1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void 650 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 651 SDValue *Flag, const Value *V, 652 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 SDLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 MVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (!Flag) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 if (NumZeroBits == RegSize) { 717 // The current value is a zero. 718 // Explicitly express that as it would be easier for 719 // optimizations to kick in. 720 Parts[i] = DAG.getConstant(0, RegisterVT); 721 continue; 722 } 723 724 // FIXME: We capture more information than the dag can represent. For 725 // now, just use the tightest assertzext/assertsext possible. 726 bool isSExt = true; 727 EVT FromVT(MVT::Other); 728 if (NumSignBits == RegSize) 729 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 730 else if (NumZeroBits >= RegSize-1) 731 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 732 else if (NumSignBits > RegSize-8) 733 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 734 else if (NumZeroBits >= RegSize-8) 735 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 736 else if (NumSignBits > RegSize-16) 737 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 738 else if (NumZeroBits >= RegSize-16) 739 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 740 else if (NumSignBits > RegSize-32) 741 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 742 else if (NumZeroBits >= RegSize-32) 743 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 744 else 745 continue; 746 747 // Add an assertion node. 748 assert(FromVT != MVT::Other); 749 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 750 RegisterVT, P, DAG.getValueType(FromVT)); 751 } 752 753 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 754 NumRegs, RegisterVT, ValueVT, V); 755 Part += NumRegs; 756 Parts.clear(); 757 } 758 759 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 760 } 761 762 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 763 /// specified value into the registers specified by this object. This uses 764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 765 /// If the Flag pointer is NULL, no flag is used. 766 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 767 SDValue &Chain, SDValue *Flag, const Value *V, 768 ISD::NodeType PreferredExtendType) const { 769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 770 ISD::NodeType ExtendKind = PreferredExtendType; 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 780 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 781 ExtendKind = ISD::ZERO_EXTEND; 782 783 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 784 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 785 Part += NumParts; 786 } 787 788 // Copy the parts into the registers. 789 SmallVector<SDValue, 8> Chains(NumRegs); 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 SDValue Part; 792 if (!Flag) { 793 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 794 } else { 795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 796 *Flag = Part.getValue(1); 797 } 798 799 Chains[i] = Part.getValue(0); 800 } 801 802 if (NumRegs == 1 || Flag) 803 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 804 // flagged to it. That is the CopyToReg nodes and the user are considered 805 // a single scheduling unit. If we create a TokenFactor and return it as 806 // chain, then the TokenFactor is both a predecessor (operand) of the 807 // user as well as a successor (the TF operands are flagged to the user). 808 // c1, f1 = CopyToReg 809 // c2, f2 = CopyToReg 810 // c3 = TokenFactor c1, c2 811 // ... 812 // = op c3, ..., f2 813 Chain = Chains[NumRegs-1]; 814 else 815 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 816 } 817 818 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 819 /// operand list. This adds the code marker and includes the number of 820 /// values added into it. 821 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 822 unsigned MatchingIdx, 823 SelectionDAG &DAG, 824 std::vector<SDValue> &Ops) const { 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 828 if (HasMatching) 829 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 830 else if (!Regs.empty() && 831 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 832 // Put the register class of the virtual registers in the flag word. That 833 // way, later passes can recompute register class constraints for inline 834 // assembly as well as normal instructions. 835 // Don't do this for tied operands that can use the regclass information 836 // from the def. 837 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 838 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 839 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 840 } 841 842 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 843 Ops.push_back(Res); 844 845 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 846 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 848 MVT RegisterVT = RegVTs[Value]; 849 for (unsigned i = 0; i != NumRegs; ++i) { 850 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 851 unsigned TheReg = Regs[Reg++]; 852 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 853 854 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 855 // If we clobbered the stack pointer, MFI should know about it. 856 assert(DAG.getMachineFunction().getFrameInfo()-> 857 hasInlineAsmWithSPAdjust()); 858 } 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 DL = DAG.getSubtarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = nullptr; 885 HasTailCall = false; 886 SDNodeOrder = LowestSDNodeOrder; 887 } 888 889 /// clearDanglingDebugInfo - Clear the dangling debug information 890 /// map. This function is separated from the clear so that debug 891 /// information that is dangling in a basic block can be properly 892 /// resolved in a different basic block. This allows the 893 /// SelectionDAG to resolve dangling debug information attached 894 /// to PHI nodes. 895 void SelectionDAGBuilder::clearDanglingDebugInfo() { 896 DanglingDebugInfoMap.clear(); 897 } 898 899 /// getRoot - Return the current virtual root of the Selection DAG, 900 /// flushing any PendingLoad items. This must be done before emitting 901 /// a store or any other node that may need to be ordered after any 902 /// prior load instructions. 903 /// 904 SDValue SelectionDAGBuilder::getRoot() { 905 if (PendingLoads.empty()) 906 return DAG.getRoot(); 907 908 if (PendingLoads.size() == 1) { 909 SDValue Root = PendingLoads[0]; 910 DAG.setRoot(Root); 911 PendingLoads.clear(); 912 return Root; 913 } 914 915 // Otherwise, we have to make a token factor node. 916 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 917 PendingLoads); 918 PendingLoads.clear(); 919 DAG.setRoot(Root); 920 return Root; 921 } 922 923 /// getControlRoot - Similar to getRoot, but instead of flushing all the 924 /// PendingLoad items, flush all the PendingExports items. It is necessary 925 /// to do this before emitting a terminator instruction. 926 /// 927 SDValue SelectionDAGBuilder::getControlRoot() { 928 SDValue Root = DAG.getRoot(); 929 930 if (PendingExports.empty()) 931 return Root; 932 933 // Turn all of the CopyToReg chains into one factored node. 934 if (Root.getOpcode() != ISD::EntryToken) { 935 unsigned i = 0, e = PendingExports.size(); 936 for (; i != e; ++i) { 937 assert(PendingExports[i].getNode()->getNumOperands() > 1); 938 if (PendingExports[i].getNode()->getOperand(0) == Root) 939 break; // Don't add the root if we already indirectly depend on it. 940 } 941 942 if (i == e) 943 PendingExports.push_back(Root); 944 } 945 946 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 947 PendingExports); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = nullptr; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 MDNode *Expr = DI->getExpression(); 997 uint64_t Offset = DI->getOffset(); 998 // A dbg.value for an alloca is always indirect. 999 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1000 SDDbgValue *SDV; 1001 if (Val.getNode()) { 1002 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1003 Val)) { 1004 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1005 IsIndirect, Offset, dl, DbgSDNodeOrder); 1006 DAG.AddDbgValue(SDV, Val.getNode(), false); 1007 } 1008 } else 1009 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1010 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1011 } 1012 } 1013 1014 /// getValue - Return an SDValue for the given Value. 1015 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. It's important 1017 // to do this first, so that we don't create a CopyFromReg if we already 1018 // have a regular SDValue. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) return N; 1021 1022 // If there's a virtual register allocated and initialized for this 1023 // value, use it. 1024 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 V->getType()); 1029 SDValue Chain = DAG.getEntryNode(); 1030 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, N); 1032 return N; 1033 } 1034 1035 // Otherwise create a new SDValue and remember it. 1036 SDValue Val = getValueImpl(V); 1037 NodeMap[V] = Val; 1038 resolveDanglingDebugInfo(V, Val); 1039 return Val; 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // Otherwise create a new SDValue and remember it. 1050 SDValue Val = getValueImpl(V); 1051 NodeMap[V] = Val; 1052 resolveDanglingDebugInfo(V, Val); 1053 return Val; 1054 } 1055 1056 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1057 /// Create an SDValue for the given value. 1058 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1060 1061 if (const Constant *C = dyn_cast<Constant>(V)) { 1062 EVT VT = TLI.getValueType(V->getType(), true); 1063 1064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1065 return DAG.getConstant(*CI, VT); 1066 1067 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1068 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1069 1070 if (isa<ConstantPointerNull>(C)) { 1071 unsigned AS = V->getType()->getPointerAddressSpace(); 1072 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1073 } 1074 1075 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1076 return DAG.getConstantFP(*CFP, VT); 1077 1078 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1079 return DAG.getUNDEF(VT); 1080 1081 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1082 visit(CE->getOpcode(), *CE); 1083 SDValue N1 = NodeMap[V]; 1084 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1085 return N1; 1086 } 1087 1088 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1089 SmallVector<SDValue, 4> Constants; 1090 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1091 OI != OE; ++OI) { 1092 SDNode *Val = getValue(*OI).getNode(); 1093 // If the operand is an empty aggregate, there are no values. 1094 if (!Val) continue; 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Constants.push_back(SDValue(Val, i)); 1099 } 1100 1101 return DAG.getMergeValues(Constants, getCurSDLoc()); 1102 } 1103 1104 if (const ConstantDataSequential *CDS = 1105 dyn_cast<ConstantDataSequential>(C)) { 1106 SmallVector<SDValue, 4> Ops; 1107 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1108 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1109 // Add each leaf value from the operand to the Constants list 1110 // to form a flattened list of all the values. 1111 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1112 Ops.push_back(SDValue(Val, i)); 1113 } 1114 1115 if (isa<ArrayType>(CDS->getType())) 1116 return DAG.getMergeValues(Ops, getCurSDLoc()); 1117 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1118 VT, Ops); 1119 } 1120 1121 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1122 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1123 "Unknown struct or array constant!"); 1124 1125 SmallVector<EVT, 4> ValueVTs; 1126 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1127 unsigned NumElts = ValueVTs.size(); 1128 if (NumElts == 0) 1129 return SDValue(); // empty struct 1130 SmallVector<SDValue, 4> Constants(NumElts); 1131 for (unsigned i = 0; i != NumElts; ++i) { 1132 EVT EltVT = ValueVTs[i]; 1133 if (isa<UndefValue>(C)) 1134 Constants[i] = DAG.getUNDEF(EltVT); 1135 else if (EltVT.isFloatingPoint()) 1136 Constants[i] = DAG.getConstantFP(0, EltVT); 1137 else 1138 Constants[i] = DAG.getConstant(0, EltVT); 1139 } 1140 1141 return DAG.getMergeValues(Constants, getCurSDLoc()); 1142 } 1143 1144 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1145 return DAG.getBlockAddress(BA, VT); 1146 1147 VectorType *VecTy = cast<VectorType>(V->getType()); 1148 unsigned NumElements = VecTy->getNumElements(); 1149 1150 // Now that we know the number and type of the elements, get that number of 1151 // elements into the Ops array based on what kind of constant it is. 1152 SmallVector<SDValue, 16> Ops; 1153 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1154 for (unsigned i = 0; i != NumElements; ++i) 1155 Ops.push_back(getValue(CV->getOperand(i))); 1156 } else { 1157 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1158 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1159 1160 SDValue Op; 1161 if (EltVT.isFloatingPoint()) 1162 Op = DAG.getConstantFP(0, EltVT); 1163 else 1164 Op = DAG.getConstant(0, EltVT); 1165 Ops.assign(NumElements, Op); 1166 } 1167 1168 // Create a BUILD_VECTOR node. 1169 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1170 } 1171 1172 // If this is a static alloca, generate it as the frameindex instead of 1173 // computation. 1174 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1175 DenseMap<const AllocaInst*, int>::iterator SI = 1176 FuncInfo.StaticAllocaMap.find(AI); 1177 if (SI != FuncInfo.StaticAllocaMap.end()) 1178 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1179 } 1180 1181 // If this is an instruction which fast-isel has deferred, select it now. 1182 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1183 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1184 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1185 SDValue Chain = DAG.getEntryNode(); 1186 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1187 } 1188 1189 llvm_unreachable("Can't get register for value!"); 1190 } 1191 1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1194 SDValue Chain = getControlRoot(); 1195 SmallVector<ISD::OutputArg, 8> Outs; 1196 SmallVector<SDValue, 8> OutVals; 1197 1198 if (!FuncInfo.CanLowerReturn) { 1199 unsigned DemoteReg = FuncInfo.DemoteRegister; 1200 const Function *F = I.getParent()->getParent(); 1201 1202 // Emit a store of the return value through the virtual register. 1203 // Leave Outs empty so that LowerReturn won't try to load return 1204 // registers the usual way. 1205 SmallVector<EVT, 1> PtrValueVTs; 1206 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1207 PtrValueVTs); 1208 1209 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1210 SDValue RetOp = getValue(I.getOperand(0)); 1211 1212 SmallVector<EVT, 4> ValueVTs; 1213 SmallVector<uint64_t, 4> Offsets; 1214 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1215 unsigned NumValues = ValueVTs.size(); 1216 1217 SmallVector<SDValue, 4> Chains(NumValues); 1218 for (unsigned i = 0; i != NumValues; ++i) { 1219 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1220 RetPtr.getValueType(), RetPtr, 1221 DAG.getIntPtrConstant(Offsets[i])); 1222 Chains[i] = 1223 DAG.getStore(Chain, getCurSDLoc(), 1224 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1225 // FIXME: better loc info would be nice. 1226 Add, MachinePointerInfo(), false, false, 0); 1227 } 1228 1229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1230 MVT::Other, Chains); 1231 } else if (I.getNumOperands() != 0) { 1232 SmallVector<EVT, 4> ValueVTs; 1233 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1234 unsigned NumValues = ValueVTs.size(); 1235 if (NumValues) { 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1238 EVT VT = ValueVTs[j]; 1239 1240 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1241 1242 const Function *F = I.getParent()->getParent(); 1243 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::SExt)) 1245 ExtendKind = ISD::SIGN_EXTEND; 1246 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::ZExt)) 1248 ExtendKind = ISD::ZERO_EXTEND; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1254 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1263 Attribute::InReg)) 1264 Flags.setInReg(); 1265 1266 // Propagate extension type if any 1267 if (ExtendKind == ISD::SIGN_EXTEND) 1268 Flags.setSExt(); 1269 else if (ExtendKind == ISD::ZERO_EXTEND) 1270 Flags.setZExt(); 1271 1272 for (unsigned i = 0; i < NumParts; ++i) { 1273 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1274 VT, /*isfixed=*/true, 0, 0)); 1275 OutVals.push_back(Parts[i]); 1276 } 1277 } 1278 } 1279 } 1280 1281 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1282 CallingConv::ID CallConv = 1283 DAG.getMachineFunction().getFunction()->getCallingConv(); 1284 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1285 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1286 1287 // Verify that the target's LowerReturn behaved as expected. 1288 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1289 "LowerReturn didn't return a valid chain!"); 1290 1291 // Update the DAG with the new chain value resulting from return lowering. 1292 DAG.setRoot(Chain); 1293 } 1294 1295 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1296 /// created for it, emit nodes to copy the value into the virtual 1297 /// registers. 1298 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1299 // Skip empty types 1300 if (V->getType()->isEmptyTy()) 1301 return; 1302 1303 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1304 if (VMI != FuncInfo.ValueMap.end()) { 1305 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1306 CopyValueToVirtualRegister(V, VMI->second); 1307 } 1308 } 1309 1310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1311 /// the current basic block, add it to ValueMap now so that we'll get a 1312 /// CopyTo/FromReg. 1313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1314 // No need to export constants. 1315 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1316 1317 // Already exported? 1318 if (FuncInfo.isExportedInst(V)) return; 1319 1320 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1321 CopyValueToVirtualRegister(V, Reg); 1322 } 1323 1324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1325 const BasicBlock *FromBB) { 1326 // The operands of the setcc have to be in this block. We don't know 1327 // how to export them from some other block. 1328 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1329 // Can export from current BB. 1330 if (VI->getParent() == FromBB) 1331 return true; 1332 1333 // Is already exported, noop. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // If this is an argument, we can export it if the BB is the entry block or 1338 // if it is already exported. 1339 if (isa<Argument>(V)) { 1340 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1341 return true; 1342 1343 // Otherwise, can only export this if it is already exported. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // Otherwise, constants can always be exported. 1348 return true; 1349 } 1350 1351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1352 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1353 const MachineBasicBlock *Dst) const { 1354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1355 if (!BPI) 1356 return 0; 1357 const BasicBlock *SrcBB = Src->getBasicBlock(); 1358 const BasicBlock *DstBB = Dst->getBasicBlock(); 1359 return BPI->getEdgeWeight(SrcBB, DstBB); 1360 } 1361 1362 void SelectionDAGBuilder:: 1363 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1364 uint32_t Weight /* = 0 */) { 1365 if (!Weight) 1366 Weight = getEdgeWeight(Src, Dst); 1367 Src->addSuccessor(Dst, Weight); 1368 } 1369 1370 1371 static bool InBlock(const Value *V, const BasicBlock *BB) { 1372 if (const Instruction *I = dyn_cast<Instruction>(V)) 1373 return I->getParent() == BB; 1374 return true; 1375 } 1376 1377 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1378 /// This function emits a branch and is used at the leaves of an OR or an 1379 /// AND operator tree. 1380 /// 1381 void 1382 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1383 MachineBasicBlock *TBB, 1384 MachineBasicBlock *FBB, 1385 MachineBasicBlock *CurBB, 1386 MachineBasicBlock *SwitchBB, 1387 uint32_t TWeight, 1388 uint32_t FWeight) { 1389 const BasicBlock *BB = CurBB->getBasicBlock(); 1390 1391 // If the leaf of the tree is a comparison, merge the condition into 1392 // the caseblock. 1393 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1394 // The operands of the cmp have to be in this block. We don't know 1395 // how to export them from some other block. If this is the first block 1396 // of the sequence, no exporting is needed. 1397 if (CurBB == SwitchBB || 1398 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1399 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1400 ISD::CondCode Condition; 1401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1402 Condition = getICmpCondCode(IC->getPredicate()); 1403 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } else { 1408 Condition = ISD::SETEQ; // silence warning. 1409 llvm_unreachable("Unknown compare instruction"); 1410 } 1411 1412 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1413 TBB, FBB, CurBB, TWeight, FWeight); 1414 SwitchCases.push_back(CB); 1415 return; 1416 } 1417 } 1418 1419 // Create a CaseBlock record representing this branch. 1420 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1421 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1422 SwitchCases.push_back(CB); 1423 } 1424 1425 /// Scale down both weights to fit into uint32_t. 1426 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1427 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1428 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1429 NewTrue = NewTrue / Scale; 1430 NewFalse = NewFalse / Scale; 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc, uint32_t TWeight, 1440 uint32_t FWeight) { 1441 // If this node is not part of the or/and tree, emit it as a branch. 1442 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1443 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1444 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1445 BOp->getParent() != CurBB->getBasicBlock() || 1446 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1447 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1448 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1449 TWeight, FWeight); 1450 return; 1451 } 1452 1453 // Create TmpBB after CurBB. 1454 MachineFunction::iterator BBI = CurBB; 1455 MachineFunction &MF = DAG.getMachineFunction(); 1456 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1457 CurBB->getParent()->insert(++BBI, TmpBB); 1458 1459 if (Opc == Instruction::Or) { 1460 // Codegen X | Y as: 1461 // BB1: 1462 // jmp_if_X TBB 1463 // jmp TmpBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 1469 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1470 // The requirement is that 1471 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1472 // = TrueProb for orignal BB. 1473 // Assuming the orignal weights are A and B, one choice is to set BB1's 1474 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1475 // assumes that 1476 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1477 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1478 // TmpBB, but the math is more complicated. 1479 1480 uint64_t NewTrueWeight = TWeight; 1481 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1482 ScaleWeights(NewTrueWeight, NewFalseWeight); 1483 // Emit the LHS condition. 1484 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1485 NewTrueWeight, NewFalseWeight); 1486 1487 NewTrueWeight = TWeight; 1488 NewFalseWeight = 2 * (uint64_t)FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the RHS condition into TmpBB. 1491 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 } else { 1494 assert(Opc == Instruction::And && "Unknown merge op!"); 1495 // Codegen X & Y as: 1496 // BB1: 1497 // jmp_if_X TmpBB 1498 // jmp FBB 1499 // TmpBB: 1500 // jmp_if_Y TBB 1501 // jmp FBB 1502 // 1503 // This requires creation of TmpBB after CurBB. 1504 1505 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1506 // The requirement is that 1507 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1508 // = FalseProb for orignal BB. 1509 // Assuming the orignal weights are A and B, one choice is to set BB1's 1510 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1511 // assumes that 1512 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1513 1514 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1515 uint64_t NewFalseWeight = FWeight; 1516 ScaleWeights(NewTrueWeight, NewFalseWeight); 1517 // Emit the LHS condition. 1518 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1519 NewTrueWeight, NewFalseWeight); 1520 1521 NewTrueWeight = 2 * (uint64_t)TWeight; 1522 NewFalseWeight = FWeight; 1523 ScaleWeights(NewTrueWeight, NewFalseWeight); 1524 // Emit the RHS condition into TmpBB. 1525 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1526 NewTrueWeight, NewFalseWeight); 1527 } 1528 } 1529 1530 /// If the set of cases should be emitted as a series of branches, return true. 1531 /// If we should emit this as a bunch of and/or'd together conditions, return 1532 /// false. 1533 bool 1534 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1535 if (Cases.size() != 2) return true; 1536 1537 // If this is two comparisons of the same values or'd or and'd together, they 1538 // will get folded into a single comparison, so don't emit two blocks. 1539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1543 return false; 1544 } 1545 1546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1549 Cases[0].CC == Cases[1].CC && 1550 isa<Constant>(Cases[0].CmpRHS) && 1551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1552 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1553 return false; 1554 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1562 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1563 1564 // Update machine-CFG edges. 1565 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1566 1567 // Figure out which block is immediately after the current one. 1568 MachineBasicBlock *NextBlock = nullptr; 1569 MachineFunction::iterator BBI = BrMBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 if (I.isUnconditional()) { 1574 // Update machine-CFG edges. 1575 BrMBB->addSuccessor(Succ0MBB); 1576 1577 // If this is not a fall-through branch or optimizations are switched off, 1578 // emit the branch. 1579 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1581 MVT::Other, getControlRoot(), 1582 DAG.getBasicBlock(Succ0MBB))); 1583 1584 return; 1585 } 1586 1587 // If this condition is one of the special cases we handle, do special stuff 1588 // now. 1589 const Value *CondVal = I.getCondition(); 1590 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1591 1592 // If this is a series of conditions that are or'd or and'd together, emit 1593 // this as a sequence of branches instead of setcc's with and/or operations. 1594 // As long as jumps are not expensive, this should improve performance. 1595 // For example, instead of something like: 1596 // cmp A, B 1597 // C = seteq 1598 // cmp D, E 1599 // F = setle 1600 // or C, F 1601 // jnz foo 1602 // Emit: 1603 // cmp A, B 1604 // je foo 1605 // cmp D, E 1606 // jle foo 1607 // 1608 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1609 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1610 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1611 BOp->getOpcode() == Instruction::Or)) { 1612 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1613 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1614 getEdgeWeight(BrMBB, Succ1MBB)); 1615 // If the compares in later blocks need to use values not currently 1616 // exported from this block, export them now. This block should always 1617 // be the first entry. 1618 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1619 1620 // Allow some cases to be rejected. 1621 if (ShouldEmitAsBranches(SwitchCases)) { 1622 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1623 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1624 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1625 } 1626 1627 // Emit the branch for this block. 1628 visitSwitchCase(SwitchCases[0], BrMBB); 1629 SwitchCases.erase(SwitchCases.begin()); 1630 return; 1631 } 1632 1633 // Okay, we decided not to do this, remove any inserted MBB's and clear 1634 // SwitchCases. 1635 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1636 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1637 1638 SwitchCases.clear(); 1639 } 1640 } 1641 1642 // Create a CaseBlock record representing this branch. 1643 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1644 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1645 1646 // Use visitSwitchCase to actually insert the fast branch sequence for this 1647 // cond branch. 1648 visitSwitchCase(CB, BrMBB); 1649 } 1650 1651 /// visitSwitchCase - Emits the necessary code to represent a single node in 1652 /// the binary search tree resulting from lowering a switch instruction. 1653 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1654 MachineBasicBlock *SwitchBB) { 1655 SDValue Cond; 1656 SDValue CondLHS = getValue(CB.CmpLHS); 1657 SDLoc dl = getCurSDLoc(); 1658 1659 // Build the setcc now. 1660 if (!CB.CmpMHS) { 1661 // Fold "(X == true)" to X and "(X == false)" to !X to 1662 // handle common cases produced by branch lowering. 1663 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) 1665 Cond = CondLHS; 1666 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1667 CB.CC == ISD::SETEQ) { 1668 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1670 } else 1671 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1672 } else { 1673 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1674 1675 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1676 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1677 1678 SDValue CmpOp = getValue(CB.CmpMHS); 1679 EVT VT = CmpOp.getValueType(); 1680 1681 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1682 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1683 ISD::SETLE); 1684 } else { 1685 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1686 VT, CmpOp, DAG.getConstant(Low, VT)); 1687 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1688 DAG.getConstant(High-Low, VT), ISD::SETULE); 1689 } 1690 } 1691 1692 // Update successor info 1693 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1694 // TrueBB and FalseBB are always different unless the incoming IR is 1695 // degenerate. This only happens when running llc on weird IR. 1696 if (CB.TrueBB != CB.FalseBB) 1697 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = nullptr; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 // If the lhs block is the next block, invert the condition so that we can 1707 // fall through to the lhs instead of the rhs block. 