xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 5b10aa1f1e363fe21ddaa40b7736b22a538b9181)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
616 RegsForValue::RegsForValue() {}
617 
618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
837       }
838     }
839   }
840 }
841 
842 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
843                                const TargetLibraryInfo *li) {
844   AA = &aa;
845   GFI = gfi;
846   LibInfo = li;
847   DL = &DAG.getDataLayout();
848   Context = DAG.getContext();
849   LPadToCallSiteMap.clear();
850 }
851 
852 /// clear - Clear out the current SelectionDAG and the associated
853 /// state and prepare this SelectionDAGBuilder object to be used
854 /// for a new block. This doesn't clear out information about
855 /// additional blocks that are needed to complete switch lowering
856 /// or PHI node updating; that information is cleared out as it is
857 /// consumed.
858 void SelectionDAGBuilder::clear() {
859   NodeMap.clear();
860   UnusedArgNodeMap.clear();
861   PendingLoads.clear();
862   PendingExports.clear();
863   CurInst = nullptr;
864   HasTailCall = false;
865   SDNodeOrder = LowestSDNodeOrder;
866   StatepointLowering.clear();
867 }
868 
869 /// clearDanglingDebugInfo - Clear the dangling debug information
870 /// map. This function is separated from the clear so that debug
871 /// information that is dangling in a basic block can be properly
872 /// resolved in a different basic block. This allows the
873 /// SelectionDAG to resolve dangling debug information attached
874 /// to PHI nodes.
875 void SelectionDAGBuilder::clearDanglingDebugInfo() {
876   DanglingDebugInfoMap.clear();
877 }
878 
879 /// getRoot - Return the current virtual root of the Selection DAG,
880 /// flushing any PendingLoad items. This must be done before emitting
881 /// a store or any other node that may need to be ordered after any
882 /// prior load instructions.
883 ///
884 SDValue SelectionDAGBuilder::getRoot() {
885   if (PendingLoads.empty())
886     return DAG.getRoot();
887 
888   if (PendingLoads.size() == 1) {
889     SDValue Root = PendingLoads[0];
890     DAG.setRoot(Root);
891     PendingLoads.clear();
892     return Root;
893   }
894 
895   // Otherwise, we have to make a token factor node.
896   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
897                              PendingLoads);
898   PendingLoads.clear();
899   DAG.setRoot(Root);
900   return Root;
901 }
902 
903 /// getControlRoot - Similar to getRoot, but instead of flushing all the
904 /// PendingLoad items, flush all the PendingExports items. It is necessary
905 /// to do this before emitting a terminator instruction.
906 ///
907 SDValue SelectionDAGBuilder::getControlRoot() {
908   SDValue Root = DAG.getRoot();
909 
910   if (PendingExports.empty())
911     return Root;
912 
913   // Turn all of the CopyToReg chains into one factored node.
914   if (Root.getOpcode() != ISD::EntryToken) {
915     unsigned i = 0, e = PendingExports.size();
916     for (; i != e; ++i) {
917       assert(PendingExports[i].getNode()->getNumOperands() > 1);
918       if (PendingExports[i].getNode()->getOperand(0) == Root)
919         break;  // Don't add the root if we already indirectly depend on it.
920     }
921 
922     if (i == e)
923       PendingExports.push_back(Root);
924   }
925 
926   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
927                      PendingExports);
928   PendingExports.clear();
929   DAG.setRoot(Root);
930   return Root;
931 }
932 
933 void SelectionDAGBuilder::visit(const Instruction &I) {
934   // Set up outgoing PHI node register values before emitting the terminator.
935   if (isa<TerminatorInst>(&I)) {
936     HandlePHINodesInSuccessorBlocks(I.getParent());
937   }
938 
939   ++SDNodeOrder;
940 
941   CurInst = &I;
942 
943   visit(I.getOpcode(), I);
944 
945   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
946       !isStatepoint(&I)) // statepoints handle their exports internally
947     CopyToExportRegsIfNeeded(&I);
948 
949   CurInst = nullptr;
950 }
951 
952 void SelectionDAGBuilder::visitPHI(const PHINode &) {
953   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
954 }
955 
956 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
957   // Note: this doesn't use InstVisitor, because it has to work with
958   // ConstantExpr's in addition to instructions.
959   switch (Opcode) {
960   default: llvm_unreachable("Unknown instruction type encountered!");
961     // Build the switch statement using the Instruction.def file.
962 #define HANDLE_INST(NUM, OPCODE, CLASS) \
963     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
964 #include "llvm/IR/Instruction.def"
965   }
966 }
967 
968 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
969 // generate the debug data structures now that we've seen its definition.
970 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
971                                                    SDValue Val) {
972   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
973   if (DDI.getDI()) {
974     const DbgValueInst *DI = DDI.getDI();
975     DebugLoc dl = DDI.getdl();
976     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
977     DILocalVariable *Variable = DI->getVariable();
978     DIExpression *Expr = DI->getExpression();
979     assert(Variable->isValidLocationForIntrinsic(dl) &&
980            "Expected inlined-at fields to agree");
981     uint64_t Offset = DI->getOffset();
982     SDDbgValue *SDV;
983     if (Val.getNode()) {
984       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
985                                     Val)) {
986         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
987         DAG.AddDbgValue(SDV, Val.getNode(), false);
988       }
989     } else
990       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
991     DanglingDebugInfoMap[V] = DanglingDebugInfo();
992   }
993 }
994 
995 /// getCopyFromRegs - If there was virtual register allocated for the value V
996 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
997 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
998   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
999   SDValue Result;
1000 
1001   if (It != FuncInfo.ValueMap.end()) {
1002     unsigned InReg = It->second;
1003     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1004                      DAG.getDataLayout(), InReg, Ty);
1005     SDValue Chain = DAG.getEntryNode();
1006     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1007     resolveDanglingDebugInfo(V, Result);
1008   }
1009 
1010   return Result;
1011 }
1012 
1013 /// getValue - Return an SDValue for the given Value.
1014 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1015   // If we already have an SDValue for this value, use it. It's important
1016   // to do this first, so that we don't create a CopyFromReg if we already
1017   // have a regular SDValue.
1018   SDValue &N = NodeMap[V];
1019   if (N.getNode()) return N;
1020 
1021   // If there's a virtual register allocated and initialized for this
1022   // value, use it.
1023   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1024     return copyFromReg;
1025 
1026   // Otherwise create a new SDValue and remember it.
1027   SDValue Val = getValueImpl(V);
1028   NodeMap[V] = Val;
1029   resolveDanglingDebugInfo(V, Val);
1030   return Val;
1031 }
1032 
1033 // Return true if SDValue exists for the given Value
1034 bool SelectionDAGBuilder::findValue(const Value *V) const {
1035   return (NodeMap.find(V) != NodeMap.end()) ||
1036     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1037 }
1038 
1039 /// getNonRegisterValue - Return an SDValue for the given Value, but
1040 /// don't look in FuncInfo.ValueMap for a virtual register.
1041 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1042   // If we already have an SDValue for this value, use it.
1043   SDValue &N = NodeMap[V];
1044   if (N.getNode()) {
1045     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1046       // Remove the debug location from the node as the node is about to be used
1047       // in a location which may differ from the original debug location.  This
1048       // is relevant to Constant and ConstantFP nodes because they can appear
1049       // as constant expressions inside PHI nodes.
1050       N->setDebugLoc(DebugLoc());
1051     }
1052     return N;
1053   }
1054 
1055   // Otherwise create a new SDValue and remember it.
1056   SDValue Val = getValueImpl(V);
1057   NodeMap[V] = Val;
1058   resolveDanglingDebugInfo(V, Val);
1059   return Val;
1060 }
1061 
1062 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1063 /// Create an SDValue for the given value.
1064 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1066 
1067   if (const Constant *C = dyn_cast<Constant>(V)) {
1068     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1069 
1070     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1071       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1072 
1073     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1074       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1075 
1076     if (isa<ConstantPointerNull>(C)) {
1077       unsigned AS = V->getType()->getPointerAddressSpace();
1078       return DAG.getConstant(0, getCurSDLoc(),
1079                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1080     }
1081 
1082     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1083       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1084 
1085     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1086       return DAG.getUNDEF(VT);
1087 
1088     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1089       visit(CE->getOpcode(), *CE);
1090       SDValue N1 = NodeMap[V];
1091       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1092       return N1;
1093     }
1094 
1095     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1096       SmallVector<SDValue, 4> Constants;
1097       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1098            OI != OE; ++OI) {
1099         SDNode *Val = getValue(*OI).getNode();
1100         // If the operand is an empty aggregate, there are no values.
1101         if (!Val) continue;
1102         // Add each leaf value from the operand to the Constants list
1103         // to form a flattened list of all the values.
1104         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1105           Constants.push_back(SDValue(Val, i));
1106       }
1107 
1108       return DAG.getMergeValues(Constants, getCurSDLoc());
1109     }
1110 
1111     if (const ConstantDataSequential *CDS =
1112           dyn_cast<ConstantDataSequential>(C)) {
1113       SmallVector<SDValue, 4> Ops;
1114       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1115         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1116         // Add each leaf value from the operand to the Constants list
1117         // to form a flattened list of all the values.
1118         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1119           Ops.push_back(SDValue(Val, i));
1120       }
1121 
1122       if (isa<ArrayType>(CDS->getType()))
1123         return DAG.getMergeValues(Ops, getCurSDLoc());
1124       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1125                                       VT, Ops);
1126     }
1127 
1128     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1129       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1130              "Unknown struct or array constant!");
1131 
1132       SmallVector<EVT, 4> ValueVTs;
1133       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1134       unsigned NumElts = ValueVTs.size();
1135       if (NumElts == 0)
1136         return SDValue(); // empty struct
1137       SmallVector<SDValue, 4> Constants(NumElts);
1138       for (unsigned i = 0; i != NumElts; ++i) {
1139         EVT EltVT = ValueVTs[i];
1140         if (isa<UndefValue>(C))
1141           Constants[i] = DAG.getUNDEF(EltVT);
1142         else if (EltVT.isFloatingPoint())
1143           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1144         else
1145           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1146       }
1147 
1148       return DAG.getMergeValues(Constants, getCurSDLoc());
1149     }
1150 
1151     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1152       return DAG.getBlockAddress(BA, VT);
1153 
1154     VectorType *VecTy = cast<VectorType>(V->getType());
1155     unsigned NumElements = VecTy->getNumElements();
1156 
1157     // Now that we know the number and type of the elements, get that number of
1158     // elements into the Ops array based on what kind of constant it is.
1159     SmallVector<SDValue, 16> Ops;
1160     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1161       for (unsigned i = 0; i != NumElements; ++i)
1162         Ops.push_back(getValue(CV->getOperand(i)));
1163     } else {
1164       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1165       EVT EltVT =
1166           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1167 
1168       SDValue Op;
1169       if (EltVT.isFloatingPoint())
1170         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1171       else
1172         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1173       Ops.assign(NumElements, Op);
1174     }
1175 
1176     // Create a BUILD_VECTOR node.
1177     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1178   }
1179 
1180   // If this is a static alloca, generate it as the frameindex instead of
1181   // computation.
1182   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1183     DenseMap<const AllocaInst*, int>::iterator SI =
1184       FuncInfo.StaticAllocaMap.find(AI);
1185     if (SI != FuncInfo.StaticAllocaMap.end())
1186       return DAG.getFrameIndex(SI->second,
1187                                TLI.getPointerTy(DAG.getDataLayout()));
1188   }
1189 
1190   // If this is an instruction which fast-isel has deferred, select it now.
1191   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1192     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1193     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1194                      Inst->getType());
1195     SDValue Chain = DAG.getEntryNode();
1196     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1197   }
1198 
1199   llvm_unreachable("Can't get register for value!");
1200 }
1201 
1202 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1203   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1204   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1205   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1206   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1207   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1208   if (IsMSVCCXX || IsCoreCLR)
1209     CatchPadMBB->setIsEHFuncletEntry();
1210 
1211   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1212 }
1213 
1214 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1215   // Update machine-CFG edge.
1216   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1217   FuncInfo.MBB->addSuccessor(TargetMBB);
1218 
1219   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1220   bool IsSEH = isAsynchronousEHPersonality(Pers);
1221   if (IsSEH) {
1222     // If this is not a fall-through branch or optimizations are switched off,
1223     // emit the branch.
1224     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1225         TM.getOptLevel() == CodeGenOpt::None)
1226       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1227                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1228     return;
1229   }
1230 
1231   // Figure out the funclet membership for the catchret's successor.
1232   // This will be used by the FuncletLayout pass to determine how to order the
1233   // BB's.
1234   // A 'catchret' returns to the outer scope's color.
1235   Value *ParentPad = I.getCatchSwitchParentPad();
1236   const BasicBlock *SuccessorColor;
1237   if (isa<ConstantTokenNone>(ParentPad))
1238     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1239   else
1240     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1241   assert(SuccessorColor && "No parent funclet for catchret!");
1242   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1243   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1244 
1245   // Create the terminator node.
1246   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1247                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1248                             DAG.getBasicBlock(SuccessorColorMBB));
1249   DAG.setRoot(Ret);
1250 }
1251 
1252 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1253   // Don't emit any special code for the cleanuppad instruction. It just marks
1254   // the start of a funclet.
1255   FuncInfo.MBB->setIsEHFuncletEntry();
1256   FuncInfo.MBB->setIsCleanupFuncletEntry();
1257 }
1258 
1259 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1260 /// many places it could ultimately go. In the IR, we have a single unwind
1261 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1262 /// This function skips over imaginary basic blocks that hold catchswitch
1263 /// instructions, and finds all the "real" machine
1264 /// basic block destinations. As those destinations may not be successors of
1265 /// EHPadBB, here we also calculate the edge probability to those destinations.
1266 /// The passed-in Prob is the edge probability to EHPadBB.
1267 static void findUnwindDestinations(
1268     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1269     BranchProbability Prob,
1270     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1271         &UnwindDests) {
1272   EHPersonality Personality =
1273     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1274   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1275   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1276 
1277   while (EHPadBB) {
1278     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1279     BasicBlock *NewEHPadBB = nullptr;
1280     if (isa<LandingPadInst>(Pad)) {
1281       // Stop on landingpads. They are not funclets.
1282       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1283       break;
1284     } else if (isa<CleanupPadInst>(Pad)) {
1285       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1286       // personalities.
1287       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1288       UnwindDests.back().first->setIsEHFuncletEntry();
1289       break;
1290     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1291       // Add the catchpad handlers to the possible destinations.
1292       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1293         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1294         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1295         if (IsMSVCCXX || IsCoreCLR)
1296           UnwindDests.back().first->setIsEHFuncletEntry();
1297       }
1298       NewEHPadBB = CatchSwitch->getUnwindDest();
1299     } else {
1300       continue;
1301     }
1302 
1303     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1304     if (BPI && NewEHPadBB)
1305       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1306     EHPadBB = NewEHPadBB;
1307   }
1308 }
1309 
1310 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1311   // Update successor info.
1312   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1313   auto UnwindDest = I.getUnwindDest();
1314   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1315   BranchProbability UnwindDestProb =
1316       (BPI && UnwindDest)
1317           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1318           : BranchProbability::getZero();
1319   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1320   for (auto &UnwindDest : UnwindDests) {
1321     UnwindDest.first->setIsEHPad();
1322     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1323   }
1324   FuncInfo.MBB->normalizeSuccProbs();
1325 
1326   // Create the terminator node.
1327   SDValue Ret =
1328       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1329   DAG.setRoot(Ret);
1330 }
1331 
1332 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1333   report_fatal_error("visitCatchSwitch not yet implemented!");
1334 }
1335 
1336 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1337   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1338   auto &DL = DAG.getDataLayout();
1339   SDValue Chain = getControlRoot();
1340   SmallVector<ISD::OutputArg, 8> Outs;
1341   SmallVector<SDValue, 8> OutVals;
1342 
1343   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1344   // lower
1345   //
1346   //   %val = call <ty> @llvm.experimental.deoptimize()
1347   //   ret <ty> %val
1348   //
1349   // differently.
1350   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1351     LowerDeoptimizingReturn();
1352     return;
1353   }
1354 
1355   if (!FuncInfo.CanLowerReturn) {
1356     unsigned DemoteReg = FuncInfo.DemoteRegister;
1357     const Function *F = I.getParent()->getParent();
1358 
1359     // Emit a store of the return value through the virtual register.
1360     // Leave Outs empty so that LowerReturn won't try to load return
1361     // registers the usual way.
1362     SmallVector<EVT, 1> PtrValueVTs;
1363     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1364                     PtrValueVTs);
1365 
1366     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1367                                         DemoteReg, PtrValueVTs[0]);
1368     SDValue RetOp = getValue(I.getOperand(0));
1369 
1370     SmallVector<EVT, 4> ValueVTs;
1371     SmallVector<uint64_t, 4> Offsets;
1372     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1373     unsigned NumValues = ValueVTs.size();
1374 
1375     // An aggregate return value cannot wrap around the address space, so
1376     // offsets to its parts don't wrap either.
1377     SDNodeFlags Flags;
1378     Flags.setNoUnsignedWrap(true);
1379 
1380     SmallVector<SDValue, 4> Chains(NumValues);
1381     for (unsigned i = 0; i != NumValues; ++i) {
1382       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1383                                 RetPtr.getValueType(), RetPtr,
1384                                 DAG.getIntPtrConstant(Offsets[i],
1385                                                       getCurSDLoc()),
1386                                 &Flags);
1387       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1388                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1389                                // FIXME: better loc info would be nice.
1390                                Add, MachinePointerInfo());
1391     }
1392 
1393     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1394                         MVT::Other, Chains);
1395   } else if (I.getNumOperands() != 0) {
1396     SmallVector<EVT, 4> ValueVTs;
1397     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1398     unsigned NumValues = ValueVTs.size();
1399     if (NumValues) {
1400       SDValue RetOp = getValue(I.getOperand(0));
1401 
1402       const Function *F = I.getParent()->getParent();
1403 
1404       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1405       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1406                                           Attribute::SExt))
1407         ExtendKind = ISD::SIGN_EXTEND;
1408       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1409                                                Attribute::ZExt))
1410         ExtendKind = ISD::ZERO_EXTEND;
1411 
1412       LLVMContext &Context = F->getContext();
1413       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1414                                                       Attribute::InReg);
1415 
1416       for (unsigned j = 0; j != NumValues; ++j) {
1417         EVT VT = ValueVTs[j];
1418 
1419         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1420           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1421 
1422         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1423         MVT PartVT = TLI.getRegisterType(Context, VT);
1424         SmallVector<SDValue, 4> Parts(NumParts);
1425         getCopyToParts(DAG, getCurSDLoc(),
1426                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1427                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1428 
1429         // 'inreg' on function refers to return value
1430         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1431         if (RetInReg)
1432           Flags.setInReg();
1433 
1434         // Propagate extension type if any
1435         if (ExtendKind == ISD::SIGN_EXTEND)
1436           Flags.setSExt();
1437         else if (ExtendKind == ISD::ZERO_EXTEND)
1438           Flags.setZExt();
1439 
1440         for (unsigned i = 0; i < NumParts; ++i) {
1441           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1442                                         VT, /*isfixed=*/true, 0, 0));
1443           OutVals.push_back(Parts[i]);
1444         }
1445       }
1446     }
1447   }
1448 
1449   // Push in swifterror virtual register as the last element of Outs. This makes
1450   // sure swifterror virtual register will be returned in the swifterror
1451   // physical register.
1452   const Function *F = I.getParent()->getParent();
1453   if (TLI.supportSwiftError() &&
1454       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1455     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1456     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1457     Flags.setSwiftError();
1458     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1459                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1460                                   true /*isfixed*/, 1 /*origidx*/,
1461                                   0 /*partOffs*/));
1462     // Create SDNode for the swifterror virtual register.
1463     OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(
1464                                           FuncInfo.MBB, FuncInfo.SwiftErrorArg),
1465                                       EVT(TLI.getPointerTy(DL))));
1466   }
1467 
1468   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1469   CallingConv::ID CallConv =
1470     DAG.getMachineFunction().getFunction()->getCallingConv();
1471   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1472       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1473 
1474   // Verify that the target's LowerReturn behaved as expected.
1475   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1476          "LowerReturn didn't return a valid chain!");
1477 
1478   // Update the DAG with the new chain value resulting from return lowering.
1479   DAG.setRoot(Chain);
1480 }
1481 
1482 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1483 /// created for it, emit nodes to copy the value into the virtual
1484 /// registers.
1485 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1486   // Skip empty types
1487   if (V->getType()->isEmptyTy())
1488     return;
1489 
1490   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1491   if (VMI != FuncInfo.ValueMap.end()) {
1492     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1493     CopyValueToVirtualRegister(V, VMI->second);
1494   }
1495 }
1496 
1497 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1498 /// the current basic block, add it to ValueMap now so that we'll get a
1499 /// CopyTo/FromReg.
1500 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1501   // No need to export constants.
1502   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1503 
1504   // Already exported?
1505   if (FuncInfo.isExportedInst(V)) return;
1506 
1507   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1508   CopyValueToVirtualRegister(V, Reg);
1509 }
1510 
1511 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1512                                                      const BasicBlock *FromBB) {
1513   // The operands of the setcc have to be in this block.  We don't know
1514   // how to export them from some other block.
1515   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1516     // Can export from current BB.
1517     if (VI->getParent() == FromBB)
1518       return true;
1519 
1520     // Is already exported, noop.
1521     return FuncInfo.isExportedInst(V);
1522   }
1523 
1524   // If this is an argument, we can export it if the BB is the entry block or
1525   // if it is already exported.
1526   if (isa<Argument>(V)) {
1527     if (FromBB == &FromBB->getParent()->getEntryBlock())
1528       return true;
1529 
1530     // Otherwise, can only export this if it is already exported.
1531     return FuncInfo.isExportedInst(V);
1532   }
1533 
1534   // Otherwise, constants can always be exported.
1535   return true;
1536 }
1537 
1538 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1539 BranchProbability
1540 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1541                                         const MachineBasicBlock *Dst) const {
1542   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1543   const BasicBlock *SrcBB = Src->getBasicBlock();
1544   const BasicBlock *DstBB = Dst->getBasicBlock();
1545   if (!BPI) {
1546     // If BPI is not available, set the default probability as 1 / N, where N is
1547     // the number of successors.
1548     auto SuccSize = std::max<uint32_t>(
1549         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1550     return BranchProbability(1, SuccSize);
1551   }
1552   return BPI->getEdgeProbability(SrcBB, DstBB);
1553 }
1554 
1555 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1556                                                MachineBasicBlock *Dst,
1557                                                BranchProbability Prob) {
1558   if (!FuncInfo.BPI)
1559     Src->addSuccessorWithoutProb(Dst);
1560   else {
1561     if (Prob.isUnknown())
1562       Prob = getEdgeProbability(Src, Dst);
1563     Src->addSuccessor(Dst, Prob);
1564   }
1565 }
1566 
1567 static bool InBlock(const Value *V, const BasicBlock *BB) {
1568   if (const Instruction *I = dyn_cast<Instruction>(V))
1569     return I->getParent() == BB;
1570   return true;
1571 }
1572 
1573 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1574 /// This function emits a branch and is used at the leaves of an OR or an
1575 /// AND operator tree.
1576 ///
1577 void
1578 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1579                                                   MachineBasicBlock *TBB,
1580                                                   MachineBasicBlock *FBB,
1581                                                   MachineBasicBlock *CurBB,
1582                                                   MachineBasicBlock *SwitchBB,
1583                                                   BranchProbability TProb,
1584                                                   BranchProbability FProb) {
1585   const BasicBlock *BB = CurBB->getBasicBlock();
1586 
1587   // If the leaf of the tree is a comparison, merge the condition into
1588   // the caseblock.
1589   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1590     // The operands of the cmp have to be in this block.  We don't know
1591     // how to export them from some other block.  If this is the first block
1592     // of the sequence, no exporting is needed.
1593     if (CurBB == SwitchBB ||
1594         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1595          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1596       ISD::CondCode Condition;
1597       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1598         Condition = getICmpCondCode(IC->getPredicate());
1599       } else {
1600         const FCmpInst *FC = cast<FCmpInst>(Cond);
1601         Condition = getFCmpCondCode(FC->getPredicate());
1602         if (TM.Options.NoNaNsFPMath)
1603           Condition = getFCmpCodeWithoutNaN(Condition);
1604       }
1605 
1606       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1607                    TBB, FBB, CurBB, TProb, FProb);
1608       SwitchCases.push_back(CB);
1609       return;
1610     }
1611   }
1612 
1613   // Create a CaseBlock record representing this branch.
1614   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1615                nullptr, TBB, FBB, CurBB, TProb, FProb);
1616   SwitchCases.push_back(CB);
1617 }
1618 
1619 /// FindMergedConditions - If Cond is an expression like
1620 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1621                                                MachineBasicBlock *TBB,
1622                                                MachineBasicBlock *FBB,
1623                                                MachineBasicBlock *CurBB,
1624                                                MachineBasicBlock *SwitchBB,
1625                                                Instruction::BinaryOps Opc,
1626                                                BranchProbability TProb,
1627                                                BranchProbability FProb) {
1628   // If this node is not part of the or/and tree, emit it as a branch.
1629   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1630   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1631       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1632       BOp->getParent() != CurBB->getBasicBlock() ||
1633       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1634       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1635     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1636                                  TProb, FProb);
1637     return;
1638   }
1639 
1640   //  Create TmpBB after CurBB.
1641   MachineFunction::iterator BBI(CurBB);
1642   MachineFunction &MF = DAG.getMachineFunction();
1643   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1644   CurBB->getParent()->insert(++BBI, TmpBB);
1645 
1646   if (Opc == Instruction::Or) {
1647     // Codegen X | Y as:
1648     // BB1:
1649     //   jmp_if_X TBB
1650     //   jmp TmpBB
1651     // TmpBB:
1652     //   jmp_if_Y TBB
1653     //   jmp FBB
1654     //
1655 
1656     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1657     // The requirement is that
1658     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1659     //     = TrueProb for original BB.
1660     // Assuming the original probabilities are A and B, one choice is to set
1661     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1662     // A/(1+B) and 2B/(1+B). This choice assumes that
1663     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1664     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1665     // TmpBB, but the math is more complicated.
1666 
1667     auto NewTrueProb = TProb / 2;
1668     auto NewFalseProb = TProb / 2 + FProb;
1669     // Emit the LHS condition.
1670     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1671                          NewTrueProb, NewFalseProb);
1672 
1673     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1674     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1675     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1676     // Emit the RHS condition into TmpBB.
1677     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1678                          Probs[0], Probs[1]);
1679   } else {
1680     assert(Opc == Instruction::And && "Unknown merge op!");
1681     // Codegen X & Y as:
1682     // BB1:
1683     //   jmp_if_X TmpBB
1684     //   jmp FBB
1685     // TmpBB:
1686     //   jmp_if_Y TBB
1687     //   jmp FBB
1688     //
1689     //  This requires creation of TmpBB after CurBB.
1690 
1691     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1692     // The requirement is that
1693     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1694     //     = FalseProb for original BB.
1695     // Assuming the original probabilities are A and B, one choice is to set
1696     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1697     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1698     // TrueProb for BB1 * FalseProb for TmpBB.
1699 
1700     auto NewTrueProb = TProb + FProb / 2;
1701     auto NewFalseProb = FProb / 2;
1702     // Emit the LHS condition.
1703     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1704                          NewTrueProb, NewFalseProb);
1705 
1706     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1707     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1708     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1709     // Emit the RHS condition into TmpBB.
1710     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1711                          Probs[0], Probs[1]);
1712   }
1713 }
1714 
1715 /// If the set of cases should be emitted as a series of branches, return true.
1716 /// If we should emit this as a bunch of and/or'd together conditions, return
1717 /// false.
1718 bool
1719 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1720   if (Cases.size() != 2) return true;
1721 
1722   // If this is two comparisons of the same values or'd or and'd together, they
1723   // will get folded into a single comparison, so don't emit two blocks.
1724   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1725        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1726       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1727        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1728     return false;
1729   }
1730 
1731   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1732   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1733   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1734       Cases[0].CC == Cases[1].CC &&
1735       isa<Constant>(Cases[0].CmpRHS) &&
1736       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1737     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1738       return false;
1739     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1740       return false;
1741   }
1742 
1743   return true;
1744 }
1745 
1746 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1747   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1748 
1749   // Update machine-CFG edges.
1750   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1751 
1752   if (I.isUnconditional()) {
1753     // Update machine-CFG edges.
1754     BrMBB->addSuccessor(Succ0MBB);
1755 
1756     // If this is not a fall-through branch or optimizations are switched off,
1757     // emit the branch.
1758     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1759       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1760                               MVT::Other, getControlRoot(),
1761                               DAG.getBasicBlock(Succ0MBB)));
1762 
1763     return;
1764   }
1765 
1766   // If this condition is one of the special cases we handle, do special stuff
1767   // now.
1768   const Value *CondVal = I.getCondition();
1769   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1770 
1771   // If this is a series of conditions that are or'd or and'd together, emit
1772   // this as a sequence of branches instead of setcc's with and/or operations.
1773   // As long as jumps are not expensive, this should improve performance.
1774   // For example, instead of something like:
1775   //     cmp A, B
1776   //     C = seteq
1777   //     cmp D, E
1778   //     F = setle
1779   //     or C, F
1780   //     jnz foo
1781   // Emit:
1782   //     cmp A, B
1783   //     je foo
1784   //     cmp D, E
1785   //     jle foo
1786   //
1787   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1788     Instruction::BinaryOps Opcode = BOp->getOpcode();
1789     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1790         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1791         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1792       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1793                            Opcode,
1794                            getEdgeProbability(BrMBB, Succ0MBB),
1795                            getEdgeProbability(BrMBB, Succ1MBB));
1796       // If the compares in later blocks need to use values not currently
1797       // exported from this block, export them now.  This block should always
1798       // be the first entry.
1799       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1800 
1801       // Allow some cases to be rejected.
1802       if (ShouldEmitAsBranches(SwitchCases)) {
1803         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1804           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1805           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1806         }
1807 
1808         // Emit the branch for this block.
1809         visitSwitchCase(SwitchCases[0], BrMBB);
1810         SwitchCases.erase(SwitchCases.begin());
1811         return;
1812       }
1813 
1814       // Okay, we decided not to do this, remove any inserted MBB's and clear
1815       // SwitchCases.
1816       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1817         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1818 
1819       SwitchCases.clear();
1820     }
1821   }
1822 
1823   // Create a CaseBlock record representing this branch.
1824   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1825                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1826 
1827   // Use visitSwitchCase to actually insert the fast branch sequence for this
1828   // cond branch.
1829   visitSwitchCase(CB, BrMBB);
1830 }
1831 
1832 /// visitSwitchCase - Emits the necessary code to represent a single node in
1833 /// the binary search tree resulting from lowering a switch instruction.
1834 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1835                                           MachineBasicBlock *SwitchBB) {
1836   SDValue Cond;
1837   SDValue CondLHS = getValue(CB.CmpLHS);
1838   SDLoc dl = getCurSDLoc();
1839 
1840   // Build the setcc now.
1841   if (!CB.CmpMHS) {
1842     // Fold "(X == true)" to X and "(X == false)" to !X to
1843     // handle common cases produced by branch lowering.
1844     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1845         CB.CC == ISD::SETEQ)
1846       Cond = CondLHS;
1847     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1848              CB.CC == ISD::SETEQ) {
1849       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1850       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1851     } else
1852       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1853   } else {
1854     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1855 
1856     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1857     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1858 
1859     SDValue CmpOp = getValue(CB.CmpMHS);
1860     EVT VT = CmpOp.getValueType();
1861 
1862     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1863       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1864                           ISD::SETLE);
1865     } else {
1866       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1867                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1868       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1869                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1870     }
1871   }
1872 
1873   // Update successor info
1874   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1875   // TrueBB and FalseBB are always different unless the incoming IR is
1876   // degenerate. This only happens when running llc on weird IR.
1877   if (CB.TrueBB != CB.FalseBB)
1878     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1879   SwitchBB->normalizeSuccProbs();
1880 
1881   // If the lhs block is the next block, invert the condition so that we can
1882   // fall through to the lhs instead of the rhs block.
1883   if (CB.TrueBB == NextBlock(SwitchBB)) {
1884     std::swap(CB.TrueBB, CB.FalseBB);
1885     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1886     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1887   }
1888 
1889   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1890                                MVT::Other, getControlRoot(), Cond,
1891                                DAG.getBasicBlock(CB.TrueBB));
1892 
1893   // Insert the false branch. Do this even if it's a fall through branch,
1894   // this makes it easier to do DAG optimizations which require inverting
1895   // the branch condition.
