getValue(I.getArgOperand(0)), 4522 getValue(I.getArgOperand(1)), 4523 getValue(I.getArgOperand(2)))); 4524 } else { 4525 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4526 getValue(I.getArgOperand(0)).getValueType(), 4527 getValue(I.getArgOperand(0)), 4528 getValue(I.getArgOperand(1))); 4529 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4530 getValue(I.getArgOperand(0)).getValueType(), 4531 Mul, 4532 getValue(I.getArgOperand(2))); 4533 setValue(&I, Add); 4534 } 4535 return nullptr; 4536 } 4537 case Intrinsic::convert_to_fp16: 4538 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4539 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4540 getValue(I.getArgOperand(0)), 4541 DAG.getTargetConstant(0, sdl, 4542 MVT::i32)))); 4543 return nullptr; 4544 case Intrinsic::convert_from_fp16: 4545 setValue(&I, 4546 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4547 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4548 getValue(I.getArgOperand(0))))); 4549 return nullptr; 4550 case Intrinsic::pcmarker: { 4551 SDValue Tmp = getValue(I.getArgOperand(0)); 4552 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4553 return nullptr; 4554 } 4555 case Intrinsic::readcyclecounter: { 4556 SDValue Op = getRoot(); 4557 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4558 DAG.getVTList(MVT::i64, MVT::Other), Op); 4559 setValue(&I, Res); 4560 DAG.setRoot(Res.getValue(1)); 4561 return nullptr; 4562 } 4563 case Intrinsic::bswap: 4564 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4565 getValue(I.getArgOperand(0)).getValueType(), 4566 getValue(I.getArgOperand(0)))); 4567 return nullptr; 4568 case Intrinsic::cttz: { 4569 SDValue Arg = getValue(I.getArgOperand(0)); 4570 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4571 EVT Ty = Arg.getValueType(); 4572 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4573 sdl, Ty, Arg)); 4574 return nullptr; 4575 } 4576 case Intrinsic::ctlz: { 4577 SDValue Arg = getValue(I.getArgOperand(0)); 4578 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4579 EVT Ty = Arg.getValueType(); 4580 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4581 sdl, Ty, Arg)); 4582 return nullptr; 4583 } 4584 case Intrinsic::ctpop: { 4585 SDValue Arg = getValue(I.getArgOperand(0)); 4586 EVT Ty = Arg.getValueType(); 4587 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4588 return nullptr; 4589 } 4590 case Intrinsic::stacksave: { 4591 SDValue Op = getRoot(); 4592 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4593 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4594 setValue(&I, Res); 4595 DAG.setRoot(Res.getValue(1)); 4596 return nullptr; 4597 } 4598 case Intrinsic::stackrestore: { 4599 Res = getValue(I.getArgOperand(0)); 4600 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4601 return nullptr; 4602 } 4603 case Intrinsic::stackprotector: { 4604 // Emit code into the DAG to store the stack guard onto the stack. 4605 MachineFunction &MF = DAG.getMachineFunction(); 4606 MachineFrameInfo *MFI = MF.getFrameInfo(); 4607 EVT PtrTy = TLI.getPointerTy(); 4608 SDValue Src, Chain = getRoot(); 4609 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4610 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4611 4612 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4613 // global variable __stack_chk_guard. 4614 if (!GV) 4615 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4616 if (BC->getOpcode() == Instruction::BitCast) 4617 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4618 4619 if (GV && TLI.useLoadStackGuardNode()) { 4620 // Emit a LOAD_STACK_GUARD node. 4621 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4622 sdl, PtrTy, Chain); 4623 MachinePointerInfo MPInfo(GV); 4624 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4625 unsigned Flags = MachineMemOperand::MOLoad | 4626 MachineMemOperand::MOInvariant; 4627 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4628 PtrTy.getSizeInBits() / 8, 4629 DAG.getEVTAlignment(PtrTy)); 4630 Node->setMemRefs(MemRefs, MemRefs + 1); 4631 4632 // Copy the guard value to a virtual register so that it can be 4633 // retrieved in the epilogue. 4634 Src = SDValue(Node, 0); 4635 const TargetRegisterClass *RC = 4636 TLI.getRegClassFor(Src.getSimpleValueType()); 4637 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4638 4639 SPDescriptor.setGuardReg(Reg); 4640 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4641 } else { 4642 Src = getValue(I.getArgOperand(0)); // The guard's value. 4643 } 4644 4645 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4646 4647 int FI = FuncInfo.StaticAllocaMap[Slot]; 4648 MFI->setStackProtectorIndex(FI); 4649 4650 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4651 4652 // Store the stack protector onto the stack. 4653 Res = DAG.getStore(Chain, sdl, Src, FIN, 4654 MachinePointerInfo::getFixedStack(FI), 4655 true, false, 0); 4656 setValue(&I, Res); 4657 DAG.setRoot(Res); 4658 return nullptr; 4659 } 4660 case Intrinsic::objectsize: { 4661 // If we don't know by now, we're never going to know. 4662 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4663 4664 assert(CI && "Non-constant type in __builtin_object_size?"); 4665 4666 SDValue Arg = getValue(I.getCalledValue()); 4667 EVT Ty = Arg.getValueType(); 4668 4669 if (CI->isZero()) 4670 Res = DAG.getConstant(-1ULL, sdl, Ty); 4671 else 4672 Res = DAG.getConstant(0, sdl, Ty); 4673 4674 setValue(&I, Res); 4675 return nullptr; 4676 } 4677 case Intrinsic::annotation: 4678 case Intrinsic::ptr_annotation: 4679 // Drop the intrinsic, but forward the value 4680 setValue(&I, getValue(I.getOperand(0))); 4681 return nullptr; 4682 case Intrinsic::assume: 4683 case Intrinsic::var_annotation: 4684 // Discard annotate attributes and assumptions 4685 return nullptr; 4686 4687 case Intrinsic::init_trampoline: { 4688 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4689 4690 SDValue Ops[6]; 4691 Ops[0] = getRoot(); 4692 Ops[1] = getValue(I.getArgOperand(0)); 4693 Ops[2] = getValue(I.getArgOperand(1)); 4694 Ops[3] = getValue(I.getArgOperand(2)); 4695 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4696 Ops[5] = DAG.getSrcValue(F); 4697 4698 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4699 4700 DAG.setRoot(Res); 4701 return nullptr; 4702 } 4703 case Intrinsic::adjust_trampoline: { 4704 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4705 TLI.getPointerTy(), 4706 getValue(I.getArgOperand(0)))); 4707 return nullptr; 4708 } 4709 case Intrinsic::gcroot: 4710 if (GFI) { 4711 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4712 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4713 4714 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4715 GFI->addStackRoot(FI->getIndex(), TypeMap); 4716 } 4717 return nullptr; 4718 case Intrinsic::gcread: 4719 case Intrinsic::gcwrite: 4720 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4721 case Intrinsic::flt_rounds: 4722 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4723 return nullptr; 4724 4725 case Intrinsic::expect: { 4726 // Just replace __builtin_expect(exp, c) with EXP. 4727 setValue(&I, getValue(I.getArgOperand(0))); 4728 return nullptr; 4729 } 4730 4731 case Intrinsic::debugtrap: 4732 case Intrinsic::trap: { 4733 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4734 if (TrapFuncName.empty()) { 4735 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4736 ISD::TRAP : ISD::DEBUGTRAP; 4737 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4738 return nullptr; 4739 } 4740 TargetLowering::ArgListTy Args; 4741 4742 TargetLowering::CallLoweringInfo CLI(DAG); 4743 CLI.setDebugLoc(sdl).setChain(getRoot()) 4744 .setCallee(CallingConv::C, I.getType(), 4745 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4746 std::move(Args), 0); 4747 4748 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4749 DAG.setRoot(Result.second); 4750 return nullptr; 4751 } 4752 4753 case Intrinsic::uadd_with_overflow: 4754 case Intrinsic::sadd_with_overflow: 4755 case Intrinsic::usub_with_overflow: 4756 case Intrinsic::ssub_with_overflow: 4757 case Intrinsic::umul_with_overflow: 4758 case Intrinsic::smul_with_overflow: { 4759 ISD::NodeType Op; 4760 switch (Intrinsic) { 4761 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4762 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4763 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4764 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4765 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4766 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4767 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4768 } 4769 SDValue Op1 = getValue(I.getArgOperand(0)); 4770 SDValue Op2 = getValue(I.getArgOperand(1)); 4771 4772 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4773 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4774 return nullptr; 4775 } 4776 case Intrinsic::prefetch: { 4777 SDValue Ops[5]; 4778 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4779 Ops[0] = getRoot(); 4780 Ops[1] = getValue(I.getArgOperand(0)); 4781 Ops[2] = getValue(I.getArgOperand(1)); 4782 Ops[3] = getValue(I.getArgOperand(2)); 4783 Ops[4] = getValue(I.getArgOperand(3)); 4784 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4785 DAG.getVTList(MVT::Other), Ops, 4786 EVT::getIntegerVT(*Context, 8), 4787 MachinePointerInfo(I.getArgOperand(0)), 4788 0, /* align */ 4789 false, /* volatile */ 4790 rw==0, /* read */ 4791 rw==1)); /* write */ 4792 return nullptr; 4793 } 4794 case Intrinsic::lifetime_start: 4795 case Intrinsic::lifetime_end: { 4796 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4797 // Stack coloring is not enabled in O0, discard region information. 4798 if (TM.getOptLevel() == CodeGenOpt::None) 4799 return nullptr; 4800 4801 SmallVector<Value *, 4> Allocas; 4802 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4803 4804 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4805 E = Allocas.end(); Object != E; ++Object) { 4806 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4807 4808 // Could not find an Alloca. 4809 if (!LifetimeObject) 4810 continue; 4811 4812 // First check that the Alloca is static, otherwise it won't have a 4813 // valid frame index. 4814 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4815 if (SI == FuncInfo.StaticAllocaMap.end()) 4816 return nullptr; 4817 4818 int FI = SI->second; 4819 4820 SDValue Ops[2]; 4821 Ops[0] = getRoot(); 4822 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4823 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4824 4825 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4826 DAG.setRoot(Res); 4827 } 4828 return nullptr; 4829 } 4830 case Intrinsic::invariant_start: 4831 // Discard region information. 4832 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4833 return nullptr; 4834 case Intrinsic::invariant_end: 4835 // Discard region information. 4836 return nullptr; 4837 case Intrinsic::stackprotectorcheck: { 4838 // Do not actually emit anything for this basic block. Instead we initialize 4839 // the stack protector descriptor and export the guard variable so we can 4840 // access it in FinishBasicBlock. 4841 const BasicBlock *BB = I.getParent(); 4842 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4843 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4844 4845 // Flush our exports since we are going to process a terminator. 4846 (void)getControlRoot(); 4847 return nullptr; 4848 } 4849 case Intrinsic::clear_cache: 4850 return TLI.getClearCacheBuiltinName(); 4851 case Intrinsic::eh_actions: 4852 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4853 return nullptr; 4854 case Intrinsic::donothing: 4855 // ignore 4856 return nullptr; 4857 case Intrinsic::experimental_stackmap: { 4858 visitStackmap(I); 4859 return nullptr; 4860 } 4861 case Intrinsic::experimental_patchpoint_void: 4862 case Intrinsic::experimental_patchpoint_i64: { 4863 visitPatchpoint(&I); 4864 return nullptr; 4865 } 4866 case Intrinsic::experimental_gc_statepoint: { 4867 visitStatepoint(I); 4868 return nullptr; 4869 } 4870 case Intrinsic::experimental_gc_result_int: 4871 case Intrinsic::experimental_gc_result_float: 4872 case Intrinsic::experimental_gc_result_ptr: 4873 case Intrinsic::experimental_gc_result: { 4874 visitGCResult(I); 4875 return nullptr; 4876 } 4877 case Intrinsic::experimental_gc_relocate: { 4878 visitGCRelocate(I); 4879 return nullptr; 4880 } 4881 case Intrinsic::instrprof_increment: 4882 llvm_unreachable("instrprof failed to lower an increment"); 4883 4884 case Intrinsic::frameescape: { 4885 MachineFunction &MF = DAG.getMachineFunction(); 4886 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4887 4888 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4889 // is the same on all targets. 4890 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4891 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4892 if (isa<ConstantPointerNull>(Arg)) 4893 continue; // Skip null pointers. They represent a hole in index space. 4894 AllocaInst *Slot = cast<AllocaInst>(Arg); 4895 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4896 "can only escape static allocas"); 4897 int FI = FuncInfo.StaticAllocaMap[Slot]; 4898 MCSymbol *FrameAllocSym = 4899 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4900 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4901 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4902 TII->get(TargetOpcode::FRAME_ALLOC)) 4903 .addSym(FrameAllocSym) 4904 .addFrameIndex(FI); 4905 } 4906 4907 return nullptr; 4908 } 4909 4910 case Intrinsic::framerecover: { 4911 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4912 MachineFunction &MF = DAG.getMachineFunction(); 4913 MVT PtrVT = TLI.getPointerTy(0); 4914 4915 // Get the symbol that defines the frame offset. 4916 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4917 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4918 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4919 MCSymbol *FrameAllocSym = 4920 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4921 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4922 4923 // Create a TargetExternalSymbol for the label to avoid any target lowering 4924 // that would make this PC relative. 4925 StringRef Name = FrameAllocSym->getName(); 4926 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4927 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4928 SDValue OffsetVal = 4929 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4930 4931 // Add the offset to the FP. 4932 Value *FP = I.getArgOperand(1); 4933 SDValue FPVal = getValue(FP); 4934 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4935 setValue(&I, Add); 4936 4937 return nullptr; 4938 } 4939 case Intrinsic::eh_begincatch: 4940 case Intrinsic::eh_endcatch: 4941 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4942 case Intrinsic::eh_exceptioncode: { 4943 unsigned Reg = TLI.getExceptionPointerRegister(); 4944 assert(Reg && "cannot get exception code on this platform"); 4945 MVT PtrVT = TLI.getPointerTy(); 4946 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4947 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4948 SDValue N = 4949 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4950 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4951 setValue(&I, N); 4952 return nullptr; 4953 } 4954 } 4955 } 4956 4957 std::pair<SDValue, SDValue> 4958 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4959 MachineBasicBlock *LandingPad) { 4960 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4961 MCSymbol *BeginLabel = nullptr; 4962 4963 if (LandingPad) { 4964 // Insert a label before the invoke call to mark the try range. This can be 4965 // used to detect deletion of the invoke via the MachineModuleInfo. 4966 BeginLabel = MMI.getContext().CreateTempSymbol(); 4967 4968 // For SjLj, keep track of which landing pads go with which invokes 4969 // so as to maintain the ordering of pads in the LSDA. 4970 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4971 if (CallSiteIndex) { 4972 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4973 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 4974 4975 // Now that the call site is handled, stop tracking it. 4976 MMI.setCurrentCallSite(0); 4977 } 4978 4979 // Both PendingLoads and PendingExports must be flushed here; 4980 // this call might not return. 