1708 if (CB.TrueBB == NextBlock) { 1709 std::swap(CB.TrueBB, CB.FalseBB); 1710 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1711 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1712 } 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1715 MVT::Other, getControlRoot(), Cond, 1716 DAG.getBasicBlock(CB.TrueBB)); 1717 1718 // Insert the false branch. Do this even if it's a fall through branch, 1719 // this makes it easier to do DAG optimizations which require inverting 1720 // the branch condition. 1721 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1722 DAG.getBasicBlock(CB.FalseBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitJumpTable - Emit JumpTable node in the current MBB 1728 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1729 // Emit the code for the jump table 1730 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1731 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1732 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1733 JT.Reg, PTy); 1734 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1735 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1736 MVT::Other, Index.getValue(1), 1737 Table, Index); 1738 DAG.setRoot(BrJumpTable); 1739 } 1740 1741 /// visitJumpTableHeader - This function emits necessary code to produce index 1742 /// in the JumpTable from switch case. 1743 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1744 JumpTableHeader &JTH, 1745 MachineBasicBlock *SwitchBB) { 1746 // Subtract the lowest switch case value from the value being switched on and 1747 // conditional branch to default mbb if the result is greater than the 1748 // difference between smallest and largest cases. 1749 SDValue SwitchOp = getValue(JTH.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(JTH.First, VT)); 1753 1754 // The SDNode we just created, which holds the value being switched on minus 1755 // the smallest case value, needs to be copied to a virtual register so it 1756 // can be used as an index into the jump table in a subsequent basic block. 1757 // This value may be smaller or larger than the target's pointer type, and 1758 // therefore require extension or truncating. 1759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1760 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1761 1762 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1764 JumpTableReg, SwitchOp); 1765 JT.Reg = JumpTableReg; 1766 1767 // Emit the range check for the jump table, and branch to the default block 1768 // for the switch statement if the value being switched on exceeds the largest 1769 // case in the switch. 1770 SDValue CMP = 1771 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1772 Sub.getValueType()), 1773 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1805 EVT PtrTy = TLI.getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 1817 SDValue Guard; 1818 1819 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1820 // guard value from the virtual register holding the value. Otherwise, emit a 1821 // volatile load to retrieve the stack guard value. 1822 unsigned GuardReg = SPD.getGuardReg(); 1823 1824 if (GuardReg && TLI.useLoadStackGuardNode()) 1825 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1826 PtrTy); 1827 else 1828 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 GuardPtr, MachinePointerInfo(IRGuard, 0), 1830 true, false, false, Align); 1831 1832 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 StackSlotPtr, 1834 MachinePointerInfo::getFixedStack(FI), 1835 true, false, false, Align); 1836 1837 // Perform the comparison via a subtract/getsetcc. 1838 EVT VT = Guard.getValueType(); 1839 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1840 1841 SDValue Cmp = 1842 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1843 Sub.getValueType()), 1844 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1845 1846 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1847 // branch to failure MBB. 1848 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1849 MVT::Other, StackSlot.getOperand(0), 1850 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1851 // Otherwise branch to success MBB. 1852 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1853 MVT::Other, BrCond, 1854 DAG.getBasicBlock(SPD.getSuccessMBB())); 1855 1856 DAG.setRoot(Br); 1857 } 1858 1859 /// Codegen the failure basic block for a stack protector check. 1860 /// 1861 /// A failure stack protector machine basic block consists simply of a call to 1862 /// __stack_chk_fail(). 1863 /// 1864 /// For a high level explanation of how this fits into the stack protector 1865 /// generation see the comment on the declaration of class 1866 /// StackProtectorDescriptor. 1867 void 1868 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1870 SDValue Chain = 1871 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1872 nullptr, 0, false, getCurSDLoc(), false, false).second; 1873 DAG.setRoot(Chain); 1874 } 1875 1876 /// visitBitTestHeader - This function emits necessary code to produce value 1877 /// suitable for "bit tests" 1878 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1879 MachineBasicBlock *SwitchBB) { 1880 // Subtract the minimum value 1881 SDValue SwitchOp = getValue(B.SValue); 1882 EVT VT = SwitchOp.getValueType(); 1883 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1884 DAG.getConstant(B.First, VT)); 1885 1886 // Check range 1887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1888 SDValue RangeCmp = 1889 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1890 Sub.getValueType()), 1891 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1892 1893 // Determine the type of the test operands. 1894 bool UsePtrType = false; 1895 if (!TLI.isTypeLegal(VT)) 1896 UsePtrType = true; 1897 else { 1898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1900 // Switch table case range are encoded into series of masks. 1901 // Just use pointer type, it's guaranteed to fit. 1902 UsePtrType = true; 1903 break; 1904 } 1905 } 1906 if (UsePtrType) { 1907 VT = TLI.getPointerTy(); 1908 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1909 } 1910 1911 B.RegVT = VT.getSimpleVT(); 1912 B.Reg = FuncInfo.CreateReg(B.RegVT); 1913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1914 B.Reg, Sub); 1915 1916 // Set NextBlock to be the MBB immediately after the current one, if any. 1917 // This is used to avoid emitting unnecessary branches to the next block. 1918 MachineBasicBlock *NextBlock = nullptr; 1919 MachineFunction::iterator BBI = SwitchBB; 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1924 1925 addSuccessorWithWeight(SwitchBB, B.Default); 1926 addSuccessorWithWeight(SwitchBB, MBB); 1927 1928 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1929 MVT::Other, CopyTo, RangeCmp, 1930 DAG.getBasicBlock(B.Default)); 1931 1932 if (MBB != NextBlock) 1933 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1934 DAG.getBasicBlock(MBB)); 1935 1936 DAG.setRoot(BrRange); 1937 } 1938 1939 /// visitBitTestCase - this function produces one "bit test" 1940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1941 MachineBasicBlock* NextMBB, 1942 uint32_t BranchWeightToNext, 1943 unsigned Reg, 1944 BitTestCase &B, 1945 MachineBasicBlock *SwitchBB) { 1946 MVT VT = BB.RegVT; 1947 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1948 Reg, VT); 1949 SDValue Cmp; 1950 unsigned PopCount = CountPopulation_64(B.Mask); 1951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1952 if (PopCount == 1) { 1953 // Testing for a single bit; just compare the shift count with what it 1954 // would need to be to shift a 1 bit in that position. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC( 1961 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1962 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1963 } else { 1964 // Make desired shift 1965 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1966 DAG.getConstant(1, VT), ShiftOp); 1967 1968 // Emit bit tests and jumps 1969 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1970 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1971 Cmp = DAG.getSetCC(getCurSDLoc(), 1972 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1973 DAG.getConstant(0, VT), ISD::SETNE); 1974 } 1975 1976 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1977 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1978 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1979 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1980 1981 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1982 MVT::Other, getControlRoot(), 1983 Cmp, DAG.getBasicBlock(B.TargetBB)); 1984 1985 // Set NextBlock to be the MBB immediately after the current one, if any. 1986 // This is used to avoid emitting unnecessary branches to the next block. 1987 MachineBasicBlock *NextBlock = nullptr; 1988 MachineFunction::iterator BBI = SwitchBB; 1989 if (++BBI != FuncInfo.MF->end()) 1990 NextBlock = BBI; 1991 1992 if (NextMBB != NextBlock) 1993 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1994 DAG.getBasicBlock(NextMBB)); 1995 1996 DAG.setRoot(BrAnd); 1997 } 1998 1999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2000 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2001 2002 // Retrieve successors. 2003 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2004 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2005 2006 const Value *Callee(I.getCalledValue()); 2007 const Function *Fn = dyn_cast<Function>(Callee); 2008 if (isa<InlineAsm>(Callee)) 2009 visitInlineAsm(&I); 2010 else if (Fn && Fn->isIntrinsic()) { 2011 switch (Fn->getIntrinsicID()) { 2012 default: 2013 llvm_unreachable("Cannot invoke this intrinsic"); 2014 case Intrinsic::donothing: 2015 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2016 break; 2017 case Intrinsic::experimental_patchpoint_void: 2018 case Intrinsic::experimental_patchpoint_i64: 2019 visitPatchpoint(&I, LandingPad); 2020 break; 2021 } 2022 } else 2023 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2024 2025 // If the value of the invoke is used outside of its defining block, make it 2026 // available as a virtual register. 2027 CopyToExportRegsIfNeeded(&I); 2028 2029 // Update successor info 2030 addSuccessorWithWeight(InvokeMBB, Return); 2031 addSuccessorWithWeight(InvokeMBB, LandingPad); 2032 2033 // Drop into normal successor. 2034 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2035 MVT::Other, getControlRoot(), 2036 DAG.getBasicBlock(Return))); 2037 } 2038 2039 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2040 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2041 } 2042 2043 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2044 assert(FuncInfo.MBB->isLandingPad() && 2045 "Call to landingpad not in landing pad!"); 2046 2047 MachineBasicBlock *MBB = FuncInfo.MBB; 2048 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2049 AddLandingPadInfo(LP, MMI, MBB); 2050 2051 // If there aren't registers to copy the values into (e.g., during SjLj 2052 // exceptions), then don't bother to create these DAG nodes. 2053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2054 if (TLI.getExceptionPointerRegister() == 0 && 2055 TLI.getExceptionSelectorRegister() == 0) 2056 return; 2057 2058 SmallVector<EVT, 2> ValueVTs; 2059 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2060 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2061 2062 // Get the two live-in registers as SDValues. The physregs have already been 2063 // copied into virtual registers. 2064 SDValue Ops[2]; 2065 Ops[0] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2068 getCurSDLoc(), ValueVTs[0]); 2069 Ops[1] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2072 getCurSDLoc(), ValueVTs[1]); 2073 2074 // Merge into one. 2075 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2076 DAG.getVTList(ValueVTs), Ops); 2077 setValue(&LP, Res); 2078 } 2079 2080 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2081 /// small case ranges). 2082 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2083 CaseRecVector& WorkList, 2084 const Value* SV, 2085 MachineBasicBlock *Default, 2086 MachineBasicBlock *SwitchBB) { 2087 // Size is the number of Cases represented by this range. 2088 size_t Size = CR.Range.second - CR.Range.first; 2089 if (Size > 3) 2090 return false; 2091 2092 // Get the MachineFunction which holds the current MBB. This is used when 2093 // inserting any additional MBBs necessary to represent the switch. 2094 MachineFunction *CurMF = FuncInfo.MF; 2095 2096 // Figure out which block is immediately after the current one. 2097 MachineBasicBlock *NextBlock = nullptr; 2098 MachineFunction::iterator BBI = CR.CaseBB; 2099 2100 if (++BBI != FuncInfo.MF->end()) 2101 NextBlock = BBI; 2102 2103 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2104 // If any two of the cases has the same destination, and if one value 2105 // is the same as the other, but has one bit unset that the other has set, 2106 // use bit manipulation to do two compares at once. For example: 2107 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2108 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2109 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2110 if (Size == 2 && CR.CaseBB == SwitchBB) { 2111 Case &Small = *CR.Range.first; 2112 Case &Big = *(CR.Range.second-1); 2113 2114 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2115 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2116 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2117 2118 // Check that there is only one bit different. 2119 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2120 (SmallValue | BigValue) == BigValue) { 2121 // Isolate the common bit. 2122 APInt CommonBit = BigValue & ~SmallValue; 2123 assert((SmallValue | CommonBit) == BigValue && 2124 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2125 2126 SDValue CondLHS = getValue(SV); 2127 EVT VT = CondLHS.getValueType(); 2128 SDLoc DL = getCurSDLoc(); 2129 2130 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2131 DAG.getConstant(CommonBit, VT)); 2132 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2133 Or, DAG.getConstant(BigValue, VT), 2134 ISD::SETEQ); 2135 2136 // Update successor info. 2137 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2138 addSuccessorWithWeight(SwitchBB, Small.BB, 2139 Small.ExtraWeight + Big.ExtraWeight); 2140 addSuccessorWithWeight(SwitchBB, Default, 2141 // The default destination is the first successor in IR. 2142 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2143 2144 // Insert the true branch. 2145 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2146 getControlRoot(), Cond, 2147 DAG.getBasicBlock(Small.BB)); 2148 2149 // Insert the false branch. 2150 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2151 DAG.getBasicBlock(Default)); 2152 2153 DAG.setRoot(BrCond); 2154 return true; 2155 } 2156 } 2157 } 2158 2159 // Order cases by weight so the most likely case will be checked first. 2160 uint32_t UnhandledWeights = 0; 2161 if (BPI) { 2162 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2163 uint32_t IWeight = I->ExtraWeight; 2164 UnhandledWeights += IWeight; 2165 for (CaseItr J = CR.Range.first; J < I; ++J) { 2166 uint32_t JWeight = J->ExtraWeight; 2167 if (IWeight > JWeight) 2168 std::swap(*I, *J); 2169 } 2170 } 2171 } 2172 // Rearrange the case blocks so that the last one falls through if possible. 2173 Case &BackCase = *(CR.Range.second-1); 2174 if (Size > 1 && 2175 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2176 // The last case block won't fall through into 'NextBlock' if we emit the 2177 // branches in this order. See if rearranging a case value would help. 2178 // We start at the bottom as it's the case with the least weight. 2179 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2180 if (I->BB == NextBlock) { 2181 std::swap(*I, BackCase); 2182 break; 2183 } 2184 } 2185 2186 // Create a CaseBlock record representing a conditional branch to 2187 // the Case's target mbb if the value being switched on SV is equal 2188 // to C. 2189 MachineBasicBlock *CurBlock = CR.CaseBB; 2190 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2191 MachineBasicBlock *FallThrough; 2192 if (I != E-1) { 2193 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2194 CurMF->insert(BBI, FallThrough); 2195 2196 // Put SV in a virtual register to make it available from the new blocks. 2197 ExportFromCurrentBlock(SV); 2198 } else { 2199 // If the last case doesn't match, go to the default block. 2200 FallThrough = Default; 2201 } 2202 2203 const Value *RHS, *LHS, *MHS; 2204 ISD::CondCode CC; 2205 if (I->High == I->Low) { 2206 // This is just small small case range :) containing exactly 1 case 2207 CC = ISD::SETEQ; 2208 LHS = SV; RHS = I->High; MHS = nullptr; 2209 } else { 2210 CC = ISD::SETLE; 2211 LHS = I->Low; MHS = SV; RHS = I->High; 2212 } 2213 2214 // The false weight should be sum of all un-handled cases. 2215 UnhandledWeights -= I->ExtraWeight; 2216 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2217 /* me */ CurBlock, 2218 /* trueweight */ I->ExtraWeight, 2219 /* falseweight */ UnhandledWeights); 2220 2221 // If emitting the first comparison, just call visitSwitchCase to emit the 2222 // code into the current block. Otherwise, push the CaseBlock onto the 2223 // vector to be later processed by SDISel, and insert the node's MBB 2224 // before the next MBB. 2225 if (CurBlock == SwitchBB) 2226 visitSwitchCase(CB, SwitchBB); 2227 else 2228 SwitchCases.push_back(CB); 2229 2230 CurBlock = FallThrough; 2231 } 2232 2233 return true; 2234 } 2235 2236 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2237 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2238 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2239 } 2240 2241 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2242 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2243 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2244 return (LastExt - FirstExt + 1ULL); 2245 } 2246 2247 /// handleJTSwitchCase - Emit jumptable for current switch case range 2248 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2249 CaseRecVector &WorkList, 2250 const Value *SV, 2251 MachineBasicBlock *Default, 2252 MachineBasicBlock *SwitchBB) { 2253 Case& FrontCase = *CR.Range.first; 2254 Case& BackCase = *(CR.Range.second-1); 2255 2256 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2257 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2258 2259 APInt TSize(First.getBitWidth(), 0); 2260 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2261 TSize += I->size(); 2262 2263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2264 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2265 return false; 2266 2267 APInt Range = ComputeRange(First, Last); 2268 // The density is TSize / Range. Require at least 40%. 2269 // It should not be possible for IntTSize to saturate for sane code, but make 2270 // sure we handle Range saturation correctly. 2271 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2272 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2273 if (IntTSize * 10 < IntRange * 4) 2274 return false; 2275 2276 DEBUG(dbgs() << "Lowering jump table\n" 2277 << "First entry: " << First << ". Last entry: " << Last << '\n' 2278 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2279 2280 // Get the MachineFunction which holds the current MBB. This is used when 2281 // inserting any additional MBBs necessary to represent the switch. 2282 MachineFunction *CurMF = FuncInfo.MF; 2283 2284 // Figure out which block is immediately after the current one. 2285 MachineFunction::iterator BBI = CR.CaseBB; 2286 ++BBI; 2287 2288 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2289 2290 // Create a new basic block to hold the code for loading the address 2291 // of the jump table, and jumping to it. Update successor information; 2292 // we will either branch to the default case for the switch, or the jump 2293 // table. 2294 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2295 CurMF->insert(BBI, JumpTableBB); 2296 2297 addSuccessorWithWeight(CR.CaseBB, Default); 2298 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2299 2300 // Build a vector of destination BBs, corresponding to each target 2301 // of the jump table. If the value of the jump table slot corresponds to 2302 // a case statement, push the case's BB onto the vector, otherwise, push 2303 // the default BB. 2304 std::vector<MachineBasicBlock*> DestBBs; 2305 APInt TEI = First; 2306 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2307 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2308 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2309 2310 if (Low.sle(TEI) && TEI.sle(High)) { 2311 DestBBs.push_back(I->BB); 2312 if (TEI==High) 2313 ++I; 2314 } else { 2315 DestBBs.push_back(Default); 2316 } 2317 } 2318 2319 // Calculate weight for each unique destination in CR. 2320 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2321 if (FuncInfo.BPI) 2322 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2323 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2324 DestWeights.find(I->BB); 2325 if (Itr != DestWeights.end()) 2326 Itr->second += I->ExtraWeight; 2327 else 2328 DestWeights[I->BB] = I->ExtraWeight; 2329 } 2330 2331 // Update successor info. Add one edge to each unique successor. 2332 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2333 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2334 E = DestBBs.end(); I != E; ++I) { 2335 if (!SuccsHandled[(*I)->getNumber()]) { 2336 SuccsHandled[(*I)->getNumber()] = true; 2337 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2338 DestWeights.find(*I); 2339 addSuccessorWithWeight(JumpTableBB, *I, 2340 Itr != DestWeights.end() ? Itr->second : 0); 2341 } 2342 } 2343 2344 // Create a jump table index for this jump table. 2345 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2346 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2347 ->createJumpTableIndex(DestBBs); 2348 2349 // Set the jump table information so that we can codegen it as a second 2350 // MachineBasicBlock 2351 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2352 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2353 if (CR.CaseBB == SwitchBB) 2354 visitJumpTableHeader(JT, JTH, SwitchBB); 2355 2356 JTCases.push_back(JumpTableBlock(JTH, JT)); 2357 return true; 2358 } 2359 2360 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2361 /// 2 subtrees. 2362 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2363 CaseRecVector& WorkList, 2364 const Value* SV, 2365 MachineBasicBlock* SwitchBB) { 2366 // Get the MachineFunction which holds the current MBB. This is used when 2367 // inserting any additional MBBs necessary to represent the switch. 2368 MachineFunction *CurMF = FuncInfo.MF; 2369 2370 // Figure out which block is immediately after the current one. 2371 MachineFunction::iterator BBI = CR.CaseBB; 2372 ++BBI; 2373 2374 Case& FrontCase = *CR.Range.first; 2375 Case& BackCase = *(CR.Range.second-1); 2376 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2377 2378 // Size is the number of Cases represented by this range. 2379 unsigned Size = CR.Range.second - CR.Range.first; 2380 2381 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2382 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2383 double FMetric = 0; 2384 CaseItr Pivot = CR.Range.first + Size/2; 2385 2386 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2387 // (heuristically) allow us to emit JumpTable's later. 2388 APInt TSize(First.getBitWidth(), 0); 2389 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2390 I!=E; ++I) 2391 TSize += I->size(); 2392 2393 APInt LSize = FrontCase.size(); 2394 APInt RSize = TSize-LSize; 2395 DEBUG(dbgs() << "Selecting best pivot: \n" 2396 << "First: " << First << ", Last: " << Last <<'\n' 2397 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2398 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2399 J!=E; ++I, ++J) { 2400 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2401 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2402 APInt Range = ComputeRange(LEnd, RBegin); 2403 assert((Range - 2ULL).isNonNegative() && 2404 "Invalid case distance"); 2405 // Use volatile double here to avoid excess precision issues on some hosts, 2406 // e.g. that use 80-bit X87 registers. 2407 volatile double LDensity = 2408 (double)LSize.roundToDouble() / 2409 (LEnd - First + 1ULL).roundToDouble(); 2410 volatile double RDensity = 2411 (double)RSize.roundToDouble() / 2412 (Last - RBegin + 1ULL).roundToDouble(); 2413 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2414 // Should always split in some non-trivial place 2415 DEBUG(dbgs() <<"=>Step\n" 2416 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2417 << "LDensity: " << LDensity 2418 << ", RDensity: " << RDensity << '\n' 2419 << "Metric: " << Metric << '\n'); 2420 if (FMetric < Metric) { 2421 Pivot = J; 2422 FMetric = Metric; 2423 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2424 } 2425 2426 LSize += J->size(); 2427 RSize -= J->size(); 2428 } 2429 2430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2431 if (areJTsAllowed(TLI)) { 2432 // If our case is dense we *really* should handle it earlier! 2433 assert((FMetric > 0) && "Should handle dense range earlier!"); 2434 } else { 2435 Pivot = CR.Range.first + Size/2; 2436 } 2437 2438 CaseRange LHSR(CR.Range.first, Pivot); 2439 CaseRange RHSR(Pivot, CR.Range.second); 2440 const Constant *C = Pivot->Low; 2441 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2442 2443 // We know that we branch to the LHS if the Value being switched on is 2444 // less than the Pivot value, C. We use this to optimize our binary 2445 // tree a bit, by recognizing that if SV is greater than or equal to the 2446 // LHS's Case Value, and that Case Value is exactly one less than the 2447 // Pivot's Value, then we can branch directly to the LHS's Target, 2448 // rather than creating a leaf node for it. 2449 if ((LHSR.second - LHSR.first) == 1 && 2450 LHSR.first->High == CR.GE && 2451 cast<ConstantInt>(C)->getValue() == 2452 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2453 TrueBB = LHSR.first->BB; 2454 } else { 2455 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2456 CurMF->insert(BBI, TrueBB); 2457 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2458 2459 // Put SV in a virtual register to make it available from the new blocks. 2460 ExportFromCurrentBlock(SV); 2461 } 2462 2463 // Similar to the optimization above, if the Value being switched on is 2464 // known to be less than the Constant CR.LT, and the current Case Value 2465 // is CR.LT - 1, then we can branch directly to the target block for 2466 // the current Case Value, rather than emitting a RHS leaf node for it. 2467 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2468 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2469 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2470 FalseBB = RHSR.first->BB; 2471 } else { 2472 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2473 CurMF->insert(BBI, FalseBB); 2474 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2475 2476 // Put SV in a virtual register to make it available from the new blocks. 2477 ExportFromCurrentBlock(SV); 2478 } 2479 2480 // Create a CaseBlock record representing a conditional branch to 2481 // the LHS node if the value being switched on SV is less than C. 2482 // Otherwise, branch to LHS. 2483 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2484 2485 if (CR.CaseBB == SwitchBB) 2486 visitSwitchCase(CB, SwitchBB); 2487 else 2488 SwitchCases.push_back(CB); 2489 2490 return true; 2491 } 2492 2493 /// handleBitTestsSwitchCase - if current case range has few destination and 2494 /// range span less, than machine word bitwidth, encode case range into series 2495 /// of masks and emit bit tests with these masks. 2496 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2497 CaseRecVector& WorkList, 2498 const Value* SV, 2499 MachineBasicBlock* Default, 2500 MachineBasicBlock* SwitchBB) { 2501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2502 EVT PTy = TLI.getPointerTy(); 2503 unsigned IntPtrBits = PTy.getSizeInBits(); 2504 2505 Case& FrontCase = *CR.Range.first; 2506 Case& BackCase = *(CR.Range.second-1); 2507 2508 // Get the MachineFunction which holds the current MBB. This is used when 2509 // inserting any additional MBBs necessary to represent the switch. 2510 MachineFunction *CurMF = FuncInfo.MF; 2511 2512 // If target does not have legal shift left, do not emit bit tests at all. 2513 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2514 return false; 2515 2516 size_t numCmps = 0; 2517 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2518 I!=E; ++I) { 2519 // Single case counts one, case range - two. 2520 numCmps += (I->Low == I->High ? 1 : 2); 2521 } 2522 2523 // Count unique destinations 2524 SmallSet<MachineBasicBlock*, 4> Dests; 2525 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2526 Dests.insert(I->BB); 2527 if (Dests.size() > 3) 2528 // Don't bother the code below, if there are too much unique destinations 2529 return false; 2530 } 2531 DEBUG(dbgs() << "Total number of unique destinations: " 2532 << Dests.size() << '\n' 2533 << "Total number of comparisons: " << numCmps << '\n'); 2534 2535 // Compute span of values. 2536 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2537 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2538 APInt cmpRange = maxValue - minValue; 2539 2540 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2541 << "Low bound: " << minValue << '\n' 2542 << "High bound: " << maxValue << '\n'); 2543 2544 if (cmpRange.uge(IntPtrBits) || 2545 (!(Dests.size() == 1 && numCmps >= 3) && 2546 !(Dests.size() == 2 && numCmps >= 5) && 2547 !(Dests.size() >= 3 && numCmps >= 6))) 2548 return false; 2549 2550 DEBUG(dbgs() << "Emitting bit tests\n"); 2551 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2552 2553 // Optimize the case where all the case values fit in a 2554 // word without having to subtract minValue. In this case, 2555 // we can optimize away the subtraction. 2556 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2557 cmpRange = maxValue; 2558 } else { 2559 lowBound = minValue; 2560 } 2561 2562 CaseBitsVector CasesBits; 2563 unsigned i, count = 0; 2564 2565 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2566 MachineBasicBlock* Dest = I->BB; 2567 for (i = 0; i < count; ++i) 2568 if (Dest == CasesBits[i].BB) 2569 break; 2570 2571 if (i == count) { 2572 assert((count < 3) && "Too much destinations to test!"); 2573 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2574 count++; 2575 } 2576 2577 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2578 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2579 2580 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2581 uint64_t hi = (highValue - lowBound).getZExtValue(); 2582 CasesBits[i].ExtraWeight += I->ExtraWeight; 2583 2584 for (uint64_t j = lo; j <= hi; j++) { 2585 CasesBits[i].Mask |= 1ULL << j; 2586 CasesBits[i].Bits++; 2587 } 2588 2589 } 2590 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2591 2592 BitTestInfo BTC; 2593 2594 // Figure out which block is immediately after the current one. 2595 MachineFunction::iterator BBI = CR.CaseBB; 2596 ++BBI; 2597 2598 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2599 2600 DEBUG(dbgs() << "Cases:\n"); 2601 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2602 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2603 << ", Bits: " << CasesBits[i].Bits 2604 << ", BB: " << CasesBits[i].BB << '\n'); 2605 2606 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2607 CurMF->insert(BBI, CaseBB); 2608 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2609 CaseBB, 2610 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2611 2612 // Put SV in a virtual register to make it available from the new blocks. 