1896   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1897                        DAG.getBasicBlock(CB.FalseBB));
1898 
1899   DAG.setRoot(BrCond);
1900 }
1901 
1902 /// visitJumpTable - Emit JumpTable node in the current MBB
1903 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1904   // Emit the code for the jump table
1905   assert(JT.Reg != -1U && "Should lower JT Header first!");
1906   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1907   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1908                                      JT.Reg, PTy);
1909   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1910   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1911                                     MVT::Other, Index.getValue(1),
1912                                     Table, Index);
1913   DAG.setRoot(BrJumpTable);
1914 }
1915 
1916 /// visitJumpTableHeader - This function emits necessary code to produce index
1917 /// in the JumpTable from switch case.
1918 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1919                                                JumpTableHeader &JTH,
1920                                                MachineBasicBlock *SwitchBB) {
1921   SDLoc dl = getCurSDLoc();
1922 
1923   // Subtract the lowest switch case value from the value being switched on and
1924   // conditional branch to default mbb if the result is greater than the
1925   // difference between smallest and largest cases.
1926   SDValue SwitchOp = getValue(JTH.SValue);
1927   EVT VT = SwitchOp.getValueType();
1928   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1929                             DAG.getConstant(JTH.First, dl, VT));
1930 
1931   // The SDNode we just created, which holds the value being switched on minus
1932   // the smallest case value, needs to be copied to a virtual register so it
1933   // can be used as an index into the jump table in a subsequent basic block.
1934   // This value may be smaller or larger than the target's pointer type, and
1935   // therefore require extension or truncating.
1936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1937   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1938 
1939   unsigned JumpTableReg =
1940       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1941   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1942                                     JumpTableReg, SwitchOp);
1943   JT.Reg = JumpTableReg;
1944 
1945   // Emit the range check for the jump table, and branch to the default block
1946   // for the switch statement if the value being switched on exceeds the largest
1947   // case in the switch.
1948   SDValue CMP = DAG.getSetCC(
1949       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1950                                  Sub.getValueType()),
1951       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1952 
1953   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1954                                MVT::Other, CopyTo, CMP,
1955                                DAG.getBasicBlock(JT.Default));
1956 
1957   // Avoid emitting unnecessary branches to the next block.
1958   if (JT.MBB != NextBlock(SwitchBB))
1959     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1960                          DAG.getBasicBlock(JT.MBB));
1961 
1962   DAG.setRoot(BrCond);
1963 }
1964 
1965 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
1966 /// variable if there exists one.
1967 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
1968                                  SDValue &Chain) {
1969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1970   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1971   MachineFunction &MF = DAG.getMachineFunction();
1972   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
1973   MachineSDNode *Node =
1974       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
1975   if (Global) {
1976     MachinePointerInfo MPInfo(Global);
1977     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
1978     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1979                  MachineMemOperand::MODereferenceable;
1980     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
1981                                        DAG.getEVTAlignment(PtrTy));
1982     Node->setMemRefs(MemRefs, MemRefs + 1);
1983   }
1984   return SDValue(Node, 0);
1985 }
1986 
1987 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1988 /// tail spliced into a stack protector check success bb.
1989 ///
1990 /// For a high level explanation of how this fits into the stack protector
1991 /// generation see the comment on the declaration of class
1992 /// StackProtectorDescriptor.
1993 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1994                                                   MachineBasicBlock *ParentBB) {
1995 
1996   // First create the loads to the guard/stack slot for the comparison.
1997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1998   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1999 
2000   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2001   int FI = MFI.getStackProtectorIndex();
2002 
2003   SDValue Guard;
2004   SDLoc dl = getCurSDLoc();
2005   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2006   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2007   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2008 
2009   // Generate code to load the content of the guard slot.
2010   SDValue StackSlot = DAG.getLoad(
2011       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2012       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2013       MachineMemOperand::MOVolatile);
2014 
2015   // Retrieve guard check function, nullptr if instrumentation is inlined.
2016   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2017     // The target provides a guard check function to validate the guard value.
2018     // Generate a call to that function with the content of the guard slot as
2019     // argument.
2020     auto *Fn = cast<Function>(GuardCheck);
2021     FunctionType *FnTy = Fn->getFunctionType();
2022     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2023 
2024     TargetLowering::ArgListTy Args;
2025     TargetLowering::ArgListEntry Entry;
2026     Entry.Node = StackSlot;
2027     Entry.Ty = FnTy->getParamType(0);
2028     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2029       Entry.isInReg = true;
2030     Args.push_back(Entry);
2031 
2032     TargetLowering::CallLoweringInfo CLI(DAG);
2033     CLI.setDebugLoc(getCurSDLoc())
2034       .setChain(DAG.getEntryNode())
2035       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2036                  getValue(GuardCheck), std::move(Args));
2037 
2038     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2039     DAG.setRoot(Result.second);
2040     return;
2041   }
2042 
2043   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2044   // Otherwise, emit a volatile load to retrieve the stack guard value.
2045   SDValue Chain = DAG.getEntryNode();
2046   if (TLI.useLoadStackGuardNode()) {
2047     Guard = getLoadStackGuard(DAG, dl, Chain);
2048   } else {
2049     const Value *IRGuard = TLI.getSDagStackGuard(M);
2050     SDValue GuardPtr = getValue(IRGuard);
2051 
2052     Guard =
2053         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2054                     Align, MachineMemOperand::MOVolatile);
2055   }
2056 
2057   // Perform the comparison via a subtract/getsetcc.
2058   EVT VT = Guard.getValueType();
2059   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2060 
2061   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2062                                                         *DAG.getContext(),
2063                                                         Sub.getValueType()),
2064                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2065 
2066   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2067   // branch to failure MBB.
2068   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2069                                MVT::Other, StackSlot.getOperand(0),
2070                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2071   // Otherwise branch to success MBB.
2072   SDValue Br = DAG.getNode(ISD::BR, dl,
2073                            MVT::Other, BrCond,
2074                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2075 
2076   DAG.setRoot(Br);
2077 }
2078 
2079 /// Codegen the failure basic block for a stack protector check.
2080 ///
2081 /// A failure stack protector machine basic block consists simply of a call to
2082 /// __stack_chk_fail().
2083 ///
2084 /// For a high level explanation of how this fits into the stack protector
2085 /// generation see the comment on the declaration of class
2086 /// StackProtectorDescriptor.
2087 void
2088 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2090   SDValue Chain =
2091       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2092                       None, false, getCurSDLoc(), false, false).second;
2093   DAG.setRoot(Chain);
2094 }
2095 
2096 /// visitBitTestHeader - This function emits necessary code to produce value
2097 /// suitable for "bit tests"
2098 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2099                                              MachineBasicBlock *SwitchBB) {
2100   SDLoc dl = getCurSDLoc();
2101 
2102   // Subtract the minimum value
2103   SDValue SwitchOp = getValue(B.SValue);
2104   EVT VT = SwitchOp.getValueType();
2105   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2106                             DAG.getConstant(B.First, dl, VT));
2107 
2108   // Check range
2109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2110   SDValue RangeCmp = DAG.getSetCC(
2111       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2112                                  Sub.getValueType()),
2113       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2114 
2115   // Determine the type of the test operands.
2116   bool UsePtrType = false;
2117   if (!TLI.isTypeLegal(VT))
2118     UsePtrType = true;
2119   else {
2120     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2121       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2122         // Switch table case range are encoded into series of masks.
2123         // Just use pointer type, it's guaranteed to fit.
2124         UsePtrType = true;
2125         break;
2126       }
2127   }
2128   if (UsePtrType) {
2129     VT = TLI.getPointerTy(DAG.getDataLayout());
2130     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2131   }
2132 
2133   B.RegVT = VT.getSimpleVT();
2134   B.Reg = FuncInfo.CreateReg(B.RegVT);
2135   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2136 
2137   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2138 
2139   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2140   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2141   SwitchBB->normalizeSuccProbs();
2142 
2143   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2144                                 MVT::Other, CopyTo, RangeCmp,
2145                                 DAG.getBasicBlock(B.Default));
2146 
2147   // Avoid emitting unnecessary branches to the next block.
2148   if (MBB != NextBlock(SwitchBB))
2149     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2150                           DAG.getBasicBlock(MBB));
2151 
2152   DAG.setRoot(BrRange);
2153 }
2154 
2155 /// visitBitTestCase - this function produces one "bit test"
2156 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2157                                            MachineBasicBlock* NextMBB,
2158                                            BranchProbability BranchProbToNext,
2159                                            unsigned Reg,
2160                                            BitTestCase &B,
2161                                            MachineBasicBlock *SwitchBB) {
2162   SDLoc dl = getCurSDLoc();
2163   MVT VT = BB.RegVT;
2164   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2165   SDValue Cmp;
2166   unsigned PopCount = countPopulation(B.Mask);
2167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2168   if (PopCount == 1) {
2169     // Testing for a single bit; just compare the shift count with what it
2170     // would need to be to shift a 1 bit in that position.
2171     Cmp = DAG.getSetCC(
2172         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2173         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2174         ISD::SETEQ);
2175   } else if (PopCount == BB.Range) {
2176     // There is only one zero bit in the range, test for it directly.
2177     Cmp = DAG.getSetCC(
2178         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2179         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2180         ISD::SETNE);
2181   } else {
2182     // Make desired shift
2183     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2184                                     DAG.getConstant(1, dl, VT), ShiftOp);
2185 
2186     // Emit bit tests and jumps
2187     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2188                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2189     Cmp = DAG.getSetCC(
2190         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2191         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2192   }
2193 
2194   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2195   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2196   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2197   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2198   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2199   // one as they are relative probabilities (and thus work more like weights),
2200   // and hence we need to normalize them to let the sum of them become one.
2201   SwitchBB->normalizeSuccProbs();
2202 
2203   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2204                               MVT::Other, getControlRoot(),
2205                               Cmp, DAG.getBasicBlock(B.TargetBB));
2206 
2207   // Avoid emitting unnecessary branches to the next block.
2208   if (NextMBB != NextBlock(SwitchBB))
2209     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2210                         DAG.getBasicBlock(NextMBB));
2211 
2212   DAG.setRoot(BrAnd);
2213 }
2214 
2215 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2216   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2217 
2218   // Retrieve successors. Look through artificial IR level blocks like
2219   // catchswitch for successors.
2220   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2221   const BasicBlock *EHPadBB = I.getSuccessor(1);
2222 
2223   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2224   // have to do anything here to lower funclet bundles.
2225   assert(!I.hasOperandBundlesOtherThan(
2226              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2227          "Cannot lower invokes with arbitrary operand bundles yet!");
2228 
2229   const Value *Callee(I.getCalledValue());
2230   const Function *Fn = dyn_cast<Function>(Callee);
2231   if (isa<InlineAsm>(Callee))
2232     visitInlineAsm(&I);
2233   else if (Fn && Fn->isIntrinsic()) {
2234     switch (Fn->getIntrinsicID()) {
2235     default:
2236       llvm_unreachable("Cannot invoke this intrinsic");
2237     case Intrinsic::donothing:
2238       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2239       break;
2240     case Intrinsic::experimental_patchpoint_void:
2241     case Intrinsic::experimental_patchpoint_i64:
2242       visitPatchpoint(&I, EHPadBB);
2243       break;
2244     case Intrinsic::experimental_gc_statepoint:
2245       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2246       break;
2247     }
2248   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2249     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2250     // Eventually we will support lowering the @llvm.experimental.deoptimize
2251     // intrinsic, and right now there are no plans to support other intrinsics
2252     // with deopt state.
2253     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2254   } else {
2255     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2256   }
2257 
2258   // If the value of the invoke is used outside of its defining block, make it
2259   // available as a virtual register.
2260   // We already took care of the exported value for the statepoint instruction
2261   // during call to the LowerStatepoint.
2262   if (!isStatepoint(I)) {
2263     CopyToExportRegsIfNeeded(&I);
2264   }
2265 
2266   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2267   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2268   BranchProbability EHPadBBProb =
2269       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2270           : BranchProbability::getZero();
2271   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2272 
2273   // Update successor info.
2274   addSuccessorWithProb(InvokeMBB, Return);
2275   for (auto &UnwindDest : UnwindDests) {
2276     UnwindDest.first->setIsEHPad();
2277     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2278   }
2279   InvokeMBB->normalizeSuccProbs();
2280 
2281   // Drop into normal successor.
2282   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2283                           MVT::Other, getControlRoot(),
2284                           DAG.getBasicBlock(Return)));
2285 }
2286 
2287 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2288   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2289 }
2290 
2291 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2292   assert(FuncInfo.MBB->isEHPad() &&
2293          "Call to landingpad not in landing pad!");
2294 
2295   MachineBasicBlock *MBB = FuncInfo.MBB;
2296   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2297   AddLandingPadInfo(LP, MMI, MBB);
2298 
2299   // If there aren't registers to copy the values into (e.g., during SjLj
2300   // exceptions), then don't bother to create these DAG nodes.
2301   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2302   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2303   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2304       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2305     return;
2306 
2307   // If landingpad's return type is token type, we don't create DAG nodes
2308   // for its exception pointer and selector value. The extraction of exception
2309   // pointer or selector value from token type landingpads is not currently
2310   // supported.
2311   if (LP.getType()->isTokenTy())
2312     return;
2313 
2314   SmallVector<EVT, 2> ValueVTs;
2315   SDLoc dl = getCurSDLoc();
2316   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2317   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2318 
2319   // Get the two live-in registers as SDValues. The physregs have already been
2320   // copied into virtual registers.
2321   SDValue Ops[2];
2322   if (FuncInfo.ExceptionPointerVirtReg) {
2323     Ops[0] = DAG.getZExtOrTrunc(
2324         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2325                            FuncInfo.ExceptionPointerVirtReg,
2326                            TLI.getPointerTy(DAG.getDataLayout())),
2327         dl, ValueVTs[0]);
2328   } else {
2329     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2330   }
2331   Ops[1] = DAG.getZExtOrTrunc(
2332       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2333                          FuncInfo.ExceptionSelectorVirtReg,
2334                          TLI.getPointerTy(DAG.getDataLayout())),
2335       dl, ValueVTs[1]);
2336 
2337   // Merge into one.
2338   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2339                             DAG.getVTList(ValueVTs), Ops);
2340   setValue(&LP, Res);
2341 }
2342 
2343 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2344 #ifndef NDEBUG
2345   for (const CaseCluster &CC : Clusters)
2346     assert(CC.Low == CC.High && "Input clusters must be single-case");
2347 #endif
2348 
2349   std::sort(Clusters.begin(), Clusters.end(),
2350             [](const CaseCluster &a, const CaseCluster &b) {
2351     return a.Low->getValue().slt(b.Low->getValue());
2352   });
2353 
2354   // Merge adjacent clusters with the same destination.
2355   const unsigned N = Clusters.size();
2356   unsigned DstIndex = 0;
2357   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2358     CaseCluster &CC = Clusters[SrcIndex];
2359     const ConstantInt *CaseVal = CC.Low;
2360     MachineBasicBlock *Succ = CC.MBB;
2361 
2362     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2363         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2364       // If this case has the same successor and is a neighbour, merge it into
2365       // the previous cluster.
2366       Clusters[DstIndex - 1].High = CaseVal;
2367       Clusters[DstIndex - 1].Prob += CC.Prob;
2368     } else {
2369       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2370                    sizeof(Clusters[SrcIndex]));
2371     }
2372   }
2373   Clusters.resize(DstIndex);
2374 }
2375 
2376 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2377                                            MachineBasicBlock *Last) {
2378   // Update JTCases.
2379   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2380     if (JTCases[i].first.HeaderBB == First)
2381       JTCases[i].first.HeaderBB = Last;
2382 
2383   // Update BitTestCases.
2384   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2385     if (BitTestCases[i].Parent == First)
2386       BitTestCases[i].Parent = Last;
2387 }
2388 
2389 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2390   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2391 
2392   // Update machine-CFG edges with unique successors.
2393   SmallSet<BasicBlock*, 32> Done;
2394   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2395     BasicBlock *BB = I.getSuccessor(i);
2396     bool Inserted = Done.insert(BB).second;
2397     if (!Inserted)
2398         continue;
2399 
2400     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2401     addSuccessorWithProb(IndirectBrMBB, Succ);
2402   }
2403   IndirectBrMBB->normalizeSuccProbs();
2404 
2405   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2406                           MVT::Other, getControlRoot(),
2407                           getValue(I.getAddress())));
2408 }
2409 
2410 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2411   if (DAG.getTarget().Options.TrapUnreachable)
2412     DAG.setRoot(
2413         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2414 }
2415 
2416 void SelectionDAGBuilder::visitFSub(const User &I) {
2417   // -0.0 - X --> fneg
2418   Type *Ty = I.getType();
2419   if (isa<Constant>(I.getOperand(0)) &&
2420       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2421     SDValue Op2 = getValue(I.getOperand(1));
2422     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2423                              Op2.getValueType(), Op2));
2424     return;
2425   }
2426 
2427   visitBinary(I, ISD::FSUB);
2428 }
2429 
2430 /// Checks if the given instruction performs a vector reduction, in which case
2431 /// we have the freedom to alter the elements in the result as long as the
2432 /// reduction of them stays unchanged.
2433 static bool isVectorReductionOp(const User *I) {
2434   const Instruction *Inst = dyn_cast<Instruction>(I);
2435   if (!Inst || !Inst->getType()->isVectorTy())
2436     return false;
2437 
2438   auto OpCode = Inst->getOpcode();
2439   switch (OpCode) {
2440   case Instruction::Add:
2441   case Instruction::Mul:
2442   case Instruction::And:
2443   case Instruction::Or:
2444   case Instruction::Xor:
2445     break;
2446   case Instruction::FAdd:
2447   case Instruction::FMul:
2448     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2449       if (FPOp->getFastMathFlags().unsafeAlgebra())
2450         break;
2451     LLVM_FALLTHROUGH;
2452   default:
2453     return false;
2454   }
2455 
2456   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2457   unsigned ElemNumToReduce = ElemNum;
2458 
2459   // Do DFS search on the def-use chain from the given instruction. We only
2460   // allow four kinds of operations during the search until we reach the
2461   // instruction that extracts the first element from the vector:
2462   //
2463   //   1. The reduction operation of the same opcode as the given instruction.
2464   //
2465   //   2. PHI node.
2466   //
2467   //   3. ShuffleVector instruction together with a reduction operation that
2468   //      does a partial reduction.
2469   //
2470   //   4. ExtractElement that extracts the first element from the vector, and we
2471   //      stop searching the def-use chain here.
2472   //
2473   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2474   // from 1-3 to the stack to continue the DFS. The given instruction is not
2475   // a reduction operation if we meet any other instructions other than those
2476   // listed above.
2477 
2478   SmallVector<const User *, 16> UsersToVisit{Inst};
2479   SmallPtrSet<const User *, 16> Visited;
2480   bool ReduxExtracted = false;
2481 
2482   while (!UsersToVisit.empty()) {
2483     auto User = UsersToVisit.back();
2484     UsersToVisit.pop_back();
2485     if (!Visited.insert(User).second)
2486       continue;
2487 
2488     for (const auto &U : User->users()) {
2489       auto Inst = dyn_cast<Instruction>(U);
2490       if (!Inst)
2491         return false;
2492 
2493       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2494         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2495           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2496             return false;
2497         UsersToVisit.push_back(U);
2498       } else if (const ShuffleVectorInst *ShufInst =
2499                      dyn_cast<ShuffleVectorInst>(U)) {
2500         // Detect the following pattern: A ShuffleVector instruction together
2501         // with a reduction that do partial reduction on the first and second
2502         // ElemNumToReduce / 2 elements, and store the result in
2503         // ElemNumToReduce / 2 elements in another vector.
2504 
2505         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2506         if (ResultElements < ElemNum)
2507           return false;
2508 
2509         if (ElemNumToReduce == 1)
2510           return false;
2511         if (!isa<UndefValue>(U->getOperand(1)))
2512           return false;
2513         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2514           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2515             return false;
2516         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2517           if (ShufInst->getMaskValue(i) != -1)
2518             return false;
2519 
2520         // There is only one user of this ShuffleVector instruction, which
2521         // must be a reduction operation.
2522         if (!U->hasOneUse())
2523           return false;
2524 
2525         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2526         if (!U2 || U2->getOpcode() != OpCode)
2527           return false;
2528 
2529         // Check operands of the reduction operation.
2530         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2531             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2532           UsersToVisit.push_back(U2);
2533           ElemNumToReduce /= 2;
2534         } else
2535           return false;
2536       } else if (isa<ExtractElementInst>(U)) {
2537         // At this moment we should have reduced all elements in the vector.
2538         if (ElemNumToReduce != 1)
2539           return false;
2540 
2541         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2542         if (!Val || Val->getZExtValue() != 0)
2543           return false;
2544 
2545         ReduxExtracted = true;
2546       } else
2547         return false;
2548     }
2549   }
2550   return ReduxExtracted;
2551 }
2552 
2553 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2554   SDValue Op1 = getValue(I.getOperand(0));
2555   SDValue Op2 = getValue(I.getOperand(1));
2556 
2557   bool nuw = false;
2558   bool nsw = false;
2559   bool exact = false;
2560   bool vec_redux = false;
2561   FastMathFlags FMF;
2562 
2563   if (const OverflowingBinaryOperator *OFBinOp =
2564           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2565     nuw = OFBinOp->hasNoUnsignedWrap();
2566     nsw = OFBinOp->hasNoSignedWrap();
2567   }
2568   if (const PossiblyExactOperator *ExactOp =
2569           dyn_cast<const PossiblyExactOperator>(&I))
2570     exact = ExactOp->isExact();
2571   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2572     FMF = FPOp->getFastMathFlags();
2573 
2574   if (isVectorReductionOp(&I)) {
2575     vec_redux = true;
2576     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2577   }
2578 
2579   SDNodeFlags Flags;
2580   Flags.setExact(exact);
2581   Flags.setNoSignedWrap(nsw);
2582   Flags.setNoUnsignedWrap(nuw);
2583   Flags.setVectorReduction(vec_redux);
2584   if (EnableFMFInDAG) {
2585     Flags.setAllowReciprocal(FMF.allowReciprocal());
2586     Flags.setNoInfs(FMF.noInfs());
2587     Flags.setNoNaNs(FMF.noNaNs());
2588     Flags.setNoSignedZeros(FMF.noSignedZeros());
2589     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2590   }
2591   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2592                                      Op1, Op2, &Flags);
2593   setValue(&I, BinNodeValue);
2594 }
2595 
2596 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2597   SDValue Op1 = getValue(I.getOperand(0));
2598   SDValue Op2 = getValue(I.getOperand(1));
2599 
2600   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2601       Op2.getValueType(), DAG.getDataLayout());
2602 
2603   // Coerce the shift amount to the right type if we can.
2604   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2605     unsigned ShiftSize = ShiftTy.getSizeInBits();
2606     unsigned Op2Size = Op2.getValueSizeInBits();
2607     SDLoc DL = getCurSDLoc();
2608 
2609     // If the operand is smaller than the shift count type, promote it.
2610     if (ShiftSize > Op2Size)
2611       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2612 
2613     // If the operand is larger than the shift count type but the shift
2614     // count type has enough bits to represent any shift value, truncate
2615     // it now. This is a common case and it exposes the truncate to
2616     // optimization early.
2617     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2618       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2619     // Otherwise we'll need to temporarily settle for some other convenient
2620     // type.  Type legalization will make adjustments once the shiftee is split.
2621     else
2622       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2623   }
2624 
2625   bool nuw = false;
2626   bool nsw = false;
2627   bool exact = false;
2628 
2629   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2630 
2631     if (const OverflowingBinaryOperator *OFBinOp =
2632             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2633       nuw = OFBinOp->hasNoUnsignedWrap();
2634       nsw = OFBinOp->hasNoSignedWrap();
2635     }
2636     if (const PossiblyExactOperator *ExactOp =
2637             dyn_cast<const PossiblyExactOperator>(&I))
2638       exact = ExactOp->isExact();
2639   }
2640   SDNodeFlags Flags;
2641   Flags.setExact(exact);
2642   Flags.setNoSignedWrap(nsw);
2643   Flags.setNoUnsignedWrap(nuw);
2644   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2645                             &Flags);
2646   setValue(&I, Res);
2647 }
2648 
2649 void SelectionDAGBuilder::visitSDiv(const User &I) {
2650   SDValue Op1 = getValue(I.getOperand(0));
2651   SDValue Op2 = getValue(I.getOperand(1));
2652 
2653   SDNodeFlags Flags;
2654   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2655                  cast<PossiblyExactOperator>(&I)->isExact());
2656   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2657                            Op2, &Flags));
2658 }
2659 
2660 void SelectionDAGBuilder::visitICmp(const User &I) {
2661   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2662   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2663     predicate = IC->getPredicate();
2664   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2665     predicate = ICmpInst::Predicate(IC->getPredicate());
2666   SDValue Op1 = getValue(I.getOperand(0));
2667   SDValue Op2 = getValue(I.getOperand(1));
2668   ISD::CondCode Opcode = getICmpCondCode(predicate);
2669 
2670   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2671                                                         I.getType());
2672   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2673 }
2674 
2675 void SelectionDAGBuilder::visitFCmp(const User &I) {
2676   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2677   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2678     predicate = FC->getPredicate();
2679   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2680     predicate = FCmpInst::Predicate(FC->getPredicate());
2681   SDValue Op1 = getValue(I.getOperand(0));
2682   SDValue Op2 = getValue(I.getOperand(1));
2683   ISD::CondCode Condition = getFCmpCondCode(predicate);
2684 
2685   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2686   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2687   // further optimization, but currently FMF is only applicable to binary nodes.
2688   if (TM.Options.NoNaNsFPMath)
2689     Condition = getFCmpCodeWithoutNaN(Condition);
2690   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2691                                                         I.getType());
2692   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2693 }
2694 
2695 // Check if the condition of the select has one use or two users that are both
2696 // selects with the same condition.
2697 static bool hasOnlySelectUsers(const Value *Cond) {
2698   return all_of(Cond->users(), [](const Value *V) {
2699     return isa<SelectInst>(V);
2700   });
2701 }
2702 
2703 void SelectionDAGBuilder::visitSelect(const User &I) {
2704   SmallVector<EVT, 4> ValueVTs;
2705   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2706                   ValueVTs);
2707   unsigned NumValues = ValueVTs.size();
2708   if (NumValues == 0) return;
2709 
2710   SmallVector<SDValue, 4> Values(NumValues);
2711   SDValue Cond     = getValue(I.getOperand(0));
2712   SDValue LHSVal   = getValue(I.getOperand(1));
2713   SDValue RHSVal   = getValue(I.getOperand(2));
2714   auto BaseOps = {Cond};
2715   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2716     ISD::VSELECT : ISD::SELECT;
2717 
2718   // Min/max matching is only viable if all output VTs are the same.
2719   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2720     EVT VT = ValueVTs[0];
2721     LLVMContext &Ctx = *DAG.getContext();
2722     auto &TLI = DAG.getTargetLoweringInfo();
2723 
2724     // We care about the legality of the operation after it has been type
2725     // legalized.
2726     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2727            VT != TLI.getTypeToTransformTo(Ctx, VT))
2728       VT = TLI.getTypeToTransformTo(Ctx, VT);
2729 
2730     // If the vselect is legal, assume we want to leave this as a vector setcc +
2731     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2732     // min/max is legal on the scalar type.
2733     bool UseScalarMinMax = VT.isVector() &&
2734       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2735 
2736     Value *LHS, *RHS;
2737     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2738     ISD::NodeType Opc = ISD::DELETED_NODE;
2739     switch (SPR.Flavor) {
2740     case SPF_UMAX:    Opc = ISD::UMAX; break;
2741     case SPF_UMIN:    Opc = ISD::UMIN; break;
2742     case SPF_SMAX:    Opc = ISD::SMAX; break;
2743     case SPF_SMIN:    Opc = ISD::SMIN; break;
2744     case SPF_FMINNUM:
2745       switch (SPR.NaNBehavior) {
2746       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2747       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2748       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2749       case SPNB_RETURNS_ANY: {
2750         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2751           Opc = ISD::FMINNUM;
2752         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2753           Opc = ISD::FMINNAN;
2754         else if (UseScalarMinMax)
2755           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2756             ISD::FMINNUM : ISD::FMINNAN;
2757         break;
2758       }
2759       }
2760       break;
2761     case SPF_FMAXNUM:
2762       switch (SPR.NaNBehavior) {
2763       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2764       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2765       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2766       case SPNB_RETURNS_ANY:
2767 
2768         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2769           Opc = ISD::FMAXNUM;
2770         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2771           Opc = ISD::FMAXNAN;
2772         else if (UseScalarMinMax)
2773           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2774             ISD::FMAXNUM : ISD::FMAXNAN;
2775         break;
2776       }
2777       break;
2778     default: break;
2779     }
2780 
2781     if (Opc != ISD::DELETED_NODE &&
2782         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2783          (UseScalarMinMax &&
2784           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2785         // If the underlying comparison instruction is used by any other
2786         // instruction, the consumed instructions won't be destroyed, so it is
2787         // not profitable to convert to a min/max.
2788         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2789       OpCode = Opc;
2790       LHSVal = getValue(LHS);
2791       RHSVal = getValue(RHS);
2792       BaseOps = {};
2793     }
2794   }
2795 
2796   for (unsigned i = 0; i != NumValues; ++i) {
2797     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2798     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2799     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2800     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2801                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2802                             Ops);
2803   }
2804 
2805   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2806                            DAG.getVTList(ValueVTs), Values));
2807 }
2808 
2809 void SelectionDAGBuilder::visitTrunc(const User &I) {
2810   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2811   SDValue N = getValue(I.getOperand(0));
2812   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2813                                                         I.getType());
2814   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2815 }
2816 
2817 void SelectionDAGBuilder::visitZExt(const User &I) {
2818   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2819   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2820   SDValue N = getValue(I.getOperand(0));
2821   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2822                                                         I.getType());
2823   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2824 }
2825 
2826 void SelectionDAGBuilder::visitSExt(const User &I) {
2827   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2828   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2829   SDValue N = getValue(I.getOperand(0));
2830   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2831                                                         I.getType());
2832   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2833 }
2834 
2835 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2836   // FPTrunc is never a no-op cast, no need to check
2837   SDValue N = getValue(I.getOperand(0));
2838   SDLoc dl = getCurSDLoc();
2839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2840   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2841   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2842                            DAG.getTargetConstant(
2843                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2844 }
2845 
2846 void SelectionDAGBuilder::visitFPExt(const User &I) {
2847   // FPExt is never a no-op cast, no need to check
2848   SDValue N = getValue(I.getOperand(0));
2849   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2850                                                         I.getType());
2851   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2852 }
2853 
2854 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2855   // FPToUI is never a no-op cast, no need to check
2856   SDValue N = getValue(I.getOperand(0));
2857   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2858                                                         I.getType());
2859   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2860 }
2861 
2862 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2863   // FPToSI is never a no-op cast, no need to check
2864   SDValue N = getValue(I.getOperand(0));
2865   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2866                                                         I.getType());
2867   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2868 }
2869 
2870 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2871   // UIToFP is never a no-op cast, no need to check
2872   SDValue N = getValue(I.getOperand(0));
2873   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2874                                                         I.getType());
2875   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2876 }
2877 
2878 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2879   // SIToFP is never a no-op cast, no need to check
2880   SDValue N = getValue(I.getOperand(0));
2881   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2882                                                         I.getType());
2883   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2884 }
2885 
2886 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2887   // What to do depends on the size of the integer and the size of the pointer.
2888   // We can either truncate, zero extend, or no-op, accordingly.
2889   SDValue N = getValue(I.getOperand(0));
2890   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2891                                                         I.getType());
2892   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2893 }
2894 
2895 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2896   // What to do depends on the size of the integer and the size of the pointer.
2897   // We can either truncate, zero extend, or no-op, accordingly.
2898   SDValue N = getValue(I.getOperand(0));
2899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2900                                                         I.getType());
2901   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2902 }
2903 
2904 void SelectionDAGBuilder::visitBitCast(const User &I) {
2905   SDValue N = getValue(I.getOperand(0));
2906   SDLoc dl = getCurSDLoc();
2907   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2908                                                         I.getType());
2909 
2910   // BitCast assures us that source and destination are the same size so this is
2911   // either a BITCAST or a no-op.
2912   if (DestVT != N.getValueType())
2913     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2914                              DestVT, N)); // convert types.
2915   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2916   // might fold any kind of constant expression to an integer constant and that
2917   // is not what we are looking for. Only regcognize a bitcast of a genuine
2918   // constant integer as an opaque constant.
2919   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2920     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2921                                  /*isOpaque*/true));
2922   else
2923     setValue(&I, N);            // noop cast.