4981 (void)getRoot(); 4982 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 4983 4984 CLI.setChain(getRoot()); 4985 } 4986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4987 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4988 4989 assert((CLI.IsTailCall || Result.second.getNode()) && 4990 "Non-null chain expected with non-tail call!"); 4991 assert((Result.second.getNode() || !Result.first.getNode()) && 4992 "Null value expected with tail call!"); 4993 4994 if (!Result.second.getNode()) { 4995 // As a special case, a null chain means that a tail call has been emitted 4996 // and the DAG root is already updated. 4997 HasTailCall = true; 4998 4999 // Since there's no actual continuation from this block, nothing can be 5000 // relying on us setting vregs for them. 5001 PendingExports.clear(); 5002 } else { 5003 DAG.setRoot(Result.second); 5004 } 5005 5006 if (LandingPad) { 5007 // Insert a label at the end of the invoke call to mark the try range. This 5008 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5009 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5010 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5011 5012 // Inform MachineModuleInfo of range. 5013 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5014 } 5015 5016 return Result; 5017 } 5018 5019 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5020 bool isTailCall, 5021 MachineBasicBlock *LandingPad) { 5022 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5023 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5024 Type *RetTy = FTy->getReturnType(); 5025 5026 TargetLowering::ArgListTy Args; 5027 TargetLowering::ArgListEntry Entry; 5028 Args.reserve(CS.arg_size()); 5029 5030 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5031 i != e; ++i) { 5032 const Value *V = *i; 5033 5034 // Skip empty types 5035 if (V->getType()->isEmptyTy()) 5036 continue; 5037 5038 SDValue ArgNode = getValue(V); 5039 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5040 5041 // Skip the first return-type Attribute to get to params. 5042 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5043 Args.push_back(Entry); 5044 5045 // If we have an explicit sret argument that is an Instruction, (i.e., it 5046 // might point to function-local memory), we can't meaningfully tail-call. 5047 if (Entry.isSRet && isa<Instruction>(V)) 5048 isTailCall = false; 5049 } 5050 5051 // Check if target-independent constraints permit a tail call here. 5052 // Target-dependent constraints are checked within TLI->LowerCallTo. 5053 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5054 isTailCall = false; 5055 5056 TargetLowering::CallLoweringInfo CLI(DAG); 5057 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5058 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5059 .setTailCall(isTailCall); 5060 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5061 5062 if (Result.first.getNode()) 5063 setValue(CS.getInstruction(), Result.first); 5064 } 5065 5066 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5067 /// value is equal or not-equal to zero. 5068 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5069 for (const User *U : V->users()) { 5070 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5071 if (IC->isEquality()) 5072 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5073 if (C->isNullValue()) 5074 continue; 5075 // Unknown instruction. 5076 return false; 5077 } 5078 return true; 5079 } 5080 5081 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5082 Type *LoadTy, 5083 SelectionDAGBuilder &Builder) { 5084 5085 // Check to see if this load can be trivially constant folded, e.g. if the 5086 // input is from a string literal. 5087 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5088 // Cast pointer to the type we really want to load. 5089 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5090 PointerType::getUnqual(LoadTy)); 5091 5092 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5093 const_cast<Constant *>(LoadInput), *Builder.DL)) 5094 return Builder.getValue(LoadCst); 5095 } 5096 5097 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5098 // still constant memory, the input chain can be the entry node. 5099 SDValue Root; 5100 bool ConstantMemory = false; 5101 5102 // Do not serialize (non-volatile) loads of constant memory with anything. 5103 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5104 Root = Builder.DAG.getEntryNode(); 5105 ConstantMemory = true; 5106 } else { 5107 // Do not serialize non-volatile loads against each other. 5108 Root = Builder.DAG.getRoot(); 5109 } 5110 5111 SDValue Ptr = Builder.getValue(PtrVal); 5112 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5113 Ptr, MachinePointerInfo(PtrVal), 5114 false /*volatile*/, 5115 false /*nontemporal*/, 5116 false /*isinvariant*/, 1 /* align=1 */); 5117 5118 if (!ConstantMemory) 5119 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5120 return LoadVal; 5121 } 5122 5123 /// processIntegerCallValue - Record the value for an instruction that 5124 /// produces an integer result, converting the type where necessary. 5125 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5126 SDValue Value, 5127 bool IsSigned) { 5128 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5129 if (IsSigned) 5130 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5131 else 5132 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5133 setValue(&I, Value); 5134 } 5135 5136 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5137 /// If so, return true and lower it, otherwise return false and it will be 5138 /// lowered like a normal call. 5139 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5140 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5141 if (I.getNumArgOperands() != 3) 5142 return false; 5143 5144 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5145 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5146 !I.getArgOperand(2)->getType()->isIntegerTy() || 5147 !I.getType()->isIntegerTy()) 5148 return false; 5149 5150 const Value *Size = I.getArgOperand(2); 5151 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5152 if (CSize && CSize->getZExtValue() == 0) { 5153 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5154 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5155 return true; 5156 } 5157 5158 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5159 std::pair<SDValue, SDValue> Res = 5160 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5161 getValue(LHS), getValue(RHS), getValue(Size), 5162 MachinePointerInfo(LHS), 5163 MachinePointerInfo(RHS)); 5164 if (Res.first.getNode()) { 5165 processIntegerCallValue(I, Res.first, true); 5166 PendingLoads.push_back(Res.second); 5167 return true; 5168 } 5169 5170 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5171 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5172 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5173 bool ActuallyDoIt = true; 5174 MVT LoadVT; 5175 Type *LoadTy; 5176 switch (CSize->getZExtValue()) { 5177 default: 5178 LoadVT = MVT::Other; 5179 LoadTy = nullptr; 5180 ActuallyDoIt = false; 5181 break; 5182 case 2: 5183 LoadVT = MVT::i16; 5184 LoadTy = Type::getInt16Ty(CSize->getContext()); 5185 break; 5186 case 4: 5187 LoadVT = MVT::i32; 5188 LoadTy = Type::getInt32Ty(CSize->getContext()); 5189 break; 5190 case 8: 5191 LoadVT = MVT::i64; 5192 LoadTy = Type::getInt64Ty(CSize->getContext()); 5193 break; 5194 /* 5195 case 16: 5196 LoadVT = MVT::v4i32; 5197 LoadTy = Type::getInt32Ty(CSize->getContext()); 5198 LoadTy = VectorType::get(LoadTy, 4); 5199 break; 5200 */ 5201 } 5202 5203 // This turns into unaligned loads. We only do this if the target natively 5204 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5205 // we'll only produce a small number of byte loads. 5206 5207 // Require that we can find a legal MVT, and only do this if the target 5208 // supports unaligned loads of that type. Expanding into byte loads would 5209 // bloat the code. 5210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5211 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5212 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5213 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5214 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5215 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5216 // TODO: Check alignment of src and dest ptrs. 5217 if (!TLI.isTypeLegal(LoadVT) || 5218 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5219 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5220 ActuallyDoIt = false; 5221 } 5222 5223 if (ActuallyDoIt) { 5224 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5225 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5226 5227 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5228 ISD::SETNE); 5229 processIntegerCallValue(I, Res, false); 5230 return true; 5231 } 5232 } 5233 5234 5235 return false; 5236 } 5237 5238 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5239 /// form. If so, return true and lower it, otherwise return false and it 5240 /// will be lowered like a normal call. 5241 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5242 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5243 if (I.getNumArgOperands() != 3) 5244 return false; 5245 5246 const Value *Src = I.getArgOperand(0); 5247 const Value *Char = I.getArgOperand(1); 5248 const Value *Length = I.getArgOperand(2); 5249 if (!Src->getType()->isPointerTy() || 5250 !Char->getType()->isIntegerTy() || 5251 !Length->getType()->isIntegerTy() || 5252 !I.getType()->isPointerTy()) 5253 return false; 5254 5255 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5256 std::pair<SDValue, SDValue> Res = 5257 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5258 getValue(Src), getValue(Char), getValue(Length), 5259 MachinePointerInfo(Src)); 5260 if (Res.first.getNode()) { 5261 setValue(&I, Res.first); 5262 PendingLoads.push_back(Res.second); 5263 return true; 5264 } 5265 5266 return false; 5267 } 5268 5269 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5270 /// optimized form. If so, return true and lower it, otherwise return false 5271 /// and it will be lowered like a normal call. 5272 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5273 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5274 if (I.getNumArgOperands() != 2) 5275 return false; 5276 5277 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5278 if (!Arg0->getType()->isPointerTy() || 5279 !Arg1->getType()->isPointerTy() || 5280 !I.getType()->isPointerTy()) 5281 return false; 5282 5283 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5284 std::pair<SDValue, SDValue> Res = 5285 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5286 getValue(Arg0), getValue(Arg1), 5287 MachinePointerInfo(Arg0), 5288 MachinePointerInfo(Arg1), isStpcpy); 5289 if (Res.first.getNode()) { 5290 setValue(&I, Res.first); 5291 DAG.setRoot(Res.second); 5292 return true; 5293 } 5294 5295 return false; 5296 } 5297 5298 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5299 /// If so, return true and lower it, otherwise return false and it will be 5300 /// lowered like a normal call. 5301 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5302 // Verify that the prototype makes sense. int strcmp(void*,void*) 5303 if (I.getNumArgOperands() != 2) 5304 return false; 5305 5306 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5307 if (!Arg0->getType()->isPointerTy() || 5308 !Arg1->getType()->isPointerTy() || 5309 !I.getType()->isIntegerTy()) 5310 return false; 5311 5312 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5313 std::pair<SDValue, SDValue> Res = 5314 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5315 getValue(Arg0), getValue(Arg1), 5316 MachinePointerInfo(Arg0), 5317 MachinePointerInfo(Arg1)); 5318 if (Res.first.getNode()) { 5319 processIntegerCallValue(I, Res.first, true); 5320 PendingLoads.push_back(Res.second); 5321 return true; 5322 } 5323 5324 return false; 5325 } 5326 5327 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5328 /// form. If so, return true and lower it, otherwise return false and it 5329 /// will be lowered like a normal call. 5330 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5331 // Verify that the prototype makes sense. size_t strlen(char *) 5332 if (I.getNumArgOperands() != 1) 5333 return false; 5334 5335 const Value *Arg0 = I.getArgOperand(0); 5336 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5337 return false; 5338 5339 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5340 std::pair<SDValue, SDValue> Res = 5341 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5342 getValue(Arg0), MachinePointerInfo(Arg0)); 5343 if (Res.first.getNode()) { 5344 processIntegerCallValue(I, Res.first, false); 5345 PendingLoads.push_back(Res.second); 5346 return true; 5347 } 5348 5349 return false; 5350 } 5351 5352 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5353 /// form. If so, return true and lower it, otherwise return false and it 5354 /// will be lowered like a normal call. 5355 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5356 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5357 if (I.getNumArgOperands() != 2) 5358 return false; 5359 5360 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5361 if (!Arg0->getType()->isPointerTy() || 5362 !Arg1->getType()->isIntegerTy() || 5363 !I.getType()->isIntegerTy()) 5364 return false; 5365 5366 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5367 std::pair<SDValue, SDValue> Res = 5368 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5369 getValue(Arg0), getValue(Arg1), 5370 MachinePointerInfo(Arg0)); 5371 if (Res.first.getNode()) { 5372 processIntegerCallValue(I, Res.first, false); 5373 PendingLoads.push_back(Res.second); 5374 return true; 5375 } 5376 5377 return false; 5378 } 5379 5380 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5381 /// operation (as expected), translate it to an SDNode with the specified opcode 5382 /// and return true. 5383 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5384 unsigned Opcode) { 5385 // Sanity check that it really is a unary floating-point call. 5386 if (I.getNumArgOperands() != 1 || 5387 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5388 I.getType() != I.getArgOperand(0)->getType() || 5389 !I.onlyReadsMemory()) 5390 return false; 5391 5392 SDValue Tmp = getValue(I.getArgOperand(0)); 5393 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5394 return true; 5395 } 5396 5397 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5398 /// operation (as expected), translate it to an SDNode with the specified opcode 5399 /// and return true. 5400 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5401 unsigned Opcode) { 5402 // Sanity check that it really is a binary floating-point call. 5403 if (I.getNumArgOperands() != 2 || 5404 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5405 I.getType() != I.getArgOperand(0)->getType() || 5406 I.getType() != I.getArgOperand(1)->getType() || 5407 !I.onlyReadsMemory()) 5408 return false; 5409 5410 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5411 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5412 EVT VT = Tmp0.getValueType(); 5413 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5414 return true; 5415 } 5416 5417 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5418 // Handle inline assembly differently. 