2613 ExportFromCurrentBlock(SV); 2614 } 2615 2616 BitTestBlock BTB(lowBound, cmpRange, SV, 2617 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2618 CR.CaseBB, Default, std::move(BTC)); 2619 2620 if (CR.CaseBB == SwitchBB) 2621 visitBitTestHeader(BTB, SwitchBB); 2622 2623 BitTestCases.push_back(std::move(BTB)); 2624 2625 return true; 2626 } 2627 2628 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2629 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2630 const SwitchInst& SI) { 2631 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2632 // Start with "simple" cases 2633 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2634 i != e; ++i) { 2635 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2636 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2637 2638 uint32_t ExtraWeight = 2639 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2640 2641 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2642 SMBB, ExtraWeight)); 2643 } 2644 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2645 2646 // Merge case into clusters 2647 if (Cases.size() >= 2) 2648 // Must recompute end() each iteration because it may be 2649 // invalidated by erase if we hold on to it 2650 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2651 J != Cases.end(); ) { 2652 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2653 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2654 MachineBasicBlock* nextBB = J->BB; 2655 MachineBasicBlock* currentBB = I->BB; 2656 2657 // If the two neighboring cases go to the same destination, merge them 2658 // into a single case. 2659 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2660 I->High = J->High; 2661 I->ExtraWeight += J->ExtraWeight; 2662 J = Cases.erase(J); 2663 } else { 2664 I = J++; 2665 } 2666 } 2667 2668 DEBUG({ 2669 size_t numCmps = 0; 2670 for (auto &I : Cases) 2671 // A range counts double, since it requires two compares. 2672 numCmps += I.Low != I.High ? 2 : 1; 2673 2674 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2675 << ". Total compares: " << numCmps << '\n'; 2676 }); 2677 } 2678 2679 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2680 MachineBasicBlock *Last) { 2681 // Update JTCases. 2682 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2683 if (JTCases[i].first.HeaderBB == First) 2684 JTCases[i].first.HeaderBB = Last; 2685 2686 // Update BitTestCases. 2687 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2688 if (BitTestCases[i].Parent == First) 2689 BitTestCases[i].Parent = Last; 2690 } 2691 2692 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2693 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2694 2695 // Figure out which block is immediately after the current one. 2696 MachineBasicBlock *NextBlock = nullptr; 2697 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2698 2699 // If there is only the default destination, branch to it if it is not the 2700 // next basic block. Otherwise, just fall through. 2701 if (!SI.getNumCases()) { 2702 // Update machine-CFG edges. 2703 2704 // If this is not a fall-through branch, emit the branch. 2705 SwitchMBB->addSuccessor(Default); 2706 if (Default != NextBlock) 2707 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2708 MVT::Other, getControlRoot(), 2709 DAG.getBasicBlock(Default))); 2710 2711 return; 2712 } 2713 2714 // If there are any non-default case statements, create a vector of Cases 2715 // representing each one, and sort the vector so that we can efficiently 2716 // create a binary search tree from them. 2717 CaseVector Cases; 2718 Clusterify(Cases, SI); 2719 2720 // Get the Value to be switched on and default basic blocks, which will be 2721 // inserted into CaseBlock records, representing basic blocks in the binary 2722 // search tree. 2723 const Value *SV = SI.getCondition(); 2724 2725 // Push the initial CaseRec onto the worklist 2726 CaseRecVector WorkList; 2727 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2728 CaseRange(Cases.begin(),Cases.end()))); 2729 2730 while (!WorkList.empty()) { 2731 // Grab a record representing a case range to process off the worklist 2732 CaseRec CR = WorkList.back(); 2733 WorkList.pop_back(); 2734 2735 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2736 continue; 2737 2738 // If the range has few cases (two or less) emit a series of specific 2739 // tests. 2740 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2741 continue; 2742 2743 // If the switch has more than N blocks, and is at least 40% dense, and the 2744 // target supports indirect branches, then emit a jump table rather than 2745 // lowering the switch to a binary tree of conditional branches. 2746 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2747 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2748 continue; 2749 2750 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2751 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2752 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2753 } 2754 } 2755 2756 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2757 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2758 2759 // Update machine-CFG edges with unique successors. 2760 SmallSet<BasicBlock*, 32> Done; 2761 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2762 BasicBlock *BB = I.getSuccessor(i); 2763 bool Inserted = Done.insert(BB); 2764 if (!Inserted) 2765 continue; 2766 2767 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2768 addSuccessorWithWeight(IndirectBrMBB, Succ); 2769 } 2770 2771 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2772 MVT::Other, getControlRoot(), 2773 getValue(I.getAddress()))); 2774 } 2775 2776 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2777 if (DAG.getTarget().Options.TrapUnreachable) 2778 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2779 } 2780 2781 void SelectionDAGBuilder::visitFSub(const User &I) { 2782 // -0.0 - X --> fneg 2783 Type *Ty = I.getType(); 2784 if (isa<Constant>(I.getOperand(0)) && 2785 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2786 SDValue Op2 = getValue(I.getOperand(1)); 2787 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2788 Op2.getValueType(), Op2)); 2789 return; 2790 } 2791 2792 visitBinary(I, ISD::FSUB); 2793 } 2794 2795 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2796 SDValue Op1 = getValue(I.getOperand(0)); 2797 SDValue Op2 = getValue(I.getOperand(1)); 2798 2799 bool nuw = false; 2800 bool nsw = false; 2801 bool exact = false; 2802 if (const OverflowingBinaryOperator *OFBinOp = 2803 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2804 nuw = OFBinOp->hasNoUnsignedWrap(); 2805 nsw = OFBinOp->hasNoSignedWrap(); 2806 } 2807 if (const PossiblyExactOperator *ExactOp = 2808 dyn_cast<const PossiblyExactOperator>(&I)) 2809 exact = ExactOp->isExact(); 2810 2811 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2812 Op1, Op2, nuw, nsw, exact); 2813 setValue(&I, BinNodeValue); 2814 } 2815 2816 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2817 SDValue Op1 = getValue(I.getOperand(0)); 2818 SDValue Op2 = getValue(I.getOperand(1)); 2819 2820 EVT ShiftTy = 2821 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2822 2823 // Coerce the shift amount to the right type if we can. 2824 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2825 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2826 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2827 SDLoc DL = getCurSDLoc(); 2828 2829 // If the operand is smaller than the shift count type, promote it. 2830 if (ShiftSize > Op2Size) 2831 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2832 2833 // If the operand is larger than the shift count type but the shift 2834 // count type has enough bits to represent any shift value, truncate 2835 // it now. This is a common case and it exposes the truncate to 2836 // optimization early. 2837 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2838 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2839 // Otherwise we'll need to temporarily settle for some other convenient 2840 // type. Type legalization will make adjustments once the shiftee is split. 2841 else 2842 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2843 } 2844 2845 bool nuw = false; 2846 bool nsw = false; 2847 bool exact = false; 2848 2849 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2850 2851 if (const OverflowingBinaryOperator *OFBinOp = 2852 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2853 nuw = OFBinOp->hasNoUnsignedWrap(); 2854 nsw = OFBinOp->hasNoSignedWrap(); 2855 } 2856 if (const PossiblyExactOperator *ExactOp = 2857 dyn_cast<const PossiblyExactOperator>(&I)) 2858 exact = ExactOp->isExact(); 2859 } 2860 2861 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2862 nuw, nsw, exact); 2863 setValue(&I, Res); 2864 } 2865 2866 void SelectionDAGBuilder::visitSDiv(const User &I) { 2867 SDValue Op1 = getValue(I.getOperand(0)); 2868 SDValue Op2 = getValue(I.getOperand(1)); 2869 2870 // Turn exact SDivs into multiplications. 2871 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2872 // exact bit. 2873 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2874 !isa<ConstantSDNode>(Op1) && 2875 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2876 setValue(&I, DAG.getTargetLoweringInfo() 2877 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2878 else 2879 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2880 Op1, Op2)); 2881 } 2882 2883 void SelectionDAGBuilder::visitICmp(const User &I) { 2884 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2885 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2886 predicate = IC->getPredicate(); 2887 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2888 predicate = ICmpInst::Predicate(IC->getPredicate()); 2889 SDValue Op1 = getValue(I.getOperand(0)); 2890 SDValue Op2 = getValue(I.getOperand(1)); 2891 ISD::CondCode Opcode = getICmpCondCode(predicate); 2892 2893 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2894 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2895 } 2896 2897 void SelectionDAGBuilder::visitFCmp(const User &I) { 2898 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2899 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2900 predicate = FC->getPredicate(); 2901 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2902 predicate = FCmpInst::Predicate(FC->getPredicate()); 2903 SDValue Op1 = getValue(I.getOperand(0)); 2904 SDValue Op2 = getValue(I.getOperand(1)); 2905 ISD::CondCode Condition = getFCmpCondCode(predicate); 2906 if (TM.Options.NoNaNsFPMath) 2907 Condition = getFCmpCodeWithoutNaN(Condition); 2908 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2909 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2910 } 2911 2912 void SelectionDAGBuilder::visitSelect(const User &I) { 2913 SmallVector<EVT, 4> ValueVTs; 2914 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2915 unsigned NumValues = ValueVTs.size(); 2916 if (NumValues == 0) return; 2917 2918 SmallVector<SDValue, 4> Values(NumValues); 2919 SDValue Cond = getValue(I.getOperand(0)); 2920 SDValue TrueVal = getValue(I.getOperand(1)); 2921 SDValue FalseVal = getValue(I.getOperand(2)); 2922 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2923 ISD::VSELECT : ISD::SELECT; 2924 2925 for (unsigned i = 0; i != NumValues; ++i) 2926 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2927 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2928 Cond, 2929 SDValue(TrueVal.getNode(), 2930 TrueVal.getResNo() + i), 2931 SDValue(FalseVal.getNode(), 2932 FalseVal.getResNo() + i)); 2933 2934 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2935 DAG.getVTList(ValueVTs), Values)); 2936 } 2937 2938 void SelectionDAGBuilder::visitTrunc(const User &I) { 2939 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2940 SDValue N = getValue(I.getOperand(0)); 2941 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2942 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2943 } 2944 2945 void SelectionDAGBuilder::visitZExt(const User &I) { 2946 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2947 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2948 SDValue N = getValue(I.getOperand(0)); 2949 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2950 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2951 } 2952 2953 void SelectionDAGBuilder::visitSExt(const User &I) { 2954 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2955 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2956 SDValue N = getValue(I.getOperand(0)); 2957 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2958 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2959 } 2960 2961 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2962 // FPTrunc is never a no-op cast, no need to check 2963 SDValue N = getValue(I.getOperand(0)); 2964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2965 EVT DestVT = TLI.getValueType(I.getType()); 2966 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2967 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2968 } 2969 2970 void SelectionDAGBuilder::visitFPExt(const User &I) { 2971 // FPExt is never a no-op cast, no need to check 2972 SDValue N = getValue(I.getOperand(0)); 2973 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2974 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2975 } 2976 2977 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2978 // FPToUI is never a no-op cast, no need to check 2979 SDValue N = getValue(I.getOperand(0)); 2980 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2981 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2982 } 2983 2984 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2985 // FPToSI is never a no-op cast, no need to check 2986 SDValue N = getValue(I.getOperand(0)); 2987 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2988 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2989 } 2990 2991 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2992 // UIToFP is never a no-op cast, no need to check 2993 SDValue N = getValue(I.getOperand(0)); 2994 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2995 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2996 } 2997 2998 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2999 // SIToFP is never a no-op cast, no need to check 3000 SDValue N = getValue(I.getOperand(0)); 3001 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3002 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3003 } 3004 3005 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3006 // What to do depends on the size of the integer and the size of the pointer. 3007 // We can either truncate, zero extend, or no-op, accordingly. 3008 SDValue N = getValue(I.getOperand(0)); 3009 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3010 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3011 } 3012 3013 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3014 // What to do depends on the size of the integer and the size of the pointer. 3015 // We can either truncate, zero extend, or no-op, accordingly. 3016 SDValue N = getValue(I.getOperand(0)); 3017 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3018 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3019 } 3020 3021 void SelectionDAGBuilder::visitBitCast(const User &I) { 3022 SDValue N = getValue(I.getOperand(0)); 3023 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3024 3025 // BitCast assures us that source and destination are the same size so this is 3026 // either a BITCAST or a no-op. 3027 if (DestVT != N.getValueType()) 3028 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3029 DestVT, N)); // convert types. 3030 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3031 // might fold any kind of constant expression to an integer constant and that 3032 // is not what we are looking for. Only regcognize a bitcast of a genuine 3033 // constant integer as an opaque constant. 3034 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3035 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3036 /*isOpaque*/true)); 3037 else 3038 setValue(&I, N); // noop cast. 3039 } 3040 3041 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3042 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3043 const Value *SV = I.getOperand(0); 3044 SDValue N = getValue(SV); 3045 EVT DestVT = TLI.getValueType(I.getType()); 3046 3047 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3048 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3049 3050 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3051 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3052 3053 setValue(&I, N); 3054 } 3055 3056 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 SDValue InVec = getValue(I.getOperand(0)); 3059 SDValue InVal = getValue(I.getOperand(1)); 3060 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3061 getCurSDLoc(), TLI.getVectorIdxTy()); 3062 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3063 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3064 } 3065 3066 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3068 SDValue InVec = getValue(I.getOperand(0)); 3069 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3070 getCurSDLoc(), TLI.getVectorIdxTy()); 3071 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3072 TLI.getValueType(I.getType()), InVec, InIdx)); 3073 } 3074 3075 // Utility for visitShuffleVector - Return true if every element in Mask, 3076 // beginning from position Pos and ending in Pos+Size, falls within the 3077 // specified sequential range [L, L+Pos). or is undef. 3078 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3079 unsigned Pos, unsigned Size, int Low) { 3080 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3081 if (Mask[i] >= 0 && Mask[i] != Low) 3082 return false; 3083 return true; 3084 } 3085 3086 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3087 SDValue Src1 = getValue(I.getOperand(0)); 3088 SDValue Src2 = getValue(I.getOperand(1)); 3089 3090 SmallVector<int, 8> Mask; 3091 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3092 unsigned MaskNumElts = Mask.size(); 3093 3094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3095 EVT VT = TLI.getValueType(I.getType()); 3096 EVT SrcVT = Src1.getValueType(); 3097 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3098 3099 if (SrcNumElts == MaskNumElts) { 3100 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3101 &Mask[0])); 3102 return; 3103 } 3104 3105 // Normalize the shuffle vector since mask and vector length don't match. 3106 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3107 // Mask is longer than the source vectors and is a multiple of the source 3108 // vectors. We can use concatenate vector to make the mask and vectors 3109 // lengths match. 3110 if (SrcNumElts*2 == MaskNumElts) { 3111 // First check for Src1 in low and Src2 in high 3112 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3113 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3114 // The shuffle is concatenating two vectors together. 3115 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3116 VT, Src1, Src2)); 3117 return; 3118 } 3119 // Then check for Src2 in low and Src1 in high 3120 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3121 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3122 // The shuffle is concatenating two vectors together. 3123 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3124 VT, Src2, Src1)); 3125 return; 3126 } 3127 } 3128 3129 // Pad both vectors with undefs to make them the same length as the mask. 3130 unsigned NumConcat = MaskNumElts / SrcNumElts; 3131 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3132 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3133 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3134 3135 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3136 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3137 MOps1[0] = Src1; 3138 MOps2[0] = Src2; 3139 3140 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3141 getCurSDLoc(), VT, MOps1); 3142 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3143 getCurSDLoc(), VT, MOps2); 3144 3145 // Readjust mask for new input vector length. 3146 SmallVector<int, 8> MappedOps; 3147 for (unsigned i = 0; i != MaskNumElts; ++i) { 3148 int Idx = Mask[i]; 3149 if (Idx >= (int)SrcNumElts) 3150 Idx -= SrcNumElts - MaskNumElts; 3151 MappedOps.push_back(Idx); 3152 } 3153 3154 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3155 &MappedOps[0])); 3156 return; 3157 } 3158 3159 if (SrcNumElts > MaskNumElts) { 3160 // Analyze the access pattern of the vector to see if we can extract 3161 // two subvectors and do the shuffle. The analysis is done by calculating 3162 // the range of elements the mask access on both vectors. 3163 int MinRange[2] = { static_cast<int>(SrcNumElts), 3164 static_cast<int>(SrcNumElts)}; 3165 int MaxRange[2] = {-1, -1}; 3166 3167 for (unsigned i = 0; i != MaskNumElts; ++i) { 3168 int Idx = Mask[i]; 3169 unsigned Input = 0; 3170 if (Idx < 0) 3171 continue; 3172 3173 if (Idx >= (int)SrcNumElts) { 3174 Input = 1; 3175 Idx -= SrcNumElts; 3176 } 3177 if (Idx > MaxRange[Input]) 3178 MaxRange[Input] = Idx; 3179 if (Idx < MinRange[Input]) 3180 MinRange[Input] = Idx; 3181 } 3182 3183 // Check if the access is smaller than the vector size and can we find 3184 // a reasonable extract index. 3185 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3186 // Extract. 3187 int StartIdx[2]; // StartIdx to extract from 3188 for (unsigned Input = 0; Input < 2; ++Input) { 3189 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3190 RangeUse[Input] = 0; // Unused 3191 StartIdx[Input] = 0; 3192 continue; 3193 } 3194 3195 // Find a good start index that is a multiple of the mask length. Then 3196 // see if the rest of the elements are in range. 3197 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3198 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3199 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3200 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3201 } 3202 3203 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3204 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3205 return; 3206 } 3207 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3208 // Extract appropriate subvector and generate a vector shuffle 3209 for (unsigned Input = 0; Input < 2; ++Input) { 3210 SDValue &Src = Input == 0 ? Src1 : Src2; 3211 if (RangeUse[Input] == 0) 3212 Src = DAG.getUNDEF(VT); 3213 else 3214 Src = DAG.getNode( 3215 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3216 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3217 } 3218 3219 // Calculate new mask. 3220 SmallVector<int, 8> MappedOps; 3221 for (unsigned i = 0; i != MaskNumElts; ++i) { 3222 int Idx = Mask[i]; 3223 if (Idx >= 0) { 3224 if (Idx < (int)SrcNumElts) 3225 Idx -= StartIdx[0]; 3226 else 3227 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3228 } 3229 MappedOps.push_back(Idx); 3230 } 3231 3232 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3233 &MappedOps[0])); 3234 return; 3235 } 3236 } 3237 3238 // We can't use either concat vectors or extract subvectors so fall back to 3239 // replacing the shuffle with extract and build vector. 3240 // to insert and build vector. 3241 EVT EltVT = VT.getVectorElementType(); 3242 EVT IdxVT = TLI.getVectorIdxTy(); 3243 SmallVector<SDValue,8> Ops; 3244 for (unsigned i = 0; i != MaskNumElts; ++i) { 3245 int Idx = Mask[i]; 3246 SDValue Res; 3247 3248 if (Idx < 0) { 3249 Res = DAG.getUNDEF(EltVT); 3250 } else { 3251 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3252 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3253 3254 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3255 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3256 } 3257 3258 Ops.push_back(Res); 3259 } 3260 3261 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3262 } 3263 3264 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3265 const Value *Op0 = I.getOperand(0); 3266 const Value *Op1 = I.getOperand(1); 3267 Type *AggTy = I.getType(); 3268 Type *ValTy = Op1->getType(); 3269 bool IntoUndef = isa<UndefValue>(Op0); 3270 bool FromUndef = isa<UndefValue>(Op1); 3271 3272 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3273 3274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3275 SmallVector<EVT, 4> AggValueVTs; 3276 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3277 SmallVector<EVT, 4> ValValueVTs; 3278 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3279 3280 unsigned NumAggValues = AggValueVTs.size(); 3281 unsigned NumValValues = ValValueVTs.size(); 3282 SmallVector<SDValue, 4> Values(NumAggValues); 3283 3284 // Ignore an insertvalue that produces an empty object 3285 if (!NumAggValues) { 3286 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3287 return; 3288 } 3289 3290 SDValue Agg = getValue(Op0); 3291 unsigned i = 0; 3292 // Copy the beginning value(s) from the original aggregate. 3293 for (; i != LinearIndex; ++i) 3294 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3295 SDValue(Agg.getNode(), Agg.getResNo() + i); 3296 // Copy values from the inserted value(s). 3297 if (NumValValues) { 3298 SDValue Val = getValue(Op1); 3299 for (; i != LinearIndex + NumValValues; ++i) 3300 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3301 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3302 } 3303 // Copy remaining value(s) from the original aggregate. 3304 for (; i != NumAggValues; ++i) 3305 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3306 SDValue(Agg.getNode(), Agg.getResNo() + i); 3307 3308 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3309 DAG.getVTList(AggValueVTs), Values)); 3310 } 3311 3312 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3313 const Value *Op0 = I.getOperand(0); 3314 Type *AggTy = Op0->getType(); 3315 Type *ValTy = I.getType(); 3316 bool OutOfUndef = isa<UndefValue>(Op0); 3317 3318 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3319 3320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3321 SmallVector<EVT, 4> ValValueVTs; 3322 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3323 3324 unsigned NumValValues = ValValueVTs.size(); 3325 3326 // Ignore a extractvalue that produces an empty object 3327 if (!NumValValues) { 3328 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3329 return; 3330 } 3331 3332 SmallVector<SDValue, 4> Values(NumValValues); 3333 3334 SDValue Agg = getValue(Op0); 3335 // Copy out the selected value(s). 3336 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3337 Values[i - LinearIndex] = 3338 OutOfUndef ? 3339 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3340 SDValue(Agg.getNode(), Agg.getResNo() + i); 3341 3342 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3343 DAG.getVTList(ValValueVTs), Values)); 3344 } 3345 3346 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3347 Value *Op0 = I.getOperand(0); 3348 // Note that the pointer operand may be a vector of pointers. Take the scalar 3349 // element which holds a pointer. 3350 Type *Ty = Op0->getType()->getScalarType(); 3351 unsigned AS = Ty->getPointerAddressSpace(); 3352 SDValue N = getValue(Op0); 3353 3354 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3355 OI != E; ++OI) { 3356 const Value *Idx = *OI; 3357 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3358 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3359 if (Field) { 3360 // N = N + Offset 3361 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3362 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3363 DAG.getConstant(Offset, N.getValueType())); 3364 } 3365 3366 Ty = StTy->getElementType(Field); 3367 } else { 3368 Ty = cast<SequentialType>(Ty)->getElementType(); 3369 3370 // If this is a constant subscript, handle it quickly. 3371 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3372 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3373 if (CI->isZero()) continue; 3374 uint64_t Offs = 3375 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3376 SDValue OffsVal; 3377 EVT PTy = TLI.getPointerTy(AS); 3378 unsigned PtrBits = PTy.getSizeInBits(); 3379 if (PtrBits < 64) 3380 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3381 DAG.getConstant(Offs, MVT::i64)); 3382 else 3383 OffsVal = DAG.getConstant(Offs, PTy); 3384 3385 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3386 OffsVal); 3387 continue; 3388 } 3389 3390 // N = N + Idx * ElementSize; 3391 APInt ElementSize = 3392 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3393 SDValue IdxN = getValue(Idx); 3394 3395 // If the index is smaller or larger than intptr_t, truncate or extend 3396 // it. 3397 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3398 3399 // If this is a multiply by a power of two, turn it into a shl 3400 // immediately. This is a very common case. 3401 if (ElementSize != 1) { 3402 if (ElementSize.isPowerOf2()) { 3403 unsigned Amt = ElementSize.logBase2(); 3404 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3405 N.getValueType(), IdxN, 3406 DAG.getConstant(Amt, IdxN.getValueType())); 3407 } else { 3408 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3409 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3410 N.getValueType(), IdxN, Scale); 3411 } 3412 } 3413 3414 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3415 N.getValueType(), N, IdxN); 3416 } 3417 } 3418 3419 setValue(&I, N); 3420 } 3421 3422 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3423 // If this is a fixed sized alloca in the entry block of the function, 3424 // allocate it statically on the stack. 3425 if (FuncInfo.StaticAllocaMap.count(&I)) 3426 return; // getValue will auto-populate this. 3427 3428 Type *Ty = I.getAllocatedType(); 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3431 unsigned Align = 3432 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3433 I.getAlignment()); 3434 3435 SDValue AllocSize = getValue(I.getArraySize()); 3436 3437 EVT IntPtr = TLI.getPointerTy(); 3438 if (AllocSize.getValueType() != IntPtr) 3439 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3440 3441 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3442 AllocSize, 3443 DAG.getConstant(TySize, IntPtr)); 3444 3445 // Handle alignment. If the requested alignment is less than or equal to 3446 // the stack alignment, ignore it. If the size is greater than or equal to 3447 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3448 unsigned StackAlign = 3449 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3450 if (Align <= StackAlign) 3451 Align = 0; 3452 3453 // Round the size of the allocation up to the stack alignment size 3454 // by add SA-1 to the size. 3455 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3456 AllocSize.getValueType(), AllocSize, 3457 DAG.getIntPtrConstant(StackAlign-1)); 3458 3459 // Mask out the low bits for alignment purposes. 