2924 }
2925 
2926 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2927   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2928   const Value *SV = I.getOperand(0);
2929   SDValue N = getValue(SV);
2930   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2931 
2932   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2933   unsigned DestAS = I.getType()->getPointerAddressSpace();
2934 
2935   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2936     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2937 
2938   setValue(&I, N);
2939 }
2940 
2941 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2942   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2943   SDValue InVec = getValue(I.getOperand(0));
2944   SDValue InVal = getValue(I.getOperand(1));
2945   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2946                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2947   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2948                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2949                            InVec, InVal, InIdx));
2950 }
2951 
2952 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2954   SDValue InVec = getValue(I.getOperand(0));
2955   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2956                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2957   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2958                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2959                            InVec, InIdx));
2960 }
2961 
2962 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2963   SDValue Src1 = getValue(I.getOperand(0));
2964   SDValue Src2 = getValue(I.getOperand(1));
2965   SDLoc DL = getCurSDLoc();
2966 
2967   SmallVector<int, 8> Mask;
2968   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2969   unsigned MaskNumElts = Mask.size();
2970 
2971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2972   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2973   EVT SrcVT = Src1.getValueType();
2974   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2975 
2976   if (SrcNumElts == MaskNumElts) {
2977     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
2978     return;
2979   }
2980 
2981   // Normalize the shuffle vector since mask and vector length don't match.
2982   if (SrcNumElts < MaskNumElts) {
2983     // Mask is longer than the source vectors. We can use concatenate vector to
2984     // make the mask and vectors lengths match.
2985 
2986     if (MaskNumElts % SrcNumElts == 0) {
2987       // Mask length is a multiple of the source vector length.
2988       // Check if the shuffle is some kind of concatenation of the input
2989       // vectors.
2990       unsigned NumConcat = MaskNumElts / SrcNumElts;
2991       bool IsConcat = true;
2992       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
2993       for (unsigned i = 0; i != MaskNumElts; ++i) {
2994         int Idx = Mask[i];
2995         if (Idx < 0)
2996           continue;
2997         // Ensure the indices in each SrcVT sized piece are sequential and that
2998         // the same source is used for the whole piece.
2999         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3000             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3001              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3002           IsConcat = false;
3003           break;
3004         }
3005         // Remember which source this index came from.
3006         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3007       }
3008 
3009       // The shuffle is concatenating multiple vectors together. Just emit
3010       // a CONCAT_VECTORS operation.
3011       if (IsConcat) {
3012         SmallVector<SDValue, 8> ConcatOps;
3013         for (auto Src : ConcatSrcs) {
3014           if (Src < 0)
3015             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3016           else if (Src == 0)
3017             ConcatOps.push_back(Src1);
3018           else
3019             ConcatOps.push_back(Src2);
3020         }
3021         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3022         return;
3023       }
3024     }
3025 
3026     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3027     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3028     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3029                                     PaddedMaskNumElts);
3030 
3031     // Pad both vectors with undefs to make them the same length as the mask.
3032     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3033 
3034     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3035     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3036     MOps1[0] = Src1;
3037     MOps2[0] = Src2;
3038 
3039     Src1 = Src1.isUndef()
3040                ? DAG.getUNDEF(PaddedVT)
3041                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3042     Src2 = Src2.isUndef()
3043                ? DAG.getUNDEF(PaddedVT)
3044                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3045 
3046     // Readjust mask for new input vector length.
3047     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3048     for (unsigned i = 0; i != MaskNumElts; ++i) {
3049       int Idx = Mask[i];
3050       if (Idx >= (int)SrcNumElts)
3051         Idx -= SrcNumElts - PaddedMaskNumElts;
3052       MappedOps[i] = Idx;
3053     }
3054 
3055     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3056 
3057     // If the concatenated vector was padded, extract a subvector with the
3058     // correct number of elements.
3059     if (MaskNumElts != PaddedMaskNumElts)
3060       Result = DAG.getNode(
3061           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3062           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3063 
3064     setValue(&I, Result);
3065     return;
3066   }
3067 
3068   if (SrcNumElts > MaskNumElts) {
3069     // Analyze the access pattern of the vector to see if we can extract
3070     // two subvectors and do the shuffle. The analysis is done by calculating
3071     // the range of elements the mask access on both vectors.
3072     int MinRange[2] = { static_cast<int>(SrcNumElts),
3073                         static_cast<int>(SrcNumElts)};
3074     int MaxRange[2] = {-1, -1};
3075 
3076     for (unsigned i = 0; i != MaskNumElts; ++i) {
3077       int Idx = Mask[i];
3078       unsigned Input = 0;
3079       if (Idx < 0)
3080         continue;
3081 
3082       if (Idx >= (int)SrcNumElts) {
3083         Input = 1;
3084         Idx -= SrcNumElts;
3085       }
3086       if (Idx > MaxRange[Input])
3087         MaxRange[Input] = Idx;
3088       if (Idx < MinRange[Input])
3089         MinRange[Input] = Idx;
3090     }
3091 
3092     // Check if the access is smaller than the vector size and can we find
3093     // a reasonable extract index.
3094     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3095                                    // Extract.
3096     int StartIdx[2];  // StartIdx to extract from
3097     for (unsigned Input = 0; Input < 2; ++Input) {
3098       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3099         RangeUse[Input] = 0; // Unused
3100         StartIdx[Input] = 0;
3101         continue;
3102       }
3103 
3104       // Find a good start index that is a multiple of the mask length. Then
3105       // see if the rest of the elements are in range.
3106       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3107       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3108           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3109         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3110     }
3111 
3112     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3113       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3114       return;
3115     }
3116     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3117       // Extract appropriate subvector and generate a vector shuffle
3118       for (unsigned Input = 0; Input < 2; ++Input) {
3119         SDValue &Src = Input == 0 ? Src1 : Src2;
3120         if (RangeUse[Input] == 0)
3121           Src = DAG.getUNDEF(VT);
3122         else {
3123           Src = DAG.getNode(
3124               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3125               DAG.getConstant(StartIdx[Input], DL,
3126                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3127         }
3128       }
3129 
3130       // Calculate new mask.
3131       SmallVector<int, 8> MappedOps;
3132       for (unsigned i = 0; i != MaskNumElts; ++i) {
3133         int Idx = Mask[i];
3134         if (Idx >= 0) {
3135           if (Idx < (int)SrcNumElts)
3136             Idx -= StartIdx[0];
3137           else
3138             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3139         }
3140         MappedOps.push_back(Idx);
3141       }
3142 
3143       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3144       return;
3145     }
3146   }
3147 
3148   // We can't use either concat vectors or extract subvectors so fall back to
3149   // replacing the shuffle with extract and build vector.
3150   // to insert and build vector.
3151   EVT EltVT = VT.getVectorElementType();
3152   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3153   SmallVector<SDValue,8> Ops;
3154   for (unsigned i = 0; i != MaskNumElts; ++i) {
3155     int Idx = Mask[i];
3156     SDValue Res;
3157 
3158     if (Idx < 0) {
3159       Res = DAG.getUNDEF(EltVT);
3160     } else {
3161       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3162       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3163 
3164       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3165                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3166     }
3167 
3168     Ops.push_back(Res);
3169   }
3170 
3171   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
3172 }
3173 
3174 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3175   const Value *Op0 = I.getOperand(0);
3176   const Value *Op1 = I.getOperand(1);
3177   Type *AggTy = I.getType();
3178   Type *ValTy = Op1->getType();
3179   bool IntoUndef = isa<UndefValue>(Op0);
3180   bool FromUndef = isa<UndefValue>(Op1);
3181 
3182   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3183 
3184   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3185   SmallVector<EVT, 4> AggValueVTs;
3186   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3187   SmallVector<EVT, 4> ValValueVTs;
3188   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3189 
3190   unsigned NumAggValues = AggValueVTs.size();
3191   unsigned NumValValues = ValValueVTs.size();
3192   SmallVector<SDValue, 4> Values(NumAggValues);
3193 
3194   // Ignore an insertvalue that produces an empty object
3195   if (!NumAggValues) {
3196     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3197     return;
3198   }
3199 
3200   SDValue Agg = getValue(Op0);
3201   unsigned i = 0;
3202   // Copy the beginning value(s) from the original aggregate.
3203   for (; i != LinearIndex; ++i)
3204     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3205                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3206   // Copy values from the inserted value(s).
3207   if (NumValValues) {
3208     SDValue Val = getValue(Op1);
3209     for (; i != LinearIndex + NumValValues; ++i)
3210       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3211                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3212   }
3213   // Copy remaining value(s) from the original aggregate.
3214   for (; i != NumAggValues; ++i)
3215     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3216                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3217 
3218   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3219                            DAG.getVTList(AggValueVTs), Values));
3220 }
3221 
3222 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3223   const Value *Op0 = I.getOperand(0);
3224   Type *AggTy = Op0->getType();
3225   Type *ValTy = I.getType();
3226   bool OutOfUndef = isa<UndefValue>(Op0);
3227 
3228   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3229 
3230   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3231   SmallVector<EVT, 4> ValValueVTs;
3232   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3233 
3234   unsigned NumValValues = ValValueVTs.size();
3235 
3236   // Ignore a extractvalue that produces an empty object
3237   if (!NumValValues) {
3238     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3239     return;
3240   }
3241 
3242   SmallVector<SDValue, 4> Values(NumValValues);
3243 
3244   SDValue Agg = getValue(Op0);
3245   // Copy out the selected value(s).
3246   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3247     Values[i - LinearIndex] =
3248       OutOfUndef ?
3249         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3250         SDValue(Agg.getNode(), Agg.getResNo() + i);
3251 
3252   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3253                            DAG.getVTList(ValValueVTs), Values));
3254 }
3255 
3256 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3257   Value *Op0 = I.getOperand(0);
3258   // Note that the pointer operand may be a vector of pointers. Take the scalar
3259   // element which holds a pointer.
3260   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3261   SDValue N = getValue(Op0);
3262   SDLoc dl = getCurSDLoc();
3263 
3264   // Normalize Vector GEP - all scalar operands should be converted to the
3265   // splat vector.
3266   unsigned VectorWidth = I.getType()->isVectorTy() ?
3267     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3268 
3269   if (VectorWidth && !N.getValueType().isVector()) {
3270     LLVMContext &Context = *DAG.getContext();
3271     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3272     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3273     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3274   }
3275   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3276        GTI != E; ++GTI) {
3277     const Value *Idx = GTI.getOperand();
3278     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3279       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3280       if (Field) {
3281         // N = N + Offset
3282         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3283 
3284         // In an inbouds GEP with an offset that is nonnegative even when
3285         // interpreted as signed, assume there is no unsigned overflow.
3286         SDNodeFlags Flags;
3287         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3288           Flags.setNoUnsignedWrap(true);
3289 
3290         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3291                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3292       }
3293     } else {
3294       MVT PtrTy =
3295           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3296       unsigned PtrSize = PtrTy.getSizeInBits();
3297       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3298 
3299       // If this is a scalar constant or a splat vector of constants,
3300       // handle it quickly.
3301       const auto *CI = dyn_cast<ConstantInt>(Idx);
3302       if (!CI && isa<ConstantDataVector>(Idx) &&
3303           cast<ConstantDataVector>(Idx)->getSplatValue())
3304         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3305 
3306       if (CI) {
3307         if (CI->isZero())
3308           continue;
3309         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3310         LLVMContext &Context = *DAG.getContext();
3311         SDValue OffsVal = VectorWidth ?
3312           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3313           DAG.getConstant(Offs, dl, PtrTy);
3314 
3315         // In an inbouds GEP with an offset that is nonnegative even when
3316         // interpreted as signed, assume there is no unsigned overflow.
3317         SDNodeFlags Flags;
3318         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3319           Flags.setNoUnsignedWrap(true);
3320 
3321         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3322         continue;
3323       }
3324 
3325       // N = N + Idx * ElementSize;
3326       SDValue IdxN = getValue(Idx);
3327 
3328       if (!IdxN.getValueType().isVector() && VectorWidth) {
3329         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3330         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3331         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3332       }
3333       // If the index is smaller or larger than intptr_t, truncate or extend
3334       // it.
3335       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3336 
3337       // If this is a multiply by a power of two, turn it into a shl
3338       // immediately.  This is a very common case.
3339       if (ElementSize != 1) {
3340         if (ElementSize.isPowerOf2()) {
3341           unsigned Amt = ElementSize.logBase2();
3342           IdxN = DAG.getNode(ISD::SHL, dl,
3343                              N.getValueType(), IdxN,
3344                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3345         } else {
3346           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3347           IdxN = DAG.getNode(ISD::MUL, dl,
3348                              N.getValueType(), IdxN, Scale);
3349         }
3350       }
3351 
3352       N = DAG.getNode(ISD::ADD, dl,
3353                       N.getValueType(), N, IdxN);
3354     }
3355   }
3356 
3357   setValue(&I, N);
3358 }
3359 
3360 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3361   // If this is a fixed sized alloca in the entry block of the function,
3362   // allocate it statically on the stack.
3363   if (FuncInfo.StaticAllocaMap.count(&I))
3364     return;   // getValue will auto-populate this.
3365 
3366   SDLoc dl = getCurSDLoc();
3367   Type *Ty = I.getAllocatedType();
3368   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3369   auto &DL = DAG.getDataLayout();
3370   uint64_t TySize = DL.getTypeAllocSize(Ty);
3371   unsigned Align =
3372       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3373 
3374   SDValue AllocSize = getValue(I.getArraySize());
3375 
3376   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3377   if (AllocSize.getValueType() != IntPtr)
3378     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3379 
3380   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3381                           AllocSize,
3382                           DAG.getConstant(TySize, dl, IntPtr));
3383 
3384   // Handle alignment.  If the requested alignment is less than or equal to
3385   // the stack alignment, ignore it.  If the size is greater than or equal to
3386   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3387   unsigned StackAlign =
3388       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3389   if (Align <= StackAlign)
3390     Align = 0;
3391 
3392   // Round the size of the allocation up to the stack alignment size
3393   // by add SA-1 to the size. This doesn't overflow because we're computing
3394   // an address inside an alloca.
3395   SDNodeFlags Flags;
3396   Flags.setNoUnsignedWrap(true);
3397   AllocSize = DAG.getNode(ISD::ADD, dl,
3398                           AllocSize.getValueType(), AllocSize,
3399                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3400 
3401   // Mask out the low bits for alignment purposes.
3402   AllocSize = DAG.getNode(ISD::AND, dl,
3403                           AllocSize.getValueType(), AllocSize,
3404                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3405                                                 dl));
3406 
3407   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3408   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3409   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3410   setValue(&I, DSA);
3411   DAG.setRoot(DSA.getValue(1));
3412 
3413   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3414 }
3415 
3416 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3417   if (I.isAtomic())
3418     return visitAtomicLoad(I);
3419 
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   const Value *SV = I.getOperand(0);
3422   if (TLI.supportSwiftError()) {
3423     // Swifterror values can come from either a function parameter with
3424     // swifterror attribute or an alloca with swifterror attribute.
3425     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3426       if (Arg->hasSwiftErrorAttr())
3427         return visitLoadFromSwiftError(I);
3428     }
3429 
3430     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3431       if (Alloca->isSwiftError())
3432         return visitLoadFromSwiftError(I);
3433     }
3434   }
3435 
3436   SDValue Ptr = getValue(SV);
3437 
3438   Type *Ty = I.getType();
3439 
3440   bool isVolatile = I.isVolatile();
3441   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3442   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3443   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3444   unsigned Alignment = I.getAlignment();
3445 
3446   AAMDNodes AAInfo;
3447   I.getAAMetadata(AAInfo);
3448   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3449 
3450   SmallVector<EVT, 4> ValueVTs;
3451   SmallVector<uint64_t, 4> Offsets;
3452   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3453   unsigned NumValues = ValueVTs.size();
3454   if (NumValues == 0)
3455     return;
3456 
3457   SDValue Root;
3458   bool ConstantMemory = false;
3459   if (isVolatile || NumValues > MaxParallelChains)
3460     // Serialize volatile loads with other side effects.
3461     Root = getRoot();
3462   else if (AA->pointsToConstantMemory(MemoryLocation(
3463                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3464     // Do not serialize (non-volatile) loads of constant memory with anything.
3465     Root = DAG.getEntryNode();
3466     ConstantMemory = true;
3467   } else {
3468     // Do not serialize non-volatile loads against each other.
3469     Root = DAG.getRoot();
3470   }
3471 
3472   SDLoc dl = getCurSDLoc();
3473 
3474   if (isVolatile)
3475     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3476 
3477   // An aggregate load cannot wrap around the address space, so offsets to its
3478   // parts don't wrap either.
3479   SDNodeFlags Flags;
3480   Flags.setNoUnsignedWrap(true);
3481 
3482   SmallVector<SDValue, 4> Values(NumValues);
3483   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3484   EVT PtrVT = Ptr.getValueType();
3485   unsigned ChainI = 0;
3486   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3487     // Serializing loads here may result in excessive register pressure, and
3488     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3489     // could recover a bit by hoisting nodes upward in the chain by recognizing
3490     // they are side-effect free or do not alias. The optimizer should really
3491     // avoid this case by converting large object/array copies to llvm.memcpy
3492     // (MaxParallelChains should always remain as failsafe).
3493     if (ChainI == MaxParallelChains) {
3494       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3495       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3496                                   makeArrayRef(Chains.data(), ChainI));
3497       Root = Chain;
3498       ChainI = 0;
3499     }
3500     SDValue A = DAG.getNode(ISD::ADD, dl,
3501                             PtrVT, Ptr,
3502                             DAG.getConstant(Offsets[i], dl, PtrVT),
3503                             &Flags);
3504     auto MMOFlags = MachineMemOperand::MONone;
3505     if (isVolatile)
3506       MMOFlags |= MachineMemOperand::MOVolatile;
3507     if (isNonTemporal)
3508       MMOFlags |= MachineMemOperand::MONonTemporal;
3509     if (isInvariant)
3510       MMOFlags |= MachineMemOperand::MOInvariant;
3511     if (isDereferenceable)
3512       MMOFlags |= MachineMemOperand::MODereferenceable;
3513 
3514     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3515                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3516                             MMOFlags, AAInfo, Ranges);
3517 
3518     Values[i] = L;
3519     Chains[ChainI] = L.getValue(1);
3520   }
3521 
3522   if (!ConstantMemory) {
3523     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3524                                 makeArrayRef(Chains.data(), ChainI));
3525     if (isVolatile)
3526       DAG.setRoot(Chain);
3527     else
3528       PendingLoads.push_back(Chain);
3529   }
3530 
3531   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3532                            DAG.getVTList(ValueVTs), Values));
3533 }
3534 
3535 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3537   assert(TLI.supportSwiftError() &&
3538          "call visitStoreToSwiftError when backend supports swifterror");
3539 
3540   SmallVector<EVT, 4> ValueVTs;
3541   SmallVector<uint64_t, 4> Offsets;
3542   const Value *SrcV = I.getOperand(0);
3543   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3544                   SrcV->getType(), ValueVTs, &Offsets);
3545   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3546          "expect a single EVT for swifterror");
3547 
3548   SDValue Src = getValue(SrcV);
3549   // Create a virtual register, then update the virtual register.
3550   auto &DL = DAG.getDataLayout();
3551   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3552   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3553   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3554   // Chain can be getRoot or getControlRoot.
3555   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3556                                       SDValue(Src.getNode(), Src.getResNo()));
3557   DAG.setRoot(CopyNode);
3558   FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3559 }
3560 
3561 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3562   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3563          "call visitLoadFromSwiftError when backend supports swifterror");
3564 
3565   assert(!I.isVolatile() &&
3566          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3567          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3568          "Support volatile, non temporal, invariant for load_from_swift_error");
3569 
3570   const Value *SV = I.getOperand(0);
3571   Type *Ty = I.getType();
3572   AAMDNodes AAInfo;
3573   I.getAAMetadata(AAInfo);
3574   assert(!AA->pointsToConstantMemory(MemoryLocation(
3575              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3576          "load_from_swift_error should not be constant memory");
3577 
3578   SmallVector<EVT, 4> ValueVTs;
3579   SmallVector<uint64_t, 4> Offsets;
3580   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3581                   ValueVTs, &Offsets);
3582   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3583          "expect a single EVT for swifterror");
3584 
3585   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3586   SDValue L = DAG.getCopyFromReg(
3587       getRoot(), getCurSDLoc(),
3588       FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]);
3589 
3590   setValue(&I, L);
3591 }
3592 
3593 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3594   if (I.isAtomic())
3595     return visitAtomicStore(I);
3596 
3597   const Value *SrcV = I.getOperand(0);
3598   const Value *PtrV = I.getOperand(1);
3599 
3600   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3601   if (TLI.supportSwiftError()) {
3602     // Swifterror values can come from either a function parameter with
3603     // swifterror attribute or an alloca with swifterror attribute.
3604     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3605       if (Arg->hasSwiftErrorAttr())
3606         return visitStoreToSwiftError(I);
3607     }
3608 
3609     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3610       if (Alloca->isSwiftError())
3611         return visitStoreToSwiftError(I);
3612     }
3613   }
3614 
3615   SmallVector<EVT, 4> ValueVTs;
3616   SmallVector<uint64_t, 4> Offsets;
3617   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3618                   SrcV->getType(), ValueVTs, &Offsets);
3619   unsigned NumValues = ValueVTs.size();
3620   if (NumValues == 0)
3621     return;
3622 
3623   // Get the lowered operands. Note that we do this after
3624   // checking if NumResults is zero, because with zero results
3625   // the operands won't have values in the map.
3626   SDValue Src = getValue(SrcV);
3627   SDValue Ptr = getValue(PtrV);
3628 
3629   SDValue Root = getRoot();
3630   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3631   SDLoc dl = getCurSDLoc();
3632   EVT PtrVT = Ptr.getValueType();
3633   unsigned Alignment = I.getAlignment();
3634   AAMDNodes AAInfo;
3635   I.getAAMetadata(AAInfo);
3636 
3637   auto MMOFlags = MachineMemOperand::MONone;
3638   if (I.isVolatile())
3639     MMOFlags |= MachineMemOperand::MOVolatile;
3640   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3641     MMOFlags |= MachineMemOperand::MONonTemporal;
3642 
3643   // An aggregate load cannot wrap around the address space, so offsets to its
3644   // parts don't wrap either.
3645   SDNodeFlags Flags;
3646   Flags.setNoUnsignedWrap(true);
3647 
3648   unsigned ChainI = 0;
3649   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3650     // See visitLoad comments.
3651     if (ChainI == MaxParallelChains) {
3652       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3653                                   makeArrayRef(Chains.data(), ChainI));
3654       Root = Chain;
3655       ChainI = 0;
3656     }
3657     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3658                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3659     SDValue St = DAG.getStore(
3660         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3661         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3662     Chains[ChainI] = St;
3663   }
3664 
3665   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3666                                   makeArrayRef(Chains.data(), ChainI));
3667   DAG.setRoot(StoreNode);
3668 }
3669 
3670 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3671   SDLoc sdl = getCurSDLoc();
3672 
3673   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3674   Value  *PtrOperand = I.getArgOperand(1);
3675   SDValue Ptr = getValue(PtrOperand);
3676   SDValue Src0 = getValue(I.getArgOperand(0));
3677   SDValue Mask = getValue(I.getArgOperand(3));
3678   EVT VT = Src0.getValueType();
3679   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3680   if (!Alignment)
3681     Alignment = DAG.getEVTAlignment(VT);
3682 
3683   AAMDNodes AAInfo;
3684   I.getAAMetadata(AAInfo);
3685 
3686   MachineMemOperand *MMO =
3687     DAG.getMachineFunction().
3688     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3689                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3690                           Alignment, AAInfo);
3691   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3692                                          MMO, false);
3693   DAG.setRoot(StoreNode);
3694   setValue(&I, StoreNode);
3695 }
3696 
3697 // Get a uniform base for the Gather/Scatter intrinsic.
3698 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3699 // We try to represent it as a base pointer + vector of indices.
3700 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3701 // The first operand of the GEP may be a single pointer or a vector of pointers
3702 // Example:
3703 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3704 //  or
3705 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3706 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3707 //
3708 // When the first GEP operand is a single pointer - it is the uniform base we
3709 // are looking for. If first operand of the GEP is a splat vector - we
3710 // extract the spalt value and use it as a uniform base.
3711 // In all other cases the function returns 'false'.
3712 //
3713 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3714                            SelectionDAGBuilder* SDB) {
3715 
3716   SelectionDAG& DAG = SDB->DAG;
3717   LLVMContext &Context = *DAG.getContext();
3718 
3719   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3720   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3721   if (!GEP || GEP->getNumOperands() > 2)
3722     return false;
3723 
3724   const Value *GEPPtr = GEP->getPointerOperand();
3725   if (!GEPPtr->getType()->isVectorTy())
3726     Ptr = GEPPtr;
3727   else if (!(Ptr = getSplatValue(GEPPtr)))
3728     return false;
3729 
3730   Value *IndexVal = GEP->getOperand(1);
3731 
3732   // The operands of the GEP may be defined in another basic block.
3733   // In this case we'll not find nodes for the operands.
3734   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3735     return false;
3736 
3737   Base = SDB->getValue(Ptr);
3738   Index = SDB->getValue(IndexVal);
3739 
3740   // Suppress sign extension.
3741   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3742     if (SDB->findValue(Sext->getOperand(0))) {
3743       IndexVal = Sext->getOperand(0);
3744       Index = SDB->getValue(IndexVal);
3745     }
3746   }
3747   if (!Index.getValueType().isVector()) {
3748     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3749     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3750     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3751     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3752   }
3753   return true;
3754 }
3755 
3756 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3757   SDLoc sdl = getCurSDLoc();
3758 
3759   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3760   const Value *Ptr = I.getArgOperand(1);
3761   SDValue Src0 = getValue(I.getArgOperand(0));
3762   SDValue Mask = getValue(I.getArgOperand(3));
3763   EVT VT = Src0.getValueType();
3764   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3765   if (!Alignment)
3766     Alignment = DAG.getEVTAlignment(VT);
3767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3768 
3769   AAMDNodes AAInfo;
3770   I.getAAMetadata(AAInfo);
3771 
3772   SDValue Base;
3773   SDValue Index;
3774   const Value *BasePtr = Ptr;
3775   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3776 
3777   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3778   MachineMemOperand *MMO = DAG.getMachineFunction().
3779     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3780                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3781                          Alignment, AAInfo);
3782   if (!UniformBase) {
3783     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3784     Index = getValue(Ptr);
3785   }
3786   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3787   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3788                                          Ops, MMO);
3789   DAG.setRoot(Scatter);
3790   setValue(&I, Scatter);
3791 }
3792 
3793 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3794   SDLoc sdl = getCurSDLoc();
3795 
3796   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3797   Value  *PtrOperand = I.getArgOperand(0);
3798   SDValue Ptr = getValue(PtrOperand);
3799   SDValue Src0 = getValue(I.getArgOperand(3));
3800   SDValue Mask = getValue(I.getArgOperand(2));
3801 
3802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3803   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3804   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3805   if (!Alignment)
3806     Alignment = DAG.getEVTAlignment(VT);
3807 
3808   AAMDNodes AAInfo;
3809   I.getAAMetadata(AAInfo);
3810   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3811 
3812   // Do not serialize masked loads of constant memory with anything.
3813   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3814       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3815   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3816 
3817   MachineMemOperand *MMO =
3818     DAG.getMachineFunction().
3819     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3820                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3821                           Alignment, AAInfo, Ranges);
3822 
3823   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3824                                    ISD::NON_EXTLOAD, false);
3825   if (AddToChain) {
3826     SDValue OutChain = Load.getValue(1);
3827     DAG.setRoot(OutChain);
3828   }
3829   setValue(&I, Load);
3830 }
3831 
3832 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3833   SDLoc sdl = getCurSDLoc();
3834 
3835   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3836   const Value *Ptr = I.getArgOperand(0);
3837   SDValue Src0 = getValue(I.getArgOperand(3));
3838   SDValue Mask = getValue(I.getArgOperand(2));
3839 
3840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3841   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3842   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3843   if (!Alignment)
3844     Alignment = DAG.getEVTAlignment(VT);
3845 
3846   AAMDNodes AAInfo;
3847   I.getAAMetadata(AAInfo);
3848   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3849 
3850   SDValue Root = DAG.getRoot();
3851   SDValue Base;
3852   SDValue Index;
3853   const Value *BasePtr = Ptr;
3854   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3855   bool ConstantMemory = false;
3856   if (UniformBase &&
3857       AA->pointsToConstantMemory(MemoryLocation(
3858           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3859           AAInfo))) {
3860     // Do not serialize (non-volatile) loads of constant memory with anything.
3861     Root = DAG.getEntryNode();
3862     ConstantMemory = true;
3863   }
3864 
3865   MachineMemOperand *MMO =
3866     DAG.getMachineFunction().
3867     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3868                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3869                          Alignment, AAInfo, Ranges);
3870 
3871   if (!UniformBase) {
3872     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3873     Index = getValue(Ptr);
3874   }
3875   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3876   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3877                                        Ops, MMO);
3878 
3879   SDValue OutChain = Gather.getValue(1);
3880   if (!ConstantMemory)
3881     PendingLoads.push_back(OutChain);
3882   setValue(&I, Gather);
3883 }
3884 
3885 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3886   SDLoc dl = getCurSDLoc();
3887   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3888   AtomicOrdering FailureOrder = I.getFailureOrdering();
3889   SynchronizationScope Scope = I.getSynchScope();
3890 
3891   SDValue InChain = getRoot();
3892 
3893   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3894   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3895   SDValue L = DAG.getAtomicCmpSwap(
3896       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3897       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3898       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3899       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3900 
3901   SDValue OutChain = L.getValue(2);
3902 
3903   setValue(&I, L);
3904   DAG.setRoot(OutChain);
3905 }
3906 
3907 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3908   SDLoc dl = getCurSDLoc();
3909   ISD::NodeType NT;
3910   switch (I.getOperation()) {
3911   default: llvm_unreachable("Unknown atomicrmw operation");
3912   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3913   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3914   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3915   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3916   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3917   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3918   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3919   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3920   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3921   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3922   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3923   }
3924   AtomicOrdering Order = I.getOrdering();
3925   SynchronizationScope Scope = I.getSynchScope();
3926 
3927   SDValue InChain = getRoot();
3928 
3929   SDValue L =
3930     DAG.getAtomic(NT, dl,
3931                   getValue(I.getValOperand()).getSimpleValueType(),
3932                   InChain,
3933                   getValue(I.getPointerOperand()),
3934                   getValue(I.getValOperand()),
3935                   I.getPointerOperand(),
3936                   /* Alignment=*/ 0, Order, Scope);
3937 
3938   SDValue OutChain = L.getValue(1);
3939 
3940   setValue(&I, L);
3941   DAG.setRoot(OutChain);
3942 }
3943 
3944 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3945   SDLoc dl = getCurSDLoc();
3946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3947   SDValue Ops[3];
3948   Ops[0] = getRoot();
3949   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3950                            TLI.getPointerTy(DAG.getDataLayout()));
3951   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3952                            TLI.getPointerTy(DAG.getDataLayout()));
3953   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3954 }
3955 
3956 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3957   SDLoc dl = getCurSDLoc();
3958   AtomicOrdering Order = I.getOrdering();
3959   SynchronizationScope Scope = I.getSynchScope();
3960 
3961   SDValue InChain = getRoot();
3962 
3963   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3964   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3965 
3966   if (I.getAlignment() < VT.getSizeInBits() / 8)
3967     report_fatal_error("Cannot generate unaligned atomic load");
3968 
3969   MachineMemOperand *MMO =
3970       DAG.getMachineFunction().
3971       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3972                            MachineMemOperand::MOVolatile |
3973                            MachineMemOperand::MOLoad,
3974                            VT.getStoreSize(),
3975                            I.getAlignment() ? I.getAlignment() :
3976                                               DAG.getEVTAlignment(VT));
3977 
3978   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3979   SDValue L =
3980       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3981                     getValue(I.getPointerOperand()), MMO,
3982                     Order, Scope);
3983 
3984   SDValue OutChain = L.getValue(1);
3985 
3986   setValue(&I, L);
3987   DAG.setRoot(OutChain);
3988 }
3989 
3990 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3991   SDLoc dl = getCurSDLoc();
3992 
3993   AtomicOrdering Order = I.getOrdering();
3994   SynchronizationScope Scope = I.getSynchScope();
3995 
3996   SDValue InChain = getRoot();
3997 
3998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3999   EVT VT =
4000       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4001 
4002   if (I.getAlignment() < VT.getSizeInBits() / 8)
4003     report_fatal_error("Cannot generate unaligned atomic store");
4004 
4005   SDValue OutChain =
4006     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4007                   InChain,
4008                   getValue(I.getPointerOperand()),
4009                   getValue(I.getValueOperand()),
4010                   I.getPointerOperand(), I.getAlignment(),
4011                   Order, Scope);
4012 
4013   DAG.setRoot(OutChain);
4014 }
4015 
4016 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4017 /// node.
4018 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4019                                                unsigned Intrinsic) {
4020   bool HasChain = !I.doesNotAccessMemory();
4021   bool OnlyLoad = HasChain && I.onlyReadsMemory();
4022 
4023   // Build the operand list.
4024   SmallVector<SDValue, 8> Ops;
4025   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4026     if (OnlyLoad) {
4027       // We don't need to serialize loads against other loads.