5419 if (isa<InlineAsm>(I.getCalledValue())) { 5420 visitInlineAsm(&I); 5421 return; 5422 } 5423 5424 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5425 ComputeUsesVAFloatArgument(I, &MMI); 5426 5427 const char *RenameFn = nullptr; 5428 if (Function *F = I.getCalledFunction()) { 5429 if (F->isDeclaration()) { 5430 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5431 if (unsigned IID = II->getIntrinsicID(F)) { 5432 RenameFn = visitIntrinsicCall(I, IID); 5433 if (!RenameFn) 5434 return; 5435 } 5436 } 5437 if (unsigned IID = F->getIntrinsicID()) { 5438 RenameFn = visitIntrinsicCall(I, IID); 5439 if (!RenameFn) 5440 return; 5441 } 5442 } 5443 5444 // Check for well-known libc/libm calls. If the function is internal, it 5445 // can't be a library call. 5446 LibFunc::Func Func; 5447 if (!F->hasLocalLinkage() && F->hasName() && 5448 LibInfo->getLibFunc(F->getName(), Func) && 5449 LibInfo->hasOptimizedCodeGen(Func)) { 5450 switch (Func) { 5451 default: break; 5452 case LibFunc::copysign: 5453 case LibFunc::copysignf: 5454 case LibFunc::copysignl: 5455 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5456 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5457 I.getType() == I.getArgOperand(0)->getType() && 5458 I.getType() == I.getArgOperand(1)->getType() && 5459 I.onlyReadsMemory()) { 5460 SDValue LHS = getValue(I.getArgOperand(0)); 5461 SDValue RHS = getValue(I.getArgOperand(1)); 5462 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5463 LHS.getValueType(), LHS, RHS)); 5464 return; 5465 } 5466 break; 5467 case LibFunc::fabs: 5468 case LibFunc::fabsf: 5469 case LibFunc::fabsl: 5470 if (visitUnaryFloatCall(I, ISD::FABS)) 5471 return; 5472 break; 5473 case LibFunc::fmin: 5474 case LibFunc::fminf: 5475 case LibFunc::fminl: 5476 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5477 return; 5478 break; 5479 case LibFunc::fmax: 5480 case LibFunc::fmaxf: 5481 case LibFunc::fmaxl: 5482 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5483 return; 5484 break; 5485 case LibFunc::sin: 5486 case LibFunc::sinf: 5487 case LibFunc::sinl: 5488 if (visitUnaryFloatCall(I, ISD::FSIN)) 5489 return; 5490 break; 5491 case LibFunc::cos: 5492 case LibFunc::cosf: 5493 case LibFunc::cosl: 5494 if (visitUnaryFloatCall(I, ISD::FCOS)) 5495 return; 5496 break; 5497 case LibFunc::sqrt: 5498 case LibFunc::sqrtf: 5499 case LibFunc::sqrtl: 5500 case LibFunc::sqrt_finite: 5501 case LibFunc::sqrtf_finite: 5502 case LibFunc::sqrtl_finite: 5503 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5504 return; 5505 break; 5506 case LibFunc::floor: 5507 case LibFunc::floorf: 5508 case LibFunc::floorl: 5509 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5510 return; 5511 break; 5512 case LibFunc::nearbyint: 5513 case LibFunc::nearbyintf: 5514 case LibFunc::nearbyintl: 5515 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5516 return; 5517 break; 5518 case LibFunc::ceil: 5519 case LibFunc::ceilf: 5520 case LibFunc::ceill: 5521 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5522 return; 5523 break; 5524 case LibFunc::rint: 5525 case LibFunc::rintf: 5526 case LibFunc::rintl: 5527 if (visitUnaryFloatCall(I, ISD::FRINT)) 5528 return; 5529 break; 5530 case LibFunc::round: 5531 case LibFunc::roundf: 5532 case LibFunc::roundl: 5533 if (visitUnaryFloatCall(I, ISD::FROUND)) 5534 return; 5535 break; 5536 case LibFunc::trunc: 5537 case LibFunc::truncf: 5538 case LibFunc::truncl: 5539 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5540 return; 5541 break; 5542 case LibFunc::log2: 5543 case LibFunc::log2f: 5544 case LibFunc::log2l: 5545 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5546 return; 5547 break; 5548 case LibFunc::exp2: 5549 case LibFunc::exp2f: 5550 case LibFunc::exp2l: 5551 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5552 return; 5553 break; 5554 case LibFunc::memcmp: 5555 if (visitMemCmpCall(I)) 5556 return; 5557 break; 5558 case LibFunc::memchr: 5559 if (visitMemChrCall(I)) 5560 return; 5561 break; 5562 case LibFunc::strcpy: 5563 if (visitStrCpyCall(I, false)) 5564 return; 5565 break; 5566 case LibFunc::stpcpy: 5567 if (visitStrCpyCall(I, true)) 5568 return; 5569 break; 5570 case LibFunc::strcmp: 5571 if (visitStrCmpCall(I)) 5572 return; 5573 break; 5574 case LibFunc::strlen: 5575 if (visitStrLenCall(I)) 5576 return; 5577 break; 5578 case LibFunc::strnlen: 5579 if (visitStrNLenCall(I)) 5580 return; 5581 break; 5582 } 5583 } 5584 } 5585 5586 SDValue Callee; 5587 if (!RenameFn) 5588 Callee = getValue(I.getCalledValue()); 5589 else 5590 Callee = DAG.getExternalSymbol(RenameFn, 5591 DAG.getTargetLoweringInfo().getPointerTy()); 5592 5593 // Check if we can potentially perform a tail call. More detailed checking is 5594 // be done within LowerCallTo, after more information about the call is known. 5595 LowerCallTo(&I, Callee, I.isTailCall()); 5596 } 5597 5598 namespace { 5599 5600 /// AsmOperandInfo - This contains information for each constraint that we are 5601 /// lowering. 5602 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5603 public: 5604 /// CallOperand - If this is the result output operand or a clobber 5605 /// this is null, otherwise it is the incoming operand to the CallInst. 5606 /// This gets modified as the asm is processed. 5607 SDValue CallOperand; 5608 5609 /// AssignedRegs - If this is a register or register class operand, this 5610 /// contains the set of register corresponding to the operand. 5611 RegsForValue AssignedRegs; 5612 5613 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5614 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5615 } 5616 5617 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5618 /// corresponds to. If there is no Value* for this operand, it returns 5619 /// MVT::Other. 5620 EVT getCallOperandValEVT(LLVMContext &Context, 5621 const TargetLowering &TLI, 5622 const DataLayout *DL) const { 5623 if (!CallOperandVal) return MVT::Other; 5624 5625 if (isa<BasicBlock>(CallOperandVal)) 5626 return TLI.getPointerTy(); 5627 5628 llvm::Type *OpTy = CallOperandVal->getType(); 5629 5630 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5631 // If this is an indirect operand, the operand is a pointer to the 5632 // accessed type. 5633 if (isIndirect) { 5634 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5635 if (!PtrTy) 5636 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5637 OpTy = PtrTy->getElementType(); 5638 } 5639 5640 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5641 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5642 if (STy->getNumElements() == 1) 5643 OpTy = STy->getElementType(0); 5644 5645 // If OpTy is not a single value, it may be a struct/union that we 5646 // can tile with integers. 5647 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5648 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5649 switch (BitSize) { 5650 default: break; 5651 case 1: 5652 case 8: 5653 case 16: 5654 case 32: 5655 case 64: 5656 case 128: 5657 OpTy = IntegerType::get(Context, BitSize); 5658 break; 5659 } 5660 } 5661 5662 return TLI.getValueType(OpTy, true); 5663 } 5664 }; 5665 5666 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5667 5668 } // end anonymous namespace 5669 5670 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5671 /// specified operand. We prefer to assign virtual registers, to allow the 5672 /// register allocator to handle the assignment process. However, if the asm 5673 /// uses features that we can't model on machineinstrs, we have SDISel do the 5674 /// allocation. This produces generally horrible, but correct, code. 5675 /// 5676 /// OpInfo describes the operand. 5677 /// 5678 static void GetRegistersForValue(SelectionDAG &DAG, 5679 const TargetLowering &TLI, 5680 SDLoc DL, 5681 SDISelAsmOperandInfo &OpInfo) { 5682 LLVMContext &Context = *DAG.getContext(); 5683 5684 MachineFunction &MF = DAG.getMachineFunction(); 5685 SmallVector<unsigned, 4> Regs; 5686 5687 // If this is a constraint for a single physreg, or a constraint for a 5688 // register class, find it. 5689 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5690 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5691 OpInfo.ConstraintCode, 5692 OpInfo.ConstraintVT); 5693 5694 unsigned NumRegs = 1; 5695 if (OpInfo.ConstraintVT != MVT::Other) { 5696 // If this is a FP input in an integer register (or visa versa) insert a bit 5697 // cast of the input value. More generally, handle any case where the input 5698 // value disagrees with the register class we plan to stick this in. 5699 if (OpInfo.Type == InlineAsm::isInput && 5700 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5701 // Try to convert to the first EVT that the reg class contains. If the 5702 // types are identical size, use a bitcast to convert (e.g. two differing 5703 // vector types). 5704 MVT RegVT = *PhysReg.second->vt_begin(); 5705 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5706 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5707 RegVT, OpInfo.CallOperand); 5708 OpInfo.ConstraintVT = RegVT; 5709 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5710 // If the input is a FP value and we want it in FP registers, do a 5711 // bitcast to the corresponding integer type. This turns an f64 value 5712 // into i64, which can be passed with two i32 values on a 32-bit 5713 // machine. 5714 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5715 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5716 RegVT, OpInfo.CallOperand); 5717 OpInfo.ConstraintVT = RegVT; 5718 } 5719 } 5720 5721 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5722 } 5723 5724 MVT RegVT; 5725 EVT ValueVT = OpInfo.ConstraintVT; 5726 5727 // If this is a constraint for a specific physical register, like {r17}, 5728 // assign it now. 5729 if (unsigned AssignedReg = PhysReg.first) { 5730 const TargetRegisterClass *RC = PhysReg.second; 5731 if (OpInfo.ConstraintVT == MVT::Other) 5732 ValueVT = *RC->vt_begin(); 5733 5734 // Get the actual register value type. This is important, because the user 5735 // may have asked for (e.g.) the AX register in i32 type. We need to 5736 // remember that AX is actually i16 to get the right extension. 5737 RegVT = *RC->vt_begin(); 5738 5739 // This is a explicit reference to a physical register. 5740 Regs.push_back(AssignedReg); 5741 5742 // If this is an expanded reference, add the rest of the regs to Regs. 5743 if (NumRegs != 1) { 5744 TargetRegisterClass::iterator I = RC->begin(); 5745 for (; *I != AssignedReg; ++I) 5746 assert(I != RC->end() && "Didn't find reg!"); 5747 5748 // Already added the first reg. 5749 --NumRegs; ++I; 5750 for (; NumRegs; --NumRegs, ++I) { 5751 assert(I != RC->end() && "Ran out of registers to allocate!"); 5752 Regs.push_back(*I); 5753 } 5754 } 5755 5756 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5757 return; 5758 } 5759 5760 // Otherwise, if this was a reference to an LLVM register class, create vregs 5761 // for this reference. 5762 if (const TargetRegisterClass *RC = PhysReg.second) { 5763 RegVT = *RC->vt_begin(); 5764 if (OpInfo.ConstraintVT == MVT::Other) 5765 ValueVT = RegVT; 5766 5767 // Create the appropriate number of virtual registers. 5768 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5769 for (; NumRegs; --NumRegs) 5770 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5771 5772 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5773 return; 5774 } 5775 5776 // Otherwise, we couldn't allocate enough registers for this. 5777 } 5778 5779 /// visitInlineAsm - Handle a call to an InlineAsm object. 5780 /// 5781 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5782 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5783 5784 /// ConstraintOperands - Information about all of the constraints. 5785 SDISelAsmOperandInfoVector ConstraintOperands; 5786 5787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5788 TargetLowering::AsmOperandInfoVector TargetConstraints = 5789 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5790 5791 bool hasMemory = false; 5792 5793 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5794 unsigned ResNo = 0; // ResNo - The result number of the next output. 5795 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5796 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5797 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5798 5799 MVT OpVT = MVT::Other; 5800 5801 // Compute the value type for each operand. 5802 switch (OpInfo.Type) { 5803 case InlineAsm::isOutput: 5804 // Indirect outputs just consume an argument. 5805 if (OpInfo.isIndirect) { 5806 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5807 break; 5808 } 5809 5810 // The return value of the call is this value. As such, there is no 5811 // corresponding argument. 5812 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5813 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5814 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5815 } else { 5816 assert(ResNo == 0 && "Asm only has one result!"); 5817 OpVT = TLI.getSimpleValueType(CS.getType()); 5818 } 5819 ++ResNo; 5820 break; 5821 case InlineAsm::isInput: 5822 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5823 break; 5824 case InlineAsm::isClobber: 5825 // Nothing to do. 5826 break; 5827 } 5828 5829 // If this is an input or an indirect output, process the call argument. 5830 // BasicBlocks are labels, currently appearing only in asm's. 5831 if (OpInfo.CallOperandVal) { 5832 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5833 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5834 } else { 5835 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5836 } 5837 5838 OpVT = 5839 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5840 } 5841 5842 OpInfo.ConstraintVT = OpVT; 5843 5844 // Indirect operand accesses access memory. 5845 if (OpInfo.isIndirect) 5846 hasMemory = true; 5847 else { 5848 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5849 TargetLowering::ConstraintType 5850 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5851 if (CType == TargetLowering::C_Memory) { 5852 hasMemory = true; 5853 break; 5854 } 5855 } 5856 } 5857 } 5858 5859 SDValue Chain, Flag; 5860 5861 // We won't need to flush pending loads if this asm doesn't touch 5862 // memory and is nonvolatile. 5863 if (hasMemory || IA->hasSideEffects()) 5864 Chain = getRoot(); 5865 else 5866 Chain = DAG.getRoot(); 5867 5868 // Second pass over the constraints: compute which constraint option to use 5869 // and assign registers to constraints that want a specific physreg. 5870 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5871 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5872 5873 // If this is an output operand with a matching input operand, look up the 5874 // matching input. If their types mismatch, e.g. one is an integer, the 5875 // other is floating point, or their sizes are different, flag it as an 5876 // error. 5877 if (OpInfo.hasMatchingInput()) { 5878 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5879 5880 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5881 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5882 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5883 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5884 OpInfo.ConstraintVT); 5885 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5886 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5887 Input.ConstraintVT); 5888 if ((OpInfo.ConstraintVT.isInteger() != 5889 Input.ConstraintVT.isInteger()) || 5890 (MatchRC.second != InputRC.second)) { 5891 report_fatal_error("Unsupported asm: input constraint" 5892 " with a matching output constraint of" 5893 " incompatible type!"); 5894 } 5895 Input.ConstraintVT = OpInfo.ConstraintVT; 5896 } 5897 } 5898 5899 // Compute the constraint code and ConstraintType to use. 5900 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5901 5902 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5903 OpInfo.Type == InlineAsm::isClobber) 5904 continue; 5905 5906 // If this is a memory input, and if the operand is not indirect, do what we 5907 // need to to provide an address for the memory input. 5908 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5909 !OpInfo.isIndirect) { 5910 assert((OpInfo.isMultipleAlternative || 5911 (OpInfo.Type == InlineAsm::isInput)) && 5912 "Can only indirectify direct input operands!"); 5913 5914 // Memory operands really want the address of the value. If we don't have 5915 // an indirect input, put it in the constpool if we can, otherwise spill 5916 // it to a stack slot. 5917 // TODO: This isn't quite right. We need to handle these according to 5918 // the addressing mode that the constraint wants. Also, this may take 5919 // an additional register for the computation and we don't want that 5920 // either. 5921 5922 // If the operand is a float, integer, or vector constant, spill to a 5923 // constant pool entry to get its address. 5924 const Value *OpVal = OpInfo.CallOperandVal; 5925 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5926 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5927 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5928 TLI.getPointerTy()); 5929 } else { 5930 // Otherwise, create a stack slot and emit a store to it before the 5931 // asm. 5932 Type *Ty = OpVal->getType(); 5933 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5934 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5935 MachineFunction &MF = DAG.getMachineFunction(); 5936 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5937 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5938 Chain = DAG.getStore(Chain, getCurSDLoc(), 5939 OpInfo.CallOperand, StackSlot, 5940 MachinePointerInfo::getFixedStack(SSFI), 5941 false, false, 0); 5942 OpInfo.CallOperand = StackSlot; 5943 } 5944 5945 // There is no longer a Value* corresponding to this operand. 