3460 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3461 AllocSize.getValueType(), AllocSize, 3462 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3463 3464 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3465 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3466 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3467 setValue(&I, DSA); 3468 DAG.setRoot(DSA.getValue(1)); 3469 3470 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3471 } 3472 3473 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3474 if (I.isAtomic()) 3475 return visitAtomicLoad(I); 3476 3477 const Value *SV = I.getOperand(0); 3478 SDValue Ptr = getValue(SV); 3479 3480 Type *Ty = I.getType(); 3481 3482 bool isVolatile = I.isVolatile(); 3483 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3484 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3485 unsigned Alignment = I.getAlignment(); 3486 3487 AAMDNodes AAInfo; 3488 I.getAAMetadata(AAInfo); 3489 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3490 3491 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3492 SmallVector<EVT, 4> ValueVTs; 3493 SmallVector<uint64_t, 4> Offsets; 3494 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3495 unsigned NumValues = ValueVTs.size(); 3496 if (NumValues == 0) 3497 return; 3498 3499 SDValue Root; 3500 bool ConstantMemory = false; 3501 if (isVolatile || NumValues > MaxParallelChains) 3502 // Serialize volatile loads with other side effects. 3503 Root = getRoot(); 3504 else if (AA->pointsToConstantMemory( 3505 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3506 // Do not serialize (non-volatile) loads of constant memory with anything. 3507 Root = DAG.getEntryNode(); 3508 ConstantMemory = true; 3509 } else { 3510 // Do not serialize non-volatile loads against each other. 3511 Root = DAG.getRoot(); 3512 } 3513 3514 if (isVolatile) 3515 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3516 3517 SmallVector<SDValue, 4> Values(NumValues); 3518 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3519 NumValues)); 3520 EVT PtrVT = Ptr.getValueType(); 3521 unsigned ChainI = 0; 3522 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3523 // Serializing loads here may result in excessive register pressure, and 3524 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3525 // could recover a bit by hoisting nodes upward in the chain by recognizing 3526 // they are side-effect free or do not alias. The optimizer should really 3527 // avoid this case by converting large object/array copies to llvm.memcpy 3528 // (MaxParallelChains should always remain as failsafe). 3529 if (ChainI == MaxParallelChains) { 3530 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3531 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3532 makeArrayRef(Chains.data(), ChainI)); 3533 Root = Chain; 3534 ChainI = 0; 3535 } 3536 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3537 PtrVT, Ptr, 3538 DAG.getConstant(Offsets[i], PtrVT)); 3539 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3540 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3541 isNonTemporal, isInvariant, Alignment, AAInfo, 3542 Ranges); 3543 3544 Values[i] = L; 3545 Chains[ChainI] = L.getValue(1); 3546 } 3547 3548 if (!ConstantMemory) { 3549 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3550 makeArrayRef(Chains.data(), ChainI)); 3551 if (isVolatile) 3552 DAG.setRoot(Chain); 3553 else 3554 PendingLoads.push_back(Chain); 3555 } 3556 3557 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3558 DAG.getVTList(ValueVTs), Values)); 3559 } 3560 3561 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3562 if (I.isAtomic()) 3563 return visitAtomicStore(I); 3564 3565 const Value *SrcV = I.getOperand(0); 3566 const Value *PtrV = I.getOperand(1); 3567 3568 SmallVector<EVT, 4> ValueVTs; 3569 SmallVector<uint64_t, 4> Offsets; 3570 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3571 ValueVTs, &Offsets); 3572 unsigned NumValues = ValueVTs.size(); 3573 if (NumValues == 0) 3574 return; 3575 3576 // Get the lowered operands. Note that we do this after 3577 // checking if NumResults is zero, because with zero results 3578 // the operands won't have values in the map. 3579 SDValue Src = getValue(SrcV); 3580 SDValue Ptr = getValue(PtrV); 3581 3582 SDValue Root = getRoot(); 3583 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3584 NumValues)); 3585 EVT PtrVT = Ptr.getValueType(); 3586 bool isVolatile = I.isVolatile(); 3587 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3588 unsigned Alignment = I.getAlignment(); 3589 3590 AAMDNodes AAInfo; 3591 I.getAAMetadata(AAInfo); 3592 3593 unsigned ChainI = 0; 3594 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3595 // See visitLoad comments. 3596 if (ChainI == MaxParallelChains) { 3597 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3598 makeArrayRef(Chains.data(), ChainI)); 3599 Root = Chain; 3600 ChainI = 0; 3601 } 3602 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3603 DAG.getConstant(Offsets[i], PtrVT)); 3604 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3605 SDValue(Src.getNode(), Src.getResNo() + i), 3606 Add, MachinePointerInfo(PtrV, Offsets[i]), 3607 isVolatile, isNonTemporal, Alignment, AAInfo); 3608 Chains[ChainI] = St; 3609 } 3610 3611 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3612 makeArrayRef(Chains.data(), ChainI)); 3613 DAG.setRoot(StoreNode); 3614 } 3615 3616 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3617 SDLoc dl = getCurSDLoc(); 3618 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3619 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3620 SynchronizationScope Scope = I.getSynchScope(); 3621 3622 SDValue InChain = getRoot(); 3623 3624 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3625 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3626 SDValue L = DAG.getAtomicCmpSwap( 3627 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3628 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3629 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3630 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3631 3632 SDValue OutChain = L.getValue(2); 3633 3634 setValue(&I, L); 3635 DAG.setRoot(OutChain); 3636 } 3637 3638 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3639 SDLoc dl = getCurSDLoc(); 3640 ISD::NodeType NT; 3641 switch (I.getOperation()) { 3642 default: llvm_unreachable("Unknown atomicrmw operation"); 3643 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3644 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3645 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3646 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3647 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3648 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3649 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3650 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3651 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3652 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3653 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3654 } 3655 AtomicOrdering Order = I.getOrdering(); 3656 SynchronizationScope Scope = I.getSynchScope(); 3657 3658 SDValue InChain = getRoot(); 3659 3660 SDValue L = 3661 DAG.getAtomic(NT, dl, 3662 getValue(I.getValOperand()).getSimpleValueType(), 3663 InChain, 3664 getValue(I.getPointerOperand()), 3665 getValue(I.getValOperand()), 3666 I.getPointerOperand(), 3667 /* Alignment=*/ 0, Order, Scope); 3668 3669 SDValue OutChain = L.getValue(1); 3670 3671 setValue(&I, L); 3672 DAG.setRoot(OutChain); 3673 } 3674 3675 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3676 SDLoc dl = getCurSDLoc(); 3677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3678 SDValue Ops[3]; 3679 Ops[0] = getRoot(); 3680 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3681 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3682 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3683 } 3684 3685 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3686 SDLoc dl = getCurSDLoc(); 3687 AtomicOrdering Order = I.getOrdering(); 3688 SynchronizationScope Scope = I.getSynchScope(); 3689 3690 SDValue InChain = getRoot(); 3691 3692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3693 EVT VT = TLI.getValueType(I.getType()); 3694 3695 if (I.getAlignment() < VT.getSizeInBits() / 8) 3696 report_fatal_error("Cannot generate unaligned atomic load"); 3697 3698 MachineMemOperand *MMO = 3699 DAG.getMachineFunction(). 3700 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3701 MachineMemOperand::MOVolatile | 3702 MachineMemOperand::MOLoad, 3703 VT.getStoreSize(), 3704 I.getAlignment() ? I.getAlignment() : 3705 DAG.getEVTAlignment(VT)); 3706 3707 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3708 SDValue L = 3709 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3710 getValue(I.getPointerOperand()), MMO, 3711 Order, Scope); 3712 3713 SDValue OutChain = L.getValue(1); 3714 3715 setValue(&I, L); 3716 DAG.setRoot(OutChain); 3717 } 3718 3719 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3720 SDLoc dl = getCurSDLoc(); 3721 3722 AtomicOrdering Order = I.getOrdering(); 3723 SynchronizationScope Scope = I.getSynchScope(); 3724 3725 SDValue InChain = getRoot(); 3726 3727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3728 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3729 3730 if (I.getAlignment() < VT.getSizeInBits() / 8) 3731 report_fatal_error("Cannot generate unaligned atomic store"); 3732 3733 SDValue OutChain = 3734 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3735 InChain, 3736 getValue(I.getPointerOperand()), 3737 getValue(I.getValueOperand()), 3738 I.getPointerOperand(), I.getAlignment(), 3739 Order, Scope); 3740 3741 DAG.setRoot(OutChain); 3742 } 3743 3744 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3745 /// node. 3746 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3747 unsigned Intrinsic) { 3748 bool HasChain = !I.doesNotAccessMemory(); 3749 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3750 3751 // Build the operand list. 3752 SmallVector<SDValue, 8> Ops; 3753 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3754 if (OnlyLoad) { 3755 // We don't need to serialize loads against other loads. 3756 Ops.push_back(DAG.getRoot()); 3757 } else { 3758 Ops.push_back(getRoot()); 3759 } 3760 } 3761 3762 // Info is set by getTgtMemInstrinsic 3763 TargetLowering::IntrinsicInfo Info; 3764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3765 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3766 3767 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3768 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3769 Info.opc == ISD::INTRINSIC_W_CHAIN) 3770 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3771 3772 // Add all operands of the call to the operand list. 3773 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3774 SDValue Op = getValue(I.getArgOperand(i)); 3775 Ops.push_back(Op); 3776 } 3777 3778 SmallVector<EVT, 4> ValueVTs; 3779 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3780 3781 if (HasChain) 3782 ValueVTs.push_back(MVT::Other); 3783 3784 SDVTList VTs = DAG.getVTList(ValueVTs); 3785 3786 // Create the node. 3787 SDValue Result; 3788 if (IsTgtIntrinsic) { 3789 // This is target intrinsic that touches memory 3790 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3791 VTs, Ops, Info.memVT, 3792 MachinePointerInfo(Info.ptrVal, Info.offset), 3793 Info.align, Info.vol, 3794 Info.readMem, Info.writeMem, Info.size); 3795 } else if (!HasChain) { 3796 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3797 } else if (!I.getType()->isVoidTy()) { 3798 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3799 } else { 3800 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3801 } 3802 3803 if (HasChain) { 3804 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3805 if (OnlyLoad) 3806 PendingLoads.push_back(Chain); 3807 else 3808 DAG.setRoot(Chain); 3809 } 3810 3811 if (!I.getType()->isVoidTy()) { 3812 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3813 EVT VT = TLI.getValueType(PTy); 3814 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3815 } 3816 3817 setValue(&I, Result); 3818 } 3819 } 3820 3821 /// GetSignificand - Get the significand and build it into a floating-point 3822 /// number with exponent of 1: 3823 /// 3824 /// Op = (Op & 0x007fffff) | 0x3f800000; 3825 /// 3826 /// where Op is the hexadecimal representation of floating point value. 3827 static SDValue 3828 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3829 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3830 DAG.getConstant(0x007fffff, MVT::i32)); 3831 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3832 DAG.getConstant(0x3f800000, MVT::i32)); 3833 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3834 } 3835 3836 /// GetExponent - Get the exponent: 3837 /// 3838 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3839 /// 3840 /// where Op is the hexadecimal representation of floating point value. 3841 static SDValue 3842 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3843 SDLoc dl) { 3844 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3845 DAG.getConstant(0x7f800000, MVT::i32)); 3846 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3847 DAG.getConstant(23, TLI.getPointerTy())); 3848 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3849 DAG.getConstant(127, MVT::i32)); 3850 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3851 } 3852 3853 /// getF32Constant - Get 32-bit floating point constant. 3854 static SDValue 3855 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3856 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3857 MVT::f32); 3858 } 3859 3860 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3861 /// limited-precision mode. 3862 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3863 const TargetLowering &TLI) { 3864 if (Op.getValueType() == MVT::f32 && 3865 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3866 3867 // Put the exponent in the right bit position for later addition to the 3868 // final result: 3869 // 3870 // #define LOG2OFe 1.4426950f 3871 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3872 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3873 getF32Constant(DAG, 0x3fb8aa3b)); 3874 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3875 3876 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3877 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3878 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3879 3880 // IntegerPartOfX <<= 23; 3881 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3882 DAG.getConstant(23, TLI.getPointerTy())); 3883 3884 SDValue TwoToFracPartOfX; 3885 if (LimitFloatPrecision <= 6) { 3886 // For floating-point precision of 6: 3887 // 3888 // TwoToFractionalPartOfX = 3889 // 0.997535578f + 3890 // (0.735607626f + 0.252464424f * x) * x; 3891 // 3892 // error 0.0144103317, which is 6 bits 3893 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3894 getF32Constant(DAG, 0x3e814304)); 3895 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3896 getF32Constant(DAG, 0x3f3c50c8)); 3897 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3898 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3899 getF32Constant(DAG, 0x3f7f5e7e)); 3900 } else if (LimitFloatPrecision <= 12) { 3901 // For floating-point precision of 12: 3902 // 3903 // TwoToFractionalPartOfX = 3904 // 0.999892986f + 3905 // (0.696457318f + 3906 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3907 // 3908 // 0.000107046256 error, which is 13 to 14 bits 3909 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3910 getF32Constant(DAG, 0x3da235e3)); 3911 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3912 getF32Constant(DAG, 0x3e65b8f3)); 3913 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3914 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3915 getF32Constant(DAG, 0x3f324b07)); 3916 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3917 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3918 getF32Constant(DAG, 0x3f7ff8fd)); 3919 } else { // LimitFloatPrecision <= 18 3920 // For floating-point precision of 18: 3921 // 3922 // TwoToFractionalPartOfX = 3923 // 0.999999982f + 3924 // (0.693148872f + 3925 // (0.240227044f + 3926 // (0.554906021e-1f + 3927 // (0.961591928e-2f + 3928 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3929 // 3930 // error 2.47208000*10^(-7), which is better than 18 bits 3931 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3932 getF32Constant(DAG, 0x3924b03e)); 3933 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3934 getF32Constant(DAG, 0x3ab24b87)); 3935 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3936 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3937 getF32Constant(DAG, 0x3c1d8c17)); 3938 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3939 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3940 getF32Constant(DAG, 0x3d634a1d)); 3941 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3942 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3943 getF32Constant(DAG, 0x3e75fe14)); 3944 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3945 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3946 getF32Constant(DAG, 0x3f317234)); 3947 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3948 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3949 getF32Constant(DAG, 0x3f800000)); 3950 } 3951 3952 // Add the exponent into the result in integer domain. 3953 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3954 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3955 DAG.getNode(ISD::ADD, dl, MVT::i32, 3956 t13, IntegerPartOfX)); 3957 } 3958 3959 // No special expansion. 3960 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3961 } 3962 3963 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3964 /// limited-precision mode. 3965 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3966 const TargetLowering &TLI) { 3967 if (Op.getValueType() == MVT::f32 && 3968 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3969 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3970 3971 // Scale the exponent by log(2) [0.69314718f]. 3972 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3973 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3974 getF32Constant(DAG, 0x3f317218)); 3975 3976 // Get the significand and build it into a floating-point number with 3977 // exponent of 1. 3978 SDValue X = GetSignificand(DAG, Op1, dl); 3979 3980 SDValue LogOfMantissa; 3981 if (LimitFloatPrecision <= 6) { 3982 // For floating-point precision of 6: 3983 // 3984 // LogofMantissa = 3985 // -1.1609546f + 3986 // (1.4034025f - 0.23903021f * x) * x; 3987 // 3988 // error 0.0034276066, which is better than 8 bits 3989 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3990 getF32Constant(DAG, 0xbe74c456)); 3991 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3992 getF32Constant(DAG, 0x3fb3a2b1)); 3993 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3994 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3995 getF32Constant(DAG, 0x3f949a29)); 3996 } else if (LimitFloatPrecision <= 12) { 3997 // For floating-point precision of 12: 3998 // 3999 // LogOfMantissa = 4000 // -1.7417939f + 4001 // (2.8212026f + 4002 // (-1.4699568f + 4003 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4004 // 4005 // error 0.000061011436, which is 14 bits 4006 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4007 getF32Constant(DAG, 0xbd67b6d6)); 4008 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4009 getF32Constant(DAG, 0x3ee4f4b8)); 4010 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4011 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4012 getF32Constant(DAG, 0x3fbc278b)); 4013 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4014 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4015 getF32Constant(DAG, 0x40348e95)); 4016 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4017 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4018 getF32Constant(DAG, 0x3fdef31a)); 4019 } else { // LimitFloatPrecision <= 18 4020 // For floating-point precision of 18: 4021 // 4022 // LogOfMantissa = 4023 // -2.1072184f + 4024 // (4.2372794f + 4025 // (-3.7029485f + 4026 // (2.2781945f + 4027 // (-0.87823314f + 4028 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4029 // 4030 // error 0.0000023660568, which is better than 18 bits 4031 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4032 getF32Constant(DAG, 0xbc91e5ac)); 4033 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4034 getF32Constant(DAG, 0x3e4350aa)); 4035 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4036 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4037 getF32Constant(DAG, 0x3f60d3e3)); 4038 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4039 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4040 getF32Constant(DAG, 0x4011cdf0)); 4041 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4042 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4043 getF32Constant(DAG, 0x406cfd1c)); 4044 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4045 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4046 getF32Constant(DAG, 0x408797cb)); 4047 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4048 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4049 getF32Constant(DAG, 0x4006dcab)); 4050 } 4051 4052 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4053 } 4054 4055 // No special expansion. 4056 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4057 } 4058 4059 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4060 /// limited-precision mode. 4061 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4062 const TargetLowering &TLI) { 4063 if (Op.getValueType() == MVT::f32 && 4064 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4065 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4066 4067 // Get the exponent. 4068 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4069 4070 // Get the significand and build it into a floating-point number with 4071 // exponent of 1. 4072 SDValue X = GetSignificand(DAG, Op1, dl); 4073 4074 // Different possible minimax approximations of significand in 4075 // floating-point for various degrees of accuracy over [1,2]. 4076 SDValue Log2ofMantissa; 4077 if (LimitFloatPrecision <= 6) { 4078 // For floating-point precision of 6: 4079 // 4080 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4081 // 4082 // error 0.0049451742, which is more than 7 bits 4083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4084 getF32Constant(DAG, 0xbeb08fe0)); 4085 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4086 getF32Constant(DAG, 0x40019463)); 4087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4088 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4089 getF32Constant(DAG, 0x3fd6633d)); 4090 } else if (LimitFloatPrecision <= 12) { 4091 // For floating-point precision of 12: 4092 // 4093 // Log2ofMantissa = 4094 // -2.51285454f + 4095 // (4.07009056f + 4096 // (-2.12067489f + 4097 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4098 // 4099 // error 0.0000876136000, which is better than 13 bits 4100 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4101 getF32Constant(DAG, 0xbda7262e)); 4102 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4103 getF32Constant(DAG, 0x3f25280b)); 4104 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4105 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4106 getF32Constant(DAG, 0x4007b923)); 4107 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4108 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4109 getF32Constant(DAG, 0x40823e2f)); 4110 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4111 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4112 getF32Constant(DAG, 0x4020d29c)); 4113 } else { // LimitFloatPrecision <= 18 4114 // For floating-point precision of 18: 4115 // 4116 // Log2ofMantissa = 4117 // -3.0400495f + 4118 // (6.1129976f + 4119 // (-5.3420409f + 4120 // (3.2865683f + 4121 // (-1.2669343f + 4122 // (0.27515199f - 4123 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4124 // 4125 // error 0.0000018516, which is better than 18 bits 4126 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4127 getF32Constant(DAG, 0xbcd2769e)); 4128 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4129 getF32Constant(DAG, 0x3e8ce0b9)); 4130 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4131 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4132 getF32Constant(DAG, 0x3fa22ae7)); 4133 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4134 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4135 getF32Constant(DAG, 0x40525723)); 4136 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4137 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4138 getF32Constant(DAG, 0x40aaf200)); 4139 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4140 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4141 getF32Constant(DAG, 0x40c39dad)); 4142 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4143 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4144 getF32Constant(DAG, 0x4042902c)); 4145 } 4146 4147 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4148 } 4149 4150 // No special expansion. 4151 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4152 } 4153 4154 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4155 /// limited-precision mode. 4156 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4157 const TargetLowering &TLI) { 4158 if (Op.getValueType() == MVT::f32 && 4159 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4160 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4161 4162 // Scale the exponent by log10(2) [0.30102999f]. 4163 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4164 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4165 getF32Constant(DAG, 0x3e9a209a)); 4166 4167 // Get the significand and build it into a floating-point number with 4168 // exponent of 1. 4169 SDValue X = GetSignificand(DAG, Op1, dl); 4170 4171 SDValue Log10ofMantissa; 4172 if (LimitFloatPrecision <= 6) { 4173 // For floating-point precision of 6: 4174 // 4175 // Log10ofMantissa = 4176 // -0.50419619f + 4177 // (0.60948995f - 0.10380950f * x) * x; 4178 // 4179 // error 0.0014886165, which is 6 bits 4180 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4181 getF32Constant(DAG, 0xbdd49a13)); 4182 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4183 getF32Constant(DAG, 0x3f1c0789)); 4184 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4185 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4186 getF32Constant(DAG, 0x3f011300)); 4187 } else if (LimitFloatPrecision <= 12) { 4188 // For floating-point precision of 12: 4189 // 4190 // Log10ofMantissa = 4191 // -0.64831180f + 4192 // (0.91751397f + 4193 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4194 // 4195 // error 0.00019228036, which is better than 12 bits 4196 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4197 getF32Constant(DAG, 0x3d431f31)); 4198 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4199 getF32Constant(DAG, 0x3ea21fb2)); 4200 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4201 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4202 getF32Constant(DAG, 0x3f6ae232)); 4203 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4204 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4205 getF32Constant(DAG, 0x3f25f7c3)); 4206 } else { // LimitFloatPrecision <= 18 4207 // For floating-point precision of 18: 4208 // 4209 // Log10ofMantissa = 4210 // -0.84299375f + 4211 // (1.5327582f + 4212 // (-1.0688956f + 4213 // (0.49102474f + 4214 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4215 // 4216 // error 0.0000037995730, which is better than 18 bits 4217 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4218 getF32Constant(DAG, 0x3c5d51ce)); 4219 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4220 getF32Constant(DAG, 0x3e00685a)); 4221 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4222 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4223 getF32Constant(DAG, 0x3efb6798)); 4224 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4225 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4226 getF32Constant(DAG, 0x3f88d192)); 4227 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4228 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4229 getF32Constant(DAG, 0x3fc4316c)); 4230 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4231 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4232 getF32Constant(DAG, 0x3f57ce70)); 4233 } 4234 4235 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4236 } 4237 4238 // No special expansion. 4239 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4240 } 4241 4242 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4243 /// limited-precision mode. 4244 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4245 const TargetLowering &TLI) { 4246 if (Op.getValueType() == MVT::f32 && 4247 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4248 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4249 4250 // FractionalPartOfX = x - (float)IntegerPartOfX; 4251 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4252 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4253 4254 // IntegerPartOfX <<= 23; 4255 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4256 DAG.getConstant(23, TLI.getPointerTy())); 4257 4258 SDValue TwoToFractionalPartOfX; 4259 if (LimitFloatPrecision <= 6) { 4260 // For floating-point precision of 6: 4261 // 4262 // TwoToFractionalPartOfX = 4263 // 0.997535578f + 4264 // (0.735607626f + 0.252464424f * x) * x; 4265 // 4266 // error 0.0144103317, which is 6 bits 4267 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4268 getF32Constant(DAG, 0x3e814304)); 4269 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4270 getF32Constant(DAG, 0x3f3c50c8)); 4271 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4272 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4273 getF32Constant(DAG, 0x3f7f5e7e)); 4274 } else if (LimitFloatPrecision <= 12) { 4275 // For floating-point precision of 12: 4276 // 4277 // TwoToFractionalPartOfX = 4278 // 0.999892986f + 4279 // (0.696457318f + 4280 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4281 // 4282 // error 0.000107046256, which is 13 to 14 bits 4283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4284 getF32Constant(DAG, 0x3da235e3)); 4285 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4286 getF32Constant(DAG, 0x3e65b8f3)); 4287 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4288 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4289 getF32Constant(DAG, 0x3f324b07)); 4290 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4291 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4292 getF32Constant(DAG, 0x3f7ff8fd)); 4293 } else { // LimitFloatPrecision <= 18 4294 // For floating-point precision of 18: 4295 // 4296 // TwoToFractionalPartOfX = 4297 // 0.999999982f + 4298 // (0.693148872f + 4299 // (0.240227044f + 4300 // (0.554906021e-1f + 4301 // (0.961591928e-2f + 4302 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4303 // error 2.47208000*10^(-7), which is better than 18 bits 4304 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4305 getF32Constant(DAG, 0x3924b03e)); 4306 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4307 getF32Constant(DAG, 0x3ab24b87)); 4308 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4309 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4310 getF32Constant(DAG, 0x3c1d8c17)); 4311 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4312 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4313 getF32Constant(DAG, 0x3d634a1d)); 4314 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4315 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4316 getF32Constant(DAG, 0x3e75fe14)); 4317 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4318 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4319 getF32Constant(DAG, 0x3f317234)); 4320 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4321 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4322 getF32Constant(DAG, 0x3f800000)); 4323 } 4324 4325 // Add the exponent into the result in integer domain. 