4028       Ops.push_back(DAG.getRoot());
4029     } else {
4030       Ops.push_back(getRoot());
4031     }
4032   }
4033 
4034   // Info is set by getTgtMemInstrinsic
4035   TargetLowering::IntrinsicInfo Info;
4036   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4037   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4038 
4039   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4040   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4041       Info.opc == ISD::INTRINSIC_W_CHAIN)
4042     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4043                                         TLI.getPointerTy(DAG.getDataLayout())));
4044 
4045   // Add all operands of the call to the operand list.
4046   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4047     SDValue Op = getValue(I.getArgOperand(i));
4048     Ops.push_back(Op);
4049   }
4050 
4051   SmallVector<EVT, 4> ValueVTs;
4052   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4053 
4054   if (HasChain)
4055     ValueVTs.push_back(MVT::Other);
4056 
4057   SDVTList VTs = DAG.getVTList(ValueVTs);
4058 
4059   // Create the node.
4060   SDValue Result;
4061   if (IsTgtIntrinsic) {
4062     // This is target intrinsic that touches memory
4063     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4064                                      VTs, Ops, Info.memVT,
4065                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4066                                      Info.align, Info.vol,
4067                                      Info.readMem, Info.writeMem, Info.size);
4068   } else if (!HasChain) {
4069     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4070   } else if (!I.getType()->isVoidTy()) {
4071     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4072   } else {
4073     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4074   }
4075 
4076   if (HasChain) {
4077     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4078     if (OnlyLoad)
4079       PendingLoads.push_back(Chain);
4080     else
4081       DAG.setRoot(Chain);
4082   }
4083 
4084   if (!I.getType()->isVoidTy()) {
4085     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4086       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4087       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4088     } else
4089       Result = lowerRangeToAssertZExt(DAG, I, Result);
4090 
4091     setValue(&I, Result);
4092   }
4093 }
4094 
4095 /// GetSignificand - Get the significand and build it into a floating-point
4096 /// number with exponent of 1:
4097 ///
4098 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4099 ///
4100 /// where Op is the hexadecimal representation of floating point value.
4101 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4102   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4103                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4104   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4105                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4106   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4107 }
4108 
4109 /// GetExponent - Get the exponent:
4110 ///
4111 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4112 ///
4113 /// where Op is the hexadecimal representation of floating point value.
4114 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4115                            const TargetLowering &TLI, const SDLoc &dl) {
4116   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4117                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4118   SDValue t1 = DAG.getNode(
4119       ISD::SRL, dl, MVT::i32, t0,
4120       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4121   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4122                            DAG.getConstant(127, dl, MVT::i32));
4123   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4124 }
4125 
4126 /// getF32Constant - Get 32-bit floating point constant.
4127 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4128                               const SDLoc &dl) {
4129   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4130                            MVT::f32);
4131 }
4132 
4133 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4134                                        SelectionDAG &DAG) {
4135   // TODO: What fast-math-flags should be set on the floating-point nodes?
4136 
4137   //   IntegerPartOfX = ((int32_t)(t0);
4138   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4139 
4140   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4141   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4142   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4143 
4144   //   IntegerPartOfX <<= 23;
4145   IntegerPartOfX = DAG.getNode(
4146       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4147       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4148                                   DAG.getDataLayout())));
4149 
4150   SDValue TwoToFractionalPartOfX;
4151   if (LimitFloatPrecision <= 6) {
4152     // For floating-point precision of 6:
4153     //
4154     //   TwoToFractionalPartOfX =
4155     //     0.997535578f +
4156     //       (0.735607626f + 0.252464424f * x) * x;
4157     //
4158     // error 0.0144103317, which is 6 bits
4159     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4160                              getF32Constant(DAG, 0x3e814304, dl));
4161     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4162                              getF32Constant(DAG, 0x3f3c50c8, dl));
4163     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4164     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4165                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4166   } else if (LimitFloatPrecision <= 12) {
4167     // For floating-point precision of 12:
4168     //
4169     //   TwoToFractionalPartOfX =
4170     //     0.999892986f +
4171     //       (0.696457318f +
4172     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4173     //
4174     // error 0.000107046256, which is 13 to 14 bits
4175     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4176                              getF32Constant(DAG, 0x3da235e3, dl));
4177     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4178                              getF32Constant(DAG, 0x3e65b8f3, dl));
4179     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4180     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4181                              getF32Constant(DAG, 0x3f324b07, dl));
4182     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4183     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4184                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4185   } else { // LimitFloatPrecision <= 18
4186     // For floating-point precision of 18:
4187     //
4188     //   TwoToFractionalPartOfX =
4189     //     0.999999982f +
4190     //       (0.693148872f +
4191     //         (0.240227044f +
4192     //           (0.554906021e-1f +
4193     //             (0.961591928e-2f +
4194     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4195     // error 2.47208000*10^(-7), which is better than 18 bits
4196     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4197                              getF32Constant(DAG, 0x3924b03e, dl));
4198     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4199                              getF32Constant(DAG, 0x3ab24b87, dl));
4200     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4201     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4202                              getF32Constant(DAG, 0x3c1d8c17, dl));
4203     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4204     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4205                              getF32Constant(DAG, 0x3d634a1d, dl));
4206     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4207     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4208                              getF32Constant(DAG, 0x3e75fe14, dl));
4209     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4210     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4211                               getF32Constant(DAG, 0x3f317234, dl));
4212     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4213     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4214                                          getF32Constant(DAG, 0x3f800000, dl));
4215   }
4216 
4217   // Add the exponent into the result in integer domain.
4218   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4219   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4220                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4221 }
4222 
4223 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4224 /// limited-precision mode.
4225 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4226                          const TargetLowering &TLI) {
4227   if (Op.getValueType() == MVT::f32 &&
4228       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4229 
4230     // Put the exponent in the right bit position for later addition to the
4231     // final result:
4232     //
4233     //   #define LOG2OFe 1.4426950f
4234     //   t0 = Op * LOG2OFe
4235 
4236     // TODO: What fast-math-flags should be set here?
4237     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4238                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4239     return getLimitedPrecisionExp2(t0, dl, DAG);
4240   }
4241 
4242   // No special expansion.
4243   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4244 }
4245 
4246 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4247 /// limited-precision mode.
4248 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4249                          const TargetLowering &TLI) {
4250 
4251   // TODO: What fast-math-flags should be set on the floating-point nodes?
4252 
4253   if (Op.getValueType() == MVT::f32 &&
4254       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4255     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4256 
4257     // Scale the exponent by log(2) [0.69314718f].
4258     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4259     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4260                                         getF32Constant(DAG, 0x3f317218, dl));
4261 
4262     // Get the significand and build it into a floating-point number with
4263     // exponent of 1.
4264     SDValue X = GetSignificand(DAG, Op1, dl);
4265 
4266     SDValue LogOfMantissa;
4267     if (LimitFloatPrecision <= 6) {
4268       // For floating-point precision of 6:
4269       //
4270       //   LogofMantissa =
4271       //     -1.1609546f +
4272       //       (1.4034025f - 0.23903021f * x) * x;
4273       //
4274       // error 0.0034276066, which is better than 8 bits
4275       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4276                                getF32Constant(DAG, 0xbe74c456, dl));
4277       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4278                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4279       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4280       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4281                                   getF32Constant(DAG, 0x3f949a29, dl));
4282     } else if (LimitFloatPrecision <= 12) {
4283       // For floating-point precision of 12:
4284       //
4285       //   LogOfMantissa =
4286       //     -1.7417939f +
4287       //       (2.8212026f +
4288       //         (-1.4699568f +
4289       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4290       //
4291       // error 0.000061011436, which is 14 bits
4292       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4293                                getF32Constant(DAG, 0xbd67b6d6, dl));
4294       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4295                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4296       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4297       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4298                                getF32Constant(DAG, 0x3fbc278b, dl));
4299       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4300       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4301                                getF32Constant(DAG, 0x40348e95, dl));
4302       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4303       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4304                                   getF32Constant(DAG, 0x3fdef31a, dl));
4305     } else { // LimitFloatPrecision <= 18
4306       // For floating-point precision of 18:
4307       //
4308       //   LogOfMantissa =
4309       //     -2.1072184f +
4310       //       (4.2372794f +
4311       //         (-3.7029485f +
4312       //           (2.2781945f +
4313       //             (-0.87823314f +
4314       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4315       //
4316       // error 0.0000023660568, which is better than 18 bits
4317       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4318                                getF32Constant(DAG, 0xbc91e5ac, dl));
4319       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4320                                getF32Constant(DAG, 0x3e4350aa, dl));
4321       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4322       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4323                                getF32Constant(DAG, 0x3f60d3e3, dl));
4324       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4325       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4326                                getF32Constant(DAG, 0x4011cdf0, dl));
4327       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4328       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4329                                getF32Constant(DAG, 0x406cfd1c, dl));
4330       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4331       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4332                                getF32Constant(DAG, 0x408797cb, dl));
4333       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4334       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4335                                   getF32Constant(DAG, 0x4006dcab, dl));
4336     }
4337 
4338     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4339   }
4340 
4341   // No special expansion.
4342   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4343 }
4344 
4345 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4346 /// limited-precision mode.
4347 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4348                           const TargetLowering &TLI) {
4349 
4350   // TODO: What fast-math-flags should be set on the floating-point nodes?
4351 
4352   if (Op.getValueType() == MVT::f32 &&
4353       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4354     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4355 
4356     // Get the exponent.
4357     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4358 
4359     // Get the significand and build it into a floating-point number with
4360     // exponent of 1.
4361     SDValue X = GetSignificand(DAG, Op1, dl);
4362 
4363     // Different possible minimax approximations of significand in
4364     // floating-point for various degrees of accuracy over [1,2].
4365     SDValue Log2ofMantissa;
4366     if (LimitFloatPrecision <= 6) {
4367       // For floating-point precision of 6:
4368       //
4369       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4370       //
4371       // error 0.0049451742, which is more than 7 bits
4372       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4373                                getF32Constant(DAG, 0xbeb08fe0, dl));
4374       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4375                                getF32Constant(DAG, 0x40019463, dl));
4376       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4377       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4378                                    getF32Constant(DAG, 0x3fd6633d, dl));
4379     } else if (LimitFloatPrecision <= 12) {
4380       // For floating-point precision of 12:
4381       //
4382       //   Log2ofMantissa =
4383       //     -2.51285454f +
4384       //       (4.07009056f +
4385       //         (-2.12067489f +
4386       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4387       //
4388       // error 0.0000876136000, which is better than 13 bits
4389       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4390                                getF32Constant(DAG, 0xbda7262e, dl));
4391       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4392                                getF32Constant(DAG, 0x3f25280b, dl));
4393       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4394       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4395                                getF32Constant(DAG, 0x4007b923, dl));
4396       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4397       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4398                                getF32Constant(DAG, 0x40823e2f, dl));
4399       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4400       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4401                                    getF32Constant(DAG, 0x4020d29c, dl));
4402     } else { // LimitFloatPrecision <= 18
4403       // For floating-point precision of 18:
4404       //
4405       //   Log2ofMantissa =
4406       //     -3.0400495f +
4407       //       (6.1129976f +
4408       //         (-5.3420409f +
4409       //           (3.2865683f +
4410       //             (-1.2669343f +
4411       //               (0.27515199f -
4412       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4413       //
4414       // error 0.0000018516, which is better than 18 bits
4415       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4416                                getF32Constant(DAG, 0xbcd2769e, dl));
4417       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4418                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4419       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4420       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4421                                getF32Constant(DAG, 0x3fa22ae7, dl));
4422       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4423       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4424                                getF32Constant(DAG, 0x40525723, dl));
4425       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4426       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4427                                getF32Constant(DAG, 0x40aaf200, dl));
4428       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4429       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4430                                getF32Constant(DAG, 0x40c39dad, dl));
4431       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4432       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4433                                    getF32Constant(DAG, 0x4042902c, dl));
4434     }
4435 
4436     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4437   }
4438 
4439   // No special expansion.
4440   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4441 }
4442 
4443 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4444 /// limited-precision mode.
4445 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4446                            const TargetLowering &TLI) {
4447 
4448   // TODO: What fast-math-flags should be set on the floating-point nodes?
4449 
4450   if (Op.getValueType() == MVT::f32 &&
4451       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4452     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4453 
4454     // Scale the exponent by log10(2) [0.30102999f].
4455     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4456     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4457                                         getF32Constant(DAG, 0x3e9a209a, dl));
4458 
4459     // Get the significand and build it into a floating-point number with
4460     // exponent of 1.
4461     SDValue X = GetSignificand(DAG, Op1, dl);
4462 
4463     SDValue Log10ofMantissa;
4464     if (LimitFloatPrecision <= 6) {
4465       // For floating-point precision of 6:
4466       //
4467       //   Log10ofMantissa =
4468       //     -0.50419619f +
4469       //       (0.60948995f - 0.10380950f * x) * x;
4470       //
4471       // error 0.0014886165, which is 6 bits
4472       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4473                                getF32Constant(DAG, 0xbdd49a13, dl));
4474       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4475                                getF32Constant(DAG, 0x3f1c0789, dl));
4476       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4477       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4478                                     getF32Constant(DAG, 0x3f011300, dl));
4479     } else if (LimitFloatPrecision <= 12) {
4480       // For floating-point precision of 12:
4481       //
4482       //   Log10ofMantissa =
4483       //     -0.64831180f +
4484       //       (0.91751397f +
4485       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4486       //
4487       // error 0.00019228036, which is better than 12 bits
4488       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4489                                getF32Constant(DAG, 0x3d431f31, dl));
4490       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4491                                getF32Constant(DAG, 0x3ea21fb2, dl));
4492       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4493       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4494                                getF32Constant(DAG, 0x3f6ae232, dl));
4495       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4496       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4497                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4498     } else { // LimitFloatPrecision <= 18
4499       // For floating-point precision of 18:
4500       //
4501       //   Log10ofMantissa =
4502       //     -0.84299375f +
4503       //       (1.5327582f +
4504       //         (-1.0688956f +
4505       //           (0.49102474f +
4506       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4507       //
4508       // error 0.0000037995730, which is better than 18 bits
4509       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4510                                getF32Constant(DAG, 0x3c5d51ce, dl));
4511       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4512                                getF32Constant(DAG, 0x3e00685a, dl));
4513       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4514       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4515                                getF32Constant(DAG, 0x3efb6798, dl));
4516       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4517       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4518                                getF32Constant(DAG, 0x3f88d192, dl));
4519       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4520       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4521                                getF32Constant(DAG, 0x3fc4316c, dl));
4522       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4523       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4524                                     getF32Constant(DAG, 0x3f57ce70, dl));
4525     }
4526 
4527     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4528   }
4529 
4530   // No special expansion.
4531   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4532 }
4533 
4534 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4535 /// limited-precision mode.
4536 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4537                           const TargetLowering &TLI) {
4538   if (Op.getValueType() == MVT::f32 &&
4539       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4540     return getLimitedPrecisionExp2(Op, dl, DAG);
4541 
4542   // No special expansion.
4543   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4544 }
4545 
4546 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4547 /// limited-precision mode with x == 10.0f.
4548 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4549                          SelectionDAG &DAG, const TargetLowering &TLI) {
4550   bool IsExp10 = false;
4551   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4552       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4553     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4554       APFloat Ten(10.0f);
4555       IsExp10 = LHSC->isExactlyValue(Ten);
4556     }
4557   }
4558 
4559   // TODO: What fast-math-flags should be set on the FMUL node?
4560   if (IsExp10) {
4561     // Put the exponent in the right bit position for later addition to the
4562     // final result:
4563     //
4564     //   #define LOG2OF10 3.3219281f
4565     //   t0 = Op * LOG2OF10;
4566     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4567                              getF32Constant(DAG, 0x40549a78, dl));
4568     return getLimitedPrecisionExp2(t0, dl, DAG);
4569   }
4570 
4571   // No special expansion.
4572   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4573 }
4574 
4575 
4576 /// ExpandPowI - Expand a llvm.powi intrinsic.
4577 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4578                           SelectionDAG &DAG) {
4579   // If RHS is a constant, we can expand this out to a multiplication tree,
4580   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4581   // optimizing for size, we only want to do this if the expansion would produce
4582   // a small number of multiplies, otherwise we do the full expansion.
4583   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4584     // Get the exponent as a positive value.
4585     unsigned Val = RHSC->getSExtValue();
4586     if ((int)Val < 0) Val = -Val;
4587 
4588     // powi(x, 0) -> 1.0
4589     if (Val == 0)
4590       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4591 
4592     const Function *F = DAG.getMachineFunction().getFunction();
4593     if (!F->optForSize() ||
4594         // If optimizing for size, don't insert too many multiplies.
4595         // This inserts up to 5 multiplies.
4596         countPopulation(Val) + Log2_32(Val) < 7) {
4597       // We use the simple binary decomposition method to generate the multiply
4598       // sequence.  There are more optimal ways to do this (for example,
4599       // powi(x,15) generates one more multiply than it should), but this has
4600       // the benefit of being both really simple and much better than a libcall.
4601       SDValue Res;  // Logically starts equal to 1.0
4602       SDValue CurSquare = LHS;
4603       // TODO: Intrinsics should have fast-math-flags that propagate to these
4604       // nodes.
4605       while (Val) {
4606         if (Val & 1) {
4607           if (Res.getNode())
4608             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4609           else
4610             Res = CurSquare;  // 1.0*CurSquare.
4611         }
4612 
4613         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4614                                 CurSquare, CurSquare);
4615         Val >>= 1;
4616       }
4617 
4618       // If the original was negative, invert the result, producing 1/(x*x*x).
4619       if (RHSC->getSExtValue() < 0)
4620         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4621                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4622       return Res;
4623     }
4624   }
4625 
4626   // Otherwise, expand to a libcall.
4627   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4628 }
4629 
4630 // getUnderlyingArgReg - Find underlying register used for a truncated or
4631 // bitcasted argument.
4632 static unsigned getUnderlyingArgReg(const SDValue &N) {
4633   switch (N.getOpcode()) {
4634   case ISD::CopyFromReg:
4635     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4636   case ISD::BITCAST:
4637   case ISD::AssertZext:
4638   case ISD::AssertSext:
4639   case ISD::TRUNCATE:
4640     return getUnderlyingArgReg(N.getOperand(0));
4641   default:
4642     return 0;
4643   }
4644 }
4645 
4646 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4647 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4648 /// At the end of instruction selection, they will be inserted to the entry BB.
4649 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4650     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4651     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4652   const Argument *Arg = dyn_cast<Argument>(V);
4653   if (!Arg)
4654     return false;
4655 
4656   MachineFunction &MF = DAG.getMachineFunction();
4657   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4658 
4659   // Ignore inlined function arguments here.
4660   //
4661   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4662   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4663     return false;
4664 
4665   Optional<MachineOperand> Op;
4666   // Some arguments' frame index is recorded during argument lowering.
4667   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4668     Op = MachineOperand::CreateFI(FI);
4669 
4670   if (!Op && N.getNode()) {
4671     unsigned Reg = getUnderlyingArgReg(N);
4672     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4673       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4674       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4675       if (PR)
4676         Reg = PR;
4677     }
4678     if (Reg)
4679       Op = MachineOperand::CreateReg(Reg, false);
4680   }
4681 
4682   if (!Op) {
4683     // Check if ValueMap has reg number.
4684     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4685     if (VMI != FuncInfo.ValueMap.end())
4686       Op = MachineOperand::CreateReg(VMI->second, false);
4687   }
4688 
4689   if (!Op && N.getNode())
4690     // Check if frame index is available.
4691     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4692       if (FrameIndexSDNode *FINode =
4693           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4694         Op = MachineOperand::CreateFI(FINode->getIndex());
4695 
4696   if (!Op)
4697     return false;
4698 
4699   assert(Variable->isValidLocationForIntrinsic(DL) &&
4700          "Expected inlined-at fields to agree");
4701   if (Op->isReg())
4702     FuncInfo.ArgDbgValues.push_back(
4703         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4704                 Op->getReg(), Offset, Variable, Expr));
4705   else
4706     FuncInfo.ArgDbgValues.push_back(
4707         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4708             .addOperand(*Op)
4709             .addImm(Offset)
4710             .addMetadata(Variable)
4711             .addMetadata(Expr));
4712 
4713   return true;
4714 }
4715 
4716 /// Return the appropriate SDDbgValue based on N.
4717 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4718                                              DILocalVariable *Variable,
4719                                              DIExpression *Expr, int64_t Offset,
4720                                              DebugLoc dl,
4721                                              unsigned DbgSDNodeOrder) {
4722   SDDbgValue *SDV;
4723   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4724   if (FISDN && Expr->startsWithDeref()) {
4725     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4726     // stack slot locations as such instead of as indirectly addressed
4727     // locations.
4728     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4729                                         Expr->elements_end());
4730     DIExpression *DerefedDIExpr =
4731         DIExpression::get(*DAG.getContext(), TrailingElements);
4732     int FI = FISDN->getIndex();
4733     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4734                                     DbgSDNodeOrder);
4735   } else {
4736     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4737                           Offset, dl, DbgSDNodeOrder);
4738   }
4739   return SDV;
4740 }
4741 
4742 // VisualStudio defines setjmp as _setjmp
4743 #if defined(_MSC_VER) && defined(setjmp) && \
4744                          !defined(setjmp_undefined_for_msvc)
4745 #  pragma push_macro("setjmp")
4746 #  undef setjmp
4747 #  define setjmp_undefined_for_msvc
4748 #endif
4749 
4750 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4751 /// we want to emit this as a call to a named external function, return the name
4752 /// otherwise lower it and return null.
4753 const char *
4754 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4756   SDLoc sdl = getCurSDLoc();
4757   DebugLoc dl = getCurDebugLoc();
4758   SDValue Res;
4759 
4760   switch (Intrinsic) {
4761   default:
4762     // By default, turn this into a target intrinsic node.
4763     visitTargetIntrinsic(I, Intrinsic);
4764     return nullptr;
4765   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4766   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4767   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4768   case Intrinsic::returnaddress:
4769     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4770                              TLI.getPointerTy(DAG.getDataLayout()),
4771                              getValue(I.getArgOperand(0))));
4772     return nullptr;
4773   case Intrinsic::frameaddress:
4774     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4775                              TLI.getPointerTy(DAG.getDataLayout()),
4776                              getValue(I.getArgOperand(0))));
4777     return nullptr;
4778   case Intrinsic::read_register: {
4779     Value *Reg = I.getArgOperand(0);
4780     SDValue Chain = getRoot();
4781     SDValue RegName =
4782         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4783     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4784     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4785       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4786     setValue(&I, Res);
4787     DAG.setRoot(Res.getValue(1));
4788     return nullptr;
4789   }
4790   case Intrinsic::write_register: {
4791     Value *Reg = I.getArgOperand(0);
4792     Value *RegValue = I.getArgOperand(1);
4793     SDValue Chain = getRoot();
4794     SDValue RegName =
4795         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4796     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4797                             RegName, getValue(RegValue)));
4798     return nullptr;
4799   }
4800   case Intrinsic::setjmp:
4801     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4802   case Intrinsic::longjmp:
4803     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4804   case Intrinsic::memcpy: {
4805     SDValue Op1 = getValue(I.getArgOperand(0));
4806     SDValue Op2 = getValue(I.getArgOperand(1));
4807     SDValue Op3 = getValue(I.getArgOperand(2));
4808     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4809     if (!Align)
4810       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4811     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4812     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4813     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4814                                false, isTC,
4815                                MachinePointerInfo(I.getArgOperand(0)),
4816                                MachinePointerInfo(I.getArgOperand(1)));
4817     updateDAGForMaybeTailCall(MC);
4818     return nullptr;
4819   }
4820   case Intrinsic::memset: {
4821     SDValue Op1 = getValue(I.getArgOperand(0));
4822     SDValue Op2 = getValue(I.getArgOperand(1));
4823     SDValue Op3 = getValue(I.getArgOperand(2));
4824     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4825     if (!Align)
4826       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4827     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4828     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4829     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4830                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4831     updateDAGForMaybeTailCall(MS);
4832     return nullptr;
4833   }
4834   case Intrinsic::memmove: {
4835     SDValue Op1 = getValue(I.getArgOperand(0));
4836     SDValue Op2 = getValue(I.getArgOperand(1));
4837     SDValue Op3 = getValue(I.getArgOperand(2));
4838     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4839     if (!Align)
4840       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4841     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4842     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4843     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4844                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4845                                 MachinePointerInfo(I.getArgOperand(1)));
4846     updateDAGForMaybeTailCall(MM);
4847     return nullptr;
4848   }
4849   case Intrinsic::dbg_declare: {
4850     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4851     DILocalVariable *Variable = DI.getVariable();
4852     DIExpression *Expression = DI.getExpression();
4853     const Value *Address = DI.getAddress();
4854     assert(Variable && "Missing variable");
4855     if (!Address) {
4856       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4857       return nullptr;
4858     }
4859 
4860     // Check if address has undef value.
4861     if (isa<UndefValue>(Address) ||
4862         (Address->use_empty() && !isa<Argument>(Address))) {
4863       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4864       return nullptr;
4865     }
4866 
4867     SDValue &N = NodeMap[Address];
4868     if (!N.getNode() && isa<Argument>(Address))
4869       // Check unused arguments map.
4870       N = UnusedArgNodeMap[Address];
4871     SDDbgValue *SDV;
4872     if (N.getNode()) {
4873       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4874         Address = BCI->getOperand(0);
4875       // Parameters are handled specially.
4876       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4877       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4878       if (isParameter && FINode) {
4879         // Byval parameter. We have a frame index at this point.
4880         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4881                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4882       } else if (isa<Argument>(Address)) {
4883         // Address is an argument, so try to emit its dbg value using
4884         // virtual register info from the FuncInfo.ValueMap.
4885         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4886                                  N);
4887         return nullptr;
4888       } else {
4889         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4890                               true, 0, dl, SDNodeOrder);
4891       }
4892       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4893     } else {
4894       // If Address is an argument then try to emit its dbg value using
4895       // virtual register info from the FuncInfo.ValueMap.
4896       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4897                                     N)) {
4898         // If variable is pinned by a alloca in dominating bb then
4899         // use StaticAllocaMap.
4900         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4901           if (AI->getParent() != DI.getParent()) {
4902             DenseMap<const AllocaInst*, int>::iterator SI =
4903               FuncInfo.StaticAllocaMap.find(AI);
4904             if (SI != FuncInfo.StaticAllocaMap.end()) {
4905               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4906                                               0, dl, SDNodeOrder);
4907               DAG.AddDbgValue(SDV, nullptr, false);
4908               return nullptr;
4909             }
4910           }
4911         }
4912         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4913       }
4914     }
4915     return nullptr;
4916   }
4917   case Intrinsic::dbg_value: {
4918     const DbgValueInst &DI = cast<DbgValueInst>(I);
4919     assert(DI.getVariable() && "Missing variable");
4920 
4921     DILocalVariable *Variable = DI.getVariable();
4922     DIExpression *Expression = DI.getExpression();
4923     uint64_t Offset = DI.getOffset();
4924     const Value *V = DI.getValue();
4925     if (!V)
4926       return nullptr;
4927 
4928     SDDbgValue *SDV;
4929     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4930       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4931                                     SDNodeOrder);
4932       DAG.AddDbgValue(SDV, nullptr, false);
4933     } else {
4934       // Do not use getValue() in here; we don't want to generate code at
4935       // this point if it hasn't been done yet.
4936       SDValue N = NodeMap[V];
4937       if (!N.getNode() && isa<Argument>(V))
4938         // Check unused arguments map.
4939         N = UnusedArgNodeMap[V];
4940       if (N.getNode()) {
4941         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4942                                       false, N)) {
4943           SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
4944           DAG.AddDbgValue(SDV, N.getNode(), false);
4945         }
4946       } else if (!V->use_empty() ) {
4947         // Do not call getValue(V) yet, as we don't want to generate code.
4948         // Remember it for later.
4949         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4950         DanglingDebugInfoMap[V] = DDI;
4951       } else {
4952         // We may expand this to cover more cases.  One case where we have no
4953         // data available is an unreferenced parameter.
4954         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4955       }
4956     }
4957 
4958     // Build a debug info table entry.
4959     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4960       V = BCI->getOperand(0);
4961     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4962     // Don't handle byval struct arguments or VLAs, for example.
4963     if (!AI) {
4964       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4965       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4966       return nullptr;
4967     }
4968     DenseMap<const AllocaInst*, int>::iterator SI =
4969       FuncInfo.StaticAllocaMap.find(AI);
4970     if (SI == FuncInfo.StaticAllocaMap.end())
4971       return nullptr; // VLAs.
4972     return nullptr;
4973   }
4974 
4975   case Intrinsic::eh_typeid_for: {
4976     // Find the type id for the given typeinfo.
4977     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4978     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4979     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4980     setValue(&I, Res);
4981     return nullptr;
4982   }
4983 
4984   case Intrinsic::eh_return_i32:
4985   case Intrinsic::eh_return_i64:
4986     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4987     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4988                             MVT::Other,
4989                             getControlRoot(),
4990                             getValue(I.getArgOperand(0)),
4991                             getValue(I.getArgOperand(1))));
4992     return nullptr;
4993   case Intrinsic::eh_unwind_init:
4994     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4995     return nullptr;
4996   case Intrinsic::eh_dwarf_cfa: {
4997     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
4998                              TLI.getPointerTy(DAG.getDataLayout()),
4999                              getValue(I.getArgOperand(0))));
5000     return nullptr;
5001   }
5002   case Intrinsic::eh_sjlj_callsite: {
5003     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5004     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5005     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5006     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5007 
5008     MMI.setCurrentCallSite(CI->getZExtValue());
5009     return nullptr;
5010   }
5011   case Intrinsic::eh_sjlj_functioncontext: {
5012     // Get and store the index of the function context.
5013     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5014     AllocaInst *FnCtx =
5015       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5016     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5017     MFI.setFunctionContextIndex(FI);
5018     return nullptr;
5019   }
5020   case Intrinsic::eh_sjlj_setjmp: {
5021     SDValue Ops[2];
5022     Ops[0] = getRoot();
5023     Ops[1] = getValue(I.getArgOperand(0));
5024     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5025                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5026     setValue(&I, Op.getValue(0));
5027     DAG.setRoot(Op.getValue(1));
5028     return nullptr;
5029   }
5030   case Intrinsic::eh_sjlj_longjmp: {
5031     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5032                             getRoot(), getValue(I.getArgOperand(0))));
5033     return nullptr;
5034   }
5035   case Intrinsic::eh_sjlj_setup_dispatch: {
5036     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5037                             getRoot()));
5038     return nullptr;
5039   }
5040 
5041   case Intrinsic::masked_gather:
5042     visitMaskedGather(I);
5043     return nullptr;
5044   case Intrinsic::masked_load:
5045     visitMaskedLoad(I);
5046     return nullptr;
5047   case Intrinsic::masked_scatter:
5048     visitMaskedScatter(I);
5049     return nullptr;
5050   case Intrinsic::masked_store:
5051     visitMaskedStore(I);
5052     return nullptr;
5053   case Intrinsic::x86_mmx_pslli_w:
5054   case Intrinsic::x86_mmx_pslli_d:
5055   case Intrinsic::x86_mmx_pslli_q:
5056   case Intrinsic::x86_mmx_psrli_w:
5057   case Intrinsic::x86_mmx_psrli_d:
5058   case Intrinsic::x86_mmx_psrli_q:
5059   case Intrinsic::x86_mmx_psrai_w:
5060   case Intrinsic::x86_mmx_psrai_d: {
5061     SDValue ShAmt = getValue(I.getArgOperand(1));
5062     if (isa<ConstantSDNode>(ShAmt)) {
5063       visitTargetIntrinsic(I, Intrinsic);
5064       return nullptr;
5065     }
5066     unsigned NewIntrinsic = 0;
5067     EVT ShAmtVT = MVT::v2i32;
5068     switch (Intrinsic) {
5069     case Intrinsic::x86_mmx_pslli_w:
5070       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5071       break;
5072     case Intrinsic::x86_mmx_pslli_d:
5073       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5074       break;
5075     case Intrinsic::x86_mmx_pslli_q:
5076       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5077       break;
5078     case Intrinsic::x86_mmx_psrli_w:
5079       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5080       break;
5081     case Intrinsic::x86_mmx_psrli_d:
5082       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5083       break;
5084     case Intrinsic::x86_mmx_psrli_q:
5085       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5086       break;
5087     case Intrinsic::x86_mmx_psrai_w:
5088       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5089       break;
5090     case Intrinsic::x86_mmx_psrai_d:
5091       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5092       break;
5093     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5094     }
5095 
5096     // The vector shift intrinsics with scalars uses 32b shift amounts but
5097     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5098     // to be zero.
5099     // We must do this early because v2i32 is not a legal type.