5946 OpInfo.CallOperandVal = nullptr; 5947 5948 // It is now an indirect operand. 5949 OpInfo.isIndirect = true; 5950 } 5951 5952 // If this constraint is for a specific register, allocate it before 5953 // anything else. 5954 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5955 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5956 } 5957 5958 // Second pass - Loop over all of the operands, assigning virtual or physregs 5959 // to register class operands. 5960 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5961 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5962 5963 // C_Register operands have already been allocated, Other/Memory don't need 5964 // to be. 5965 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5966 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5967 } 5968 5969 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5970 std::vector<SDValue> AsmNodeOperands; 5971 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5972 AsmNodeOperands.push_back( 5973 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5974 TLI.getPointerTy())); 5975 5976 // If we have a !srcloc metadata node associated with it, we want to attach 5977 // this to the ultimately generated inline asm machineinstr. To do this, we 5978 // pass in the third operand as this (potentially null) inline asm MDNode. 5979 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5980 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5981 5982 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 5983 // bits as operand 3. 5984 unsigned ExtraInfo = 0; 5985 if (IA->hasSideEffects()) 5986 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5987 if (IA->isAlignStack()) 5988 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5989 // Set the asm dialect. 5990 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 5991 5992 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 5993 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5994 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5995 5996 // Compute the constraint code and ConstraintType to use. 5997 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5998 5999 // Ideally, we would only check against memory constraints. However, the 6000 // meaning of an other constraint can be target-specific and we can't easily 6001 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6002 // for other constriants as well. 6003 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6004 OpInfo.ConstraintType == TargetLowering::C_Other) { 6005 if (OpInfo.Type == InlineAsm::isInput) 6006 ExtraInfo |= InlineAsm::Extra_MayLoad; 6007 else if (OpInfo.Type == InlineAsm::isOutput) 6008 ExtraInfo |= InlineAsm::Extra_MayStore; 6009 else if (OpInfo.Type == InlineAsm::isClobber) 6010 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6011 } 6012 } 6013 6014 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6015 TLI.getPointerTy())); 6016 6017 // Loop over all of the inputs, copying the operand values into the 6018 // appropriate registers and processing the output regs. 6019 RegsForValue RetValRegs; 6020 6021 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6022 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6023 6024 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6025 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6026 6027 switch (OpInfo.Type) { 6028 case InlineAsm::isOutput: { 6029 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6030 OpInfo.ConstraintType != TargetLowering::C_Register) { 6031 // Memory output, or 'other' output (e.g. 'X' constraint). 6032 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6033 6034 unsigned ConstraintID = 6035 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6036 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6037 "Failed to convert memory constraint code to constraint id."); 6038 6039 // Add information to the INLINEASM node to know about this output. 6040 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6041 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6042 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6043 MVT::i32)); 6044 AsmNodeOperands.push_back(OpInfo.CallOperand); 6045 break; 6046 } 6047 6048 // Otherwise, this is a register or register class output. 6049 6050 // Copy the output from the appropriate register. Find a register that 6051 // we can use. 6052 if (OpInfo.AssignedRegs.Regs.empty()) { 6053 LLVMContext &Ctx = *DAG.getContext(); 6054 Ctx.emitError(CS.getInstruction(), 6055 "couldn't allocate output register for constraint '" + 6056 Twine(OpInfo.ConstraintCode) + "'"); 6057 return; 6058 } 6059 6060 // If this is an indirect operand, store through the pointer after the 6061 // asm. 6062 if (OpInfo.isIndirect) { 6063 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6064 OpInfo.CallOperandVal)); 6065 } else { 6066 // This is the result value of the call. 6067 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6068 // Concatenate this output onto the outputs list. 6069 RetValRegs.append(OpInfo.AssignedRegs); 6070 } 6071 6072 // Add information to the INLINEASM node to know that this register is 6073 // set. 6074 OpInfo.AssignedRegs 6075 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6076 ? InlineAsm::Kind_RegDefEarlyClobber 6077 : InlineAsm::Kind_RegDef, 6078 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6079 break; 6080 } 6081 case InlineAsm::isInput: { 6082 SDValue InOperandVal = OpInfo.CallOperand; 6083 6084 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6085 // If this is required to match an output register we have already set, 6086 // just use its register. 6087 unsigned OperandNo = OpInfo.getMatchedOperand(); 6088 6089 // Scan until we find the definition we already emitted of this operand. 6090 // When we find it, create a RegsForValue operand. 6091 unsigned CurOp = InlineAsm::Op_FirstOperand; 6092 for (; OperandNo; --OperandNo) { 6093 // Advance to the next operand. 6094 unsigned OpFlag = 6095 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6096 assert((InlineAsm::isRegDefKind(OpFlag) || 6097 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6098 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6099 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6100 } 6101 6102 unsigned OpFlag = 6103 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6104 if (InlineAsm::isRegDefKind(OpFlag) || 6105 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6106 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6107 if (OpInfo.isIndirect) { 6108 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6109 LLVMContext &Ctx = *DAG.getContext(); 6110 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6111 " don't know how to handle tied " 6112 "indirect register inputs"); 6113 return; 6114 } 6115 6116 RegsForValue MatchedRegs; 6117 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6118 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6119 MatchedRegs.RegVTs.push_back(RegVT); 6120 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6121 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6122 i != e; ++i) { 6123 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6124 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6125 else { 6126 LLVMContext &Ctx = *DAG.getContext(); 6127 Ctx.emitError(CS.getInstruction(), 6128 "inline asm error: This value" 6129 " type register class is not natively supported!"); 6130 return; 6131 } 6132 } 6133 SDLoc dl = getCurSDLoc(); 6134 // Use the produced MatchedRegs object to 6135 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6136 Chain, &Flag, CS.getInstruction()); 6137 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6138 true, OpInfo.getMatchedOperand(), dl, 6139 DAG, AsmNodeOperands); 6140 break; 6141 } 6142 6143 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6144 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6145 "Unexpected number of operands"); 6146 // Add information to the INLINEASM node to know about this input. 6147 // See InlineAsm.h isUseOperandTiedToDef. 6148 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6149 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6150 OpInfo.getMatchedOperand()); 6151 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6152 TLI.getPointerTy())); 6153 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6154 break; 6155 } 6156 6157 // Treat indirect 'X' constraint as memory. 6158 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6159 OpInfo.isIndirect) 6160 OpInfo.ConstraintType = TargetLowering::C_Memory; 6161 6162 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6163 std::vector<SDValue> Ops; 6164 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6165 Ops, DAG); 6166 if (Ops.empty()) { 6167 LLVMContext &Ctx = *DAG.getContext(); 6168 Ctx.emitError(CS.getInstruction(), 6169 "invalid operand for inline asm constraint '" + 6170 Twine(OpInfo.ConstraintCode) + "'"); 6171 return; 6172 } 6173 6174 // Add information to the INLINEASM node to know about this input. 6175 unsigned ResOpType = 6176 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6177 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6178 getCurSDLoc(), 6179 TLI.getPointerTy())); 6180 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6181 break; 6182 } 6183 6184 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6185 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6186 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6187 "Memory operands expect pointer values"); 6188 6189 unsigned ConstraintID = 6190 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6191 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6192 "Failed to convert memory constraint code to constraint id."); 6193 6194 // Add information to the INLINEASM node to know about this input. 6195 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6196 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6197 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6198 getCurSDLoc(), 6199 MVT::i32)); 6200 AsmNodeOperands.push_back(InOperandVal); 6201 break; 6202 } 6203 6204 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6205 OpInfo.ConstraintType == TargetLowering::C_Register) && 6206 "Unknown constraint type!"); 6207 6208 // TODO: Support this. 6209 if (OpInfo.isIndirect) { 6210 LLVMContext &Ctx = *DAG.getContext(); 6211 Ctx.emitError(CS.getInstruction(), 6212 "Don't know how to handle indirect register inputs yet " 6213 "for constraint '" + 6214 Twine(OpInfo.ConstraintCode) + "'"); 6215 return; 6216 } 6217 6218 // Copy the input into the appropriate registers. 6219 if (OpInfo.AssignedRegs.Regs.empty()) { 6220 LLVMContext &Ctx = *DAG.getContext(); 6221 Ctx.emitError(CS.getInstruction(), 6222 "couldn't allocate input reg for constraint '" + 6223 Twine(OpInfo.ConstraintCode) + "'"); 6224 return; 6225 } 6226 6227 SDLoc dl = getCurSDLoc(); 6228 6229 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6230 Chain, &Flag, CS.getInstruction()); 6231 6232 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6233 dl, DAG, AsmNodeOperands); 6234 break; 6235 } 6236 case InlineAsm::isClobber: { 6237 // Add the clobbered value to the operand list, so that the register 6238 // allocator is aware that the physreg got clobbered. 6239 if (!OpInfo.AssignedRegs.Regs.empty()) 6240 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6241 false, 0, getCurSDLoc(), DAG, 6242 AsmNodeOperands); 6243 break; 6244 } 6245 } 6246 } 6247 6248 // Finish up input operands. Set the input chain and add the flag last. 6249 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6250 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6251 6252 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6253 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6254 Flag = Chain.getValue(1); 6255 6256 // If this asm returns a register value, copy the result from that register 6257 // and set it as the value of the call. 6258 if (!RetValRegs.Regs.empty()) { 6259 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6260 Chain, &Flag, CS.getInstruction()); 6261 6262 // FIXME: Why don't we do this for inline asms with MRVs? 6263 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6264 EVT ResultType = TLI.getValueType(CS.getType()); 6265 6266 // If any of the results of the inline asm is a vector, it may have the 6267 // wrong width/num elts. This can happen for register classes that can 6268 // contain multiple different value types. The preg or vreg allocated may 6269 // not have the same VT as was expected. Convert it to the right type 6270 // with bit_convert. 6271 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6272 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6273 ResultType, Val); 6274 6275 } else if (ResultType != Val.getValueType() && 6276 ResultType.isInteger() && Val.getValueType().isInteger()) { 6277 // If a result value was tied to an input value, the computed result may 6278 // have a wider width than the expected result. Extract the relevant 6279 // portion. 6280 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6281 } 6282 6283 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6284 } 6285 6286 setValue(CS.getInstruction(), Val); 6287 // Don't need to use this as a chain in this case. 6288 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6289 return; 6290 } 6291 6292 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6293 6294 // Process indirect outputs, first output all of the flagged copies out of 6295 // physregs. 6296 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6297 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6298 const Value *Ptr = IndirectStoresToEmit[i].second; 6299 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6300 Chain, &Flag, IA); 6301 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6302 } 6303 6304 // Emit the non-flagged stores from the physregs. 6305 SmallVector<SDValue, 8> OutChains; 6306 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6307 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6308 StoresToEmit[i].first, 6309 getValue(StoresToEmit[i].second), 6310 MachinePointerInfo(StoresToEmit[i].second), 6311 false, false, 0); 6312 OutChains.push_back(Val); 6313 } 6314 6315 if (!OutChains.empty()) 6316 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6317 6318 DAG.setRoot(Chain); 6319 } 6320 6321 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6322 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6323 MVT::Other, getRoot(), 6324 getValue(I.getArgOperand(0)), 6325 DAG.getSrcValue(I.getArgOperand(0)))); 6326 } 6327 6328 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6330 const DataLayout &DL = *TLI.getDataLayout(); 6331 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6332 getRoot(), getValue(I.getOperand(0)), 6333 DAG.getSrcValue(I.getOperand(0)), 6334 DL.getABITypeAlignment(I.getType())); 6335 setValue(&I, V); 6336 DAG.setRoot(V.getValue(1)); 6337 } 6338 6339 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6340 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6341 MVT::Other, getRoot(), 6342 getValue(I.getArgOperand(0)), 6343 DAG.getSrcValue(I.getArgOperand(0)))); 6344 } 6345 6346 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6347 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6348 MVT::Other, getRoot(), 6349 getValue(I.getArgOperand(0)), 6350 getValue(I.getArgOperand(1)), 6351 DAG.getSrcValue(I.getArgOperand(0)), 6352 DAG.getSrcValue(I.getArgOperand(1)))); 6353 } 6354 6355 /// \brief Lower an argument list according to the target calling convention. 6356 /// 6357 /// \return A tuple of <return-value, token-chain> 6358 /// 6359 /// This is a helper for lowering intrinsics that follow a target calling 6360 /// convention or require stack pointer adjustment. Only a subset of the 6361 /// intrinsic's operands need to participate in the calling convention. 