4326 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4327 TwoToFractionalPartOfX); 4328 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4329 DAG.getNode(ISD::ADD, dl, MVT::i32, 4330 t13, IntegerPartOfX)); 4331 } 4332 4333 // No special expansion. 4334 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4335 } 4336 4337 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4338 /// limited-precision mode with x == 10.0f. 4339 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4340 SelectionDAG &DAG, const TargetLowering &TLI) { 4341 bool IsExp10 = false; 4342 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4343 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4344 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4345 APFloat Ten(10.0f); 4346 IsExp10 = LHSC->isExactlyValue(Ten); 4347 } 4348 } 4349 4350 if (IsExp10) { 4351 // Put the exponent in the right bit position for later addition to the 4352 // final result: 4353 // 4354 // #define LOG2OF10 3.3219281f 4355 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4356 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4357 getF32Constant(DAG, 0x40549a78)); 4358 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4359 4360 // FractionalPartOfX = x - (float)IntegerPartOfX; 4361 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4362 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4363 4364 // IntegerPartOfX <<= 23; 4365 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4366 DAG.getConstant(23, TLI.getPointerTy())); 4367 4368 SDValue TwoToFractionalPartOfX; 4369 if (LimitFloatPrecision <= 6) { 4370 // For floating-point precision of 6: 4371 // 4372 // twoToFractionalPartOfX = 4373 // 0.997535578f + 4374 // (0.735607626f + 0.252464424f * x) * x; 4375 // 4376 // error 0.0144103317, which is 6 bits 4377 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4378 getF32Constant(DAG, 0x3e814304)); 4379 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4380 getF32Constant(DAG, 0x3f3c50c8)); 4381 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4382 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4383 getF32Constant(DAG, 0x3f7f5e7e)); 4384 } else if (LimitFloatPrecision <= 12) { 4385 // For floating-point precision of 12: 4386 // 4387 // TwoToFractionalPartOfX = 4388 // 0.999892986f + 4389 // (0.696457318f + 4390 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4391 // 4392 // error 0.000107046256, which is 13 to 14 bits 4393 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4394 getF32Constant(DAG, 0x3da235e3)); 4395 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4396 getF32Constant(DAG, 0x3e65b8f3)); 4397 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4398 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4399 getF32Constant(DAG, 0x3f324b07)); 4400 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4401 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4402 getF32Constant(DAG, 0x3f7ff8fd)); 4403 } else { // LimitFloatPrecision <= 18 4404 // For floating-point precision of 18: 4405 // 4406 // TwoToFractionalPartOfX = 4407 // 0.999999982f + 4408 // (0.693148872f + 4409 // (0.240227044f + 4410 // (0.554906021e-1f + 4411 // (0.961591928e-2f + 4412 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4413 // error 2.47208000*10^(-7), which is better than 18 bits 4414 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4415 getF32Constant(DAG, 0x3924b03e)); 4416 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4417 getF32Constant(DAG, 0x3ab24b87)); 4418 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4419 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4420 getF32Constant(DAG, 0x3c1d8c17)); 4421 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4422 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4423 getF32Constant(DAG, 0x3d634a1d)); 4424 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4425 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4426 getF32Constant(DAG, 0x3e75fe14)); 4427 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4428 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4429 getF32Constant(DAG, 0x3f317234)); 4430 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4431 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4432 getF32Constant(DAG, 0x3f800000)); 4433 } 4434 4435 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4436 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4437 DAG.getNode(ISD::ADD, dl, MVT::i32, 4438 t13, IntegerPartOfX)); 4439 } 4440 4441 // No special expansion. 4442 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4443 } 4444 4445 4446 /// ExpandPowI - Expand a llvm.powi intrinsic. 4447 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4448 SelectionDAG &DAG) { 4449 // If RHS is a constant, we can expand this out to a multiplication tree, 4450 // otherwise we end up lowering to a call to __powidf2 (for example). When 4451 // optimizing for size, we only want to do this if the expansion would produce 4452 // a small number of multiplies, otherwise we do the full expansion. 4453 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4454 // Get the exponent as a positive value. 4455 unsigned Val = RHSC->getSExtValue(); 4456 if ((int)Val < 0) Val = -Val; 4457 4458 // powi(x, 0) -> 1.0 4459 if (Val == 0) 4460 return DAG.getConstantFP(1.0, LHS.getValueType()); 4461 4462 const Function *F = DAG.getMachineFunction().getFunction(); 4463 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4464 Attribute::OptimizeForSize) || 4465 // If optimizing for size, don't insert too many multiplies. This 4466 // inserts up to 5 multiplies. 4467 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4468 // We use the simple binary decomposition method to generate the multiply 4469 // sequence. There are more optimal ways to do this (for example, 4470 // powi(x,15) generates one more multiply than it should), but this has 4471 // the benefit of being both really simple and much better than a libcall. 4472 SDValue Res; // Logically starts equal to 1.0 4473 SDValue CurSquare = LHS; 4474 while (Val) { 4475 if (Val & 1) { 4476 if (Res.getNode()) 4477 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4478 else 4479 Res = CurSquare; // 1.0*CurSquare. 4480 } 4481 4482 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4483 CurSquare, CurSquare); 4484 Val >>= 1; 4485 } 4486 4487 // If the original was negative, invert the result, producing 1/(x*x*x). 4488 if (RHSC->getSExtValue() < 0) 4489 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4490 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4491 return Res; 4492 } 4493 } 4494 4495 // Otherwise, expand to a libcall. 4496 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4497 } 4498 4499 // getTruncatedArgReg - Find underlying register used for an truncated 4500 // argument. 4501 static unsigned getTruncatedArgReg(const SDValue &N) { 4502 if (N.getOpcode() != ISD::TRUNCATE) 4503 return 0; 4504 4505 const SDValue &Ext = N.getOperand(0); 4506 if (Ext.getOpcode() == ISD::AssertZext || 4507 Ext.getOpcode() == ISD::AssertSext) { 4508 const SDValue &CFR = Ext.getOperand(0); 4509 if (CFR.getOpcode() == ISD::CopyFromReg) 4510 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4511 if (CFR.getOpcode() == ISD::TRUNCATE) 4512 return getTruncatedArgReg(CFR); 4513 } 4514 return 0; 4515 } 4516 4517 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4518 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4519 /// At the end of instruction selection, they will be inserted to the entry BB. 4520 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4521 MDNode *Variable, 4522 MDNode *Expr, int64_t Offset, 4523 bool IsIndirect, 4524 const SDValue &N) { 4525 const Argument *Arg = dyn_cast<Argument>(V); 4526 if (!Arg) 4527 return false; 4528 4529 MachineFunction &MF = DAG.getMachineFunction(); 4530 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4531 4532 // Ignore inlined function arguments here. 4533 DIVariable DV(Variable); 4534 if (DV.isInlinedFnArgument(MF.getFunction())) 4535 return false; 4536 4537 Optional<MachineOperand> Op; 4538 // Some arguments' frame index is recorded during argument lowering. 4539 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4540 Op = MachineOperand::CreateFI(FI); 4541 4542 if (!Op && N.getNode()) { 4543 unsigned Reg; 4544 if (N.getOpcode() == ISD::CopyFromReg) 4545 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4546 else 4547 Reg = getTruncatedArgReg(N); 4548 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4549 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4550 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4551 if (PR) 4552 Reg = PR; 4553 } 4554 if (Reg) 4555 Op = MachineOperand::CreateReg(Reg, false); 4556 } 4557 4558 if (!Op) { 4559 // Check if ValueMap has reg number. 4560 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4561 if (VMI != FuncInfo.ValueMap.end()) 4562 Op = MachineOperand::CreateReg(VMI->second, false); 4563 } 4564 4565 if (!Op && N.getNode()) 4566 // Check if frame index is available. 4567 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4568 if (FrameIndexSDNode *FINode = 4569 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4570 Op = MachineOperand::CreateFI(FINode->getIndex()); 4571 4572 if (!Op) 4573 return false; 4574 4575 if (Op->isReg()) 4576 FuncInfo.ArgDbgValues.push_back( 4577 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4578 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4579 else 4580 FuncInfo.ArgDbgValues.push_back( 4581 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4582 .addOperand(*Op) 4583 .addImm(Offset) 4584 .addMetadata(Variable) 4585 .addMetadata(Expr)); 4586 4587 return true; 4588 } 4589 4590 // VisualStudio defines setjmp as _setjmp 4591 #if defined(_MSC_VER) && defined(setjmp) && \ 4592 !defined(setjmp_undefined_for_msvc) 4593 # pragma push_macro("setjmp") 4594 # undef setjmp 4595 # define setjmp_undefined_for_msvc 4596 #endif 4597 4598 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4599 /// we want to emit this as a call to a named external function, return the name 4600 /// otherwise lower it and return null. 4601 const char * 4602 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4604 SDLoc sdl = getCurSDLoc(); 4605 DebugLoc dl = getCurDebugLoc(); 4606 SDValue Res; 4607 4608 switch (Intrinsic) { 4609 default: 4610 // By default, turn this into a target intrinsic node. 4611 visitTargetIntrinsic(I, Intrinsic); 4612 return nullptr; 4613 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4614 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4615 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4616 case Intrinsic::returnaddress: 4617 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4618 getValue(I.getArgOperand(0)))); 4619 return nullptr; 4620 case Intrinsic::frameaddress: 4621 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4622 getValue(I.getArgOperand(0)))); 4623 return nullptr; 4624 case Intrinsic::read_register: { 4625 Value *Reg = I.getArgOperand(0); 4626 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4627 EVT VT = TLI.getValueType(I.getType()); 4628 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4629 return nullptr; 4630 } 4631 case Intrinsic::write_register: { 4632 Value *Reg = I.getArgOperand(0); 4633 Value *RegValue = I.getArgOperand(1); 4634 SDValue Chain = getValue(RegValue).getOperand(0); 4635 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4636 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4637 RegName, getValue(RegValue))); 4638 return nullptr; 4639 } 4640 case Intrinsic::setjmp: 4641 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4642 case Intrinsic::longjmp: 4643 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4644 case Intrinsic::memcpy: { 4645 // Assert for address < 256 since we support only user defined address 4646 // spaces. 4647 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4648 < 256 && 4649 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4650 < 256 && 4651 "Unknown address space"); 4652 SDValue Op1 = getValue(I.getArgOperand(0)); 4653 SDValue Op2 = getValue(I.getArgOperand(1)); 4654 SDValue Op3 = getValue(I.getArgOperand(2)); 4655 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4656 if (!Align) 4657 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4658 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4659 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4660 MachinePointerInfo(I.getArgOperand(0)), 4661 MachinePointerInfo(I.getArgOperand(1)))); 4662 return nullptr; 4663 } 4664 case Intrinsic::memset: { 4665 // Assert for address < 256 since we support only user defined address 4666 // spaces. 4667 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4668 < 256 && 4669 "Unknown address space"); 4670 SDValue Op1 = getValue(I.getArgOperand(0)); 4671 SDValue Op2 = getValue(I.getArgOperand(1)); 4672 SDValue Op3 = getValue(I.getArgOperand(2)); 4673 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4674 if (!Align) 4675 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4676 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4677 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4678 MachinePointerInfo(I.getArgOperand(0)))); 4679 return nullptr; 4680 } 4681 case Intrinsic::memmove: { 4682 // Assert for address < 256 since we support only user defined address 4683 // spaces. 4684 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4685 < 256 && 4686 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4687 < 256 && 4688 "Unknown address space"); 4689 SDValue Op1 = getValue(I.getArgOperand(0)); 4690 SDValue Op2 = getValue(I.getArgOperand(1)); 4691 SDValue Op3 = getValue(I.getArgOperand(2)); 4692 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4693 if (!Align) 4694 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4695 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4696 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4697 MachinePointerInfo(I.getArgOperand(0)), 4698 MachinePointerInfo(I.getArgOperand(1)))); 4699 return nullptr; 4700 } 4701 case Intrinsic::dbg_declare: { 4702 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4703 MDNode *Variable = DI.getVariable(); 4704 MDNode *Expression = DI.getExpression(); 4705 const Value *Address = DI.getAddress(); 4706 DIVariable DIVar(Variable); 4707 assert((!DIVar || DIVar.isVariable()) && 4708 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4709 if (!Address || !DIVar) { 4710 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4711 return nullptr; 4712 } 4713 4714 // Check if address has undef value. 4715 if (isa<UndefValue>(Address) || 4716 (Address->use_empty() && !isa<Argument>(Address))) { 4717 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4718 return nullptr; 4719 } 4720 4721 SDValue &N = NodeMap[Address]; 4722 if (!N.getNode() && isa<Argument>(Address)) 4723 // Check unused arguments map. 4724 N = UnusedArgNodeMap[Address]; 4725 SDDbgValue *SDV; 4726 if (N.getNode()) { 4727 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4728 Address = BCI->getOperand(0); 4729 // Parameters are handled specially. 4730 bool isParameter = 4731 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4732 isa<Argument>(Address)); 4733 4734 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4735 4736 if (isParameter && !AI) { 4737 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4738 if (FINode) 4739 // Byval parameter. We have a frame index at this point. 4740 SDV = DAG.getFrameIndexDbgValue( 4741 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4742 else { 4743 // Address is an argument, so try to emit its dbg value using 4744 // virtual register info from the FuncInfo.ValueMap. 4745 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4746 return nullptr; 4747 } 4748 } else if (AI) 4749 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4750 true, 0, dl, SDNodeOrder); 4751 else { 4752 // Can't do anything with other non-AI cases yet. 4753 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4754 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4755 DEBUG(Address->dump()); 4756 return nullptr; 4757 } 4758 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4759 } else { 4760 // If Address is an argument then try to emit its dbg value using 4761 // virtual register info from the FuncInfo.ValueMap. 4762 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4763 N)) { 4764 // If variable is pinned by a alloca in dominating bb then 4765 // use StaticAllocaMap. 4766 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4767 if (AI->getParent() != DI.getParent()) { 4768 DenseMap<const AllocaInst*, int>::iterator SI = 4769 FuncInfo.StaticAllocaMap.find(AI); 4770 if (SI != FuncInfo.StaticAllocaMap.end()) { 4771 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4772 0, dl, SDNodeOrder); 4773 DAG.AddDbgValue(SDV, nullptr, false); 4774 return nullptr; 4775 } 4776 } 4777 } 4778 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4779 } 4780 } 4781 return nullptr; 4782 } 4783 case Intrinsic::dbg_value: { 4784 const DbgValueInst &DI = cast<DbgValueInst>(I); 4785 DIVariable DIVar(DI.getVariable()); 4786 assert((!DIVar || DIVar.isVariable()) && 4787 "Variable in DbgValueInst should be either null or a DIVariable."); 4788 if (!DIVar) 4789 return nullptr; 4790 4791 MDNode *Variable = DI.getVariable(); 4792 MDNode *Expression = DI.getExpression(); 4793 uint64_t Offset = DI.getOffset(); 4794 const Value *V = DI.getValue(); 4795 if (!V) 4796 return nullptr; 4797 4798 SDDbgValue *SDV; 4799 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4800 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4801 SDNodeOrder); 4802 DAG.AddDbgValue(SDV, nullptr, false); 4803 } else { 4804 // Do not use getValue() in here; we don't want to generate code at 4805 // this point if it hasn't been done yet. 4806 SDValue N = NodeMap[V]; 4807 if (!N.getNode() && isa<Argument>(V)) 4808 // Check unused arguments map. 4809 N = UnusedArgNodeMap[V]; 4810 if (N.getNode()) { 4811 // A dbg.value for an alloca is always indirect. 4812 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4813 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4814 IsIndirect, N)) { 4815 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4816 IsIndirect, Offset, dl, SDNodeOrder); 4817 DAG.AddDbgValue(SDV, N.getNode(), false); 4818 } 4819 } else if (!V->use_empty() ) { 4820 // Do not call getValue(V) yet, as we don't want to generate code. 4821 // Remember it for later. 4822 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4823 DanglingDebugInfoMap[V] = DDI; 4824 } else { 4825 // We may expand this to cover more cases. One case where we have no 4826 // data available is an unreferenced parameter. 4827 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4828 } 4829 } 4830 4831 // Build a debug info table entry. 4832 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4833 V = BCI->getOperand(0); 4834 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4835 // Don't handle byval struct arguments or VLAs, for example. 4836 if (!AI) { 4837 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4838 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4839 return nullptr; 4840 } 4841 DenseMap<const AllocaInst*, int>::iterator SI = 4842 FuncInfo.StaticAllocaMap.find(AI); 4843 if (SI == FuncInfo.StaticAllocaMap.end()) 4844 return nullptr; // VLAs. 4845 return nullptr; 4846 } 4847 4848 case Intrinsic::eh_typeid_for: { 4849 // Find the type id for the given typeinfo. 4850 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4851 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4852 Res = DAG.getConstant(TypeID, MVT::i32); 4853 setValue(&I, Res); 4854 return nullptr; 4855 } 4856 4857 case Intrinsic::eh_return_i32: 4858 case Intrinsic::eh_return_i64: 4859 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4860 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4861 MVT::Other, 4862 getControlRoot(), 4863 getValue(I.getArgOperand(0)), 4864 getValue(I.getArgOperand(1)))); 4865 return nullptr; 4866 case Intrinsic::eh_unwind_init: 4867 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4868 return nullptr; 4869 case Intrinsic::eh_dwarf_cfa: { 4870 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4871 TLI.getPointerTy()); 4872 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4873 CfaArg.getValueType(), 4874 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4875 CfaArg.getValueType()), 4876 CfaArg); 4877 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4878 DAG.getConstant(0, TLI.getPointerTy())); 4879 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4880 FA, Offset)); 4881 return nullptr; 4882 } 4883 case Intrinsic::eh_sjlj_callsite: { 4884 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4885 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4886 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4887 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4888 4889 MMI.setCurrentCallSite(CI->getZExtValue()); 4890 return nullptr; 4891 } 4892 case Intrinsic::eh_sjlj_functioncontext: { 4893 // Get and store the index of the function context. 4894 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4895 AllocaInst *FnCtx = 4896 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4897 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4898 MFI->setFunctionContextIndex(FI); 4899 return nullptr; 4900 } 4901 case Intrinsic::eh_sjlj_setjmp: { 4902 SDValue Ops[2]; 4903 Ops[0] = getRoot(); 4904 Ops[1] = getValue(I.getArgOperand(0)); 4905 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4906 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4907 setValue(&I, Op.getValue(0)); 4908 DAG.setRoot(Op.getValue(1)); 4909 return nullptr; 4910 } 4911 case Intrinsic::eh_sjlj_longjmp: { 4912 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4913 getRoot(), getValue(I.getArgOperand(0)))); 4914 return nullptr; 4915 } 4916 4917 case Intrinsic::x86_mmx_pslli_w: 4918 case Intrinsic::x86_mmx_pslli_d: 4919 case Intrinsic::x86_mmx_pslli_q: 4920 case Intrinsic::x86_mmx_psrli_w: 4921 case Intrinsic::x86_mmx_psrli_d: 4922 case Intrinsic::x86_mmx_psrli_q: 4923 case Intrinsic::x86_mmx_psrai_w: 4924 case Intrinsic::x86_mmx_psrai_d: { 4925 SDValue ShAmt = getValue(I.getArgOperand(1)); 4926 if (isa<ConstantSDNode>(ShAmt)) { 4927 visitTargetIntrinsic(I, Intrinsic); 4928 return nullptr; 4929 } 4930 unsigned NewIntrinsic = 0; 4931 EVT ShAmtVT = MVT::v2i32; 4932 switch (Intrinsic) { 4933 case Intrinsic::x86_mmx_pslli_w: 4934 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4935 break; 4936 case Intrinsic::x86_mmx_pslli_d: 4937 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4938 break; 4939 case Intrinsic::x86_mmx_pslli_q: 4940 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4941 break; 4942 case Intrinsic::x86_mmx_psrli_w: 4943 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4944 break; 4945 case Intrinsic::x86_mmx_psrli_d: 4946 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4947 break; 4948 case Intrinsic::x86_mmx_psrli_q: 4949 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4950 break; 4951 case Intrinsic::x86_mmx_psrai_w: 4952 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4953 break; 4954 case Intrinsic::x86_mmx_psrai_d: 4955 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4956 break; 4957 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4958 } 4959 4960 // The vector shift intrinsics with scalars uses 32b shift amounts but 4961 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4962 // to be zero. 4963 // We must do this early because v2i32 is not a legal type. 4964 SDValue ShOps[2]; 4965 ShOps[0] = ShAmt; 4966 ShOps[1] = DAG.getConstant(0, MVT::i32); 4967 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4968 EVT DestVT = TLI.getValueType(I.getType()); 4969 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4970 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4971 DAG.getConstant(NewIntrinsic, MVT::i32), 4972 getValue(I.getArgOperand(0)), ShAmt); 4973 setValue(&I, Res); 4974 return nullptr; 4975 } 4976 case Intrinsic::x86_avx_vinsertf128_pd_256: 4977 case Intrinsic::x86_avx_vinsertf128_ps_256: 4978 case Intrinsic::x86_avx_vinsertf128_si_256: 4979 case Intrinsic::x86_avx2_vinserti128: { 4980 EVT DestVT = TLI.getValueType(I.getType()); 4981 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4982 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4983 ElVT.getVectorNumElements(); 4984 Res = 4985 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4986 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 4987 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 4988 setValue(&I, Res); 4989 return nullptr; 4990 } 4991 case Intrinsic::x86_avx_vextractf128_pd_256: 4992 case Intrinsic::x86_avx_vextractf128_ps_256: 4993 case Intrinsic::x86_avx_vextractf128_si_256: 4994 case Intrinsic::x86_avx2_vextracti128: { 4995 EVT DestVT = TLI.getValueType(I.getType()); 4996 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4997 DestVT.getVectorNumElements(); 4998 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4999 getValue(I.getArgOperand(0)), 5000 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5001 setValue(&I, Res); 5002 return nullptr; 5003 } 5004 case Intrinsic::convertff: 5005 case Intrinsic::convertfsi: 5006 case Intrinsic::convertfui: 5007 case Intrinsic::convertsif: 5008 case Intrinsic::convertuif: 5009 case Intrinsic::convertss: 5010 case Intrinsic::convertsu: 5011 case Intrinsic::convertus: 5012 case Intrinsic::convertuu: { 5013 ISD::CvtCode Code = ISD::CVT_INVALID; 5014 switch (Intrinsic) { 5015 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5016 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5017 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5018 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5019 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5020 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5021 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5022 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5023 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5024 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5025 } 5026 EVT DestVT = TLI.getValueType(I.getType()); 5027 const Value *Op1 = I.getArgOperand(0); 5028 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5029 DAG.getValueType(DestVT), 5030 DAG.getValueType(getValue(Op1).getValueType()), 5031 getValue(I.getArgOperand(1)), 5032 getValue(I.getArgOperand(2)), 5033 Code); 5034 setValue(&I, Res); 5035 return nullptr; 5036 } 5037 case Intrinsic::powi: 5038 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5039 getValue(I.getArgOperand(1)), DAG)); 5040 return nullptr; 5041 case Intrinsic::log: 5042 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5043 return nullptr; 5044 case Intrinsic::log2: 5045 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5046 return nullptr; 5047 case Intrinsic::log10: 5048 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5049 return nullptr; 5050 case Intrinsic::exp: 5051 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5052 return nullptr; 5053 case Intrinsic::exp2: 5054 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5055 return nullptr; 5056 case Intrinsic::pow: 5057 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5058 getValue(I.getArgOperand(1)), DAG, TLI)); 5059 return nullptr; 5060 case Intrinsic::sqrt: 5061 case Intrinsic::fabs: 5062 case Intrinsic::sin: 5063 case Intrinsic::cos: 5064 case Intrinsic::floor: 5065 case Intrinsic::ceil: 5066 case Intrinsic::trunc: 5067 case Intrinsic::rint: 5068 case Intrinsic::nearbyint: 5069 case Intrinsic::round: { 5070 unsigned Opcode; 5071 switch (Intrinsic) { 5072 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5073 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5074 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5075 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5076 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5077 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5078 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5079 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5080 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5081 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5082 case Intrinsic::round: Opcode = ISD::FROUND; break; 5083 } 5084 5085 setValue(&I, DAG.getNode(Opcode, sdl, 5086 getValue(I.getArgOperand(0)).getValueType(), 5087 getValue(I.getArgOperand(0)))); 5088 return nullptr; 5089 } 5090 case Intrinsic::copysign: 5091 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5092 getValue(I.getArgOperand(0)).getValueType(), 5093 getValue(I.getArgOperand(0)), 5094 getValue(I.getArgOperand(1)))); 5095 return nullptr; 5096 case Intrinsic::fma: 5097 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5098 getValue(I.getArgOperand(0)).getValueType(), 5099 getValue(I.getArgOperand(0)), 5100 getValue(I.getArgOperand(1)), 5101 getValue(I.getArgOperand(2)))); 5102 return nullptr; 5103 case Intrinsic::fmuladd: { 5104 EVT VT = TLI.getValueType(I.getType()); 5105 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5106 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5107 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5108 getValue(I.getArgOperand(0)).getValueType(), 5109 getValue(I.getArgOperand(0)), 5110 getValue(I.getArgOperand(1)), 5111 getValue(I.getArgOperand(2)))); 5112 } else { 5113 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5114 getValue(I.getArgOperand(0)).getValueType(), 5115 getValue(I.getArgOperand(0)), 5116 getValue(I.getArgOperand(1))); 5117 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5118 getValue(I.getArgOperand(0)).getValueType(), 5119 Mul, 5120 getValue(I.getArgOperand(2))); 5121 setValue(&I, Add); 5122 } 5123 return nullptr; 5124 } 5125 case Intrinsic::convert_to_fp16: 5126 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5127 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5128 getValue(I.getArgOperand(0)), 5129 DAG.getTargetConstant(0, MVT::i32)))); 5130 return nullptr; 5131 case Intrinsic::convert_from_fp16: 5132 setValue(&I, 5133 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5134 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5135 getValue(I.getArgOperand(0))))); 5136 return nullptr; 5137 case Intrinsic::pcmarker: { 5138 SDValue Tmp = getValue(I.getArgOperand(0)); 5139 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5140 return nullptr; 5141 } 5142 case Intrinsic::readcyclecounter: { 5143 SDValue Op = getRoot(); 5144 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5145 DAG.getVTList(MVT::i64, MVT::Other), Op); 5146 setValue(&I, Res); 5147 DAG.setRoot(Res.getValue(1)); 5148 return nullptr; 5149 } 5150 case Intrinsic::bswap: 5151 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5152 getValue(I.getArgOperand(0)).getValueType(), 5153 getValue(I.getArgOperand(0)))); 5154 return nullptr; 5155 case Intrinsic::cttz: { 5156 SDValue Arg = getValue(I.getArgOperand(0)); 5157 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5158 EVT Ty = Arg.getValueType(); 5159 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5160 sdl, Ty, Arg)); 5161 return nullptr; 5162 } 5163 case Intrinsic::ctlz: { 5164 SDValue Arg = getValue(I.getArgOperand(0)); 5165 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5166 EVT Ty = Arg.getValueType(); 5167 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5168 sdl, Ty, Arg)); 5169 return nullptr; 5170 } 5171 case Intrinsic::ctpop: { 5172 SDValue Arg = getValue(I.getArgOperand(0)); 5173 EVT Ty = Arg.getValueType(); 5174 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5175 return nullptr; 5176 } 5177 case Intrinsic::stacksave: { 5178 SDValue Op = getRoot(); 5179 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5180 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5181 setValue(&I, Res); 5182 DAG.setRoot(Res.getValue(1)); 5183 return nullptr; 5184 } 5185 case Intrinsic::stackrestore: { 5186 Res = getValue(I.getArgOperand(0)); 5187 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5188 return nullptr; 5189 } 5190 case Intrinsic::stackprotector: { 5191 // Emit code into the DAG to store the stack guard onto the stack. 