5100     SDValue ShOps[2];
5101     ShOps[0] = ShAmt;
5102     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5103     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5104     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5105     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5106     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5107                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5108                        getValue(I.getArgOperand(0)), ShAmt);
5109     setValue(&I, Res);
5110     return nullptr;
5111   }
5112   case Intrinsic::convertff:
5113   case Intrinsic::convertfsi:
5114   case Intrinsic::convertfui:
5115   case Intrinsic::convertsif:
5116   case Intrinsic::convertuif:
5117   case Intrinsic::convertss:
5118   case Intrinsic::convertsu:
5119   case Intrinsic::convertus:
5120   case Intrinsic::convertuu: {
5121     ISD::CvtCode Code = ISD::CVT_INVALID;
5122     switch (Intrinsic) {
5123     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5124     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5125     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5126     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5127     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5128     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5129     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5130     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5131     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5132     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5133     }
5134     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5135     const Value *Op1 = I.getArgOperand(0);
5136     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5137                                DAG.getValueType(DestVT),
5138                                DAG.getValueType(getValue(Op1).getValueType()),
5139                                getValue(I.getArgOperand(1)),
5140                                getValue(I.getArgOperand(2)),
5141                                Code);
5142     setValue(&I, Res);
5143     return nullptr;
5144   }
5145   case Intrinsic::powi:
5146     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5147                             getValue(I.getArgOperand(1)), DAG));
5148     return nullptr;
5149   case Intrinsic::log:
5150     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5151     return nullptr;
5152   case Intrinsic::log2:
5153     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5154     return nullptr;
5155   case Intrinsic::log10:
5156     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5157     return nullptr;
5158   case Intrinsic::exp:
5159     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5160     return nullptr;
5161   case Intrinsic::exp2:
5162     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5163     return nullptr;
5164   case Intrinsic::pow:
5165     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5166                            getValue(I.getArgOperand(1)), DAG, TLI));
5167     return nullptr;
5168   case Intrinsic::sqrt:
5169   case Intrinsic::fabs:
5170   case Intrinsic::sin:
5171   case Intrinsic::cos:
5172   case Intrinsic::floor:
5173   case Intrinsic::ceil:
5174   case Intrinsic::trunc:
5175   case Intrinsic::rint:
5176   case Intrinsic::nearbyint:
5177   case Intrinsic::round:
5178   case Intrinsic::canonicalize: {
5179     unsigned Opcode;
5180     switch (Intrinsic) {
5181     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5182     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5183     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5184     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5185     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5186     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5187     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5188     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5189     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5190     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5191     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5192     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5193     }
5194 
5195     setValue(&I, DAG.getNode(Opcode, sdl,
5196                              getValue(I.getArgOperand(0)).getValueType(),
5197                              getValue(I.getArgOperand(0))));
5198     return nullptr;
5199   }
5200   case Intrinsic::minnum: {
5201     auto VT = getValue(I.getArgOperand(0)).getValueType();
5202     unsigned Opc =
5203         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5204             ? ISD::FMINNAN
5205             : ISD::FMINNUM;
5206     setValue(&I, DAG.getNode(Opc, sdl, VT,
5207                              getValue(I.getArgOperand(0)),
5208                              getValue(I.getArgOperand(1))));
5209     return nullptr;
5210   }
5211   case Intrinsic::maxnum: {
5212     auto VT = getValue(I.getArgOperand(0)).getValueType();
5213     unsigned Opc =
5214         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5215             ? ISD::FMAXNAN
5216             : ISD::FMAXNUM;
5217     setValue(&I, DAG.getNode(Opc, sdl, VT,
5218                              getValue(I.getArgOperand(0)),
5219                              getValue(I.getArgOperand(1))));
5220     return nullptr;
5221   }
5222   case Intrinsic::copysign:
5223     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5224                              getValue(I.getArgOperand(0)).getValueType(),
5225                              getValue(I.getArgOperand(0)),
5226                              getValue(I.getArgOperand(1))));
5227     return nullptr;
5228   case Intrinsic::fma:
5229     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5230                              getValue(I.getArgOperand(0)).getValueType(),
5231                              getValue(I.getArgOperand(0)),
5232                              getValue(I.getArgOperand(1)),
5233                              getValue(I.getArgOperand(2))));
5234     return nullptr;
5235   case Intrinsic::fmuladd: {
5236     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5237     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5238         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5239       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5240                                getValue(I.getArgOperand(0)).getValueType(),
5241                                getValue(I.getArgOperand(0)),
5242                                getValue(I.getArgOperand(1)),
5243                                getValue(I.getArgOperand(2))));
5244     } else {
5245       // TODO: Intrinsic calls should have fast-math-flags.
5246       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5247                                 getValue(I.getArgOperand(0)).getValueType(),
5248                                 getValue(I.getArgOperand(0)),
5249                                 getValue(I.getArgOperand(1)));
5250       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5251                                 getValue(I.getArgOperand(0)).getValueType(),
5252                                 Mul,
5253                                 getValue(I.getArgOperand(2)));
5254       setValue(&I, Add);
5255     }
5256     return nullptr;
5257   }
5258   case Intrinsic::convert_to_fp16:
5259     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5260                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5261                                          getValue(I.getArgOperand(0)),
5262                                          DAG.getTargetConstant(0, sdl,
5263                                                                MVT::i32))));
5264     return nullptr;
5265   case Intrinsic::convert_from_fp16:
5266     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5267                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5268                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5269                                          getValue(I.getArgOperand(0)))));
5270     return nullptr;
5271   case Intrinsic::pcmarker: {
5272     SDValue Tmp = getValue(I.getArgOperand(0));
5273     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5274     return nullptr;
5275   }
5276   case Intrinsic::readcyclecounter: {
5277     SDValue Op = getRoot();
5278     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5279                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5280     setValue(&I, Res);
5281     DAG.setRoot(Res.getValue(1));
5282     return nullptr;
5283   }
5284   case Intrinsic::bitreverse:
5285     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5286                              getValue(I.getArgOperand(0)).getValueType(),
5287                              getValue(I.getArgOperand(0))));
5288     return nullptr;
5289   case Intrinsic::bswap:
5290     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5291                              getValue(I.getArgOperand(0)).getValueType(),
5292                              getValue(I.getArgOperand(0))));
5293     return nullptr;
5294   case Intrinsic::cttz: {
5295     SDValue Arg = getValue(I.getArgOperand(0));
5296     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5297     EVT Ty = Arg.getValueType();
5298     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5299                              sdl, Ty, Arg));
5300     return nullptr;
5301   }
5302   case Intrinsic::ctlz: {
5303     SDValue Arg = getValue(I.getArgOperand(0));
5304     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5305     EVT Ty = Arg.getValueType();
5306     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5307                              sdl, Ty, Arg));
5308     return nullptr;
5309   }
5310   case Intrinsic::ctpop: {
5311     SDValue Arg = getValue(I.getArgOperand(0));
5312     EVT Ty = Arg.getValueType();
5313     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5314     return nullptr;
5315   }
5316   case Intrinsic::stacksave: {
5317     SDValue Op = getRoot();
5318     Res = DAG.getNode(
5319         ISD::STACKSAVE, sdl,
5320         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5321     setValue(&I, Res);
5322     DAG.setRoot(Res.getValue(1));
5323     return nullptr;
5324   }
5325   case Intrinsic::stackrestore: {
5326     Res = getValue(I.getArgOperand(0));
5327     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5328     return nullptr;
5329   }
5330   case Intrinsic::get_dynamic_area_offset: {
5331     SDValue Op = getRoot();
5332     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5333     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5334     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5335     // target.
5336     if (PtrTy != ResTy)
5337       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5338                          " intrinsic!");
5339     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5340                       Op);
5341     DAG.setRoot(Op);
5342     setValue(&I, Res);
5343     return nullptr;
5344   }
5345   case Intrinsic::stackguard: {
5346     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5347     MachineFunction &MF = DAG.getMachineFunction();
5348     const Module &M = *MF.getFunction()->getParent();
5349     SDValue Chain = getRoot();
5350     if (TLI.useLoadStackGuardNode()) {
5351       Res = getLoadStackGuard(DAG, sdl, Chain);
5352     } else {
5353       const Value *Global = TLI.getSDagStackGuard(M);
5354       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5355       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5356                         MachinePointerInfo(Global, 0), Align,
5357                         MachineMemOperand::MOVolatile);
5358     }
5359     DAG.setRoot(Chain);
5360     setValue(&I, Res);
5361     return nullptr;
5362   }
5363   case Intrinsic::stackprotector: {
5364     // Emit code into the DAG to store the stack guard onto the stack.
5365     MachineFunction &MF = DAG.getMachineFunction();
5366     MachineFrameInfo &MFI = MF.getFrameInfo();
5367     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5368     SDValue Src, Chain = getRoot();
5369 
5370     if (TLI.useLoadStackGuardNode())
5371       Src = getLoadStackGuard(DAG, sdl, Chain);
5372     else
5373       Src = getValue(I.getArgOperand(0));   // The guard's value.
5374 
5375     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5376 
5377     int FI = FuncInfo.StaticAllocaMap[Slot];
5378     MFI.setStackProtectorIndex(FI);
5379 
5380     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5381 
5382     // Store the stack protector onto the stack.
5383     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5384                                                  DAG.getMachineFunction(), FI),
5385                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5386     setValue(&I, Res);
5387     DAG.setRoot(Res);
5388     return nullptr;
5389   }
5390   case Intrinsic::objectsize: {
5391     // If we don't know by now, we're never going to know.
5392     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5393 
5394     assert(CI && "Non-constant type in __builtin_object_size?");
5395 
5396     SDValue Arg = getValue(I.getCalledValue());
5397     EVT Ty = Arg.getValueType();
5398 
5399     if (CI->isZero())
5400       Res = DAG.getConstant(-1ULL, sdl, Ty);
5401     else
5402       Res = DAG.getConstant(0, sdl, Ty);
5403 
5404     setValue(&I, Res);
5405     return nullptr;
5406   }
5407   case Intrinsic::annotation:
5408   case Intrinsic::ptr_annotation:
5409     // Drop the intrinsic, but forward the value
5410     setValue(&I, getValue(I.getOperand(0)));
5411     return nullptr;
5412   case Intrinsic::assume:
5413   case Intrinsic::var_annotation:
5414     // Discard annotate attributes and assumptions
5415     return nullptr;
5416 
5417   case Intrinsic::init_trampoline: {
5418     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5419 
5420     SDValue Ops[6];
5421     Ops[0] = getRoot();
5422     Ops[1] = getValue(I.getArgOperand(0));
5423     Ops[2] = getValue(I.getArgOperand(1));
5424     Ops[3] = getValue(I.getArgOperand(2));
5425     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5426     Ops[5] = DAG.getSrcValue(F);
5427 
5428     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5429 
5430     DAG.setRoot(Res);
5431     return nullptr;
5432   }
5433   case Intrinsic::adjust_trampoline: {
5434     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5435                              TLI.getPointerTy(DAG.getDataLayout()),
5436                              getValue(I.getArgOperand(0))));
5437     return nullptr;
5438   }
5439   case Intrinsic::gcroot: {
5440     MachineFunction &MF = DAG.getMachineFunction();
5441     const Function *F = MF.getFunction();
5442     (void)F;
5443     assert(F->hasGC() &&
5444            "only valid in functions with gc specified, enforced by Verifier");
5445     assert(GFI && "implied by previous");
5446     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5447     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5448 
5449     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5450     GFI->addStackRoot(FI->getIndex(), TypeMap);
5451     return nullptr;
5452   }
5453   case Intrinsic::gcread:
5454   case Intrinsic::gcwrite:
5455     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5456   case Intrinsic::flt_rounds:
5457     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5458     return nullptr;
5459 
5460   case Intrinsic::expect: {
5461     // Just replace __builtin_expect(exp, c) with EXP.
5462     setValue(&I, getValue(I.getArgOperand(0)));
5463     return nullptr;
5464   }
5465 
5466   case Intrinsic::debugtrap:
5467   case Intrinsic::trap: {
5468     StringRef TrapFuncName =
5469         I.getAttributes()
5470             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5471             .getValueAsString();
5472     if (TrapFuncName.empty()) {
5473       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5474         ISD::TRAP : ISD::DEBUGTRAP;
5475       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5476       return nullptr;
5477     }
5478     TargetLowering::ArgListTy Args;
5479 
5480     TargetLowering::CallLoweringInfo CLI(DAG);
5481     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5482         CallingConv::C, I.getType(),
5483         DAG.getExternalSymbol(TrapFuncName.data(),
5484                               TLI.getPointerTy(DAG.getDataLayout())),
5485         std::move(Args));
5486 
5487     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5488     DAG.setRoot(Result.second);
5489     return nullptr;
5490   }
5491 
5492   case Intrinsic::uadd_with_overflow:
5493   case Intrinsic::sadd_with_overflow:
5494   case Intrinsic::usub_with_overflow:
5495   case Intrinsic::ssub_with_overflow:
5496   case Intrinsic::umul_with_overflow:
5497   case Intrinsic::smul_with_overflow: {
5498     ISD::NodeType Op;
5499     switch (Intrinsic) {
5500     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5501     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5502     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5503     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5504     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5505     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5506     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5507     }
5508     SDValue Op1 = getValue(I.getArgOperand(0));
5509     SDValue Op2 = getValue(I.getArgOperand(1));
5510 
5511     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5512     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5513     return nullptr;
5514   }
5515   case Intrinsic::prefetch: {
5516     SDValue Ops[5];
5517     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5518     Ops[0] = getRoot();
5519     Ops[1] = getValue(I.getArgOperand(0));
5520     Ops[2] = getValue(I.getArgOperand(1));
5521     Ops[3] = getValue(I.getArgOperand(2));
5522     Ops[4] = getValue(I.getArgOperand(3));
5523     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5524                                         DAG.getVTList(MVT::Other), Ops,
5525                                         EVT::getIntegerVT(*Context, 8),
5526                                         MachinePointerInfo(I.getArgOperand(0)),
5527                                         0, /* align */
5528                                         false, /* volatile */
5529                                         rw==0, /* read */
5530                                         rw==1)); /* write */
5531     return nullptr;
5532   }
5533   case Intrinsic::lifetime_start:
5534   case Intrinsic::lifetime_end: {
5535     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5536     // Stack coloring is not enabled in O0, discard region information.
5537     if (TM.getOptLevel() == CodeGenOpt::None)
5538       return nullptr;
5539 
5540     SmallVector<Value *, 4> Allocas;
5541     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5542 
5543     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5544            E = Allocas.end(); Object != E; ++Object) {
5545       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5546 
5547       // Could not find an Alloca.
5548       if (!LifetimeObject)
5549         continue;
5550 
5551       // First check that the Alloca is static, otherwise it won't have a
5552       // valid frame index.
5553       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5554       if (SI == FuncInfo.StaticAllocaMap.end())
5555         return nullptr;
5556 
5557       int FI = SI->second;
5558 
5559       SDValue Ops[2];
5560       Ops[0] = getRoot();
5561       Ops[1] =
5562           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5563       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5564 
5565       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5566       DAG.setRoot(Res);
5567     }
5568     return nullptr;
5569   }
5570   case Intrinsic::invariant_start:
5571     // Discard region information.
5572     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5573     return nullptr;
5574   case Intrinsic::invariant_end:
5575     // Discard region information.
5576     return nullptr;
5577   case Intrinsic::clear_cache:
5578     return TLI.getClearCacheBuiltinName();
5579   case Intrinsic::donothing:
5580     // ignore
5581     return nullptr;
5582   case Intrinsic::experimental_stackmap: {
5583     visitStackmap(I);
5584     return nullptr;
5585   }
5586   case Intrinsic::experimental_patchpoint_void:
5587   case Intrinsic::experimental_patchpoint_i64: {
5588     visitPatchpoint(&I);
5589     return nullptr;
5590   }
5591   case Intrinsic::experimental_gc_statepoint: {
5592     LowerStatepoint(ImmutableStatepoint(&I));
5593     return nullptr;
5594   }
5595   case Intrinsic::experimental_gc_result: {
5596     visitGCResult(cast<GCResultInst>(I));
5597     return nullptr;
5598   }
5599   case Intrinsic::experimental_gc_relocate: {
5600     visitGCRelocate(cast<GCRelocateInst>(I));
5601     return nullptr;
5602   }
5603   case Intrinsic::instrprof_increment:
5604     llvm_unreachable("instrprof failed to lower an increment");
5605   case Intrinsic::instrprof_value_profile:
5606     llvm_unreachable("instrprof failed to lower a value profiling call");
5607   case Intrinsic::localescape: {
5608     MachineFunction &MF = DAG.getMachineFunction();
5609     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5610 
5611     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5612     // is the same on all targets.
5613     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5614       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5615       if (isa<ConstantPointerNull>(Arg))
5616         continue; // Skip null pointers. They represent a hole in index space.
5617       AllocaInst *Slot = cast<AllocaInst>(Arg);
5618       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5619              "can only escape static allocas");
5620       int FI = FuncInfo.StaticAllocaMap[Slot];
5621       MCSymbol *FrameAllocSym =
5622           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5623               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5624       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5625               TII->get(TargetOpcode::LOCAL_ESCAPE))
5626           .addSym(FrameAllocSym)
5627           .addFrameIndex(FI);
5628     }
5629 
5630     return nullptr;
5631   }
5632 
5633   case Intrinsic::localrecover: {
5634     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5635     MachineFunction &MF = DAG.getMachineFunction();
5636     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5637 
5638     // Get the symbol that defines the frame offset.
5639     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5640     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5641     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5642     MCSymbol *FrameAllocSym =
5643         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5644             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5645 
5646     // Create a MCSymbol for the label to avoid any target lowering
5647     // that would make this PC relative.
5648     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5649     SDValue OffsetVal =
5650         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5651 
5652     // Add the offset to the FP.
5653     Value *FP = I.getArgOperand(1);
5654     SDValue FPVal = getValue(FP);
5655     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5656     setValue(&I, Add);
5657 
5658     return nullptr;
5659   }
5660 
5661   case Intrinsic::eh_exceptionpointer:
5662   case Intrinsic::eh_exceptioncode: {
5663     // Get the exception pointer vreg, copy from it, and resize it to fit.
5664     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5665     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5666     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5667     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5668     SDValue N =
5669         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5670     if (Intrinsic == Intrinsic::eh_exceptioncode)
5671       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5672     setValue(&I, N);
5673     return nullptr;
5674   }
5675 
5676   case Intrinsic::experimental_deoptimize:
5677     LowerDeoptimizeCall(&I);
5678     return nullptr;
5679   }
5680 }
5681 
5682 std::pair<SDValue, SDValue>
5683 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5684                                     const BasicBlock *EHPadBB) {
5685   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5686   MCSymbol *BeginLabel = nullptr;
5687 
5688   if (EHPadBB) {
5689     // Insert a label before the invoke call to mark the try range.  This can be
5690     // used to detect deletion of the invoke via the MachineModuleInfo.
5691     BeginLabel = MMI.getContext().createTempSymbol();
5692 
5693     // For SjLj, keep track of which landing pads go with which invokes
5694     // so as to maintain the ordering of pads in the LSDA.
5695     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5696     if (CallSiteIndex) {
5697       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5698       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5699 
5700       // Now that the call site is handled, stop tracking it.
5701       MMI.setCurrentCallSite(0);
5702     }
5703 
5704     // Both PendingLoads and PendingExports must be flushed here;
5705     // this call might not return.
5706     (void)getRoot();
5707     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5708 
5709     CLI.setChain(getRoot());
5710   }
5711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5712   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5713 
5714   assert((CLI.IsTailCall || Result.second.getNode()) &&
5715          "Non-null chain expected with non-tail call!");
5716   assert((Result.second.getNode() || !Result.first.getNode()) &&
5717          "Null value expected with tail call!");
5718 
5719   if (!Result.second.getNode()) {
5720     // As a special case, a null chain means that a tail call has been emitted
5721     // and the DAG root is already updated.
5722     HasTailCall = true;
5723 
5724     // Since there's no actual continuation from this block, nothing can be
5725     // relying on us setting vregs for them.
5726     PendingExports.clear();
5727   } else {
5728     DAG.setRoot(Result.second);
5729   }
5730 
5731   if (EHPadBB) {
5732     // Insert a label at the end of the invoke call to mark the try range.  This
5733     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5734     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5735     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5736 
5737     // Inform MachineModuleInfo of range.
5738     if (MMI.hasEHFunclets()) {
5739       assert(CLI.CS);
5740       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5741       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5742                                 BeginLabel, EndLabel);
5743     } else {
5744       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5745     }
5746   }
5747 
5748   return Result;
5749 }
5750 
5751 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5752                                       bool isTailCall,
5753                                       const BasicBlock *EHPadBB) {
5754   auto &DL = DAG.getDataLayout();
5755   FunctionType *FTy = CS.getFunctionType();
5756   Type *RetTy = CS.getType();
5757 
5758   TargetLowering::ArgListTy Args;
5759   TargetLowering::ArgListEntry Entry;
5760   Args.reserve(CS.arg_size());
5761 
5762   const Value *SwiftErrorVal = nullptr;
5763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5764   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5765        i != e; ++i) {
5766     const Value *V = *i;
5767 
5768     // Skip empty types
5769     if (V->getType()->isEmptyTy())
5770       continue;
5771 
5772     SDValue ArgNode = getValue(V);
5773     Entry.Node = ArgNode; Entry.Ty = V->getType();
5774 
5775     // Skip the first return-type Attribute to get to params.
5776     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5777 
5778     // Use swifterror virtual register as input to the call.
5779     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5780       SwiftErrorVal = V;
5781       // We find the virtual register for the actual swifterror argument.
5782       // Instead of using the Value, we use the virtual register instead.
5783       Entry.Node =
5784           DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V),
5785                           EVT(TLI.getPointerTy(DL)));
5786     }
5787 
5788     Args.push_back(Entry);
5789 
5790     // If we have an explicit sret argument that is an Instruction, (i.e., it
5791     // might point to function-local memory), we can't meaningfully tail-call.
5792     if (Entry.isSRet && isa<Instruction>(V))
5793       isTailCall = false;
5794   }
5795 
5796   // Check if target-independent constraints permit a tail call here.
5797   // Target-dependent constraints are checked within TLI->LowerCallTo.
5798   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5799     isTailCall = false;
5800 
5801   // Disable tail calls if there is an swifterror argument. Targets have not
5802   // been updated to support tail calls.
5803   if (TLI.supportSwiftError() && SwiftErrorVal)
5804     isTailCall = false;
5805 
5806   TargetLowering::CallLoweringInfo CLI(DAG);
5807   CLI.setDebugLoc(getCurSDLoc())
5808       .setChain(getRoot())
5809       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5810       .setTailCall(isTailCall)
5811       .setConvergent(CS.isConvergent());
5812   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5813 
5814   if (Result.first.getNode()) {
5815     const Instruction *Inst = CS.getInstruction();
5816     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5817     setValue(Inst, Result.first);
5818   }
5819 
5820   // The last element of CLI.InVals has the SDValue for swifterror return.
5821   // Here we copy it to a virtual register and update SwiftErrorMap for
5822   // book-keeping.
5823   if (SwiftErrorVal && TLI.supportSwiftError()) {
5824     // Get the last element of InVals.
5825     SDValue Src = CLI.InVals.back();
5826     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5827     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5828     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5829     // We update the virtual register for the actual swifterror argument.
5830     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5831     DAG.setRoot(CopyNode);
5832   }
5833 }
5834 
5835 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5836 /// value is equal or not-equal to zero.
5837 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5838   for (const User *U : V->users()) {
5839     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5840       if (IC->isEquality())
5841         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5842           if (C->isNullValue())
5843             continue;
5844     // Unknown instruction.
5845     return false;
5846   }
5847   return true;
5848 }
5849 
5850 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5851                              Type *LoadTy,
5852                              SelectionDAGBuilder &Builder) {
5853 
5854   // Check to see if this load can be trivially constant folded, e.g. if the
5855   // input is from a string literal.
5856   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5857     // Cast pointer to the type we really want to load.
5858     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5859                                          PointerType::getUnqual(LoadTy));
5860 
5861     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5862             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5863       return Builder.getValue(LoadCst);
5864   }
5865 
5866   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5867   // still constant memory, the input chain can be the entry node.
5868   SDValue Root;
5869   bool ConstantMemory = false;
5870 
5871   // Do not serialize (non-volatile) loads of constant memory with anything.
5872   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5873     Root = Builder.DAG.getEntryNode();
5874     ConstantMemory = true;
5875   } else {
5876     // Do not serialize non-volatile loads against each other.
5877     Root = Builder.DAG.getRoot();
5878   }
5879 
5880   SDValue Ptr = Builder.getValue(PtrVal);
5881   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5882                                         Ptr, MachinePointerInfo(PtrVal),
5883                                         /* Alignment = */ 1);
5884 
5885   if (!ConstantMemory)
5886     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5887   return LoadVal;
5888 }
5889 
5890 /// processIntegerCallValue - Record the value for an instruction that
5891 /// produces an integer result, converting the type where necessary.
5892 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5893                                                   SDValue Value,
5894                                                   bool IsSigned) {
5895   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5896                                                     I.getType(), true);
5897   if (IsSigned)
5898     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5899   else
5900     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5901   setValue(&I, Value);
5902 }
5903 
5904 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5905 /// If so, return true and lower it, otherwise return false and it will be
5906 /// lowered like a normal call.
5907 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5908   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5909   if (I.getNumArgOperands() != 3)
5910     return false;
5911 
5912   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5913   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5914       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5915       !I.getType()->isIntegerTy())
5916     return false;
5917 
5918   const Value *Size = I.getArgOperand(2);
5919   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5920   if (CSize && CSize->getZExtValue() == 0) {
5921     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5922                                                           I.getType(), true);
5923     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5924     return true;
5925   }
5926 
5927   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5928   std::pair<SDValue, SDValue> Res =
5929     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5930                                 getValue(LHS), getValue(RHS), getValue(Size),
5931                                 MachinePointerInfo(LHS),
5932                                 MachinePointerInfo(RHS));
5933   if (Res.first.getNode()) {
5934     processIntegerCallValue(I, Res.first, true);
5935     PendingLoads.push_back(Res.second);
5936     return true;
5937   }
5938 
5939   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5940   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5941   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5942     bool ActuallyDoIt = true;
5943     MVT LoadVT;
5944     Type *LoadTy;
5945     switch (CSize->getZExtValue()) {
5946     default:
5947       LoadVT = MVT::Other;
5948       LoadTy = nullptr;
5949       ActuallyDoIt = false;
5950       break;
5951     case 2:
5952       LoadVT = MVT::i16;
5953       LoadTy = Type::getInt16Ty(CSize->getContext());
5954       break;
5955     case 4:
5956       LoadVT = MVT::i32;
5957       LoadTy = Type::getInt32Ty(CSize->getContext());
5958       break;
5959     case 8:
5960       LoadVT = MVT::i64;
5961       LoadTy = Type::getInt64Ty(CSize->getContext());
5962       break;
5963         /*
5964     case 16:
5965       LoadVT = MVT::v4i32;
5966       LoadTy = Type::getInt32Ty(CSize->getContext());
5967       LoadTy = VectorType::get(LoadTy, 4);
5968       break;
5969          */
5970     }
5971 
5972     // This turns into unaligned loads.  We only do this if the target natively
5973     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5974     // we'll only produce a small number of byte loads.
5975 
5976     // Require that we can find a legal MVT, and only do this if the target
5977     // supports unaligned loads of that type.  Expanding into byte loads would
5978     // bloat the code.
5979     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5980     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5981       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5982       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5983       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5984       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5985       // TODO: Check alignment of src and dest ptrs.
5986       if (!TLI.isTypeLegal(LoadVT) ||
5987           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5988           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5989         ActuallyDoIt = false;
5990     }
5991 
5992     if (ActuallyDoIt) {
5993       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5994       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5995 
5996       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5997                                  ISD::SETNE);
5998       processIntegerCallValue(I, Res, false);
5999       return true;
6000     }
6001   }
6002 
6003 
6004   return false;
6005 }
6006 
6007 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6008 /// form.  If so, return true and lower it, otherwise return false and it
6009 /// will be lowered like a normal call.
6010 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6011   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6012   if (I.getNumArgOperands() != 3)
6013     return false;
6014 
6015   const Value *Src = I.getArgOperand(0);
6016   const Value *Char = I.getArgOperand(1);
6017   const Value *Length = I.getArgOperand(2);
6018   if (!Src->getType()->isPointerTy() ||
6019       !Char->getType()->isIntegerTy() ||
6020       !Length->getType()->isIntegerTy() ||
6021       !I.getType()->isPointerTy())
6022     return false;
6023 
6024   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6025   std::pair<SDValue, SDValue> Res =
6026     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6027                                 getValue(Src), getValue(Char), getValue(Length),
6028                                 MachinePointerInfo(Src));
6029   if (Res.first.getNode()) {
6030     setValue(&I, Res.first);
6031     PendingLoads.push_back(Res.second);
6032     return true;
6033   }
6034 
6035   return false;
6036 }
6037 
6038 ///
6039 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to
6040 /// to adjust the dst pointer by the size of the copied memory.
6041 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6042 
6043   // Verify argument count: void *mempcpy(void *, const void *, size_t)
6044   if (I.getNumArgOperands() != 3)
6045     return false;
6046 
6047   SDValue Dst = getValue(I.getArgOperand(0));
6048   SDValue Src = getValue(I.getArgOperand(1));
6049   SDValue Size = getValue(I.getArgOperand(2));
6050 
6051   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6052   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6053   unsigned Align = std::min(DstAlign, SrcAlign);
6054   if (Align == 0) // Alignment of one or both could not be inferred.
6055     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6056 
6057   bool isVol = false;
6058   SDLoc sdl = getCurSDLoc();
6059 
6060   // In the mempcpy context we need to pass in a false value for isTailCall
6061   // because the return pointer needs to be adjusted by the size of
6062   // the copied memory.
6063   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6064                              false, /*isTailCall=*/false,
6065                              MachinePointerInfo(I.getArgOperand(0)),
6066                              MachinePointerInfo(I.getArgOperand(1)));
6067   assert(MC.getNode() != nullptr &&
6068          "** memcpy should not be lowered as TailCall in mempcpy context **");
6069   DAG.setRoot(MC);
6070 
6071   // Check if Size needs to be truncated or extended.
6072   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6073 
6074   // Adjust return pointer to point just past the last dst byte.
6075   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6076                                     Dst, Size);
6077   setValue(&I, DstPlusSize);
6078   return true;
6079 }
6080 
6081 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6082 /// optimized form.  If so, return true and lower it, otherwise return false
6083 /// and it will be lowered like a normal call.
6084 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6085   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6086   if (I.getNumArgOperands() != 2)
6087     return false;
6088 
6089   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6090   if (!Arg0->getType()->isPointerTy() ||
6091       !Arg1->getType()->isPointerTy() ||
6092       !I.getType()->isPointerTy())
6093     return false;
6094 
6095   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6096   std::pair<SDValue, SDValue> Res =
6097     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6098                                 getValue(Arg0), getValue(Arg1),
6099                                 MachinePointerInfo(Arg0),
6100                                 MachinePointerInfo(Arg1), isStpcpy);
6101   if (Res.first.getNode()) {
6102     setValue(&I, Res.first);
6103     DAG.setRoot(Res.second);
6104     return true;
6105   }
6106 
6107   return false;
6108 }
6109 
6110 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6111 /// If so, return true and lower it, otherwise return false and it will be
6112 /// lowered like a normal call.
6113 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6114   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6115   if (I.getNumArgOperands() != 2)
6116     return false;
6117 
6118   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6119   if (!Arg0->getType()->isPointerTy() ||
6120       !Arg1->getType()->isPointerTy() ||
6121       !I.getType()->isIntegerTy())
6122     return false;
6123 
6124   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6125   std::pair<SDValue, SDValue> Res =
6126     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6127                                 getValue(Arg0), getValue(Arg1),
6128                                 MachinePointerInfo(Arg0),
6129                                 MachinePointerInfo(Arg1));
6130   if (Res.first.getNode()) {
6131     processIntegerCallValue(I, Res.first, true);
6132     PendingLoads.push_back(Res.second);
6133     return true;
6134   }
6135 
6136   return false;
6137 }
6138 
6139 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6140 /// form.  If so, return true and lower it, otherwise return false and it
6141 /// will be lowered like a normal call.
6142 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6143   // Verify that the prototype makes sense.  size_t strlen(char *)
6144   if (I.getNumArgOperands() != 1)
6145     return false;
6146 
6147   const Value *Arg0 = I.getArgOperand(0);
6148   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6149     return false;
6150 
6151   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6152   std::pair<SDValue, SDValue> Res =
6153     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6154                                 getValue(Arg0), MachinePointerInfo(Arg0));
6155   if (Res.first.getNode()) {
6156     processIntegerCallValue(I, Res.first, false);
6157     PendingLoads.push_back(Res.second);
6158     return true;
6159   }
6160 
6161   return false;
6162 }
6163 
6164 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6165 /// form.  If so, return true and lower it, otherwise return false and it
6166 /// will be lowered like a normal call.