6362 std::pair<SDValue, SDValue> 6363 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6364 unsigned NumArgs, SDValue Callee, 6365 Type *ReturnTy, 6366 MachineBasicBlock *LandingPad, 6367 bool IsPatchPoint) { 6368 TargetLowering::ArgListTy Args; 6369 Args.reserve(NumArgs); 6370 6371 // Populate the argument list. 6372 // Attributes for args start at offset 1, after the return attribute. 6373 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6374 ArgI != ArgE; ++ArgI) { 6375 const Value *V = CS->getOperand(ArgI); 6376 6377 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6378 6379 TargetLowering::ArgListEntry Entry; 6380 Entry.Node = getValue(V); 6381 Entry.Ty = V->getType(); 6382 Entry.setAttributes(&CS, AttrI); 6383 Args.push_back(Entry); 6384 } 6385 6386 TargetLowering::CallLoweringInfo CLI(DAG); 6387 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6388 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6389 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6390 6391 return lowerInvokable(CLI, LandingPad); 6392 } 6393 6394 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6395 /// or patchpoint target node's operand list. 6396 /// 6397 /// Constants are converted to TargetConstants purely as an optimization to 6398 /// avoid constant materialization and register allocation. 6399 /// 6400 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6401 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6402 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6403 /// address materialization and register allocation, but may also be required 6404 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6405 /// alloca in the entry block, then the runtime may assume that the alloca's 6406 /// StackMap location can be read immediately after compilation and that the 6407 /// location is valid at any point during execution (this is similar to the 6408 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6409 /// only available in a register, then the runtime would need to trap when 6410 /// execution reaches the StackMap in order to read the alloca's location. 6411 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6412 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6413 SelectionDAGBuilder &Builder) { 6414 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6415 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6416 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6417 Ops.push_back( 6418 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6419 Ops.push_back( 6420 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6421 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6422 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6423 Ops.push_back( 6424 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6425 } else 6426 Ops.push_back(OpVal); 6427 } 6428 } 6429 6430 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6431 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6432 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6433 // [live variables...]) 6434 6435 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6436 6437 SDValue Chain, InFlag, Callee, NullPtr; 6438 SmallVector<SDValue, 32> Ops; 6439 6440 SDLoc DL = getCurSDLoc(); 6441 Callee = getValue(CI.getCalledValue()); 6442 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6443 6444 // The stackmap intrinsic only records the live variables (the arguemnts 6445 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6446 // intrinsic, this won't be lowered to a function call. This means we don't 6447 // have to worry about calling conventions and target specific lowering code. 6448 // Instead we perform the call lowering right here. 6449 // 6450 // chain, flag = CALLSEQ_START(chain, 0) 6451 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6452 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6453 // 6454 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6455 InFlag = Chain.getValue(1); 6456 6457 // Add the <id> and <numBytes> constants. 6458 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6459 Ops.push_back(DAG.getTargetConstant( 6460 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6461 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6462 Ops.push_back(DAG.getTargetConstant( 6463 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6464 MVT::i32)); 6465 6466 // Push live variables for the stack map. 6467 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6468 6469 // We are not pushing any register mask info here on the operands list, 6470 // because the stackmap doesn't clobber anything. 6471 6472 // Push the chain and the glue flag. 6473 Ops.push_back(Chain); 6474 Ops.push_back(InFlag); 6475 6476 // Create the STACKMAP node. 6477 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6478 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6479 Chain = SDValue(SM, 0); 6480 InFlag = Chain.getValue(1); 6481 6482 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6483 6484 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6485 6486 // Set the root to the target-lowered call chain. 6487 DAG.setRoot(Chain); 6488 6489 // Inform the Frame Information that we have a stackmap in this function. 6490 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6491 } 6492 6493 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6494 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6495 MachineBasicBlock *LandingPad) { 6496 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6497 // i32 <numBytes>, 6498 // i8* <target>, 6499 // i32 <numArgs>, 6500 // [Args...], 6501 // [live variables...]) 6502 6503 CallingConv::ID CC = CS.getCallingConv(); 6504 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6505 bool HasDef = !CS->getType()->isVoidTy(); 6506 SDLoc dl = getCurSDLoc(); 6507 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6508 6509 // Handle immediate and symbolic callees. 6510 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6511 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6512 /*isTarget=*/true); 6513 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6514 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6515 SDLoc(SymbolicCallee), 6516 SymbolicCallee->getValueType(0)); 6517 6518 // Get the real number of arguments participating in the call <numArgs> 6519 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6520 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6521 6522 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6523 // Intrinsics include all meta-operands up to but not including CC. 6524 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6525 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6526 "Not enough arguments provided to the patchpoint intrinsic"); 6527 6528 // For AnyRegCC the arguments are lowered later on manually. 6529 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6530 Type *ReturnTy = 6531 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6532 std::pair<SDValue, SDValue> Result = 6533 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6534 LandingPad, true); 6535 6536 SDNode *CallEnd = Result.second.getNode(); 6537 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6538 CallEnd = CallEnd->getOperand(0).getNode(); 6539 6540 /// Get a call instruction from the call sequence chain. 6541 /// Tail calls are not allowed. 6542 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6543 "Expected a callseq node."); 6544 SDNode *Call = CallEnd->getOperand(0).getNode(); 6545 bool HasGlue = Call->getGluedNode(); 6546 6547 // Replace the target specific call node with the patchable intrinsic. 6548 SmallVector<SDValue, 8> Ops; 6549 6550 // Add the <id> and <numBytes> constants. 6551 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6552 Ops.push_back(DAG.getTargetConstant( 6553 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6554 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6555 Ops.push_back(DAG.getTargetConstant( 6556 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6557 MVT::i32)); 6558 6559 // Add the callee. 6560 Ops.push_back(Callee); 6561 6562 // Adjust <numArgs> to account for any arguments that have been passed on the 6563 // stack instead. 6564 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6565 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6566 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6567 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6568 6569 // Add the calling convention 6570 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6571 6572 // Add the arguments we omitted previously. The register allocator should 6573 // place these in any free register. 6574 if (IsAnyRegCC) 6575 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6576 Ops.push_back(getValue(CS.getArgument(i))); 6577 6578 // Push the arguments from the call instruction up to the register mask. 6579 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6580 Ops.append(Call->op_begin() + 2, e); 6581 6582 // Push live variables for the stack map. 6583 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6584 6585 // Push the register mask info. 6586 if (HasGlue) 6587 Ops.push_back(*(Call->op_end()-2)); 6588 else 6589 Ops.push_back(*(Call->op_end()-1)); 6590 6591 // Push the chain (this is originally the first operand of the call, but 6592 // becomes now the last or second to last operand). 6593 Ops.push_back(*(Call->op_begin())); 6594 6595 // Push the glue flag (last operand). 6596 if (HasGlue) 6597 Ops.push_back(*(Call->op_end()-1)); 6598 6599 SDVTList NodeTys; 6600 if (IsAnyRegCC && HasDef) { 6601 // Create the return types based on the intrinsic definition 6602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6603 SmallVector<EVT, 3> ValueVTs; 6604 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6605 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6606 6607 // There is always a chain and a glue type at the end 6608 ValueVTs.push_back(MVT::Other); 6609 ValueVTs.push_back(MVT::Glue); 6610 NodeTys = DAG.getVTList(ValueVTs); 6611 } else 6612 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6613 6614 // Replace the target specific call node with a PATCHPOINT node. 6615 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6616 dl, NodeTys, Ops); 6617 6618 // Update the NodeMap. 6619 if (HasDef) { 6620 if (IsAnyRegCC) 6621 setValue(CS.getInstruction(), SDValue(MN, 0)); 6622 else 6623 setValue(CS.getInstruction(), Result.first); 6624 } 6625 6626 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6627 // call sequence. Furthermore the location of the chain and glue can change 6628 // when the AnyReg calling convention is used and the intrinsic returns a 6629 // value. 6630 if (IsAnyRegCC && HasDef) { 6631 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6632 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6633 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6634 } else 6635 DAG.ReplaceAllUsesWith(Call, MN); 6636 DAG.DeleteNode(Call); 6637 6638 // Inform the Frame Information that we have a patchpoint in this function. 6639 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6640 } 6641 6642 /// Returns an AttributeSet representing the attributes applied to the return 6643 /// value of the given call. 6644 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6645 SmallVector<Attribute::AttrKind, 2> Attrs; 6646 if (CLI.RetSExt) 6647 Attrs.push_back(Attribute::SExt); 6648 if (CLI.RetZExt) 6649 Attrs.push_back(Attribute::ZExt); 6650 if (CLI.IsInReg) 6651 Attrs.push_back(Attribute::InReg); 6652 6653 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6654 Attrs); 6655 } 6656 6657 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6658 /// implementation, which just calls LowerCall. 6659 /// FIXME: When all targets are 6660 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6661 std::pair<SDValue, SDValue> 6662 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6663 // Handle the incoming return values from the call. 6664 CLI.Ins.clear(); 6665 Type *OrigRetTy = CLI.RetTy; 6666 SmallVector<EVT, 4> RetTys; 6667 SmallVector<uint64_t, 4> Offsets; 6668 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6669 6670 SmallVector<ISD::OutputArg, 4> Outs; 6671 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6672 6673 bool CanLowerReturn = 6674 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6675 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6676 6677 SDValue DemoteStackSlot; 6678 int DemoteStackIdx = -100; 6679 if (!CanLowerReturn) { 6680 // FIXME: equivalent assert? 6681 // assert(!CS.hasInAllocaArgument() && 6682 // "sret demotion is incompatible with inalloca"); 6683 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6684 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6685 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6686 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6687 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6688 6689 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6690 ArgListEntry Entry; 6691 Entry.Node = DemoteStackSlot; 6692 Entry.Ty = StackSlotPtrType; 6693 Entry.isSExt = false; 6694 Entry.isZExt = false; 6695 Entry.isInReg = false; 6696 Entry.isSRet = true; 6697 Entry.isNest = false; 6698 Entry.isByVal = false; 6699 Entry.isReturned = false; 6700 Entry.Alignment = Align; 6701 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6702 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6703 6704 // sret demotion isn't compatible with tail-calls, since the sret argument 6705 // points into the callers stack frame. 6706 CLI.IsTailCall = false; 6707 } else { 6708 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6709 EVT VT = RetTys[I]; 6710 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6711 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6712 for (unsigned i = 0; i != NumRegs; ++i) { 6713 ISD::InputArg MyFlags; 6714 MyFlags.VT = RegisterVT; 6715 MyFlags.ArgVT = VT; 6716 MyFlags.Used = CLI.IsReturnValueUsed; 6717 if (CLI.RetSExt) 6718 MyFlags.Flags.setSExt(); 6719 if (CLI.RetZExt) 6720 MyFlags.Flags.setZExt(); 6721 if (CLI.IsInReg) 6722 MyFlags.Flags.setInReg(); 6723 CLI.Ins.push_back(MyFlags); 6724 } 6725 } 6726 } 6727 6728 // Handle all of the outgoing arguments. 6729 CLI.Outs.clear(); 6730 CLI.OutVals.clear(); 6731 ArgListTy &Args = CLI.getArgs(); 6732 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6733 SmallVector<EVT, 4> ValueVTs; 6734 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6735 Type *FinalType = Args[i].Ty; 6736 if (Args[i].isByVal) 6737 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6738 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6739 FinalType, CLI.CallConv, CLI.IsVarArg); 6740 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6741 ++Value) { 6742 EVT VT = ValueVTs[Value]; 6743 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6744 SDValue Op = SDValue(Args[i].Node.getNode(), 6745 Args[i].Node.getResNo() + Value); 6746 ISD::ArgFlagsTy Flags; 6747 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6748 6749 if (Args[i].isZExt) 6750 Flags.setZExt(); 6751 if (Args[i].isSExt) 6752 Flags.setSExt(); 6753 if (Args[i].isInReg) 6754 Flags.setInReg(); 6755 if (Args[i].isSRet) 6756 Flags.setSRet(); 6757 if (Args[i].isByVal) 6758 Flags.setByVal(); 6759 if (Args[i].isInAlloca) { 6760 Flags.setInAlloca(); 6761 // Set the byval flag for CCAssignFn callbacks that don't know about 6762 // inalloca. This way we can know how many bytes we should've allocated 6763 // and how many bytes a callee cleanup function will pop. If we port 6764 // inalloca to more targets, we'll have to add custom inalloca handling 6765 // in the various CC lowering callbacks. 6766 Flags.setByVal(); 6767 } 6768 if (Args[i].isByVal || Args[i].isInAlloca) { 6769 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6770 Type *ElementTy = Ty->getElementType(); 6771 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6772 // For ByVal, alignment should come from FE. BE will guess if this 6773 // info is not there but there are cases it cannot get right. 