5192 MachineFunction &MF = DAG.getMachineFunction(); 5193 MachineFrameInfo *MFI = MF.getFrameInfo(); 5194 EVT PtrTy = TLI.getPointerTy(); 5195 SDValue Src, Chain = getRoot(); 5196 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5197 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5198 5199 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5200 // global variable __stack_chk_guard. 5201 if (!GV) 5202 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5203 if (BC->getOpcode() == Instruction::BitCast) 5204 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5205 5206 if (GV && TLI.useLoadStackGuardNode()) { 5207 // Emit a LOAD_STACK_GUARD node. 5208 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5209 sdl, PtrTy, Chain); 5210 MachinePointerInfo MPInfo(GV); 5211 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5212 unsigned Flags = MachineMemOperand::MOLoad | 5213 MachineMemOperand::MOInvariant; 5214 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5215 PtrTy.getSizeInBits() / 8, 5216 DAG.getEVTAlignment(PtrTy)); 5217 Node->setMemRefs(MemRefs, MemRefs + 1); 5218 5219 // Copy the guard value to a virtual register so that it can be 5220 // retrieved in the epilogue. 5221 Src = SDValue(Node, 0); 5222 const TargetRegisterClass *RC = 5223 TLI.getRegClassFor(Src.getSimpleValueType()); 5224 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5225 5226 SPDescriptor.setGuardReg(Reg); 5227 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5228 } else { 5229 Src = getValue(I.getArgOperand(0)); // The guard's value. 5230 } 5231 5232 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5233 5234 int FI = FuncInfo.StaticAllocaMap[Slot]; 5235 MFI->setStackProtectorIndex(FI); 5236 5237 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5238 5239 // Store the stack protector onto the stack. 5240 Res = DAG.getStore(Chain, sdl, Src, FIN, 5241 MachinePointerInfo::getFixedStack(FI), 5242 true, false, 0); 5243 setValue(&I, Res); 5244 DAG.setRoot(Res); 5245 return nullptr; 5246 } 5247 case Intrinsic::objectsize: { 5248 // If we don't know by now, we're never going to know. 5249 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5250 5251 assert(CI && "Non-constant type in __builtin_object_size?"); 5252 5253 SDValue Arg = getValue(I.getCalledValue()); 5254 EVT Ty = Arg.getValueType(); 5255 5256 if (CI->isZero()) 5257 Res = DAG.getConstant(-1ULL, Ty); 5258 else 5259 Res = DAG.getConstant(0, Ty); 5260 5261 setValue(&I, Res); 5262 return nullptr; 5263 } 5264 case Intrinsic::annotation: 5265 case Intrinsic::ptr_annotation: 5266 // Drop the intrinsic, but forward the value 5267 setValue(&I, getValue(I.getOperand(0))); 5268 return nullptr; 5269 case Intrinsic::assume: 5270 case Intrinsic::var_annotation: 5271 // Discard annotate attributes and assumptions 5272 return nullptr; 5273 5274 case Intrinsic::init_trampoline: { 5275 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5276 5277 SDValue Ops[6]; 5278 Ops[0] = getRoot(); 5279 Ops[1] = getValue(I.getArgOperand(0)); 5280 Ops[2] = getValue(I.getArgOperand(1)); 5281 Ops[3] = getValue(I.getArgOperand(2)); 5282 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5283 Ops[5] = DAG.getSrcValue(F); 5284 5285 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5286 5287 DAG.setRoot(Res); 5288 return nullptr; 5289 } 5290 case Intrinsic::adjust_trampoline: { 5291 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5292 TLI.getPointerTy(), 5293 getValue(I.getArgOperand(0)))); 5294 return nullptr; 5295 } 5296 case Intrinsic::gcroot: 5297 if (GFI) { 5298 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5299 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5300 5301 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5302 GFI->addStackRoot(FI->getIndex(), TypeMap); 5303 } 5304 return nullptr; 5305 case Intrinsic::gcread: 5306 case Intrinsic::gcwrite: 5307 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5308 case Intrinsic::flt_rounds: 5309 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5310 return nullptr; 5311 5312 case Intrinsic::expect: { 5313 // Just replace __builtin_expect(exp, c) with EXP. 5314 setValue(&I, getValue(I.getArgOperand(0))); 5315 return nullptr; 5316 } 5317 5318 case Intrinsic::debugtrap: 5319 case Intrinsic::trap: { 5320 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5321 if (TrapFuncName.empty()) { 5322 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5323 ISD::TRAP : ISD::DEBUGTRAP; 5324 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5325 return nullptr; 5326 } 5327 TargetLowering::ArgListTy Args; 5328 5329 TargetLowering::CallLoweringInfo CLI(DAG); 5330 CLI.setDebugLoc(sdl).setChain(getRoot()) 5331 .setCallee(CallingConv::C, I.getType(), 5332 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5333 std::move(Args), 0); 5334 5335 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5336 DAG.setRoot(Result.second); 5337 return nullptr; 5338 } 5339 5340 case Intrinsic::uadd_with_overflow: 5341 case Intrinsic::sadd_with_overflow: 5342 case Intrinsic::usub_with_overflow: 5343 case Intrinsic::ssub_with_overflow: 5344 case Intrinsic::umul_with_overflow: 5345 case Intrinsic::smul_with_overflow: { 5346 ISD::NodeType Op; 5347 switch (Intrinsic) { 5348 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5349 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5350 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5351 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5352 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5353 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5354 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5355 } 5356 SDValue Op1 = getValue(I.getArgOperand(0)); 5357 SDValue Op2 = getValue(I.getArgOperand(1)); 5358 5359 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5360 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5361 return nullptr; 5362 } 5363 case Intrinsic::prefetch: { 5364 SDValue Ops[5]; 5365 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5366 Ops[0] = getRoot(); 5367 Ops[1] = getValue(I.getArgOperand(0)); 5368 Ops[2] = getValue(I.getArgOperand(1)); 5369 Ops[3] = getValue(I.getArgOperand(2)); 5370 Ops[4] = getValue(I.getArgOperand(3)); 5371 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5372 DAG.getVTList(MVT::Other), Ops, 5373 EVT::getIntegerVT(*Context, 8), 5374 MachinePointerInfo(I.getArgOperand(0)), 5375 0, /* align */ 5376 false, /* volatile */ 5377 rw==0, /* read */ 5378 rw==1)); /* write */ 5379 return nullptr; 5380 } 5381 case Intrinsic::lifetime_start: 5382 case Intrinsic::lifetime_end: { 5383 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5384 // Stack coloring is not enabled in O0, discard region information. 5385 if (TM.getOptLevel() == CodeGenOpt::None) 5386 return nullptr; 5387 5388 SmallVector<Value *, 4> Allocas; 5389 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5390 5391 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5392 E = Allocas.end(); Object != E; ++Object) { 5393 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5394 5395 // Could not find an Alloca. 5396 if (!LifetimeObject) 5397 continue; 5398 5399 // First check that the Alloca is static, otherwise it won't have a 5400 // valid frame index. 5401 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5402 if (SI == FuncInfo.StaticAllocaMap.end()) 5403 return nullptr; 5404 5405 int FI = SI->second; 5406 5407 SDValue Ops[2]; 5408 Ops[0] = getRoot(); 5409 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5410 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5411 5412 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5413 DAG.setRoot(Res); 5414 } 5415 return nullptr; 5416 } 5417 case Intrinsic::invariant_start: 5418 // Discard region information. 5419 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5420 return nullptr; 5421 case Intrinsic::invariant_end: 5422 // Discard region information. 5423 return nullptr; 5424 case Intrinsic::stackprotectorcheck: { 5425 // Do not actually emit anything for this basic block. Instead we initialize 5426 // the stack protector descriptor and export the guard variable so we can 5427 // access it in FinishBasicBlock. 5428 const BasicBlock *BB = I.getParent(); 5429 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5430 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5431 5432 // Flush our exports since we are going to process a terminator. 5433 (void)getControlRoot(); 5434 return nullptr; 5435 } 5436 case Intrinsic::clear_cache: 5437 return TLI.getClearCacheBuiltinName(); 5438 case Intrinsic::donothing: 5439 // ignore 5440 return nullptr; 5441 case Intrinsic::experimental_stackmap: { 5442 visitStackmap(I); 5443 return nullptr; 5444 } 5445 case Intrinsic::experimental_patchpoint_void: 5446 case Intrinsic::experimental_patchpoint_i64: { 5447 visitPatchpoint(&I); 5448 return nullptr; 5449 } 5450 } 5451 } 5452 5453 std::pair<SDValue, SDValue> 5454 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5455 MachineBasicBlock *LandingPad) { 5456 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5457 MCSymbol *BeginLabel = nullptr; 5458 5459 if (LandingPad) { 5460 // Insert a label before the invoke call to mark the try range. This can be 5461 // used to detect deletion of the invoke via the MachineModuleInfo. 5462 BeginLabel = MMI.getContext().CreateTempSymbol(); 5463 5464 // For SjLj, keep track of which landing pads go with which invokes 5465 // so as to maintain the ordering of pads in the LSDA. 5466 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5467 if (CallSiteIndex) { 5468 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5469 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5470 5471 // Now that the call site is handled, stop tracking it. 5472 MMI.setCurrentCallSite(0); 5473 } 5474 5475 // Both PendingLoads and PendingExports must be flushed here; 5476 // this call might not return. 5477 (void)getRoot(); 5478 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5479 5480 CLI.setChain(getRoot()); 5481 } 5482 5483 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5484 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5485 5486 assert((CLI.IsTailCall || Result.second.getNode()) && 5487 "Non-null chain expected with non-tail call!"); 5488 assert((Result.second.getNode() || !Result.first.getNode()) && 5489 "Null value expected with tail call!"); 5490 5491 if (!Result.second.getNode()) { 5492 // As a special case, a null chain means that a tail call has been emitted 5493 // and the DAG root is already updated. 5494 HasTailCall = true; 5495 5496 // Since there's no actual continuation from this block, nothing can be 5497 // relying on us setting vregs for them. 5498 PendingExports.clear(); 5499 } else { 5500 DAG.setRoot(Result.second); 5501 } 5502 5503 if (LandingPad) { 5504 // Insert a label at the end of the invoke call to mark the try range. This 5505 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5506 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5507 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5508 5509 // Inform MachineModuleInfo of range. 5510 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5511 } 5512 5513 return Result; 5514 } 5515 5516 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5517 bool isTailCall, 5518 MachineBasicBlock *LandingPad) { 5519 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5520 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5521 Type *RetTy = FTy->getReturnType(); 5522 5523 TargetLowering::ArgListTy Args; 5524 TargetLowering::ArgListEntry Entry; 5525 Args.reserve(CS.arg_size()); 5526 5527 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5528 i != e; ++i) { 5529 const Value *V = *i; 5530 5531 // Skip empty types 5532 if (V->getType()->isEmptyTy()) 5533 continue; 5534 5535 SDValue ArgNode = getValue(V); 5536 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5537 5538 // Skip the first return-type Attribute to get to params. 5539 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5540 Args.push_back(Entry); 5541 } 5542 5543 // Check if target-independent constraints permit a tail call here. 5544 // Target-dependent constraints are checked within TLI->LowerCallTo. 5545 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5546 isTailCall = false; 5547 5548 TargetLowering::CallLoweringInfo CLI(DAG); 5549 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5550 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5551 .setTailCall(isTailCall); 5552 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5553 5554 if (Result.first.getNode()) 5555 setValue(CS.getInstruction(), Result.first); 5556 } 5557 5558 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5559 /// value is equal or not-equal to zero. 5560 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5561 for (const User *U : V->users()) { 5562 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5563 if (IC->isEquality()) 5564 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5565 if (C->isNullValue()) 5566 continue; 5567 // Unknown instruction. 5568 return false; 5569 } 5570 return true; 5571 } 5572 5573 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5574 Type *LoadTy, 5575 SelectionDAGBuilder &Builder) { 5576 5577 // Check to see if this load can be trivially constant folded, e.g. if the 5578 // input is from a string literal. 5579 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5580 // Cast pointer to the type we really want to load. 5581 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5582 PointerType::getUnqual(LoadTy)); 5583 5584 if (const Constant *LoadCst = 5585 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5586 Builder.DL)) 5587 return Builder.getValue(LoadCst); 5588 } 5589 5590 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5591 // still constant memory, the input chain can be the entry node. 5592 SDValue Root; 5593 bool ConstantMemory = false; 5594 5595 // Do not serialize (non-volatile) loads of constant memory with anything. 5596 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5597 Root = Builder.DAG.getEntryNode(); 5598 ConstantMemory = true; 5599 } else { 5600 // Do not serialize non-volatile loads against each other. 5601 Root = Builder.DAG.getRoot(); 5602 } 5603 5604 SDValue Ptr = Builder.getValue(PtrVal); 5605 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5606 Ptr, MachinePointerInfo(PtrVal), 5607 false /*volatile*/, 5608 false /*nontemporal*/, 5609 false /*isinvariant*/, 1 /* align=1 */); 5610 5611 if (!ConstantMemory) 5612 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5613 return LoadVal; 5614 } 5615 5616 /// processIntegerCallValue - Record the value for an instruction that 5617 /// produces an integer result, converting the type where necessary. 5618 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5619 SDValue Value, 5620 bool IsSigned) { 5621 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5622 if (IsSigned) 5623 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5624 else 5625 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5626 setValue(&I, Value); 5627 } 5628 5629 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5630 /// If so, return true and lower it, otherwise return false and it will be 5631 /// lowered like a normal call. 5632 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5633 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5634 if (I.getNumArgOperands() != 3) 5635 return false; 5636 5637 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5638 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5639 !I.getArgOperand(2)->getType()->isIntegerTy() || 5640 !I.getType()->isIntegerTy()) 5641 return false; 5642 5643 const Value *Size = I.getArgOperand(2); 5644 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5645 if (CSize && CSize->getZExtValue() == 0) { 5646 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5647 setValue(&I, DAG.getConstant(0, CallVT)); 5648 return true; 5649 } 5650 5651 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5652 std::pair<SDValue, SDValue> Res = 5653 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5654 getValue(LHS), getValue(RHS), getValue(Size), 5655 MachinePointerInfo(LHS), 5656 MachinePointerInfo(RHS)); 5657 if (Res.first.getNode()) { 5658 processIntegerCallValue(I, Res.first, true); 5659 PendingLoads.push_back(Res.second); 5660 return true; 5661 } 5662 5663 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5664 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5665 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5666 bool ActuallyDoIt = true; 5667 MVT LoadVT; 5668 Type *LoadTy; 5669 switch (CSize->getZExtValue()) { 5670 default: 5671 LoadVT = MVT::Other; 5672 LoadTy = nullptr; 5673 ActuallyDoIt = false; 5674 break; 5675 case 2: 5676 LoadVT = MVT::i16; 5677 LoadTy = Type::getInt16Ty(CSize->getContext()); 5678 break; 5679 case 4: 5680 LoadVT = MVT::i32; 5681 LoadTy = Type::getInt32Ty(CSize->getContext()); 5682 break; 5683 case 8: 5684 LoadVT = MVT::i64; 5685 LoadTy = Type::getInt64Ty(CSize->getContext()); 5686 break; 5687 /* 5688 case 16: 5689 LoadVT = MVT::v4i32; 5690 LoadTy = Type::getInt32Ty(CSize->getContext()); 5691 LoadTy = VectorType::get(LoadTy, 4); 5692 break; 5693 */ 5694 } 5695 5696 // This turns into unaligned loads. We only do this if the target natively 5697 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5698 // we'll only produce a small number of byte loads. 5699 5700 // Require that we can find a legal MVT, and only do this if the target 5701 // supports unaligned loads of that type. Expanding into byte loads would 5702 // bloat the code. 5703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5704 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5705 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5706 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5707 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5708 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5709 // TODO: Check alignment of src and dest ptrs. 5710 if (!TLI.isTypeLegal(LoadVT) || 5711 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5712 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5713 ActuallyDoIt = false; 5714 } 5715 5716 if (ActuallyDoIt) { 5717 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5718 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5719 5720 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5721 ISD::SETNE); 5722 processIntegerCallValue(I, Res, false); 5723 return true; 5724 } 5725 } 5726 5727 5728 return false; 5729 } 5730 5731 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5732 /// form. If so, return true and lower it, otherwise return false and it 5733 /// will be lowered like a normal call. 5734 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5735 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5736 if (I.getNumArgOperands() != 3) 5737 return false; 5738 5739 const Value *Src = I.getArgOperand(0); 5740 const Value *Char = I.getArgOperand(1); 5741 const Value *Length = I.getArgOperand(2); 5742 if (!Src->getType()->isPointerTy() || 5743 !Char->getType()->isIntegerTy() || 5744 !Length->getType()->isIntegerTy() || 5745 !I.getType()->isPointerTy()) 5746 return false; 5747 5748 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5749 std::pair<SDValue, SDValue> Res = 5750 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5751 getValue(Src), getValue(Char), getValue(Length), 5752 MachinePointerInfo(Src)); 5753 if (Res.first.getNode()) { 5754 setValue(&I, Res.first); 5755 PendingLoads.push_back(Res.second); 5756 return true; 5757 } 5758 5759 return false; 5760 } 5761 5762 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5763 /// optimized form. If so, return true and lower it, otherwise return false 5764 /// and it will be lowered like a normal call. 5765 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5766 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5767 if (I.getNumArgOperands() != 2) 5768 return false; 5769 5770 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5771 if (!Arg0->getType()->isPointerTy() || 5772 !Arg1->getType()->isPointerTy() || 5773 !I.getType()->isPointerTy()) 5774 return false; 5775 5776 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5777 std::pair<SDValue, SDValue> Res = 5778 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5779 getValue(Arg0), getValue(Arg1), 5780 MachinePointerInfo(Arg0), 5781 MachinePointerInfo(Arg1), isStpcpy); 5782 if (Res.first.getNode()) { 5783 setValue(&I, Res.first); 5784 DAG.setRoot(Res.second); 5785 return true; 5786 } 5787 5788 return false; 5789 } 5790 5791 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5792 /// If so, return true and lower it, otherwise return false and it will be 5793 /// lowered like a normal call. 5794 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5795 // Verify that the prototype makes sense. int strcmp(void*,void*) 5796 if (I.getNumArgOperands() != 2) 5797 return false; 5798 5799 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5800 if (!Arg0->getType()->isPointerTy() || 5801 !Arg1->getType()->isPointerTy() || 5802 !I.getType()->isIntegerTy()) 5803 return false; 5804 5805 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5806 std::pair<SDValue, SDValue> Res = 5807 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5808 getValue(Arg0), getValue(Arg1), 5809 MachinePointerInfo(Arg0), 5810 MachinePointerInfo(Arg1)); 5811 if (Res.first.getNode()) { 5812 processIntegerCallValue(I, Res.first, true); 5813 PendingLoads.push_back(Res.second); 5814 return true; 5815 } 5816 5817 return false; 5818 } 5819 5820 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5821 /// form. If so, return true and lower it, otherwise return false and it 5822 /// will be lowered like a normal call. 5823 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5824 // Verify that the prototype makes sense. size_t strlen(char *) 5825 if (I.getNumArgOperands() != 1) 5826 return false; 5827 5828 const Value *Arg0 = I.getArgOperand(0); 5829 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5830 return false; 5831 5832 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5833 std::pair<SDValue, SDValue> Res = 5834 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5835 getValue(Arg0), MachinePointerInfo(Arg0)); 5836 if (Res.first.getNode()) { 5837 processIntegerCallValue(I, Res.first, false); 5838 PendingLoads.push_back(Res.second); 5839 return true; 5840 } 5841 5842 return false; 5843 } 5844 5845 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5846 /// form. If so, return true and lower it, otherwise return false and it 5847 /// will be lowered like a normal call. 5848 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5849 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5850 if (I.getNumArgOperands() != 2) 5851 return false; 5852 5853 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5854 if (!Arg0->getType()->isPointerTy() || 5855 !Arg1->getType()->isIntegerTy() || 5856 !I.getType()->isIntegerTy()) 5857 return false; 5858 5859 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5860 std::pair<SDValue, SDValue> Res = 5861 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5862 getValue(Arg0), getValue(Arg1), 5863 MachinePointerInfo(Arg0)); 5864 if (Res.first.getNode()) { 5865 processIntegerCallValue(I, Res.first, false); 5866 PendingLoads.push_back(Res.second); 5867 return true; 5868 } 5869 5870 return false; 5871 } 5872 5873 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5874 /// operation (as expected), translate it to an SDNode with the specified opcode 5875 /// and return true. 5876 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5877 unsigned Opcode) { 5878 // Sanity check that it really is a unary floating-point call. 5879 if (I.getNumArgOperands() != 1 || 5880 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5881 I.getType() != I.getArgOperand(0)->getType() || 5882 !I.onlyReadsMemory()) 5883 return false; 5884 5885 SDValue Tmp = getValue(I.getArgOperand(0)); 5886 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5887 return true; 5888 } 5889 5890 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5891 // Handle inline assembly differently. 5892 if (isa<InlineAsm>(I.getCalledValue())) { 5893 visitInlineAsm(&I); 5894 return; 5895 } 5896 5897 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5898 ComputeUsesVAFloatArgument(I, &MMI); 5899 5900 const char *RenameFn = nullptr; 5901 if (Function *F = I.getCalledFunction()) { 5902 if (F->isDeclaration()) { 5903 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5904 if (unsigned IID = II->getIntrinsicID(F)) { 5905 RenameFn = visitIntrinsicCall(I, IID); 5906 if (!RenameFn) 5907 return; 5908 } 5909 } 5910 if (unsigned IID = F->getIntrinsicID()) { 5911 RenameFn = visitIntrinsicCall(I, IID); 5912 if (!RenameFn) 5913 return; 5914 } 5915 } 5916 5917 // Check for well-known libc/libm calls. If the function is internal, it 5918 // can't be a library call. 5919 LibFunc::Func Func; 5920 if (!F->hasLocalLinkage() && F->hasName() && 5921 LibInfo->getLibFunc(F->getName(), Func) && 5922 LibInfo->hasOptimizedCodeGen(Func)) { 5923 switch (Func) { 5924 default: break; 5925 case LibFunc::copysign: 5926 case LibFunc::copysignf: 5927 case LibFunc::copysignl: 5928 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5929 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5930 I.getType() == I.getArgOperand(0)->getType() && 5931 I.getType() == I.getArgOperand(1)->getType() && 5932 I.onlyReadsMemory()) { 5933 SDValue LHS = getValue(I.getArgOperand(0)); 5934 SDValue RHS = getValue(I.getArgOperand(1)); 5935 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5936 LHS.getValueType(), LHS, RHS)); 5937 return; 5938 } 5939 break; 5940 case LibFunc::fabs: 5941 case LibFunc::fabsf: 5942 case LibFunc::fabsl: 5943 if (visitUnaryFloatCall(I, ISD::FABS)) 5944 return; 5945 break; 5946 case LibFunc::sin: 5947 case LibFunc::sinf: 5948 case LibFunc::sinl: 5949 if (visitUnaryFloatCall(I, ISD::FSIN)) 5950 return; 5951 break; 5952 case LibFunc::cos: 5953 case LibFunc::cosf: 5954 case LibFunc::cosl: 5955 if (visitUnaryFloatCall(I, ISD::FCOS)) 5956 return; 5957 break; 5958 case LibFunc::sqrt: 5959 case LibFunc::sqrtf: 5960 case LibFunc::sqrtl: 5961 case LibFunc::sqrt_finite: 5962 case LibFunc::sqrtf_finite: 5963 case LibFunc::sqrtl_finite: 5964 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5965 return; 5966 break; 5967 case LibFunc::floor: 5968 case LibFunc::floorf: 5969 case LibFunc::floorl: 5970 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5971 return; 5972 break; 5973 case LibFunc::nearbyint: 5974 case LibFunc::nearbyintf: 5975 case LibFunc::nearbyintl: 5976 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5977 return; 5978 break; 5979 case LibFunc::ceil: 5980 case LibFunc::ceilf: 5981 case LibFunc::ceill: 5982 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5983 return; 5984 break; 5985 case LibFunc::rint: 5986 case LibFunc::rintf: 5987 case LibFunc::rintl: 5988 if (visitUnaryFloatCall(I, ISD::FRINT)) 5989 return; 5990 break; 5991 case LibFunc::round: 5992 case LibFunc::roundf: 5993 case LibFunc::roundl: 5994 if (visitUnaryFloatCall(I, ISD::FROUND)) 5995 return; 5996 break; 5997 case LibFunc::trunc: 5998 case LibFunc::truncf: 5999 case LibFunc::truncl: 6000 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6001 return; 6002 break; 6003 case LibFunc::log2: 6004 case LibFunc::log2f: 6005 case LibFunc::log2l: 6006 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6007 return; 6008 break; 6009 case LibFunc::exp2: 6010 case LibFunc::exp2f: 6011 case LibFunc::exp2l: 6012 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6013 return; 6014 break; 6015 case LibFunc::memcmp: 6016 if (visitMemCmpCall(I)) 6017 return; 6018 break; 6019 case LibFunc::memchr: 6020 if (visitMemChrCall(I)) 6021 return; 6022 break; 6023 case LibFunc::strcpy: 6024 if (visitStrCpyCall(I, false)) 6025 return; 6026 break; 6027 case LibFunc::stpcpy: 6028 if (visitStrCpyCall(I, true)) 6029 return; 6030 break; 6031 case LibFunc::strcmp: 6032 if (visitStrCmpCall(I)) 6033 return; 6034 break; 6035 case LibFunc::strlen: 6036 if (visitStrLenCall(I)) 6037 return; 6038 break; 6039 case LibFunc::strnlen: 6040 if (visitStrNLenCall(I)) 6041 return; 6042 break; 6043 } 6044 } 6045 } 6046 6047 SDValue Callee; 6048 if (!RenameFn) 6049 Callee = getValue(I.getCalledValue()); 6050 else 6051 Callee = DAG.getExternalSymbol(RenameFn, 6052 DAG.getTargetLoweringInfo().getPointerTy()); 6053 6054 // Check if we can potentially perform a tail call. More detailed checking is 6055 // be done within LowerCallTo, after more information about the call is known. 6056 LowerCallTo(&I, Callee, I.isTailCall()); 6057 } 6058 6059 namespace { 6060 6061 /// AsmOperandInfo - This contains information for each constraint that we are 6062 /// lowering. 6063 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6064 public: 6065 /// CallOperand - If this is the result output operand or a clobber 6066 /// this is null, otherwise it is the incoming operand to the CallInst. 6067 /// This gets modified as the asm is processed. 6068 SDValue CallOperand; 6069 6070 /// AssignedRegs - If this is a register or register class operand, this 6071 /// contains the set of register corresponding to the operand. 6072 RegsForValue AssignedRegs; 6073 6074 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6075 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6076 } 6077 6078 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6079 /// corresponds to. If there is no Value* for this operand, it returns 6080 /// MVT::Other. 