6167 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6168   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6169   if (I.getNumArgOperands() != 2)
6170     return false;
6171 
6172   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6173   if (!Arg0->getType()->isPointerTy() ||
6174       !Arg1->getType()->isIntegerTy() ||
6175       !I.getType()->isIntegerTy())
6176     return false;
6177 
6178   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6179   std::pair<SDValue, SDValue> Res =
6180     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6181                                  getValue(Arg0), getValue(Arg1),
6182                                  MachinePointerInfo(Arg0));
6183   if (Res.first.getNode()) {
6184     processIntegerCallValue(I, Res.first, false);
6185     PendingLoads.push_back(Res.second);
6186     return true;
6187   }
6188 
6189   return false;
6190 }
6191 
6192 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6193 /// operation (as expected), translate it to an SDNode with the specified opcode
6194 /// and return true.
6195 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6196                                               unsigned Opcode) {
6197   // Sanity check that it really is a unary floating-point call.
6198   if (I.getNumArgOperands() != 1 ||
6199       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6200       I.getType() != I.getArgOperand(0)->getType() ||
6201       !I.onlyReadsMemory())
6202     return false;
6203 
6204   SDValue Tmp = getValue(I.getArgOperand(0));
6205   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6206   return true;
6207 }
6208 
6209 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6210 /// operation (as expected), translate it to an SDNode with the specified opcode
6211 /// and return true.
6212 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6213                                                unsigned Opcode) {
6214   // Sanity check that it really is a binary floating-point call.
6215   if (I.getNumArgOperands() != 2 ||
6216       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6217       I.getType() != I.getArgOperand(0)->getType() ||
6218       I.getType() != I.getArgOperand(1)->getType() ||
6219       !I.onlyReadsMemory())
6220     return false;
6221 
6222   SDValue Tmp0 = getValue(I.getArgOperand(0));
6223   SDValue Tmp1 = getValue(I.getArgOperand(1));
6224   EVT VT = Tmp0.getValueType();
6225   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6226   return true;
6227 }
6228 
6229 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6230   // Handle inline assembly differently.
6231   if (isa<InlineAsm>(I.getCalledValue())) {
6232     visitInlineAsm(&I);
6233     return;
6234   }
6235 
6236   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6237   ComputeUsesVAFloatArgument(I, &MMI);
6238 
6239   const char *RenameFn = nullptr;
6240   if (Function *F = I.getCalledFunction()) {
6241     if (F->isDeclaration()) {
6242       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6243         if (unsigned IID = II->getIntrinsicID(F)) {
6244           RenameFn = visitIntrinsicCall(I, IID);
6245           if (!RenameFn)
6246             return;
6247         }
6248       }
6249       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6250         RenameFn = visitIntrinsicCall(I, IID);
6251         if (!RenameFn)
6252           return;
6253       }
6254     }
6255 
6256     // Check for well-known libc/libm calls.  If the function is internal, it
6257     // can't be a library call.  Don't do the check if marked as nobuiltin for
6258     // some reason.
6259     LibFunc::Func Func;
6260     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6261         LibInfo->getLibFunc(F->getName(), Func) &&
6262         LibInfo->hasOptimizedCodeGen(Func)) {
6263       switch (Func) {
6264       default: break;
6265       case LibFunc::copysign:
6266       case LibFunc::copysignf:
6267       case LibFunc::copysignl:
6268         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6269             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6270             I.getType() == I.getArgOperand(0)->getType() &&
6271             I.getType() == I.getArgOperand(1)->getType() &&
6272             I.onlyReadsMemory()) {
6273           SDValue LHS = getValue(I.getArgOperand(0));
6274           SDValue RHS = getValue(I.getArgOperand(1));
6275           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6276                                    LHS.getValueType(), LHS, RHS));
6277           return;
6278         }
6279         break;
6280       case LibFunc::fabs:
6281       case LibFunc::fabsf:
6282       case LibFunc::fabsl:
6283         if (visitUnaryFloatCall(I, ISD::FABS))
6284           return;
6285         break;
6286       case LibFunc::fmin:
6287       case LibFunc::fminf:
6288       case LibFunc::fminl:
6289         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6290           return;
6291         break;
6292       case LibFunc::fmax:
6293       case LibFunc::fmaxf:
6294       case LibFunc::fmaxl:
6295         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6296           return;
6297         break;
6298       case LibFunc::sin:
6299       case LibFunc::sinf:
6300       case LibFunc::sinl:
6301         if (visitUnaryFloatCall(I, ISD::FSIN))
6302           return;
6303         break;
6304       case LibFunc::cos:
6305       case LibFunc::cosf:
6306       case LibFunc::cosl:
6307         if (visitUnaryFloatCall(I, ISD::FCOS))
6308           return;
6309         break;
6310       case LibFunc::sqrt:
6311       case LibFunc::sqrtf:
6312       case LibFunc::sqrtl:
6313       case LibFunc::sqrt_finite:
6314       case LibFunc::sqrtf_finite:
6315       case LibFunc::sqrtl_finite:
6316         if (visitUnaryFloatCall(I, ISD::FSQRT))
6317           return;
6318         break;
6319       case LibFunc::floor:
6320       case LibFunc::floorf:
6321       case LibFunc::floorl:
6322         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6323           return;
6324         break;
6325       case LibFunc::nearbyint:
6326       case LibFunc::nearbyintf:
6327       case LibFunc::nearbyintl:
6328         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6329           return;
6330         break;
6331       case LibFunc::ceil:
6332       case LibFunc::ceilf:
6333       case LibFunc::ceill:
6334         if (visitUnaryFloatCall(I, ISD::FCEIL))
6335           return;
6336         break;
6337       case LibFunc::rint:
6338       case LibFunc::rintf:
6339       case LibFunc::rintl:
6340         if (visitUnaryFloatCall(I, ISD::FRINT))
6341           return;
6342         break;
6343       case LibFunc::round:
6344       case LibFunc::roundf:
6345       case LibFunc::roundl:
6346         if (visitUnaryFloatCall(I, ISD::FROUND))
6347           return;
6348         break;
6349       case LibFunc::trunc:
6350       case LibFunc::truncf:
6351       case LibFunc::truncl:
6352         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6353           return;
6354         break;
6355       case LibFunc::log2:
6356       case LibFunc::log2f:
6357       case LibFunc::log2l:
6358         if (visitUnaryFloatCall(I, ISD::FLOG2))
6359           return;
6360         break;
6361       case LibFunc::exp2:
6362       case LibFunc::exp2f:
6363       case LibFunc::exp2l:
6364         if (visitUnaryFloatCall(I, ISD::FEXP2))
6365           return;
6366         break;
6367       case LibFunc::memcmp:
6368         if (visitMemCmpCall(I))
6369           return;
6370         break;
6371       case LibFunc::mempcpy:
6372         if (visitMemPCpyCall(I))
6373           return;
6374         break;
6375       case LibFunc::memchr:
6376         if (visitMemChrCall(I))
6377           return;
6378         break;
6379       case LibFunc::strcpy:
6380         if (visitStrCpyCall(I, false))
6381           return;
6382         break;
6383       case LibFunc::stpcpy:
6384         if (visitStrCpyCall(I, true))
6385           return;
6386         break;
6387       case LibFunc::strcmp:
6388         if (visitStrCmpCall(I))
6389           return;
6390         break;
6391       case LibFunc::strlen:
6392         if (visitStrLenCall(I))
6393           return;
6394         break;
6395       case LibFunc::strnlen:
6396         if (visitStrNLenCall(I))
6397           return;
6398         break;
6399       }
6400     }
6401   }
6402 
6403   SDValue Callee;
6404   if (!RenameFn)
6405     Callee = getValue(I.getCalledValue());
6406   else
6407     Callee = DAG.getExternalSymbol(
6408         RenameFn,
6409         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6410 
6411   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6412   // have to do anything here to lower funclet bundles.
6413   assert(!I.hasOperandBundlesOtherThan(
6414              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6415          "Cannot lower calls with arbitrary operand bundles!");
6416 
6417   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6418     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6419   else
6420     // Check if we can potentially perform a tail call. More detailed checking
6421     // is be done within LowerCallTo, after more information about the call is
6422     // known.
6423     LowerCallTo(&I, Callee, I.isTailCall());
6424 }
6425 
6426 namespace {
6427 
6428 /// AsmOperandInfo - This contains information for each constraint that we are
6429 /// lowering.
6430 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6431 public:
6432   /// CallOperand - If this is the result output operand or a clobber
6433   /// this is null, otherwise it is the incoming operand to the CallInst.
6434   /// This gets modified as the asm is processed.
6435   SDValue CallOperand;
6436 
6437   /// AssignedRegs - If this is a register or register class operand, this
6438   /// contains the set of register corresponding to the operand.
6439   RegsForValue AssignedRegs;
6440 
6441   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6442     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6443   }
6444 
6445   /// Whether or not this operand accesses memory
6446   bool hasMemory(const TargetLowering &TLI) const {
6447     // Indirect operand accesses access memory.
6448     if (isIndirect)
6449       return true;
6450 
6451     for (const auto &Code : Codes)
6452       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6453         return true;
6454 
6455     return false;
6456   }
6457 
6458   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6459   /// corresponds to.  If there is no Value* for this operand, it returns
6460   /// MVT::Other.
6461   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6462                            const DataLayout &DL) const {
6463     if (!CallOperandVal) return MVT::Other;
6464 
6465     if (isa<BasicBlock>(CallOperandVal))
6466       return TLI.getPointerTy(DL);
6467 
6468     llvm::Type *OpTy = CallOperandVal->getType();
6469 
6470     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6471     // If this is an indirect operand, the operand is a pointer to the
6472     // accessed type.
6473     if (isIndirect) {
6474       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6475       if (!PtrTy)
6476         report_fatal_error("Indirect operand for inline asm not a pointer!");
6477       OpTy = PtrTy->getElementType();
6478     }
6479 
6480     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6481     if (StructType *STy = dyn_cast<StructType>(OpTy))
6482       if (STy->getNumElements() == 1)
6483         OpTy = STy->getElementType(0);
6484 
6485     // If OpTy is not a single value, it may be a struct/union that we
6486     // can tile with integers.
6487     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6488       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6489       switch (BitSize) {
6490       default: break;
6491       case 1:
6492       case 8:
6493       case 16:
6494       case 32:
6495       case 64:
6496       case 128:
6497         OpTy = IntegerType::get(Context, BitSize);
6498         break;
6499       }
6500     }
6501 
6502     return TLI.getValueType(DL, OpTy, true);
6503   }
6504 };
6505 
6506 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6507 
6508 } // end anonymous namespace
6509 
6510 /// Make sure that the output operand \p OpInfo and its corresponding input
6511 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6512 /// out).
6513 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6514                                SDISelAsmOperandInfo &MatchingOpInfo,
6515                                SelectionDAG &DAG) {
6516   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6517     return;
6518 
6519   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6520   const auto &TLI = DAG.getTargetLoweringInfo();
6521 
6522   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6523       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6524                                        OpInfo.ConstraintVT);
6525   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6526       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6527                                        MatchingOpInfo.ConstraintVT);
6528   if ((OpInfo.ConstraintVT.isInteger() !=
6529        MatchingOpInfo.ConstraintVT.isInteger()) ||
6530       (MatchRC.second != InputRC.second)) {
6531     // FIXME: error out in a more elegant fashion
6532     report_fatal_error("Unsupported asm: input constraint"
6533                        " with a matching output constraint of"
6534                        " incompatible type!");
6535   }
6536   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6537 }
6538 
6539 /// Get a direct memory input to behave well as an indirect operand.
6540 /// This may introduce stores, hence the need for a \p Chain.
6541 /// \return The (possibly updated) chain.
6542 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6543                                         SDISelAsmOperandInfo &OpInfo,
6544                                         SelectionDAG &DAG) {
6545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6546 
6547   // If we don't have an indirect input, put it in the constpool if we can,
6548   // otherwise spill it to a stack slot.
6549   // TODO: This isn't quite right. We need to handle these according to
6550   // the addressing mode that the constraint wants. Also, this may take
6551   // an additional register for the computation and we don't want that
6552   // either.
6553 
6554   // If the operand is a float, integer, or vector constant, spill to a
6555   // constant pool entry to get its address.
6556   const Value *OpVal = OpInfo.CallOperandVal;
6557   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6558       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6559     OpInfo.CallOperand = DAG.getConstantPool(
6560         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6561     return Chain;
6562   }
6563 
6564   // Otherwise, create a stack slot and emit a store to it before the asm.
6565   Type *Ty = OpVal->getType();
6566   auto &DL = DAG.getDataLayout();
6567   uint64_t TySize = DL.getTypeAllocSize(Ty);
6568   unsigned Align = DL.getPrefTypeAlignment(Ty);
6569   MachineFunction &MF = DAG.getMachineFunction();
6570   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6571   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
6572   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6573                        MachinePointerInfo::getFixedStack(MF, SSFI));
6574   OpInfo.CallOperand = StackSlot;
6575 
6576   return Chain;
6577 }
6578 
6579 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6580 /// specified operand.  We prefer to assign virtual registers, to allow the
6581 /// register allocator to handle the assignment process.  However, if the asm
6582 /// uses features that we can't model on machineinstrs, we have SDISel do the
6583 /// allocation.  This produces generally horrible, but correct, code.
6584 ///
6585 ///   OpInfo describes the operand.
6586 ///
6587 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6588                                  const SDLoc &DL,
6589                                  SDISelAsmOperandInfo &OpInfo) {
6590   LLVMContext &Context = *DAG.getContext();
6591 
6592   MachineFunction &MF = DAG.getMachineFunction();
6593   SmallVector<unsigned, 4> Regs;
6594 
6595   // If this is a constraint for a single physreg, or a constraint for a
6596   // register class, find it.
6597   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6598       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6599                                        OpInfo.ConstraintCode,
6600                                        OpInfo.ConstraintVT);
6601 
6602   unsigned NumRegs = 1;
6603   if (OpInfo.ConstraintVT != MVT::Other) {
6604     // If this is a FP input in an integer register (or visa versa) insert a bit
6605     // cast of the input value.  More generally, handle any case where the input
6606     // value disagrees with the register class we plan to stick this in.
6607     if (OpInfo.Type == InlineAsm::isInput &&
6608         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6609       // Try to convert to the first EVT that the reg class contains.  If the
6610       // types are identical size, use a bitcast to convert (e.g. two differing
6611       // vector types).
6612       MVT RegVT = *PhysReg.second->vt_begin();
6613       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6614         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6615                                          RegVT, OpInfo.CallOperand);
6616         OpInfo.ConstraintVT = RegVT;
6617       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6618         // If the input is a FP value and we want it in FP registers, do a
6619         // bitcast to the corresponding integer type.  This turns an f64 value
6620         // into i64, which can be passed with two i32 values on a 32-bit
6621         // machine.
6622         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6623         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6624                                          RegVT, OpInfo.CallOperand);
6625         OpInfo.ConstraintVT = RegVT;
6626       }
6627     }
6628 
6629     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6630   }
6631 
6632   MVT RegVT;
6633   EVT ValueVT = OpInfo.ConstraintVT;
6634 
6635   // If this is a constraint for a specific physical register, like {r17},
6636   // assign it now.
6637   if (unsigned AssignedReg = PhysReg.first) {
6638     const TargetRegisterClass *RC = PhysReg.second;
6639     if (OpInfo.ConstraintVT == MVT::Other)
6640       ValueVT = *RC->vt_begin();
6641 
6642     // Get the actual register value type.  This is important, because the user
6643     // may have asked for (e.g.) the AX register in i32 type.  We need to
6644     // remember that AX is actually i16 to get the right extension.
6645     RegVT = *RC->vt_begin();
6646 
6647     // This is a explicit reference to a physical register.
6648     Regs.push_back(AssignedReg);
6649 
6650     // If this is an expanded reference, add the rest of the regs to Regs.
6651     if (NumRegs != 1) {
6652       TargetRegisterClass::iterator I = RC->begin();
6653       for (; *I != AssignedReg; ++I)
6654         assert(I != RC->end() && "Didn't find reg!");
6655 
6656       // Already added the first reg.
6657       --NumRegs; ++I;
6658       for (; NumRegs; --NumRegs, ++I) {
6659         assert(I != RC->end() && "Ran out of registers to allocate!");
6660         Regs.push_back(*I);
6661       }
6662     }
6663 
6664     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6665     return;
6666   }
6667 
6668   // Otherwise, if this was a reference to an LLVM register class, create vregs
6669   // for this reference.
6670   if (const TargetRegisterClass *RC = PhysReg.second) {
6671     RegVT = *RC->vt_begin();
6672     if (OpInfo.ConstraintVT == MVT::Other)
6673       ValueVT = RegVT;
6674 
6675     // Create the appropriate number of virtual registers.
6676     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6677     for (; NumRegs; --NumRegs)
6678       Regs.push_back(RegInfo.createVirtualRegister(RC));
6679 
6680     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6681     return;
6682   }
6683 
6684   // Otherwise, we couldn't allocate enough registers for this.
6685 }
6686 
6687 static unsigned
6688 findMatchingInlineAsmOperand(unsigned OperandNo,
6689                              const std::vector<SDValue> &AsmNodeOperands) {
6690   // Scan until we find the definition we already emitted of this operand.
6691   unsigned CurOp = InlineAsm::Op_FirstOperand;
6692   for (; OperandNo; --OperandNo) {
6693     // Advance to the next operand.
6694     unsigned OpFlag =
6695         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6696     assert((InlineAsm::isRegDefKind(OpFlag) ||
6697             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6698             InlineAsm::isMemKind(OpFlag)) &&
6699            "Skipped past definitions?");
6700     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6701   }
6702   return CurOp;
6703 }
6704 
6705 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6706 /// \return true if it has succeeded, false otherwise
6707 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6708                               MVT RegVT, SelectionDAG &DAG) {
6709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6710   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6711   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6712     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6713       Regs.push_back(RegInfo.createVirtualRegister(RC));
6714     else
6715       return false;
6716   }
6717   return true;
6718 }
6719 
6720 class ExtraFlags {
6721   unsigned Flags = 0;
6722 
6723 public:
6724   explicit ExtraFlags(ImmutableCallSite CS) {
6725     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6726     if (IA->hasSideEffects())
6727       Flags |= InlineAsm::Extra_HasSideEffects;
6728     if (IA->isAlignStack())
6729       Flags |= InlineAsm::Extra_IsAlignStack;
6730     if (CS.isConvergent())
6731       Flags |= InlineAsm::Extra_IsConvergent;
6732     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6733   }
6734 
6735   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6736     // Ideally, we would only check against memory constraints.  However, the
6737     // meaning of an Other constraint can be target-specific and we can't easily
6738     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6739     // for Other constraints as well.
6740     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6741         OpInfo.ConstraintType == TargetLowering::C_Other) {
6742       if (OpInfo.Type == InlineAsm::isInput)
6743         Flags |= InlineAsm::Extra_MayLoad;
6744       else if (OpInfo.Type == InlineAsm::isOutput)
6745         Flags |= InlineAsm::Extra_MayStore;
6746       else if (OpInfo.Type == InlineAsm::isClobber)
6747         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6748     }
6749   }
6750 
6751   unsigned get() const { return Flags; }
6752 };
6753 
6754 /// visitInlineAsm - Handle a call to an InlineAsm object.
6755 ///
6756 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6757   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6758 
6759   /// ConstraintOperands - Information about all of the constraints.
6760   SDISelAsmOperandInfoVector ConstraintOperands;
6761 
6762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6763   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6764       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6765 
6766   bool hasMemory = false;
6767 
6768   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6769   ExtraFlags ExtraInfo(CS);
6770 
6771   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6772   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6773   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6774     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6775     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6776 
6777     MVT OpVT = MVT::Other;
6778 
6779     // Compute the value type for each operand.
6780     if (OpInfo.Type == InlineAsm::isInput ||
6781         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6782       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6783 
6784       // Process the call argument. BasicBlocks are labels, currently appearing
6785       // only in asm's.
6786       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6787         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6788       } else {
6789         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6790       }
6791 
6792       OpVT =
6793           OpInfo
6794               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6795               .getSimpleVT();
6796     }
6797 
6798     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6799       // The return value of the call is this value.  As such, there is no
6800       // corresponding argument.
6801       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6802       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6803         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6804                                       STy->getElementType(ResNo));
6805       } else {
6806         assert(ResNo == 0 && "Asm only has one result!");
6807         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6808       }
6809       ++ResNo;
6810     }
6811 
6812     OpInfo.ConstraintVT = OpVT;
6813 
6814     if (!hasMemory)
6815       hasMemory = OpInfo.hasMemory(TLI);
6816 
6817     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6818     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6819     auto TargetConstraint = TargetConstraints[i];
6820 
6821     // Compute the constraint code and ConstraintType to use.
6822     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6823 
6824     ExtraInfo.update(TargetConstraint);
6825   }
6826 
6827   SDValue Chain, Flag;
6828 
6829   // We won't need to flush pending loads if this asm doesn't touch
6830   // memory and is nonvolatile.
6831   if (hasMemory || IA->hasSideEffects())
6832     Chain = getRoot();
6833   else
6834     Chain = DAG.getRoot();
6835 
6836   // Second pass over the constraints: compute which constraint option to use
6837   // and assign registers to constraints that want a specific physreg.
6838   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6839     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6840 
6841     // If this is an output operand with a matching input operand, look up the
6842     // matching input. If their types mismatch, e.g. one is an integer, the
6843     // other is floating point, or their sizes are different, flag it as an
6844     // error.
6845     if (OpInfo.hasMatchingInput()) {
6846       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6847       patchMatchingInput(OpInfo, Input, DAG);
6848     }
6849 
6850     // Compute the constraint code and ConstraintType to use.
6851     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6852 
6853     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6854         OpInfo.Type == InlineAsm::isClobber)
6855       continue;
6856 
6857     // If this is a memory input, and if the operand is not indirect, do what we
6858     // need to to provide an address for the memory input.
6859     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6860         !OpInfo.isIndirect) {
6861       assert((OpInfo.isMultipleAlternative ||
6862               (OpInfo.Type == InlineAsm::isInput)) &&
6863              "Can only indirectify direct input operands!");
6864 
6865       // Memory operands really want the address of the value.
6866       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6867 
6868       // There is no longer a Value* corresponding to this operand.
6869       OpInfo.CallOperandVal = nullptr;
6870 
6871       // It is now an indirect operand.
6872       OpInfo.isIndirect = true;
6873     }
6874 
6875     // If this constraint is for a specific register, allocate it before
6876     // anything else.
6877     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6878       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6879   }
6880 
6881   // Third pass - Loop over all of the operands, assigning virtual or physregs
6882   // to register class operands.
6883   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6884     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6885 
6886     // C_Register operands have already been allocated, Other/Memory don't need
6887     // to be.
6888     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6889       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6890   }
6891 
6892   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6893   std::vector<SDValue> AsmNodeOperands;
6894   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6895   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6896       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6897 
6898   // If we have a !srcloc metadata node associated with it, we want to attach
6899   // this to the ultimately generated inline asm machineinstr.  To do this, we
6900   // pass in the third operand as this (potentially null) inline asm MDNode.
6901   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6902   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6903 
6904   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6905   // bits as operand 3.
6906   AsmNodeOperands.push_back(DAG.getTargetConstant(
6907       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6908 
6909   // Loop over all of the inputs, copying the operand values into the
6910   // appropriate registers and processing the output regs.
6911   RegsForValue RetValRegs;
6912 
6913   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6914   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6915 
6916   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6917     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6918 
6919     switch (OpInfo.Type) {
6920     case InlineAsm::isOutput: {
6921       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6922           OpInfo.ConstraintType != TargetLowering::C_Register) {
6923         // Memory output, or 'other' output (e.g. 'X' constraint).
6924         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6925 
6926         unsigned ConstraintID =
6927             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6928         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6929                "Failed to convert memory constraint code to constraint id.");
6930 
6931         // Add information to the INLINEASM node to know about this output.
6932         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6933         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6934         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6935                                                         MVT::i32));
6936         AsmNodeOperands.push_back(OpInfo.CallOperand);
6937         break;
6938       }
6939 
6940       // Otherwise, this is a register or register class output.
6941 
6942       // Copy the output from the appropriate register.  Find a register that
6943       // we can use.
6944       if (OpInfo.AssignedRegs.Regs.empty()) {
6945         emitInlineAsmError(
6946             CS, "couldn't allocate output register for constraint '" +
6947                     Twine(OpInfo.ConstraintCode) + "'");
6948         return;
6949       }
6950 
6951       // If this is an indirect operand, store through the pointer after the
6952       // asm.
6953       if (OpInfo.isIndirect) {
6954         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6955                                                       OpInfo.CallOperandVal));
6956       } else {
6957         // This is the result value of the call.
6958         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6959         // Concatenate this output onto the outputs list.
6960         RetValRegs.append(OpInfo.AssignedRegs);
6961       }
6962 
6963       // Add information to the INLINEASM node to know that this register is
6964       // set.
6965       OpInfo.AssignedRegs
6966           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6967                                     ? InlineAsm::Kind_RegDefEarlyClobber
6968                                     : InlineAsm::Kind_RegDef,
6969                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6970       break;
6971     }
6972     case InlineAsm::isInput: {
6973       SDValue InOperandVal = OpInfo.CallOperand;
6974 
6975       if (OpInfo.isMatchingInputConstraint()) {
6976         // If this is required to match an output register we have already set,
6977         // just use its register.
6978         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
6979                                                   AsmNodeOperands);
6980         unsigned OpFlag =
6981           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6982         if (InlineAsm::isRegDefKind(OpFlag) ||
6983             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6984           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6985           if (OpInfo.isIndirect) {
6986             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6987             emitInlineAsmError(CS, "inline asm not supported yet:"
6988                                    " don't know how to handle tied "
6989                                    "indirect register inputs");
6990             return;
6991           }
6992 
6993           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6994           SmallVector<unsigned, 4> Regs;
6995 
6996           if (!createVirtualRegs(Regs,
6997                                  InlineAsm::getNumOperandRegisters(OpFlag),
6998                                  RegVT, DAG)) {
6999             emitInlineAsmError(CS, "inline asm error: This value type register "
7000                                    "class is not natively supported!");
7001             return;
7002           }
7003 
7004           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7005 
7006           SDLoc dl = getCurSDLoc();
7007           // Use the produced MatchedRegs object to
7008           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7009                                     Chain, &Flag, CS.getInstruction());
7010           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7011                                            true, OpInfo.getMatchedOperand(), dl,
7012                                            DAG, AsmNodeOperands);
7013           break;
7014         }
7015 
7016         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7017         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7018                "Unexpected number of operands");
7019         // Add information to the INLINEASM node to know about this input.
7020         // See InlineAsm.h isUseOperandTiedToDef.
7021         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7022         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7023                                                     OpInfo.getMatchedOperand());
7024         AsmNodeOperands.push_back(DAG.getTargetConstant(
7025             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7026         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7027         break;
7028       }
7029 
7030       // Treat indirect 'X' constraint as memory.
7031       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7032           OpInfo.isIndirect)
7033         OpInfo.ConstraintType = TargetLowering::C_Memory;
7034 
7035       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7036         std::vector<SDValue> Ops;
7037         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7038                                           Ops, DAG);
7039         if (Ops.empty()) {
7040           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7041                                      Twine(OpInfo.ConstraintCode) + "'");
7042           return;
7043         }
7044 
7045         // Add information to the INLINEASM node to know about this input.
7046         unsigned ResOpType =
7047           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7048         AsmNodeOperands.push_back(DAG.getTargetConstant(
7049             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7050         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7051         break;
7052       }
7053 
7054       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7055         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7056         assert(InOperandVal.getValueType() ==
7057                    TLI.getPointerTy(DAG.getDataLayout()) &&
7058                "Memory operands expect pointer values");
7059 
7060         unsigned ConstraintID =
7061             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7062         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7063                "Failed to convert memory constraint code to constraint id.");
7064 
7065         // Add information to the INLINEASM node to know about this input.
7066         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7067         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7068         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7069                                                         getCurSDLoc(),
7070                                                         MVT::i32));
7071         AsmNodeOperands.push_back(InOperandVal);
7072         break;
7073       }
7074 
7075       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7076               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7077              "Unknown constraint type!");
7078 
7079       // TODO: Support this.
7080       if (OpInfo.isIndirect) {
7081         emitInlineAsmError(
7082             CS, "Don't know how to handle indirect register inputs yet "
7083                 "for constraint '" +
7084                     Twine(OpInfo.ConstraintCode) + "'");
7085         return;
7086       }
7087 
7088       // Copy the input into the appropriate registers.
7089       if (OpInfo.AssignedRegs.Regs.empty()) {
7090         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7091                                    Twine(OpInfo.ConstraintCode) + "'");
7092         return;
7093       }
7094 
7095       SDLoc dl = getCurSDLoc();
7096 
7097       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7098                                         Chain, &Flag, CS.getInstruction());
7099 
7100       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7101                                                dl, DAG, AsmNodeOperands);
7102       break;
7103     }
7104     case InlineAsm::isClobber: {
7105       // Add the clobbered value to the operand list, so that the register
7106       // allocator is aware that the physreg got clobbered.
7107       if (!OpInfo.AssignedRegs.Regs.empty())
7108         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7109                                                  false, 0, getCurSDLoc(), DAG,
7110                                                  AsmNodeOperands);
7111       break;
7112     }
7113     }
7114   }
7115 
7116   // Finish up input operands.  Set the input chain and add the flag last.
7117   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7118   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7119 
7120   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7121                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7122   Flag = Chain.getValue(1);
7123 
7124   // If this asm returns a register value, copy the result from that register
7125   // and set it as the value of the call.
7126   if (!RetValRegs.Regs.empty()) {
7127     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7128                                              Chain, &Flag, CS.getInstruction());
7129 
7130     // FIXME: Why don't we do this for inline asms with MRVs?
7131     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7132       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7133 
7134       // If any of the results of the inline asm is a vector, it may have the
7135       // wrong width/num elts.  This can happen for register classes that can
7136       // contain multiple different value types.  The preg or vreg allocated may
7137       // not have the same VT as was expected.  Convert it to the right type
7138       // with bit_convert.
7139       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7140         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7141                           ResultType, Val);
7142 
7143       } else if (ResultType != Val.getValueType() &&
7144                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7145         // If a result value was tied to an input value, the computed result may
7146         // have a wider width than the expected result.  Extract the relevant
7147         // portion.
7148         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7149       }
7150 
7151       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7152     }
7153 
7154     setValue(CS.getInstruction(), Val);
7155     // Don't need to use this as a chain in this case.
7156     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7157       return;
7158   }
7159 
7160   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7161 
7162   // Process indirect outputs, first output all of the flagged copies out of
7163   // physregs.
7164   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7165     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7166     const Value *Ptr = IndirectStoresToEmit[i].second;
7167     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7168                                              Chain, &Flag, IA);
7169     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7170   }
7171 
7172   // Emit the non-flagged stores from the physregs.
7173   SmallVector<SDValue, 8> OutChains;
7174   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7175     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7176                                getValue(StoresToEmit[i].second),
7177                                MachinePointerInfo(StoresToEmit[i].second));
7178     OutChains.push_back(Val);
7179   }
7180 
7181   if (!OutChains.empty())
7182     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7183 
7184   DAG.setRoot(Chain);
7185 }
7186 
7187 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7188                                              const Twine &Message) {
7189   LLVMContext &Ctx = *DAG.getContext();
7190   Ctx.emitError(CS.getInstruction(), Message);
7191 
7192   // Make sure we leave the DAG in a valid state
7193   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7194   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7195   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7196 }
7197 
7198 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7199   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7200                           MVT::Other, getRoot(),
7201                           getValue(I.getArgOperand(0)),
7202                           DAG.getSrcValue(I.getArgOperand(0))));
7203 }
7204 
7205 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7207   const DataLayout &DL = DAG.getDataLayout();
7208   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7209                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7210                            DAG.getSrcValue(I.getOperand(0)),
7211                            DL.getABITypeAlignment(I.getType()));
7212   setValue(&I, V);
7213   DAG.setRoot(V.getValue(1));
7214 }
7215 
7216 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7217   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7218                           MVT::Other, getRoot(),
7219                           getValue(I.getArgOperand(0)),
7220                           DAG.getSrcValue(I.getArgOperand(0))));
7221 }
7222 
7223 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7224   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7225                           MVT::Other, getRoot(),
7226                           getValue(I.getArgOperand(0)),
7227                           getValue(I.getArgOperand(1)),
7228                           DAG.getSrcValue(I.getArgOperand(0)),
7229                           DAG.getSrcValue(I.getArgOperand(1))));
7230 }
7231 
7232 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7233                                                     const Instruction &I,
7234                                                     SDValue Op) {
7235   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7236   if (!Range)
7237     return Op;
7238 
7239   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7240   if (!Lo->isNullValue())
7241     return Op;
7242 
7243   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7244   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7245 
7246   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7247 
7248   SDLoc SL = getCurSDLoc();
7249 
7250   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7251                              Op, DAG.getValueType(SmallVT));
7252   unsigned NumVals = Op.getNode()->getNumValues();
7253   if (NumVals == 1)
7254     return ZExt;
7255 
7256   SmallVector<SDValue, 4> Ops;
7257 
7258   Ops.push_back(ZExt);
7259   for (unsigned I = 1; I != NumVals; ++I)
7260     Ops.push_back(Op.getValue(I));
7261 
7262   return DAG.getMergeValues(Ops, SL);
7263 }
7264 
7265 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7266 /// the call being lowered.