6774 unsigned FrameAlign; 6775 if (Args[i].Alignment) 6776 FrameAlign = Args[i].Alignment; 6777 else 6778 FrameAlign = getByValTypeAlignment(ElementTy); 6779 Flags.setByValAlign(FrameAlign); 6780 } 6781 if (Args[i].isNest) 6782 Flags.setNest(); 6783 if (NeedsRegBlock) 6784 Flags.setInConsecutiveRegs(); 6785 Flags.setOrigAlign(OriginalAlignment); 6786 6787 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6788 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6789 SmallVector<SDValue, 4> Parts(NumParts); 6790 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6791 6792 if (Args[i].isSExt) 6793 ExtendKind = ISD::SIGN_EXTEND; 6794 else if (Args[i].isZExt) 6795 ExtendKind = ISD::ZERO_EXTEND; 6796 6797 // Conservatively only handle 'returned' on non-vectors for now 6798 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6799 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6800 "unexpected use of 'returned'"); 6801 // Before passing 'returned' to the target lowering code, ensure that 6802 // either the register MVT and the actual EVT are the same size or that 6803 // the return value and argument are extended in the same way; in these 6804 // cases it's safe to pass the argument register value unchanged as the 6805 // return register value (although it's at the target's option whether 6806 // to do so) 6807 // TODO: allow code generation to take advantage of partially preserved 6808 // registers rather than clobbering the entire register when the 6809 // parameter extension method is not compatible with the return 6810 // extension method 6811 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6812 (ExtendKind != ISD::ANY_EXTEND && 6813 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6814 Flags.setReturned(); 6815 } 6816 6817 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6818 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6819 6820 for (unsigned j = 0; j != NumParts; ++j) { 6821 // if it isn't first piece, alignment must be 1 6822 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6823 i < CLI.NumFixedArgs, 6824 i, j*Parts[j].getValueType().getStoreSize()); 6825 if (NumParts > 1 && j == 0) 6826 MyFlags.Flags.setSplit(); 6827 else if (j != 0) 6828 MyFlags.Flags.setOrigAlign(1); 6829 6830 CLI.Outs.push_back(MyFlags); 6831 CLI.OutVals.push_back(Parts[j]); 6832 } 6833 6834 if (NeedsRegBlock && Value == NumValues - 1) 6835 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6836 } 6837 } 6838 6839 SmallVector<SDValue, 4> InVals; 6840 CLI.Chain = LowerCall(CLI, InVals); 6841 6842 // Verify that the target's LowerCall behaved as expected. 6843 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6844 "LowerCall didn't return a valid chain!"); 6845 assert((!CLI.IsTailCall || InVals.empty()) && 6846 "LowerCall emitted a return value for a tail call!"); 6847 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6848 "LowerCall didn't emit the correct number of values!"); 6849 6850 // For a tail call, the return value is merely live-out and there aren't 6851 // any nodes in the DAG representing it. Return a special value to 6852 // indicate that a tail call has been emitted and no more Instructions 6853 // should be processed in the current block. 6854 if (CLI.IsTailCall) { 6855 CLI.DAG.setRoot(CLI.Chain); 6856 return std::make_pair(SDValue(), SDValue()); 6857 } 6858 6859 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6860 assert(InVals[i].getNode() && 6861 "LowerCall emitted a null value!"); 6862 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6863 "LowerCall emitted a value with the wrong type!"); 6864 }); 6865 6866 SmallVector<SDValue, 4> ReturnValues; 6867 if (!CanLowerReturn) { 6868 // The instruction result is the result of loading from the 6869 // hidden sret parameter. 6870 SmallVector<EVT, 1> PVTs; 6871 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6872 6873 ComputeValueVTs(*this, PtrRetTy, PVTs); 6874 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6875 EVT PtrVT = PVTs[0]; 6876 6877 unsigned NumValues = RetTys.size(); 6878 ReturnValues.resize(NumValues); 6879 SmallVector<SDValue, 4> Chains(NumValues); 6880 6881 for (unsigned i = 0; i < NumValues; ++i) { 6882 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6883 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6884 PtrVT)); 6885 SDValue L = CLI.DAG.getLoad( 6886 RetTys[i], CLI.DL, CLI.Chain, Add, 6887 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6888 false, false, 1); 6889 ReturnValues[i] = L; 6890 Chains[i] = L.getValue(1); 6891 } 6892 6893 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6894 } else { 6895 // Collect the legal value parts into potentially illegal values 6896 // that correspond to the original function's return values. 6897 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6898 if (CLI.RetSExt) 6899 AssertOp = ISD::AssertSext; 6900 else if (CLI.RetZExt) 6901 AssertOp = ISD::AssertZext; 6902 unsigned CurReg = 0; 6903 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6904 EVT VT = RetTys[I]; 6905 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6906 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6907 6908 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6909 NumRegs, RegisterVT, VT, nullptr, 6910 AssertOp)); 6911 CurReg += NumRegs; 6912 } 6913 6914 // For a function returning void, there is no return value. We can't create 6915 // such a node, so we just return a null return value in that case. In 6916 // that case, nothing will actually look at the value. 6917 if (ReturnValues.empty()) 6918 return std::make_pair(SDValue(), CLI.Chain); 6919 } 6920 6921 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6922 CLI.DAG.getVTList(RetTys), ReturnValues); 6923 return std::make_pair(Res, CLI.Chain); 6924 } 6925 6926 void TargetLowering::LowerOperationWrapper(SDNode *N, 6927 SmallVectorImpl<SDValue> &Results, 6928 SelectionDAG &DAG) const { 6929 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6930 if (Res.getNode()) 6931 Results.push_back(Res); 6932 } 6933 6934 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6935 llvm_unreachable("LowerOperation not implemented for this target!"); 6936 } 6937 6938 void 6939 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6940 SDValue Op = getNonRegisterValue(V); 6941 assert((Op.getOpcode() != ISD::CopyFromReg || 6942 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6943 "Copy from a reg to the same reg!"); 6944 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6945 6946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6947 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6948 SDValue Chain = DAG.getEntryNode(); 6949 6950 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6951 FuncInfo.PreferredExtendType.end()) 6952 ? ISD::ANY_EXTEND 6953 : FuncInfo.PreferredExtendType[V]; 6954 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6955 PendingExports.push_back(Chain); 6956 } 6957 6958 #include "llvm/CodeGen/SelectionDAGISel.h" 6959 6960 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6961 /// entry block, return true. This includes arguments used by switches, since 6962 /// the switch may expand into multiple basic blocks. 6963 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6964 // With FastISel active, we may be splitting blocks, so force creation 6965 // of virtual registers for all non-dead arguments. 6966 if (FastISel) 6967 return A->use_empty(); 6968 6969 const BasicBlock *Entry = A->getParent()->begin(); 6970 for (const User *U : A->users()) 6971 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6972 return false; // Use not in entry block. 6973 6974 return true; 6975 } 6976 6977 void SelectionDAGISel::LowerArguments(const Function &F) { 6978 SelectionDAG &DAG = SDB->DAG; 6979 SDLoc dl = SDB->getCurSDLoc(); 6980 const DataLayout *DL = TLI->getDataLayout(); 6981 SmallVector<ISD::InputArg, 16> Ins; 6982 6983 if (!FuncInfo->CanLowerReturn) { 6984 // Put in an sret pointer parameter before all the other parameters. 6985 SmallVector<EVT, 1> ValueVTs; 6986 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6987 6988 // NOTE: Assuming that a pointer will never break down to more than one VT 6989 // or one register. 6990 ISD::ArgFlagsTy Flags; 6991 Flags.setSRet(); 6992 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6993 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 6994 ISD::InputArg::NoArgIndex, 0); 6995 Ins.push_back(RetArg); 6996 } 6997 6998 // Set up the incoming argument description vector. 6999 unsigned Idx = 1; 7000 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7001 I != E; ++I, ++Idx) { 7002 SmallVector<EVT, 4> ValueVTs; 7003 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7004 bool isArgValueUsed = !I->use_empty(); 7005 unsigned PartBase = 0; 7006 Type *FinalType = I->getType(); 7007 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7008 FinalType = cast<PointerType>(FinalType)->getElementType(); 7009 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7010 FinalType, F.getCallingConv(), F.isVarArg()); 7011 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7012 Value != NumValues; ++Value) { 7013 EVT VT = ValueVTs[Value]; 7014 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7015 ISD::ArgFlagsTy Flags; 7016 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7017 7018 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7019 Flags.setZExt(); 7020 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7021 Flags.setSExt(); 7022 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7023 Flags.setInReg(); 7024 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7025 Flags.setSRet(); 7026 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7027 Flags.setByVal(); 7028 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7029 Flags.setInAlloca(); 7030 // Set the byval flag for CCAssignFn callbacks that don't know about 7031 // inalloca. This way we can know how many bytes we should've allocated 7032 // and how many bytes a callee cleanup function will pop. If we port 7033 // inalloca to more targets, we'll have to add custom inalloca handling 7034 // in the various CC lowering callbacks. 7035 Flags.setByVal(); 7036 } 7037 if (Flags.isByVal() || Flags.isInAlloca()) { 7038 PointerType *Ty = cast<PointerType>(I->getType()); 7039 Type *ElementTy = Ty->getElementType(); 7040 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7041 // For ByVal, alignment should be passed from FE. BE will guess if 7042 // this info is not there but there are cases it cannot get right. 7043 unsigned FrameAlign; 7044 if (F.getParamAlignment(Idx)) 7045 FrameAlign = F.getParamAlignment(Idx); 7046 else 7047 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7048 Flags.setByValAlign(FrameAlign); 7049 } 7050 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7051 Flags.setNest(); 7052 if (NeedsRegBlock) 7053 Flags.setInConsecutiveRegs(); 7054 Flags.setOrigAlign(OriginalAlignment); 7055 7056 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7057 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7058 for (unsigned i = 0; i != NumRegs; ++i) { 7059 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7060 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7061 if (NumRegs > 1 && i == 0) 7062 MyFlags.Flags.setSplit(); 7063 // if it isn't first piece, alignment must be 1 7064 else if (i > 0) 7065 MyFlags.Flags.setOrigAlign(1); 7066 Ins.push_back(MyFlags); 7067 } 7068 if (NeedsRegBlock && Value == NumValues - 1) 7069 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7070 PartBase += VT.getStoreSize(); 7071 } 7072 } 7073 7074 // Call the target to set up the argument values. 7075 SmallVector<SDValue, 8> InVals; 7076 SDValue NewRoot = TLI->LowerFormalArguments( 7077 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7078 7079 // Verify that the target's LowerFormalArguments behaved as expected. 7080 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7081 "LowerFormalArguments didn't return a valid chain!"); 7082 assert(InVals.size() == Ins.size() && 7083 "LowerFormalArguments didn't emit the correct number of values!"); 7084 DEBUG({ 7085 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7086 assert(InVals[i].getNode() && 7087 "LowerFormalArguments emitted a null value!"); 7088 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7089 "LowerFormalArguments emitted a value with the wrong type!"); 7090 } 7091 }); 7092 7093 // Update the DAG with the new chain value resulting from argument lowering. 7094 DAG.setRoot(NewRoot); 7095 7096 // Set up the argument values. 7097 unsigned i = 0; 7098 Idx = 1; 7099 if (!FuncInfo->CanLowerReturn) { 7100 // Create a virtual register for the sret pointer, and put in a copy 7101 // from the sret argument into it. 7102 SmallVector<EVT, 1> ValueVTs; 7103 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7104 MVT VT = ValueVTs[0].getSimpleVT(); 7105 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7106 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7107 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7108 RegVT, VT, nullptr, AssertOp); 7109 7110 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7111 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7112 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7113 FuncInfo->DemoteRegister = SRetReg; 7114 NewRoot = 7115 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7116 DAG.setRoot(NewRoot); 7117 7118 // i indexes lowered arguments. Bump it past the hidden sret argument. 7119 // Idx indexes LLVM arguments. Don't touch it. 7120 ++i; 7121 } 7122 7123 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7124 ++I, ++Idx) { 7125 SmallVector<SDValue, 4> ArgValues; 7126 SmallVector<EVT, 4> ValueVTs; 7127 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7128 unsigned NumValues = ValueVTs.size(); 7129 7130 // If this argument is unused then remember its value. It is used to generate 7131 // debugging information. 7132 if (I->use_empty() && NumValues) { 7133 SDB->setUnusedArgValue(I, InVals[i]); 7134 7135 // Also remember any frame index for use in FastISel. 7136 if (FrameIndexSDNode *FI = 7137 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7138 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7139 } 7140 7141 for (unsigned Val = 0; Val != NumValues; ++Val) { 7142 EVT VT = ValueVTs[Val]; 7143 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7144 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7145 7146 if (!I->use_empty()) { 7147 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7148 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7149 AssertOp = ISD::AssertSext; 7150 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7151 AssertOp = ISD::AssertZext; 7152 7153 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7154 NumParts, PartVT, VT, 7155 nullptr, AssertOp)); 7156 } 7157 7158 i += NumParts; 7159 } 7160 7161 // We don't need to do anything else for unused arguments. 7162 if (ArgValues.empty()) 7163 continue; 7164 7165 // Note down frame index. 7166 if (FrameIndexSDNode *FI = 7167 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7168 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7169 7170 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7171 SDB->getCurSDLoc()); 7172 7173 SDB->setValue(I, Res); 7174 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7175 if (LoadSDNode *LNode = 7176 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7177 if (FrameIndexSDNode *FI = 7178 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7179 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7180 } 7181 7182 // If this argument is live outside of the entry block, insert a copy from 7183 // wherever we got it to the vreg that other BB's will reference it as. 7184 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7185 // If we can, though, try to skip creating an unnecessary vreg. 7186 // FIXME: This isn't very clean... it would be nice to make this more 7187 // general. It's also subtly incompatible with the hacks FastISel 7188 // uses with vregs. 7189 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7190 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7191 FuncInfo->ValueMap[I] = Reg; 7192 continue; 7193 } 7194 } 7195 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7196 FuncInfo->InitializeRegForValue(I); 7197 SDB->CopyToExportRegsIfNeeded(I); 7198 } 7199 } 7200 7201 assert(i == InVals.size() && "Argument register count mismatch!"); 7202 7203 // Finally, if the target has anything special to do, allow it to do so. 7204 EmitFunctionEntryCode(); 7205 } 7206 7207 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7208 /// ensure constants are generated when needed. Remember the virtual registers 7209 /// that need to be added to the Machine PHI nodes as input. We cannot just 7210 /// directly add them, because expansion might result in multiple MBB's for one 7211 /// BB. As such, the start of the BB might correspond to a different MBB than 7212 /// the end. 7213 /// 7214 void 7215 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7216 const TerminatorInst *TI = LLVMBB->getTerminator(); 7217 7218 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7219 7220 // Check PHI nodes in successors that expect a value to be available from this 7221 // block. 