6081 EVT getCallOperandValEVT(LLVMContext &Context, 6082 const TargetLowering &TLI, 6083 const DataLayout *DL) const { 6084 if (!CallOperandVal) return MVT::Other; 6085 6086 if (isa<BasicBlock>(CallOperandVal)) 6087 return TLI.getPointerTy(); 6088 6089 llvm::Type *OpTy = CallOperandVal->getType(); 6090 6091 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6092 // If this is an indirect operand, the operand is a pointer to the 6093 // accessed type. 6094 if (isIndirect) { 6095 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6096 if (!PtrTy) 6097 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6098 OpTy = PtrTy->getElementType(); 6099 } 6100 6101 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6102 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6103 if (STy->getNumElements() == 1) 6104 OpTy = STy->getElementType(0); 6105 6106 // If OpTy is not a single value, it may be a struct/union that we 6107 // can tile with integers. 6108 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6109 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6110 switch (BitSize) { 6111 default: break; 6112 case 1: 6113 case 8: 6114 case 16: 6115 case 32: 6116 case 64: 6117 case 128: 6118 OpTy = IntegerType::get(Context, BitSize); 6119 break; 6120 } 6121 } 6122 6123 return TLI.getValueType(OpTy, true); 6124 } 6125 }; 6126 6127 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6128 6129 } // end anonymous namespace 6130 6131 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6132 /// specified operand. We prefer to assign virtual registers, to allow the 6133 /// register allocator to handle the assignment process. However, if the asm 6134 /// uses features that we can't model on machineinstrs, we have SDISel do the 6135 /// allocation. This produces generally horrible, but correct, code. 6136 /// 6137 /// OpInfo describes the operand. 6138 /// 6139 static void GetRegistersForValue(SelectionDAG &DAG, 6140 const TargetLowering &TLI, 6141 SDLoc DL, 6142 SDISelAsmOperandInfo &OpInfo) { 6143 LLVMContext &Context = *DAG.getContext(); 6144 6145 MachineFunction &MF = DAG.getMachineFunction(); 6146 SmallVector<unsigned, 4> Regs; 6147 6148 // If this is a constraint for a single physreg, or a constraint for a 6149 // register class, find it. 6150 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6151 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6152 OpInfo.ConstraintVT); 6153 6154 unsigned NumRegs = 1; 6155 if (OpInfo.ConstraintVT != MVT::Other) { 6156 // If this is a FP input in an integer register (or visa versa) insert a bit 6157 // cast of the input value. More generally, handle any case where the input 6158 // value disagrees with the register class we plan to stick this in. 6159 if (OpInfo.Type == InlineAsm::isInput && 6160 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6161 // Try to convert to the first EVT that the reg class contains. If the 6162 // types are identical size, use a bitcast to convert (e.g. two differing 6163 // vector types). 6164 MVT RegVT = *PhysReg.second->vt_begin(); 6165 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6166 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6167 RegVT, OpInfo.CallOperand); 6168 OpInfo.ConstraintVT = RegVT; 6169 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6170 // If the input is a FP value and we want it in FP registers, do a 6171 // bitcast to the corresponding integer type. This turns an f64 value 6172 // into i64, which can be passed with two i32 values on a 32-bit 6173 // machine. 6174 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6175 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6176 RegVT, OpInfo.CallOperand); 6177 OpInfo.ConstraintVT = RegVT; 6178 } 6179 } 6180 6181 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6182 } 6183 6184 MVT RegVT; 6185 EVT ValueVT = OpInfo.ConstraintVT; 6186 6187 // If this is a constraint for a specific physical register, like {r17}, 6188 // assign it now. 6189 if (unsigned AssignedReg = PhysReg.first) { 6190 const TargetRegisterClass *RC = PhysReg.second; 6191 if (OpInfo.ConstraintVT == MVT::Other) 6192 ValueVT = *RC->vt_begin(); 6193 6194 // Get the actual register value type. This is important, because the user 6195 // may have asked for (e.g.) the AX register in i32 type. We need to 6196 // remember that AX is actually i16 to get the right extension. 6197 RegVT = *RC->vt_begin(); 6198 6199 // This is a explicit reference to a physical register. 6200 Regs.push_back(AssignedReg); 6201 6202 // If this is an expanded reference, add the rest of the regs to Regs. 6203 if (NumRegs != 1) { 6204 TargetRegisterClass::iterator I = RC->begin(); 6205 for (; *I != AssignedReg; ++I) 6206 assert(I != RC->end() && "Didn't find reg!"); 6207 6208 // Already added the first reg. 6209 --NumRegs; ++I; 6210 for (; NumRegs; --NumRegs, ++I) { 6211 assert(I != RC->end() && "Ran out of registers to allocate!"); 6212 Regs.push_back(*I); 6213 } 6214 } 6215 6216 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6217 return; 6218 } 6219 6220 // Otherwise, if this was a reference to an LLVM register class, create vregs 6221 // for this reference. 6222 if (const TargetRegisterClass *RC = PhysReg.second) { 6223 RegVT = *RC->vt_begin(); 6224 if (OpInfo.ConstraintVT == MVT::Other) 6225 ValueVT = RegVT; 6226 6227 // Create the appropriate number of virtual registers. 6228 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6229 for (; NumRegs; --NumRegs) 6230 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6231 6232 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6233 return; 6234 } 6235 6236 // Otherwise, we couldn't allocate enough registers for this. 6237 } 6238 6239 /// visitInlineAsm - Handle a call to an InlineAsm object. 6240 /// 6241 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6242 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6243 6244 /// ConstraintOperands - Information about all of the constraints. 6245 SDISelAsmOperandInfoVector ConstraintOperands; 6246 6247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6248 TargetLowering::AsmOperandInfoVector 6249 TargetConstraints = TLI.ParseConstraints(CS); 6250 6251 bool hasMemory = false; 6252 6253 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6254 unsigned ResNo = 0; // ResNo - The result number of the next output. 6255 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6256 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6257 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6258 6259 MVT OpVT = MVT::Other; 6260 6261 // Compute the value type for each operand. 6262 switch (OpInfo.Type) { 6263 case InlineAsm::isOutput: 6264 // Indirect outputs just consume an argument. 6265 if (OpInfo.isIndirect) { 6266 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6267 break; 6268 } 6269 6270 // The return value of the call is this value. As such, there is no 6271 // corresponding argument. 6272 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6273 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6274 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6275 } else { 6276 assert(ResNo == 0 && "Asm only has one result!"); 6277 OpVT = TLI.getSimpleValueType(CS.getType()); 6278 } 6279 ++ResNo; 6280 break; 6281 case InlineAsm::isInput: 6282 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6283 break; 6284 case InlineAsm::isClobber: 6285 // Nothing to do. 6286 break; 6287 } 6288 6289 // If this is an input or an indirect output, process the call argument. 6290 // BasicBlocks are labels, currently appearing only in asm's. 6291 if (OpInfo.CallOperandVal) { 6292 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6293 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6294 } else { 6295 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6296 } 6297 6298 OpVT = 6299 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6300 } 6301 6302 OpInfo.ConstraintVT = OpVT; 6303 6304 // Indirect operand accesses access memory. 6305 if (OpInfo.isIndirect) 6306 hasMemory = true; 6307 else { 6308 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6309 TargetLowering::ConstraintType 6310 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6311 if (CType == TargetLowering::C_Memory) { 6312 hasMemory = true; 6313 break; 6314 } 6315 } 6316 } 6317 } 6318 6319 SDValue Chain, Flag; 6320 6321 // We won't need to flush pending loads if this asm doesn't touch 6322 // memory and is nonvolatile. 6323 if (hasMemory || IA->hasSideEffects()) 6324 Chain = getRoot(); 6325 else 6326 Chain = DAG.getRoot(); 6327 6328 // Second pass over the constraints: compute which constraint option to use 6329 // and assign registers to constraints that want a specific physreg. 6330 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6331 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6332 6333 // If this is an output operand with a matching input operand, look up the 6334 // matching input. If their types mismatch, e.g. one is an integer, the 6335 // other is floating point, or their sizes are different, flag it as an 6336 // error. 6337 if (OpInfo.hasMatchingInput()) { 6338 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6339 6340 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6341 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6342 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6343 OpInfo.ConstraintVT); 6344 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6345 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6346 Input.ConstraintVT); 6347 if ((OpInfo.ConstraintVT.isInteger() != 6348 Input.ConstraintVT.isInteger()) || 6349 (MatchRC.second != InputRC.second)) { 6350 report_fatal_error("Unsupported asm: input constraint" 6351 " with a matching output constraint of" 6352 " incompatible type!"); 6353 } 6354 Input.ConstraintVT = OpInfo.ConstraintVT; 6355 } 6356 } 6357 6358 // Compute the constraint code and ConstraintType to use. 6359 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6360 6361 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6362 OpInfo.Type == InlineAsm::isClobber) 6363 continue; 6364 6365 // If this is a memory input, and if the operand is not indirect, do what we 6366 // need to to provide an address for the memory input. 6367 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6368 !OpInfo.isIndirect) { 6369 assert((OpInfo.isMultipleAlternative || 6370 (OpInfo.Type == InlineAsm::isInput)) && 6371 "Can only indirectify direct input operands!"); 6372 6373 // Memory operands really want the address of the value. If we don't have 6374 // an indirect input, put it in the constpool if we can, otherwise spill 6375 // it to a stack slot. 6376 // TODO: This isn't quite right. We need to handle these according to 6377 // the addressing mode that the constraint wants. Also, this may take 6378 // an additional register for the computation and we don't want that 6379 // either. 6380 6381 // If the operand is a float, integer, or vector constant, spill to a 6382 // constant pool entry to get its address. 6383 const Value *OpVal = OpInfo.CallOperandVal; 6384 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6385 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6386 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6387 TLI.getPointerTy()); 6388 } else { 6389 // Otherwise, create a stack slot and emit a store to it before the 6390 // asm. 6391 Type *Ty = OpVal->getType(); 6392 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6393 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6394 MachineFunction &MF = DAG.getMachineFunction(); 6395 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6396 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6397 Chain = DAG.getStore(Chain, getCurSDLoc(), 6398 OpInfo.CallOperand, StackSlot, 6399 MachinePointerInfo::getFixedStack(SSFI), 6400 false, false, 0); 6401 OpInfo.CallOperand = StackSlot; 6402 } 6403 6404 // There is no longer a Value* corresponding to this operand. 6405 OpInfo.CallOperandVal = nullptr; 6406 6407 // It is now an indirect operand. 6408 OpInfo.isIndirect = true; 6409 } 6410 6411 // If this constraint is for a specific register, allocate it before 6412 // anything else. 6413 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6414 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6415 } 6416 6417 // Second pass - Loop over all of the operands, assigning virtual or physregs 6418 // to register class operands. 6419 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6420 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6421 6422 // C_Register operands have already been allocated, Other/Memory don't need 6423 // to be. 6424 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6425 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6426 } 6427 6428 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6429 std::vector<SDValue> AsmNodeOperands; 6430 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6431 AsmNodeOperands.push_back( 6432 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6433 TLI.getPointerTy())); 6434 6435 // If we have a !srcloc metadata node associated with it, we want to attach 6436 // this to the ultimately generated inline asm machineinstr. To do this, we 6437 // pass in the third operand as this (potentially null) inline asm MDNode. 6438 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6439 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6440 6441 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6442 // bits as operand 3. 6443 unsigned ExtraInfo = 0; 6444 if (IA->hasSideEffects()) 6445 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6446 if (IA->isAlignStack()) 6447 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6448 // Set the asm dialect. 6449 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6450 6451 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6452 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6453 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6454 6455 // Compute the constraint code and ConstraintType to use. 6456 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6457 6458 // Ideally, we would only check against memory constraints. However, the 6459 // meaning of an other constraint can be target-specific and we can't easily 6460 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6461 // for other constriants as well. 6462 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6463 OpInfo.ConstraintType == TargetLowering::C_Other) { 6464 if (OpInfo.Type == InlineAsm::isInput) 6465 ExtraInfo |= InlineAsm::Extra_MayLoad; 6466 else if (OpInfo.Type == InlineAsm::isOutput) 6467 ExtraInfo |= InlineAsm::Extra_MayStore; 6468 else if (OpInfo.Type == InlineAsm::isClobber) 6469 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6470 } 6471 } 6472 6473 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6474 TLI.getPointerTy())); 6475 6476 // Loop over all of the inputs, copying the operand values into the 6477 // appropriate registers and processing the output regs. 6478 RegsForValue RetValRegs; 6479 6480 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6481 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6482 6483 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6484 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6485 6486 switch (OpInfo.Type) { 6487 case InlineAsm::isOutput: { 6488 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6489 OpInfo.ConstraintType != TargetLowering::C_Register) { 6490 // Memory output, or 'other' output (e.g. 'X' constraint). 6491 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6492 6493 // Add information to the INLINEASM node to know about this output. 6494 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6495 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6496 TLI.getPointerTy())); 6497 AsmNodeOperands.push_back(OpInfo.CallOperand); 6498 break; 6499 } 6500 6501 // Otherwise, this is a register or register class output. 6502 6503 // Copy the output from the appropriate register. Find a register that 6504 // we can use. 6505 if (OpInfo.AssignedRegs.Regs.empty()) { 6506 LLVMContext &Ctx = *DAG.getContext(); 6507 Ctx.emitError(CS.getInstruction(), 6508 "couldn't allocate output register for constraint '" + 6509 Twine(OpInfo.ConstraintCode) + "'"); 6510 return; 6511 } 6512 6513 // If this is an indirect operand, store through the pointer after the 6514 // asm. 6515 if (OpInfo.isIndirect) { 6516 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6517 OpInfo.CallOperandVal)); 6518 } else { 6519 // This is the result value of the call. 6520 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6521 // Concatenate this output onto the outputs list. 6522 RetValRegs.append(OpInfo.AssignedRegs); 6523 } 6524 6525 // Add information to the INLINEASM node to know that this register is 6526 // set. 6527 OpInfo.AssignedRegs 6528 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6529 ? InlineAsm::Kind_RegDefEarlyClobber 6530 : InlineAsm::Kind_RegDef, 6531 false, 0, DAG, AsmNodeOperands); 6532 break; 6533 } 6534 case InlineAsm::isInput: { 6535 SDValue InOperandVal = OpInfo.CallOperand; 6536 6537 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6538 // If this is required to match an output register we have already set, 6539 // just use its register. 6540 unsigned OperandNo = OpInfo.getMatchedOperand(); 6541 6542 // Scan until we find the definition we already emitted of this operand. 6543 // When we find it, create a RegsForValue operand. 6544 unsigned CurOp = InlineAsm::Op_FirstOperand; 6545 for (; OperandNo; --OperandNo) { 6546 // Advance to the next operand. 6547 unsigned OpFlag = 6548 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6549 assert((InlineAsm::isRegDefKind(OpFlag) || 6550 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6551 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6552 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6553 } 6554 6555 unsigned OpFlag = 6556 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6557 if (InlineAsm::isRegDefKind(OpFlag) || 6558 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6559 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6560 if (OpInfo.isIndirect) { 6561 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6562 LLVMContext &Ctx = *DAG.getContext(); 6563 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6564 " don't know how to handle tied " 6565 "indirect register inputs"); 6566 return; 6567 } 6568 6569 RegsForValue MatchedRegs; 6570 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6571 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6572 MatchedRegs.RegVTs.push_back(RegVT); 6573 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6574 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6575 i != e; ++i) { 6576 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6577 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6578 else { 6579 LLVMContext &Ctx = *DAG.getContext(); 6580 Ctx.emitError(CS.getInstruction(), 6581 "inline asm error: This value" 6582 " type register class is not natively supported!"); 6583 return; 6584 } 6585 } 6586 // Use the produced MatchedRegs object to 6587 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6588 Chain, &Flag, CS.getInstruction()); 6589 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6590 true, OpInfo.getMatchedOperand(), 6591 DAG, AsmNodeOperands); 6592 break; 6593 } 6594 6595 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6596 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6597 "Unexpected number of operands"); 6598 // Add information to the INLINEASM node to know about this input. 6599 // See InlineAsm.h isUseOperandTiedToDef. 6600 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6601 OpInfo.getMatchedOperand()); 6602 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6603 TLI.getPointerTy())); 6604 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6605 break; 6606 } 6607 6608 // Treat indirect 'X' constraint as memory. 6609 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6610 OpInfo.isIndirect) 6611 OpInfo.ConstraintType = TargetLowering::C_Memory; 6612 6613 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6614 std::vector<SDValue> Ops; 6615 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6616 Ops, DAG); 6617 if (Ops.empty()) { 6618 LLVMContext &Ctx = *DAG.getContext(); 6619 Ctx.emitError(CS.getInstruction(), 6620 "invalid operand for inline asm constraint '" + 6621 Twine(OpInfo.ConstraintCode) + "'"); 6622 return; 6623 } 6624 6625 // Add information to the INLINEASM node to know about this input. 6626 unsigned ResOpType = 6627 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6628 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6629 TLI.getPointerTy())); 6630 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6631 break; 6632 } 6633 6634 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6635 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6636 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6637 "Memory operands expect pointer values"); 6638 6639 // Add information to the INLINEASM node to know about this input. 6640 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6641 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6642 TLI.getPointerTy())); 6643 AsmNodeOperands.push_back(InOperandVal); 6644 break; 6645 } 6646 6647 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6648 OpInfo.ConstraintType == TargetLowering::C_Register) && 6649 "Unknown constraint type!"); 6650 6651 // TODO: Support this. 6652 if (OpInfo.isIndirect) { 6653 LLVMContext &Ctx = *DAG.getContext(); 6654 Ctx.emitError(CS.getInstruction(), 6655 "Don't know how to handle indirect register inputs yet " 6656 "for constraint '" + 6657 Twine(OpInfo.ConstraintCode) + "'"); 6658 return; 6659 } 6660 6661 // Copy the input into the appropriate registers. 6662 if (OpInfo.AssignedRegs.Regs.empty()) { 6663 LLVMContext &Ctx = *DAG.getContext(); 6664 Ctx.emitError(CS.getInstruction(), 6665 "couldn't allocate input reg for constraint '" + 6666 Twine(OpInfo.ConstraintCode) + "'"); 6667 return; 6668 } 6669 6670 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6671 Chain, &Flag, CS.getInstruction()); 6672 6673 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6674 DAG, AsmNodeOperands); 6675 break; 6676 } 6677 case InlineAsm::isClobber: { 6678 // Add the clobbered value to the operand list, so that the register 6679 // allocator is aware that the physreg got clobbered. 6680 if (!OpInfo.AssignedRegs.Regs.empty()) 6681 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6682 false, 0, DAG, 6683 AsmNodeOperands); 6684 break; 6685 } 6686 } 6687 } 6688 6689 // Finish up input operands. Set the input chain and add the flag last. 6690 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6691 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6692 6693 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6694 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6695 Flag = Chain.getValue(1); 6696 6697 // If this asm returns a register value, copy the result from that register 6698 // and set it as the value of the call. 6699 if (!RetValRegs.Regs.empty()) { 6700 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6701 Chain, &Flag, CS.getInstruction()); 6702 6703 // FIXME: Why don't we do this for inline asms with MRVs? 6704 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6705 EVT ResultType = TLI.getValueType(CS.getType()); 6706 6707 // If any of the results of the inline asm is a vector, it may have the 6708 // wrong width/num elts. This can happen for register classes that can 6709 // contain multiple different value types. The preg or vreg allocated may 6710 // not have the same VT as was expected. Convert it to the right type 6711 // with bit_convert. 6712 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6713 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6714 ResultType, Val); 6715 6716 } else if (ResultType != Val.getValueType() && 6717 ResultType.isInteger() && Val.getValueType().isInteger()) { 6718 // If a result value was tied to an input value, the computed result may 6719 // have a wider width than the expected result. Extract the relevant 6720 // portion. 6721 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6722 } 6723 6724 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6725 } 6726 6727 setValue(CS.getInstruction(), Val); 6728 // Don't need to use this as a chain in this case. 6729 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6730 return; 6731 } 6732 6733 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6734 6735 // Process indirect outputs, first output all of the flagged copies out of 6736 // physregs. 6737 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6738 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6739 const Value *Ptr = IndirectStoresToEmit[i].second; 6740 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6741 Chain, &Flag, IA); 6742 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6743 } 6744 6745 // Emit the non-flagged stores from the physregs. 6746 SmallVector<SDValue, 8> OutChains; 6747 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6748 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6749 StoresToEmit[i].first, 6750 getValue(StoresToEmit[i].second), 6751 MachinePointerInfo(StoresToEmit[i].second), 6752 false, false, 0); 6753 OutChains.push_back(Val); 6754 } 6755 6756 if (!OutChains.empty()) 6757 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6758 6759 DAG.setRoot(Chain); 6760 } 6761 6762 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6763 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6764 MVT::Other, getRoot(), 6765 getValue(I.getArgOperand(0)), 6766 DAG.getSrcValue(I.getArgOperand(0)))); 6767 } 6768 6769 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6771 const DataLayout &DL = *TLI.getDataLayout(); 6772 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6773 getRoot(), getValue(I.getOperand(0)), 6774 DAG.getSrcValue(I.getOperand(0)), 6775 DL.getABITypeAlignment(I.getType())); 6776 setValue(&I, V); 6777 DAG.setRoot(V.getValue(1)); 6778 } 6779 6780 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6781 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6782 MVT::Other, getRoot(), 6783 getValue(I.getArgOperand(0)), 6784 DAG.getSrcValue(I.getArgOperand(0)))); 6785 } 6786 6787 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6788 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6789 MVT::Other, getRoot(), 6790 getValue(I.getArgOperand(0)), 6791 getValue(I.getArgOperand(1)), 6792 DAG.getSrcValue(I.getArgOperand(0)), 6793 DAG.getSrcValue(I.getArgOperand(1)))); 6794 } 6795 6796 /// \brief Lower an argument list according to the target calling convention. 6797 /// 6798 /// \return A tuple of <return-value, token-chain> 6799 /// 6800 /// This is a helper for lowering intrinsics that follow a target calling 6801 /// convention or require stack pointer adjustment. Only a subset of the 6802 /// intrinsic's operands need to participate in the calling convention. 6803 std::pair<SDValue, SDValue> 6804 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6805 unsigned NumArgs, SDValue Callee, 6806 bool UseVoidTy, 6807 MachineBasicBlock *LandingPad) { 6808 TargetLowering::ArgListTy Args; 6809 Args.reserve(NumArgs); 6810 6811 // Populate the argument list. 6812 // Attributes for args start at offset 1, after the return attribute. 6813 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6814 ArgI != ArgE; ++ArgI) { 6815 const Value *V = CS->getOperand(ArgI); 6816 6817 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6818 6819 TargetLowering::ArgListEntry Entry; 6820 Entry.Node = getValue(V); 6821 Entry.Ty = V->getType(); 6822 Entry.setAttributes(&CS, AttrI); 6823 Args.push_back(Entry); 6824 } 6825 6826 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6827 TargetLowering::CallLoweringInfo CLI(DAG); 6828 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6829 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6830 .setDiscardResult(CS->use_empty()); 6831 6832 return lowerInvokable(CLI, LandingPad); 6833 } 6834 6835 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6836 /// or patchpoint target node's operand list. 6837 /// 6838 /// Constants are converted to TargetConstants purely as an optimization to 6839 /// avoid constant materialization and register allocation. 6840 /// 6841 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6842 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6843 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6844 /// address materialization and register allocation, but may also be required 6845 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6846 /// alloca in the entry block, then the runtime may assume that the alloca's 6847 /// StackMap location can be read immediately after compilation and that the 6848 /// location is valid at any point during execution (this is similar to the 6849 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6850 /// only available in a register, then the runtime would need to trap when 6851 /// execution reaches the StackMap in order to read the alloca's location. 6852 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6853 SmallVectorImpl<SDValue> &Ops, 6854 SelectionDAGBuilder &Builder) { 6855 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6856 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6857 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6858 Ops.push_back( 6859 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6860 Ops.push_back( 6861 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6862 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6863 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6864 Ops.push_back( 6865 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6866 } else 6867 Ops.push_back(OpVal); 6868 } 6869 } 6870 6871 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6872 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6873 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6874 // [live variables...]) 6875 6876 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6877 6878 SDValue Chain, InFlag, Callee, NullPtr; 6879 SmallVector<SDValue, 32> Ops; 6880 6881 SDLoc DL = getCurSDLoc(); 6882 Callee = getValue(CI.getCalledValue()); 6883 NullPtr = DAG.getIntPtrConstant(0, true); 6884 6885 // The stackmap intrinsic only records the live variables (the arguemnts 6886 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6887 // intrinsic, this won't be lowered to a function call. This means we don't 6888 // have to worry about calling conventions and target specific lowering code. 6889 // Instead we perform the call lowering right here. 6890 // 6891 // chain, flag = CALLSEQ_START(chain, 0) 6892 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6893 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6894 // 6895 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6896 InFlag = Chain.getValue(1); 6897 6898 // Add the <id> and <numBytes> constants. 6899 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6900 Ops.push_back(DAG.getTargetConstant( 6901 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6902 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6903 Ops.push_back(DAG.getTargetConstant( 6904 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6905 6906 // Push live variables for the stack map. 6907 addStackMapLiveVars(&CI, 2, Ops, *this); 6908 6909 // We are not pushing any register mask info here on the operands list, 6910 // because the stackmap doesn't clobber anything. 