7267 ///
7268 /// This is a helper for lowering intrinsics that follow a target calling
7269 /// convention or require stack pointer adjustment. Only a subset of the
7270 /// intrinsic's operands need to participate in the calling convention.
7271 void SelectionDAGBuilder::populateCallLoweringInfo(
7272     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7273     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7274     bool IsPatchPoint) {
7275   TargetLowering::ArgListTy Args;
7276   Args.reserve(NumArgs);
7277 
7278   // Populate the argument list.
7279   // Attributes for args start at offset 1, after the return attribute.
7280   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7281        ArgI != ArgE; ++ArgI) {
7282     const Value *V = CS->getOperand(ArgI);
7283 
7284     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7285 
7286     TargetLowering::ArgListEntry Entry;
7287     Entry.Node = getValue(V);
7288     Entry.Ty = V->getType();
7289     Entry.setAttributes(&CS, AttrI);
7290     Args.push_back(Entry);
7291   }
7292 
7293   CLI.setDebugLoc(getCurSDLoc())
7294       .setChain(getRoot())
7295       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7296       .setDiscardResult(CS->use_empty())
7297       .setIsPatchPoint(IsPatchPoint);
7298 }
7299 
7300 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7301 /// or patchpoint target node's operand list.
7302 ///
7303 /// Constants are converted to TargetConstants purely as an optimization to
7304 /// avoid constant materialization and register allocation.
7305 ///
7306 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7307 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7308 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7309 /// address materialization and register allocation, but may also be required
7310 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7311 /// alloca in the entry block, then the runtime may assume that the alloca's
7312 /// StackMap location can be read immediately after compilation and that the
7313 /// location is valid at any point during execution (this is similar to the
7314 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7315 /// only available in a register, then the runtime would need to trap when
7316 /// execution reaches the StackMap in order to read the alloca's location.
7317 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7318                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7319                                 SelectionDAGBuilder &Builder) {
7320   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7321     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7322     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7323       Ops.push_back(
7324         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7325       Ops.push_back(
7326         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7327     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7328       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7329       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7330           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7331     } else
7332       Ops.push_back(OpVal);
7333   }
7334 }
7335 
7336 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7337 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7338   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7339   //                                  [live variables...])
7340 
7341   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7342 
7343   SDValue Chain, InFlag, Callee, NullPtr;
7344   SmallVector<SDValue, 32> Ops;
7345 
7346   SDLoc DL = getCurSDLoc();
7347   Callee = getValue(CI.getCalledValue());
7348   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7349 
7350   // The stackmap intrinsic only records the live variables (the arguemnts
7351   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7352   // intrinsic, this won't be lowered to a function call. This means we don't
7353   // have to worry about calling conventions and target specific lowering code.
7354   // Instead we perform the call lowering right here.
7355   //
7356   // chain, flag = CALLSEQ_START(chain, 0)
7357   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7358   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7359   //
7360   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7361   InFlag = Chain.getValue(1);
7362 
7363   // Add the <id> and <numBytes> constants.
7364   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7365   Ops.push_back(DAG.getTargetConstant(
7366                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7367   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7368   Ops.push_back(DAG.getTargetConstant(
7369                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7370                   MVT::i32));
7371 
7372   // Push live variables for the stack map.
7373   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7374 
7375   // We are not pushing any register mask info here on the operands list,
7376   // because the stackmap doesn't clobber anything.
7377 
7378   // Push the chain and the glue flag.
7379   Ops.push_back(Chain);
7380   Ops.push_back(InFlag);
7381 
7382   // Create the STACKMAP node.
7383   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7384   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7385   Chain = SDValue(SM, 0);
7386   InFlag = Chain.getValue(1);
7387 
7388   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7389 
7390   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7391 
7392   // Set the root to the target-lowered call chain.
7393   DAG.setRoot(Chain);
7394 
7395   // Inform the Frame Information that we have a stackmap in this function.
7396   FuncInfo.MF->getFrameInfo().setHasStackMap();
7397 }
7398 
7399 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7400 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7401                                           const BasicBlock *EHPadBB) {
7402   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7403   //                                                 i32 <numBytes>,
7404   //                                                 i8* <target>,
7405   //                                                 i32 <numArgs>,
7406   //                                                 [Args...],
7407   //                                                 [live variables...])
7408 
7409   CallingConv::ID CC = CS.getCallingConv();
7410   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7411   bool HasDef = !CS->getType()->isVoidTy();
7412   SDLoc dl = getCurSDLoc();
7413   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7414 
7415   // Handle immediate and symbolic callees.
7416   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7417     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7418                                    /*isTarget=*/true);
7419   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7420     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7421                                          SDLoc(SymbolicCallee),
7422                                          SymbolicCallee->getValueType(0));
7423 
7424   // Get the real number of arguments participating in the call <numArgs>
7425   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7426   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7427 
7428   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7429   // Intrinsics include all meta-operands up to but not including CC.
7430   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7431   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7432          "Not enough arguments provided to the patchpoint intrinsic");
7433 
7434   // For AnyRegCC the arguments are lowered later on manually.
7435   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7436   Type *ReturnTy =
7437     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7438 
7439   TargetLowering::CallLoweringInfo CLI(DAG);
7440   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7441                            true);
7442   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7443 
7444   SDNode *CallEnd = Result.second.getNode();
7445   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7446     CallEnd = CallEnd->getOperand(0).getNode();
7447 
7448   /// Get a call instruction from the call sequence chain.
7449   /// Tail calls are not allowed.
7450   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7451          "Expected a callseq node.");
7452   SDNode *Call = CallEnd->getOperand(0).getNode();
7453   bool HasGlue = Call->getGluedNode();
7454 
7455   // Replace the target specific call node with the patchable intrinsic.
7456   SmallVector<SDValue, 8> Ops;
7457 
7458   // Add the <id> and <numBytes> constants.
7459   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7460   Ops.push_back(DAG.getTargetConstant(
7461                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7462   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7463   Ops.push_back(DAG.getTargetConstant(
7464                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7465                   MVT::i32));
7466 
7467   // Add the callee.
7468   Ops.push_back(Callee);
7469 
7470   // Adjust <numArgs> to account for any arguments that have been passed on the
7471   // stack instead.
7472   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7473   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7474   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7475   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7476 
7477   // Add the calling convention
7478   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7479 
7480   // Add the arguments we omitted previously. The register allocator should
7481   // place these in any free register.
7482   if (IsAnyRegCC)
7483     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7484       Ops.push_back(getValue(CS.getArgument(i)));
7485 
7486   // Push the arguments from the call instruction up to the register mask.
7487   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7488   Ops.append(Call->op_begin() + 2, e);
7489 
7490   // Push live variables for the stack map.
7491   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7492 
7493   // Push the register mask info.
7494   if (HasGlue)
7495     Ops.push_back(*(Call->op_end()-2));
7496   else
7497     Ops.push_back(*(Call->op_end()-1));
7498 
7499   // Push the chain (this is originally the first operand of the call, but
7500   // becomes now the last or second to last operand).
7501   Ops.push_back(*(Call->op_begin()));
7502 
7503   // Push the glue flag (last operand).
7504   if (HasGlue)
7505     Ops.push_back(*(Call->op_end()-1));
7506 
7507   SDVTList NodeTys;
7508   if (IsAnyRegCC && HasDef) {
7509     // Create the return types based on the intrinsic definition
7510     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7511     SmallVector<EVT, 3> ValueVTs;
7512     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7513     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7514 
7515     // There is always a chain and a glue type at the end
7516     ValueVTs.push_back(MVT::Other);
7517     ValueVTs.push_back(MVT::Glue);
7518     NodeTys = DAG.getVTList(ValueVTs);
7519   } else
7520     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7521 
7522   // Replace the target specific call node with a PATCHPOINT node.
7523   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7524                                          dl, NodeTys, Ops);
7525 
7526   // Update the NodeMap.
7527   if (HasDef) {
7528     if (IsAnyRegCC)
7529       setValue(CS.getInstruction(), SDValue(MN, 0));
7530     else
7531       setValue(CS.getInstruction(), Result.first);
7532   }
7533 
7534   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7535   // call sequence. Furthermore the location of the chain and glue can change
7536   // when the AnyReg calling convention is used and the intrinsic returns a
7537   // value.
7538   if (IsAnyRegCC && HasDef) {
7539     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7540     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7541     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7542   } else
7543     DAG.ReplaceAllUsesWith(Call, MN);
7544   DAG.DeleteNode(Call);
7545 
7546   // Inform the Frame Information that we have a patchpoint in this function.
7547   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7548 }
7549 
7550 /// Returns an AttributeSet representing the attributes applied to the return
7551 /// value of the given call.
7552 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7553   SmallVector<Attribute::AttrKind, 2> Attrs;
7554   if (CLI.RetSExt)
7555     Attrs.push_back(Attribute::SExt);
7556   if (CLI.RetZExt)
7557     Attrs.push_back(Attribute::ZExt);
7558   if (CLI.IsInReg)
7559     Attrs.push_back(Attribute::InReg);
7560 
7561   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7562                            Attrs);
7563 }
7564 
7565 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7566 /// implementation, which just calls LowerCall.
7567 /// FIXME: When all targets are
7568 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7569 std::pair<SDValue, SDValue>
7570 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7571   // Handle the incoming return values from the call.
7572   CLI.Ins.clear();
7573   Type *OrigRetTy = CLI.RetTy;
7574   SmallVector<EVT, 4> RetTys;
7575   SmallVector<uint64_t, 4> Offsets;
7576   auto &DL = CLI.DAG.getDataLayout();
7577   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7578 
7579   SmallVector<ISD::OutputArg, 4> Outs;
7580   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7581 
7582   bool CanLowerReturn =
7583       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7584                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7585 
7586   SDValue DemoteStackSlot;
7587   int DemoteStackIdx = -100;
7588   if (!CanLowerReturn) {
7589     // FIXME: equivalent assert?
7590     // assert(!CS.hasInAllocaArgument() &&
7591     //        "sret demotion is incompatible with inalloca");
7592     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7593     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7594     MachineFunction &MF = CLI.DAG.getMachineFunction();
7595     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7596     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7597 
7598     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7599     ArgListEntry Entry;
7600     Entry.Node = DemoteStackSlot;
7601     Entry.Ty = StackSlotPtrType;
7602     Entry.isSExt = false;
7603     Entry.isZExt = false;
7604     Entry.isInReg = false;
7605     Entry.isSRet = true;
7606     Entry.isNest = false;
7607     Entry.isByVal = false;
7608     Entry.isReturned = false;
7609     Entry.isSwiftSelf = false;
7610     Entry.isSwiftError = false;
7611     Entry.Alignment = Align;
7612     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7613     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7614 
7615     // sret demotion isn't compatible with tail-calls, since the sret argument
7616     // points into the callers stack frame.
7617     CLI.IsTailCall = false;
7618   } else {
7619     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7620       EVT VT = RetTys[I];
7621       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7622       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7623       for (unsigned i = 0; i != NumRegs; ++i) {
7624         ISD::InputArg MyFlags;
7625         MyFlags.VT = RegisterVT;
7626         MyFlags.ArgVT = VT;
7627         MyFlags.Used = CLI.IsReturnValueUsed;
7628         if (CLI.RetSExt)
7629           MyFlags.Flags.setSExt();
7630         if (CLI.RetZExt)
7631           MyFlags.Flags.setZExt();
7632         if (CLI.IsInReg)
7633           MyFlags.Flags.setInReg();
7634         CLI.Ins.push_back(MyFlags);
7635       }
7636     }
7637   }
7638 
7639   // We push in swifterror return as the last element of CLI.Ins.
7640   ArgListTy &Args = CLI.getArgs();
7641   if (supportSwiftError()) {
7642     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7643       if (Args[i].isSwiftError) {
7644         ISD::InputArg MyFlags;
7645         MyFlags.VT = getPointerTy(DL);
7646         MyFlags.ArgVT = EVT(getPointerTy(DL));
7647         MyFlags.Flags.setSwiftError();
7648         CLI.Ins.push_back(MyFlags);
7649       }
7650     }
7651   }
7652 
7653   // Handle all of the outgoing arguments.
7654   CLI.Outs.clear();
7655   CLI.OutVals.clear();
7656   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7657     SmallVector<EVT, 4> ValueVTs;
7658     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7659     Type *FinalType = Args[i].Ty;
7660     if (Args[i].isByVal)
7661       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7662     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7663         FinalType, CLI.CallConv, CLI.IsVarArg);
7664     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7665          ++Value) {
7666       EVT VT = ValueVTs[Value];
7667       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7668       SDValue Op = SDValue(Args[i].Node.getNode(),
7669                            Args[i].Node.getResNo() + Value);
7670       ISD::ArgFlagsTy Flags;
7671       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7672 
7673       if (Args[i].isZExt)
7674         Flags.setZExt();
7675       if (Args[i].isSExt)
7676         Flags.setSExt();
7677       if (Args[i].isInReg)
7678         Flags.setInReg();
7679       if (Args[i].isSRet)
7680         Flags.setSRet();
7681       if (Args[i].isSwiftSelf)
7682         Flags.setSwiftSelf();
7683       if (Args[i].isSwiftError)
7684         Flags.setSwiftError();
7685       if (Args[i].isByVal)
7686         Flags.setByVal();
7687       if (Args[i].isInAlloca) {
7688         Flags.setInAlloca();
7689         // Set the byval flag for CCAssignFn callbacks that don't know about
7690         // inalloca.  This way we can know how many bytes we should've allocated
7691         // and how many bytes a callee cleanup function will pop.  If we port
7692         // inalloca to more targets, we'll have to add custom inalloca handling
7693         // in the various CC lowering callbacks.
7694         Flags.setByVal();
7695       }
7696       if (Args[i].isByVal || Args[i].isInAlloca) {
7697         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7698         Type *ElementTy = Ty->getElementType();
7699         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7700         // For ByVal, alignment should come from FE.  BE will guess if this
7701         // info is not there but there are cases it cannot get right.
7702         unsigned FrameAlign;
7703         if (Args[i].Alignment)
7704           FrameAlign = Args[i].Alignment;
7705         else
7706           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7707         Flags.setByValAlign(FrameAlign);
7708       }
7709       if (Args[i].isNest)
7710         Flags.setNest();
7711       if (NeedsRegBlock)
7712         Flags.setInConsecutiveRegs();
7713       Flags.setOrigAlign(OriginalAlignment);
7714 
7715       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7716       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7717       SmallVector<SDValue, 4> Parts(NumParts);
7718       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7719 
7720       if (Args[i].isSExt)
7721         ExtendKind = ISD::SIGN_EXTEND;
7722       else if (Args[i].isZExt)
7723         ExtendKind = ISD::ZERO_EXTEND;
7724 
7725       // Conservatively only handle 'returned' on non-vectors for now
7726       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7727         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7728                "unexpected use of 'returned'");
7729         // Before passing 'returned' to the target lowering code, ensure that
7730         // either the register MVT and the actual EVT are the same size or that
7731         // the return value and argument are extended in the same way; in these
7732         // cases it's safe to pass the argument register value unchanged as the
7733         // return register value (although it's at the target's option whether
7734         // to do so)
7735         // TODO: allow code generation to take advantage of partially preserved
7736         // registers rather than clobbering the entire register when the
7737         // parameter extension method is not compatible with the return
7738         // extension method
7739         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7740             (ExtendKind != ISD::ANY_EXTEND &&
7741              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7742         Flags.setReturned();
7743       }
7744 
7745       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7746                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7747 
7748       for (unsigned j = 0; j != NumParts; ++j) {
7749         // if it isn't first piece, alignment must be 1
7750         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7751                                i < CLI.NumFixedArgs,
7752                                i, j*Parts[j].getValueType().getStoreSize());
7753         if (NumParts > 1 && j == 0)
7754           MyFlags.Flags.setSplit();
7755         else if (j != 0) {
7756           MyFlags.Flags.setOrigAlign(1);
7757           if (j == NumParts - 1)
7758             MyFlags.Flags.setSplitEnd();
7759         }
7760 
7761         CLI.Outs.push_back(MyFlags);
7762         CLI.OutVals.push_back(Parts[j]);
7763       }
7764 
7765       if (NeedsRegBlock && Value == NumValues - 1)
7766         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7767     }
7768   }
7769 
7770   SmallVector<SDValue, 4> InVals;
7771   CLI.Chain = LowerCall(CLI, InVals);
7772 
7773   // Update CLI.InVals to use outside of this function.
7774   CLI.InVals = InVals;
7775 
7776   // Verify that the target's LowerCall behaved as expected.
7777   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7778          "LowerCall didn't return a valid chain!");
7779   assert((!CLI.IsTailCall || InVals.empty()) &&
7780          "LowerCall emitted a return value for a tail call!");
7781   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7782          "LowerCall didn't emit the correct number of values!");
7783 
7784   // For a tail call, the return value is merely live-out and there aren't
7785   // any nodes in the DAG representing it. Return a special value to
7786   // indicate that a tail call has been emitted and no more Instructions
7787   // should be processed in the current block.
7788   if (CLI.IsTailCall) {
7789     CLI.DAG.setRoot(CLI.Chain);
7790     return std::make_pair(SDValue(), SDValue());
7791   }
7792 
7793 #ifndef NDEBUG
7794   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7795     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7796     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7797            "LowerCall emitted a value with the wrong type!");
7798   }
7799 #endif
7800 
7801   SmallVector<SDValue, 4> ReturnValues;
7802   if (!CanLowerReturn) {
7803     // The instruction result is the result of loading from the
7804     // hidden sret parameter.
7805     SmallVector<EVT, 1> PVTs;
7806     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7807 
7808     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7809     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7810     EVT PtrVT = PVTs[0];
7811 
7812     unsigned NumValues = RetTys.size();
7813     ReturnValues.resize(NumValues);
7814     SmallVector<SDValue, 4> Chains(NumValues);
7815 
7816     // An aggregate return value cannot wrap around the address space, so
7817     // offsets to its parts don't wrap either.
7818     SDNodeFlags Flags;
7819     Flags.setNoUnsignedWrap(true);
7820 
7821     for (unsigned i = 0; i < NumValues; ++i) {
7822       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7823                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7824                                                         PtrVT), &Flags);
7825       SDValue L = CLI.DAG.getLoad(
7826           RetTys[i], CLI.DL, CLI.Chain, Add,
7827           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7828                                             DemoteStackIdx, Offsets[i]),
7829           /* Alignment = */ 1);
7830       ReturnValues[i] = L;
7831       Chains[i] = L.getValue(1);
7832     }
7833 
7834     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7835   } else {
7836     // Collect the legal value parts into potentially illegal values
7837     // that correspond to the original function's return values.
7838     Optional<ISD::NodeType> AssertOp;
7839     if (CLI.RetSExt)
7840       AssertOp = ISD::AssertSext;
7841     else if (CLI.RetZExt)
7842       AssertOp = ISD::AssertZext;
7843     unsigned CurReg = 0;
7844     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7845       EVT VT = RetTys[I];
7846       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7847       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7848 
7849       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7850                                               NumRegs, RegisterVT, VT, nullptr,
7851                                               AssertOp));
7852       CurReg += NumRegs;
7853     }
7854 
7855     // For a function returning void, there is no return value. We can't create
7856     // such a node, so we just return a null return value in that case. In
7857     // that case, nothing will actually look at the value.
7858     if (ReturnValues.empty())
7859       return std::make_pair(SDValue(), CLI.Chain);
7860   }
7861 
7862   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7863                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7864   return std::make_pair(Res, CLI.Chain);
7865 }
7866 
7867 void TargetLowering::LowerOperationWrapper(SDNode *N,
7868                                            SmallVectorImpl<SDValue> &Results,
7869                                            SelectionDAG &DAG) const {
7870   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7871     Results.push_back(Res);
7872 }
7873 
7874 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7875   llvm_unreachable("LowerOperation not implemented for this target!");
7876 }
7877 
7878 void
7879 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7880   SDValue Op = getNonRegisterValue(V);
7881   assert((Op.getOpcode() != ISD::CopyFromReg ||
7882           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7883          "Copy from a reg to the same reg!");
7884   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7885 
7886   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7887   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7888                    V->getType());
7889   SDValue Chain = DAG.getEntryNode();
7890 
7891   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7892                               FuncInfo.PreferredExtendType.end())
7893                                  ? ISD::ANY_EXTEND
7894                                  : FuncInfo.PreferredExtendType[V];
7895   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7896   PendingExports.push_back(Chain);
7897 }
7898 
7899 #include "llvm/CodeGen/SelectionDAGISel.h"
7900 
7901 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7902 /// entry block, return true.  This includes arguments used by switches, since
7903 /// the switch may expand into multiple basic blocks.
7904 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7905   // With FastISel active, we may be splitting blocks, so force creation
7906   // of virtual registers for all non-dead arguments.
7907   if (FastISel)
7908     return A->use_empty();
7909 
7910   const BasicBlock &Entry = A->getParent()->front();
7911   for (const User *U : A->users())
7912     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7913       return false;  // Use not in entry block.
7914 
7915   return true;
7916 }
7917 
7918 void SelectionDAGISel::LowerArguments(const Function &F) {
7919   SelectionDAG &DAG = SDB->DAG;
7920   SDLoc dl = SDB->getCurSDLoc();
7921   const DataLayout &DL = DAG.getDataLayout();
7922   SmallVector<ISD::InputArg, 16> Ins;
7923 
7924   if (!FuncInfo->CanLowerReturn) {
7925     // Put in an sret pointer parameter before all the other parameters.
7926     SmallVector<EVT, 1> ValueVTs;
7927     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7928                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7929 
7930     // NOTE: Assuming that a pointer will never break down to more than one VT
7931     // or one register.
7932     ISD::ArgFlagsTy Flags;
7933     Flags.setSRet();
7934     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7935     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7936                          ISD::InputArg::NoArgIndex, 0);
7937     Ins.push_back(RetArg);
7938   }
7939 
7940   // Set up the incoming argument description vector.
7941   unsigned Idx = 1;
7942   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7943        I != E; ++I, ++Idx) {
7944     SmallVector<EVT, 4> ValueVTs;
7945     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7946     bool isArgValueUsed = !I->use_empty();
7947     unsigned PartBase = 0;
7948     Type *FinalType = I->getType();
7949     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7950       FinalType = cast<PointerType>(FinalType)->getElementType();
7951     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7952         FinalType, F.getCallingConv(), F.isVarArg());
7953     for (unsigned Value = 0, NumValues = ValueVTs.size();
7954          Value != NumValues; ++Value) {
7955       EVT VT = ValueVTs[Value];
7956       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7957       ISD::ArgFlagsTy Flags;
7958       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7959 
7960       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7961         Flags.setZExt();
7962       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7963         Flags.setSExt();
7964       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7965         Flags.setInReg();
7966       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7967         Flags.setSRet();
7968       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7969         Flags.setSwiftSelf();
7970       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7971         Flags.setSwiftError();
7972       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7973         Flags.setByVal();
7974       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7975         Flags.setInAlloca();
7976         // Set the byval flag for CCAssignFn callbacks that don't know about
7977         // inalloca.  This way we can know how many bytes we should've allocated
7978         // and how many bytes a callee cleanup function will pop.  If we port
7979         // inalloca to more targets, we'll have to add custom inalloca handling
7980         // in the various CC lowering callbacks.
7981         Flags.setByVal();
7982       }
7983       if (F.getCallingConv() == CallingConv::X86_INTR) {
7984         // IA Interrupt passes frame (1st parameter) by value in the stack.
7985         if (Idx == 1)
7986           Flags.setByVal();
7987       }
7988       if (Flags.isByVal() || Flags.isInAlloca()) {
7989         PointerType *Ty = cast<PointerType>(I->getType());
7990         Type *ElementTy = Ty->getElementType();
7991         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7992         // For ByVal, alignment should be passed from FE.  BE will guess if
7993         // this info is not there but there are cases it cannot get right.
7994         unsigned FrameAlign;
7995         if (F.getParamAlignment(Idx))
7996           FrameAlign = F.getParamAlignment(Idx);
7997         else
7998           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7999         Flags.setByValAlign(FrameAlign);
8000       }
8001       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
8002         Flags.setNest();
8003       if (NeedsRegBlock)
8004         Flags.setInConsecutiveRegs();
8005       Flags.setOrigAlign(OriginalAlignment);
8006 
8007       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8008       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8009       for (unsigned i = 0; i != NumRegs; ++i) {
8010         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8011                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
8012         if (NumRegs > 1 && i == 0)
8013           MyFlags.Flags.setSplit();
8014         // if it isn't first piece, alignment must be 1
8015         else if (i > 0) {
8016           MyFlags.Flags.setOrigAlign(1);
8017           if (i == NumRegs - 1)
8018             MyFlags.Flags.setSplitEnd();
8019         }
8020         Ins.push_back(MyFlags);
8021       }
8022       if (NeedsRegBlock && Value == NumValues - 1)
8023         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8024       PartBase += VT.getStoreSize();
8025     }
8026   }
8027 
8028   // Call the target to set up the argument values.
8029   SmallVector<SDValue, 8> InVals;
8030   SDValue NewRoot = TLI->LowerFormalArguments(
8031       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8032 
8033   // Verify that the target's LowerFormalArguments behaved as expected.
8034   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8035          "LowerFormalArguments didn't return a valid chain!");
8036   assert(InVals.size() == Ins.size() &&
8037          "LowerFormalArguments didn't emit the correct number of values!");
8038   DEBUG({
8039       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8040         assert(InVals[i].getNode() &&
8041                "LowerFormalArguments emitted a null value!");
8042         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8043                "LowerFormalArguments emitted a value with the wrong type!");
8044       }
8045     });
8046 
8047   // Update the DAG with the new chain value resulting from argument lowering.
8048   DAG.setRoot(NewRoot);
8049 
8050   // Set up the argument values.
8051   unsigned i = 0;
8052   Idx = 1;
8053   if (!FuncInfo->CanLowerReturn) {
8054     // Create a virtual register for the sret pointer, and put in a copy
8055     // from the sret argument into it.
8056     SmallVector<EVT, 1> ValueVTs;
8057     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8058                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8059     MVT VT = ValueVTs[0].getSimpleVT();
8060     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8061     Optional<ISD::NodeType> AssertOp = None;
8062     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8063                                         RegVT, VT, nullptr, AssertOp);
8064 
8065     MachineFunction& MF = SDB->DAG.getMachineFunction();
8066     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8067     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8068     FuncInfo->DemoteRegister = SRetReg;
8069     NewRoot =
8070         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8071     DAG.setRoot(NewRoot);
8072 
8073     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8074     // Idx indexes LLVM arguments.  Don't touch it.
8075     ++i;
8076   }
8077 
8078   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
8079       ++I, ++Idx) {
8080     SmallVector<SDValue, 4> ArgValues;
8081     SmallVector<EVT, 4> ValueVTs;
8082     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8083     unsigned NumValues = ValueVTs.size();
8084 
8085     // If this argument is unused then remember its value. It is used to generate
8086     // debugging information.
8087     bool isSwiftErrorArg =
8088         TLI->supportSwiftError() &&
8089         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError);
8090     if (I->use_empty() && NumValues && !isSwiftErrorArg) {
8091       SDB->setUnusedArgValue(&*I, InVals[i]);
8092 
8093       // Also remember any frame index for use in FastISel.
8094       if (FrameIndexSDNode *FI =
8095           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8096         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8097     }
8098 
8099     for (unsigned Val = 0; Val != NumValues; ++Val) {
8100       EVT VT = ValueVTs[Val];
8101       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8102       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8103 
8104       // Even an apparant 'unused' swifterror argument needs to be returned. So
8105       // we do generate a copy for it that can be used on return from the
8106       // function.
8107       if (!I->use_empty() || isSwiftErrorArg) {
8108         Optional<ISD::NodeType> AssertOp;
8109         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8110           AssertOp = ISD::AssertSext;
8111         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8112           AssertOp = ISD::AssertZext;
8113 
8114         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8115                                              NumParts, PartVT, VT,
8116                                              nullptr, AssertOp));
8117       }
8118 
8119       i += NumParts;
8120     }
8121 
8122     // We don't need to do anything else for unused arguments.
8123     if (ArgValues.empty())
8124       continue;
8125 
8126     // Note down frame index.
8127     if (FrameIndexSDNode *FI =
8128         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8129       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8130 
8131     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8132                                      SDB->getCurSDLoc());
8133 
8134     SDB->setValue(&*I, Res);
8135     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8136       if (LoadSDNode *LNode =
8137           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8138         if (FrameIndexSDNode *FI =
8139             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8140         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8141     }
8142 
8143     // Update the SwiftErrorVRegDefMap.
8144     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8145       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8146       if (TargetRegisterInfo::isVirtualRegister(Reg))
8147         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8148                                            FuncInfo->SwiftErrorArg, Reg);
8149     }
8150 
8151     // If this argument is live outside of the entry block, insert a copy from
8152     // wherever we got it to the vreg that other BB's will reference it as.
8153     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8154       // If we can, though, try to skip creating an unnecessary vreg.
8155       // FIXME: This isn't very clean... it would be nice to make this more
8156       // general.  It's also subtly incompatible with the hacks FastISel
8157       // uses with vregs.
8158       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8159       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8160         FuncInfo->ValueMap[&*I] = Reg;
8161         continue;
8162       }
8163     }
8164     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8165       FuncInfo->InitializeRegForValue(&*I);
8166       SDB->CopyToExportRegsIfNeeded(&*I);
8167     }
8168   }
8169 
8170   assert(i == InVals.size() && "Argument register count mismatch!");
8171 
8172   // Finally, if the target has anything special to do, allow it to do so.
8173   EmitFunctionEntryCode();
8174 }
8175 
8176 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8177 /// ensure constants are generated when needed.  Remember the virtual registers
8178 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8179 /// directly add them, because expansion might result in multiple MBB's for one
8180 /// BB.  As such, the start of the BB might correspond to a different MBB than
8181 /// the end.
8182 ///
8183 void
8184 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8185   const TerminatorInst *TI = LLVMBB->getTerminator();
8186 
8187   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8188 
8189   // Check PHI nodes in successors that expect a value to be available from this
8190   // block.
8191   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8192     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8193     if (!isa<PHINode>(SuccBB->begin())) continue;
8194     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8195 
8196     // If this terminator has multiple identical successors (common for
8197     // switches), only handle each succ once.
8198     if (!SuccsHandled.insert(SuccMBB).second)
8199       continue;
8200 
8201     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8202 
8203     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8204     // nodes and Machine PHI nodes, but the incoming operands have not been
8205     // emitted yet.
8206     for (BasicBlock::const_iterator I = SuccBB->begin();
8207          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8208       // Ignore dead phi's.
8209       if (PN->use_empty()) continue;
8210 
8211       // Skip empty types
8212       if (PN->getType()->isEmptyTy())
8213         continue;
8214 
8215       unsigned Reg;
8216       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8217 
8218       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8219         unsigned &RegOut = ConstantsOut[C];
8220         if (RegOut == 0) {
8221           RegOut = FuncInfo.CreateRegs(C->getType());
8222           CopyValueToVirtualRegister(C, RegOut);
8223         }
8224         Reg = RegOut;
8225       } else {
8226         DenseMap<const Value *, unsigned>::iterator I =
8227           FuncInfo.ValueMap.find(PHIOp);
8228         if (I != FuncInfo.ValueMap.end())
8229           Reg = I->second;
8230         else {
8231           assert(isa<AllocaInst>(PHIOp) &&
8232                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8233                  "Didn't codegen value into a register!??");
8234           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8235           CopyValueToVirtualRegister(PHIOp, Reg);
8236         }
8237       }
8238 
8239       // Remember that this register needs to added to the machine PHI node as
8240       // the input for this MBB.
8241       SmallVector<EVT, 4> ValueVTs;
8242       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8243       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8244       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8245         EVT VT = ValueVTs[vti];
8246         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8247         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8248           FuncInfo.PHINodesToUpdate.push_back(
8249               std::make_pair(&*MBBI++, Reg + i));
8250         Reg += NumRegisters;
8251       }
8252     }
8253   }
8254 
8255   ConstantsOut.clear();
8256 }
8257 
8258 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8259 /// is 0.
8260 MachineBasicBlock *
8261 SelectionDAGBuilder::StackProtectorDescriptor::
8262 AddSuccessorMBB(const BasicBlock *BB,
8263                 MachineBasicBlock *ParentMBB,
8264                 bool IsLikely,
8265                 MachineBasicBlock *SuccMBB) {
8266   // If SuccBB has not been created yet, create it.