7222 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7223 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7224 if (!isa<PHINode>(SuccBB->begin())) continue; 7225 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7226 7227 // If this terminator has multiple identical successors (common for 7228 // switches), only handle each succ once. 7229 if (!SuccsHandled.insert(SuccMBB).second) 7230 continue; 7231 7232 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7233 7234 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7235 // nodes and Machine PHI nodes, but the incoming operands have not been 7236 // emitted yet. 7237 for (BasicBlock::const_iterator I = SuccBB->begin(); 7238 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7239 // Ignore dead phi's. 7240 if (PN->use_empty()) continue; 7241 7242 // Skip empty types 7243 if (PN->getType()->isEmptyTy()) 7244 continue; 7245 7246 unsigned Reg; 7247 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7248 7249 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7250 unsigned &RegOut = ConstantsOut[C]; 7251 if (RegOut == 0) { 7252 RegOut = FuncInfo.CreateRegs(C->getType()); 7253 CopyValueToVirtualRegister(C, RegOut); 7254 } 7255 Reg = RegOut; 7256 } else { 7257 DenseMap<const Value *, unsigned>::iterator I = 7258 FuncInfo.ValueMap.find(PHIOp); 7259 if (I != FuncInfo.ValueMap.end()) 7260 Reg = I->second; 7261 else { 7262 assert(isa<AllocaInst>(PHIOp) && 7263 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7264 "Didn't codegen value into a register!??"); 7265 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7266 CopyValueToVirtualRegister(PHIOp, Reg); 7267 } 7268 } 7269 7270 // Remember that this register needs to added to the machine PHI node as 7271 // the input for this MBB. 7272 SmallVector<EVT, 4> ValueVTs; 7273 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7274 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7275 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7276 EVT VT = ValueVTs[vti]; 7277 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7278 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7279 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7280 Reg += NumRegisters; 7281 } 7282 } 7283 } 7284 7285 ConstantsOut.clear(); 7286 } 7287 7288 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7289 /// is 0. 7290 MachineBasicBlock * 7291 SelectionDAGBuilder::StackProtectorDescriptor:: 7292 AddSuccessorMBB(const BasicBlock *BB, 7293 MachineBasicBlock *ParentMBB, 7294 bool IsLikely, 7295 MachineBasicBlock *SuccMBB) { 7296 // If SuccBB has not been created yet, create it. 7297 if (!SuccMBB) { 7298 MachineFunction *MF = ParentMBB->getParent(); 7299 MachineFunction::iterator BBI = ParentMBB; 7300 SuccMBB = MF->CreateMachineBasicBlock(BB); 7301 MF->insert(++BBI, SuccMBB); 7302 } 7303 // Add it as a successor of ParentMBB. 7304 ParentMBB->addSuccessor( 7305 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7306 return SuccMBB; 7307 } 7308 7309 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7310 MachineFunction::iterator I = MBB; 7311 if (++I == FuncInfo.MF->end()) 7312 return nullptr; 7313 return I; 7314 } 7315 7316 /// During lowering new call nodes can be created (such as memset, etc.). 7317 /// Those will become new roots of the current DAG, but complications arise 7318 /// when they are tail calls. In such cases, the call lowering will update 7319 /// the root, but the builder still needs to know that a tail call has been 7320 /// lowered in order to avoid generating an additional return. 7321 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7322 // If the node is null, we do have a tail call. 7323 if (MaybeTC.getNode() != nullptr) 7324 DAG.setRoot(MaybeTC); 7325 else 7326 HasTailCall = true; 7327 } 7328 7329 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7330 unsigned *TotalCases, unsigned First, 7331 unsigned Last) { 7332 assert(Last >= First); 7333 assert(TotalCases[Last] >= TotalCases[First]); 7334 7335 APInt LowCase = Clusters[First].Low->getValue(); 7336 APInt HighCase = Clusters[Last].High->getValue(); 7337 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7338 7339 // FIXME: A range of consecutive cases has 100% density, but only requires one 7340 // comparison to lower. We should discriminate against such consecutive ranges 7341 // in jump tables. 7342 7343 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7344 uint64_t Range = Diff + 1; 7345 7346 uint64_t NumCases = 7347 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7348 7349 assert(NumCases < UINT64_MAX / 100); 7350 assert(Range >= NumCases); 7351 7352 return NumCases * 100 >= Range * MinJumpTableDensity; 7353 } 7354 7355 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7356 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7357 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7358 } 7359 7360 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7361 unsigned First, unsigned Last, 7362 const SwitchInst *SI, 7363 MachineBasicBlock *DefaultMBB, 7364 CaseCluster &JTCluster) { 7365 assert(First <= Last); 7366 7367 uint32_t Weight = 0; 7368 unsigned NumCmps = 0; 7369 std::vector<MachineBasicBlock*> Table; 7370 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7371 for (unsigned I = First; I <= Last; ++I) { 7372 assert(Clusters[I].Kind == CC_Range); 7373 Weight += Clusters[I].Weight; 7374 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7375 APInt Low = Clusters[I].Low->getValue(); 7376 APInt High = Clusters[I].High->getValue(); 7377 NumCmps += (Low == High) ? 1 : 2; 7378 if (I != First) { 7379 // Fill the gap between this and the previous cluster. 7380 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7381 assert(PreviousHigh.slt(Low)); 7382 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7383 for (uint64_t J = 0; J < Gap; J++) 7384 Table.push_back(DefaultMBB); 7385 } 7386 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7387 for (uint64_t J = 0; J < ClusterSize; ++J) 7388 Table.push_back(Clusters[I].MBB); 7389 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7390 } 7391 7392 unsigned NumDests = JTWeights.size(); 7393 if (isSuitableForBitTests(NumDests, NumCmps, 7394 Clusters[First].Low->getValue(), 7395 Clusters[Last].High->getValue())) { 7396 // Clusters[First..Last] should be lowered as bit tests instead. 7397 return false; 7398 } 7399 7400 // Create the MBB that will load from and jump through the table. 7401 // Note: We create it here, but it's not inserted into the function yet. 7402 MachineFunction *CurMF = FuncInfo.MF; 7403 MachineBasicBlock *JumpTableMBB = 7404 CurMF->CreateMachineBasicBlock(SI->getParent()); 7405 7406 // Add successors. Note: use table order for determinism. 7407 SmallPtrSet<MachineBasicBlock *, 8> Done; 7408 for (MachineBasicBlock *Succ : Table) { 7409 if (Done.count(Succ)) 7410 continue; 7411 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7412 Done.insert(Succ); 7413 } 7414 7415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7416 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7417 ->createJumpTableIndex(Table); 7418 7419 // Set up the jump table info. 7420 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7421 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7422 Clusters[Last].High->getValue(), SI->getCondition(), 7423 nullptr, false); 7424 JTCases.push_back(JumpTableBlock(JTH, JT)); 7425 7426 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7427 JTCases.size() - 1, Weight); 7428 return true; 7429 } 7430 7431 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7432 const SwitchInst *SI, 7433 MachineBasicBlock *DefaultMBB) { 7434 #ifndef NDEBUG 7435 // Clusters must be non-empty, sorted, and only contain Range clusters. 7436 assert(!Clusters.empty()); 7437 for (CaseCluster &C : Clusters) 7438 assert(C.Kind == CC_Range); 7439 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7440 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7441 #endif 7442 7443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7444 if (!areJTsAllowed(TLI)) 7445 return; 7446 7447 const int64_t N = Clusters.size(); 7448 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7449 7450 // Split Clusters into minimum number of dense partitions. The algorithm uses 7451 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7452 // for the Case Statement'" (1994), but builds the MinPartitions array in 7453 // reverse order to make it easier to reconstruct the partitions in ascending 7454 // order. In the choice between two optimal partitionings, it picks the one 7455 // which yields more jump tables. 7456 7457 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7458 SmallVector<unsigned, 8> MinPartitions(N); 7459 // LastElement[i] is the last element of the partition starting at i. 7460 SmallVector<unsigned, 8> LastElement(N); 7461 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7462 SmallVector<unsigned, 8> NumTables(N); 7463 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7464 SmallVector<unsigned, 8> TotalCases(N); 7465 7466 for (unsigned i = 0; i < N; ++i) { 7467 APInt Hi = Clusters[i].High->getValue(); 7468 APInt Lo = Clusters[i].Low->getValue(); 7469 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7470 if (i != 0) 7471 TotalCases[i] += TotalCases[i - 1]; 7472 } 7473 7474 // Base case: There is only one way to partition Clusters[N-1]. 7475 MinPartitions[N - 1] = 1; 7476 LastElement[N - 1] = N - 1; 7477 assert(MinJumpTableSize > 1); 7478 NumTables[N - 1] = 0; 7479 7480 // Note: loop indexes are signed to avoid underflow. 7481 for (int64_t i = N - 2; i >= 0; i--) { 7482 // Find optimal partitioning of Clusters[i..N-1]. 7483 // Baseline: Put Clusters[i] into a partition on its own. 7484 MinPartitions[i] = MinPartitions[i + 1] + 1; 7485 LastElement[i] = i; 7486 NumTables[i] = NumTables[i + 1]; 7487 7488 // Search for a solution that results in fewer partitions. 7489 for (int64_t j = N - 1; j > i; j--) { 7490 // Try building a partition from Clusters[i..j]. 7491 if (isDense(Clusters, &TotalCases[0], i, j)) { 7492 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7493 bool IsTable = j - i + 1 >= MinJumpTableSize; 7494 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7495 7496 // If this j leads to fewer partitions, or same number of partitions 7497 // with more lookup tables, it is a better partitioning. 7498 if (NumPartitions < MinPartitions[i] || 7499 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7500 MinPartitions[i] = NumPartitions; 7501 LastElement[i] = j; 7502 NumTables[i] = Tables; 7503 } 7504 } 7505 } 7506 } 7507 7508 // Iterate over the partitions, replacing some with jump tables in-place. 7509 unsigned DstIndex = 0; 7510 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7511 Last = LastElement[First]; 7512 assert(Last >= First); 7513 assert(DstIndex <= First); 7514 unsigned NumClusters = Last - First + 1; 7515 7516 CaseCluster JTCluster; 7517 if (NumClusters >= MinJumpTableSize && 7518 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7519 Clusters[DstIndex++] = JTCluster; 7520 } else { 7521 for (unsigned I = First; I <= Last; ++I) 7522 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7523 } 7524 } 7525 Clusters.resize(DstIndex); 7526 } 7527 7528 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7529 // FIXME: Using the pointer type doesn't seem ideal. 7530 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7531 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7532 return Range <= BW; 7533 } 7534 7535 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7536 unsigned NumCmps, 7537 const APInt &Low, 7538 const APInt &High) { 7539 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7540 // range of cases both require only one branch to lower. Just looking at the 7541 // number of clusters and destinations should be enough to decide whether to 7542 // build bit tests. 7543 7544 // To lower a range with bit tests, the range must fit the bitwidth of a 7545 // machine word. 7546 if (!rangeFitsInWord(Low, High)) 7547 return false; 7548 7549 // Decide whether it's profitable to lower this range with bit tests. Each 7550 // destination requires a bit test and branch, and there is an overall range 7551 // check branch. For a small number of clusters, separate comparisons might be 7552 // cheaper, and for many destinations, splitting the range might be better. 7553 return (NumDests == 1 && NumCmps >= 3) || 7554 (NumDests == 2 && NumCmps >= 5) || 7555 (NumDests == 3 && NumCmps >= 6); 7556 } 7557 7558 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7559 unsigned First, unsigned Last, 7560 const SwitchInst *SI, 7561 CaseCluster &BTCluster) { 7562 assert(First <= Last); 7563 if (First == Last) 7564 return false; 7565 7566 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7567 unsigned NumCmps = 0; 7568 for (int64_t I = First; I <= Last; ++I) { 7569 assert(Clusters[I].Kind == CC_Range); 7570 Dests.set(Clusters[I].MBB->getNumber()); 7571 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7572 } 7573 unsigned NumDests = Dests.count(); 7574 7575 APInt Low = Clusters[First].Low->getValue(); 7576 APInt High = Clusters[Last].High->getValue(); 7577 assert(Low.slt(High)); 7578 7579 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7580 return false; 7581 7582 APInt LowBound; 7583 APInt CmpRange; 7584 7585 const int BitWidth = 7586 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7587 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7588 7589 if (Low.isNonNegative() && High.slt(BitWidth)) { 7590 // Optimize the case where all the case values fit in a 7591 // word without having to subtract minValue. In this case, 7592 // we can optimize away the subtraction. 7593 LowBound = APInt::getNullValue(Low.getBitWidth()); 7594 CmpRange = High; 7595 } else { 7596 LowBound = Low; 7597 CmpRange = High - Low; 7598 } 7599 7600 CaseBitsVector CBV; 7601 uint32_t TotalWeight = 0; 7602 for (unsigned i = First; i <= Last; ++i) { 7603 // Find the CaseBits for this destination. 7604 unsigned j; 7605 for (j = 0; j < CBV.size(); ++j) 7606 if (CBV[j].BB == Clusters[i].MBB) 7607 break; 7608 if (j == CBV.size()) 7609 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7610 CaseBits *CB = &CBV[j]; 7611 7612 // Update Mask, Bits and ExtraWeight. 7613 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7614 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7615 for (uint64_t j = Lo; j <= Hi; ++j) { 7616 CB->Mask |= 1ULL << j; 7617 CB->Bits++; 7618 } 7619 CB->ExtraWeight += Clusters[i].Weight; 7620 TotalWeight += Clusters[i].Weight; 7621 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7622 } 7623 7624 BitTestInfo BTI; 7625 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7626 // Sort by weight first, number of bits second. 7627 if (a.ExtraWeight != b.ExtraWeight) 7628 return a.ExtraWeight > b.ExtraWeight; 7629 return a.Bits > b.Bits; 7630 }); 7631 7632 for (auto &CB : CBV) { 7633 MachineBasicBlock *BitTestBB = 7634 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7635 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7636 } 7637 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7638 -1U, MVT::Other, false, nullptr, 7639 nullptr, std::move(BTI))); 7640 7641 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7642 BitTestCases.size() - 1, TotalWeight); 7643 return true; 7644 } 7645 7646 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7647 const SwitchInst *SI) { 7648 // Partition Clusters into as few subsets as possible, where each subset has a 7649 // range that fits in a machine word and has <= 3 unique destinations. 7650 7651 #ifndef NDEBUG 7652 // Clusters must be sorted and contain Range or JumpTable clusters. 