6911 6912 // Push the chain and the glue flag. 6913 Ops.push_back(Chain); 6914 Ops.push_back(InFlag); 6915 6916 // Create the STACKMAP node. 6917 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6918 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6919 Chain = SDValue(SM, 0); 6920 InFlag = Chain.getValue(1); 6921 6922 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6923 6924 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6925 6926 // Set the root to the target-lowered call chain. 6927 DAG.setRoot(Chain); 6928 6929 // Inform the Frame Information that we have a stackmap in this function. 6930 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6931 } 6932 6933 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6934 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6935 MachineBasicBlock *LandingPad) { 6936 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6937 // i32 <numBytes>, 6938 // i8* <target>, 6939 // i32 <numArgs>, 6940 // [Args...], 6941 // [live variables...]) 6942 6943 CallingConv::ID CC = CS.getCallingConv(); 6944 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6945 bool HasDef = !CS->getType()->isVoidTy(); 6946 SDValue Callee = getValue(CS->getOperand(2)); // <target> 6947 6948 // Get the real number of arguments participating in the call <numArgs> 6949 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6950 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6951 6952 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6953 // Intrinsics include all meta-operands up to but not including CC. 6954 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6955 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6956 "Not enough arguments provided to the patchpoint intrinsic"); 6957 6958 // For AnyRegCC the arguments are lowered later on manually. 6959 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6960 std::pair<SDValue, SDValue> Result = 6961 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 6962 LandingPad); 6963 6964 SDNode *CallEnd = Result.second.getNode(); 6965 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6966 CallEnd = CallEnd->getOperand(0).getNode(); 6967 6968 /// Get a call instruction from the call sequence chain. 6969 /// Tail calls are not allowed. 6970 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6971 "Expected a callseq node."); 6972 SDNode *Call = CallEnd->getOperand(0).getNode(); 6973 bool HasGlue = Call->getGluedNode(); 6974 6975 // Replace the target specific call node with the patchable intrinsic. 6976 SmallVector<SDValue, 8> Ops; 6977 6978 // Add the <id> and <numBytes> constants. 6979 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6980 Ops.push_back(DAG.getTargetConstant( 6981 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6982 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6983 Ops.push_back(DAG.getTargetConstant( 6984 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6985 6986 // Assume that the Callee is a constant address. 6987 // FIXME: handle function symbols in the future. 6988 Ops.push_back( 6989 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 6990 /*isTarget=*/true)); 6991 6992 // Adjust <numArgs> to account for any arguments that have been passed on the 6993 // stack instead. 6994 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6995 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6996 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6997 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6998 6999 // Add the calling convention 7000 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7001 7002 // Add the arguments we omitted previously. The register allocator should 7003 // place these in any free register. 7004 if (IsAnyRegCC) 7005 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7006 Ops.push_back(getValue(CS.getArgument(i))); 7007 7008 // Push the arguments from the call instruction up to the register mask. 7009 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7010 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7011 Ops.push_back(*i); 7012 7013 // Push live variables for the stack map. 7014 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7015 7016 // Push the register mask info. 7017 if (HasGlue) 7018 Ops.push_back(*(Call->op_end()-2)); 7019 else 7020 Ops.push_back(*(Call->op_end()-1)); 7021 7022 // Push the chain (this is originally the first operand of the call, but 7023 // becomes now the last or second to last operand). 7024 Ops.push_back(*(Call->op_begin())); 7025 7026 // Push the glue flag (last operand). 7027 if (HasGlue) 7028 Ops.push_back(*(Call->op_end()-1)); 7029 7030 SDVTList NodeTys; 7031 if (IsAnyRegCC && HasDef) { 7032 // Create the return types based on the intrinsic definition 7033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7034 SmallVector<EVT, 3> ValueVTs; 7035 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7036 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7037 7038 // There is always a chain and a glue type at the end 7039 ValueVTs.push_back(MVT::Other); 7040 ValueVTs.push_back(MVT::Glue); 7041 NodeTys = DAG.getVTList(ValueVTs); 7042 } else 7043 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7044 7045 // Replace the target specific call node with a PATCHPOINT node. 7046 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7047 getCurSDLoc(), NodeTys, Ops); 7048 7049 // Update the NodeMap. 7050 if (HasDef) { 7051 if (IsAnyRegCC) 7052 setValue(CS.getInstruction(), SDValue(MN, 0)); 7053 else 7054 setValue(CS.getInstruction(), Result.first); 7055 } 7056 7057 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7058 // call sequence. Furthermore the location of the chain and glue can change 7059 // when the AnyReg calling convention is used and the intrinsic returns a 7060 // value. 7061 if (IsAnyRegCC && HasDef) { 7062 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7063 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7064 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7065 } else 7066 DAG.ReplaceAllUsesWith(Call, MN); 7067 DAG.DeleteNode(Call); 7068 7069 // Inform the Frame Information that we have a patchpoint in this function. 7070 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7071 } 7072 7073 /// Returns an AttributeSet representing the attributes applied to the return 7074 /// value of the given call. 7075 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7076 SmallVector<Attribute::AttrKind, 2> Attrs; 7077 if (CLI.RetSExt) 7078 Attrs.push_back(Attribute::SExt); 7079 if (CLI.RetZExt) 7080 Attrs.push_back(Attribute::ZExt); 7081 if (CLI.IsInReg) 7082 Attrs.push_back(Attribute::InReg); 7083 7084 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7085 Attrs); 7086 } 7087 7088 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7089 /// implementation, which just calls LowerCall. 7090 /// FIXME: When all targets are 7091 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7092 std::pair<SDValue, SDValue> 7093 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7094 // Handle the incoming return values from the call. 7095 CLI.Ins.clear(); 7096 Type *OrigRetTy = CLI.RetTy; 7097 SmallVector<EVT, 4> RetTys; 7098 SmallVector<uint64_t, 4> Offsets; 7099 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7100 7101 SmallVector<ISD::OutputArg, 4> Outs; 7102 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7103 7104 bool CanLowerReturn = 7105 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7106 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7107 7108 SDValue DemoteStackSlot; 7109 int DemoteStackIdx = -100; 7110 if (!CanLowerReturn) { 7111 // FIXME: equivalent assert? 7112 // assert(!CS.hasInAllocaArgument() && 7113 // "sret demotion is incompatible with inalloca"); 7114 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7115 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7116 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7117 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7118 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7119 7120 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7121 ArgListEntry Entry; 7122 Entry.Node = DemoteStackSlot; 7123 Entry.Ty = StackSlotPtrType; 7124 Entry.isSExt = false; 7125 Entry.isZExt = false; 7126 Entry.isInReg = false; 7127 Entry.isSRet = true; 7128 Entry.isNest = false; 7129 Entry.isByVal = false; 7130 Entry.isReturned = false; 7131 Entry.Alignment = Align; 7132 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7133 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7134 } else { 7135 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7136 EVT VT = RetTys[I]; 7137 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7138 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7139 for (unsigned i = 0; i != NumRegs; ++i) { 7140 ISD::InputArg MyFlags; 7141 MyFlags.VT = RegisterVT; 7142 MyFlags.ArgVT = VT; 7143 MyFlags.Used = CLI.IsReturnValueUsed; 7144 if (CLI.RetSExt) 7145 MyFlags.Flags.setSExt(); 7146 if (CLI.RetZExt) 7147 MyFlags.Flags.setZExt(); 7148 if (CLI.IsInReg) 7149 MyFlags.Flags.setInReg(); 7150 CLI.Ins.push_back(MyFlags); 7151 } 7152 } 7153 } 7154 7155 // Handle all of the outgoing arguments. 7156 CLI.Outs.clear(); 7157 CLI.OutVals.clear(); 7158 ArgListTy &Args = CLI.getArgs(); 7159 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7160 SmallVector<EVT, 4> ValueVTs; 7161 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7162 Type *FinalType = Args[i].Ty; 7163 if (Args[i].isByVal) 7164 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7165 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7166 FinalType, CLI.CallConv, CLI.IsVarArg); 7167 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7168 ++Value) { 7169 EVT VT = ValueVTs[Value]; 7170 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7171 SDValue Op = SDValue(Args[i].Node.getNode(), 7172 Args[i].Node.getResNo() + Value); 7173 ISD::ArgFlagsTy Flags; 7174 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7175 7176 if (Args[i].isZExt) 7177 Flags.setZExt(); 7178 if (Args[i].isSExt) 7179 Flags.setSExt(); 7180 if (Args[i].isInReg) 7181 Flags.setInReg(); 7182 if (Args[i].isSRet) 7183 Flags.setSRet(); 7184 if (Args[i].isByVal) 7185 Flags.setByVal(); 7186 if (Args[i].isInAlloca) { 7187 Flags.setInAlloca(); 7188 // Set the byval flag for CCAssignFn callbacks that don't know about 7189 // inalloca. This way we can know how many bytes we should've allocated 7190 // and how many bytes a callee cleanup function will pop. If we port 7191 // inalloca to more targets, we'll have to add custom inalloca handling 7192 // in the various CC lowering callbacks. 7193 Flags.setByVal(); 7194 } 7195 if (Args[i].isByVal || Args[i].isInAlloca) { 7196 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7197 Type *ElementTy = Ty->getElementType(); 7198 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7199 // For ByVal, alignment should come from FE. BE will guess if this 7200 // info is not there but there are cases it cannot get right. 7201 unsigned FrameAlign; 7202 if (Args[i].Alignment) 7203 FrameAlign = Args[i].Alignment; 7204 else 7205 FrameAlign = getByValTypeAlignment(ElementTy); 7206 Flags.setByValAlign(FrameAlign); 7207 } 7208 if (Args[i].isNest) 7209 Flags.setNest(); 7210 if (NeedsRegBlock) { 7211 Flags.setInConsecutiveRegs(); 7212 if (Value == NumValues - 1) 7213 Flags.setInConsecutiveRegsLast(); 7214 } 7215 Flags.setOrigAlign(OriginalAlignment); 7216 7217 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7218 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7219 SmallVector<SDValue, 4> Parts(NumParts); 7220 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7221 7222 if (Args[i].isSExt) 7223 ExtendKind = ISD::SIGN_EXTEND; 7224 else if (Args[i].isZExt) 7225 ExtendKind = ISD::ZERO_EXTEND; 7226 7227 // Conservatively only handle 'returned' on non-vectors for now 7228 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7229 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7230 "unexpected use of 'returned'"); 7231 // Before passing 'returned' to the target lowering code, ensure that 7232 // either the register MVT and the actual EVT are the same size or that 7233 // the return value and argument are extended in the same way; in these 7234 // cases it's safe to pass the argument register value unchanged as the 7235 // return register value (although it's at the target's option whether 7236 // to do so) 7237 // TODO: allow code generation to take advantage of partially preserved 7238 // registers rather than clobbering the entire register when the 7239 // parameter extension method is not compatible with the return 7240 // extension method 7241 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7242 (ExtendKind != ISD::ANY_EXTEND && 7243 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7244 Flags.setReturned(); 7245 } 7246 7247 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7248 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7249 7250 for (unsigned j = 0; j != NumParts; ++j) { 7251 // if it isn't first piece, alignment must be 1 7252 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7253 i < CLI.NumFixedArgs, 7254 i, j*Parts[j].getValueType().getStoreSize()); 7255 if (NumParts > 1 && j == 0) 7256 MyFlags.Flags.setSplit(); 7257 else if (j != 0) 7258 MyFlags.Flags.setOrigAlign(1); 7259 7260 CLI.Outs.push_back(MyFlags); 7261 CLI.OutVals.push_back(Parts[j]); 7262 } 7263 } 7264 } 7265 7266 SmallVector<SDValue, 4> InVals; 7267 CLI.Chain = LowerCall(CLI, InVals); 7268 7269 // Verify that the target's LowerCall behaved as expected. 7270 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7271 "LowerCall didn't return a valid chain!"); 7272 assert((!CLI.IsTailCall || InVals.empty()) && 7273 "LowerCall emitted a return value for a tail call!"); 7274 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7275 "LowerCall didn't emit the correct number of values!"); 7276 7277 // For a tail call, the return value is merely live-out and there aren't 7278 // any nodes in the DAG representing it. Return a special value to 7279 // indicate that a tail call has been emitted and no more Instructions 7280 // should be processed in the current block. 7281 if (CLI.IsTailCall) { 7282 CLI.DAG.setRoot(CLI.Chain); 7283 return std::make_pair(SDValue(), SDValue()); 7284 } 7285 7286 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7287 assert(InVals[i].getNode() && 7288 "LowerCall emitted a null value!"); 7289 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7290 "LowerCall emitted a value with the wrong type!"); 7291 }); 7292 7293 SmallVector<SDValue, 4> ReturnValues; 7294 if (!CanLowerReturn) { 7295 // The instruction result is the result of loading from the 7296 // hidden sret parameter. 7297 SmallVector<EVT, 1> PVTs; 7298 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7299 7300 ComputeValueVTs(*this, PtrRetTy, PVTs); 7301 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7302 EVT PtrVT = PVTs[0]; 7303 7304 unsigned NumValues = RetTys.size(); 7305 ReturnValues.resize(NumValues); 7306 SmallVector<SDValue, 4> Chains(NumValues); 7307 7308 for (unsigned i = 0; i < NumValues; ++i) { 7309 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7310 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7311 SDValue L = CLI.DAG.getLoad( 7312 RetTys[i], CLI.DL, CLI.Chain, Add, 7313 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7314 false, false, 1); 7315 ReturnValues[i] = L; 7316 Chains[i] = L.getValue(1); 7317 } 7318 7319 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7320 } else { 7321 // Collect the legal value parts into potentially illegal values 7322 // that correspond to the original function's return values. 7323 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7324 if (CLI.RetSExt) 7325 AssertOp = ISD::AssertSext; 7326 else if (CLI.RetZExt) 7327 AssertOp = ISD::AssertZext; 7328 unsigned CurReg = 0; 7329 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7330 EVT VT = RetTys[I]; 7331 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7332 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7333 7334 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7335 NumRegs, RegisterVT, VT, nullptr, 7336 AssertOp)); 7337 CurReg += NumRegs; 7338 } 7339 7340 // For a function returning void, there is no return value. We can't create 7341 // such a node, so we just return a null return value in that case. In 7342 // that case, nothing will actually look at the value. 7343 if (ReturnValues.empty()) 7344 return std::make_pair(SDValue(), CLI.Chain); 7345 } 7346 7347 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7348 CLI.DAG.getVTList(RetTys), ReturnValues); 7349 return std::make_pair(Res, CLI.Chain); 7350 } 7351 7352 void TargetLowering::LowerOperationWrapper(SDNode *N, 7353 SmallVectorImpl<SDValue> &Results, 7354 SelectionDAG &DAG) const { 7355 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7356 if (Res.getNode()) 7357 Results.push_back(Res); 7358 } 7359 7360 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7361 llvm_unreachable("LowerOperation not implemented for this target!"); 7362 } 7363 7364 void 7365 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7366 SDValue Op = getNonRegisterValue(V); 7367 assert((Op.getOpcode() != ISD::CopyFromReg || 7368 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7369 "Copy from a reg to the same reg!"); 7370 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7371 7372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7373 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7374 SDValue Chain = DAG.getEntryNode(); 7375 7376 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7377 FuncInfo.PreferredExtendType.end()) 7378 ? ISD::ANY_EXTEND 7379 : FuncInfo.PreferredExtendType[V]; 7380 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7381 PendingExports.push_back(Chain); 7382 } 7383 7384 #include "llvm/CodeGen/SelectionDAGISel.h" 7385 7386 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7387 /// entry block, return true. This includes arguments used by switches, since 7388 /// the switch may expand into multiple basic blocks. 7389 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7390 // With FastISel active, we may be splitting blocks, so force creation 7391 // of virtual registers for all non-dead arguments. 7392 if (FastISel) 7393 return A->use_empty(); 7394 7395 const BasicBlock *Entry = A->getParent()->begin(); 7396 for (const User *U : A->users()) 7397 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7398 return false; // Use not in entry block. 7399 7400 return true; 7401 } 7402 7403 void SelectionDAGISel::LowerArguments(const Function &F) { 7404 SelectionDAG &DAG = SDB->DAG; 7405 SDLoc dl = SDB->getCurSDLoc(); 7406 const DataLayout *DL = TLI->getDataLayout(); 7407 SmallVector<ISD::InputArg, 16> Ins; 7408 7409 if (!FuncInfo->CanLowerReturn) { 7410 // Put in an sret pointer parameter before all the other parameters. 7411 SmallVector<EVT, 1> ValueVTs; 7412 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7413 7414 // NOTE: Assuming that a pointer will never break down to more than one VT 7415 // or one register. 7416 ISD::ArgFlagsTy Flags; 7417 Flags.setSRet(); 7418 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7419 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7420 Ins.push_back(RetArg); 7421 } 7422 7423 // Set up the incoming argument description vector. 7424 unsigned Idx = 1; 7425 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7426 I != E; ++I, ++Idx) { 7427 SmallVector<EVT, 4> ValueVTs; 7428 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7429 bool isArgValueUsed = !I->use_empty(); 7430 unsigned PartBase = 0; 7431 Type *FinalType = I->getType(); 7432 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7433 FinalType = cast<PointerType>(FinalType)->getElementType(); 7434 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7435 FinalType, F.getCallingConv(), F.isVarArg()); 7436 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7437 Value != NumValues; ++Value) { 7438 EVT VT = ValueVTs[Value]; 7439 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7440 ISD::ArgFlagsTy Flags; 7441 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7442 7443 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7444 Flags.setZExt(); 7445 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7446 Flags.setSExt(); 7447 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7448 Flags.setInReg(); 7449 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7450 Flags.setSRet(); 7451 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7452 Flags.setByVal(); 7453 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7454 Flags.setInAlloca(); 7455 // Set the byval flag for CCAssignFn callbacks that don't know about 7456 // inalloca. This way we can know how many bytes we should've allocated 7457 // and how many bytes a callee cleanup function will pop. If we port 7458 // inalloca to more targets, we'll have to add custom inalloca handling 7459 // in the various CC lowering callbacks. 7460 Flags.setByVal(); 7461 } 7462 if (Flags.isByVal() || Flags.isInAlloca()) { 7463 PointerType *Ty = cast<PointerType>(I->getType()); 7464 Type *ElementTy = Ty->getElementType(); 7465 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7466 // For ByVal, alignment should be passed from FE. BE will guess if 7467 // this info is not there but there are cases it cannot get right. 7468 unsigned FrameAlign; 7469 if (F.getParamAlignment(Idx)) 7470 FrameAlign = F.getParamAlignment(Idx); 7471 else 7472 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7473 Flags.setByValAlign(FrameAlign); 7474 } 7475 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7476 Flags.setNest(); 7477 if (NeedsRegBlock) { 7478 Flags.setInConsecutiveRegs(); 7479 if (Value == NumValues - 1) 7480 Flags.setInConsecutiveRegsLast(); 7481 } 7482 Flags.setOrigAlign(OriginalAlignment); 7483 7484 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7485 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7486 for (unsigned i = 0; i != NumRegs; ++i) { 7487 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7488 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7489 if (NumRegs > 1 && i == 0) 7490 MyFlags.Flags.setSplit(); 7491 // if it isn't first piece, alignment must be 1 7492 else if (i > 0) 7493 MyFlags.Flags.setOrigAlign(1); 7494 Ins.push_back(MyFlags); 7495 } 7496 PartBase += VT.getStoreSize(); 7497 } 7498 } 7499 7500 // Call the target to set up the argument values. 7501 SmallVector<SDValue, 8> InVals; 7502 SDValue NewRoot = TLI->LowerFormalArguments( 7503 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7504 7505 // Verify that the target's LowerFormalArguments behaved as expected. 7506 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7507 "LowerFormalArguments didn't return a valid chain!"); 7508 assert(InVals.size() == Ins.size() && 7509 "LowerFormalArguments didn't emit the correct number of values!"); 7510 DEBUG({ 7511 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7512 assert(InVals[i].getNode() && 7513 "LowerFormalArguments emitted a null value!"); 7514 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7515 "LowerFormalArguments emitted a value with the wrong type!"); 7516 } 7517 }); 7518 7519 // Update the DAG with the new chain value resulting from argument lowering. 7520 DAG.setRoot(NewRoot); 7521 7522 // Set up the argument values. 7523 unsigned i = 0; 7524 Idx = 1; 7525 if (!FuncInfo->CanLowerReturn) { 7526 // Create a virtual register for the sret pointer, and put in a copy 7527 // from the sret argument into it. 7528 SmallVector<EVT, 1> ValueVTs; 7529 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7530 MVT VT = ValueVTs[0].getSimpleVT(); 7531 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7532 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7533 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7534 RegVT, VT, nullptr, AssertOp); 7535 7536 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7537 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7538 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7539 FuncInfo->DemoteRegister = SRetReg; 7540 NewRoot = 7541 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7542 DAG.setRoot(NewRoot); 7543 7544 // i indexes lowered arguments. Bump it past the hidden sret argument. 7545 // Idx indexes LLVM arguments. Don't touch it. 7546 ++i; 7547 } 7548 7549 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7550 ++I, ++Idx) { 7551 SmallVector<SDValue, 4> ArgValues; 7552 SmallVector<EVT, 4> ValueVTs; 7553 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7554 unsigned NumValues = ValueVTs.size(); 7555 7556 // If this argument is unused then remember its value. It is used to generate 7557 // debugging information. 7558 if (I->use_empty() && NumValues) { 7559 SDB->setUnusedArgValue(I, InVals[i]); 7560 7561 // Also remember any frame index for use in FastISel. 7562 if (FrameIndexSDNode *FI = 7563 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7564 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7565 } 7566 7567 for (unsigned Val = 0; Val != NumValues; ++Val) { 7568 EVT VT = ValueVTs[Val]; 7569 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7570 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7571 7572 if (!I->use_empty()) { 7573 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7574 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7575 AssertOp = ISD::AssertSext; 7576 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7577 AssertOp = ISD::AssertZext; 7578 7579 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7580 NumParts, PartVT, VT, 7581 nullptr, AssertOp)); 7582 } 7583 7584 i += NumParts; 7585 } 7586 7587 // We don't need to do anything else for unused arguments. 7588 if (ArgValues.empty()) 7589 continue; 7590 7591 // Note down frame index. 7592 if (FrameIndexSDNode *FI = 7593 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7594 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7595 7596 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7597 SDB->getCurSDLoc()); 7598 7599 SDB->setValue(I, Res); 7600 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7601 if (LoadSDNode *LNode = 7602 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7603 if (FrameIndexSDNode *FI = 7604 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7605 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7606 } 7607 7608 // If this argument is live outside of the entry block, insert a copy from 7609 // wherever we got it to the vreg that other BB's will reference it as. 7610 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7611 // If we can, though, try to skip creating an unnecessary vreg. 7612 // FIXME: This isn't very clean... it would be nice to make this more 7613 // general. It's also subtly incompatible with the hacks FastISel 7614 // uses with vregs. 7615 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7616 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7617 FuncInfo->ValueMap[I] = Reg; 7618 continue; 7619 } 7620 } 7621 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7622 FuncInfo->InitializeRegForValue(I); 7623 SDB->CopyToExportRegsIfNeeded(I); 7624 } 7625 } 7626 7627 assert(i == InVals.size() && "Argument register count mismatch!"); 7628 7629 // Finally, if the target has anything special to do, allow it to do so. 7630 // FIXME: this should insert code into the DAG! 7631 EmitFunctionEntryCode(); 7632 } 7633 7634 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7635 /// ensure constants are generated when needed. Remember the virtual registers 7636 /// that need to be added to the Machine PHI nodes as input. We cannot just 7637 /// directly add them, because expansion might result in multiple MBB's for one 7638 /// BB. As such, the start of the BB might correspond to a different MBB than 7639 /// the end. 7640 /// 7641 void 7642 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7643 const TerminatorInst *TI = LLVMBB->getTerminator(); 7644 7645 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7646 7647 // Check successor nodes' PHI nodes that expect a constant to be available 7648 // from this block. 7649 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7650 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7651 if (!isa<PHINode>(SuccBB->begin())) continue; 7652 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7653 7654 // If this terminator has multiple identical successors (common for 7655 // switches), only handle each succ once. 7656 if (!SuccsHandled.insert(SuccMBB)) continue; 7657 7658 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7659 7660 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7661 // nodes and Machine PHI nodes, but the incoming operands have not been 7662 // emitted yet. 7663 for (BasicBlock::const_iterator I = SuccBB->begin(); 7664 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7665 // Ignore dead phi's. 7666 if (PN->use_empty()) continue; 7667 7668 // Skip empty types 7669 if (PN->getType()->isEmptyTy()) 7670 continue; 7671 7672 unsigned Reg; 7673 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7674 7675 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7676 unsigned &RegOut = ConstantsOut[C]; 7677 if (RegOut == 0) { 7678 RegOut = FuncInfo.CreateRegs(C->getType()); 7679 CopyValueToVirtualRegister(C, RegOut); 7680 } 7681 Reg = RegOut; 7682 } else { 7683 DenseMap<const Value *, unsigned>::iterator I = 7684 FuncInfo.ValueMap.find(PHIOp); 7685 if (I != FuncInfo.ValueMap.end()) 7686 Reg = I->second; 7687 else { 7688 assert(isa<AllocaInst>(PHIOp) && 7689 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7690 "Didn't codegen value into a register!??"); 7691 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7692 CopyValueToVirtualRegister(PHIOp, Reg); 7693 } 7694 } 7695 7696 // Remember that this register needs to added to the machine PHI node as 7697 // the input for this MBB. 7698 SmallVector<EVT, 4> ValueVTs; 7699 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7700 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7701 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7702 EVT VT = ValueVTs[vti]; 7703 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7704 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7705 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7706 Reg += NumRegisters; 7707 } 7708 } 7709 } 7710 7711 ConstantsOut.clear(); 7712 } 7713 7714 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7715 /// is 0. 7716 MachineBasicBlock * 7717 SelectionDAGBuilder::StackProtectorDescriptor:: 7718 AddSuccessorMBB(const BasicBlock *BB, 7719 MachineBasicBlock *ParentMBB, 7720 MachineBasicBlock *SuccMBB) { 7721 // If SuccBB has not been created yet, create it. 7722 if (!SuccMBB) { 7723 MachineFunction *MF = ParentMBB->getParent(); 7724 MachineFunction::iterator BBI = ParentMBB; 7725 SuccMBB = MF->CreateMachineBasicBlock(BB); 7726 MF->insert(++BBI, SuccMBB); 7727 } 7728 // Add it as a successor of ParentMBB. 7729 ParentMBB->addSuccessor(SuccMBB); 7730 return SuccMBB; 7731 } 7732