8267   if (!SuccMBB) {
8268     MachineFunction *MF = ParentMBB->getParent();
8269     MachineFunction::iterator BBI(ParentMBB);
8270     SuccMBB = MF->CreateMachineBasicBlock(BB);
8271     MF->insert(++BBI, SuccMBB);
8272   }
8273   // Add it as a successor of ParentMBB.
8274   ParentMBB->addSuccessor(
8275       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8276   return SuccMBB;
8277 }
8278 
8279 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8280   MachineFunction::iterator I(MBB);
8281   if (++I == FuncInfo.MF->end())
8282     return nullptr;
8283   return &*I;
8284 }
8285 
8286 /// During lowering new call nodes can be created (such as memset, etc.).
8287 /// Those will become new roots of the current DAG, but complications arise
8288 /// when they are tail calls. In such cases, the call lowering will update
8289 /// the root, but the builder still needs to know that a tail call has been
8290 /// lowered in order to avoid generating an additional return.
8291 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8292   // If the node is null, we do have a tail call.
8293   if (MaybeTC.getNode() != nullptr)
8294     DAG.setRoot(MaybeTC);
8295   else
8296     HasTailCall = true;
8297 }
8298 
8299 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8300                                   const SmallVectorImpl<unsigned> &TotalCases,
8301                                   unsigned First, unsigned Last,
8302                                   unsigned Density) const {
8303   assert(Last >= First);
8304   assert(TotalCases[Last] >= TotalCases[First]);
8305 
8306   const APInt &LowCase = Clusters[First].Low->getValue();
8307   const APInt &HighCase = Clusters[Last].High->getValue();
8308   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8309 
8310   // FIXME: A range of consecutive cases has 100% density, but only requires one
8311   // comparison to lower. We should discriminate against such consecutive ranges
8312   // in jump tables.
8313 
8314   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8315   uint64_t Range = Diff + 1;
8316 
8317   uint64_t NumCases =
8318       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8319 
8320   assert(NumCases < UINT64_MAX / 100);
8321   assert(Range >= NumCases);
8322 
8323   return NumCases * 100 >= Range * Density;
8324 }
8325 
8326 static inline bool areJTsAllowed(const TargetLowering &TLI,
8327                                  const SwitchInst *SI) {
8328   const Function *Fn = SI->getParent()->getParent();
8329   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8330     return false;
8331 
8332   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8333          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8334 }
8335 
8336 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8337                                          unsigned First, unsigned Last,
8338                                          const SwitchInst *SI,
8339                                          MachineBasicBlock *DefaultMBB,
8340                                          CaseCluster &JTCluster) {
8341   assert(First <= Last);
8342 
8343   auto Prob = BranchProbability::getZero();
8344   unsigned NumCmps = 0;
8345   std::vector<MachineBasicBlock*> Table;
8346   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8347 
8348   // Initialize probabilities in JTProbs.
8349   for (unsigned I = First; I <= Last; ++I)
8350     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8351 
8352   for (unsigned I = First; I <= Last; ++I) {
8353     assert(Clusters[I].Kind == CC_Range);
8354     Prob += Clusters[I].Prob;
8355     const APInt &Low = Clusters[I].Low->getValue();
8356     const APInt &High = Clusters[I].High->getValue();
8357     NumCmps += (Low == High) ? 1 : 2;
8358     if (I != First) {
8359       // Fill the gap between this and the previous cluster.
8360       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8361       assert(PreviousHigh.slt(Low));
8362       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8363       for (uint64_t J = 0; J < Gap; J++)
8364         Table.push_back(DefaultMBB);
8365     }
8366     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8367     for (uint64_t J = 0; J < ClusterSize; ++J)
8368       Table.push_back(Clusters[I].MBB);
8369     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8370   }
8371 
8372   unsigned NumDests = JTProbs.size();
8373   if (isSuitableForBitTests(NumDests, NumCmps,
8374                             Clusters[First].Low->getValue(),
8375                             Clusters[Last].High->getValue())) {
8376     // Clusters[First..Last] should be lowered as bit tests instead.
8377     return false;
8378   }
8379 
8380   // Create the MBB that will load from and jump through the table.
8381   // Note: We create it here, but it's not inserted into the function yet.
8382   MachineFunction *CurMF = FuncInfo.MF;
8383   MachineBasicBlock *JumpTableMBB =
8384       CurMF->CreateMachineBasicBlock(SI->getParent());
8385 
8386   // Add successors. Note: use table order for determinism.
8387   SmallPtrSet<MachineBasicBlock *, 8> Done;
8388   for (MachineBasicBlock *Succ : Table) {
8389     if (Done.count(Succ))
8390       continue;
8391     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8392     Done.insert(Succ);
8393   }
8394   JumpTableMBB->normalizeSuccProbs();
8395 
8396   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8397   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8398                      ->createJumpTableIndex(Table);
8399 
8400   // Set up the jump table info.
8401   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8402   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8403                       Clusters[Last].High->getValue(), SI->getCondition(),
8404                       nullptr, false);
8405   JTCases.emplace_back(std::move(JTH), std::move(JT));
8406 
8407   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8408                                      JTCases.size() - 1, Prob);
8409   return true;
8410 }
8411 
8412 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8413                                          const SwitchInst *SI,
8414                                          MachineBasicBlock *DefaultMBB) {
8415 #ifndef NDEBUG
8416   // Clusters must be non-empty, sorted, and only contain Range clusters.
8417   assert(!Clusters.empty());
8418   for (CaseCluster &C : Clusters)
8419     assert(C.Kind == CC_Range);
8420   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8421     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8422 #endif
8423 
8424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8425   if (!areJTsAllowed(TLI, SI))
8426     return;
8427 
8428   const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize();
8429 
8430   const int64_t N = Clusters.size();
8431   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8432   const unsigned MaxJumpTableSize =
8433     OptForSize ? UINT_MAX : TLI.getMaximumJumpTableSize() ?
8434                             TLI.getMaximumJumpTableSize() : UINT_MAX;
8435 
8436   if (N < 2 || N < MinJumpTableEntries)
8437     return;
8438 
8439   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8440   SmallVector<unsigned, 8> TotalCases(N);
8441   for (unsigned i = 0; i < N; ++i) {
8442     const APInt &Hi = Clusters[i].High->getValue();
8443     const APInt &Lo = Clusters[i].Low->getValue();
8444     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8445     if (i != 0)
8446       TotalCases[i] += TotalCases[i - 1];
8447   }
8448 
8449   const unsigned MinDensity =
8450     OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
8451 
8452   // Cheap case: the whole range may be suitable for jump table.
8453   unsigned JumpTableSize = (Clusters[N - 1].High->getValue() -
8454                             Clusters[0].Low->getValue())
8455                            .getLimitedValue(UINT_MAX - 1) + 1;
8456   if (JumpTableSize <= MaxJumpTableSize &&
8457       isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) {
8458 
8459     CaseCluster JTCluster;
8460     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8461       Clusters[0] = JTCluster;
8462       Clusters.resize(1);
8463       return;
8464     }
8465   }
8466 
8467   // The algorithm below is not suitable for -O0.
8468   if (TM.getOptLevel() == CodeGenOpt::None)
8469     return;
8470 
8471   // Split Clusters into minimum number of dense partitions. The algorithm uses
8472   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8473   // for the Case Statement'" (1994), but builds the MinPartitions array in
8474   // reverse order to make it easier to reconstruct the partitions in ascending
8475   // order. In the choice between two optimal partitionings, it picks the one
8476   // which yields more jump tables.
8477 
8478   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8479   SmallVector<unsigned, 8> MinPartitions(N);
8480   // LastElement[i] is the last element of the partition starting at i.
8481   SmallVector<unsigned, 8> LastElement(N);
8482   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8483   SmallVector<unsigned, 8> NumTables(N);
8484 
8485   // Base case: There is only one way to partition Clusters[N-1].
8486   MinPartitions[N - 1] = 1;
8487   LastElement[N - 1] = N - 1;
8488   NumTables[N - 1] = 0;
8489 
8490   // Note: loop indexes are signed to avoid underflow.
8491   for (int64_t i = N - 2; i >= 0; i--) {
8492     // Find optimal partitioning of Clusters[i..N-1].
8493     // Baseline: Put Clusters[i] into a partition on its own.
8494     MinPartitions[i] = MinPartitions[i + 1] + 1;
8495     LastElement[i] = i;
8496     NumTables[i] = NumTables[i + 1];
8497 
8498     // Search for a solution that results in fewer partitions.
8499     for (int64_t j = N - 1; j > i; j--) {
8500       // Try building a partition from Clusters[i..j].
8501       JumpTableSize = (Clusters[j].High->getValue() -
8502                        Clusters[i].Low->getValue())
8503                       .getLimitedValue(UINT_MAX - 1) + 1;
8504       if (JumpTableSize <= MaxJumpTableSize &&
8505           isDense(Clusters, TotalCases, i, j, MinDensity)) {
8506         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8507         bool IsTable = j - i + 1 >= MinJumpTableEntries;
8508         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8509 
8510         // If this j leads to fewer partitions, or same number of partitions
8511         // with more lookup tables, it is a better partitioning.
8512         if (NumPartitions < MinPartitions[i] ||
8513             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8514           MinPartitions[i] = NumPartitions;
8515           LastElement[i] = j;
8516           NumTables[i] = Tables;
8517         }
8518       }
8519     }
8520   }
8521 
8522   // Iterate over the partitions, replacing some with jump tables in-place.
8523   unsigned DstIndex = 0;
8524   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8525     Last = LastElement[First];
8526     assert(Last >= First);
8527     assert(DstIndex <= First);
8528     unsigned NumClusters = Last - First + 1;
8529 
8530     CaseCluster JTCluster;
8531     if (NumClusters >= MinJumpTableEntries &&
8532         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8533       Clusters[DstIndex++] = JTCluster;
8534     } else {
8535       for (unsigned I = First; I <= Last; ++I)
8536         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8537     }
8538   }
8539   Clusters.resize(DstIndex);
8540 }
8541 
8542 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8543   // FIXME: Using the pointer type doesn't seem ideal.
8544   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8545   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8546   return Range <= BW;
8547 }
8548 
8549 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8550                                                 unsigned NumCmps,
8551                                                 const APInt &Low,
8552                                                 const APInt &High) {
8553   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8554   // range of cases both require only one branch to lower. Just looking at the
8555   // number of clusters and destinations should be enough to decide whether to
8556   // build bit tests.
8557 
8558   // To lower a range with bit tests, the range must fit the bitwidth of a
8559   // machine word.
8560   if (!rangeFitsInWord(Low, High))
8561     return false;
8562 
8563   // Decide whether it's profitable to lower this range with bit tests. Each
8564   // destination requires a bit test and branch, and there is an overall range
8565   // check branch. For a small number of clusters, separate comparisons might be
8566   // cheaper, and for many destinations, splitting the range might be better.
8567   return (NumDests == 1 && NumCmps >= 3) ||
8568          (NumDests == 2 && NumCmps >= 5) ||
8569          (NumDests == 3 && NumCmps >= 6);
8570 }
8571 
8572 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8573                                         unsigned First, unsigned Last,
8574                                         const SwitchInst *SI,
8575                                         CaseCluster &BTCluster) {
8576   assert(First <= Last);
8577   if (First == Last)
8578     return false;
8579 
8580   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8581   unsigned NumCmps = 0;
8582   for (int64_t I = First; I <= Last; ++I) {
8583     assert(Clusters[I].Kind == CC_Range);
8584     Dests.set(Clusters[I].MBB->getNumber());
8585     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8586   }
8587   unsigned NumDests = Dests.count();
8588 
8589   APInt Low = Clusters[First].Low->getValue();
8590   APInt High = Clusters[Last].High->getValue();
8591   assert(Low.slt(High));
8592 
8593   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8594     return false;
8595 
8596   APInt LowBound;
8597   APInt CmpRange;
8598 
8599   const int BitWidth = DAG.getTargetLoweringInfo()
8600                            .getPointerTy(DAG.getDataLayout())
8601                            .getSizeInBits();
8602   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8603 
8604   // Check if the clusters cover a contiguous range such that no value in the
8605   // range will jump to the default statement.
8606   bool ContiguousRange = true;
8607   for (int64_t I = First + 1; I <= Last; ++I) {
8608     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8609       ContiguousRange = false;
8610       break;
8611     }
8612   }
8613 
8614   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8615     // Optimize the case where all the case values fit in a word without having
8616     // to subtract minValue. In this case, we can optimize away the subtraction.
8617     LowBound = APInt::getNullValue(Low.getBitWidth());
8618     CmpRange = High;
8619     ContiguousRange = false;
8620   } else {
8621     LowBound = Low;
8622     CmpRange = High - Low;
8623   }
8624 
8625   CaseBitsVector CBV;
8626   auto TotalProb = BranchProbability::getZero();
8627   for (unsigned i = First; i <= Last; ++i) {
8628     // Find the CaseBits for this destination.
8629     unsigned j;
8630     for (j = 0; j < CBV.size(); ++j)
8631       if (CBV[j].BB == Clusters[i].MBB)
8632         break;
8633     if (j == CBV.size())
8634       CBV.push_back(
8635           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8636     CaseBits *CB = &CBV[j];
8637 
8638     // Update Mask, Bits and ExtraProb.
8639     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8640     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8641     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8642     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8643     CB->Bits += Hi - Lo + 1;
8644     CB->ExtraProb += Clusters[i].Prob;
8645     TotalProb += Clusters[i].Prob;
8646   }
8647 
8648   BitTestInfo BTI;
8649   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8650     // Sort by probability first, number of bits second.
8651     if (a.ExtraProb != b.ExtraProb)
8652       return a.ExtraProb > b.ExtraProb;
8653     return a.Bits > b.Bits;
8654   });
8655 
8656   for (auto &CB : CBV) {
8657     MachineBasicBlock *BitTestBB =
8658         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8659     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8660   }
8661   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8662                             SI->getCondition(), -1U, MVT::Other, false,
8663                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8664                             TotalProb);
8665 
8666   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8667                                     BitTestCases.size() - 1, TotalProb);
8668   return true;
8669 }
8670 
8671 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8672                                               const SwitchInst *SI) {
8673 // Partition Clusters into as few subsets as possible, where each subset has a
8674 // range that fits in a machine word and has <= 3 unique destinations.
8675 
8676 #ifndef NDEBUG
8677   // Clusters must be sorted and contain Range or JumpTable clusters.
8678   assert(!Clusters.empty());
8679   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8680   for (const CaseCluster &C : Clusters)
8681     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8682   for (unsigned i = 1; i < Clusters.size(); ++i)
8683     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8684 #endif
8685 
8686   // The algorithm below is not suitable for -O0.
8687   if (TM.getOptLevel() == CodeGenOpt::None)
8688     return;
8689 
8690   // If target does not have legal shift left, do not emit bit tests at all.
8691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8692   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8693   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8694     return;
8695 
8696   int BitWidth = PTy.getSizeInBits();
8697   const int64_t N = Clusters.size();
8698 
8699   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8700   SmallVector<unsigned, 8> MinPartitions(N);
8701   // LastElement[i] is the last element of the partition starting at i.
8702   SmallVector<unsigned, 8> LastElement(N);
8703 
8704   // FIXME: This might not be the best algorithm for finding bit test clusters.
8705 
8706   // Base case: There is only one way to partition Clusters[N-1].
8707   MinPartitions[N - 1] = 1;
8708   LastElement[N - 1] = N - 1;
8709 
8710   // Note: loop indexes are signed to avoid underflow.
8711   for (int64_t i = N - 2; i >= 0; --i) {
8712     // Find optimal partitioning of Clusters[i..N-1].
8713     // Baseline: Put Clusters[i] into a partition on its own.
8714     MinPartitions[i] = MinPartitions[i + 1] + 1;
8715     LastElement[i] = i;
8716 
8717     // Search for a solution that results in fewer partitions.
8718     // Note: the search is limited by BitWidth, reducing time complexity.
8719     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8720       // Try building a partition from Clusters[i..j].
8721 
8722       // Check the range.
8723       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8724                            Clusters[j].High->getValue()))
8725         continue;
8726 
8727       // Check nbr of destinations and cluster types.
8728       // FIXME: This works, but doesn't seem very efficient.
8729       bool RangesOnly = true;
8730       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8731       for (int64_t k = i; k <= j; k++) {
8732         if (Clusters[k].Kind != CC_Range) {
8733           RangesOnly = false;
8734           break;
8735         }
8736         Dests.set(Clusters[k].MBB->getNumber());
8737       }
8738       if (!RangesOnly || Dests.count() > 3)
8739         break;
8740 
8741       // Check if it's a better partition.
8742       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8743       if (NumPartitions < MinPartitions[i]) {
8744         // Found a better partition.
8745         MinPartitions[i] = NumPartitions;
8746         LastElement[i] = j;
8747       }
8748     }
8749   }
8750 
8751   // Iterate over the partitions, replacing with bit-test clusters in-place.
8752   unsigned DstIndex = 0;
8753   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8754     Last = LastElement[First];
8755     assert(First <= Last);
8756     assert(DstIndex <= First);
8757 
8758     CaseCluster BitTestCluster;
8759     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8760       Clusters[DstIndex++] = BitTestCluster;
8761     } else {
8762       size_t NumClusters = Last - First + 1;
8763       std::memmove(&Clusters[DstIndex], &Clusters[First],
8764                    sizeof(Clusters[0]) * NumClusters);
8765       DstIndex += NumClusters;
8766     }
8767   }
8768   Clusters.resize(DstIndex);
8769 }
8770 
8771 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8772                                         MachineBasicBlock *SwitchMBB,
8773                                         MachineBasicBlock *DefaultMBB) {
8774   MachineFunction *CurMF = FuncInfo.MF;
8775   MachineBasicBlock *NextMBB = nullptr;
8776   MachineFunction::iterator BBI(W.MBB);
8777   if (++BBI != FuncInfo.MF->end())
8778     NextMBB = &*BBI;
8779 
8780   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8781 
8782   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8783 
8784   if (Size == 2 && W.MBB == SwitchMBB) {
8785     // If any two of the cases has the same destination, and if one value
8786     // is the same as the other, but has one bit unset that the other has set,
8787     // use bit manipulation to do two compares at once.  For example:
8788     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8789     // TODO: This could be extended to merge any 2 cases in switches with 3
8790     // cases.
8791     // TODO: Handle cases where W.CaseBB != SwitchBB.
8792     CaseCluster &Small = *W.FirstCluster;
8793     CaseCluster &Big = *W.LastCluster;
8794 
8795     if (Small.Low == Small.High && Big.Low == Big.High &&
8796         Small.MBB == Big.MBB) {
8797       const APInt &SmallValue = Small.Low->getValue();
8798       const APInt &BigValue = Big.Low->getValue();
8799 
8800       // Check that there is only one bit different.
8801       APInt CommonBit = BigValue ^ SmallValue;
8802       if (CommonBit.isPowerOf2()) {
8803         SDValue CondLHS = getValue(Cond);
8804         EVT VT = CondLHS.getValueType();
8805         SDLoc DL = getCurSDLoc();
8806 
8807         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8808                                  DAG.getConstant(CommonBit, DL, VT));
8809         SDValue Cond = DAG.getSetCC(
8810             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8811             ISD::SETEQ);
8812 
8813         // Update successor info.
8814         // Both Small and Big will jump to Small.BB, so we sum up the
8815         // probabilities.
8816         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8817         if (BPI)
8818           addSuccessorWithProb(
8819               SwitchMBB, DefaultMBB,
8820               // The default destination is the first successor in IR.
8821               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8822         else
8823           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8824 
8825         // Insert the true branch.
8826         SDValue BrCond =
8827             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8828                         DAG.getBasicBlock(Small.MBB));
8829         // Insert the false branch.
8830         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8831                              DAG.getBasicBlock(DefaultMBB));
8832 
8833         DAG.setRoot(BrCond);
8834         return;
8835       }
8836     }
8837   }
8838 
8839   if (TM.getOptLevel() != CodeGenOpt::None) {
8840     // Order cases by probability so the most likely case will be checked first.
8841     std::sort(W.FirstCluster, W.LastCluster + 1,
8842               [](const CaseCluster &a, const CaseCluster &b) {
8843       return a.Prob > b.Prob;
8844     });
8845 
8846     // Rearrange the case blocks so that the last one falls through if possible
8847     // without without changing the order of probabilities.
8848     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8849       --I;
8850       if (I->Prob > W.LastCluster->Prob)
8851         break;
8852       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8853         std::swap(*I, *W.LastCluster);
8854         break;
8855       }
8856     }
8857   }
8858 
8859   // Compute total probability.
8860   BranchProbability DefaultProb = W.DefaultProb;
8861   BranchProbability UnhandledProbs = DefaultProb;
8862   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8863     UnhandledProbs += I->Prob;
8864 
8865   MachineBasicBlock *CurMBB = W.MBB;
8866   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8867     MachineBasicBlock *Fallthrough;
8868     if (I == W.LastCluster) {
8869       // For the last cluster, fall through to the default destination.
8870       Fallthrough = DefaultMBB;
8871     } else {
8872       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8873       CurMF->insert(BBI, Fallthrough);
8874       // Put Cond in a virtual register to make it available from the new blocks.
8875       ExportFromCurrentBlock(Cond);
8876     }
8877     UnhandledProbs -= I->Prob;
8878 
8879     switch (I->Kind) {
8880       case CC_JumpTable: {
8881         // FIXME: Optimize away range check based on pivot comparisons.
8882         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8883         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8884 
8885         // The jump block hasn't been inserted yet; insert it here.
8886         MachineBasicBlock *JumpMBB = JT->MBB;
8887         CurMF->insert(BBI, JumpMBB);
8888 
8889         auto JumpProb = I->Prob;
8890         auto FallthroughProb = UnhandledProbs;
8891 
8892         // If the default statement is a target of the jump table, we evenly
8893         // distribute the default probability to successors of CurMBB. Also
8894         // update the probability on the edge from JumpMBB to Fallthrough.
8895         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8896                                               SE = JumpMBB->succ_end();
8897              SI != SE; ++SI) {
8898           if (*SI == DefaultMBB) {
8899             JumpProb += DefaultProb / 2;
8900             FallthroughProb -= DefaultProb / 2;
8901             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8902             JumpMBB->normalizeSuccProbs();
8903             break;
8904           }
8905         }
8906 
8907         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8908         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8909         CurMBB->normalizeSuccProbs();
8910 
8911         // The jump table header will be inserted in our current block, do the
8912         // range check, and fall through to our fallthrough block.
8913         JTH->HeaderBB = CurMBB;
8914         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8915 
8916         // If we're in the right place, emit the jump table header right now.
8917         if (CurMBB == SwitchMBB) {
8918           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8919           JTH->Emitted = true;
8920         }
8921         break;
8922       }
8923       case CC_BitTests: {
8924         // FIXME: Optimize away range check based on pivot comparisons.
8925         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8926 
8927         // The bit test blocks haven't been inserted yet; insert them here.
8928         for (BitTestCase &BTC : BTB->Cases)
8929           CurMF->insert(BBI, BTC.ThisBB);
8930 
8931         // Fill in fields of the BitTestBlock.
8932         BTB->Parent = CurMBB;
8933         BTB->Default = Fallthrough;
8934 
8935         BTB->DefaultProb = UnhandledProbs;
8936         // If the cases in bit test don't form a contiguous range, we evenly
8937         // distribute the probability on the edge to Fallthrough to two
8938         // successors of CurMBB.
8939         if (!BTB->ContiguousRange) {
8940           BTB->Prob += DefaultProb / 2;
8941           BTB->DefaultProb -= DefaultProb / 2;
8942         }
8943 
8944         // If we're in the right place, emit the bit test header right now.
8945         if (CurMBB == SwitchMBB) {
8946           visitBitTestHeader(*BTB, SwitchMBB);
8947           BTB->Emitted = true;
8948         }
8949         break;
8950       }
8951       case CC_Range: {
8952         const Value *RHS, *LHS, *MHS;
8953         ISD::CondCode CC;
8954         if (I->Low == I->High) {
8955           // Check Cond == I->Low.
8956           CC = ISD::SETEQ;
8957           LHS = Cond;
8958           RHS=I->Low;
8959           MHS = nullptr;
8960         } else {
8961           // Check I->Low <= Cond <= I->High.
8962           CC = ISD::SETLE;
8963           LHS = I->Low;
8964           MHS = Cond;
8965           RHS = I->High;
8966         }
8967 
8968         // The false probability is the sum of all unhandled cases.
8969         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8970                      UnhandledProbs);
8971 
8972         if (CurMBB == SwitchMBB)
8973           visitSwitchCase(CB, SwitchMBB);
8974         else
8975           SwitchCases.push_back(CB);
8976 
8977         break;
8978       }
8979     }
8980     CurMBB = Fallthrough;
8981   }
8982 }
8983 
8984 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8985                                               CaseClusterIt First,
8986                                               CaseClusterIt Last) {
8987   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8988     if (X.Prob != CC.Prob)
8989       return X.Prob > CC.Prob;
8990 
8991     // Ties are broken by comparing the case value.
8992     return X.Low->getValue().slt(CC.Low->getValue());
8993   });
8994 }
8995 
8996 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8997                                         const SwitchWorkListItem &W,
8998                                         Value *Cond,
8999                                         MachineBasicBlock *SwitchMBB) {
9000   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9001          "Clusters not sorted?");
9002 
9003   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9004 
9005   // Balance the tree based on branch probabilities to create a near-optimal (in
9006   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9007   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9008   CaseClusterIt LastLeft = W.FirstCluster;
9009   CaseClusterIt FirstRight = W.LastCluster;
9010   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9011   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9012 
9013   // Move LastLeft and FirstRight towards each other from opposite directions to
9014   // find a partitioning of the clusters which balances the probability on both
9015   // sides. If LeftProb and RightProb are equal, alternate which side is
9016   // taken to ensure 0-probability nodes are distributed evenly.
9017   unsigned I = 0;
9018   while (LastLeft + 1 < FirstRight) {
9019     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9020       LeftProb += (++LastLeft)->Prob;
9021     else
9022       RightProb += (--FirstRight)->Prob;
9023     I++;
9024   }
9025 
9026   for (;;) {
9027     // Our binary search tree differs from a typical BST in that ours can have up
9028     // to three values in each leaf. The pivot selection above doesn't take that
9029     // into account, which means the tree might require more nodes and be less
9030     // efficient. We compensate for this here.
9031 
9032     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9033     unsigned NumRight = W.LastCluster - FirstRight + 1;
9034 
9035     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9036       // If one side has less than 3 clusters, and the other has more than 3,
9037       // consider taking a cluster from the other side.
9038 
9039       if (NumLeft < NumRight) {
9040         // Consider moving the first cluster on the right to the left side.
9041         CaseCluster &CC = *FirstRight;
9042         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9043         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9044         if (LeftSideRank <= RightSideRank) {
9045           // Moving the cluster to the left does not demote it.
9046           ++LastLeft;
9047           ++FirstRight;
9048           continue;
9049         }
9050       } else {
9051         assert(NumRight < NumLeft);
9052         // Consider moving the last element on the left to the right side.
9053         CaseCluster &CC = *LastLeft;
9054         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9055         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9056         if (RightSideRank <= LeftSideRank) {
9057           // Moving the cluster to the right does not demot it.
9058           --LastLeft;
9059           --FirstRight;
9060           continue;
9061         }
9062       }
9063     }
9064     break;
9065   }
9066 
9067   assert(LastLeft + 1 == FirstRight);
9068   assert(LastLeft >= W.FirstCluster);
9069   assert(FirstRight <= W.LastCluster);
9070 
9071   // Use the first element on the right as pivot since we will make less-than
9072   // comparisons against it.
9073   CaseClusterIt PivotCluster = FirstRight;
9074   assert(PivotCluster > W.FirstCluster);
9075   assert(PivotCluster <= W.LastCluster);
9076 
9077   CaseClusterIt FirstLeft = W.FirstCluster;
9078   CaseClusterIt LastRight = W.LastCluster;
9079 
9080   const ConstantInt *Pivot = PivotCluster->Low;
9081 
9082   // New blocks will be inserted immediately after the current one.
9083   MachineFunction::iterator BBI(W.MBB);
9084   ++BBI;
9085 
9086   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9087   // we can branch to its destination directly if it's squeezed exactly in
9088   // between the known lower bound and Pivot - 1.
9089   MachineBasicBlock *LeftMBB;
9090   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9091       FirstLeft->Low == W.GE &&
9092       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9093     LeftMBB = FirstLeft->MBB;
9094   } else {
9095     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9096     FuncInfo.MF->insert(BBI, LeftMBB);
9097     WorkList.push_back(
9098         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9099     // Put Cond in a virtual register to make it available from the new blocks.
9100     ExportFromCurrentBlock(Cond);
9101   }
9102 
9103   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9104   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9105   // directly if RHS.High equals the current upper bound.
9106   MachineBasicBlock *RightMBB;
9107   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9108       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9109     RightMBB = FirstRight->MBB;
9110   } else {
9111     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9112     FuncInfo.MF->insert(BBI, RightMBB);
9113     WorkList.push_back(
9114         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9115     // Put Cond in a virtual register to make it available from the new blocks.
9116     ExportFromCurrentBlock(Cond);
9117   }
9118 
9119   // Create the CaseBlock record that will be used to lower the branch.
9120   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9121                LeftProb, RightProb);
9122 
9123   if (W.MBB == SwitchMBB)
9124     visitSwitchCase(CB, SwitchMBB);
9125   else
9126     SwitchCases.push_back(CB);
9127 }
9128 
9129 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9130   // Extract cases from the switch.
9131   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9132   CaseClusterVector Clusters;
9133   Clusters.reserve(SI.getNumCases());
9134   for (auto I : SI.cases()) {
9135     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9136     const ConstantInt *CaseVal = I.getCaseValue();
9137     BranchProbability Prob =
9138         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9139             : BranchProbability(1, SI.getNumCases() + 1);
9140     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9141   }
9142 
9143   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9144 
9145   // Cluster adjacent cases with the same destination. We do this at all
9146   // optimization levels because it's cheap to do and will make codegen faster
9147   // if there are many clusters.
9148   sortAndRangeify(Clusters);
9149 
9150   if (TM.getOptLevel() != CodeGenOpt::None) {
9151     // Replace an unreachable default with the most popular destination.
9152     // FIXME: Exploit unreachable default more aggressively.
9153     bool UnreachableDefault =
9154         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9155     if (UnreachableDefault && !Clusters.empty()) {
9156       DenseMap<const BasicBlock *, unsigned> Popularity;
9157       unsigned MaxPop = 0;
9158       const BasicBlock *MaxBB = nullptr;
9159       for (auto I : SI.cases()) {
9160         const BasicBlock *BB = I.getCaseSuccessor();
9161         if (++Popularity[BB] > MaxPop) {
9162           MaxPop = Popularity[BB];
9163           MaxBB = BB;
9164         }
9165       }
9166       // Set new default.
9167       assert(MaxPop > 0 && MaxBB);
9168       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9169 
9170       // Remove cases that were pointing to the destination that is now the
9171       // default.
9172       CaseClusterVector New;
9173       New.reserve(Clusters.size());
9174       for (CaseCluster &CC : Clusters) {
9175         if (CC.MBB != DefaultMBB)
9176           New.push_back(CC);
9177       }
9178       Clusters = std::move(New);
9179     }
9180   }
9181 
9182   // If there is only the default destination, jump there directly.
9183   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9184   if (Clusters.empty()) {
9185     SwitchMBB->addSuccessor(DefaultMBB);
9186     if (DefaultMBB != NextBlock(SwitchMBB)) {
9187       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9188                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9189     }
9190     return;
9191   }
9192 
9193   findJumpTables(Clusters, &SI, DefaultMBB);
9194   findBitTestClusters(Clusters, &SI);
9195 
9196   DEBUG({
9197     dbgs() << "Case clusters: ";
9198     for (const CaseCluster &C : Clusters) {
9199       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9200       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9201 
9202       C.Low->getValue().print(dbgs(), true);
9203       if (C.Low != C.High) {
9204         dbgs() << '-';
9205         C.High->getValue().print(dbgs(), true);
9206       }
9207       dbgs() << ' ';
9208     }
9209     dbgs() << '\n';
9210   });
9211 
9212   assert(!Clusters.empty());
9213   SwitchWorkList WorkList;
9214   CaseClusterIt First = Clusters.begin();
9215   CaseClusterIt Last = Clusters.end() - 1;
9216   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9217   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9218 
9219   while (!WorkList.empty()) {
9220     SwitchWorkListItem W = WorkList.back();
9221     WorkList.pop_back();
9222     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9223 
9224     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9225         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9226       // For optimized builds, lower large range as a balanced binary tree.
9227       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9228       continue;
9229     }
9230 
9231     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9232   }
9233 }
9234