7653 assert(!Clusters.empty()); 7654 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7655 for (const CaseCluster &C : Clusters) 7656 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7657 for (unsigned i = 1; i < Clusters.size(); ++i) 7658 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7659 #endif 7660 7661 // If target does not have legal shift left, do not emit bit tests at all. 7662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7663 EVT PTy = TLI.getPointerTy(); 7664 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7665 return; 7666 7667 int BitWidth = PTy.getSizeInBits(); 7668 const int64_t N = Clusters.size(); 7669 7670 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7671 SmallVector<unsigned, 8> MinPartitions(N); 7672 // LastElement[i] is the last element of the partition starting at i. 7673 SmallVector<unsigned, 8> LastElement(N); 7674 7675 // FIXME: This might not be the best algorithm for finding bit test clusters. 7676 7677 // Base case: There is only one way to partition Clusters[N-1]. 7678 MinPartitions[N - 1] = 1; 7679 LastElement[N - 1] = N - 1; 7680 7681 // Note: loop indexes are signed to avoid underflow. 7682 for (int64_t i = N - 2; i >= 0; --i) { 7683 // Find optimal partitioning of Clusters[i..N-1]. 7684 // Baseline: Put Clusters[i] into a partition on its own. 7685 MinPartitions[i] = MinPartitions[i + 1] + 1; 7686 LastElement[i] = i; 7687 7688 // Search for a solution that results in fewer partitions. 7689 // Note: the search is limited by BitWidth, reducing time complexity. 7690 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7691 // Try building a partition from Clusters[i..j]. 7692 7693 // Check the range. 7694 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7695 Clusters[j].High->getValue())) 7696 continue; 7697 7698 // Check nbr of destinations and cluster types. 7699 // FIXME: This works, but doesn't seem very efficient. 7700 bool RangesOnly = true; 7701 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7702 for (int64_t k = i; k <= j; k++) { 7703 if (Clusters[k].Kind != CC_Range) { 7704 RangesOnly = false; 7705 break; 7706 } 7707 Dests.set(Clusters[k].MBB->getNumber()); 7708 } 7709 if (!RangesOnly || Dests.count() > 3) 7710 break; 7711 7712 // Check if it's a better partition. 7713 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7714 if (NumPartitions < MinPartitions[i]) { 7715 // Found a better partition. 7716 MinPartitions[i] = NumPartitions; 7717 LastElement[i] = j; 7718 } 7719 } 7720 } 7721 7722 // Iterate over the partitions, replacing with bit-test clusters in-place. 7723 unsigned DstIndex = 0; 7724 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7725 Last = LastElement[First]; 7726 assert(First <= Last); 7727 assert(DstIndex <= First); 7728 7729 CaseCluster BitTestCluster; 7730 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7731 Clusters[DstIndex++] = BitTestCluster; 7732 } else { 7733 for (unsigned I = First; I <= Last; ++I) 7734 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7735 } 7736 } 7737 Clusters.resize(DstIndex); 7738 } 7739 7740 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7741 MachineBasicBlock *SwitchMBB, 7742 MachineBasicBlock *DefaultMBB) { 7743 MachineFunction *CurMF = FuncInfo.MF; 7744 MachineBasicBlock *NextMBB = nullptr; 7745 MachineFunction::iterator BBI = W.MBB; 7746 if (++BBI != FuncInfo.MF->end()) 7747 NextMBB = BBI; 7748 7749 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7750 7751 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7752 7753 if (Size == 2 && W.MBB == SwitchMBB) { 7754 // If any two of the cases has the same destination, and if one value 7755 // is the same as the other, but has one bit unset that the other has set, 7756 // use bit manipulation to do two compares at once. For example: 7757 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7758 // TODO: This could be extended to merge any 2 cases in switches with 3 7759 // cases. 7760 // TODO: Handle cases where W.CaseBB != SwitchBB. 7761 CaseCluster &Small = *W.FirstCluster; 7762 CaseCluster &Big = *W.LastCluster; 7763 7764 if (Small.Low == Small.High && Big.Low == Big.High && 7765 Small.MBB == Big.MBB) { 7766 const APInt &SmallValue = Small.Low->getValue(); 7767 const APInt &BigValue = Big.Low->getValue(); 7768 7769 // Check that there is only one bit different. 7770 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7771 (SmallValue | BigValue) == BigValue) { 7772 // Isolate the common bit. 7773 APInt CommonBit = BigValue & ~SmallValue; 7774 assert((SmallValue | CommonBit) == BigValue && 7775 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7776 7777 SDValue CondLHS = getValue(Cond); 7778 EVT VT = CondLHS.getValueType(); 7779 SDLoc DL = getCurSDLoc(); 7780 7781 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7782 DAG.getConstant(CommonBit, DL, VT)); 7783 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7784 DAG.getConstant(BigValue, DL, VT), 7785 ISD::SETEQ); 7786 7787 // Update successor info. 7788 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7789 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7790 addSuccessorWithWeight( 7791 SwitchMBB, DefaultMBB, 7792 // The default destination is the first successor in IR. 7793 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7794 : 0); 7795 7796 // Insert the true branch. 7797 SDValue BrCond = 7798 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7799 DAG.getBasicBlock(Small.MBB)); 7800 // Insert the false branch. 7801 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7802 DAG.getBasicBlock(DefaultMBB)); 7803 7804 DAG.setRoot(BrCond); 7805 return; 7806 } 7807 } 7808 } 7809 7810 if (TM.getOptLevel() != CodeGenOpt::None) { 7811 // Order cases by weight so the most likely case will be checked first. 7812 std::sort(W.FirstCluster, W.LastCluster + 1, 7813 [](const CaseCluster &a, const CaseCluster &b) { 7814 return a.Weight > b.Weight; 7815 }); 7816 7817 // Rearrange the case blocks so that the last one falls through if possible 7818 // without without changing the order of weights. 7819 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7820 --I; 7821 if (I->Weight > W.LastCluster->Weight) 7822 break; 7823 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7824 std::swap(*I, *W.LastCluster); 7825 break; 7826 } 7827 } 7828 } 7829 7830 // Compute total weight. 7831 uint32_t UnhandledWeights = 0; 7832 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7833 UnhandledWeights += I->Weight; 7834 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7835 } 7836 7837 MachineBasicBlock *CurMBB = W.MBB; 7838 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7839 MachineBasicBlock *Fallthrough; 7840 if (I == W.LastCluster) { 7841 // For the last cluster, fall through to the default destination. 7842 Fallthrough = DefaultMBB; 7843 } else { 7844 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7845 CurMF->insert(BBI, Fallthrough); 7846 // Put Cond in a virtual register to make it available from the new blocks. 7847 ExportFromCurrentBlock(Cond); 7848 } 7849 7850 switch (I->Kind) { 7851 case CC_JumpTable: { 7852 // FIXME: Optimize away range check based on pivot comparisons. 7853 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7854 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7855 7856 // The jump block hasn't been inserted yet; insert it here. 7857 MachineBasicBlock *JumpMBB = JT->MBB; 7858 CurMF->insert(BBI, JumpMBB); 7859 addSuccessorWithWeight(CurMBB, Fallthrough); 7860 addSuccessorWithWeight(CurMBB, JumpMBB); 7861 7862 // The jump table header will be inserted in our current block, do the 7863 // range check, and fall through to our fallthrough block. 7864 JTH->HeaderBB = CurMBB; 7865 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7866 7867 // If we're in the right place, emit the jump table header right now. 7868 if (CurMBB == SwitchMBB) { 7869 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7870 JTH->Emitted = true; 7871 } 7872 break; 7873 } 7874 case CC_BitTests: { 7875 // FIXME: Optimize away range check based on pivot comparisons. 7876 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7877 7878 // The bit test blocks haven't been inserted yet; insert them here. 7879 for (BitTestCase &BTC : BTB->Cases) 7880 CurMF->insert(BBI, BTC.ThisBB); 7881 7882 // Fill in fields of the BitTestBlock. 7883 BTB->Parent = CurMBB; 7884 BTB->Default = Fallthrough; 7885 7886 // If we're in the right place, emit the bit test header header right now. 7887 if (CurMBB ==SwitchMBB) { 7888 visitBitTestHeader(*BTB, SwitchMBB); 7889 BTB->Emitted = true; 7890 } 7891 break; 7892 } 7893 case CC_Range: { 7894 const Value *RHS, *LHS, *MHS; 7895 ISD::CondCode CC; 7896 if (I->Low == I->High) { 7897 // Check Cond == I->Low. 7898 CC = ISD::SETEQ; 7899 LHS = Cond; 7900 RHS=I->Low; 7901 MHS = nullptr; 7902 } else { 7903 // Check I->Low <= Cond <= I->High. 7904 CC = ISD::SETLE; 7905 LHS = I->Low; 7906 MHS = Cond; 7907 RHS = I->High; 7908 } 7909 7910 // The false weight is the sum of all unhandled cases. 7911 UnhandledWeights -= I->Weight; 7912 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7913 UnhandledWeights); 7914 7915 if (CurMBB == SwitchMBB) 7916 visitSwitchCase(CB, SwitchMBB); 7917 else 7918 SwitchCases.push_back(CB); 7919 7920 break; 7921 } 7922 } 7923 CurMBB = Fallthrough; 7924 } 7925 } 7926 7927 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7928 const SwitchWorkListItem &W, 7929 Value *Cond, 7930 MachineBasicBlock *SwitchMBB) { 7931 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7932 "Clusters not sorted?"); 7933 7934 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 7935 7936 // Balance the tree based on branch weights to create a near-optimal (in terms 7937 // of search time given key frequency) binary search tree. See e.g. Kurt 7938 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 7939 CaseClusterIt LastLeft = W.FirstCluster; 7940 CaseClusterIt FirstRight = W.LastCluster; 7941 uint32_t LeftWeight = LastLeft->Weight; 7942 uint32_t RightWeight = FirstRight->Weight; 7943 7944 // Move LastLeft and FirstRight towards each other from opposite directions to 7945 // find a partitioning of the clusters which balances the weight on both 7946 // sides. If LeftWeight and RightWeight are equal, alternate which side is 7947 // taken to ensure 0-weight nodes are distributed evenly. 7948 unsigned I = 0; 7949 while (LastLeft + 1 < FirstRight) { 7950 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 7951 LeftWeight += (++LastLeft)->Weight; 7952 else 7953 RightWeight += (--FirstRight)->Weight; 7954 I++; 7955 } 7956 assert(LastLeft + 1 == FirstRight); 7957 assert(LastLeft >= W.FirstCluster); 7958 assert(FirstRight <= W.LastCluster); 7959 7960 // Use the first element on the right as pivot since we will make less-than 7961 // comparisons against it. 7962 CaseClusterIt PivotCluster = FirstRight; 7963 assert(PivotCluster > W.FirstCluster); 7964 assert(PivotCluster <= W.LastCluster); 7965 7966 CaseClusterIt FirstLeft = W.FirstCluster; 7967 CaseClusterIt LastRight = W.LastCluster; 7968 7969 const ConstantInt *Pivot = PivotCluster->Low; 7970 7971 // New blocks will be inserted immediately after the current one. 7972 MachineFunction::iterator BBI = W.MBB; 7973 ++BBI; 7974 7975 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 7976 // we can branch to its destination directly if it's squeezed exactly in 7977 // between the known lower bound and Pivot - 1. 7978 MachineBasicBlock *LeftMBB; 7979 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 7980 FirstLeft->Low == W.GE && 7981 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 7982 LeftMBB = FirstLeft->MBB; 7983 } else { 7984 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7985 FuncInfo.MF->insert(BBI, LeftMBB); 7986 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 7987 // Put Cond in a virtual register to make it available from the new blocks. 7988 ExportFromCurrentBlock(Cond); 7989 } 7990 7991 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 7992 // single cluster, RHS.Low == Pivot, and we can branch to its destination 7993 // directly if RHS.High equals the current upper bound. 7994 MachineBasicBlock *RightMBB; 7995 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 7996 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 7997 RightMBB = FirstRight->MBB; 7998 } else { 7999 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8000 FuncInfo.MF->insert(BBI, RightMBB); 8001 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8002 // Put Cond in a virtual register to make it available from the new blocks. 8003 ExportFromCurrentBlock(Cond); 8004 } 8005 8006 // Create the CaseBlock record that will be used to lower the branch. 8007 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8008 LeftWeight, RightWeight); 8009 8010 if (W.MBB == SwitchMBB) 8011 visitSwitchCase(CB, SwitchMBB); 8012 else 8013 SwitchCases.push_back(CB); 8014 } 8015 8016 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8017 // Extract cases from the switch. 8018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8019 CaseClusterVector Clusters; 8020 Clusters.reserve(SI.getNumCases()); 8021 for (auto I : SI.cases()) { 8022 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8023 const ConstantInt *CaseVal = I.getCaseValue(); 8024 uint32_t Weight = 8025 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8026 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8027 } 8028 8029 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8030 8031 // Cluster adjacent cases with the same destination. We do this at all 8032 // optimization levels because it's cheap to do and will make codegen faster 8033 // if there are many clusters. 8034 sortAndRangeify(Clusters); 8035 8036 if (TM.getOptLevel() != CodeGenOpt::None) { 8037 // Replace an unreachable default with the most popular destination. 8038 // FIXME: Exploit unreachable default more aggressively. 8039 bool UnreachableDefault = 8040 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8041 if (UnreachableDefault && !Clusters.empty()) { 8042 DenseMap<const BasicBlock *, unsigned> Popularity; 8043 unsigned MaxPop = 0; 8044 const BasicBlock *MaxBB = nullptr; 8045 for (auto I : SI.cases()) { 8046 const BasicBlock *BB = I.getCaseSuccessor(); 8047 if (++Popularity[BB] > MaxPop) { 8048 MaxPop = Popularity[BB]; 8049 MaxBB = BB; 8050 } 8051 } 8052 // Set new default. 8053 assert(MaxPop > 0 && MaxBB); 8054 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8055 8056 // Remove cases that were pointing to the destination that is now the 8057 // default. 8058 CaseClusterVector New; 8059 New.reserve(Clusters.size()); 8060 for (CaseCluster &CC : Clusters) { 8061 if (CC.MBB != DefaultMBB) 8062 New.push_back(CC); 8063 } 8064 Clusters = std::move(New); 8065 } 8066 } 8067 8068 // If there is only the default destination, jump there directly. 8069 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8070 if (Clusters.empty()) { 8071 SwitchMBB->addSuccessor(DefaultMBB); 8072 if (DefaultMBB != NextBlock(SwitchMBB)) { 8073 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8074 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8075 } 8076 return; 8077 } 8078 8079 if (TM.getOptLevel() != CodeGenOpt::None) { 8080 findJumpTables(Clusters, &SI, DefaultMBB); 8081 findBitTestClusters(Clusters, &SI); 8082 } 8083 8084 8085 DEBUG({ 8086 dbgs() << "Case clusters: "; 8087 for (const CaseCluster &C : Clusters) { 8088 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8089 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8090 8091 C.Low->getValue().print(dbgs(), true); 8092 if (C.Low != C.High) { 8093 dbgs() << '-'; 8094 C.High->getValue().print(dbgs(), true); 8095 } 8096 dbgs() << ' '; 8097 } 8098 dbgs() << '\n'; 8099 }); 8100 8101 assert(!Clusters.empty()); 8102 SwitchWorkList WorkList; 8103 CaseClusterIt First = Clusters.begin(); 8104 CaseClusterIt Last = Clusters.end() - 1; 8105 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8106 8107 while (!WorkList.empty()) { 8108 SwitchWorkListItem W = WorkList.back(); 8109 WorkList.pop_back(); 8110 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8111 8112 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8113 // For optimized builds, lower large range as a balanced binary tree. 8114 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8115 continue; 8116 } 8117 8118 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8119 } 8120 } 8121